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Abstract: We propose a generalized notion of Wasserstein-Fréchet inte-
gral of conditional distributions for the classical situation of a joint distri-
bution between two scalar random variables X and Y by viewing the space
of probability distributions as a metric space and defining the Wasserstein-
Fréchet integral of conditional distributions as a Fréchet integral. Within
this general framework we illustrate various special cases, focusing on the
case where one adopts the 2-Wasserstein metric, which however is only one
possible choice of metric to implement the proposed method. We demon-
strate that this choice often leads to a useful and interpretable notion of
the conditional distribution of Y in situations where Y varies systematically
with X when one is interested in the residual distribution of Y after the
systematic effect is removed. We provide convergence results for the esti-
mated Wasserstein-Fréchet integral of conditional distributions for several
commonly encountered data generating mechanisms that are of statistical
relevance. These include scatterplot data (Xi, Yi), i = 1, . . . , n; data where
one has a sample of fully observed (conditional) densities along with predic-
tors Xi; and data where one encounters conditional densities that are not
fully observed and instead one has samples of the data that they generate.
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1. Introduction and preliminaries

The problem of defining a notion of mean when dealing with random objects
that reside in a metric space is of key statistical interest (Bhattacharya and
Patrangenaru, 2005; Agueh and Carlier, 2011). For a metric space M with a
probability measure P, the Fréchet mean or barycenter (Fréchet, 1948) on the
metric space (M, d) is defined as ν̄ = argminν0∈M EP(d2(ν, ν0)), where ν is a
random element in M. Here ν̄ in general is not unique and may consist of more
than one element. In the following, expectations and moments of distributions
will always be taken with regard to the measure P. Whether the Fréchet mean
is unique depends on both the space and the measure P. It extends the no-
tion of center from the usual mean or expectation in Euclidean space to more

∗This research was done while Álvaro Gajardo was a PhD student at the University of
California, Davis.

1722

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/25-EJS2371
mailto:aegajardo@ucdavis.edu
mailto:hgmueller@ucdavis.edu
mailto:hgzhou@ucdavis.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


Wasserstein-Fréchet integration of conditional distributions 1723

general metric spaces and random objects. Extensions to conditional means or
conditional barycenters for situations in which the response is a random object
lying in a metric space and where the predictor is an Euclidean vector have been
studied recently (Petersen and Müller, 2019a). Another useful tool is Fréchet
integrals, where the Fréchet mean is taken over the arguments of a random func-
tion that takes values in a metric space. These generalized integrals were found
to be instrumental for various scenarios (Petersen and Müller, 2016a; Dubey
and Müller, 2020; Lin and Müller, 2021).

In the following, we use the abbreviation pdf for probability density func-
tion and assume that pairs of random variables (X, Y ) have a joint distribution
with well-defined joint, conditional and marginal pdfs in the traditional sense,
where the joint distribution of (X, Y ) has the pdf fX,Y (x, y); the marginal
pdf of X and Y are denoted by fX , fY and the conditional pdf of Y | X by
fY |X = fX,Y (x, y)/fX(x). The key idea of our approach is as follows: We
start by observing that the marginal density fY is the center of the (ran-
dom) conditional pdfs fY |X(·, X), viewed as elements of the space of pdfs
F = {g : Y → R :

∫
Y g(s)ds = 1, g ≥ 0}, since

fY (y) =
∫

X
fY |X(y, x)fX(x) dx = E(fY |X(y, X)),

where fX denotes the density of X. Accordingly, the classical marginal fY is
the solution to an optimization problem over F ,

fY = argmin
g∈F

E[d2
L2(fY |X(·, X), g)], (1)

where dL2 denotes the L2 distance in F with respect to the Lebesgue measure.
To see this, observe that for any g ∈ F and using properties of the L2 inner
product, similarly to Proposition 1 in Petersen and Müller (2019a),

E[d2
L2(fY |X(·, X), g)] = E[‖fY |X(·, X) − fY ‖2

L2 ] + ‖fY − g‖2
L2 ,

where the minimizer is uniquely achieved at the density g = fY . We con-
clude that the classical marginal density fY is the (population) Fréchet mean
of the densities fY |X(·, X) when viewed as random elements of the metric space
(F , dL2) of density functions endowed with the L2 metric.

This observation suggests that using the L2 metric in (1) is a special case of a
more general principle, where the metric dL2 may be replaced by another metric
d in the space of distributions. Implementing this idea leads to the proposed
Fréchet integral of conditional distributions,

fY,d = argmin
g∈F

E[d2(fY |X(·, X), g)], (2)

which depends on the choice of the metric d, with fY = fY,dL2 . Of particular
interest is the choice of the 2-Wasserstein metric d = dW , due to its ability
to measure convergence in law while taking into account the geometry of the
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intrinsic space. In the following we refer to Fréchet integrals of conditional distri-
butions with respect to the Wasserstein metric as Wasserstein-Fréchet integrals
of conditional distributions and denote these by fY,dW .

Wasserstein-Fréchet integrals of conditional distributions can be expected to
capture the underlying geometry of Y |X = x in scenarios of statistical in-
terest such as when conditional distributions form location-scale families or
warped/deformed distributions that are derived from a common template mea-
sure (Panaretos and Zemel, 2019). Data examples illustrating that Wasserstein-
Fréchet integrals of conditional distributions provide a useful alternative to the
usual marginal distributions are provided in Section 6.1 below. For example,
the right panel of Figure 2 below displays a comparison of the regular marginal
density and the density of the Wasserstein-Fréchet integral of the conditional
distribution for weekday bike rentals during 2019 at a station in the Chicago
Divvy bike system. In contrast to the unimodal Wasserstein-Fréchet integral,
the regular marginal density is seen to be bimodal, which turns out not to be
a reasonable representation of the random fluctuations around the mean trend.
A similar phenomenon can be seen in Figure 1 for a simulated example. Since
the classical notion of marginal measure implicitly utilizes minimization of the
L2 distance, in many situations it is not suited to track the underlying geom-
etry of the space of conditional distributions fY |X(·, x), x ∈ X , even in simple
cases such as when Y |X = x belongs to the Gaussian ensemble with a mean
that varies with x. These examples demonstrate that since the space of density
functions F is a nonlinear subset of L2, adopting the L2 metric in this space is
not always a statistically meaningful choice.

Estimation of a population level Fréchet mean in Wasserstein space proceeds
by finding the empirical barycenter of a collection of iid observations of prob-
ability measures ν1, . . . , νk (Le Gouic and Loubes, 2017), where the empirical
barycenter of ν1, . . . , νk is given by the minimizer of the Fréchet functional
μ →

∑k
j=1 d2(νj , μ), which exists and is unique under absolute continuity of

at least one of the measures μj (Agueh and Carlier, 2011). In this framework,
Wasserstein-Fréchet integrals of conditional distributions are of interest when
the probability measures ν = ν(X) are related to a predictor X, where mea-
sures ν(X) have a (random) density fY |X(·, X); there is a connection with the
population barycenter for parametric families studied in Bigot and Klein (2018),
where the probability distribution family is defined through a transformation
Φ(θ) that is known in advance and inherently tied to the conditional distribu-
tion Y |X = x. However, in practical situations such as scatterplot data (Xi, Yi),
i = 1, . . . , n, the available information does not correspond to a sample of prob-
ability measures but instead to a sample of observations coming from the joint
distribution of (X, Y ), and the fact that population level random measures are
not directly observed needs to be taken into account when constructing suitable
empirical estimates; the empirical barycenter estimation approach in Bigot and
Klein (2018) is infeasible due to the unavailability of the sample of distributions.

In the following, we consider the space of probability measures on Y ⊆ R,
denoted by P(Y). For the subspace Pp(Y) ⊂ P(Y) of probability measures on
Y with finite p-moments, p ≥ 1, a metric that has attracted much interest in
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the literature is the p-Wasserstein metric, which for two probability measures
ν1, ν2 ∈ Pp(Y) is defined by dWp(ν1, ν2) = inf E(|R1 − R2|p)1/p, where the
infimum is taken with respect to both scalar random variables R1 and R2 such
that R1 ∼ ν1 and R2 ∼ ν2 (Villani, 2003). Of particular interest is the choice
of the 2-Wasserstein metric d = dW , due to its ability to measure convergence
in law while taking into account the geometry of the intrinsic space. While
we study only the case of one-dimensional distributions here, for the case of
multivariate distributions, it is noteworthy that the solutions to the optimal
transport problem under the W2-metric (Villani, 2003; Ambrosio, Gigli and
Savaré, 2005) are maximal monotone operators (Gangbo and McCann, 1996).
The convergence of the empirical estimator is thus associated with problems
relating to the convergence of convex functions (Hallin et al., 2021; del Barrio,
Sanz and Hallin, 2024; Segers, 2022; del Barrio, González-Sanz and Loubes,
2024).

When dealing with data in a simple regression problem, one typically ob-
serves bivariate scatterplot data (X1, Y1), . . . , (Xn, Yn) coming independently
from the joint distribution FX,Y of scalar random variables X and Y , where we
assume throughout that the density fY |X(·, x) of the conditional distribution of
Y |X = x exists. In this setting, a classical modeling assumption is to connect the
response Y with the predictor X by postulating an additive measurement error
model Y = m(X) + ε, where ε is an error term that satisfies E(ε|X) = 0 and
m(x) = E(Y |X = x) is the (unknown) conditional mean or regression function.
To give a motivating example for the notion of Wasserstein-Fréchet integral of
conditional distributions, suppose for the moment that the conditional distri-
bution of Y |X = x belongs to a location-scale family. This includes important
situations such as Gaussian linear regression where the error term ε|X = x be-
longs to the Gaussian ensemble so that the distribution of Y |X = x is recovered
once m(x) is available. This observation motivates to target a notion of center
for the conditional distributions Y |X = x that is able to track the underlying
geometry of the probability model connecting Y with X, and therefore that of
the error term ε conditionally on X.

A classical approach consists is to first estimate the unknown regression func-
tion m(x) nonparametrically, e.g., by employing local constant or linear kernel
estimators (Fan and Gijbels, 1996), followed by obtaining residuals Y −m(X) at
predictor levels X = Xi, and using these to recover the distribution of ε|X = x.
However, this multi-step process involves bandwidth or tuning parameter selec-
tion for the mean estimation step and requires careful analysis of bias and vari-
ance, as the estimate of the regression function m impacts the non-parametric
distribution estimation step for the error term. Instead, we approach this prob-
lem more directly through the proposed Wasserstein-Fréchet integral of con-
ditional distributions, obliviating the need to estimate the regression function
m. For location-scale families, the proposed approach captures the distribution
of the error term, as demonstrated in the following. Since the 2-Wasserstein
metric is inherently connected to quantile functions (Villani, 2003), the pro-
posed Wasserstein-Fréchet integral of conditional distributions is also related to
the problem of conditional quantile estimation (Parzen, 1979; Falk, 1984, 1985;
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Stute, 1986; Samanta, 1989; Bhattacharya and Gangopadhyay, 1990; Jones and
Hall, 1990; Li and Racine, 2008; Yu and Jones, 1998).

The organization of the paper is as follows. We introduce the notion of
Wasserstein-Fréchet integrals of conditional distributions in Section 2, where
we also provide various examples and comparisons with traditional marginals.
Empirical estimates along with theoretical convergence results are provided in
Section 3 for different data generating mechanisms such as (1) when one observes
scatterplot data (X1, Y1), . . . , (Xn, Yn) iid∼ FX,Y ; (2) when one has available fully
observed conditional densities fi = fY |X(·, Xi); and (3) when one has a dense
sample Yi1, . . . , Yimi coming from fi which introduces further estimation errors
that need to be accounted for. In Section 4 we study the optimal transport from
the estimated conditional densities fi to that of the Wasserstein-Fréchet integral
of conditional distributions and provide theoretical justifications. In Section 5
we present simulation results for various settings and in Section 6 we illustrate
the proposed estimates for data from bike pickups in the Divvy bike system
in Chicago, for Covid-19 cases across states in the United States and for data
on child development from the ECHO cohort study. Proofs of the theoretical
results along with additional simulation settings can be found in the Appendix.

Some notes on notation: Throughout, we use P(Y) to denote the space of
probability measures defined on Y ⊂ R, and Pp(Y) to refer to the subset of
P(Y) containing probability measures with finite p-moments. The p-Wasserstein
metric is denoted by dWp , where we use the simplified notation dW for the
special case dW2 . We denote the space of density functions corresponding to the
measures in P(Y) by F , and d2

L2 represents the L2-metric, defined as d2
L2(f, g) =∫

{f(u) − g(u)}2 du. We do not distinguish between the space of probability
measures P(Y) and the space of density functions F when referring to the
Wasserstein space.

2. Population Wasserstein-Fréchet integral of conditional
distributions

For a metric space (M, d), an interval T ⊂ R and an object-valued function
h : T → M, the Fréchet integral of the metric-space valued curve h is (Petersen
and Müller, 2016a)

h∗ = arg inf
ω∈M

∫
T

d2(h(t), ω)dt.

Its existence can be guaranteed if M is compact and uniqueness if M is a
Hadamard space; in the case of non-uniqueness the Fréchet integral h∗ is a set
of minimizers, in analogy to the Fréchet mean. We show below that the classical
marginal density of the scalar random variable Y can be characterized as a
generalized Fréchet integral (Dubey and Müller, 2020) when employing the L2

metric in the space of density functions.
Suppose that one has scatterplot data (X1, Y1), . . . , (Xn, Yn) iid∼ (X, Y ), where

X and Y are scalar random variables. Let fY |X(·, x) be the density of the condi-
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tional distribution of Y |X = x with corresponding quantile function QY |X(t, x),
t ∈ (0, 1), where the support X of X is a compact interval. Suppose that (Fd, d)
is a metric space with a suitable metric d, where Fd ⊂ F is an appropriate sub-
space consisting of density functions of probability measures for which the under-
lying metric d is well defined. For example, when one employs the p-Wasserstein
metric d = dWp , it is natural to consider the metric space of density functions
of probability measures with finite p-th moments. Let ν(x) be the probability
measure with density function fY |X(·, x), x ∈ X , which is assumed to reside in
Fd. The generalized Fréchet integral of ν(x), x ∈ X , is

ν∗
d = arg inf

ω∈Fd

∫
X

d2(ν(x), ω)dF (x), (3)

where here and in the following we write F for FX and f for fX for the dis-
tribution function and density of the random variable X, which are assumed
to exist on the support X . The integral in (3) is understood in the Lebesgue-
Stieltjes sense and can be written as ν∗ = arg inf

ω∈Fd

∫
X d2(ν(x), ω)f(x)dx, in anal-

ogy to the generalized Fréchet integral introduced in Dubey and Müller (2020),
where one can find further details about conditions for existence and unique-
ness. We denote by Fω, fω the distribution function and pdf of a probabil-
ity measure ω and by C(Y) the space of density functions of absolutely con-
tinuous probability measures on Y with respect to the Lebesgue measure. If
Fd = C(Y) and d is the L2 distance between corresponding density functions,
namely d2(ν(x), ω) =

∫
R
(fY |X(s, x) − fω(s))2ds, then f∗

νL2 = fY .

Proposition 1. Let Fd be the space of absolutely continuous probability mea-
sures with respect to the Lebesgue measure, endowed with the L2 metric between
density functions. Then the L2 generalized marginal ν∗

L2 of ν(x), x ∈ X , as in
(3), corresponds to the classical marginal distribution of Y .

If we consider the 2-Wasserstein space (Fd, d) = (P2(Y), dW), then (3) leads
to the notion of the Wasserstein-Fréchet Integral, which is a probability distri-
bution that we denote by ν∗. Proposition 2 shows that the Wasserstein-Fréchet
Integral ν∗ has the quantile function

Q∗(t) =
∫

X
QY |X(t, x)dF (x), t ∈ (0, 1). (4)

Proposition 2. For the choice (Fd, d) = (P2(Y), dW) corresponding to the 2-
Wasserstein space, if Y = [0, 1] is compact or Y = R is unbounded and there
exists a function g ∈ L2([0, 1]) such that QY |X(t, x) ≤ g(t) for all x, then the
Wasserstein-Fréchet Integral ν∗

d in (3) is unique and has corresponding quantile
function Q(ν∗

d) = Q∗ (4).

If f is continuous on the compact set X , the condition QY |X(t, x) ≤ g(t) in
Proposition 2 is automatically satisfied when Y is compact; for the unbounded
case Y = R it is implied if supx∈X |QY |X(·, x)| ∈ L2([0, 1]). The latter is a mild
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condition and holds in the Gaussian setting of Example 1 below whenever μ(·)
and σ(·) are continuous.

The proposed Wasserstein-Fréchet Integral is readily seen to keep track of the
underlying geometry of the relationship between Y and X, as demonstrated in
the following examples. We remark that since the Wasserstein-Fréchet Integral
can be alternatively viewed as a barycenter in 2-Wasserstein space, some of its
properties are well known (see for example Álvarez Esteban et al. (2016); Bigot
and Klein (2018)).

Example 1. Consider a Gaussian linear regression setting, where Y |X = x ∼
N(μ(x), σ2(x)), σ2(x) > 0, x ∈ X , and let Φ be the cdf of a standard nor-
mal random variate. Then QY |X(t, x) = Φ−1(t)σ(x) + μ(x), t ∈ (0, 1) and the
Wasserstein-Fréchet Integral is given by

ν∗ = N

(∫
X

μ(x)dF (x),
(∫

X
σ(x)dF (x)

)2
)

,

where the mean and variance of ν∗ correspond to the Euclidean barycenter
of the random variables Y and σ(X), respectively. This can be seen from the
fact that E(Y ) = E(E(Y |X)) = E(μ(X)) =

∫
X μ(x)dF (x) for the mean and

similarly for the variance.

