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Abstract

Retrieval-augmented generation (RAG) im-
proves Large Language Models (LLMs) by in-
corporating external information into the re-
sponse generation process. However, how
context-faithful LLMs are and what factors
influence LLMs’ context faithfulness remain
largely unexplored. In this study, we investi-
gate the impact of memory strength and ev-
idence presentation on LLMs’ receptiveness
to external evidence. We quantify the mem-
ory strength of LLMs by measuring the diver-
gence in LLMSs’ responses to different para-
phrases of the same question, which is not
considered by previous works. We also gen-
erate evidence in various styles to examine
LLMs’ behavior. Our results show that for
questions with high memory strength, LLMs
are more likely to rely on internal memory.
Furthermore, presenting paraphrased evidence
significantly increases LLMs’ receptiveness
compared to simple repetition or adding de-
tails. These findings provide key insights for
improving retrieval-augmented generation and
context-aware LLMs. Our code is available at
https://github.com/liyp0095/ContextFaithful.

1 Introduction

Retrieval-Augmented Generation (RAG) (Fan et al.,
2024; Zhao et al., 2023) has gained increasing pop-
ularity as it improves the performance of Large
Language Models (LLMs) by integrating external
information during the generation process, particu-
larly when the model’s internal knowledge is insuf-
ficient or outdated (Bianchini et al., 2024; Procko,
2024; Siriwardhana et al., 2023; Vakayil et al.,
2024; Wang et al., 2024; Jeong, 2023). It raises
the importance of the study of how context-faithful
LLMs are. In this study, we explore whether LLMs
are context-faithful when encountering external in-
formation, particularly when that information con-
flicts with the LLMs’ internal memory.

how many episodes are in Chicago Fire season 4

The fourth season of Chicago Fire , an American LL':' Cat” “Zt
drama television series with executive producer zgnfer:t‘:"
Dick Wolf, and ...... concluded on May 17, 2016 .

The season contained 37 episodes . LLM can

understand
context 2,
There are 37 episodes in Chicago Fire season 4. but conflict

with memory
(a) “LLMs overlook the context

LLM1 has @ @ LLM2 has no| LLM2 find
memory of memory of | answer in
i how many the question,
the question episodes are in context: o
LLM1 answer with | chicago fire «*Test may be unfair due to
memory. season 4 (b) different knowledge of LLMs
Figure 1: Demonstration of issues in context faithful-
ness testing schema: a) LLMs may fail to comprehend
long contexts, resulting in low receptiveness to the con-

text. b) Evaluating LLMs on the same dataset may be
unfair due to variations in their knowledge.

To investigate the issue of context faithfulness,
there are two main approaches to creating knowl-
edge conflict contexts. One approach (Longpre
et al., 2021; Chen et al., 2022) is entity substitution,
which replaces the gold entity in context with a sim-
ilar one. Another approach (Xie et al., 2024; Jin
et al., 2024) involves generating counter-memory
evidence with LLMs, and these studies have shown
that LLMs are generally receptive to external evi-
dence as long as it is coherent.

These methods, however, overlook some impor-
tant aspects of the task. First, previous work (Long-
pre et al., 2021; Xie et al., 2024) provides long
contexts to LLMs, which can be challenging for
LLMs to understand (Xie et al., 2024). It makes
the test difficult to distinguish whether the cause
of LLM behavior is due to knowledge conflicts or
lacking comprehension ability. For example, in Fig-
ure 1 (a), the LLM may overlook both contexts, but
the reason why Context 1 is ignored could be a lack
of comprehension rather than knowledge conflicts.
Second, different LLMs are trained with different
data and are likely to obtain different knowledge.
Thus, testing LLMs on the same dataset may be
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unfair. The test may favor LLMs with less knowl-
edge. As shown in Figure 1 (b), LLMs with strong
memory are less likely to be correct.

To address these issues, we introduce a method
to quantify the memory strength of LLMs and gen-
erate short evidence in various styles to examine
LLMs’ behavior. Inspired by Zhao et al. (2024),
we assess memory strength by measuring the diver-
gence in LLMSs’ responses to different paraphrases
of the same question. Intuitively, an LLM demon-
strates high memory strength when it consistently
provides the same answer across all paraphrased
versions of a question. For evidence styles, we
classify them into direct and indirect forms: direct
evidence provides a straightforward answer to the
question, while indirect evidence incorporates ad-
ditional details to support the answer. Unlike Wan
et al. (2024) that focuses on how different types of
evidence influence LLMs’ behavior, we study how
the presentation of evidence affects its convincing
availability. Through these methods, we analyze
the relationship between context faithfulness and
LLM memory strength, and we explore the impact
of different evidence styles on context faithfulness.
Our conclusions are as follows:

