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Abstract 
Diagnosing Alzheimer's Disease (AD) early and cost-effectively is crucial. Recent advancements in Large Language 
Models (LLMs) like ChatGPT have made accurate, affordable AD detection feasible. Yet, HIPAA compliance and the 
challenge of integrating these models into hospital systems limit their use. Addressing these constraints, we introduce 
ADetectoLocum, an open-source LLM equipped model designed for AD risk detection within hospital environments. 
This model evaluates AD risk through spontaneous patient speech, enhancing diagnostic processes without external 
data exchange. Our approach secures local deployment and significantly surpasses previous models in predictive 
accuracy for AD detection, especially in early-stage identification. ADetectoLocum therefore offers a reliable solution 
for AD diagnostics in healthcare institutions. 
 
Keywords: Machine learning, generative AI, predictive modeling, clinical decision support, translational data science 
interventions, data security and privacy 
 
Introduction 
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that significantly impairs memory, cognition, 
and functioning, ultimately leading to death. It is the most common cause of dementia among older adults, affecting 
millions worldwide1. Traditionally, AD is diagnosed through a combination of clinical evaluations, including 
neurological assessments, mental status testing, and physical examinations, often supplemented by imaging tests such 
as MRI or CT scans to rule out other causes of dementia2. 
 
The early detection of AD presents a considerable challenge due to the gradual onset of symptoms and the overlap 
with normal aging processes. Early symptoms, such as forgetfulness and mild confusion, are frequently dismissed as 
normal aging, leading to delayed diagnosis3. The difficulty lies not only in distinguishing early-stage AD from normal 
aging but also in the current diagnostic methods' reliance on observable cognitive decline, which often signifies that 
the disease has already progressed3. 
 
Despite these challenges, early detection is of paramount importance. Identifying AD at an earlier stage opens the 
door to potential treatments that can slow the progression of the disease, improve quality of life, and extend 
independence4. Current treatment options for early-stage AD include pharmacological interventions aimed at 
managing symptoms, as well as non-pharmacological approaches such as cognitive therapy and lifestyle 
modifications5. Moreover, early detection allows patients and families to plan for the future, including making care 
arrangements and addressing legal and financial issues, while the patient can still participate in decision-making 
processes4. Therefore, innovative approaches that enable earlier and more accurate detection of AD are crucial in the 
fight against this debilitating disease. 
 
While AD poses significant diagnostic and treatment challenges due to its gradual onset and complex nature, the 
evolution of technology in the medical field offers promising avenues for addressing these obstacles. Among these 
advancements, Large Language Models (LLMs) like ChatGPT stand at the forefront, heralding a new era of medical 
innovation6, 7. These sophisticated AI tools have the potential to revolutionize the early detection and management of 
diseases such as AD7, 8, 9. By leveraging the vast capabilities of LLMs to analyze and interpret medical data, healthcare 
professionals can gain insights into subtle patterns and indicators of AD that may not be evident through traditional 
diagnostic methods. For example, LLMs can process extensive patient dialogue or written texts to identify linguistic 
anomalies or changes over time that may suggest early cognitive decline, providing a non-invasive and efficient tool 
for early AD detection8. Beyond diagnostics, LLMs offer support in personalized patient care and treatment planning, 
drawing from a wealth of medical research and data to suggest tailored interventions10, 11, 12.  
 
Leveraging LLMs for the early detection of AD signals a promising approach, yet it confronts numerous practical 
deployment challenges. Most notably, the current generation of powerful LLMs, such as ChatGPT, does not comply 
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with the Health Insurance Portability and Accountability Act (HIPAA), a critical consideration for applications in 
healthcare13, 14, 15, 16. Furthermore, even those LLMs that are HIPAA-compliant are not open-source due to commercial 
considerations, limiting their accessibility and adaptability for use in hospital settings13, 14. Hospitals' servers are 
typically highly secure and closed systems, necessitating local deployment of any technological solution, a 
requirement that existing commercial LLMs cannot fulfill13. This significant gap hinders the utilization of the advanced 
capabilities of LLMs within healthcare facilities. 
 