Example 2. Consider the more general model Y = g(X) + ε, where g(X) =
E(Y |X = x) is the regression function and ε is a random variable that may
depend on X and is such that E(ε|X) = 0. Proposition 2 and some simple
calculations show that the quantile function of the Wasserstein-Fréchet Integral
ν∗ is given by

Q∗(t) =
∫

X
qε|X(t, x)dF (x) + E(g(X)), t ∈ (0, 1),

where qε|X(·, x) is the conditional quantile function associated with the distri-
bution ε|X = x. For the special case when the error ε is independent of X it
follows that

Q∗(t) = qε(t) + E(g(X)), t ∈ (0, 1),

which shows that if the error distribution is a location-scale family, then the
Wasserstein-Fréchet Integral belongs to the same family.

Example 3. Consider a location-scale family model for the conditional distri-
bution Y |X = x, i.e., fY |X(y, x) = 1

σ(x) f0

(
y−μ(x)

σ(x)

)
, where f0 corresponds to a

density function over R such that
∫
R

zf0(z)dz = 0 and
∫
R

z2f0(z)dz = 1, and
μ(X) and σ(X) > 0 are (measurable) functions of X. Then the quantile function
corresponding to the Wasserstein-Fréchet Integral is given by

Q∗(t) = Q0(t)
∫

X
σ(x)dF (x) +

∫
X

μ(x)dF (x), t ∈ (0, 1),
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where Q0 is the quantile function corresponding to the density f0, since for a
location-scale model it holds that QY |X(t, x) = Q0(t)σ(x)+μ(x) by Proposition
2. Thus, the Wasserstein-Fréchet Integral belongs to the same location-scale
family, with pdf

fν∗(y) = 1
E(σ(X))f0

(
y − E(μ(X))

E(σ(X))

)
, y ∈ Y .

In the context of the time-warping or curve registration problem in func-
tional data analysis (Sakoe and Chiba, 1978; Kneip and Gasser, 1992; Wang and
Gasser, 1997; Liu and Müller, 2004; Bigot and Charlier, 2011), one may con-
sider an observation Y and a time shift random variable θ such that fY |θ(y, θ) =
f0(y − θ), and θ ∼ g for some density g. This can be viewed in the framework
of the location-scale model for the conditional distribution of Y |X when tak-
ing X = θ, σ(X) = 1 and μ = id. Then the Wasserstein-Fréchet Integral has
the density fν∗(ν) = f0(ν − E(θ)), which is a preferred notion of center com-
pared to the Euclidean marginal fE(y) =

∫
X f0(ν − x)dFθ(x), as in general the

latter does not lie in the family of time-warped densities (Bigot and Charlier,
2011; Bigot, 2013) and does not adequately reflect the underlying shape of the
template density f0, which usually is the target of interest.

Example 4. Considering a convex combination of Gaussian measures, let m >
0, π = (π1, . . . , πm) such that

∑m
j=1 πj = 1 with πj ≥ 0, and introduce random

means μ1(X), . . . , μm(X)
∈ R and random standard deviations σ1(X), . . . , σm(X) > 0. Suppose that the
distribution of Y |X = x satisfies QY |X(t, x) =

∑m
j=1 πjQj(t), t ∈ (0, 1), where

Qj is the quantile function of a Gaussian random variable N (μj(x), σ2
j (x)). Then

ν∗ ∼ N

⎛
⎝ m∑

j=1
πjE(μj(X)),

[ m∑
j=1

πjE(σj(X))
]2

⎞
⎠ .

This situation can be viewed equivalently as an empirical Wasserstein barycenter
(Agueh and Carlier, 2011; Panaretos and Zemel, 2019) of Gaussian measures
νj ∼ N(E[μj(X)], E[σj(X)]), j = 1, . . . , p, which has been well studied for the
Gaussian case (Takatsu, 2011; Agueh and Carlier, 2011) and also for location-
scatter families (Álvarez Esteban et al., 2016).

The following example shows that the proposed Wasserstein-Fréchet Inte-
gral measure remains in the distribution class of Y |X for several well known
probability models, which elucidates a closedness property for the proposed
Wasserstein-Fréchet Integral and demonstrates the utility of the 2-Wasserstein
geometry.

Example 5. The Wasserstein-Fréchet Integral ν∗ remains in the distribution
class corresponding to Y |X for the following probability models:

• If Y |X = x ∼ Lognormal(μ(x), σ) has a Log-normal distribution with
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parameters μ(x) and σ > 0, then

ν∗ ∼ Lognormal(log(
∫

X
exp (μ(x))dF (x)), σ).

• If Y |X = x ∼ E(θ(x)) has an exponential distribution with inverse scale
parameter θ(x) > 0, then ν∗ ∼ E(

∫
X θ(x)dF (x)).

• If Y |X = x ∼ Gumbel(μ(x), β(x)) has a Gumbel distribution with lo-
cation and scale parameters μ(x) and β(x) > 0, respectively, then ν∗ ∼
Gumbel(

∫
X μ(x)dF (x),

∫
X β(x)dF (x)).

• If Y |X = x ∼ Gompertz(λ, κ(x)) has a Gompertz distribution with
shape and scale parameters λ > 0 and κ(x) > 0, respectively, then
ν∗ ∼ Gompertz(λ, {

∫
X [1/κ(x)]dF (x)}−1).

In contrast, when d is chosen as the L2 metric between corresponding den-
sity functions, the classical marginal measure typically does not track the un-
derlying geometry of the distribution of Y |X = x in important cases such
as Gaussian location-scale families, as the classical marginal is then given by
fY (s) = fν∗

L2 (s) = E{φ[(s − μ(X))/σ(X)]/σ(X)}.
We next show that the proposed generalized Wasserstein-Fréchet Integral

adapts to the geometry induced by other possible metrics for probability mea-
sures such as the 1-Wasserstein distance and the Hellinger distance, or equiva-
lently the L2 distance between the square-root densities viewed as elements of
the unit Hilbert sphere in the context of the Fisher-Rao metric. For these im-
portant scenarios the generalized Fréchet integral in (3) admits a closed form.

For the 1-Wasserstein space, where Fd = P1(Y) and d is chosen as the 1-
Wasserstein metric, which is equivalent to the L1 distance between correspond-
ing cdfs (Villani, 2003), Fubini’s theorem shows

ν∗
1 = arg inf

ω∈P1(Y)

∫
X

∫
R

|FY |X(s, x) − Fω(s)|dsdF (x)

= arg inf
ω∈P1(Y)

∫
R

E
(
|FY |X(s, X) − Fω(s)|

)
ds.

This is easily shown to be minimized when Fω(s) = median(FY |X(s, X)), s ∈
R. That median(FY |X(s, X)) is a valid cdf is a consequence of it being con-
tained in (0, 1), non-decreasing in s ∈ R and satisfying lims→−∞ Fω(s) = 0
and lims→+∞ Fω(s) = 1. In a classical linear regression setting, where Y =
β0 + β1X + ε, ε ∼ N(0, σ2), the 1-Wasserstein-Fréchet Integral ν∗

1 has cdf
Fν∗

1 (s) = Φ[(s − β0 − β1median(X))/σ].

Example 6. Consider Fd = P1(Y) and the metric d to be the 1-Wasserstein
metric so that the probability measure ν∗

1 has cdf F ∗
1 (s) = median(FY |X(s, X)),

s ∈ R. The following relations hold.

• If Y |X = x ∼ Lognormal(μ(x), σ) has a Log-normal distribution with
parameters μ(x) and σ > 0, then ν∗

1 ∼ Lognormal(median(μ(X)), σ).
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• If Y |X = x ∼ E(λ(x)) has an exponential distribution with rate parameter
λ(x) > 0, then ν∗

1 ∼ E(median(λ(X))).
• If Y |X = x ∼ Weibull(λ(x), κ) has a Weibull distribution with scale

and shape parameters λ(x) > 0 and κ > 0, respectively, then ν∗
1 ∼

Weibull(median(λ(X)), κ).
• If Y |X = x ∼ Gompertz(λ(x), κ) has a Gompertz distribution with

shape and scale parameters λ(x) > 0 and κ > 0, respectively, then
ν∗

1 ∼ Gompertz(median(λ(X)), κ).
• If Y |X = x ∼ Gumbel(μ(x), β) has a Gumbel distribution with location

and scale parameters μ(x) and β > 0, respectively, then

ν∗
1 ∼ Gumbel(median(μ(X)), β).

If d is the Hellinger distance on the space Fd of absolutely continuous prob-
ability measures with respect to Lebesgue measure on Y , i.e., dH(f1, f2) =
‖
√

f1 −
√

f2‖L2 with f1, f2 ∈ Fd, then the Hellinger marginal in the sense of (3)
is given by

ν∗
H = arg inf

ω∈Fd

E(d2
H(fY |X(·, X), gω)),

where gω is the density function of the probability measure ω. With 〈·, ·〉L2

denoting the L2 inner product, the well known property d2
H(fY |X(·, X), gω) =

2 − 2〈[fY |X(·, X)]1/2, g
1/2
ω 〉L2 reveals that

ν∗
H = arg sup

ω∈Fd

〈E([fY |X(·, X)]1/2), g1/2
ω 〉L2 .

For h(·) = E([fY |X(·, X)]1/2), observing ‖g
1/2
ω ‖L2 = 1, since gω is a den-

sity function, and the inequality 〈h, g
1/2
ω 〉L2 ≤ ‖h‖L2 , one finds that gω =

h2/‖h‖2
L2 achieves the upper bound over the class of density functions. There-

fore, the density corresponding to the Hellinger marginal ν∗
H is given by fH(·) =

h(·)2/
∫

Y h2(y)dy.
In the following, we adopt the 2-Wasserstein metric in the space of probability

distributions over Y as it successfully keeps track of the underlying geometry
inherent to the model between the response Y and predictor X, especially when
deformations are of key importance in applications (Bolstad et al., 2003).

3. Empirical Wasserstein-Fréchet integrals of conditional
distributions and quantiles

3.1. Preliminaries

We now consider the estimation of the Wasserstein-Fréchet Integral ν∗ which
can be equivalently characterized through its corresponding quantile function
Q∗ = Q(ν∗) given by the relation Q∗(t) =

∫
X QY |X(t, x)dF (x), t ∈ (0, 1), as

shown in Proposition 2. Without loss of generality, suppose that X = [0, 1]. As
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we assume throughout that densities exist, one can write alternatively Q∗(t) =∫
X QY |X(t, x)f(x)dx, t ∈ (0, 1). The latter suggests empirical estimates as fol-

lows. Suppose that an estimate Q̂Y |X(·, x) of QY |X(·, x) is available such that it
is a valid quantile function for all predictor levels x ∈ X , and similarly for a den-
sity estimate f̂ of f over X . Then, a natural estimate of the quantile function Q∗

corresponding to the Wasserstein-Fréchet Integral that is guaranteed to reside
in the space of quantile functions is obtained by plugging-in the empirical coun-
terparts into the expression for Q∗. This leads to Q̂∗(t) =

∫
X Q̂Y |X(t, x)f̂(x)dx,

t ∈ (0, 1).
Several smoothing approaches have been extensively studied in the literature

for estimating the conditional quantile function QY |X(·, x), x ∈ X . However,
many of the known approaches are not directly applicable as they do not yield
estimates that reside in quantile space. For example, local linear estimators of
the quantile regression function QY |X(·, x) (Yu and Jones, 1998) are not guar-
anteed to produce valid quantile functions. To address this issue, Nadaraya-
Watson kernel type estimators have been proposed in the literature for esti-
mating the conditional distribution function FY |X(·, x) that are guaranteed to
be non-decreasing and lying in [0, 1], and which are then inverted to obtain the
corresponding (conditional) quantile function (Stute, 1986; Hall, Wolff and Yao,
1999; Li and Racine, 2008). In this approach one first estimates the conditional
cdf F̂Y |X(·, x) of the (conditional) distribution Y |X = x by a Nadaraya-Watson
kernel type estimator given by

F̂Y |X(y, x) =
n−1 ∑n

i=1 1{Yi≤y}Kh(Xi − x)
f̃(x)

, y ∈ Y , (5)

where f̃(x) = n−1 ∑n
i=1 Kh(Xi − x) is the standard kernel density estimator of

f(x), K is a kernel function corresponding to a symmetric density function with
compact support [−1, 1], Kh(·) = K(·/h)/h and h > 0 is a bandwidth. It is clear
that (5) is a valid cdf as it is non-decreasing with values in [0, 1]. This estimate
corresponds to the one introduced in Hall, Wolff and Yao (1999) when taking
the weights p(x) in this paper to be identically one. Then, a direct estimator of
the conditional quantile function is constructed by inverting F̂Y |X(·, x) via

Q̂Y |X(t, x) = inf{y ∈ Y : F̂Y |X(y, x) ≥ t}, t ∈ [0, 1], (6)

which is a valid and quantile function; see also Yu and Jones (1998); Fan,
Hu and Truong (1994); Fan and Gijbels (1996). A parametric version is pro-
vided by quantile regression, which employs M-estimation (Koenker and Bas-
sett, 1978) but may suffer from the problem of crossing quantiles (Chernozhukov,
Fernández-Val and Galichon, 2010) and requires parametric assumptions.

We develop here an intrinsic estimation framework for Wasserstein-Fréchet
integral of conditional distributions, for which we adopt a double-kernel smooth-
ing approach. For a situation with compact support X of X, we utilize the
boundary-corrected kernel density estimator f̂ for f of Petersen and Müller
(2016b), which adjusts for boundary effects while producing bona-fide density
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estimates, i.e.,
∫

X f̂(x)dx = 1 and f̂(x) ≥ 0, x ∈ X . Let κ2 be a kernel function
corresponding to a density function over [−1, 1] that is symmetric around 0.
Then this boundary-corrected kernel density estimator for the density f of the
predictor X is

f̂(x) =
n∑

i=1
κ2

(
Xi − x

h

)
w(x, h)

/ ∫ 1

0
κ2

(
Xi − s

h

)
w(s, h)ds,

where the weights

w(x, h) =(
∫ 1

−x/h

κ2(u)du)−11{x∈[0,h)}

+
(∫ (1−x)/h

−1
κ2(u)du

)−1

1{x∈(1−h,1]} + 1{x∈[h,1−h]}

are constructed in such a ways as to correct for the boundary bias.
Suppose that Y is compact and without loss of generality consider Y = [0, 1].

For the estimation of the conditional density fY |X(·, x) = fY,X(·, x)/f(x), we
further adjust the classical double kernel based quotient type estimate (Stone,
1977; Samanta, 1989). For bandwidths h1, h < 0.5, the estimate f̂Y |X(y, x) of
fY |X(y, x) is given by

f̂Y |X(y, x) =

∑n
i=1 κ1

(
Yi−y

h1

)
w1(y, h1)κ2

(
Xi−x

h

)
w(x, h)∑n

i=1 κ2
(

Xi−x
h

)
w(x, h)

∫ 1
0 κ1

(
Yi−s

h1

)
w1(s, h1)ds

, y ∈ Y , x ∈ X ,

where w1 is defined analogously as w but replacing the kernel κ2 by κ1. This
allows to correct for boundary bias in both X and Y . The estimated conditional
cdf can be directly obtained by integration, F̂Y |X(y, x) =

∫ y

0 f̂Y |X(s, x)ds, y ∈ Y .
It is easy to see that the estimated conditional density f̂Y |X(·, x) is a valid (con-
ditional) density function since

∫ 1
0 f̂Y |X(y, x)dy = 1 for all x and f̂Y |X(·, x) ≥ 0,

whence F̂Y |X(·, x) is a valid (conditional) cdf for all x. Then Q̂Y |X(·, x) is ob-
tained by inverting the estimated conditional cdf F̂Y |X(·, x) using (6). Finally,
the estimate of the quantile function Q∗ = Q(ν∗) of the Wasserstein-Fréchet
Integral ν∗ is Q̂∗(t) =

∫
X Q̂Y |X(t, x)f̂(x)dx, t ∈ (0, 1).

3.2. Estimation of the Wasserstein-Fréchet integral for scatterplot
data

Suppose that the available data consists of a scatterplot (X1, Y1), . . . , (Xn, Yn)
sampled from the joint distribution of (X, Y ). The following result shows that
the Wasserstein-Fréchet Integral ν∗ can be consistently recovered in the 2-
Wasserstein metric. Denote by ‖g‖∞ = supx∈X |g(x)| the supremum norm for a
function g : X → R. We require that
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(S1) fY |X : Y × X → R+ is positive and continuously differentiable.
(S2) The density function f of X is continuously differentiable and satisfies

infx∈X f(x) ≥ M for some M > 0.

Assumptions (S1)-(S2) are mild regularity conditions. If f is continuously
differentiable and strictly positive, (S2) is immediately satisfied due to com-
pactness of X . Denote by K the space of kernel functions κ0 : R → R that
correspond to a continuous density function that is symmetric around 0 and
has compact support [−1, 1].

Theorem 3.1. Suppose that Y = [0, 1], X = [0, 1], κ1, κ2 ∈ K and the regularity
conditions (S1)-(S2) hold. If h = hn = n−1/3, then

d2
W(ν̂∗, ν∗) = Op(h2

1 + n−2/3).

Choosing h1 = n−1/3 in Theorem 3.1 leads to the rate Op(n−2/3), which
is due to the estimation of f in the L2 norm, and is optimal for the class of
differentiable density functions that are bounded away from zero (Petersen and
Müller, 2016b). Since the W1 metric is the weakest of all Wp metrics, p ≥ 1,
(Villani, 2009, Remark 6.6, page 107), it follows that the L1-distance between
the estimated and true Wasserstein-Fréchet Integral cdfs can also be consistently
recovered.