* The receptiveness of LLMs to external ev-
idence is strongly correlated with memory
strength to the question. We observed this
relationship both across different datasets and
different LLMs. Contrary to the findings of
(Xie et al., 2024; Jin et al., 2024) that LLMs
are highly receptive (less than 5%) to external
evidence when it is coherent, we find that the
probability of the model relying on its internal
memory is non-negligible for questions that
the LLMs have a strong memory. For example,
GPT-4, which has strong memory on the NQ
dataset, answers almost 50% of the questions
with internal memory. We also demonstrate
an urgent need for memory strength-aware
evaluation metrics.

* The style of the evidence plays an important
role in LLM’s receptiveness to external infor-
mation. Our research demonstrates that pre-
senting the LLM with multiple paraphrases
of the same evidence substantially increases
its receptiveness. This approach outperforms
simple repetition of the evidence and is more
effective than adding additional details to the
evidence. These findings provide valuable in-
sights to the research of RAG.

2 Related Work
2.1 Context Faithfulness of LLM

To update static factual knowledge (Lazaridou et al.,
2021; Karpukhin et al., 2020; Kasai et al., 2023)
in LLMs, the retrieval-based method has been in-
troduced to involve external information to LLMs
(Lazaridou et al., 2022; Izacard et al., 2024; Khat-
tab et al., 2022; Santhanam et al., 2022; Gao and
Callan, 2022). However, these methods can intro-
duce knowledge conflicts between the introduced
external information (context) and pre-existing in-
ternal memories from LLMs. LLMs often rely
on their internal memories, and overlook the con-
textual evidence (Longpre et al., 2021). To make
LLMs more faithful to context, recent studies (Nee-
man et al., 2023; Li et al., 2023) fine-tune LLMs on
counterfactual contexts, where the original facts are
replaced with counterfactual ones. Another work
(Zhou et al., 2023) proposes a novel approach using
prompting to improve context faithfulness in LLMs
without additional fine-tuning. Recent works (Fara-
hani and Johansson, 2024; Wadhwa et al., 2024)
found that models like TS, LLaMA2-7B, and Phi2-
2.7B are generally context-faithful. However, they
did not evaluate newer models (e.g., LLaMA3.2,
GPT-4) or consider the impact of memory strength,
limiting the generality of their conclusions.

A related area of research focuses on predic-
tion with abstention. Neeman et al. (2023); Zhou
et al. (2024) introduces answerability augmenta-
tion, where LLMs are trained to respond with
"Unanswerable" when presented with irrelevant
or randomly generated contexts. This ensures that
the models do not make incorrect predictions with-
out reliable evidence. Further studies (Wang et al.,
2023, 2022) develop confidence calibration tech-
niques to improve context faithfulness by encour-
aging LLMs to avoid overly confident predictions
in ambiguous or uncertain situations.

In our work, we investigate the context faithful-
ness of LLMs when faced with conflicting knowl-
edge. We define a model as context-faithful if it
demonstrates high receptiveness to new facts and
evidence with strong conflicting memories. This
capability is essential to ensure the reliability of
LLMs in the RAG system.

2.2 Construction of Knowledge Conflicts

In controlled experiments, knowledge conflicts are
typically simulated by constructing counterfactual
memories based on a model’s internal memory. Var-



Origin Question Paraphrased Questions

Answers with LLaMA2-7B

Who sings the

Christmas song song “Mary Did You Know”?

Can you tell me the artist who performs the Christmas

Of course! The artist who performs the Christmas
song “Mary Did You Know” is 'Mark Lowry .

“Mary Did You

Know™? Did You Know”?

Who is the singer behind the Christmas song “Mary

The singer behind the Christmas song “Mary Did
You Know” is Mark Lowry .

You Know”?

Which musician sings the Christmas tune “Mary Did

Brandy Clark

during the holiday season?

Who is the vocalist that sings “Mary Did You Know”

The vocalist who sings “Mary Did You Know” during
the holiday season is Mark Lowry .

Table 1: LLMs give different answers when asked with paraphrased questions.

ious heuristic approaches have been proposed for
this purpose, such as negation injection (Kassner
et al., 2021; Petroni et al., 2020; Pan et al., 2021)
and entity substitution (Longpre et al., 2021; Chen
et al., 2022; Si et al., 2023; Zhou et al., 2023).
Negation injection alters facts by introducing nega-
tions and entity substitution replaces mentions or
entities in the evidence with alternatives to generate
counter-fact evidence. However, these techniques
are constrained to word-level edits, which can lead
to low coherence across the constructed evidence.
To address this limitation, recent studies (Xie et al.,
2024; Jin et al., 2024) have explored generating
evidence using LLMs, producing more coherent
and consistent counterfactual content. We adopt
this approach in generating our dataset, ensuring
the generated evidence maintains a higher level of
coherence.