In recognition of this gap, this paper explores the development and fine-tuning of an open-source LLM specifically 
for the task of detecting AD through patient speech. Our model, ADetectoLocum, not only addresses the critical need 
for HIPAA-compliant, locally deployable solutions but also demonstrates the potential to achieve superior 
performance in AD detection compared to commercial LLMs such as GPT-3.5 and GPT-46, 17. By adapting an open-
source LLM to this specific medical application, we bridge the divide between cutting-edge AI technology and 
practical healthcare implementation, offering a viable path forward for harnessing the power of LLMs in the fight 
against AD. 
 
Our contributions are threefold and underscore significant advancements in the detection of AD through 
ADetectoLocum: 
 

1. Enhanced Accuracy: ADetectoLocum outperforms State Of The Art (SOTA) models in predicting AD, 
achieving an accuracy improvement of at least 2% - 5%. This marks a significant leap forward in the 
reliability of AD diagnostic tools, offering more precise assessments. 

2. Local Deployment Compatibility: Unlike earlier models that rely on accessing external GPT APIs, 
ADetectoLocum is fully operational with local models. This intrinsic characteristic makes it exceptionally 
suited for deployment in the restrictive and privacy-sensitive environments of hospitals, ensuring patient data 
remains secure and within the premises. 

3. Superior Early Detection: When it comes to identifying AD in its early stages, ADetectoLocum 
demonstrates superior performance compared to existing SOTA models. Early detection is crucial for 
effective AD management and treatment, and our model provides a significant advantage in this critical 
aspect, potentially transforming patient outcomes through earlier intervention. 

 
Background 
Challenge of AD Detection  
The detection of AD presents a significant challenge due to its subtle onset and the complexity of diagnosing it 
accurately in its early stages. Traditional methods rely heavily on clinical assessments and neuroimaging techniques, 
which, while effective, can be invasive, costly, and inaccessible to many2, 4. Furthermore, these methods often require 
specialized facilities and personnel, limiting their applicability on a broad scale4. For example, the Boston Diagnostic 
Aphasia Examination (BDAE) relies on patient speech for assessment of cognitive ability, but physician evaluation 
of patient speech in the examination can be time consuming and subjective. Previous studies have demonstrated that 
OpenAI's GPT models can effectively analyze text transformed from patient speech to discern the presence of AD18, 

19. While this approach has shown promising results, its deployment within hospital systems encounters substantial 
obstacles due to privacy concerns since commercial AI companies may not be subjected to follow HIPAA 
requirements for their own assets13, 14, 16. These constraints significantly challenge the practical applicability and 
deployment of GPT models in clinical settings, casting doubts on their feasibility for widespread clinical use. 
 
Data Privacy and HIPAA Compliance in Hospital Systems  
As aforementioned, hospital systems are characterized by their stringent data privacy protocols, ensuring that patient 
information does not leave the secure confines of the hospital servers. This closed environment is crucial for protecting 
patient confidentiality and preserving patient privacy in the healthcare system. A cornerstone of this privacy 
framework in the United States is the HIPAA, which sets the standard for protecting sensitive patient data16. HIPAA 
compliance requires healthcare providers to implement comprehensive security measures to safeguard patient 
information against unauthorized access or breaches13, 14, 15. These regulations cover a wide range of protections, from 
physical security controls, firewalls, digital encryption, de-identification, purpose limitation, and aim to preserve the 
integrity and confidentiality of medical records16. Ultimately, for AI technology solutions, including LLMs, to be 
integrated into hospital systems, they must protect the patient data as well as the healthcare provider. This compliance 
not only protects patients but also enables the responsible use of innovative technologies for enhancing patient care. 
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Large Language Models and Zephyr  
Large Language Models (LLMs) have garnered widespread recognition, particularly following the publication of 
OpenAI's ChatGPT6. These models, trained on extensive datasets, can perform a wide range of tasks, from text 
generation to complex problem-solving, making them invaluable across diverse domains18, 19, 20, 21. Among these 
advancements, Zephyr stands out as a notable development22. Originating as a refined, chat-optimized iteration of the 
mistralai/Mistral-7B-v0.1 model, Zephyr-7B-β is an open-source LLM fine-tuned on a blend of public and synthetic 
datasets, achieving competitive performance with commercial models such as GPT-3.522, 23. Previous studies have 
demonstrated that OpenAI's GPT models can effectively analyze text transformed from patient speech to discern the 
presence of AD. However, its closed-source technology does not secure HIPAA compliance, whereas open-source 
technology like Zephyr-7B-β does 18. In the case of AD prediction through speech detection, a person’s speech is used 
for diagnosis through the BDAE but is also personally identifiable information which must be de-identified prior to 
input to the commercial AI-platform. Internal AI utilization obviates the need for de-identification because data is 
curated, stored, and utilized locally by the healthcare provider, and is inherently privacy-preserving. Zephyr-7B-β's 
development and deployment underscore the evolving landscape of LLMs, where the quest for improved performance 
intersects with ethical considerations and real-world applicability. 
 