Considering an extension to the case Y = R where the support of the density
fY |X(·, x) is unbounded, there is no need for boundary correction in this case
and therefore we slightly adjust the estimators as follows. For simplicity, suppose
that the kernel function κ1 has unbounded support R (such as is the case for a
Gaussian kernel). The estimate of fY |X(y, x) is given by

f̂Y |X(y, x) =

∑n
i=1

1
h1

κ1

(
Yi−y

h1

)
κ2

(
Xi−x

h

)
w(x, h)∑n

i=1 κ2
(

Xi−x
h

)
w(x, h)

,

and then the estimated conditional cdf F̂Y |X(y, x) =
∫ y

−∞ f̂Y |X(s, x)ds, y ∈ R is

F̂Y |X(y, x) =
n∑

i=1
G

(
y − Yi

h1

)
κ2

(
Xi − x

h

)
w(x, h)

/ n∑
i=1

κ2

(
Xi − x

h

)
w(x, h),

where G(z) =
∫ z

−∞ κ1(s)ds, z ∈ R. Clearly F̂Y |X(y, x) is non-decreasing in y for
all x, and satisfies F̂Y |X(y, x) → 1 as y → ∞ and F̂Y |X(y, x) → 0 as y → −∞, so
that it is a valid (conditional) cdf. We require the following regularity conditions
in the unbounded support case.

(S1’) There exists δ ∈ (0, 1) such that
∫

X
∫ 1−δ

δ
Q2

Y |X(t, x)dtdx < ∞.
(S2’) It holds that supx∈X ,y∈Y | ∂2

∂x2 FY,X(y, x)| < ∞ and

sup
x∈X ,y∈Y

fY |X(y, x) < ∞.
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(K1’) κ1 corresponds to a continuous density function with unbounded support
R that is symmetric around 0 and satisfies

∫
R
|u|κ1(u)du < ∞.

Assumption (S1’) is a mild condition that is satisfied if
∫

X E(Y 2|X = x)dx <
∞, which in turns holds if E(Y 2|X = x) is continuous in x. In this case any
δ ∈ (0, 1) can be taken in (S1’). Theorem 3.2 shows that ν∗ can be consistently
estimated in the interior, i.e., in terms of the δ-truncated 2-Wasserstein distance
defined by d2

Wδ
(ν̂∗, ν∗) =

∫ 1−δ

δ
(Q̂∗(t) − Q∗(t))2dt, with δ as in (S1’).

Theorem 3.2. Suppose that Y = R, X = [0, 1], κ2 ∈ K and the regularity
conditions (S1), (S2), (S2’) and (K1’) hold. Let δ ∈ (0, 1) be defined as in (S1’)
and h = hn = n−1/3. Suppose that h1np−1/3 → ∞ as n → ∞ for some p > 2/3.
Then

d2
Wδ

(ν̂∗, ν∗) = Op(h2
1 + n−2/3).

Again choosing the bandwidth sequence as h1 = n−1/3 in Theorem 3.2
leads to the rate Op(n−2/3). For situations in which the conditional densities
fi = fY |X(·, Xi) can be assumed to be fully observed across subjects, one can
readily utilize this additional information when constructing estimates of the
Wasserstein-Fréchet Integral, as follows.

3.3. Estimation of the Wasserstein-Fréchet integral for fully
observed and for estimated conditional densities

For another perspective, suppose that the conditional densities fi = fY |X(·, Xi)
are fully observed, in which case the available data is the i.i.d. sample

{(X1, f1), . . . , (Xn, fn)}.

Denoting by Qi the quantile function corresponding to fi, the Qi form an i.i.d.
sample of random quantile functions with E(Q1(t)) = Q∗(t), t ∈ (0, 1), where
Q∗ = Q(ν∗) is the quantile function of the Wasserstein-Fréchet Integral ν∗.
Then the law of large numbers suggests the estimate

Q̂∗(t) = n−1
n∑

i=1
Qi(t), t ∈ (0, 1),

for Q(ν∗). The next result shows that ν∗ can be consistently recovered in the
2-Wasserstein metric at the

√
n-rate for predictors X ∈ Rp, p ≥ 1.

Theorem 3.3. Suppose that Y = [0, 1] and X = [0, 1]p, p ≥ 1. If the densities
fi(·) = fY |X(·, Xi), i = 1, . . . , n, are fully observed, then

d2
W(ν̂∗, ν∗) = Op(n−1).

We remark that when the densities fi have unbounded support R, the result
still holds provided that

∫ 1
0 Var(Q1(t))dt < ∞, which is a mild regularity con-

dition. For example, in the location-scale model of Example 3, this is satisfied
when Var(μ(X)) < ∞ and Var(σ(X)) < ∞.
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However, for situations in which the conditional densities fi remain latent and
are not directly observed, which is the most common scenario in data analysis,
these estimates are not feasible and Theorem 3.3 does not apply. A common
framework is to instead assume that one has an increasing sample of observations
coming from such densities fi, so that consistent estimation of the individual fi is
possible (Bigot et al., 2018; Petersen and Müller, 2016b). This introduces further
estimation errors that need to be accounted for in the final estimate of the
Wasserstein-Fréchet Integral. To this end, suppose that the available data consist
of a random sample Yi1, . . . , Yini

iid∼ fi for each fi, where fi(·) = fY |X(·, Xi),
i.e., a random sample from the conditional distribution fY |X(·, Xi) at predictor
level Xi is available. We then estimate the individual density fi by

f̂i(y) =
ni∑

j=1
κ1

(
Yij − y

h1

)
w1(y, h)

/ ni∑
j=1

∫ 1

0
κ1

(
Yij − s

h1

)
w1(s, h)ds,

where y ∈ Y = [0, 1]. Let F̂i(y) =
∫ y

0 f̂i(ν)dν be the estimated cdf obtained from
the density estimate f̂i. By the law of large numbers, n−1 ∑n

i=1 F −1
i (t) converges

in probability to E(F −1
1 (t)) = E[E(F −1

1 (t)|X1)] = E[QY |X(t, X1)] = Q∗(t) at
the

√
n-rate. Thus, if F̂ −1

i (t) can be shown to be close to F −1
i (t), a natural

estimate of Q∗(t), t ∈ (0, 1), is Q̂∗(t) = n−1 ∑n
i=1 F̂ −1

i (t).

Theorem 3.4. Suppose that Y = [0, 1], X = [0, 1]p, p ≥ 1, κ1 ∈ K and the
regularity conditions (S1) and (S2) hold, furthermore that Yi1, . . . , Yini

iid∼ fi,
where fi(·) = fY |X(·, Xi) and ni ≥ 1, i = 1, . . . , n. Suppose that mini=1,...,n ni ≥
m(n), where m(n) → ∞ as n → ∞. If m(n)h4

1 = O(1) as n → ∞ and fY |X(·, x)
is twice-continuously differentiable for all x, then

d2
W(ν̂∗, ν∗) = Op

(
n−1 + m(n)−1)

.

Thus, if m(n) = n which then requires h1 = O(n−1/4), potentially under-
smoothing the individual density estimates f̂i, the overall n−1 convergence rate
is maintained even for the more realistic case where the densities need to be
estimated.

4. Optimal transport to the Wasserstein-Fréchet integrals

Next we study optimal transport maps (Villani, 2003) Ti : [0, T ] → [0, T ] from
the individual (conditional) measures νi with corresponding density functions
fi = f(νi) to the Wasserstein-Fréchet Integral ν∗, which minimizes the transport
cost

Ti = arg min
T0:[0,T ]→[0,T ]

∫ T

0
(y − T0(y))2fi(y)dy,

where T0 pushes νi forward to ν∗, i.e., T0#νi = ν∗ (Panaretos and Zemel, 2019).
This problem has a well known solution given by Ti(y) = Q∗(Fi(y)), y ∈ Y . With
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available empirical estimates F̂i of Fi and Q̂∗ of Q∗, a natural estimate of the
optimal transport map Ti is then given by T̂ ∗

i (y) = Q̂∗(F̂i(y)), y ∈ Y. The
next result shows that the optimal transport maps across all subjects can be
uniformly recovered when the conditional densities fi are fully observed. Since
in this case Fi =

∫ y

0 fi(s)ds is fully observed, the empirical optimal transport
estimate is given by T̂ ∗

i (y) = Q̂∗(Fi(y)), y ∈ Y .

Theorem 4.1. Suppose that Y = [0, 1], X = [0, 1]p, p ≥ 1, and there exists
L > 0 such that QY |X(·, x) is L-Lipschitz for all x. If the densities fi(·) =
fY |X(·, Xi), i = 1, . . . , n, are fully observed, then

max
i=1,...,n

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| = Op

(
(log n/n)1/2

)
.

Ranking the individual observations Y1, . . . , Yn while adjusting for each cor-
responding covariate level Xi, i = 1, . . . , n, is also of interest. In the con-
text of time-varying functional data but without additional covariates, Chen,
Dawson and Müller (2020) proposed to study the rank dynamics of a pro-
cess Y0(·) observed on a compact time window by targeting the cross-sectional
percentile Ft(Y0(t)), where Ft(y) = P (Y0(t) ≤ y). Since here the responses
Yi are scalar, a similar idea would be to rank the Yi based on the classical
marginal cdf FY (y) =

∫ y

0 fY (s)ds. Instead, we propose to utilize the cdf of
the Wasserstein-Fréchet Integral, where we obtain percentiles of the observa-
tions Y1, . . . , Yn through the Wasserstein-Fréchet Integral distribution functions
F ∗(Yi), i = 1, . . . , n. This approach to ranking incorporates the corresponding
covariate levels Xi in a natural way and removes the effect of the conditional
mean. It basically ranks the responses across all subjects by how their response
relates to the mean, i.e., to what degree it is above, at or below the conditional
mean.

The following results justify this new approach. It shows that when the (con-
ditional) densities are fully observed, the cdf of the Wasserstein-Fréchet Integral
can be uniformly recovered across subjects.

Theorem 4.2. If the conditions of Theorem 4.1 and (S1), (S2) are satisfied,

sup
y∈Y

|F̂ ∗(y) − F ∗(y)| = Op

((
log n

n

)1/2
)

.

For situations in which the (conditional) densities fi remain unobserved and
one only has available a sample of observations generated from each distribution,
the optimal transports across all subjects can still be uniformly recovered, as
per the following result.

Theorem 4.3. Suppose that Y = [0, 1], X = [0, 1]p, p ≥ 1, κ1 ∈ K, ni ≥ m(n)
with m(n) → ∞ as n → ∞, (S1) holds and fY |X(·, x) is twice-continuously
differentiable for all x. If m(n)h4

1 = O(1), m(n)2γ0−1h2
1 log m(n) → ∞ and
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n/m(n)ρ1 = o(1) as n → ∞ for some γ0 > 1/2 and ρ1 > 0, then

max
i=1,...,n

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| = Op

((
log n

n

)1/2

+
(

log m(n)
m(n)

)1/2
)

.

Thus, if h1 = m(n)−υ for some υ > 1/4, then one can take any γ0 > 1/2 + υ
in Theorem 4.3 to fulfill the condition m(n)2γ0−1h2

1 log m(n) → ∞ as n →
∞. If m(n) = nρ has a polynomial growth rate for some ρ > 0, then taking
any ρ1 > ρ−1 satisfies the condition n/m(n)ρ1 = o(1) as n → ∞. The rate
Op((log n/n)1/2) is achieved provided that m = m(n) grows faster than n. Since
the uniform recovery of the optimal transports is naturally tied to the uniform
estimation of Q∗, Lemma A.8 in the Appendix provides the rate of convergence
for supt∈(0,1)|Q̂∗(t) − Q∗(t)|, which is a stronger metric compared to the 2-
Wasserstein metric that governs the result in Theorem 3.4.

The next result shows that the Wasserstein ranking of the observations

Y1, . . . , Yn

can be uniformly recovered when the fi are unknown as long as one has available
an increasing sample of observations that are generated by each fi.

Theorem 4.4. Under the regularity conditions of 4.3

sup
y∈Y

|F̂ ∗(y) − F ∗(y)| = Op

((
log n

n

)1/2

+
(

log m(n)
m(n)

)1/2
)

,

where F̂ ∗(y) = inft∈[0,1]{Q̂∗(t) > y}.

The fact that F̂ ∗(y) is a valid cdf, i.e., right-continuous on Y with F̂ ∗(0) = 0
and F̂ ∗(1) = 1, is a consequence of the non-decreasing property of Q̂∗ (Feng
et al., 2012). Here we take the convention that inft∈[0,1] ∅ = 1 as Y = [0, 1]

5. Simulations

We consider the following random mechanism that generates fully observed con-
ditional densities: First generate predictors X1, . . . , Xn

iid∼ U(0, 1). Then, con-
ditional on Xi, the conditional density fi(·) = fY |X(·, Xi) corresponds to the
density function of a truncated normal random variate with support [0, 1] and
parameters μ = a0 + b0Xi and σ = a1 + b1Xi, where the scalars a0, b0, a1, b1 are
such that a1 + b1x > 0 for any x ∈ [0, 1]. Since fi is assumed to be fully ob-
served, we equivalently consider its corresponding quantile function Qi. The esti-
mated quantile function of the Wasserstein-Fréchet Integral is given by Q̂∗(t) =
n−1 ∑n

i=1 Qi(t), which is computed over a dense grid in [0, 1], while its true
counterpart is obtained numerically using that Q∗(t) =

∫
X QY |X(t, x)f(x)dx,

where f is the uniform density in [0, 1] and QY |X(·, x) corresponds to the quan-
tile function of a truncated normal variate with support [0, 1] and parameters
μ = a0 + b0x and σ = a1 + b1x. We set a0 = 0.1, b0 = 0.9, a1 = 0.1 and b1 = 0.1.
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Fig 1. Left panel: Conditional truncated normal density functions fY |X(·, x) with support
[0, 1] and parameters μ = a0 + b0x and σ = a1 + b1x over a dense grid of increasing x values
in [0, 1] (from blue to red) as outlined in the simulation setting for fully observed conditional
densities. The density of the Wasserstein-Fréchet Integral measure is shown in solid black
while the classical marginal is dashed. Right panel: Boxplots of squared Wasserstein distances
D2

n for 1000 simulations for increasing sample sizes in the same simulation setting. Here
D2

n = d2
W (ν̂∗, ν∗) =

∫ 1
0 (Q̂∗(t)−Q∗(t))2dt is estimated numerically over a dense grid in [0, 1].

The left panel of Figure 1 shows the density function of the truncated con-
ditional Gaussian variates at different predictor levels x along with the den-
sity function corresponding to the Wasserstein-Fréchet Integral as well as the
classical marginal of Y . It is clearly seen that the classical marginal mea-
sure does not track the underlying geometry of the random mechanism that
generates conditional densities, in contrast to the Wasserstein-Fréchet Inte-
gral, which captures this geometry. To assess the finite sample performance
of the empirical estimates, we compute the squared 2-Wasserstein distance
D2

n = d2
W(ν̂∗, ν∗) =

∫ 1
0 (Q̂∗(t) − Q∗(t))2dt between the estimated Wasserstein-

Fréchet Integral measure ν̂∗ and its true counterpart ν∗ for increasing sam-
ple sizes n. The right panel of Figure 1 shows the resulting boxplots of D2

n

across 1000 simulations. These boxplots shrink towards zero as n increases,
which demonstrates the convergence of the estimated Wasserstein-Fréchet In-
tegral measure towards its true counterpart. Figure 11 in the Appendix illus-
trates the individual optimal transports from the conditional densities fi to the
Wasserstein-Fréchet Integral density. For low values of the predictor X, points
y ∈ Y closer to 0 are pushed strongly to the right, while for higher values of X
the points y they are pushed to the left.

We also investigate in the Appendix the situation where only scatterplot data
(Xi, Yi), i = 1, . . . , n, are available and the conditional densities fi are latent
and not directly observed. We explore a scenario where Yi comes from a mixture
Gaussian distribution and X has a beta distribution.
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6. Data applications

6.1. Daily bike rental data

This dataset contains the bike pick-up times and locations for bike rentals and
is publicly available at https://www.divvybikes.com/system-data. We illus-
trate the proposed Wasserstein-Fréchet Integral for the Divvy bike trip records in
Chicago during weekdays of 2019. These data are publicly available at https://
www.divvybikes.com/system-data and contain the individual pick-up times
for bike rentals at several locations in the Divvy bike system in Chicago. The
data have been analyzed previously from a replicated point process perspective
in Gervini and Khanal (2019); Gajardo and Müller (2021). We consider the re-
sponse Y to be the total number of bike trips during non-holiday weekdays that
originate at the station located near the intersection of Clinton St and Wash-
ington Blvd. As predictor X we take the observed daily temperature in Chicago
from the station “Northerly Island” which is publicly available at https://www.
ncdc.noaa.gov/cdo-web/.

Thus we have available scatterplot data (Xi, Yi)n
i=1 for n = 222 weekdays

excluding holidays, where we disregard days with very low temperature below
−5◦C. The left panel of Figure 2 shows the scatterplot between total daily
bike pickups and daily temperature which seems to suggest a near-linear re-
gression relationship between the two variables, where both the (conditional)
mean and variance appear to vary with the predictor level x. One would ex-
pect the conditional density function fY |X(·, x) to be unimodal. The right panel
of Figure 2 displays the estimated Wasserstein-Fréchet Integral along with the
classical marginal in terms of their density functions. It is clearly seen that the
Wasserstein-Fréchet Integral is unimodal and resembles a Gaussian shape with
some asymmetry, while the classical marginal is spread out and has a bimodal
appearance, which is not unexpected as it reflects the entire distribution of the
Y without taking into account the shifting means of the conditional distribu-
tions. The domain for X was chosen as X = [−5, 29.4] and we used a Gaussian
kernel for κ1 and an Epanechnikov kernel for κ2. The bandwidth sequences h
and h1 were taken as 10% of the observed range for X and Y , respectively. The
Wasserstein-Fréchet Integral is seen to be useful in summarizing the distribution
of the measurements, in contrast to the classical marginal.