3 Methodology

3.1 Problem Definition

Following prior work (Longpre et al., 2021; Chen
et al., 2022; Xie et al., 2024), we adopt question
answering (QA) task as the testbed for knowledge
conflict experiments. For a given question @), if the
answer generated by the LLM relies solely on its
internal parameters, it is referred to as the memory
answer (MA). If an evidence passage E is provided
with question @, then ideally, LLM should generate
an answer based on F, even if E conflicts with
memory answers. We call the answers that conflict
with MA as counter memory answer (CMA).

3.2 Datasets

We use two datasets for our experiments: the long-
tail, entity-based QA dataset popQA, and the popu-
lar, human-written question dataset Natural Ques-
tions (NQ). Specifically:

* popQA (Mallen et al., 2023) is an entity-
centric question-answering dataset compris-
ing 14,000 questions. The dataset is derived

from knowledge triples in Wikidata, where
questions are generated using question tem-
plates specific to different relationship types.
popQA aims to capture a realistic, long-tail
distribution of entity popularity, making it
a valuable resource for studying the perfor-
mance of lesser-known entities. Xie et al.
(2024) use popQA to test the receptiveness of
LLMs by eliciting high-quality internal mem-
ory from LLMs and constructing the corre-
sponding counter-memory. We reuse MA and
CMA generated by Xie et al. (2024) for our
experiments.

¢ Natural Questions (Kwiatkowski et al., 2019)
is widely used in open-domain QA research.
It consists of manually crafted questions based
on selected paragraphs from Wikipedia, and
the subjects in questions of the NQ dataset are
generally more popular and commonly known.
Longpre et al. (2021) provide a test set that is
used to test the context faithfulness of LLMs
by substituting entity of the NQ dataset. The
entity substitute involves five categories: per-
son (PER), date (DAT), numeric (NUM), orga-
nization (ORG), and location (LOC). The test
set contains 4,685 samples, including 1,667
unique questions.

3.3 Memory Strength

Inspired by Zhao et al. (2024), we use the consis-
tency of answers to different paraphrases of the
same question () to measure the LLM’s memory
strength S¢ for the knowledge K associated with
the question. This method is motivated by the intu-
ition that if an LLM does not have a strong memory
of a question, it will often give different answers
when asked with paraphrased questions that are
semantically equivalent, as shown in Table 1. In
contrast, it can produce consistent answers if the
LLM has a strong memory of a question. The
process involves two key steps: First, several para-
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Figure 2: Framework for Evaluating LLMs’ Context Faithfulness. In Step 1, we calculate the memory strength of a
question using the consistency of answers to different paraphrases of the same question. In Step 2, we generate MA
(memory answer) under the closed-book setting and CMA (counter memory answer) by modifying _ in

MA while keeping the _ In Step 3, we generate supporting evidence for the CMA in various styles.
In Step 4 (not shown), we test the LLM’s response by presenting the questions with the evidence. All experiments
are implemented under the zero-shot setting to avoid the bias introduced by demonstrations.

phrased versions of the original question are gen-
erated with ChatGPT', and the answers to those
paraphrased questions are clustered (Section 3.3.1).
Then, memory strength S is calculated using an-
swer consistency (Section 3.3.2).

3.3.1 Question Paraphrases and Answer
Clustering

The prompt used for paraphrasing the question is
provided in Tabel 11 (index 1) in the Appendix.
For each question (), we generate n paraphrases
{P1,---,P,}q. For the NQ dataset, we para-
phrase the question in each data sample directly.
For the popQA dataset, we paraphrase the question
template for each relation type since all questions
of the same relation type share the same question
template. To ensure the paraphrased questions are
proper to use, we check if two paraphrased ques-
tions are semantically equivalent with an LLM?.
The prompt for this semantic equivalence detection
is provided in Table 11 (index 2). For any para-
phrase that is deemed not equivalent, we ask the
LLM to re-generate it until a satisfactory version is
produced.