Methods 
Overview 
As illustrated in Figure 1, our approach, denoted as ADetectoLocum, commences with the input of patient audio 
recordings. Initially, we employ a specific audio-to-text conversion tool (Wav2Vec2Tokenizer and 
Wav2Vec2ForCTC ) to transcribe the audio into textual data24. This direct transcription method is chosen over utilizing 
the acoustic properties of the audio based on evidence from previous studies, which have shown that for the task of 
AD detection, the textual content plays a pivotal role18, 19, 25, 26. Incorporating acoustic features has been found not to aid, 
and in some instances, to detrimentally affect the performance of the text-based module18, 25, 26. 
 

 
Figure 1: Overview of ADetectoLocum 
 
Upon acquiring the text, this data is then inputted into the Zephyr-7B-β model for inference. We extract the feature 
representation from the layer preceding the output layer of the Zephyr-7B-β model to serve as the basis for our AD 
classification. This representation captures the nuanced linguistic patterns associated with AD, as encoded by the 
model's deep learning architecture. 
 
Finally, we employ an XGBoost classifier, trained to utilize these feature representations as input27. The classifier is 
tasked with determining whether the analyzed voice, represented through the extracted features, belongs to a patient 
with AD. The outcome of this process is a binary classification, providing a probability score indicating the likelihood 
of AD presence or absence. This methodological framework not only leverages the textual analysis for AD detection 
but also enhances it with the advanced language understanding capabilities of Zephyr-7B-β, aiming for a more accurate 
and reliable diagnosis. 
 
For a detailed explanation of our method, we proceed as follows: Steps 1 to 3, corresponding to ① to ③ in Figure 1, 
are thoroughly discussed in the Data and Experimental Setup section. Steps 4 and 5, associated with circles ④ and 
⑤, are elaborated upon in the Binary Classification section. All code used is available at 
https://github.com/ginnymortensen/ADetectoLocum.git. 
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Data   
We used the ADReSS20 and ADReSSo21 Challenge datasets for training, validation and testing ADetectoLocum, 
available through DementiaBank and published in 2020 and 2021, respectively28, 29, 30. The datasets contain spontaneous 
speech audio of patient descriptions of the Cookie Theft picture from the Boston Diagnostic Aphasia Examination 
(BDAE) and Mental Mini-State Evaluation (MMSE) scores for healthy, control patients and patients diagnosed with 
AD. The BDAE and MMSE are both assessments used by physicians to aid in AD diagnosis2. The datasets are split 
into training and testing cohorts, evenly stratified by age and gender. The ADReSS20 dataset differs from the 
ADReSSo21 dataset in that it includes audio transcriptions and normalized, sub-chunked audio in addition to full 
enhanced audio, whereas the latter contains only full enhanced audio. For consistency, we retain only the full enhanced 
audio from each dataset for the AD classification task. 
 
In the ADReSS20 dataset, there are 54 AD and 54 cognitively normal (CN) patients in the training cohort. The testing 
cohort contains 24 AD and 24 CN patients. In the ADReSSo2021 dataset, there are 87 AD and 79 CN patients in the 
training cohort, and 35 AD and 36 CN patients in the testing cohort. We combine each dataset to form larger training 
and testing cohorts for a more robust model while retaining the original stratification of age and gender. We kept the 
testing cohort unseen by our classification models during training. The combined dataset totals 141 AD and 133 CN 
patients in the training cohort, and 59 AD and 60 CN patients in the testing cohort, for grand totals of 274 training 
samples and 119 testing samples, or 393 total samples. 
 
