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Abstract

In this study, we introduce an innovative budget
allocation method for graph instance annotation
in crowdsourcing environments, where both the
labels of instances and their correlations are un-
known and need to be estimated simultaneously.
We model the budget allocation task as a Markov
Decision Process (MDP) and develop an opti-
mization framework that minimizes the uncertain-
ties associated with instance labeling and corre-
lation estimation while adhering to budget con-
straints. To quantify uncertainty, we employ en-
tropy and derive two strategies: OPTUENT-EXP
and OPTUENT-OPT. Our reward function further
considers the impact of a worker’s label on the
entire graph. We conducted extensive experiments
using four real-world graph datasets, simulating
worker labeling behavior to showcase the effective-
ness of our approach. Experimental results demon-
strate that our proposed approach can accurately es-
timate correlations between adjacent nodes while
significantly reducing labeling costs. Moreover,
across four real-world datasets, our proposed ap-
proach consistently outperforms existing baselines
in moderate and high budget scenarios, highlight-
ing its robustness and practical scalability.

1 INTRODUCTION

Hiring expert annotators to label a graph can be both time-
consuming and costly. A more budget-friendly alternative is
to engage non-expert crowd workers. Since these workers
lack specialized expertise, it is often recommended to con-
duct multiple rounds of labeling with different workers to
enhance the overall quality. However, compensating crowd
workers for each label can quickly escalate costs, especially
when repeated labeling is required for every instance.

When operating within a limited data labeling budget, lever-
aging instance correlations can significantly improve the
selection of instances for crowd worker labeling. If two in-
stances are correlated, labeling one can provide valuable
insights into the other, allowing the labeling information to
propagate across the graph. This means that instead of label-
ing every instance, it is possible to select a smaller subset
to minimize costs strategically. However, a key challenge
arises: instance correlations are typically unknown when the
graph lacks annotations. Estimating these correlations while
simultaneously identifying the optimal subset of instances
for labeling is a complex task.

Previous research on budget allocation has largely neglected
the intricate challenge of simultaneously estimating instance
labels and their correlations within a graph. Most studies
have treated instances as independent and identically dis-
tributed (i.i.d.), overlooking the potential correlations that
exist among them [Frazier et al., 2008, Chen et al., 2013,
Li et al., 2016]. While recent work by [Kulkarni et al.,
2023] has attempted to address correlations between ad-
jacent nodes, their approach is built on the assumption that
these correlations are predetermined—a problematic stance,
especially in non-homophily graphs. Moreover, the method-
ology presented by [Kulkarni et al., 2023] fails to extend
naturally to estimating instance correlations, as workers can-
not directly annotate edges, and the accuracy estimations
used do not apply to edge labels. In contrast, our study intro-
duces a dynamic method for real-time estimation of instance
correlations by leveraging labels provided by workers for
adjacent nodes. This innovative approach facilitates a more
sophisticated allocation of labeling budgets, accounting for
both the correlations among instances and the estimation of
their labels. By addressing these complexities, we enhance
the effectiveness and efficiency of the labeling process.

Our goal is to reduce the uncertainties surrounding both
instance labeling and correlation estimation. Since worker-
provided labels do not directly annotate instance correla-
tions, traditional accuracy metrics used in previous stud-
ies [Kulkarni et al., 2023, Chen et al., 2013] are inadequate
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for assessing annotation utility. Instead, we suggest focusing
on measuring the uncertainty of labeling results. If a Graph
Neural Network (GNN) model can accurately estimate the
uncertainty of the graph, it can serve as a robust budget
allocator. However, GNN models are known to struggle
with the cold-start problem, and they require a sufficient
budget to perform effectively [Wu et al., 2020]. Given our
goal of leveraging label correlations to significantly reduce
labeling costs, it is crucial to address these challenges. To
that end, we adopt a Bayesian framework, formulating the
budget allocation problem as an entropy optimization chal-
lenge. This approach aims to minimize uncertainty in both
instance labeling and correlation estimation, ensuring that
our strategies are not only effective but also cost-efficient.

To tackle this optimization problem, we decompose the
expected uncertainty into a sum of stage-wise rewards, in-
spired by the technique from [Xie and Frazier, 2012]. Our
innovative reward function captures the aggregated changes
in uncertainty related to the labeling of all instances and the
overall correlation estimation across the graph. The reward
increases when a worker’s label leads to a greater reduction
in uncertainty, ensuring that our approach is both effective
and efficient.

To effectively propagate labeling information throughout
the graph, we first need to estimate the instance correlations
for all edges. However, we face a challenge: the absence of
worker labels makes it difficult to gauge these correlations.
To address this issue, we leverage the intuition that adjacent
instances with similar features are likely to exhibit similar
correlations. We propose training a random forest regres-
sion model (RFR) [Breiman, 2001], using labeled pairs of
adjacent instances to infer correlations for unlabeled pairs.

With the estimated instance correlations, we utilize belief
propagation (BP) [Pearl, 2022] to disseminate labeling in-
formation across the graph. To achieve our objective of min-
imizing uncertainty, we introduce two strategic policies for
selecting instances: OPTUENT-EXP, which prioritizes the
instance with the highest expected reward, and OPTUENT-
OPT, which focuses on the instance with the highest opti-
mistic reward at each stage. The proposed approaches ensure
a targeted and efficient allocation of resources for obtaining
worker labels. Although our problem setting superficially
resembles active learning, it diverges significantly in as-
sumptions and goals. Unlike active learning, we assume
access only to noisy, non-expert crowd workers, require re-
peated labeling to infer true label distributions, and jointly
model uncertainty over both instance labels and their corre-
lations. These distinctions render classical active learning
methods unsuitable for our setting.

In summary, this paper makes several key contributions:

1. We are the first to estimate instance correlations be-
tween adjacent nodes and leverage these correlations
to significantly reduce data labeling costs.

2. We introduce an entropy optimization framework that
effectively models the uncertainties involved in both
instance labeling and correlation estimation.

3. Our innovative reward function provides a comprehen-
sive assessment of the aggregated uncertainty changes
related to label estimation for instances and correla-
tions across the entire graph.

4. We employ a random forest regression model to infer
correlations for unlabeled pairs of adjacent nodes and
utilize belief propagation to seamlessly disseminate
labeling information throughout the graph.

5. Through extensive experiments on four real-world
datasets, we empirically demonstrate the effectiveness
of our proposed approach1.

2 RELATED WORKS

The quest to minimize data annotation costs has sparked a
wave of research aimed at creating innovative approaches
and algorithms for crowdsourcing tasks.