Next, LLMs answer the paraphrased questions
{P1,---,P,}q in a closed-book setting. We de-
note the answers as {Ay,--- , A, }¢. The answers
are grouped into several clusters based on their
consistency. The clustering is done by checking
answers incrementally. If an answer matches any
answer within an existing cluster, this answer is
added to this cluster; if not, a new cluster is cre-

"https://platform.openai.com/docs/models/gpt-3-5-turbo,
the specific version is 0125.
Zhttps://huggingface.co/meta-llama/Meta-Llama-3.1-8B

ated with this answer. We use an LLM? to de-
termine whether two answers are consistent. The
prompt used for this answer inconsistency detec-
tion is shown in Table 11 (index 3). We denote the
clusters for question @ as {c1, - ,cm }@-

3.3.2 Calculating Memory Strength

Once answer clusters {c, - - - , ¢, } are identified,
memory strength S(()) can be obtained by calcu-
lating the negative entropy of cluster distribution.
The formula is

S@ =3 fo")long?, (1)

=1

where N (¢;) is the number of answers in the cluster
¢;, and n is the number of paraphrases for question
Q. The memory strength score is a non-positive
value. A larger score indicates a stronger mem-
ory (0 is the maximum value of memory strength
score). In the experiments, we set n = 7 for all the
questions in the NQ and popQA datasets. Memory
strength reflects how well the LLM remembers the
required knowledge: the weaker the memory, the
more random and inconsistent the answers are.

3.4 MA, CMA, and Evidence Generation

3.4.1 MA and CMA Generation

For the popQA dataset, both MA and CMA are ob-
tained following the method described in Xie et al.
(2024). For the MA of the NQ dataset, we also use
a closed-book approach, similar to Xie et al. (2024).
While, the process of generating CMA differs from
the process of generating CMA in Xie et al. (2024).
Unlike the popQA dataset, the NQ dataset does not



provide relation types for the questions or offer sets
of subject and object entities for substitution. To
address this issue, we propose an approach using an
LLM to substitute entities in MA to generate CMA.
First, we identify which “wh-" question type? the
question belongs to using string matching. Then,
based on the question type, we determine the type
of entity to be replaced in the MA. Finally, we use
an LLM to make the substitution. For example, in
Figure 2, the question “how many episodes...” is of
the type “how_many”, so the entity to be replaced
in the MA “there are 23 episodes...” should be a
NUMBER. We let ChatGPT perform the substitu-
tion with an alternative entity. The prompt used is
shown in Table 11 (index 5). We have the detailed
description for generating CMA in Appendix A.1.

CMA filter. As noted in Section 3.3, LLMs can
produce multiple MAs for the same question. To
ensure the CMA conflicts with MAs, we require
that the CMA is different from any of the answers
{A1, -+, A,} generated in Section 3.3.1, so the
alternative entity should not appear in MAs. For
the popQA dataset, the alternative entity is known.
For the NQ dataset, we first identify the alternative
entity in the CMA by comparing the MA and CMA,
and then check if this entity appears in any of the
MAs {A;, -+, A,}. We filter out data samples
whose CMA does not conflict with MAs.

3.4.2 Evidence Generation

In this section, we explain how to generate different
styles of evidence. We classify evidence into two
categories: direct evidence and indirect evidence.

Direct evidence is a semantically equivalent
statement of the CMA, providing the clearest sup-
port for the claim made by the CMA. We generate
the direct evidence by paraphrasing the CMA with
ChatGPT, following the prompt shown in Table
11 (index 6). For example, in Figure 2, the CMA
“there are 15 episodes in Chicago Fire season 4” is
paraphrased to “season 4 of Chicago Fire consists
of a total of 15 episodes”. These two statements
are semantically equivalent.

To ensure the reliability of the evidence, the ev-
idence must mutually entail with the CMA. This
entailment is verified using an NLI model #. Direct
evidence is intuitive, simple, and coherent, making
it the straightforward type of evidence for the LLM

3which refers to what, when, where, who, whom, which,
whose, why, and how.

“https://huggingface.co/microsoft/deberta-v2-xxlarge-
mnli

to process. If the LLM is receptive to external ev-
idence, it should be able to adopt direct evidence
easily.

Indirect evidence differs from direct evidence
by adding extra details that provide a more thor-
ough description of the subject related to the CMA.
This additional information makes the evidence
more comprehensive and might be more persuasive.
For example, in Figure 2, the indirect evidence in-
cludes details not found in the counter answer, such
as the title of the first episode and its release date,
along with the fact that there are 15 episodes in
total. The prompt to generate indirect evidence is
shown in Table 11 (index 7).

To ensure the reliability of indirect evidence, the
indirect evidence should entail the CMA and the
additional information introduced by the evidence
should not entail the MA. Otherwise, the indirect
evidence can support both the MA and CMA. The
NLI model* is used to verify that indirect evidence
entailed with CMA and neutral or contradictory
with MA.