Experimental Setup 
In our Pipeline setup, the initial step involved securing permission to access the ADReSS20 and ADReSSo21 datasets 
from DementiaBank, followed by storing this data within a secure High-Performance Computing (HPC) 
environment30. Utilizing the Python package librosa with Python 3.9, we extracted waveforms from audio WAV files, 
marking the commencement of our analysis pipeline (as denoted by the first bin labeled "Voice" on the left side of 
Figure 1)31. At stage ① in Figure 1, the wav2vec 2.0 base model in Hugging Face, equipped with Wav2Vec2Tokenizer 
and Wav2Vec2ForCTC, was employed to tokenize these waveforms into textual transcriptions28. This speech-to-text 
model, fine-tuned on 960 hours of speech data, is acclaimed for its use by top performers in the ADReSSo21 
Challenge18, 19, 24. The resulting transcriptions (stage ② in Fig.1, corresponding to the "Transcription" bin in Figure 1) 
were then processed through the open-source LLM, Zephyr-7B-β (stage ③ and corresponding to the "LLM" bin), to 
derive textual representations from the model’s final layer. This LLM was accessed via Hugging Face’s transformer 
module in Python22. These representations encapsulate both lexical and semantic insights, leveraging the model's 
extensive pre-training. 
 
Binary Classification 
Subsequently, at stage ④ in Figure 1, these textual representations were employed to train diverse binary classification 
models, including a Neural Network (NN), Support Vector Classifier (SVC), Extreme Gradient Boosting (XGB), and 
Logistic Regression (LR), (as highlighted by the "Binary Classifier" bin). We utilized the Python library Scikit-learn 
to import validated implementations of SVC and LR32. We utilized the Keras API for TensorFlow to utilize deep 
learning modules to build our NN. Lastly, we utilized the XGB Python package for our XGB model implementation27. 
We tune each classifier’s hyperparameters using 5-fold cross validation with a grid-search over a range of values 
standard for each classifier. We chose these 4 classifiers as candidates because previous literature has shown success 
using SVC, NN, and LR for the ADReSSo21 Challenge8, 18, 19. However, we innovatively incorporate XGB because of 
its excellent performance as demonstrated in other classification challenges33. Indeed, this classifier proved to be the 
most accurate for AD classification in our approach. However, this stage also allows for flexibility in deployment, 
enabling users to select a binary classifier tailored to their needs, such as dataset size. Post-training, these classifiers 
estimate the probability of AD presence (⑤ in Figure 1). Our models were distinctively trained across both datasets 
and fine-tuned for specific evaluation studies, with performance metrics such as accuracy, precision, recall, and F1 
score derived from their predictions. We utilized Scikit-learn library’s metrics module to calculate metrics for stage 
⑤32. To enhance processing speed and reduce inference latency, computations were accelerated using a Nvidia H100 
PCIe GPU, ensuring all operations were conducted locally to avoid extra costs or data breaches.  

 
Results 
Early Detection Analysis 
The most clinically important aspect of our model is its ability to accurately detect AD in early cognitive decline, 
visualized in Figure 2. Higher MMSE scores indicate lesser impairment, while lower MMSE scores indicates greater 
impairment47. Our model frequently correctly classifies AD patients with higher MMSE scores (and therefore less 
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cognitive impairment), as indicated by the true positive distribution. We demonstrate our model’s ability to detect AD 
early in the disease’s progression, allowing expeditious intervention by physicians to enact treatment and improve 
patient outcomes for AD management. 
 
False negatives for moderate impairment are likely a result of facilitator speech confounding the transcription quality, 
or bias from cognitively normal natural language used to train LLMs, including Zephyr, but segmenting audio to 
exclude facilitator speech was not shown to improve prediction latency in other works29. Additionally, false negatives 
are distributed lower on the MMSE impairment scale, indicating more noticeable impairment, but are less frequently 
incorrectly classified. Although ADetectoLocum is meant for AD prediction, false positives could indicate samples 
representing other diseases such as vascular dementia. Ultimately, our approach is accurate for cases where there is 
less impairment, distinguishing our work from other competitively performing models. 
 