6.2. COVID-19 cases

As a second data application, we consider the COVID-19 daily confirmed case
trajectories across states in the United States. These data are publicly available
at https://github.com/CSSEGISandData/COVID-19 (accessed on December 7,
2021) from the COVID-19 Data Repository by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University. This dataset has been
extensively analyzed from different perspectives, including functional data anal-
ysis and point processes (see, e.g., Carroll et al., 2020). We obtained the daily

https://www.divvybikes.com/system-data
https://www.divvybikes.com/system-data
https://www.divvybikes.com/system-data
https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/
https://github.com/CSSEGISandData/COVID-19
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Fig 2. The left panel shows the scatterplot of (X, Y ), where X is the daily temperature in
degree Celsius and Y corresponds to the total number of bike pick-ups during weekdays, ex-
cluding holidays, in 2019 at a bike station in the Divvy bike system in Chicago. The right
panel shows the estimated Wasserstein-Fréchet Integral (blue solid line) and classical marginal
densities (red dashed line) of the random fluctuations in the y-direction.

confirmed cases for the time period between September 1, 2020 and March 31,
2021, and converted these into histograms of the distribution of cases over this
time domain, using the same approach as described in Gajardo and Müller
(2022).

As associated covariate we took the total number of cases per capita dur-
ing the time window for each state, where the state population for 2019 was
obtained from www.census.gov/programs-surveys/popest/data/data-sets.html.
This covariate provides an indicator for the intensity of the infections in the
respective state. The conditional densities fi were obtained in a pre-smoothing
step, which was performed by employing the frechet R package (Chen et al.,
2020). The smoothing bandwidth employed for this smoothing step was con-
strained to be below 4% of the domain to avoid oversmoothing. To further
mitigate boundary effects in the pre-smoothing step, we also used the daily con-
firmed cases prior to and after the selected time domain when obtaining the
density estimates.

Figure 3 illustrates the individual conditional densities fi for each state along
with the classical marginal distribution and the proposed Wasserstein-Fréchet
Integral, both visualized as densities. Again the Wasserstein-Fréchet Integral
emerges as a preferred summary measure, as it provides a reasonable quantifi-
cation of the variation in these data, whereas the classical marginal again is
bimodal and spread out, which makes it much less useful as a data summary.

6.3. Child development cohort data

The Environmental Influences on Child Health Outcomes (ECHO) study (dash.

http://www.census.gov/programs-surveys/popest/data/data-sets.html
http://dash.nichd.nih.gov/study/417122
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Fig 3. Density functions of daily confirmed cases of COVID-19 for each state over the time
window [0, T ], where time t = 0 corresponds to September 1, 2020 and T = 7 months. The
color of each density reflects the value of the covariate, which ranges from low values (blue)
to high values (red), where the covariate is the total number of cases per capita over the
time window or each state. The estimated densities of the Wasserstein-Fréchet Integral (solid
black) and classical marginal distributions (dashed black) are also displayed.

nichd.nih.gov/study/417122) collected longitudinal data on 30,000 pregnancies
and 50,000 children from 69 pediatric cohorts to investigate the effects of envi-
ronmental factors on child health outcomes. The available data to date can be
obtained from NIH. Our study focuses on the “AAX03” cohort, which provides
1574 longitudinal measurements from physical exams, including anthropometry
for children aged two years and older. We use age as a predictor variable, denoted
as X, and analyze the conditional distributions of anthropometric variables Y ,
such as height and weight, given X.

We first consider the weight of the child as the response variable Y . The age
domain I is divided into 20 bins S1 = [a0, a1), S2 = [a1, a2), . . . , S20 = [a19, a20],
where the aj are chosen such that min(I) = a0 < a1 < . . . < a20 = max(I),
and the number of samples in each bin is approximately equal. The midpoint of
the kth bin is bk = (ak−1 +ak)/2, and an estimate f̂Y |X(·, bk) of the conditional
distribution fY |X(·, bk) is obtained based on all observations in the kth bin. The
left panel of Figure 4 shows a heat map of the conditional distribution Y |X; the
distributions of Y |X = x come across as roughly Gaussian, with increasing mean
and decreasing variance as age increases. The right panel of Figure 4 compares
the Wasserstein-Fréchet Integral with the classical L2 marginal of Y , where
smoothed density functions are obtained by applying a local linear smoother to
the histograms, analogous to the previous data illustration in Section 3.2. It is
clear from the figure that the Wasserstein-Fréchet Integral is unimodal, while
the classical L2 marginal is flat and uninformative.

In the two-dimensional case, Y = (Y1, Y2)T is the response with Y1 represent-

http://dash.nichd.nih.gov/study/417122


Wasserstein-Fréchet integration of conditional distributions 1743

Fig 4. The left panel displays a heat map of fY |X , where X represents the age of the child
in days and Y corresponds to height. The right panel shows the estimated densities of the
Wasserstein-Fréchet Integral and classical marginal distributions of height.

ing the weight and Y2 representing the height. We utilize the wasserstein_bary
function from the WSGeometry package (Heinemann and Bonneel, 2021) to com-
pute the Wasserstein barycenter in the 2D case. Figure 5 displays heat maps
of the conditional distributions of Y |X = x at six randomly selected values of
x. Similar to the one-dimensional case, the conditional distribution Y |X = x
is unimodal and approximately symmetric around the center. Figure 6 shows
that the Wasserstein-Fréchet Integral is also unimodal and resembles a two-
dimensional Gaussian shape, while the classical L2 marginal is ridge-like and
can provide misleading information about Y .

7. Discussion

The proposed approach is inspired by the representation of a marginal distribu-
tions as an integral of a conditional distribution. We found that this representa-
tion of a marginal distribution is more flexible than it seems at first glance once it
is interpreted as a Fréchet integral with respect to the L2 metric. As we demon-
strate, replacing the L2 metric by a different metric in the space of distributions
leads to alternative integrated conditional distributions. If the 2-Wasserstein
metric is substituted for the L2 metric one obtains the Wasserstein-Fréchet Inte-
gral. The Wasserstein-Fréchet Integral has several attractive properties in terms
of invariance for various distributional families which are reproduced under the
Wasserstein-Fréchet Integral operation and can reflect the error distribution in
regression settings. The latter application of the Wasserstein-Fréchet Integral is
of immediate relevance for statistical practice.

The proposed method is not directly comparable with quantile regression
where the conditional distribution given a covariate level is the target. In con-
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Fig 5. The heat maps of fY |X , where Y = (Y1, Y2)T represents weight and height. Each figure
corresponds to the heat map of fY |X for a specific value of X = x.

Fig 6. Heat maps of the densities of the classical L2 marginal (left panel) and the Wasserstein-
Fréchet Integral (right panel) of the joint distribution of weight and height for the ECHO
study.
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trast to quantile regression, the proposed method does not require specifying a
mean model or imposing any particular structure on the quantiles. Such assump-
tions are inherent in quantile regression, as this method relies on M-estimation
and necessitates parametric specifications (Koenker and Hallock, 2001) and of-
ten also further modifications, e.g., to address the crossing problem for quantiles.
The Wasserstein-Fréchet Integral and Fréchet integrals based on other metrics
provide a general framework for studying the average distribution of a response
across all covariates and thus serves as a tool in downstream analyses. For exam-
ple, a direct application is using the proposed Wasserstein-Fréchet Integral as a
reference measure to examine the influence of the covariate X on the distribu-
tion of Y . Specifically, one can employ optimal transport from the Wasserstein-
Fréchet Integral to each conditional measure Y |X = x as the response and per-
form Fréchet regression (Petersen and Müller, 2019a) of these responses with
predictor x. The optimal transport method serves to center random elements in
the Wasserstein space, which is nonlinear and lacks a subtraction operator. In
this context, the Wasserstein-Fréchet Integral takes on the role of an intrinsic
mean, for which traditional marginal distributions are not suited.

An extension that will be left for future research concerns the case of more
general metric objects, including the case of multivariate distributions. Current
approaches to obtain distributional results for such data include Tukey’s depth
(Dai and Lopez-Pintado, 2023) or transport-based definitions of quantiles (del
Barrio, González-Sanz and Hallin, 2020; Hallin et al., 2021; del Barrio, Sanz
and Hallin, 2024). A specific extension where the Wasserstein-Fréchet Integral
may prove useful is slicing in Wasserstein spaces of multivariate distributions
(Kolouri, Rohde and Hoffmann, 2018; Chen and Müller, 2023).

Appendix A: Proofs of theorems and ancillary results

A.1. Proof of Propositions 1 and 2

In what follows, write D(t, x) = ∂
∂t QY |X(t, x) and gpq(y, x) = ∂p+q

∂yp∂xq FY,X(y, x),
p, q = 0, 1, 2 with 0 ≤ p + q ≤ 2, and recall that

f̂(x) =
n∑

i=1
κ2

(
Xi − x

h

)
w(x, h)

/ ∫ 1

0
κ2

(
Xi − s

h

)
w(s, h)ds.

Proof of Proposition 1. It suffices to show that the density of ν∗
L2 is fY =

E(fY |X(·, X)). By construction, we have

ν∗
L2 = arg inf

w∈Fd

E
(
‖fY |X(·, x) − gw‖2

L2

)
,

where ‖·‖L2 denotes the L2 norm and gw is the density function corresponding to
w ∈ Fd. By properties of the L2 inner product, the fact that fY = E(fY |X(·, X))
and using similar arguments as in the proof of Proposition 1 in Petersen and
Müller (2019a),

ν∗
L2 = arg inf

w∈Fd

‖fY − gw‖2
L2 ,
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which implies the result.

Proof of Proposition 2. If Y = [0, 1], the result follows from Theorem 3.1 in
Bigot and Klein (2018). Suppose that Y = R. Since |QY |X(t, X)| ≤ g(t) with
g ∈ L2([0, 1]) ⊂ L1([0, 1]) and QY |X(·, X) is non-decreasing and left-continuous,
by the Lebesgue dominated convergence theorem these properties are also shared
by Q∗(t) = E(QY |X(t, X)). Also note that ν(x) ∈ P2(Y)(Y) since for a random
variable Rx with probability distribution ν(x) it holds that

E(R2
x) =

∫ 1

0
[QY |X(t, x)]2dt ≤

∫ 1

0
g2(t)dt < ∞.

From arguments in the proof of Theorem 3.1 in Bigot and Klein (2018) along
with Proposition A.2 in Bobkov and Ledoux (2019) and observing that

E(Q2
Y |X(t, X)) ≤ g2(t) < ∞,

it follows that there exists a unique probability measure ν∗ with cdf F ∗ such
that Q∗ = F ∗−1, where F ∗−1 is the left-continuous generalized inverse. For any
probability measure w ∈ P2(Y)∫

X
d2(ν(x), w)f(x)dx ≥

∫
X

d2(ν(x), ν∗)f(x)dx,

where ν∗ has quantile function Q∗ and ν∗ ∈ P2(Y) since∫ 1

0
[Q∗(t)]2dt ≤

∫ 1

0
g2(t)dt < ∞,

which is due to g ∈ L2([0, 1]). From Lemma 3.2.1 in Pass (2013) it follows that
the application

∫
X d2(ν(x), w)f(x)dx over w ∈ P2(Y) is strictly convex, which

implies that ν∗ is the unique solution to (3).

A.2. Proof of theoretical results when the conditional distribution
has compact support

Recall that h1, h < 0.5 and

f̂Y |X(y, x) =

∑n
i=1 κ1

(
Yi−y

h1

)
w1(y, h1)κ2

(
Xi−x

h

)
w(x, h)∑n

i=1 κ2
(

Xi−x
h

)
w(x, h)

∫ 1
0 κ1

(
Yi−s

h1

)
w1(s, h1)ds

,

where w1 is defined analogously as w but replacing the kernel κ2 by κ1. We
require the following auxiliary lemmas.

Lemma A.1. Suppose that Y = [0, 1], X = [0, 1], κ1, κ2 ∈ K and the regularity
conditions (S1) and (S2) hold. Then

E
[
(N(y, x) − f(x)FY |X(y, x))2]

= O(h2
1 + h2 + (nh)−1),
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where

N(y, x) = (nh)−1
n∑

i=1
κ2

(
Xi − x

h

)
w(x, h) 1

h1

∫ y

0
κ1

(
Yi − s

h1

)
w1(s, h1)ds

and the bound is uniform in y and x.

Proof of Lemma A.1. Fubini’s theorem implies

E(N(y, x)) = 1
h

∫
X

κ2

(
r − x

h

)
w(x, h)

∫ y

0
w1(s, h1)

×
∫

Y

1
h1

κ1

(
u − s

h1

)
fY,X(u, r)dudsdr

= 1
h

∫
X

κ2

(
r − x

h

)
w(x, h)

∫ y

0
w1(s, h1)

×
∫ (1−s)/h1

−s/h1

κ1(ν)fY,X(s + νh1, r)dνdsdr.

By a Taylor expansion, fY,X(s + νh1, r) = fY,X(s, r) + g21(ξ1, r)νh1 and

fY,X(s, x + uh) = fY,X(s, x) + g12(s, ξ2)uh,

where ξ1 = ξ1(s, ν, h1, r) is between s and s + νh1, and ξ2 = ξ2(s, x, u, h) is
between x and x + uh. Since

∫ (1−s)/h1
−s/h1

κ1(u)w1(s, h1)du = 1,

∫ (1−x)/h

−x/h

κ2(u)w(x, h)du = 1

and noting that f(x)FY |X(y, x) =
∫ y

0 fY,X(s, x)ds, we obtain

E(N(y, x)) = f(x)FY |X(y, x) + h

∫ y

0

∫ (1−x)/h

−x/h

uκ2(u)w(x, h)g12(s, ξ2)duds

+ h1

h

∫
X

∫ y

0

∫ (1−s)/h1

−s/h1

κ2

(
r − x

h

)
w(x, h)w1(s, h1)νκ1(ν)g21(ξ1, r)dνdsdr.

This along with ‖g12‖∞ < ∞ and ‖g21‖∞ < ∞, which follows from (S1),
(S2), the compactness of Y and X , w(x, h) ≤ (

∫ 1
0 κ2(u)du)−1 and w1(s, h1) ≤

(
∫ 1

0 κ1(u)du)−1 leads to

|E(N(y, x)) − f(x)FY |X(y, x)| ≤ h‖g12‖∞

(∫ 1

0
κ2(u)du

)−1 ∫
R

|u|κ2(u)du

+ h1‖g21‖∞

(∫ 1

0
κ1(u)du

)−1 ∫
R

|ν|κ1(ν)dν.
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Thus

|E(N(y, x)) − f(x)FY |X(y, x)| = O(h + h1), (7)

where the bound is uniform in y and x. Similarly, using that

1
h1

∫ y

0
κ1

(
Yi − s

h1

)
w1(s, h1)ds ≤

(∫ 1

0
κ1(u)du

)−1

for all y ∈ Y and
∫
R

κ2
2(u)du < ∞, we obtain

Var(N(y, x)) ≤ O((nh)−1),

where the bound is uniform in y and x. Combining with (7) leads to the result.

Lemma A.2. Under the conditions of Lemma A.1 and taking h = hn = n−1/3,
it holds that

Zn : =
∫

X

∫
Y

(F̂Y |X(y, x) − FY |X(y, x))2fY |X(y, x)dydx = Op(h2
1 + n−2/3).

Proof of Lemma A.2. Define auxiliary quantities

N(y, x) = (nh)−1
n∑

i=1
κ2

(
Xi − x

h

)
w(x, h) 1

h1

∫ y

0
κ1

(
Yi − s

h1

)
w1(s, h1)ds

and f0(x) = (nh)−1 ∑n
i=1 κ2

(
Xi−x

h

)
w(x, h). Note that w1(s, h1) ≥ 1 for all

s ∈ [0, 1]. By a change of variables (see for example the proof of Proposition 1
in Petersen and Müller (2016b))

∫ 1

0

1
h1

κ1

(
Yi − s

h1

)
ds =

∫ (1−Yi)/h1

−Yi/h1

κ1(ν)dν ≥ inf
s∈[0,1]

∫ (1−s)/h1

−s/h1

κ1(ν)dν

≥
∫ 1

0
κ1(ν)dν.

Thus

N(1, x) ≥
(∫ 1

0
κ1(ν)dν

)
f0(x).

From the proof of Proposition 1 in Petersen and Müller (2016b), we have ‖f0 −
f‖∞ = Op(n−(1/6−ε0)), for any fixed ε0 ∈ (0, 1/6). Let ε ∈ (0, M) with M > 0
as in (S2). Since f0(x) ≥ f(x) − ‖f0 − f‖∞, with probability tending to one as
n → ∞, it holds that infs∈[0,1] f0(s) ≥ M − ε > 0 so that sups∈[0,1][f0(s)]−1 ≤
(M − ε)−1. For the remainder of the proof we work conditional on this event.
Writing c1 =

∫ 1
0 κ1(ν)dν > 0,

|F̂Y |X(y, x) − FY |X(y, x)|
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= |N(y, x)/N(1, x) − FY |X(y, x)|
≤ c−1

1 |N(y, x) − N(1, x)FY |X(y, x)|/f0(x)
≤ c−1

1 (M − ε)−1 (
|N(y, x) − f(x)FY |X(y, x)| + |f(x) − N(1, x)|FY |X(y, x)

)
.

Thus

Zn ≤ 2((M − ε)c1)−2
[ ∫

X

∫
Y

(N(y, x) − f(x)FY |X(y, x))2fY |X(y, x)dydx

+
∫

X

∫
Y

(N(1, x) − f(x))2F 2
Y |X(y, x)fY |X(y, x)dydx

]
= Op(h2

1 + h2 + (nh)−1),

where the last equality is due to Lemma A.1 and 0 ≤ FY |X(y, x) ≤ 1 with
FY |X(1, x) = 1. The result follows.

Proof of Theorem 3.1. Recall that Q̂∗(t) =
∫

X Q̂Y |X(t, x)f̂(x)dx, t ∈ (0, 1) is
the quantile function of the estimated Wasserstein-Fréchet Integral measure ν̂∗

and Q∗(t) =
∫

X QY |X(t, x)f(x)dx is the true population counterpart. Note that

d2
W(ν̂∗, ν∗) =

∫ 1

0
(Q̂∗(t) − Q∗(t))2dt (8)

=
∫ 1

0

(∫
X

Q̂Y |X(t, x)f̂(x) − QY |X(t, x)f(x)dx

)2
dt, (9)

where

(
∫

X
Q̂Y |X(t, x)f̂(x) − QY |X(t, x)f(x)dx)2

≤4‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2
L2(X ) × (‖f̂ − f‖2

L2(X ) + ‖f‖2
L2(X ))

+ 2‖QY |X(t, ·)‖2
L2(X )‖f̂ − f‖2

L2(X ).