For both direct and indirect evidence, if the con-
tent generated by the LLM does not meet the re-
quired conditions, we prompt the LLM to regen-
erate it up to five times. If it still fails after five
attempts, we exclude that question from the dataset.

4 Experiments

In this study, we aim to investigate two key research
questions. 1) Does memory strength have an im-
pact on the context faithfulness of LLMs? 2) Does
the style of evidence affect the context faithfulness
of LLMs? These research questions are explored in
Section 4.2 and 4.3, respectively. We also provide
additional studies in Appendix B, which includes a
study about the impact of option order and a case
study.

4.1 Experiment Setup

LLM Models. Our experiments are conducted
using six well-known language models: Chat-
GPT (OpenAl, 2023a), GPT-4 (OpenAl, 2023b),
LLaMA2-7B, LLaMA2-70B (Touvron et al., 2023),
LLaMA3.2-3B (Meta, 2024), and Claude3.5 (An-
thropic, 2024). These models represent a diverse
range of architectures and capabilities. ChatGPT,
GPT-4, and Claude3.5 are cutting-edge models de-
veloped by OpenAl and Anthropic. LLaMA?2, with
its 7 billion and 70 billion parameter variants, is
a strong open-source alternative that has demon-



strated competitive performance across a wide va-
riety of tasks. LLaMA3.2-3B is the newest version
of LLaMA. The inclusion of models with varying
scales (from 3B to 70B) and training methodolo-
gies allows us to explore both closed-source sys-
tems (GPT-4, ChatGPT, and Claude3.5) and open-
source solutions (LLaMA2-7B, LLaMA-70B and
LLaMA3.2-3B).

Evaluation Metrics. Following previous work
(Longpre et al., 2021; Xie et al., 2024; Chen et al.,
2022), we transform the short answer QA to a
multiple-choice QA format by providing a few op-
tions as possible answers>. This limits the answer
generation space and makes it easy to evaluate with-
out manual checking. Specifically, for each ques-
tion from both datasets, LLMs are instructed to
select one answer from the MA, CMA, and “Un-
certain” (UCT). We report the ratio of MA (R,,),
CMA (R.), and UCT (R,,) as calculated below:

_ Im
Rm*m+ﬂ+h
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At fet fu
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where fp,, fc, and f, are the count of questions
with MA, CMA, and UCT answers, respectively.

2

4.2 Role of Memory Strength

4.2.1 Correlation between Context
Faithfulness and Memory Strength

To demonstrate the relationship between context
faithfulness and memory strength, we categorize
the questions in each dataset into four groups ac-
cording to the memory strength of each LLM. The
four groups are low, mid-low, mid-high, and high,
corresponding to the memory strength intervals [-2,
-11, (-1, -0.5], (-0.5, -0.25] and [-0.25, 0], respec-
tively. We use the direct evidence in this experi-
ment. The results are shown in Figure 3°. Figure
3 (a)(b) shows the ratios of questions with MA,
CMA, and UCT answers for the NQ and popQA
datasets, respectively. Note that different LLMs
may have different memory strengths to the same
question. Therefore, both the specific questions
and the count of questions in the same group can

Xie et al. (2024) shows that answer consistency between
short answer and multi-choice are 94%, 96% and 92% for
ChatGPT, GPT-4 and LLaMA2-7B, respectively.

®We put results for other evidence styles in Appendix,
Figures 8, 9, and 10. The conclusion is consistent.

vary across different LLMs. To illustrate this, we
present the count of questions in each group (low,
mid-low, mid-high, and high) in Figure 3 (c)(d)
for popQA and NQ datasets, respectively. We can
draw the following conclusions.

There is a clear positive correlation between
memory strength and MA ratio for individual
LLMs. From Figure 3 (a)(b), it is obvious that for
all tested LLMs, the ratio of MA (red) increases
when memory strength increases, while the ratio of
CMA (blue) decreases. This trend is also consistent
across both datasets. It is more obvious for GPT
models. Among the tested LLMs, Claude3.5 tends
to choose UCT options more often, especially on
questions with high memory strength.

Memory Strength Increases with Model Scale.
We can observe from Figure 3 (c)(d) that larger
LLMs, such as GPT-4, have more data samples in
the high memory strength group (hi), while smaller
LLMs, such as LLaMA3.2-3B, have more sam-
ples in the low memory strength group (lo). This
aligns with the common intuition that larger LLMs,
with more parameters, have more knowledge than
smaller LLMs. Further evidence and discussion
can be found in the Appendix B.1.