A significant line of work focuses on optimizing instance se-
lection strategies for querying worker labels, often under the
assumption of a uniform labeling cost. Among these studies,
[Zhou et al., 2014] explores non-sequential instance selec-
tion, employing aggregate regret to identify the top K arms
with the highest expected rewards in a stochastic n-armed
bandit framework. In contrast, several studies [Sheng et al.,
2008, Li et al., 2016, Frazier et al., 2008, Chen et al., 2013,
Raykar and Agrawal, 2014] focus on sequential instance
selection with varying objectives. For instance, [Sheng et al.,
2008] and [Li et al., 2016] aim to maximize the number of
labeled instances while adhering to quality requirements
and budget constraints. While [Sheng et al., 2008] assumes
uniform data labeling quality across instances, [Li et al.,
2016] posits that easier instances yield higher-quality labels.
[Raykar and Agrawal, 2014] seeks to maximize a utility
function that accounts for a pull market, where workers
may choose to decline jobs from requesters. In a similar
vein, [Frazier et al., 2008] and [Chen et al., 2013] aim to
enhance labeling accuracy within budget limits. The for-
mer proposes a knowledge gradient policy for sequential
instance selection, while the latter critiques this policy’s
consistency, introducing an optimistic variant that proves
consistent under infinite budget scenarios.

However, these studies often treat instances as independent
and identically distributed (i.i.d.), neglecting potential corre-
lations between them. Related to our work, [Kulkarni et al.,
2023] does consider instance correlations and strives to max-
imize overall labeling accuracy within budget constraints.
Nonetheless, they rely on the assumption that these corre-
lations are predetermined, a stance that may be problem-
atic, particularly in non-homogeneous graphs. In this work,
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we make significant advancements by relaxing previous as-
sumptions and dynamically estimating instance correlations
as labels are obtained in real time. Given that workers do not
provide instance correlations, we introduce a novel entropy-
based objective function that minimizes uncertainty in both
instance labeling and correlation estimation. Notably, we
are the first to estimate instance correlations and leverage
this information for budget allocation, effectively reducing
data labeling costs. This innovative approach marks a key
contribution to the field, enhancing both the accuracy and
efficiency of online data labeling processes.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Consider an unlabeled graph G = (V,E) comprising N
vertices V = {v1, ..., vN} and M edges E = {e1, ..., eM}.
Each vertex vi ∈ V represents an instance linked to
a true label li ∈ {+1,−1}. The true label of each in-
stance is characterized by θvi

= P (li = +1) ∈ [0, 1],
while the correlation between instances is represented by
ωek = P (li = lj) ∈ [0, 1], where ek = (vi, vj) ∈ E. No-
tably, we do not consider correlations between vertices that
lack a connecting edge. Following the framework of [Kulka-
rni et al., 2023], we assume that all workers are equally reli-
able, meaning the labels they provide for any vertex vi ∈ V
at a given timestamp t (denoted by yvit

) are drawn from
the underlying label distribution: yvit

∼ Bernoulli(θvi).
While we acknowledge that real-world crowdsourcing sce-
narios can be more intricate than simply drawing worker
labels from a Bernoulli distribution, previous studies [Chen
et al., 2013, Li et al., 2016] suggest that this assumption is
generally valid for real-world datasets.

Given a labeling budget of T where each worker label costs
one unit, our goal is to minimize the uncertainty in the
estimation of θvi for every vertex vi ∈ V and ωek for every
edge ek ∈ E.

3.2 INSTANCE SELECTION: KG AND OPTKG

The Knowledge Gradient (KG) [Frazier et al., 2008] and Op-
timistic Knowledge Gradient (OPTKG) [Chen et al., 2013]
frameworks treat each instance as independent and identi-
cally distributed (i.i.d.), proposing strategies to select in-
stances for label acquisition at each timestamp. Knowledge
Gradient (KG) employs a single-step look-ahead approach
that greedily identifies the next instance with the highest
expected reward defined in Eq. (1)

vt = argmax
v

(
R(St, v)

)
,where (1)

R(St, v)=̇ p1 ∗R1(a
t
v, b

t
v) + p2 ∗R2(a

t
v, b

t
v),

In contrast, OPTKG selects the next instance based on an
optimistic projection of the reward as shown in Eq. (2)

vt = argmax
v

(
R+(St, v)

)
,where (2)

R+(St, v)=̇ max(R1(a
t
v, b

t
v), R2(a

t
v, b

t
v)).

In both Eq. (1) and Eq. (2), atv and btv denote the counts
of positive and negative labels for vertex v at timestamp
t. The posterior probabilities p1 and p2 are calculated as
p1 =

at
v

at
v+btv

and p2 =
btv

at
v+btv

, respectively, representing the
likelihoods of vertex v being labeled +1 or−1. Additionally,
the rewards for obtaining labels +1 and −1 for vertex v are
denoted as R1(a

t
v, b

t
v) and R2(a

t
v, b

t
v), respectively.

4 METHODOLOGY

This work addresses the budget allocation problem in in-
stance graphs by leveraging correlations between adjacent
nodes to optimize data labeling costs. We adopt a Bayesian
framework to systematically reduce uncertainty in both in-
stance labeling and correlation estimation (Section 4.1). La-
bel propagation is formalized in Sections 4.2 and 4.3, while
the budget allocation problem is reformulated as an entropy
optimization framework to minimize uncertainty across both
vertices and edges (Section 4.4). To solve this problem effi-
ciently, we model it as a Markov Decision Process (MDP),
enabling the decomposition of expected uncertainty into
stage-wise rewards. A novel reward function is introduced
to effectively estimate these rewards (Section 4.5), and we
propose two efficient approximate policies, for instance se-
lection, ensuring optimal label acquisition at each decision
step (Section 4.6).

4.1 BAYESIAN SETUP

The input to our method is an unlabeled graph devoid of
any information regarding the true labels of its vertices and
edges. Following the approach of [Kulkarni et al., 2023],
we initialize θvi

for each vertex vi ∈ V using a Beta prior
distribution, specifically Beta(α, β). This initialization can
be interpreted as assigning α positive and β negative pseudo-
labels to each vertex vi at the outset.

For each vertex, we define two key probabilities: the
marginal probability and the posterior probability. The
marginal probability is derived from the Beta initialization
and the labels obtained from workers, while the posterior
probability incorporates both the marginal probability and
the labeling information propagated from neighboring ver-
tices within the graph. This posterior probability is crucial
for estimating θv for all v ∈ V .

As worker labels are obtained for a vertex vi, its marginal
probability is updated accordingly. In line with the Bayesian
framework, we define the state matrix St, an N × 2 matrix



that represents the marginal probabilities of the vertices
at timestamp t, where 2 corresponds to the two possible
labels in our binary classification task. At each subsequent
timestamp, the policy determines which vertex to select, and
the obtained worker label prompts an update to the marginal
probability of that vertex, resulting in a transition to a new
state, St+1.