 
Figure 2: Histogram of correct and incorrect AD classifications with thresholds indicating MMSE cognitive 
impairment level. Means and standard deviations are calculated for MMSE scores per class. 
 
Comparative Results 
Our model outperforms previous methods of AD classification on linguistic features from the DementiaBank dataset 
using LLMs, as shown in Table 1. We compare our results to those presented in other works wherein inference was 
performed on language model vector representations of the linguistic features of audio transcripts for the ADReSSo21 
dataset, including the baseline results for the ADReSSo21 Challenge presented by Luz et al, 2021. We chose to 
compare works using this dataset because the size of the data is larger and no contributors, to our knowledge, have 
experimented with combining ADReSS20 and ADReSSo21 data. Our model builds on the success of previous work 
demonstrating the feasibility of employing LLMs to achieve high accuracy in AD classification with the advantage of 
using locally deployable software. Our F1-score outcompetes other contributors and indicates a more effective model 
performance, minimizing false classifications. Specifically, when comparing ADetectoLocum against other models 
that can be deployed locally, such as those proposed by Bang et al., 2024, and Luz et al., 2021, our model demonstrates 
superior performance across all evaluated metrics, including accuracy, precision, recall, and F1 score. Notably, 
ADetectoLocum exceeds the benchmarks set by these studies, establishing itself as the leading solution in terms of 
both detection capability and efficiency. 
 
In contrast to the GPT-based approach by Agbavor & Liang, 2022, ADetectoLocum showcases a remarkable 
improvement in key performance indicators. Our model achieves a nearly 5% increase in accuracy, a 12% 
improvement in precision, and a 2% uplift in F1 score (Table 1). However, it's important to acknowledge that 
ADetectoLocum exhibits a 12% lower recall rate compared to Agbavor & Liang's method. However, the high recall 
of Agbavor & Liang’s results compared to the relatively low precision may indicate the method, while accurate, is 
biased and captured false positives as well. Bang’s method using BERT is competitive to ADetectoLocum, but is not 
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explored for early-stage detection, whereas our method has showed AD detection early in the disease’s progression 
(Figure 2). Additionally, although GPT-3.5 + SVC is competitive, another work exploring GPT-3.5 + XGB showed 
an accuracy of 62% and is mentioned for completeness36. GPT-3.5 based comparisons are sufficient to demonstrate 
our approach’s efficacy, as GPT-4 is not locally deployable. 
 
Table 1: Comparative results of our model results with other contributors for AD classification. 
 

Contributors Model Accuracy Precision Recall  F1 

ADetectoLocum (ours) Zephyr + XGB 84.9% 84.7% 84.7%   84.7% 

Bang et al., 2024 BERT (text unimodal) 83.1% 83.1% 83.1%   83.1% 

Agbavor & Liang, 2022 GPT-3.5 + SVC 80.3% 72.3%  97.1%   82.9% 

Luz et al., 2021 SVC 78.9%  77.8%  80.0%  78.9% 
 
LLM Comparison 
Meta’s open-source LLM Llama 2 has gained attention for being powerful and flexible34. Table 4 shows the 
performance of Llama 2 in our pipeline when used for stages ② and ③. Llama 2-7B has demonstrated impressive 
performance on medical benchmarks and there exists several iterations of Llama 2 fine-tuned for the medical domain38. 
However, Zephyr-7B-β is documented to have outperformed Llama 2-7B on several benchmarks, including the 
medical domain22. When comparing accuracy, Llama 2 shows competitive performance to current SOTA models, but 
does not outperform Zephyr. 

 
Table 2. Llama 2 results on AD classification.  
 

LLM Classifier Accuracy Precision Recall  F1 

Llama 2 NN  0.731  0.865  0.542 0.667 

SVC  0.798  0.818  0.763  0.789 

XGB  0.824  0.852  0.78  0.814 

LR  0.832  0.882  0.763  0.818 
 
Furthermore, Figure 3 shows that ADetectoLocum, using Zephyr for stage ②, is more capable of distinguishing 
between AD and CN patients than if Llama 2 is used. AUC and standard deviations are derived from 5-fold cross 
validation used to tune hyperparameters for each variant of our model. Not only is the variant of our proposed model, 
using Llama 2 for stage ②, more accurate than current SOTA models, but ADetectoLocum as proposed is more 
reliable than the variant in AD classification. For example, previous work shows that GPT-3.5’s Babbage model 
achieves an AUC of 0.91 on AD classification, whereas we achieve an AUC of 0.94 using Zephyr for textual 
embedding extraction18. 
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Figure 3: ROC curve comparing Zephyr and Llama 2 performance in context of ADetectoLocum with 5-fold cross 
validation derived AUC standard deviations. 
 