4.2.2 LLMs Performance Analysis

In the aforementioned conclusion, different LLMs
have different knowledge. Thus, testing LLMs’
context faithfulness on the same dataset may be
unfair. To illustrate this, we compute the aver-
age memory strength of LLMs on PopQA and NQ
datasets, respectively, along with their MA and
UCT ratios. The results are presented in Figure 4.
We can draw the following conclusions.

First, for different LLMs, a lower average mem-
ory strength does not necessarily imply better con-
text faithfulness. For example, Claude 3.5 has
a high average memory strength, implying that
Claude 3.5 is a knowledgeable LLM, but it has
a low MA ratio (R,,) and a high UCT ratio (R,,).
This indicates that Claude 3.5 tends to refuse to
answer when facing knowledge conflicts. In con-
trast, LLaMA3.2-3B, despite having much less
knowledge (low average memory strength), has
the second-highest MA ratio (R,;,). This means
that LLaMA3.2-3B relies heavily on limited inter-
nal knowledge when facing knowledge conflicts,
implying that it is not context-faithful.

Second, newer versions of GPT and LLaMA
models appear to overlook context faithfulness
issues during the training process. GPT-4, with
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Figure 3: Relationship between Memory Strength and Different Answers’ Ratios across popQA and NQ Datasets
(with Direct Evidence). The figure presents the ratio and count of MA, CMA, and UCT across four memory strength
groups: low(lo), mid-low(ml), mid-high(mh), and high(hi). The results show a clear positive correlation between

memory strength and MA ratio(R,,,).
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Figure 4: MA Ratio (R,,) and UCT Ratio (R,) VS Memory Strength across PopQA and NQ Datasets. The figure
presents the relationship between average memory strength and the MA ratio as well as the UCT ratio for all six
LLMs. It shows that lower average memory strength does not always mean better context faithfulness for different
LLMs and newer versions of GPT and LLaMA models seem to ignore context faithfulness issues.

slightly more knowledge than Chatgpt, shows a sig-
nificantly higher MA ratio (R,;), and LLaMA3.2-
3B, with the least knowledge, shows a higher MA
ratio (R,,,) than the two LLaMA?2 models.

Finally, a new context faithfulness evaluation
metric is needed. This metric should consider both
the different answers’ ratios and memory strength
when LLMs encounter knowledge conflicts. Sim-
ply using the MA ratio (which is used widely to
measure context faithfulness currently) to evaluate
context faithfulness across different LLMs may not
be fair and sufficient.

4.3 Role of Evidence Style

Evidence Styles. We formulate four types of evi-
dence styles: 1) Direct Evidence. This is the most
straightforward form of evidence and serves as our
baseline. To assess the impact of evidence length,
we also create versions where the direct evidence
is repeated twice and three times for comparison.
2) Direct Evidence Combined with Paraphrases of
CMA. To examine the effect of evidence phrasing
and expression, we combine the direct evidence

with one paraphrase of the CMA to form a two-
sentence evidence and with two paraphrases to
form a three-sentence evidence. 3) Indirect Evi-
dence. We generate indirect evidence consisting of
two sentences and three sentences, respectively’. 4)
Direct Evidence Combined with Indirect Evidence.
We combine the direct evidence with the first sen-
tence of the two-sentence indirect evidence to form
a two-sentence evidence and with both sentences
to form a three-sentence evidence.

Table 2 presents the final number of instances
used for evaluation. We observe a slight difference
in the quantities of questions with direct and indi-
rect evidence since it is easier for ChatGPT to gen-
erate direct evidence that meets our requirements.
The specific number of instances at each step in
evidence generation is detailed in Table 7 in the
Appendix. Due to the quantity difference between
direct evidence and indirect evidence, we divide
the styles of evidence into two groups: Group 1

"We regulate the length of the generated evidence to con-

trol the influence of evidence length. The prompts used are
detailed in Table 11 (index 7) in Appendix.



popQA NQ
LLaMA2-7B | LLaMA2-70B | LLaMA3.2-3B | ChatGPT | GPT-4 | Claude3.5 | LLaMA2-7B | LLaMA2-70B | LLaMA3.2-3B | ChatGPT | GPT-4 | Claude3.5
# of Q (Initial) 1000 1000 1000 1000 1000 1000 1667 1667 1667 1667 1667 1667
# of Q with direct evidence 918 922 938 933 933 931 1042 1009 1002 1079 1171 1173
# of Q with indirect evidence 901 895 917 911 918 913 976 972 941 1025 1108 1059

Table 2: Number of final examples for each LLM. The difference between LLMs is due to their different outputs

going through the framework.