We note that the new state St+1 is fully determined by the
current state St, the selected vertex vt at timestamp t, and
the worker label yvt obtained for that vertex. This relation-
ship establishes St as a Markovian process. Moreover, the
marginal probability for the current vertex vt is calculated
as follows:

P t
v(l = +1|St, vt) =

α+ atv
α+ atv + β + btv

, (3)

where atv and btv represent the counts of positive and neg-
ative worker labels received for vertex v up to timestamp
t. Additionally, we have P t

v(l = −1|St, vt) = 1− P t
v(l =

+1|St, vt). As worker labeling information propagates
through the graph, the posterior probabilities for all ver-
tices are updated at each timestamp, reflecting the latest
insights gained from the labeling process.

The labeling process described above allows us to establish
a filtration {Ft}T−1

t=0 , where Ft is the σ-algebra generated
by the sample path (v0, yv0 , ..., vt−1, yvT−1

). In this context,
vt represents any vertex selected from V at timestamp t, and
yvt

denotes the corresponding worker label obtained. This
filtration implies that the choice of vertex at timestamp t can
be fully informed by the historical labeling outcomes up to
timestamp t−1. Consequently, vt isFt-measurable, leading
us to define the budget allocation policy as a sequence of
vertex selections at each timestamp: π = (v0, ...., vT−1).

4.2 INSTANCE CORRELATION ESTIMATION

We utilize Belief Propagation (BP) [Pearl, 2022], a powerful
message-passing algorithm, to disseminate labeling infor-
mation throughout the graph. To implement BP, we first
transform the input graph G into a bipartite factor graph
FG. This conversion involves adding a factor vertex for
each edge ek = (vi, vj) ∈ E, which connects to the ver-
tices vi and vj via undirected edges. The resulting factor
graph is denoted as FG = (V ∪F,E′) , where |E′| = 2|E|.

Each factor vertex is associated with a function ϕek

that specifies the proportion of information to be propa-
gated between vertices vi and vj , represented as: ϕek

=[
ωek(+1) ωek(−1)
ωek(−1) ωek(+1)

]
. To streamline our notation, we will

use ek to refer to the factor vertex associated with edge ek
throughout the remainder of this paper. This simplification
enhances clarity while maintaining precision in our discus-
sions. Since the values of ωek are initially unknown, we

propose to estimate them using the marginal probabilities
of the connected vertices. For the edge ek = (vi, vj) ∈ E,
we compute the marginal probability of ek at timestamp t
as follows:

P t
ek
(+1) = P t

vi
(+1)× P t

vj
(+1) + P t

vi
(−1)× P t

vj
(−1),

(4)

where P t
vi

and P t
vj

represent the marginal probabilities of
vertices vi and vj at timestamp t, respectively.

An edge is considered labeled if both of its end vertices have
received at least one worker label. However, in the early
stages of the labeling process, most vertices remain unla-
beled, necessitating a method to estimate the marginal proba-
bilities of these unlabeled edges. To achieve this, we employ
a Random Forest Regression (RFR) model [Breiman, 2001].

While alternative models, such as neural networks, could
also be considered for estimating edge potential, we have
found that Random Forest Regression is particularly well-
suited to our requirements. It trains quickly, delivers ro-
bust performance even with a limited number of labeled
instances, and eliminates the need for extensive calibration.
Given these advantages, RFR strikes an optimal balance
between efficiency and predictive accuracy for our specific
application.

Our underlying intuition is that edges connecting nodes with
similar attribute vectors are likely to exhibit similar marginal
probabilities. To train the model, we concatenate the features
of the end vertices vi and vj for labeled edges, using this
combined feature set as input while treating the marginal
probabilities computed according to Eq. (4) as the target
for regression. Once trained, the model is then deployed to
estimate the marginal probabilities for the unlabeled edges
in the graph, enhancing our labeling process significantly.

The calculated marginal probabilities serve as estimates
for ωek , allowing us to update ϕek

as follows: ϕek
=[

P t
ek
(+1) P t

ek
(−1)

P t
ek
(−1) P t

ek
(+1)

]
. With this update in place, we utilize

the constructed factor graph FG to effectively propagate
labeling information throughout the entire graph, ensuring
that insights gained from labeled edges are shared with their
neighbors.

4.3 LABELING INFORMATION PROPAGATION

In the factor graph FG, labeling information is effectively
propagated through the exchange of messages between vari-
able vertices and factor vertices. The computation of the
message from a variable vertex to a factor vertex is carried
out as follows:

µ
v→f

(xv) =
∏

f∗∈N (v)\{f}

µ
f∗→v

(xv), (5)



and the message from the factor vertex to the variable vertex
is computed as follows:

µf→v(xv) =
∑

x′
f=xv

x′
v∗=xv

ϕf (x
′
f )

∏
v∗∈N (f)\{v}

µv∗→f (x
′
v∗).

(6)
Here, xv ∈ {+1,−1} denotes the labeling space for the
variable vertex v ∈ V . Furthermore, N (v) and N (f) indi-
cate the sets of neighboring vertices for the variable vertex
v and factor vertex f , respectively.

At each timestamp, messages are transmitted from the leaf
vertices in the graph to a chosen vertex (forward propaga-
tion), and then from this chosen vertex back to the leaf ver-
tices (backward propagation). Each message from a vertex
v ∈ V is initially set to its marginal probability. Following
the updates defined in Eq. (5) and Eq. (6), the messages for
all internal vertices are also refined. This belief propaga-
tion process is iterated multiple times until convergence is
achieved, with messages being normalized at each step to
prevent underflow. Ultimately, the posterior probability for
each variable vertex v ∈ V at timestamp t is calculated as
follows:

P t
v(+1) ∝ α+ atv

α+ atv + β + btv

∏
j∈N (v)

µ
j→v

(+1). (7)

We can observe that the updates to the posterior probabilities
of the vertices are entirely governed by the chosen vertex
and the corresponding worker label received.

4.4 OBJECTIVE FUNCTION

Our objective is to minimize the uncertainty associated with
instance labeling and instance correlation estimation by the
end of the budget at timestamp T . The entropy of the poste-
rior probabilities for vertices and the marginal probabilities
for edges serves as a measure of labeling uncertainty. Con-
sequently, we formulate our objective function to minimize
the expected entropy of the labeling for both vertices and
edges in the graph, conditioned on Ft:

HT = argmin E
(
HT (V ) +HT (E)

)
, (8)

Here, HT (V ) = −
∑

v

∑
x P

T
v (x) logPT

v (x) and
HT (E) = −

∑
e

∑
y P

T
e (y) logPT

e (y) are the entropy of
vertices and edges in the graph. PT

v , PT
e are the posterior

probability of vertex v ∈ V and marginal probability of
edge e ∈ E at the end of budget T , respectively. This formu-
lation effectively captures the uncertainty associated with
labeling for both vertices and edges in the graph.