Similarly as in the proof of Proposition 1 in Petersen and Müller (2019b), we
have from the mean value theorem and Fubini’s theorem∫ 1

0
‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2

L2(X )dt

=
∫

X

∫ 1

0
(Q̂Y |X(t, x) − QY |X(t, x))2dtdx

=
∫

X

∫ Q̂Y |X (1,x)

Q̂Y |X (0,x)
[D(ξu,x, x)]2(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx,

where ξu,x lies between FY |X(u, x) and F̂Y |X(u, x), and

D(t, x) = 1/fY |X(QY |X(t, x), x)



1750 Á. Gajardo et al.

is the conditional quantile density function. Since QY |X(t, x), Q̂Y |X(t, x) ∈ Y =
[0, 1] and f̂Y |X(u, x) ≥ 0, it follows that∫ 1

0
‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2

L2(X )dt

≤
(

sup
(s,ν)∈[0,1]×X

D2(s, ν)
) ∫

X

∫ 1

0
(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx,

(10)

where sups∈[0,1],ν∈X D2(s, ν) < ∞, which is due to the fact that

inf
(y,x)∈Y×X

fY |X(y, x) > 0,

which in turn follows from (S1), observing that Y and X are compact.
Next, using that f̂Y |X is non-negative and F̂Y |X(·, x) is a valid (conditional)

cdf with F̂Y |X(1, x) = 1 and F̂Y |X(0, x) = 0, setting

Zn =
∫

X

∫ 1

0
(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx,

one obtains

Zn =
∫

X

∫ 1

0
(F̂Y |X(u, x) − FY |X(u, x))2(f̂Y |X(u, x) − fY |X(u, x))dudx

+
∫

X

∫ 1

0
(F̂Y |X(u, x) − FY |X(u, x))2fY |X(u, x)dudx

=
∫

X

∫ 1

0
(F̂Y |X(u, x) − FY |X(u, x))2fY |X(u, x)dudx

= Op(h2
1 + n−2/3),

where the last equality is due to Lemma A.2. Combining with (9), (10) and
‖f̂ −f‖2

L2(X ) = Op(n−2/3), which is due to Proposition 1 in Petersen and Müller
(2016b), leads to the result.

A.3. Proof of theoretical results when the conditional distribution
has unbounded support

Recall that

f̂Y |X(y, x) =

∑n
i=1

1
h1

κ1

(
Yi−y

h1

)
κ2

(
Xi−x

h

)
w(x, h)∑n

i=1 κ2
(

Xi−x
h

)
w(x, h)

,

and the conditional cdf F̂Y |X(y, x) =
∫ y

−∞ f̂Y |X(s, x)ds, y ∈ R, is given by

F̂Y |X(y, x) =
n∑

i=1
G

(
y − Yi

h1

)
κ2

(
Xi − x

h

)
w(x, h)

/ n∑
i=1

κ2

(
Xi − x

h

)
w(x, h),
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where G(z) =
∫ z

−∞ κ1(s)ds, z ∈ R. Denote by ‖gpq‖∞ = sup(y,x)∈R×X |gpq(y, x)|
and ‖f‖∞ = supx∈X |f(x)| the corresponding supremum norms.

Lemma A.3. Suppose that Y = R, X = [0, 1], κ2 ∈ K and the regularity
conditions (S1), (S2), (S2’) and (K1’) hold. Then

E
[
(N(y, x) − f(x)FY |X(y, x))2]

= O(h2
1 + h2 + (nh)−1),

where N(y, x) = (nh)−1 ∑n
i=1 G

(
y−Yi

h1

)
κ2

(
Xi−x

h

)
w(x, h) and the bound is uni-

form in y and x.

Proof of Lemma A.3. Integration by parts and (K1’) imply G(z) > 0 for all
z ∈ R and

E(N(y, x)) = 1
h

∫
X

∫
R

G

(
y − s

h1

)
κ2

(
r − x

h

)
w(x, h)fY,X(s, r)dsdr

= h1

∫ (1−x)/h

−x/h

κ2(u)w(x, h)
∫
R

G(ν)fY,X(y − h1ν, x + uh)dνdu

=
∫ (1−x)/h

−x/h

κ2(u)w(x, h)
∫
R

κ1(ν)g01(y − h1ν, x + uh)dνdu.

By a Taylor expansion,

g01(y − h1ν, x + uh) = g01(y, x) + g02(y, ξ2)uh − h1fY,X(ξ1, x + uh)ν,

where
ξ2 = ξ2(x, y, u, ν, h, h1)

is between x and x + uh, and ξ1 = ξ1(x, y, u, ν, h, h1) is between y and y − νh1.
With ‖g02‖∞ < ∞ and ‖fY,X‖∞ < ∞, as implied by (S2) and (S2’), using that∫ (1−x)/h

−x/h
κ2(u)w(x, h)du = 1, one obtains

|E(N(y, x)) − g01(y, x)|

≤ h

∫ (1−x)/h

−x/h

|u|κ2(u)w(x, h)|g02(y, ξ2)|du

+ h1

∫ (1−x)/h

−x/h

κ2(u)w(x, h)
∫
R

|ν|κ1(ν)fY,X(ξ1, x + uh)dν

= O(h + h1).

Thus

|E(N(y, x)) − g01(y, x)| = O(h + h1), (11)

where the bound is uniform in y and x. Similarly, and using that G(s) ≤ 1 for
any s ∈ R, we obtain

Var(N(y, x)) ≤ 1
nh2 E

(
G2

(
y − Yi

h1

)
κ2

2

(
Xi − x

h

)
w2(x, h)

)
= O((nh)−1),
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where the bound is uniform in y and x. This along with (11) and noting that
f(x)FY |X(y, x) = g01(y, x) leads to the result.

Lemma A.4. Suppose that the conditions of Lemma A.3 hold. If h = hn =
n−1/3, then

Zn :=
∫

X

∫
R

(F̂Y |X(y, x) − FY |X(y, x))2fY |X(y, x)dydx = Op(h2
1 + n−2/3).

Proof of Lemma A.4. Let f0(x) = (nh)−1 ∑n
i=1 κ2

(
Xi−x

h

)
w(x, h) and 0 < ε <

M with M as in (S2) and ε0 ∈ (0, 1/3). From the proof of Lemma A.2, we have
‖f0 − f‖∞ = Op(n−(1/6−ε0/2)) and also that sups∈[0,1][f0(s)]−1 ≤ (M − ε)−1

holds with probability tending to 1 as n → ∞. The remainder of the proof is
conditional on this event. Defining N(y, x) as in Lemma A.3, we have

|F̂Y |X(y, x) − FY |X(y, x)|
= |N(y, x)/f0(x) − FY |X(y, x)|
≤ |N(y, x) − f(x)FY |X(y, x)|/f0(x) + |f(x) − f0(x)|FY |X(y, x)/f0(x)
≤ (M − ε)−1|N(y, x) − f(x)FY |X(y, x)| + (M − ε)−1|f(x) − f0(x)|FY |X(y, x),

and

Zn ≤ 2
(M − ε)2

∫
X

∫
R

[N(y, x) − f(x)FY |X(y, x)]2fY |X(y, x)dydx

+ 2
(M − ε)2

∫
X

∫
R

F 2
Y |X(y, x)fY |X(y, x)(f(x) − f0(x))2dydx

≤ 2
M(M − ε)2

∫
X

∫
R

[N(y, x) − f(x)FY |X(y, x)]2fY,X(y, x)dydx

+ 2
(M − ε)2 ‖f0 − f‖2

L2(X ). (12)

From Lemma A.3 we obtain

E

(∫
X

∫
R

[N(y, x) − f(x)FY |X(y, x)]2fY,X(y, x)dydx

)
= O(h2

1 + h2 + (nh)−1),

(13)

where the bound is uniform in y and x. Also, from the proof of Theorem 3.1, we
have ‖f̂ − f‖2

L2(X ) = Op(n−2/3). With (12) and (13) this implies the result.

Lemma A.5. Suppose that the conditions of Lemma A.3 hold. Let C > 0 and
assume n−ph−1(h−1

1 +h−1) = o(1) for some p > 0. If nh/ log n → ∞ as n → ∞,
then

sup
(x,y)∈X ×[−C,C]

|N(y, x) − f(x)FY |X(y, x)| = op(1),

where N(y, x) = (nh)−1 ∑n
i=1 G

(
y−Yi

h1

)
κ2

(
Xi−x

h

)
w(x, h).
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Proof of Lemma A.5. Let Yn and Xn be equispaced grids on [−C, C] and [0, 1]
with spacing n−γ , where γ > 0. Then

sup
(x,y)∈X ×[−C,C]

|N(y, x) − f(x)FY |X(y, x)| (14)

≤ sup
y∈Yn,x∈Xn

|N(y, x) − E[N(y, x)]| + sup
|y−y1|,|x−x1|≤n−γ

|N(y, x) − N(y1, x1)|

+ sup
|y−y1|,|x−x1|≤n−γ

|E[N(y, x)] − E[N(y1, x1)]|

+ sup
y∈[−C,C],x∈X

|E[N(y, x)] − f(x)FY |X(y, x)|. (15)

To control the first term on the right hand side, we follow similar arguments as
in the proof of Lemma 2 in Zhang and Wang (2016). Let

Ui = G

(
y − Yi

h1

)
κ2

(
Xi − x

h

)
w(x, h),

μi = E(Ui), i = 1, . . . , n, M > 0 and an = (log n/(nh))1/2. By independence of
the Ui and using Chernoff’s bound, we have for large enough n

P (N(y, x) − E[N(y, x)] > Man)

=P

(
an

n∑
i=1

(Ui − μi) > M log n

)

=n−M
n∏

i=1
E [exp(an(Ui − μi))]

≤n−M
n∏

i=1
[1 + a2

nE(U2
i )]

≤n−M
n∏

i=1
[1 + a2

nC1h]

≤n−M
n∏

i=1
exp(C1a2

nh)

=n−M exp(C1a2
nnh),

where the first inequality is due to |Ui − μi| ≤ C0 for some constant C0 < ∞
along with an → 0 as n → ∞ and the fact that eu ≤ 1 + u + u2 holds for
u in a small enough neighborhood around 0. The second inequality is due to
E(U2

i ) ≤ hC1 for some constant C1 > 0, and the last inequality is clear. Here
C0 and C1 can be shown to be uniform in x and y. Thus

P

(
sup

y∈Yn,x∈Xn

N(y, x) − E[N(y, x)] > Man

)

≤2Cn2γn−M exp(C1a2
nnh) = O(nC1+2γ−M ),
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where for large enough M we have nC1+2γ−M = o(1) as n → ∞. This shows
that

sup
y∈Yn,x∈Xn

∣∣∣N(y, x) − E[N(y, x)]
∣∣∣ = Op(an). (16)

Next, note that∣∣∣G (
y − Yi

h1

)
− G

(
y1 − Yi

h1

) ∣∣∣ ≤ ‖κ1‖∞
|y − y1|

h1
, (17)

and let x, x1 ∈ X . Observe that if x, x1 ∈ [0, h) are such that |x − x1| ≤ n−γ ,
then

|w(x, h) − w(x1, h)| ≤
(∫ 1

0
κ2(u)du

)−2

‖κ2‖∞|x − x1|/h = O(n−γh−1),

where the bound is uniform in x and x1, using w(s, h) ≤
(∫ 1

0 κ2(u)du
)−1

for all
s ∈ X . Also, if x ∈ [0, h) and x1 ∈ [h, 1 − h] are such that |x − x1| ≤ n−γ , then

|w(x, h) − w(x1, h)| ≤
(∫ 1

0
κ2(u)du

)−1

|1 −
∫ 1

−x/h

κ2(u)du|

≤
(∫ 1

0
κ2(u)du

)−1 ∫ −x/h

−1
κ2(u)du

≤
(∫ 1

0
κ2(u)du

)−1 ∫ −1+n−γh−1

−1
κ2(u)du

= O(n−γh−1),

where the bound is uniform in x and x1, and the last equality is due to −x/h ≤
−1 + n−γh−1. Similarly, if x ∈ [h, 1 − h] and x1 ∈ (1 − h, 1] are such that
|x − x1| ≤ n−γ , then

|w(x, h) − w(x1, h)| = O(n−γh−1),

where the bound is uniform in x and x1. Finally, for n large enough it cannot
occur that x ∈ [0, h) and x1 ∈ (1 − h, 1] as a necessary condition for this to hold
is that n−γ + 2h ≥ 1. Coupling this with the Lipschitz continuity of κ2 implies
that for large enough n

sup
|x−x1|≤n−γ

∣∣∣κ2

(
Xi − x

h

)
w(x, h) − κ2

(
Xi − x1

h

)
w(x1, h)

∣∣∣ = O(n−γh−1),

(18)

where the bound is uniform in Xi. Combining (17) and (18) with the uniform
bound on w(s, h), s ∈ X , leads to

sup
|y−y1|,|x−x1|≤n−γ

|N(y, x) − N(y1, x1)| = O(n−γh−1(h−1
1 + h−1)),
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where the bound is non-random. Since n−ph−1(h−1
1 + h−1) = o(1) for some

p > 0, for any γ ≥ p

sup
|y−y1|,|x−x1|≤n−γ

|N(y, x) − N(y1, x1)| = op(1). (19)

Observing

sup
|y−y1|,|x−x1|≤n−γ

E|N(y, x) − N(y1, x1)|

≤E

(
sup

|y−y1|,|x−x1|≤n−γ

|N(y, x) − N(y1, x1)|
)

leads to

sup
|y−y1|,|x−x1|≤n−γ

|E[N(y, x)] − E[N(y1, x1)]| = op(1). (20)

Finally, from the proof of Lemma A.3 we have |E(N(y, x)) − g01(y, x)| = O(h +
h1), where the bound is uniform in y and x. Therefore

sup
y∈[−C,C],x∈X

|E[N(y, x)] − f(x)FY |X(y, x)| = O(h + h1). (21)

Combining (15), (16), (19), (20) and (21) leads to the result.

Lemma A.6 below shows the uniform convergence in x towards the true con-
ditional quantile Q̂Y |X(t, x) for fixed t ∈ (0, 1). Set

N(y, x) = (nh)−1
n∑

i=1
G

(
y − Yi

h1

)
κ2

(
Xi − x

h

)
w(x, h)

and f0(x) = (nh)−1 ∑n
i=1 κ2

(
Xi−x

h

)
w(x, h).

Lemma A.6. Suppose that the conditions of Lemma A.5 hold. Let t ∈ (0, 1) be
fixed and h = hn = n−1/3. Then

sup
x∈X

|Q̂Y |X(t, x) − QY |X(t, x)| = op(1).

Proof of Lemma A.6. Let δ > 0 and ε ∈ (0, M) with M as in (S2). Define
auxiliary quantities

c0(t) = inf
x∈X

inf
y∈[QY |X (t,x),QY |X (t,x)+δ]

fY |X(y, x),

and

c1(t) = inf
x∈X

inf
y∈[QY |X (t,x)−δ,QY |X (t,x)]

fY |X(y, x).
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Note that the regularity conditions (S1) and (S2) along with compactness of X
imply that QY |X(t, ·) is continuously differentiable and

0 < inf
x∈X ,y∈[infs∈X QY |X (t,s),sups∈X QY |X (t,s)+δ]

fY |X(y, x) ≤ c0(t),

as well as

0 < inf
x∈X ,y∈[infs∈X QY |X (t,s)−δ,sups∈X QY |X (t,s)]

fY |X(y, x) ≤ c1(t),

which shows that c0(t) and c1(t) are strictly positive constants.
By a Taylor expansion, there exists ξ1 = ξ1(t, x) between QY |X(t, x) and

QY |X(t, x) + δ such that FY |X(QY |X(t, x) + δ, x) = t + fY |X(ξ1, x)δ ≥ t + c0(t)δ.
Similarly, FY |X(QY |X(t, x) − δ, x) ≤ t − c1(t)δ. Defining the closed interval
Aδ(t) = [infs∈X QY |X(t, s) − δ, sups∈X QY |X(t, s) + δ], we have that there exists
Cδ = Cδ(t) ∈ (0, ∞) such that Aδ(t) ⊆ [−Cδ, Cδ]. From the proof of Lemma
A.4 and using that FY |X(y, x) ≤ 1, with probability tending to 1 we have

|F̂Y |X(y, x) − FY |X(y, x)| ≤ (M − ε)−1|N(y, x) − f(x)FY |X(y, x)|
+ (M − ε)−1‖f0 − f‖∞,

where ‖f0 − f‖∞ = op(1). Combining this with Lemma A.5 leads to

Δ̂n := sup
x∈X ,y∈[−Cδ,Cδ]

|F̂Y |X(y, x) − FY |X(y, x)| = op(1).

Let ε > 0 and κ(t) = min{c0(t), c1(t)} > 0. Note that Δ̂n ≤ εκ(t)/2 holds with
probability tending to 1. The remainder of the proof is conditional on this event.
Observe

F̂Y |X(QY |X(t, x) + δ, x) ≥ −Δ̂n + FY |X(QY |X(t, x) + δ, x)
≥ −εκ(t)/2 + t + c0(t)δ
≥ t + (δ − ε/2)κ(t).

Choosing δ = ε leads to F̂Y |X(QY |X(t, x) + δ, x) > t and then Q̂Y |X(t, x) ≤
QY |X(t, x) + δ. Similarly, F̂Y |X(QY |X(t, x) − δ, x) ≤ Δ̂n + t − c1(t)δ ≤ t + (ε/2 −
δ)κ(t) < t which implies Q̂Y |X(t, x) ≥ QY |X(t, x) − δ. Therefore |Q̂Y |X(t, x) −
QY |X(t, x)| ≤ δ = ε. Since ε does not depend on x, we obtain with probability
tending to 1

sup
x∈X

|Q̂Y |X(t, x) − QY |X(t, x)| ≤ ε,

and the result follows.