Dataset | Evidence Style S# ‘ LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5
[Rnl Rt Ry Rl Rt Ry [ Rl Rl Ry [ Bl Re® Ry [Bul Rt Ru [ Bnl Red Ry
Group 1: Q with direct evidence

1 044 9956 00 | 1.08 987 022| 7.69 8515 7.16 | 332 9475 193 | 1329 8457 214 | 0.65 8331 16.04

Direct Evidence 2 044 9956 0.0 | 098 9881 0.22]| 2.67 9583 1.5 279 9603 1.18 | 439 9346 2.14 | 032 9408 5.6

3 0.65 9935 0.0 1.08 987 022 256 9498 246 3.0 95.5 1.5 | 257 9528 214 | 021 9473 5.06

Direct+Paraphrase 2 [ 022 9978 00 | 1.19 987 0.1 | 3.1 9562 128 | 236 970 0.64| 3.0 9571 129 ] 021 9569 4.09

3 | 011 99.89 0.0 | 043 9935 022 | 1.07 9786 1.07 | 1.39 9828 032 | 1.29 985 021 | 011 98.06 183

popQA Group 2: Q with indirect evidence

Direct Evidence 1 044 9956 0.0 | 045 9933 0.22 | 731 85.61 7.09 | 3.07 9528 1.65| 12.53 8529 218 | 0.66 839 1544
Indirect Evidence 2 00 1000 00 | 011 99.89 0.0 | 436 89.64 6.0 3.18 9638 044 | 1351 8573 0.76 | 0.88 82.37 16.76
3 0.0 100.0 0.0 | 0.0 100.0 00 | 327 9258 414 | 1.76 9791 033 ] 926 902 055| 088 87.95 11.17

Direct+Indirect 2 | 022 9978 00 | 0.11 9978 0.11 | 371 9324 305 | 1.87 9726 0.88 | 795 91.18 0.87 | 088 9343 57

3 0.11 9989 0.0 | 0.11 99.78 0.11 | 1.42 9815 044 | 143 98.13 044 | 512 9477 0.11 | 0.88 96.28 2.85

Group 1: Q with direct evidence
1 7.2 928 0.0 | 3.07 9693 00 | 2641 59.88 13.71 | 19.46 75.16 538 | 50.04 4799 196 | 196 564 41.64
Direct Evidence 2 547 9453 0.0 | 3.07 9693 0.0 | 1693 752 7.86 | 19.09 76.83 4.08 | 20.24 77.54 222 | 0.77 837 15.53
3 681 9319 0.0 | 268 9722 0.1 |11.79 76.11 12.1 |22.06 7275 5.19 | 17.34 80.87 1.79 | 0.26 83.22 11.52
. 2 | 413 9587 00 | 149 9841 0.1 | 1321 7933 746 | 1529 8128 343 | 1896 79.67 137 | 034 88.65 11.01
Direct+Paraphrase
3132 9674 00 | 1.19 98.61 0.2 | 9.38 8327 736 | 9.55 86.75 3.71 | 11.27 8728 145 | 0.26 93.09 6.65
NQ Group 2: Q with indirect evidence

Direct Evidence 1 553 9447 0.0 | 2.67 9732 0.0 |23.19 63.73 13.08 | 18.73 75.71 5.56 | 48.83 49.19 199 | 1.77 59.44 38.79
Indirect Evidence 2 | 328 9529 143 | 165 9825 0.1 |1332 7777 892 | 13.66 84.1 1224|4459 537 1.71| 198 67.88 30.14
3 | 482 9406 1.13 | 1.85 97.84 0.31 | 11.53 8086 7.61 | 13.27 84.19 2.54 | 39.89 5857 1.53| 3.65 71.32 25.03
Direct+Indirect 2 | 533 9467 00 | 1.34 9825 041 | 975 8228 797 | 12.68 8478 254 | 324 6606 153 | 1.36 8092 17.73
3 441 9559 00 1.44 9856 0.0 | 832 8549 6.18 | 946 88.1 244 | 287 69.67 1.62| 1.77 83.94 14.29

Table 3: Results of LLM Receptiveness to Different Evidence Styles Across NQ and popQA Datasets. The table
presents the MA ratio (R,,), CMA ratio (R,.), and uncertain answer ratio (R,,) for various evidence styles across six
models. All the ratios are in %. The best results are highlighted in bold, and the second-best results are underlined.

includes Direct Evidence and Direct + Paraphrase
evidence. Group 2 includes Indirect Evidence and
Direct + Indirect evidence. Each group has differ-
ent Direct Evidence results serving as baselines.

Table 3 shows the results of different evidence
styles. We can make the following observations
and conclusions.