The objective is to identify a policy that minimizes the value
function for the objective defined in Eq. (8) by the end of
the budget T . Any policy π that successfully minimizes Eq.

(9) is considered the optimal policy, denoted as π∗.

V (ST )=̇ argmin
π

Eπ
[
E
(
HT (V ) +HT (E)

)]
. (9)

where V (ST ) denotes the value function at the conclusion
of budget T , while π represents the policy responsible for
selecting instances to obtain worker labels at each times-
tamp. Additionally, Eπ signifies the expectation calculated
over the sample paths (v0, yv0 , ..., vt−1, yvT−1

) generated
by the policy π.

4.5 REWARD FUNCTION

We approach the task of identifying the optimal policy π∗

for the value function defined in Eq. (9) by framing it as
a Markov Decision Process (MDP). The final expected
uncertainty is influenced by the selection of instances at
each timestamp. To address this, we decompose the final
expected uncertainty into a sum of stage-wise rewards,
utilizing the methodology outlined in [Xie and Frazier,
2012]. While [Xie and Frazier, 2012] primarily addresses
an infinite-horizon problem that focuses on optimizing stop-
ping times, [Chen et al., 2013] has demonstrated that this
technique is also applicable to finite-horizon scenarios.

Given that the value function accounts for the total entropy
of the vertices and edges within the graph, we define the
reward function as the change in this total entropy between
two timestamps. A higher reward signifies a greater reduc-
tion in uncertainty regarding the labeling of the graph’s
vertices and edges.

Proposition 1 The stage-wise expected reward between two
timestamps t and t+ 1 is defined as:

R(St, vt) =E((Ht(V ) +Ht(E))

− (Ht+1(V ) +Ht+1(E))|St, vt), (10)

then the value function in Eq. (9) becomes:

V (ST ) = V (S0)− sup
π

Eπ

(
T−1∑
t=0

R(St, vt)

)
. (11)

Any policy π that attains the supremum for Eq. (11) is the
optimal policy π∗. Here, V (S0) = H0(V ) + H0(E). We
provide the derivation of Proposition 1 in Appendix B.

Proposition 1 is instrumental in formulating the minimiza-
tion problem in Eq. (9) as a T -stage Markov Decision Pro-
cess (MDP) and transforming it into a maximization prob-
lem aimed at maximizing the expected reward, as demon-
strated in Eq. (11). Since the marginal probability of the
edges is derived from the worker labels obtained for the
vertices, the T -stage MDP is contingent solely on the state
of the vertices at each timestamp. Thus, the T -stage MDP
is represented by the tuple {T, {St},A,Pt, R(St, vt)}. In



this tuple, T signifies the budget, which corresponds to
the number of worker labels we can acquire; St, the state
space at stage t, encompasses all possible states reachable
at that stage; A = {1, 2, ..., N} denotes the action space,
representing the set of instances eligible for labeling next;
Pt = {P t

1 , P
t
2 , ..., P

t
N} comprises the posterior probabili-

ties at timestamp t for each vertex vi ∈ V ; and R(St, vt)
is the expected reward defined in Eq. (10). Once a label
yvt

is obtained for vertex v at timestamp t, the marginal
probability of vertex vi ∈ V will be updated accordingly.
Therefore, we have

St =
{
{pt1v , p

t
2v}

N
v=1 : pt1v , p

t
2v ∈ [0, 1], pt1v + pt2v = 1

}
.

(12)

The posterior probabilities of multiple vertices can change
as a result of the labeling information propagated from the
chosen vertex and the obtained worker label. Additionally,
the marginal probabilities of edges may also be affected.
Importantly, all these updates are entirely dictated by the
selected vertex and the corresponding worker label. Con-
sequently, leveraging the Markovian property of {St}, it
is adequate to consider a Markovian policy [Powell, 2007],
where the choice of vt is made solely based on the current
state St.

4.6 EFFICIENT APPROXIMATE POLICY

Finding the optimal policy for the value function in Eq.
(9) is non-trivial. Therefore, we propose efficient approx-
imate policies designed to select instances that maximize
the reward for obtaining worker labels at each timestamp.
These approximate policies aim to achieve the supremum
of the value function defined in Eq. (11) within the frame-
work of a T -stage Markov Decision Process (MDP). At any
state St at timestamp t, when a vertex v ∈ V is chosen
for a worker label, the worker can provide either a label
of +1 or −1. Consequently, the policies must account for
both outcomes when calculating the expected reward. Let
R1(S

t, vt), R2(S
t, vt) represent the rewards for obtaining

labels +1 and −1, respectively. The expected reward can
then be expressed as:

R(St, vt) = p1R1(S
t, vt) + p2R2(S

t, vt), (13)

where p1 =
α+at

v

α+at
v+β+btv

and p2 =
β+btv

α+at
v+β+btv

are marginal
probabilities of v at timestamp t. The optimistic reward can
be expressed as:

R+(St, vt) = max(R1(S
t, vt), R2(S

t, vt)). (14)

The first proposed approximate policy, OPTUENT-EXP,
selects the instance that offers the highest expected reward
at each timestamp, denoted as π̂ = (v0, ..., vT−1). This
strategic choice maximizes the potential benefit of obtaining
worker labels, ensuring optimal use of resources throughout

the process.

vt = argmax
v

(
R(St, v)=̇p1R1(S

t, v) + p2R2(S
t, v)

)
.

(15)
The second proposed approximate policy, OPTUENT-OPT,
selects the instance with the highest optimistic reward at
each timestamp, represented as πo = (v0, ..., vT−1). This
approach strategically prioritizes instances that promise the
greatest potential benefits, thereby optimizing the acquisi-
tion of worker labels and enhancing the overall effectiveness
of the labeling process.

vt = argmax
v

(
R+(St, v) =̇ max(R1(S

t, v), R2(S
t, v))

)
.

(16)

By utilizing Eq. (15) or Eq. (16), we can effectively deter-
mine the optimal vertex to target for obtaining the worker
label at each timestamp 0 ≤ t < T . This strategic selection
process ensures that we maximize the value of our labeling
efforts at every stage. The complete procedure is outlined in
Algorithm 1.

4.7 PROPOSED POLICIES ARE CONSISTENT

To demonstrate the consistency of the proposed policies, we
must show that as the budget T approaches infinity, the sum
of entropy for the vertices and edges in the graph converges
to a constant value. This constant is defined by the true label
of each instance θvi

for vi ∈ V and the instance correlation
ωek for every edge ek ∈ E. Thus, as T goes to infinity, each
vertex should receive an infinite number of labels, ensuring
that the estimated θvi

aligns with the true label, and the
estimated ωek converges to its true value.