Cross Validation 
As shown in Table 2 we achieved the best performance on the unseen testing dataset with XGB classification. To 
select the best classifier to perform inference, we tuned the relevant hyperparameters for each model using 5-fold cross 
validation with the combined training cohort from both datasets. The best XGB model was tuned to a learning rate of 
0.2, a maximum depth of 5, and a number of 50 estimators. Our results show LR performed marginally better than 
XGB because the fold by which testing is performed to tune the best model hyperparameters is a smaller set of data 
than the testing performed on the trained model following tuning. It is known that logistic regression performs well 
with smaller training data, while XGB performs very well on larger datasets. This insight explains XGB’s superior 
performance on the combined testing cohort. Therefore, our method presents flexibility in utilization, where small 
clinical trials will favor a logistic regression classifier while large multi-institution studies would benefit from XGB 
classification. This gives users of ADetectoLocum more flexibility and control to maximize accuracy depending on 
the size of the data. 
 
Table 3. Model training using cross-validation and testing results. Standard deviations are shown in parenthesis. 
 

  Classifier Accuracy Precision Recall F1 

5-fold 
CV 

NN 0.777 (0.095) 0.557 (0.113) 0.463 (0.158) 0.502 (0.137) 

SVC 0.836 (0.042) 0.849 (0.059) 0.836 (0.084) 0.839 (0.045) 

XGB 0.814 (0.068) 0.834 (0.093) 0.808 (0.049) 0.819 (0.061) 

LR 0.843 (0.057) 0.865 (0.071) 0.829 (0.066) 0.845 (0.056) 

Test NN 0.807 0.75 0.915 0.824 

SVC 0.832 0.831 0.831 0.831 

XGB 0.849 0.847 0.847 0.847 

LR 0.832 0.842 0.814 0.828 
 
To further examine the robustness of our selected model, we performed an out-of-time validation study as shown in 
Table 3. We trained our model on the training cohort from the ADReSS20 dataset using hyperparameter tuning and 
5-fold cross validation, as was performed for our baseline model, and tested the resulting model with the testing cohort 

371



of the ADReSSo21 dataset. Our LR results are competitive with previous works, consistent with our cross-validation, 
and demonstrate the ability to perform with high accuracy given a small amount of data. Additionally, our approach 
offers users the flexibility to utilize different classifier options. Despite NN, SVC, and XGB suboptimal performance 
on smaller datasets, providing these options allows users the opportunity to experiment with these models as they 
acquire larger datasets. This inclusivity ensures our method caters to a broader range of user needs and data availability 
scenarios, facilitating the potential for improved performance with increased data volume. 
 
Table 4. Validation time study wherein our model was trained on ADReSS20 data and tested on ADReSSo21 data 
(from the following year). 
 

  Classifier Accuracy Precision Recall F1 

Test NN 0.69 0.618 0.971 0.756 

SVC 0.746 0.743 0.743 0.743 

XGB 0.789 0.778 0.8 0.789 

LR 0.831 0.871 0.771 0.818 
 
Efficiency 
Our model is advantageously lightweight with a total pipeline execution time of merely 12 minutes and 38 seconds. 
The extraction time of text transcriptions from audio files (stage ① in Figure 1) was 3 minutes and 46 seconds. The 
Zephyr-7B-β model loading and extraction of text embeddings for all samples (stage ② and ③) occurred in 47 
seconds. The maximum classifier training time was 8 minutes and 5 seconds (~485 seconds) and the maximum testing 
time was 0.002 seconds (stage ④). Metric evaluation time (stage ⑤) was 0.003 seconds. 
 