Proof of Theorem 3.2. Observe

d2
Wδ

(ν̂∗, ν∗) =
∫ 1−δ

δ

(Q̂∗(t) − Q∗(t))2dt



Wasserstein-Fréchet integration of conditional distributions 1757

=
∫ 1−δ

δ

(∫
X

Q̂Y |X(t, x)f̂(x) − QY |X(t, x)f(x)dx

)2

dt, (22)

where from the proof of Theorem 3.1(∫
X

Q̂Y |X(t, x)f̂(x) − QY |X(t, x)f(x)dx

)2

≤ 4‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2
L2(X )

(
‖f̂ − f‖2

L2(X ) + ‖f‖2
L2(X )

)
+ 2‖QY |X(t, ·)‖2

L2(X )‖f̂ − f‖2
L2(X ),

Define Aδ =
∫ 1−δ

δ
‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2

L2(X )dt. Similarly as in the proof of
Proposition 1 in Petersen and Müller (2019b), we infer from the mean value
theorem, the change of variables u = Q̂Y |X(t, x) and Fubini’s theorem that

Aδ =
∫

X

∫ 1−δ

δ

(Q̂Y |X(t, x) − QY |X(t, x))2dtdx

=
∫

X

∫ Q̂Y |X (1−δ,x)

Q̂Y |X (δ,x)
[D(ξu,x, x)]2(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx,

where ξu,x lies between FY |X(u, x) and F̂Y |X(u, x), and

D(t, x) = 1/fY |X(QY |X(t, x), x)

is the quantile density function. Setting Δ̂n(t) = sups|Q̂Y |X(t, s) − QY |X(t, s)|,
t ∈ (0, 1),

Q̂Y |X(δ, x) ≥ QY |X(δ, x) − Δ̂n(δ) ≥ inf
s∈X

QY |X(δ, s) − Δ̂n(δ), (23)

and

Q̂Y |X(1 − δ, x) ≤ QY |X(1 − δ, x) + Δ̂n(1 − δ) (24)

≤ sup
s∈X

QY |X(1 − δ, s) + Δ̂n(1 − δ). (25)

For ε > 0 define auxiliary quantities c0(ε) = infs∈X QY |X(δ, s) − ε, c1(ε) =
sups∈X QY |X(1 − δ, s) + ε, d0(ε) = infs∈X FY |X(c0(ε), s) − ε and

d1(ε) = sup
s∈X

FY |X(c1(ε), s) + ε.

We note that due to 0 < FY |X(y, x) < 1 for all y ∈ R and x ∈ X , the continuity
of FY |X(y, ·) and the compactness of X, one has infs∈X FY |X(y, s) > 0 and
sups∈X FY |X(y, s) < 1. Similarly, it can be shown that both infs∈X QY |X(t, s)
and sups∈X QY |X(t, s) are achieved for any t ∈ (0, 1). In particular, this shows
that the previous quantities are well defined. Next, choose ε > 0 such that

ε < min
(

inf
ν∈X

FY |X

(
inf
s∈X

QY |X(δ, s) − 1, ν

)
,
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1 − sup
ν∈X

FY |X

(
sup
s∈X

QY |X(1 − δ, s) + 1, ν

))
,

which implies ε ∈ (0, 1) and 0 < d0(ε), d1(ε) < 1. From the arguments outlined
in the proof of Lemma A.6, it follows that

Ûn(ε) := sup
y∈[c0(ε),c1(ε)],x∈X

|F̂Y |X(y, x) − FY |X(y, x)| = op(1),

while Lemma A.6 shows that Δ̂n(t) = op(1), where t ∈ {δ, 1 − δ}. Here the
conditions of Lemma A.6 are satisfied since h = hn = n−1/3 and the regularity
condition h1np−1/3 → ∞ as n → ∞ for some p > 2/3 implies n−ph−1(h−1

1 +
h−1) = o(1). Thus, the event where max{Ûn(ε), Δ̂n(δ), Δ̂n(1 − δ)} ≤ ε occurs
with probability tending to 1 as n → ∞, and therefore it suffices to work on
this event in what follows.

Next, using (23) and (25) along with max{Δ̂n(δ), Δ̂n(1 − δ)} ≤ ε shows that
c0(ε) ≤ Q̂Y |X(δ, x) and Q̂Y |X(1−δ, x) ≤ c1(ε). Hence u ∈ [Q̂Y |X(δ, x), Q̂Y |X(1−
δ, x)] implies u ∈ [c0(ε), c1(ε)]. Also, by monotonicity

FY |X(c0(ε), x) − ε ≤ FY |X(u, x) − ε ≤ FY |X(u, x) − Ûn(ε) ≤ F̂Y |X(u, x),

and thus d0(ε) ≤ F̂Y |X(u, x). Similarly, F̂Y |X(u, x) ≤ d1(ε). This shows that
ξu,x ∈ [d0(ε), d1(ε)] and hence

D(ξu,x, x) ≤
(

inf
y∈A(ε),s∈X

fY |X(y, s)
)−1

< ∞,

where A(ε) = [infs∈X QY |X(d0(ε), s), sups∈X QY |X(d1(ε), s)], and the last in-
equality is due to the fact that fY |X(y, s) is pointwise strictly positive and also
continuous over the compact set A(ε) × X ⊂ R2. Setting

Mε = ( inf
y∈A(ε),s∈X

fY |X(y, s))−1,

we obtain

Aδ ≤ M2
ε

∫
X

∫ c1(ε)

c0(ε)
(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx

≤ M2
ε

∫
X

∫
R

(F̂Y |X(u, x) − FY |X(u, x))2f̂Y |X(u, x)dudx

= M2
ε Zn,

where the last inequality is due to the fact that f̂Y |X(u, x) is non-negative and
Zn is defined through the last equation. Hence

∫ 1−δ

δ

‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2
L2(X )dt ≤ M2

ε Zn.
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Since f̂Y |X is non-negative and both F̂Y |X(·, x) and FY |X(·, x) are valid cdfs, it
follows that

Zn =
∫

X

∫
R

(F̂Y |X(u, x) − FY |X(u, x))2(f̂Y |X(u, x) − fY |X(u, x))dudx

+
∫

X

∫
R

(F̂Y |X(u, x) − FY |X(u, x))2fY |X(u, x)dudx

=
∫

X

∫
R

(F̂Y |X(u, x) − FY |X(u, x))2fY |X(u, x)dudx

= Op(h2
1 + n−2/3),

where the second equality is due to the change of variables ν = F̂Y |X(u, x) −
FY |X(u, x) and the last is due to Lemma A.4. Hence∫ 1−δ

δ

‖Q̂Y |X(t, ·) − QY |X(t, ·)‖2
L2(X )dt = Op(h2

1 + n−2/3).

Combining with (22) and using that∫ 1−δ

δ

‖QY |X(t, ·)‖2
L2(X )dt =

∫
X

∫ 1−δ

δ

Q2
Y |X(t, x)dtdx < ∞,

which is due to (S1’) along with Fubini’s theorem, and the fact that ‖f̂ −
f‖2

L2(X ) = Op(n−2/3), which is due to Proposition 1 in Petersen and Müller
(2016b), then leads to the result.

A.4. Proof of theoretical results when the densities are fully
observed

Recall that Qi is the quantile function corresponding to fi and that when the
densities fi(·) = fY |X(·, Xi) are fully observed, the Qi form an i.i.d. sample of
random quantile functions with E(Q1(t)) = Q∗(t). A natural empirical estimate
of Q∗ is then given by

Q̂∗(t) = n−1
n∑

i=1
Qi(t), t ∈ (0, 1).

Proof of Theorem 3.3. Since the Qi are i.i.d. random quantile functions, we have
E(Q̂∗(t)) = E(Q1(t)) = Q∗(t), t ∈ (0, 1), and

Var(Q̂∗(t)) = n−1 Var(Q1(t)) = O(n−1),

where the bound is uniform in t and the last equality is due to 0 ≤ Q1(t) =
QY |X(t, X1) ≤ supx∈X QY |X(1, x) < ∞, which in turn follows from the fact
that fY |X(·, x) has compact support Y = [0, 1]. These observations along with
Fubini’s theorem imply

E

(∫ 1

0
(Q̂∗(t) − Q∗(t))2dt

)
= O(n−1),
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and the result follows.

Consider the optimal transport Ti from the density fi to the Wasserstein-
Fréchet Integral density f∗. From the closed form solution of the 2-Wasserstein
distance in the one-dimensional case (Villani, 2003), we have Ti(y) = Q∗(Fi(y)),
y ∈ Y . A natural estimate of the optimal transport Ti is then achieved by
replacing Q∗ with its estimated counterpart, as Fi(y) =

∫ y

0 fi(s)ds is assumed
to be fully observed.

Proof of Theorem 4.1. Note that for i ∈ {1, . . . , n}

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| = sup
y∈Y

|Q̂∗(Fi(y)) − Q∗(Fi(y))| ≤ sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)|,

and thus

max
i=1,...,n

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| ≤ sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)|. (26)

Let Tn be an equispaced partition of Y = [0, 1] with mesh size δn = n−γ , where
γ > 0. Using that Q̂∗(t) = n−1 ∑n

i=1 Qi(t) and Q∗(t) = E(Q1(t)), we obtain

sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)| ≤ sup
t∈Tn

∣∣∣n−1
n∑

i=1
[Qi(t) − E(Q1(t))]

∣∣∣ (27)

+ sup
|t−s|≤δn

∣∣∣n−1
n∑

i=1
[Qi(t) − Qi(s)]

∣∣∣
+ sup

|t−s|≤δn

∣∣∣E(Q1(t)) − E(Q1(s))
∣∣∣. (28)

Since |Qi(t) − Qi(s)| ≤ L|t − s|, we have

sup
|t−s|≤δn

∣∣∣E(Q1(t)) − E(Q1(s))
∣∣∣ ≤ Lδn (29)

and

sup
|t−s|≤δn

∣∣∣n−1
n∑

i=1
[Qi(t) − Qi(s)]

∣∣∣ ≤ n−1
n∑

i=1
Lδn = Lδn. (30)

It remains to control the first term on the upper bound in (28). For this, we
adopt arguments similar to those in the proof of Lemma 2 in Zhang and Wang
(2016). Let M > 0 and define an = (log n/n)1/2. Then, using the independence
of the Qi along with the inequality exp(s) ≤ 1 + s + s2 for small enough s, we
obtain for large enough n

P

(
n−1

n∑
i=1

Qi(t) − E(Q1(t)) > Man

)
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=P

(
an

n∑
i=1

[Qi(t) − E(Q1(t))] > M log n

)

≤n−M
n∏

i=1
E{exp (an[Qi(t) − E(Q1(t))])}

≤n−M
n∏

i=1
(1 + a2

nE[Q2
i (t)])

≤n−M
n∏

i=1
(1 + a2

nc0)

≤n−M exp (na2
nc0)

=nc0−M ,

where c0 = supy∈Y y2 = 1. Hence, taking M > c0 + γ implies

sup
t∈Tn

∣∣∣n−1
n∑

i=1
[Qi(t) − E(Q1(t))]

∣∣∣ = Op(an).

Combining this with (28), (29), (30) and δn = o(an), which remains valid for
any fixed γ ≥ 1/2, shows that supt∈[0,1] |Q̂∗(t) − Q∗(t)| = Op(an). The result
follows from (26).

Proof of Theorem 4.2. Recall that when the densities fi are fully observed, we
have Q̂∗(t) = n−1 ∑n

i=1 Qi(t). Under (S1) and by compactness of X and Y , there
exist M0 ∈ (0, ∞) and L0 ∈ (0, ∞) such that M0 ≤ inf(y,x)∈Y×X fY |X(y, x) ≤
sup(y,x)∈Y×X fY |X(y, x) ≤ L0. This implies that Q̂∗ is differentiable and strictly
increasing over [0, 1]. Thus, the inverse function F̂ ∗(y) = Q̂∗−1(y), y ∈ Y , exists
and is continuous on Y = [0, 1]. Also, Q∗(t) =

∫
X QY |X(t, x)f(x)dx is continuous

and strictly increasing over [0, 1] and so is F ∗(y) = Q∗−1(y), y ∈ Y . Hence, for
M > 0 and an = (log n/n)1/2, denoting by Q the set of rational numbers,

P

(
sup
y∈Y

|F̂ ∗(y) − F ∗(y)| > anM

)
= P

⎛
⎝ ⋃

y∈Y∩Q

|F̂ ∗(y) − F ∗(y)| > anM

⎞
⎠

≤ P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + anM

⎞
⎠

+ P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) < F ∗(y) − anM

⎞
⎠ . (31)

Note that by the Lebesgue dominated convergence theorem, it holds that for all
t ∈ (0, 1)

d

dt
Q∗(t) =

∫
X

1
fY |X(QY |X(t, x), x)f(x)dx,
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which under (S1) implies that L−1
0 ≤ dQ∗(t)/dt ≤ M−1

0 . Writing ‖Q∗ −Q̂∗‖∞ =
supt∈[0,1]|Q∗(t) − Q̂∗(t)|, defining An = {y ∈ Y : F ∗(y) + anM < 1} and using
that 0 ≤ F̂ ∗(y) ≤ 1, y ∈ Y and a Taylor expansion, it follows that

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + anM

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩An

Q∗(F̂ ∗(y)) > Q∗(F ∗(y) + anM)

⎞
⎠

=P

⎛
⎝ ⋃

y∈Y∩Q∩An

Q∗(F̂ ∗(y)) > y + d

dt
Q∗(ξy)anM

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩An

Q∗(F̂ ∗(y)) > y + anL−1
0 M

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩An

‖Q∗ − Q̂∗‖∞ + Q̂∗(F̂ ∗(y)) > y + anL−1
0 M

⎞
⎠

=P
(

‖Q∗ − Q̂∗‖∞ > anL−1
0 M

)
,

where ξy ∈ [0, 1]. The tthird inequality is due to Q∗(F̂ ∗(y)) ≤ ‖Q∗ − Q̂∗‖∞ +
Q̂∗(F̂ ∗(y)) and the last equality to Q̂∗(F̂ ∗(y)) = y. Combining this with ‖Q∗ −
Q̂∗‖∞ = Op(an), which was shown in the proof of Theorem 4.1, leads to

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + anM

⎞
⎠ = o(1), (32)

as n → ∞ and for sufficiently large M . Similarly

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) < F ∗(y) − anM

⎞
⎠ = o(1),

as n → ∞ and sufficiently large M . Then applying (31) and (32) leads to the
result.

A.5. Proof of theoretical results when sampling from conditional
densities

Suppose that Yi1, . . . , Yini

iid∼ fi, where fi(·) = fY |X(·, Xi), are a sample of
observations coming from the conditional distribution fY |X(·, Xi) at predictor
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level Xi. We estimate fi by

f̂i(y) =
ni∑

j=1
κ1

(
Yij − y

h1

)
w1(y, h)

/ ni∑
j=1

∫ 1

0
κ1

(
Yij − s

h1

)
w1(s, h)ds,

where y ∈ Y = [0, 1]. Let F̂i(y) =
∫ y

0 f̂i(ν)dν be the estimated cdf corre-
sponding to the density fi. By the central limit theorem, n−1 ∑n

i=1 F −1
i (t) con-

verges in probability to E(F −1
1 (t)) = E[E(F −1

1 (t)|X1)] = E[QY |X(t, X1)] =
Q∗(t) at the

√
n-rate. Thus a natural estimate of Q∗(t), t ∈ (0, 1), is Q̂∗(t) =

n−1 ∑n
i=1 F̂ −1

i (t).

Lemma A.7. Suppose that Y = [0, 1], X = [0, 1]p, p ≥ 1, κ1 ∈ K, fY |X(·, x)
is twice-continuously differentiable at each x and the regularity conditions (S1)
and (S2) hold. Then

E
(

(F̂i(y) − Fi(y))2
)

= O(h4
1 + n−1

i ),

where the bound is uniform in y and depends on i only through ni.