To establish consistency, we first demonstrate in Appendix
D.2 that the random forest regressor achieves over 95% ac-
curacy with a small budget of 40 on the large Cora and
Pubmed datasets, indicating rapid convergence. This obser-
vation leads us to conclude that as T goes to infinity, changes
in edge uncertainty become negligible, allowing us to fo-
cus solely on the entropy of vertex labeling. We show that
the posterior probability for each vertex vi ∈ V is updated
based on its marginal probability and that of the leaf vertices
in the factor graph FG. The proposed reward function in Eq.
10 is proportional to the change in the marginal probability
of the chosen vertex vt, ensuring that both OPTUENT-EXP
and OPTUENT-OPT label each vertex infinitely many times
as the budget increases. Given that we assume all workers
are equally reliable, this leads to convergence on θvi

for
each vi ∈ V and ωek for every edge ek ∈ E. Consequently,
the sum of entropy for the vertices and edges converges to a
constant value, demonstrating that the proposed policies π̂
and πo are consistent. A detailed proof of this consistency
is provided in Appendix C.



Input: Graph G = (V,E); Budget T ; Beta prior
parameters α, β;

Policy π ∈ {OPTUENT-EXP,OPTUENT-OPT}
Output: Posterior label estimates {θvi

}vi∈V ; Edge
correlation estimates {ωek}ek∈E

Initialize marginal probabilities θvi ∼ Beta(α, β) for
all vi ∈ V ;

Initialize labeled set L ← ∅;
for t = 1 to T do

foreach vi ∈ V do
Compute marginal edge probabilities using
vertex marginals via Eq. 4;

Estimate edge correlations {ωek} for unlabeled
edges using Random Forest Regression trained
on labeled edge features and Eq. 4;

Compute posterior probabilities using current
marginals and Belief Propagation (Eq. 7);

Compute rewards R1(S
t, vi), R2(S

t, vi) for
label outcomes +1 and −1;

if π = OPTUENT-EXP then
Compute expected reward R(St, vi) using
Eq. 13;

else
Compute optimistic reward R+(St, vi)
using Eq. 14;

end
end
Select vt = argmaxvi∈V R(St, vi) or R+(St, vi)
depending on π;

Query label yvt ∼ Bernoulli(θvt);
Update counts (atv, b

t
v) and re-run Belief

Propagation to update posterior;
L ← L ∪ {yvt

};
end
return Posterior label estimates {θvi}vi∈V and edge
correlation estimates {ωek}ek∈E

Algorithm 1: Uncertainty-Guided Budget Allocation
for Graph Labeling

5 EXPERIMENTS

This section critically assesses our proposed policies,
OPTUENT-EXP and OPTUENT-OPT, which strategically
select the next vertex to label based on the frameworks
established in Eq. (15) and Eq. (16), respectively. This eval-
uation highlights the effectiveness and robustness of our
approaches in optimizing the labeling process.

5.1 DATASET AND EVALUATION METRICS

The performance of our proposed policies is assessed
across four distinct graph datasets. Three of these datasets,
Cora, Citeseer, and Pubmed [Bojchevski and Günnemann,
2017], are well-established citation networks, while We-

Table 1: Statistics of the Datasets

Dataset #Vertex #Pos #Neg
Cora 2708 1296 1412

Citeseer 3312 1618 1694
Pubmed 19717 7875 11842
WebKB 877 415 462

bKB [Craven et al., 1998] comprises web pages from vari-
ous computer science departments at universities. We adhere
to the guidelines outlined by [Kulkarni et al., 2023] to trans-
form these datasets into binary-class formats. The statistics
of the datasets are provided in Table 1. To evaluate the ef-
fectiveness of instance labeling, we utilize accuracy as our
performance metric.

5.2 EXPERIMENTAL SETTINGS

Our goal is to leverage label correlations to substantially
reduce labeling costs. To showcase the effectiveness of our
proposed strategies, we specifically concentrate our exper-
iments on low-budget scenarios. This focus highlights the
potential of our methods to deliver impactful results even in
resource-constrained environments.

We simulate worker labeling behavior across the four
datasets: Cora, Citeseer, Pubmed, and WebKB. To begin,
we establish the parameter θvi

for all vi ∈ V , after which
worker labels are generated according to the distribution
yvi
∼ Bernoulli(θvi

). We perform experiments under two
distinct settings: one with fixed values of θvi set at 0.65, 0.7,
0.75, 0.8, and 0.85 for all vi ∈ V , and the other with θvi

sampled from a uniform distribution U(0.7, 0.85). Due to
space constraints, this paper primarily presents results for
the fixed setting of θvi

= 0.65 and the uniform sampling
from U(0.7, 0.85). A detailed discussion of the results for
the other fixed values of θvi (0.7, 0.75, 0.8, and 0.85) can
be found in Appendix F.

At each timestamp, we train a new random forest regres-
sion (RFR) model, continuously updating the training data
with each newly acquired label from crowd workers. We
rigorously evaluate the performance of the RFR model, with
detailed results presented in Appendix D.2. According to
Eq. (15) and Eq. (16), our goal is to compute the reward for
all vertices in the graph and select the one with the highest
reward. Given the computational cost of belief propagation,
we follow the strategy in [Kulkarni et al., 2023] by uni-
formly sampling 10 candidate vertices at each timestamp to
compute rewards and select the optimal vertex. As shown in
Appendix D.1, increasing the sample size beyond 10 offers
minimal accuracy gains, confirming that small candidate
sets are sufficient for robust performance. We conduct exper-
iments using three random seed values, 11, 42, and 111, and
report the mean results for clarity and robustness, alongside



standard deviations presented in Figure 8 in the Appendix.
All experiments are performed on a single Nvidia GeForce
RTX 3060 GPU, ensuring efficient computation and reliable
performance assessments.

5.3 BASELINE METHODS

The reward functions of both OPTKG [Chen et al., 2013]
and KG [Frazier et al., 2008] indicate that annotating an un-
labeled node is always preferable to annotating a node with
one label, which in turn is better than annotating a node with
two labels, regardless of the specific labels obtained. Once
all nodes receive two labels, OPTKG and KG adopt differ-
ent selection strategies. As shown in [Chen et al., 2013],
these differences emerge when the budget is sufficiently
large; for instance, in a simulation with 50 instances, the
methods diverge when the budget reaches 3K, which is 60
times the number of instances. However, since the budget
for all our experiments is lower than two times the number
of instances, both policies behave similarly. Thus, we focus
solely on comparing our proposed policies with OPTKG.
Overall, our comparisons include the following policies:

1. Uniform: This policy randomly samples one vertex
from V at each timestamp to obtain worker labels.

2. OPTKG: The Optimistic Knowledge Gradient pol-
icy [Chen et al., 2013] treats each instance as inde-
pendent and identically distributed (i.i.d.) and selects
the instance with the highest optimistic reward at each
timestamp. The reward is defined as the change in the
marginal probabilities of vertices between two times-
tamps, reflecting a proactive approach to label acquisi-
tion.