Discussion and Conclusions 
We introduced ADetectoLocum, a locally deployable AD detection pipeline that outperforms existing methods and 
rivals GPT-based systems—which cannot be deployed in hospitals due to practical constraints. Notably, 
ADetectoLocum excels in early AD detection, facilitating timely interventions and improved patient outcomes. 
 
Comparative Advantages 
ADetectoLocum establishes a performative edge in comparison to current SOTA models. ADetectoLocum achieves an 
accuracy of 84.9%, greater than previous work utilizing similar modalities of inference for AD classification. 
Additionally, ADetectoLocum demonstrates superior ability to minimize incorrect classifications with an F1-score of 
84.1%, and an AUC of 0.94. This high performance validates Zephyr’s linguistic understanding of natural language. 
Because Zephyr is a chat-optimized model, it is most suited for understanding natural language text which include 
informal dialogue aligned with spontaneous speech. Impressively, Zephyr textual embeddings represent not only this 
natural dialogue aligned with cognitively normal spontaneous speech, but also includes necessary context for 
distinguishment between AD dialogue as well. This important capability poises Zephyr as the current consummate 
model for AD classification from linguistic features alone. 
 
Locality, Efficiency, and Robustness 
ADetectoLocum’s key innovation is its local, HIPAA-compliant deployment, eliminating reliance on external models 
and ensuring patient privacy. Built on open-source technology, it integrates seamlessly into hospital infrastructures. 
Training requires slightly over 8 minutes with hundreds of examples, while inference occurs in under 1 second per 
test case. Its robustness is confirmed via 5-fold cross-validation (Table 3) and time-validation (Table 4), closely 
matching comparative testing at 84.3% and 83.1% accuracies, respectively. The ADReSS20 and ADReSSo21 datasets 
(393 samples total) underpin our results through even attribute stratification as provided by DementiaBank18, 19, 29, 36. 
 
Patient Impact 
ADetectoLocum’s excellent ability to classify AD, particularly in patients with higher MMSE scores (indicating a 
lesser degree of cognitive impairment), indicates its ability to detect AD at nascent stages. Additionally, the ability for 
early detection also addresses the confounding aspects of AD, particularly whether cognitive impairment is a result of 
natural aging or from disease progression. However, it is important to note that ADetectoLocum, although maximizing 
true positives, still detects false negatives. Results did not improve with audio segmentation of confounding BDAE 
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facilitator speech; however, facilitator speech was minimal in the high quality DementiaBank recordings. The risk of 
a false negative could mean delayed treatment and a more pronounced progression of the disease, decreased quality 
of life, and the patient and/or family perhaps needing to make sudden decisions. False positives could mean exactly 
the opposite, with the family perhaps committing financial resources prematurely, or samples representing other 
diseases such as vascular dementia. Early detection in the disease’s progression is significant because it allows 
physicians to preemptively implement therapeutic interventions to decelerate AD progression and improve patient 
quality of life. 
 
Ethical Considerations and Limitations 
Ethical Considerations and Limitations While ADetectoLocum represents a significant advancement in the early 
detection of AD through spontaneous speech and a pragmatic solution for LLM integration with hospital 
infrastructures, there are some limitations. ADetectoLocum is trained on a relatively small cohort of native English 
speakers from the US and is not explicitly inclusive of non-native English speakers or native English speakers with 
colloquial or regional accents, as no larger publicly available dataset exists. Regardless, deployment of such a system 
in a hospital may bias the model’s cognitive normality classification towards linguistic patterns typical for the 
community the hospital services, which can vary by region. Further, model perplexity can be used to balance our 
model, as consequent works have successfully incorporated such features into their models to improve their baselines35. 
Additionally, previous work demonstrated success in increasing AD detection accuracy when combining ChatGPT 
opinions of AD presence and text embeddings of speech19. To further enhance ADetectoLocum, Zephyr could be fine-
tuned on medical corpora, give opinions, and be re-employed in a multimodal approach. 
 
Conclusion 
ADetectoLocum represents a significant advance in early AD detection while satisfying stringent healthcare data 
requirements. It demonstrates that open-source AI can be HIPAA-compliant and achieve diagnostic accuracy 
comparable to commercial models. Future research should focus on fine-tuning and multimodal adaptations to further 
enhance early detection, ultimately enabling more efficient AD management and improved patient care. 
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