Proof of Lemma A.7. Set

f0i(y) = (nih1)−1
ni∑

j=1
κ1

(
Yij − y

h1

)
w1(y, h1),

and F0i(y) =
∫ y

0 f0i(s)ds. By Fubini’s theorem,

Var(F0i(y)|Xi)

= 1
nih2

1
Var

(∫ y

0
κ1

(
Yi1 − s

h1

)
w1(s, h1)ds|Xi

)

≤ 1
nih2

1

∫ y

0

∫ y

0

∫ 1

0
κ1

(
r − s

h1

)
κ1

(
r − u

h1

)
w1(s, h1)w1(u, h1)fi(r)drdsdu

= 1
nih1

∫ y

0

∫ y

0

∫ (1−s)/h1

−s/h1

κ1(ν)κ1

(
s − u + νh1

h1

)
(33)

× w1(s, h1)w1(u, h1)fi(s + νh1)dνdsdu

= 1
ni

∫ y

0

∫ (1−s)/h1

−s/h1

κ1(ν)w1(s, h1)fi(s + νh1)
∫ (y−s−νh1)/h1

−(s+νh1)/h1

(34)

× κ1(l)w1(s + νh1 + lh1, h1)dldνds

=O(n−1
i ), (35)

where the bound is uniform in y and Xi. The last equality is due to fi(y) ≤
‖fY |X‖∞ < ∞, y ∈ Y , which follows from (S1), the compactness of Y and X
and

1 ≤ w1(s, h1) ≤
(∫ 1

0
κ1(u)du

)−1

,
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which holds for all s ∈ [0, 1], and ‖κ1‖∞ < ∞ since κ1 ∈ K. Next, by a Taylor
expansion, Fubini’s theorem and as for all s ∈ [0, 1]∫ (1−s)/h1

−s/h1

κ1(ν)w1(s, h1)dν = 1,

we obtain

E(F0i(y)|Xi) = 1
h1

∫ y

0

∫ 1

0
κ1

(
u − s

h1

)
w1(s, h1)fi(u)duds

=
∫ y

0

∫ (1−s)/h1

−s/h1

κ1(ν)w1(s, h1)fi(s + νh1)dνds

= Fi(y) + h1

∫ y

0
f ′

i(s)
∫ (1−s)/h1

−s/h1

νκ1(ν)w1(s, h1)dνds

+ h2
1

2

∫ y

0

∫ (1−s)/h1

−s/h1

ν2κ1(ν)w1(s, h1)f ′′
i (ξ)dνds, (36)

where ξ = ξ(i, s, ν, h1) is between s and s + νh1. Since κ1 ∈ K, ‖f ′′
i ‖∞ ≤

‖f ′′
Y |X‖∞ < ∞, due to the compactness of Y and X , (S1) and the uniform of

boundedness of w1. Then

h2
1

2

∣∣∣ ∫ y

0

∫ (1−s)/h1

−s/h1

ν2κ1(ν)w1(s, h1)f ′′
i (ξ)dνds

∣∣∣ = O(h2
1), (37)

where the bound is uniform in y and Xi. We next show that

h1

∣∣∣ ∫ y

0
f ′

i(s)
∫ (1−s)/h1

−s/h1

νκ1(ν)w1(s, h1)dνds
∣∣∣ = O(h2

1), (38)

where the bound again is uniform in y and Xi. Setting c1 =
(∫ 1

0 κ1(u)du
)−1

, it
follows that

h1

∣∣∣ ∫ y

0
f ′

i(s)
∫ (1−s)/h1

−s/h1

νκ1(ν)w1(s, h1)dνds
∣∣∣ (39)

≤c1h1‖f ′
Y |X‖∞

∣∣∣ ∫ y

0

∫ (1−s)/h1

−s/h1

νκ1(ν)dνds
∣∣∣. (40)

Note that if y ∈ [0, h1)
∣∣∣ ∫ y

0

∫ (1−s)/h1

−s/h1

νκ1(ν)dνds
∣∣∣ ≤

∫ h1

0

∣∣∣ ∫ 1

−s/h1

νκ1(ν)dν
∣∣∣ds = O(h1),

which is due to κ1 ∈ K; this bound is uniform in y. Also, if y ∈ [h1, 1 − h1]
∣∣∣ ∫ y

0

∫ (1−s)/h1

−s/h1

νκ1(ν)dνds
∣∣∣ ≤

∫ h1

0

∣∣∣ ∫ 1

−s/h1

νκ1(ν)dν
∣∣∣ds
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+
∫ y

h1

∣∣∣ ∫ 1

−1
νκ1(ν)dν

∣∣∣ds

=
∫ h1

0

∣∣∣ ∫ 1

−s/h1

νκ1(ν)dν
∣∣∣ds

=O(h1),

due to
∫ 1

−1 νκ1(ν)dν = 0 as κ1 ∈ K; this bound is also uniform in y. Finally, if
y ∈ (1 − h1, 1] we have

∣∣∣ ∫ y

0

∫ (1−s)/h1

−s/h1

νκ1(ν)dνds
∣∣∣ ≤ O(h1) +

∫ y

1−h1

∣∣∣ ∫ (1−s)/h1

−1
νκ1(ν)dν

∣∣∣ds

= O(h1),

where the bound is uniform in y. With (40) this shows that (38) holds. Com-
bining (36), (37) and (38) leads to

|E(F0i(y)|Xi) − Fi(y)| = O(h2
1), (41)

where the bound is uniform in y, i and Xi. From the proof of Proposition 1 in
Petersen and Müller (2016b), F0i(1) =

∫ 1
0 f0i(s)ds ≥

∫ 1
0 κ1(u)du = c−1

1 . Since
F̂i(y) = F0i(y)/F0i(1), furthermore

E
(

(F̂i(y) − Fi(y))2
)

≤2c2
1

[
E

(
(F0i(y) − Fi(y))2)

+ E
(
(1 − F0i(1))2) ]

=2c2
1E

[
E

(
(F0i(y) − Fi(y))2|Xi

)
+ E

(
(1 − F0i(1))2|Xi

) ]
=O(h4

1 + n−1
i ),

where the bound is uniform in y and depends on i only through ni, and the last
equality is due to (35), (41) and since Fi(1) = 1. The result follows.

Proof of Theorem 3.4. Note that

d2
W(ν̂∗, ν∗) =

∫ 1

0
(Q̂∗(t) − Q∗(t))2dt

=
∫ 1

0

(
n−1

n∑
i=1

F̂ −1
i (t) − Q∗(t)

)2

dt

=
∫ 1

0

(
n−1

n∑
i=1

[F̂ −1
i (t) − F −1

i (t)]
)2

dt (42)

+
∫ 1

0

(
n−1

n∑
i=1

F −1
i (t) − Q∗(t)

)2

dt + 2
∫ 1

0
An(t)Bn(t)dt,
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where An(t) = n−1 ∑n
i=1[F̂ −1

i (t) − F −1
i (t)] and Bn(t) = n−1 ∑n

i=1 F −1
i (t) −

Q∗(t). Since ∫ 1

0
An(t)Bn(t)dt ≤

[ ∫ 1

0
A2

n(t)dt

∫ 1

0
B2

n(t)dt
]1/2

,

it suffices to control the terms
∫ 1

0 A2
n(t)dt and

∫ 1
0 B2

n(t)dt. Since E(Bn(t)) = 0,

E

(∫ 1

0
B2

n(t)dt

)
=

∫ 1

0
E(B2

n(t))dt =
∫ 1

0
Var(Bn(t))dt

=n−1
∫ 1

0
Var(F −1

1 (t))dt = O(n−1),

where the last equality is due to the compactness of Y = [0, 1] and

Var(F −1
1 (t)) = Var(QY |X(t, X1)) ≤ [sup

y∈Y
y − inf

y∈Y
y]2/4,

whence ∫ 1

0
B2

n(t)dt = Op(n−1). (43)

Next, similar arguments as in the proof of Theorem 3.1 and (S1) show that
M = sup(t,x)∈[0,1]×X D(t, x) < ∞, where D(t, x) = 1/fY |X(QY |X(t, x), x) is the
conditional quantile density, and∫ 1

0
(F̂ −1

i (t) − F −1
i (t))2dt ≤ M

∫ 1

0
(F̂i(ν) − Fi(ν))2f̂i(ν)dν

= M

∫ 1

0
(F̂i(ν) − Fi(ν))2fi(ν)dν

≤ M

(
sup

y∈Y,x∈X
fY |X(y, x)

) ∫ 1

0
(F̂i(ν) − Fi(ν))2dν,

where the first equality is due to Δ̂n(s) := F̂i(s) − Fi(s), s ∈ Y , with Δ̂n(1) = 0
and Δ̂n(0) = 0. Lemma A.7 leads to

E

(∫ 1

0
(F̂ −1

i (t) − F −1
i (t))2dt

)
= O(h4

1 + n−1
i ), (44)

where the bound depends on i only through ni. Note that
∫ 1

0
A2

n(t)dt = n−2
n∑

i=1

∫ 1

0
(F̂ −1

i (t) − F −1
i (t))2dt

+ n−2
n∑

i=1

∑
j 
=i

∫ 1

0
(F̂ −1

i (t) − F −1
i (t))(F̂ −1

j (t) − F −1
j (t))dt. (45)
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Using (44) along with a conditioning argument and the fact that ni ≥ m(n),

E

(
n−2

n∑
i=1

∫ 1

0
(F̂ −1

i (t) − F −1
i (t))2dt

)
= O

(
h4

1 + m(n)−1

n

)
.

Similarly, by independence,

E

⎛
⎝n−2

n∑
i=1

∑
j 
=i

∫ 1

0
(F̂ −1

i (t) − F −1
i (t))(F̂ −1

j (t) − F −1
j (t))dt

⎞
⎠

=O
(
h4

1 + 1/m(n)
)

.

Combining this with (45) leads to∫ 1

0
A2

n(t)dt = Op

(
h4

1 + 1/m(n)
)

. (46)

The result then follows from (42), (43), (46) and the condition m(n)h4
1 = O(1).

In what follows, recall that Fi is the cdf correponding to fi = fY |X(·, Xi),
i = 1, . . . , n.

Lemma A.8. Suppose that Y = [0, 1], X = [0, 1]p, p ≥ 1, κ1 ∈ K, ni ≥
m(n) with m(n) → ∞ as n → ∞, the regularity condition (S1) holds and
fY |X(·, x) is twice-continuously differentiable at each x. If m(n)h4

1 = O(1),
m(n)2γ0−1h2

1 log m(n) → ∞ and n/m(n)ρ1 = o(1) as n → ∞ for some γ0 > 1/2
and ρ1 > 0, then

sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)| = Op((log n/n)1/2 + an),

where an =
√

log m(n)/m(n).

Proof of Lemma A.8. Observe

sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)| ≤ sup
t∈[0,1]

|n−1
n∑

i=1
Q̂i(t) − Qi(t)| (47)

+ sup
t∈[0,1]

|n−1
n∑

i=1
Qi(t) − E(F −1

1 (t))|

≤ sup
t∈[0,1]

|n−1
n∑

i=1
Q̂i(t) − Qi(t)| + Op((log n/n)1/2), (48)

where the last inequality follows from the proof of Theorem 4.1 and using that
QY |X(·, x) is (1/κ0)-Lipschitz with κ0 = inf(y,x)∈Y×X fY |X(y, x) > 0, which is
due to (S1). For M > 0,

P

(
sup

t∈[0,1]

∣∣∣n−1
n∑

i=1
Q̂i(t) − Qi(t)

∣∣∣ > Man

)
(49)
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≤P

(
n−1

n∑
i=1

sup
t∈[0,1]

|Q̂i(t) − Qi(t)| > Man

)

≤
n∑

i=1
P

(
sup

t∈[0,1]
|Q̂i(t) − Qi(t)| > Man

)
, (50)

so that it suffices to control the upper bound term in (50). For this, let χn(γ)
be an equidistant grid in [0, 1] with spacing m−γ0 . Then

P

(
sup

t∈[0,1]
|Q̂i(t) − Qi(t)| > Man

)
(51)

≤P

(
sup

t∈χn(γ)
|Q̂i(t) − Qi(t)| > Man/2

)

+ P

(
sup

t,s∈[0,1],|t−s|≤m−γ0
|Q̂i(t) − Q̂i(s)| > Man/4

)

+ P

(
sup

t,s∈[0,1],|t−s|≤m−γ0
|Qi(t) − Qi(s)| > Man/4

)
. (52)

From the (1/κ0)-Lipschitz continuity of the Qi, we have for large enough n

P

(
sup

t,s∈[0,1],|t−s|≤m−γ0
|Qi(t) − Qi(s)| > Man/4

)
≤ 1{κ−1

0 m−γ0 ≥Man/4} = 0,

(53)

where the last equality is due to m(n)2γ0−1 log m(n) → ∞ as n → ∞.
Next, let Δi = supy∈Y |F̂i(y) − Fi(y)| and suppose that we can show

max
i=1,...,n

Δi = op(1). (54)

Then it suffices to work on the event where maxi=1,...,n Δi ≤ 1/4, which holds
with probability tending to 1 as n → ∞. Also, note that for large enough n it
holds that m−γ0 < 1/4.

Analogously to the proof of Corollary 1 in Bonnéry, Breidt and Coquet (2012),
observing the inclusion

{y ∈ Y : Fi(y) ≥ t + Δi} ⊆ {y ∈ Y : F̂i(y) ≥ t} ⊆ {y ∈ Y : Fi(y) ≥ t − Δi},

where t ∈ [0, 1], it then follows that

Qi(t − Δi) ≤ Q̂i(t) ≤ Qi(t + Δi),

where we define Qi(r) = 0 for r < 0 and Qi(r) = 1 for r > 1. Thus

(Q̂i(t) − Q̂i(s))1{s≤t} ≤ Qi(t + Δi) − Qi(s − Δi). (55)
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Note that if t + Δi ≥ 1 and |t − s| ≤ m−γ0 , then for large enough n we have

s − Δi ≥ 1 − 2Δi − m−γ0 ≥ 1/4,

and thus s − Δi ∈ [1/4, 1]. Hence, by a Taylor expansion and large enough n,
we obtain

(Qi(t + Δi) − Qi(s − Δi))1{t≥1−Δi,t≥s,|t−s|≤m−γ0 }

≤1 − (Qi(1) + Q′
i(ξi)(s − Δi − 1))

≤κ−1
0 (1 − s + Δi)

≤κ−1
0 (2Δi + m−γ0),

where ξi lies between s − Δi and 1. Also, if t + Δi ≤ 1, |t − s| ≤ m−γ0 and
s ≥ Δi, then by the κ−1

0 -Lipschitz continuity of Qi and large enough n

(Qi(t + Δi) − Qi(s − Δi))1{t≤1−Δi,t≥s,s≥Δi,|t−s|≤m−γ0 } ≤ κ−1
0 (m−γ0 + 2Δi).

Similarly, if t + Δi ≤ 1, |t − s| ≤ m−γ0 and s ≤ Δi, then Qi(s − Δi) = 0 and
t ≤ Δi + m−γ0 . By a Taylor expansion and large enough n, it then follows that

(Qi(t + Δi) − Qi(s − Δi))1{t≤1−Δi,t≥s,s≤Δi,|t−s|≤m−γ0 } ≤ κ−1
0 (t + Δi)

≤κ−1
0 (m−γ0 + 2Δi).

Combining these observations leads to

(Qi(t + Δi) − Qi(s − Δi))1{t≥s,|t−s|≤m−γ0 } ≤ κ−1
0 (m−γ0 + 2Δi),

which holds for large enough n. This along with (55) and as Q̂i is non-decreasing,
implies

|Q̂i(t) − Q̂i(s)|1{|t−s|≤m−γ0 } ≤ κ−1
0 (m−γ0 + 2Δi)

for large enough n, whence

P

(
sup

t,s∈[0,1],|t−s|≤m−γ0
|Q̂i(t) − Q̂i(s)| > Man/4

)
(56)

≤P
(
κ−1

0 m−γ0 + 2κ−1
0 Δi > Man/4

)
≤P (Δi > Mκ0an/16) . (57)

Here the last inequality follows from the fact that an − 4m−γ0κ−1
0 M−1 > an/2,

which holds for large enough n and is due to γ0 > 1/2.
Let M ′ > 0. Suppose we can show that there exists a constant C0 > 0

depending only on γ0 such that for any M ′ > 16C0

P (Δi > M ′an) = O(m(n)C0−M ′/16), (58)
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as n → ∞, where the bound is uniform in i. Then, combining this with (57)
and taking M > 256C0/κ0 leads to

P

(
sup

t,s∈[0,1],|t−s|≤m−γ0
|Q̂i(t) − Q̂i(s)| > Man/4

)
= O

(
m(n)C0−Mκ0/256

)
,

(59)

as n → ∞, where the bound is uniform in i. We next note that (58) implies (54)
since for any M0 > 0

P

(
max

i=1,...,n
Δi > M0

)
≤

n∑
i=1

P (Δi > M0) = O(n/m(n)M0/16−C0) = o(1),

where the last equality is due to the condition n/m(n)ρ1 = o(1) for some ρ1 > 0,
taking M0 > 16(C0 + ρ1).

Next, by a Taylor expansion and for M > 32C0/κ0, we have

P
(

Q̂i(t) − Qi(t) > Man/2
)

≤P
(

F̂i(Qi(t) + Man/2) < t ∧ Qi(t) + Man/2 ≤ 1
)

≤P (−Δi + Fi(Qi(t) + Man/2) < t ∧ Qi(t) + Man/2 ≤ 1)
≤P (Δi > κ0Man/2)
=O(m(n)C0−κ0M/32),

as n → ∞, where the bound is uniform in i. Similar arguments lead to

P
(

Q̂i(t) − Qi(t) < −Man/2
)

≤ P (Δi > κ0Man/2) .

Hence, for M > 32C0/κ0

P
(

|Q̂i(t) − Qi(t)| > Man/2
)

= O(m(n)C0−κ0M/32),

as n → ∞ and therefore

P

(
sup

t∈χn(γ)
|Q̂i(t) − Qi(t)| > Man/2

)
= O(m(n)C0+γ0−κ0M/32), (60)

as n → ∞, where the bound is uniform in i. Combining (52), (53), (59) and (60)
leads to

P

(
sup

t∈[0,1]
|Q̂i(t) − Qi(t)| > Man

)
= O(m(n)C0+γ0−κ0M/32 + m(n)C0−Mκ0/256),

as n → ∞, where the bound is uniform in i and we take M > 256C0/κ0.
Therefore, for large enough M

n∑
i=1

P

(
sup

t∈[0,1]
|Q̂i(t) − Qi(t)| > Man

)
= o(1),
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as n → ∞, where the last equality follows from the condition n/m(n)ρ1 = o(1)
for some ρ1 > 0. The result then follows from (48) and (50).

It remains to prove (58). Let

f0i(y) = (nih1)−1
ni∑

j=1
κ1

(
Yij − y

h1

)
w1(y, h1),

with corresponding cdf F0i(y) =
∫ y

0 f0i(s)ds and ain =
√

log ni/ni. Let

bij = h−1
1

∫ y

0
κ1((s − Yij)/h1)w1(s, h1)ds,

and Uij = bij − E(bij |Xi), j = 1, . . . , ni, i = 1, . . . , n. Note that E(Uij |Xi) = 0
and that the Uij are (conditionally) independent in j given Xi. By similar
arguments as in the proof of Lemma A.5 and using that κ1 ∈ K, we have
bij ≤ (

∫ 1
0 κ1(s)ds)−1 = 2 and for large enough n and M ′ > 4

P (F0i(y) − E(F0i(y)|Xi) > M ′ain|Xi) = P

⎛
⎝ 1

ni

ni∑
j=1

Uij > M ′ain|Xi

⎞
⎠

= P

⎛
⎝ain

ni∑
j=1

Uij > M ′ log ni|Xi

⎞
⎠

≤ n−M ′

i

ni∏
j=1

E(exp (ainUij)|Xi)

≤ n−M ′

i

ni∏
j=1

(1 + 4a2
in)

≤ n−M ′

i exp (4nia
2
in)

≤ m(n)4−M ′
.