3. GraphOBA-EXP: As defined by [Kulkarni et al., 2023],
this policy calculates the reward based on the change
in the sum of posterior probabilities of vertices in the
graph between two timestamps. GraphOBA-EXP se-
lects vertices that maximize expected rewards at each
timestamp, relying on belief propagation to effectively
disseminate labeling information throughout the graph.

4. GraphOBA-OPT: GraphOBA-OPT, also proposed
by [Kulkarni et al., 2023], chooses the next ver-
tex based on the optimistic expected reward. Like
GraphOBA-EXP, it incorporates belief propagation as
a critical component for an effective labeling strategy.

We evaluate our proposed policies against baseline policies
across three scenarios: (1) Without BP and RF: In this
scenario, we compare the Uniform and OPTKG policies di-
rectly with our proposed methods, providing a clear baseline
without any enhancements (2) With BP and Without RFR:
In this scenario, we utilize belief propagation (BP) to dis-
seminate labeling information for the Uniform and OPTKG
policies, allowing us to assess the impact of BP without the

influence of Random Forest Regression (RFR), (3) With BP
and RFR: In this scenario, we incorporate RFR alongside
BP for both the Uniform and OPTKG policies, while ap-
plying RFR for the GraphOBA-EXP and GraphOBA-OPT
policies. This setup represents a comprehensive evaluation
of how our methods perform with the full capabilities of BP
and RFR.

Due to space constraints, we present the findings for sce-
nario 3 in the main paper, while the results for scenarios
1 and 2 are detailed in Appendix E. This structure allows
us to clearly delineate the effectiveness of our proposed
approaches across varying conditions.

5.4 RESULTS AND DISCUSSION

In low-budget settings, all methods exhibit higher vari-
ance due to limited initial information, a known challenge
in MDP-based sequential decision making. However, our
entropy-based selection maintains greater stability in la-
bel acquisition compared to greedy baselines, as evidenced
by standard deviation plots (Appendix Figure 8). Figure
1 presents a compelling comparison of the proposed poli-
cies, OPTUENT-OPT and OPTUENT-EXP, against baseline
methods in scenario 3 across the WebKB, Cora, Citeseer,
and Pubmed datasets. The analysis includes two settings for
θv: one fixed at 0.65 and the other sampled from a uniform
distribution U(0.7, 0.85), for v ∈ V . For brevity, we omit
the subscript i from the vertices. The results reveal that the
Uniform policy, which samples vertices randomly, and the
OPTKG policy, which selects vertices in a round-robin man-
ner, perform the weakest among the baseline approaches. In
contrast, the GraphOBA-OPT and GraphOBA-EXP policies,
which leverage posterior probabilities for vertex selection,
demonstrate improved performance. However, our proposed
policies, which take into account both the posterior proba-
bilities of vertices and the marginal probabilities of edges,
surpass all baseline methods. These findings underscore the
importance of accurately estimating instance correlations,
which can vary from edge to edge. By effectively captur-
ing these dynamics, our approach significantly reduces data
labeling costs, highlighting its practical advantages in real-
world applications.

In the setting where θv is fixed at 0.65, individual workers
can theoretically achieve an accuracy of 0.65 after repeated
labeling. In contrast, when θv is sampled from a uniform
distribution U(0.7, 0.85), the expected accuracy rises to ap-
proximately 0.77. However, due to the limited budget in our
experiments, only a small number of vertices can undergo
repeated labeling. Despite this constraint, the results demon-
strate that our proposed policies consistently outperform
individual workers by a substantial margin. Moreover, the
baseline methods also show improved performance over
individual workers, benefiting from the propagation of label-
ing information through belief propagation (BP). This effec-
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Figure 1: Performance comparison on four graph datasets. The top four plots show the performance comparison of
OPTUENT-OPT and OPTUENT-EXP with the baselines following scenario 3 for a fixed θv = 0.65, and the bottom four
plots show the performance comparison for θv sampled from the uniform distribution U(0.7, 0.85).

tively enhances the labeling process by providing additional
context for the labels. This highlights the significant advan-
tages of our approach in leveraging both policy strategies
and information propagation to maximize labeling accuracy.

When evaluating performance stability, it’s clear that our pro-
posed policies demonstrate greater consistency compared
to the baselines. This suggests that the vertices selected by
our policies are adept at managing the inherent uncertainty
in worker-provided labels. Importantly, our reward function
estimation accounts for the potential outcomes of workers
delivering labels of +1 or −1, with the actual reward ulti-
mately contingent on the label received. By factoring in the
influence of worker labels on both the vertices and edges
of the graph, our policies achieve a more robust reward
computation. This comprehensive approach enhances the
resilience of the reward mechanism against uncertainties in
worker labeling, further solidifying the effectiveness of our
strategies in dynamic labeling environments.

6 CONCLUSION

In this study, we tackle the budget allocation problem as an
optimization challenge aimed at minimizing the expected
uncertainty surrounding instance labeling and correlation
estimation. Leveraging a Markov Decision Process (MDP)
framework, we break down the final expected uncertainty
into stage-wise rewards that quantify the change in entropy
for all vertices and edges across two timestamps. We employ

a Random Forest Regression model to estimate the marginal
probabilities of edges representing instance correlations,
while belief propagation is utilized to disseminate label-
ing information throughout the graph. We introduce two
approximate policies: OPTUENT-EXP, which selects the
instance with the highest expected reward, and OPTUENT-
OPT, which targets the highest optimistic reward at each
timestamp. Our empirical results show that the proposed ap-
proaches accurately estimate correlations between adjacent
nodes and substantially reduce labeling costs. These findings
underscore the value of uncertainty-guided decision-making
under tight budget constraints and its potential to generalize
to large-scale, real-world graph labeling tasks.
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A APPENDIX

In the Appendix, we present a detailed derivation for the
proof of Proposition 1 and proof that the proposed policies
are consistent, ensuring clarity and rigor in our methodology.
Additionally, we include a comprehensive discussion of the
results from further experiments, offering valuable insights
that reinforce our findings.

B PROOF OF PROPOSITION 1

From Eq. (9), we obtain the following value function.

V (ST )=̇argmin
π

Eπ
[
E
(
HT (V ) +HT (E)

)]
.

We define V (S0) = H0(V ) +H0(E). From Eq. (10), the
reward function is defined as

R(St, vt) =E((Ht(V ) +Ht(E))

− (Ht+1(V ) +Ht+1(E))|St, vt).

Substituting the value of t = 0, we get

R(S0, v0) = E((H0(V ) +H0(E))− (H1(V ) +H1(E))),

and substituting the value of t = 1, we get

R(S1, v1) = E
[(
H1(V ) +H1(E)

)
−
(
H2(V ) +H2(E)

)]
.

(17)
We can observe that the first term in R(S1, v1) and the
second term in R(S0, v0) get canceled out if we add the
rewards for these two timestamps. Therefore, we get

T−1∑
t=0

R(St, vt) =E(
(
H0(V ) +H0(E)

)
−
(
HT (V ) +HT (E)

)
)

https://proceedings.mlr.press/v216/kulkarni23a.html
https://proceedings.mlr.press/v216/kulkarni23a.html


Substituting V (ST ) and V (S0) into the equation, we get

sup
π

Eπ

(
T−1∑
t=0

R(St, vt)

)
= V (S0)− V (ST ).

Therefore,

V (ST ) = V (S0)− sup
π

Eπ

(
T−1∑
t=0

R(St, vt)

)
.

C PROPOSED POLICIES ARE
CONSISTENT

In OPTUENT-OPT, we select the vertex vt in each iteration
as follows:

vt = argmax
v

(
R+(St, v) =̇ max(R1(S

t, v), R2(S
t, v))

)
.

The expected reward R+(St, vt) depends solely on changes
to the marginal probability of vertex vt due to the obtained
label. Since the reward, as specified in Eq. (10), considers
the change in entropy of vertices and edges between two
timestamps, we have:

R(St, vt) =E((Ht(V ) +Ht(E))

− (Ht+1(V ) +Ht+1(E))|St, vt),

Since the marginal probability of each vertex is updated
based only on its own posterior probability and those of the
leaf vertices in the factor graph, as T → ∞, changes in
edge entropy become negligible, as evidenced by the empir-
ical experiments in section D.2. Therefore, we focus solely
on the entropy of vertex labeling. Therefore, the reward
function is updated as:

R(St, vt) = E(Ht(V )−Ht+1(V )|St, vt),

where Ht(V ) is given by:

Ht(V ) =
∑
v∈V

−((1− h(P t
v)log(1− h(P t

v)))

+ (h(P t
v))log(h(P

t
v))), (18)

with h(x) = max(x, 1 − x). The posterior probability
P t
v(+1) can be calculated using Eq. (7), with P t

v(−1) =
1− P t

v(+1).

The reward function R+(St, vt) remains positive for all
t because entropy is a submodular function, and entropy
minimization always provides gain, ensuring that each label-
ing action contributes additional information and prevents
entropy from increasing, as long as uncertainty remains.
The Beta distribution posterior updates further support this
by ensuring that each labeling action increases either atv
or btv, thereby reducing node entropy and guaranteeing a
nonzero expected reward. Additionally, the greedy selection

of the maximum expected reward ensures that the policy
always picks the vertex that maximizes entropy reduction,
meaning there is always at least one vertex with a positive
expected reward. While R+(St, vt) diminishes over time as
nodes become more certain, it never reaches zero at finite
t since labeling continues until full certainty is achieved.
The condition limat

v+btv→∞ R+(St, vt) = 0 ensures even-
tual convergence but does not imply that rewards vanish
during the process. Furthermore, since R+(St, vt) > 0 for
all t, from the properties of Beta distributions, we know
that as atv + btv →∞, the variance of the Beta distribution
Var(P t

v) =
(α+at

v)(β+btv)
(α+at

v+β+btv)
2(α+at

v+β+btv+1) tends to zero, en-
suring convergence of the posterior to a deterministic value.

Consequently, the posterior probability update magnitude
decreases:

lim
at
v+btv→∞

(
h(P t+1

v (+1))− h(P t
v(+1))

)
= 0. (19)

Thus, the reward function satisfies:

lim
at
v+btv→∞

R(St, vt) = 0, and hence,

lim
at
v+btv→∞

R+(St, vt) = 0. (20)

Implying that OPTUENT-OPT labels each instance in-
finitely as T increases. Given that we assume workers are
reliable, this leads to convergence on θvi for each vi ∈ V
and ωek for every edge ek ∈ E. Thus, the overall entropy for
vertices and edges converges to a constant value, confirming
that OPTUENT-OPT is a consistent policy.

Consistency of OPTUENT-EXP In the OPTUENT-EXP
policy, each iteration selects the vertex vt as follows:

vt = argmax
v

(
R(St, v) =̇ p1R1(S

t, v) + p2R2(S
t, v)

)
.

While the initial changes in marginal probabilities for vt
may be similar due to all vertices starting with a Beta prior
distribution Beta(α, β), their impact on the graph varies
based on instance correlations and vertex degrees, leading to
different rewards. If the label probability θv of vertex v ∈ V
differs from 0.5, then R1(S

t, v) may not equal R2(S
t, v) if

atv ̸= btv . Even when θv = 0.5, rewards can still differ based
on worker labels, ensuring R(St, vt) ̸= 0 whenever atv ̸=
btv . As the budget increases, changes in instance correlations
become negligible, yet the difference between atv and btv
ensures R(St, vt) ̸= 0.

In OPTUENT-OPT, the policy selects the node with the
highest optimistic reward, ensuring that the most uncertain
and informative node is labeled at every step. However, in
OPTUENT-EXP, the policy selects the node based on the
expected reward, which takes into account the probabilities
of both possible labeling outcomes. This means that rather
than always picking the node with the highest potential



entropy reduction, OPTUENT-EXP chooses nodes that, on
average, significantly reduce entropy.

Despite this difference, OPTUENT-EXP still ensures that
R(St, vt) > 0 for all t because the expected entropy reduc-
tion remains positive as long as there are remaining uncer-
tain nodes. While the selection process is more balanced,
it does not lead to the premature selection of fully certain
nodes. Instead, it systematically reduces uncertainty across
the graph, ensuring that every node is labeled sufficiently
over time.

Thus, with R(St, vt) > 0 for any positive integers atv and
btv , each vertex continues to be labeled indefinitely as T →
∞. As labeling continues, entropy minimization ensures
that the posterior probabilities stabilize, leading to accurate
label estimation. This guarantees that the estimated labels
converge to the true values, proving that OPTUENT-EXP is
consistent.

D ABLATION STUDIES

D.1 INFLUENCE OF SAMPLE SIZE
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Figure 2: Performance of OPTUENT-EXP with different
sample sizes on the WebKB dataset for a fixed θv = 0.65.