Therefore, for large enough n and M ′ > 4

P (F0i(y) − E(F0i(y)|Xi) > M ′ain) ≤ m(n)4−M ′
,

and similarly

P (F0i(y) − E(F0i(y)|Xi) < −M ′ain) ≤ m(n)4−M ′
.

Let Yn be an equidistant partition of Y = [0, 1] with spacing m(n)−γ0 . Thus,
for large enough n and M ′ > 4 + γ0

P

(
sup

y∈Yn

|F0i(y) − E(F0i(y)|Xi)| > M ′ain

)
≤ 2m(n)γ0+4−M ′

. (61)
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Now, from the proof of Lemma A.7 we have |E(F0i(y)|Xi) − Fi(y)| = O(h2
1),

where the bound is uniform in Xi, i and y. This shows that

sup
y∈Y

|E(F0i(y)|Xi) − Fi(y)| = O(h2
1), (62)

where the bound is uniform in Xi and i. From the uniform bound on w1 and
κ1,

sup
|y−s|≤m(n)−γ0

|F0i(y) − F0i(s)| = O(m(n)−γ0h−1
1 ), (63)

where the bound is uniform in Xi, Yij , j = 1, . . . , ni, and i. Similarly

sup
|y−s|≤m(n)−γ0

|E(F0i(y)|Xi) − E(F0i(s)|Xi)| = O(m(n)−γ0h−1
1 ), (64)

where the bound is uniform in Xi and i. Hence, for large enough n and taking
M ′ > 16+4γ0, observing that ain ≤ an for n large enough so that m(n) > exp (1)
is satisfied, we obtain

P

(
sup
y∈Y

|F0i(y) − Fi(y)| > M ′an

)

≤P

(
sup
y∈Y

|F0i(y) − E(F0i(y)|Xi)| > M ′an/2
)

+ P

(
sup
y∈Y

|E(F0i(y)|Xi) − Fi(y)| > M ′an/2
)

≤ P

(
sup
y∈Y

|F0i(y) − E(F0i(y)|Xi)| > M ′an/2
)

+ 1{O(h2
1)≥M ′an/2}

≤ P

(
sup

y∈Yn

|F0i(y) − E(F0i(y)|Xi)| > M ′an/4
)

+ P

(
sup

|y−s|≤m(n)−γ0
|F0i(y) − F0i(s)| > M ′an/8

)

+ P

(
sup

|y−s|≤m(n)−γ0
|E(F0i(y) − F0i(s)|Xi)| > M ′an/8

)

≤ 2m(n)γ0+4−M ′/4 + 1{O(m(n)−γ0 h−1
1 )≥M ′an/8}

≤ 2m(n)γ0+4−M ′/4,

where the second inequality is due to (62), the third follows from (62) and
m(n)h4

1 = O(1) as n → ∞. The fourth inequality is due to (61), (63) and (64)
and M ′ > 16+4γ0. The last inequality follows from the condition m(n)2γ0−1h2

1×
log m(n) → ∞ as n → ∞. This shows that

P

(
sup
y∈Y

|F0i(y) − Fi(y)| > M ′an

)
≤ 2m(n)γ0+4−M ′/4, (65)
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for large enough n and M ′ > 16 + 4γ0.
Next, set τi = F0i(1) so that F̂i(y) = F0i(y)/τi and consider a fixed M ′ >

16(γ0 + 4). Then (65) and Fi(1) = 1 imply

P (|τi − 1| > M ′an) ≤ 2m(n)γ0+4−M ′/4,

and thus for large enough n

P

(
sup
y∈Y

|F0i(y) − Fi(y)| > M ′anτi/2
)

≤ P

(
sup
y∈Y

|F0i(y) − Fi(y)| > M ′an/4
)

+ 2m(n)γ0+4−M ′/4

≤ 2m(n)γ0+4−M ′/16 + 2m(n)γ0+4−M ′/4

= O(m(n)γ0+4−M ′/16).

Here the first inequality follows by using that M ′an < 1/2 holds for large
enough n, the second inequality is due to (65) and the last equality holds since
M ′ > 16(γ0 + 4). Similarly

P (|τi − 1| > M ′anτi/2) = O(m(n)γ0+4−M ′/16),

as n → ∞. Therefore

P

(
sup
y∈Y

|F̂i(y) − Fi(y)| > M ′an

)
≤ P

(
sup
y∈Y

|F0i(y) − Fi(y)| > M ′anτi/2
)

+ P (|τi − 1| > M ′anτi/2)

= O(m(n)γ0+4−M ′/16),

as n → ∞. The result in (58) then follows by taking C0 = γ0 + 4.

Proof of Theorem 4.3. Observe that

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| = sup
y∈Y

|Q̂∗(F̂i(y)) − Q∗(Fi(y))|

≤ sup
y∈Y

|Q̂∗(F̂i(y)) − Q∗(F̂i(y))|

+ sup
y∈Y

|Q∗(F̂i(y)) − Q∗(Fi(y))|

≤ sup
y∈Y

|Q̂∗(F̂i(y)) − Q∗(F̂i(y))|

+ (1/κ0) sup
y∈Y

|F̂i(y) − Fi(y)|,

where κ0 = inf(y,x)∈Y×X fY |X(y, x) > 0 and the last inequality is due to the
(1/κ0)-Lipschitz continuity of Q∗, which follows from (S1). Hence

max
i=1,...,n

sup
y∈Y

|T̂ ∗
i (y) − T ∗

i (y)| ≤ max
i=1,...,n

sup
y∈Y

|Q̂∗(F̂i(y)) − Q∗(F̂i(y))|
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+ (1/κ0) max
i=1,...,n

sup
y∈Y

|F̂i(y) − Fi(y)|. (66)

Let an =
√

log m(n)/m(n). From the proof of Lemma A.8, we have that there
exist C > 0 and C0 > 0 such that for M > 16C0 and large enough n

P

(
sup
y∈Y

|F̂i(y) − Fi(y)| > Man

)
≤ C

m(n)M/16−C0
.

This along with the independence across i of the quantities F̂i(y) and Fi(y)
implies that for large enough n and M > 16C0

P

(
max

i=1,...,n
sup
y∈Y

|F̂i(y) − Fi(y)| > Man

)

=1 −
n∏

i=1
P

(
sup
y∈Y

|F̂i(y) − Fi(y)| ≤ Man

)

=1 −
n∏

i=1

[
1 − P

(
sup
y∈Y

|F̂i(y) − Fi(y)| > Man

)]

≤1 −
(

1 − C

m(n)M/16−C0

)n

.

Since n/m(n)ρ1 = o(1) as n → ∞ for some ρ1 > 0, it is easy to show that for
large enough M

1 −
(

1 − C

m(n)M/16−C0

)n

= o(1),

as n → ∞. Therefore

max
i=1,...,n

sup
y∈Y

|F̂i(y) − Fi(y)| = Op(an). (67)

From Lemma A.8, we have

max
i=1,...,n

sup
y∈Y

|Q̂∗(F̂i(y)) − Q∗(F̂i(y))| ≤ sup
t∈[0,1]

|Q̂∗(t) − Q∗(t)|

=Op((log n/n)1/2 + an),

which together with (66) and (67) leads to the result.

Proof of Theorem 4.4. Recall that F̂ ∗(y) = inft∈[0,1]{Q̂∗(t) > y} and Q̂∗(t) =
n−1 ∑n

i=1 Q̂i(t), where Q̂i(t) = infy∈Y{F̂i(y) ≥ t}, t ∈ [0, 1]. Also denote by
‖Q∗ − Q̂∗‖∞ = supt∈[0,1]|Q∗(t) − Q̂∗(t)|. Since F̂i is continuous over Y with
F̂ ∗(0) = 0, F̂ ∗(1) = 1, it holds that the range ran(F̂ ∗) = [0, 1] and thus similar
arguments as in Embrechts and Hofert (2013) show that Q̂i is strictly increasing
on [0, 1] and therefore so is Q̂∗. Since Q̂∗ is non-decreasing, arguments in Feng
et al. (2012) show that F̂ ∗ is right-continuous. To show that F̂ ∗ is continuous,
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we argue by contradiction. Suppose that F̂ ∗ is not left-continuous so that there
exists y0 ∈ Y = [0, 1] such that F̂ ∗(y−

0 ) < F̂ ∗(y0). Then there exists φ1 < φ2
such that F̂ ∗(y−

0 ) < φ1 < φ2 < F̂ ∗(y0). Then for small enough δ > 0,

F̂ ∗(y0 − δ) ≤ F̂ ∗(y−
0 ) < φ1 < φ2 < F̂ ∗(y0).

This implies y0 − δ < Q̂∗(φ1) ≤ y0 and taking δ ↓ 0 shows that Q̂∗(φ1) = y0 and
similarly Q̂∗(φ2) = y0. Thus Q̂∗(φ1) = Q̂∗(φ2) with φ1 < φ2, which contradicts
the fact that Q̂∗ is strictly increasing. Hence F̂ ∗ is continuous over Y = [0, 1].

Next, setting bn = (log n/n)1/2+(log m(n)/m(n))1/2 and using the continuity
of F̂ ∗ and the arguments in the proof of Theorem 4.2 leads to

P

(
sup
y∈Y

|F̂ ∗(y) − F ∗(y)| > bnM

)
≤ P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + bnM

⎞
⎠

+ P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) < F ∗(y) − bnM

⎞
⎠ , (68)

and L−1
0 ≤ dQ∗(t)/dt ≤ M−1

0 , t ∈ [0, 1], for some positive constants L0, M0 > 0.
Setting An = {y ∈ Y : F ∗(y) + bnM < 1} and using that 0 ≤ F̂ ∗(y) ≤ 1, y ∈ Y ,
we obtain

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + bnM

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩An

Q∗(F̂ ∗(y)) > Q∗(F ∗(y) + bnM)

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩An

‖Q∗ − Q̂∗‖∞ + Q̂∗(F̂ ∗(y)) > y + bnL−1
0 M

⎞
⎠

≤P
(

‖Q∗ − Q̂∗‖∞ > bnL−1
0 M

)
,

where the last inequality follows from the fact that Q̂∗(F̂ ∗(y)) ≤ y, which we
show next. Indeed, suppose that there exists y ∈ Y such that Q̂∗(F̂ ∗(y)) > y.
Then, there exists υ ∈ Y such that y < υ < Q̂∗(F̂ ∗(y)). By left-continuity of Q̂∗,
we have that for any ε > 0 there exists δ = δ(ε) > 0 such that Q̂∗(F̂ ∗(y) − δ) ≥
Q̂∗(F̂ ∗(y)) − ε > ν − ε. Taking ε = (υ − y)/2 > 0 implies

Q̂∗(F̂ ∗(y) − δ) > (υ + y)/2 > y,

and thus F̂ ∗(y) ≤ F̂ ∗(y)−δ, which is a contradiction as δ > 0. Thus Q̂∗(F̂ ∗(y)) ≤
y.



1776 Á. Gajardo et al.

Combining this with ‖Q∗ − Q̂∗‖∞ = Op(bn), which is due to Lemma A.8,
leads to

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) > F ∗(y) + bnM

⎞
⎠ = o(1), (69)

as n → ∞ for sufficiently large M . Similarly, setting Bn = {y ∈ Y : F ∗(y) −
bnM > 0},

P

⎛
⎝ ⋃

y∈Y∩Q

F̂ ∗(y) < F ∗(y) − bnM

⎞
⎠ ≤ P

⎛
⎝ ⋃

y∈Y∩Q∩Bn

Q̂∗(F ∗(y) − bnM) > y

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩Bn

‖Q∗ − Q̂∗‖∞ + Q∗(F ∗(y) − bnM) > y

⎞
⎠

≤P

⎛
⎝ ⋃

y∈Y∩Q∩Bn

‖Q∗ − Q̂∗‖∞ + y − L−1
0 bnM > y

⎞
⎠

≤P
(

‖Q∗ − Q̂∗‖∞ > L−1
0 bnM

)
= o(1),

as n → ∞ and sufficiently large M . Combining this with (68) and (69) leads to
the result.

Appendix B: Additional simulation results

S.6 Additional simulation results

We investigate the situation when only scatterplot data (Xi, Yi), i = 1, . . . , n, are
available but the conditional densities fi remain unobserved. For this, we first
generate predictors X1, . . . , Xn

iid∼ f , where f corresponds to the density of a
U(0, 1) random variate. Then, conditional on Xi, we generate Yi from a mixture
Gaussian distribution as follows: We first draw a uniform variate p ∼ U(0, 1)
independently of all other random quantities. If p ≥ 0.5, we sample Yi from a
normal distribution N(μ1, σ1) with μ1 = Xi and σ1 = 0.1. Otherwise, if p < 0.5,
we sample Yi from a N(μ2, σ2) with μ2 = 1 − Xi and σ2 = 0.1. Thus, the
underlying conditional density function fY |X is given by the Gaussian mixture

fY |X(y, x) = π1
1

σ1(x)φ

(
y − μ1(x)

σ1(x)

)
+ π2

1
σ2(x)φ

(
y − μ2(x)

σ2(x)

)
, (70)

where φ corresponds to the density of a standard normal random variable,
σj(x) = 0.1, πj = 0.5, j = 1, 2, μ1(x) = x and μ2(x) = 1 − x, x ∈ X = [0, 1].
Figure 7 shows the conditional Gaussian mixture densities over a dense grid
of x values along with the density of the Wasserstein and classical marginal
measures.
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Fig 7. Conditional Gaussian mixture densities fY |X(·, x) as in (70) over a dense grid of
increasing x values in [0, 0.5] (from blue to red) as outlined in the simulation setting for
Gaussian mixtures with X ∼ U(0, 1). Here μ1(x) = x, μ2(x) = 1 − x, σj(x) = 0.1 and
πj = 0.5, j = 1, 2. By symmetry, if x ∈ (1/2, 1] then fY |X(·, x) = fY |X(·, 1 − x) with
1 − x ∈ [0, 1/2). The density of the Wasserstein-Fréchet Integral is shown in solid black while
the classical marginal is dashed.

We take κ1 and κ2 to be Gaussian and Epanechnikov kernel functions, respec-
tively, bandwidth sequences h1 = h = n−1/3 and compute Q̂∗ over a dense grid
of values in [0.05, 0.95]. Since the quantile function of a Gaussian mixture has no
closed form expression, we obtain the true quantile function of the Wasserstein-
Fréchet Integral measure by using that Q∗(t) =

∫
X QY |X(t, x)f(x)dx and nu-

merically approximating this term. To assess the finite sample performance of
the empirical estimates, we utilize the squared Wasserstein error measure

Dn,α =
∫ 1−α

α

(Q̂∗(t) − Q∗(t))2dt, α ∈ (0, 1/2),

which is obtained numerically over a dense grid in [α, 1 − α]. We set α = 0.05.
Figure 8 shows the boxplots of Dn,α across 1000 simulations, and Dn,α is seen
to rapidly converge to zero.

For the previous Gaussian mixture scatterplot setting, we further explore
the situation when X has a beta instead of a uniform distribution, where we
expect the shape of the density of the Wasserstein-Fréchet Integral to be closer
to the conditional densities fY |X(·, x) especially for larger x. For this, we slightly
adjust the previous Gaussian mixture setting where we now set μ1(x) = 0 and
f ∼ Beta(2, 2) while all other population variables remain the same as before.
Figure 9 shows the conditional Gaussian mixture densities over a dense grid of x
values along with the density of the Wasserstein and classical marginal measures.
For sufficiently large values of x, the conditional density fY |X(·, x) is bimodal
with peaks at 0 and 1 − x while for smaller values of x the conditional density
converges to a zero-mean Gaussian density. Since X ∼ Beta(2, 2), higher weight
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Fig 8. Boxplot of the squared Wasserstein error measure Dn,α =
∫ 1−α

α (Q̂∗(t) − Q∗(t))2dt
with α = 0.05 for 1000 simulations and increasing sample sizes in a simulation setting with
Gaussian mixtures when X ∼ U(0, 1).

values f(x) are concentrated around x = 0.5 and thus the Wasserstein-Fréchet
Integral should be closer to a bimodal Gaussian variate which is clearly seen
to be the case in Figure 9. In contrast, the classical marginal density does not
represent the vertical variation around the means. Figure 10 shows the boxplots
for Dn,α, α = 0.05, which again converge rapidly to zero with increasing sample
size, indicating consistency of the Wasserstein-Fréchet Integral. The associated
transports are shown in Figure 11.
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Fig 9. Conditional Gaussian mixture densities fY |X(·, x) as in (70) over a dense grid of in-
creasing x values in [0, 1] (from blue to red) as outlined in the simulation setting for Gaussian
mixtures with X ∼ Beta(2, 2). Here μ1(x) = 0, μ2(x) = 1 − x, σj(x) = 0.1 and πj = 0.5,
j = 1, 2. The density of the Wasserstein-Fréchet Integral is shown in solid black while the
classical marginal is dashed.

Fig 10. Boxplot of the squared Wasserstein error measure Dn,α =
∫ 1−α

α (Q̂∗(t) − Q∗(t))2dt
with α = 0.05 for 1000 simulations and increasing sample sizes in a simulation setting with
Gaussian mixtures when X ∼ Beta(2, 2).
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Fig 11. Individual optimal transports Ti = Q∗ ◦ Fi from the conditional distributions νi to
the Wasserstein measure ν∗ in the simulation setting of Figure 1. Low values of the predictor
x are displayed in blue and higher values in red. The identity map is displayed in solid black.
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