The experiments presented in Figure 1 and the additional
analyses in the Appendix utilize a sample size of 10. While
it is intuitive to assume that a larger sample size would yield
better performance by providing a greater pool of candi-
date vertices, our findings suggest otherwise. To test this
assumption, we conducted experiments with varying sample
sizes of 10, 20, and 30 using the OPTUENT-EXP policy, as
illustrated in Figure 2. Remarkably, the results indicate that
even with a sample size of just 10, the performance is ro-
bust and effective. As the budget increases, the performance
gains from larger sample sizes diminish, reinforcing the
conclusion that a sample size of 10 is not only sufficient but
also optimal for achieving high-quality outcomes in our ex-
periments. This efficiency allows for resource conservation
while maintaining competitive performance.

D.2 PERFORMANCE OF RANDOM FOREST
REGRESSOR
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Figure 3: Performance of Random Forest Regressor for Cora
and Pubmed datasets.

To evaluate the effectiveness of the Random Forest Regres-
sor, for instance, correlation estimation, we present perfor-
mance plots for the Cora and PubMed datasets. In these
experiments, we assume reliable workers and utilize Equa-
tion (4) to compute the marginal probabilities for labeled
edges. The regressor is trained exclusively on these labeled
edges, and the trained model is subsequently employed to
predict the correlations of the remaining unlabeled edges.

As illustrated in Figure 3, the results reveal that the Random
Forest Regressor performs remarkably well, even when less
than 5% of the edges are labeled. Notably, performance
improves significantly with an increase in the proportion of
labeled edges, achieving over 90% accuracy with just 15%
labeled data for both datasets. These findings demonstrate
that the Random Forest Regressor effectively estimates in-
stance correlations, making it a highly suitable model for
our proposed task.

E PERFORMANCE COMPARISON FOR
SCENARIOS 1 AND 2

In Figures 4 and 5, we present a comparative analysis of
the baseline methods under scenarios 1 and 2 using the We-
bKB, Cora, Citeseer, and Pubmed datasets. In scenario 1,
where θv is fixed at 0.65, and no belief propagation (BP)
or random forest regression (RFR) is employed, we assess
the Uniform and OPTKG baselines that treat instances as
independent and identically distributed (i.i.d.). In scenario
2, which incorporates BP but excludes RFR, we evaluate
the performance of GraphOBA-EXP and GraphOBA-OPT
alongside the Uniform and OPTKG baselines, leveraging
BP to enhance the propagation of labeling information. The
results in Figure 4 clearly demonstrate that our proposed
policies, OPTUENT-OPT and OPTUENT-EXP, substan-
tially outperform the Uniform and OPTKG baselines in the
absence of BP and RFR, highlighting the importance of
effective instance selection even without label propagation.
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Figure 4: Performance comparison on four graph datasets. The top four plots show the performance comparison of
OPTUENT-OPT and OPTUENT-EXP with the baselines following scenario 1 for a fixed θv = 0.65, and the bottom four
plots show the performance comparison for θv sampled from the uniform distribution U(0.7, 0.85).

In contrast, the performance shown in Figure 5 illustrates a
marked improvement when BP is utilized, confirming the
findings of Kulkarni et al. [2023] that propagating label-
ing information significantly enhances performance, even
within constrained budgets.

F PERFORMANCE COMPARISON FOR
SETTING WITH FIXED θv

Figure 6 presents a performance comparison of the
OPTUENT-OPT and OPTUENT-ENT policies against base-
line methods for the WebKB and Cora datasets. Meanwhile,
Figure 7 illustrates similar comparisons for the Citeseer and
Pubmed datasets under a fixed θv setting, with values set at
0.7, 0.75, 0.8, and 0.85. The results reveal a clear advantage
for baselines employing belief propagation, which consis-
tently outperform those treating instances as independent
and identically distributed (i.i.d.). Furthermore, the integra-
tion of random forest regression significantly enhances the
performance of these baseline methods. Notably, when ex-
amining the impact of different θv values, our proposed poli-
cies, OPTUENT-OPT and OPTUENT-ENT, demonstrate re-
markable superiority, particularly at lower θv values where
worker labels tend to be of poorer quality. This underscores
the effectiveness of our policies in selecting optimal in-
stances for labeling at each timestamp. Additionally, the
ability to estimate instance correlations contributes to im-
proved performance over individual workers across all θv
values. As θv increases and the quality of worker labels

improves, we observe a corresponding enhancement in the
performance of baselines utilizing both random forest and
belief propagation, further emphasizing the critical role that
label quality plays in the efficacy of these models.

G ADAPTING PROPOSED APPROACH

The proposed approach is highly adaptable, effectively ad-
dressing both binary and multi-class labeling tasks in homo-
geneous and heterogeneous graphs. For multi-class tasks,
we can seamlessly convert them into binary problems using
a one-vs-all strategy. While our current framework infers
edge labels from node pair labels, transitioning to hetero-
geneous graphs will require direct edge label annotations,
which can be achieved through a Bayesian framework simi-
lar to that used for nodes. With these annotations in place,
random forests can be employed to estimate edge labels and
their associated uncertainties. Additionally, adapting Belief
Propagation techniques for heterogeneous networks, such
as those proposed by Eswaran et al. [2017], will further
enhance the model’s robustness.

H LIMITATIONS

Theoretically, the proposed approach can be applied to both
binary and multi-class labeling tasks and to both homoge-
neous and heterogeneous graphs. While this work focuses
on homogeneous graphs for binary labeling, the method
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Figure 5: Performance comparison on four graph datasets. The top four plots show the performance comparison of
OPTUENT-OPT and OPTUENT-EXP with the baselines following scenario 2 for a fixed θv = 0.65, and the bottom four
plots show the performance comparison for θv sampled from the uniform distribution U(0.7, 0.85).

is tailored for real-world crowdsourcing scenarios, utiliz-
ing simulated worker behavior due to the absence of actual
crowd worker labels in our datasets. Details on adapting the
method for multi-class labeling and heterogeneous graphs
are provided in Appendix G.
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Figure 6: Performance comparison on WebKB and Cora dataset. The top four plots and bottom four show the performance
comparison of the proposed OPTUENT with baselines for the WebKB and Cora datasets, respectively, where the value of θv
is set to 0.7, 0.75, 0.8, and 0.85.
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Figure 7: Performance comparison on Citeseer and Pubmed dataset. The top four plots and bottom four show the performance
comparison of the proposed OPTUENT with baselines for the Citeseer and Pubmed datasets, respectively, where the value
of θv is set to 0.7, 0.75, 0.8, and 0.85.
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Figure 8: Performance comparison on four graph datasets. The top four plots show the performance comparison between
OPTUENT-EXP and GraphOBA-EXP+RFR following scenario 3 for a fixed θv = 0.65, and the bottom four plots show
the performance comparison for θv sampled from the uniform distribution U(0.7, 0.85). We plot the means and standard
deviations for experiments obtained from different seed values of 11, 42, and 111.
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