In Group 2, the MA Ratio (R,,) of direct ev-
idence is slightly lower than that in Group 1.
During the evidence generation, there are some
questions for which ChatGPT can provide direct
evidence but cannot produce indirect evidence. Re-
moving these questions leads to a decrease in R,,
of direct evidence with one sentence, which im-
plies that LLLMs have a relatively high R,,, for the
removed questions. But in general, the R, of di-
rect evidence with one sentence in Group 1 is close
to that in Group 2, so the results of Group 1 and
Group 2 are still comparable.

Simple repetition of direct evidence is not al-
ways effective. Comparing direct evidence with
one to three sentences, we observe similar R,,, and
R, for LLaMA2-7B, LLaMA2-70B, and ChatGPT.
For LLaMA3.2-3B, GPT-4, and Claude3.5, R,,
of direct evidence with two and three sentences
decreases significantly. The results imply that the

newer LLLMs are receptive to evidence repeated
multiple times.

Paraphrasing direct evidence is highly effec-
tive across all models and datasets. Comparing
Direct Evidence with two and three sentences and
Direct + Paraphrase with two and three sentences,
respectively, we observe R, of the latter signif-
icantly decreases. For example, R,, is reduced
by more than half, comparing Direct + Paraphrase
with three sentences with Direct Evidence with
three sentences on the popQA dataset for all tested
LLMs. The result implies that paraphrasing is an
effective method to enhance the receptiveness of
LLMs to external evidence.

Indirect Evidence improves LLMs’ receptive-
ness to CMAs, but less effectively than para-
phrasing. Comparing Indirect Evidence with two
and three sentences with Direct Evidence with one
sentence, R,,, decreases for almost all LLMs, but
the reduction is not significant compared to the
Direct + Paraphrase evidence with two or three sen-
tences. It implies that adding detailed information
is less effective than paraphrasing direct evidence.

Combining Direct evidence with Indirect evi-
dence generally enhances persuasiveness. Com-
paring Direct + Indirect evidence with Indirect Evi-



dence, R,, decreases except for LLaMA2-7B. For
example, comparing Direct + Indirect with three
sentences and Indirect Evidence with three sen-
tences, R,, has an obvious decrease. The result
implies that adding direct evidence to indirect ev-
idence is effective in improving LLMSs’ receptive-
ness to CMAs.

5 Conclusion

We investigate how context-faithful LLMs are to
external evidence across two datasets, PopQA and
NQ datasets, using LLaMA2-7B, LLaMA2-70B,
ChatGPT, GPT-4, LLaMA3.2-3B and Claude3.5.
Our findings highlight the critical role of memory
strength in shaping LLM behavior. There is a clear
positive correlation between memory strength and
memory answer ratio. Furthermore, we demon-
strate that paraphrasing significantly enhances the
context faithfulness of LLMs across various models
and datasets. These findings offer valuable insights
for advancing research in retrieval-augmented gen-
eration and context-based LLLM applications.

Limitations

Our framework does not process all types of ques-
tions in the NQ dataset. Although it effectively han-
dles the majority of NQ questions, it currently lacks
the capability to address "what," "how," and "why"
question types. The omission of these questions
may introduce some bias into our results. Simi-
lar to previous studies, our study also focuses on
knowledge conflict for extractive QA tasks, where
the answer must appear in the evidence. Our con-
clusion may not be extendable to other types of QA
tasks, such as abstractive QA and generative QA.

We employed a Natural Language Inference
(NLI) model to detect and filter the generated data.
Although the NLI model demonstrates high accu-
racy and the quality of generated data is high, it still
cannot guarantee complete correctness. Further,
since the NLI model is also trained using language
models, which may be biased with parametric mem-
ory, it may introduce biases facing knowledge con-
flicts.
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Appendix

Within this supplementary material, we elaborate
on the following aspects:

* A Methodology Details
* B Additional Studies
e C Prompts

A Methodology and Experiment Details
A.1 CMA Generation for NQ dataset

Departing from prior approaches (Longpre et al.,
2021) that use NER techniques (Chen et al., 2021;
Zhou et al., 2022; Li et al., 2025) to locate and
substitute answer entities, we employ LLMs to au-
tomatically generate alternative entities. Our CMA
construction process from MA consists of three
steps: 1) identify question type, 2) determine entity
type in MA to change, and 3) generate CMA with
LLMs.

Identity Question Type: We first build a typ-
ing tree using rules to categorize questions. Figure
5 illustrates the typing tree, which consists of a
two-layer structure. In the typing process, we first
determine if a question begins with one of the fol-
lowing words: “what”, “when”, “where”, “which”,
“who”, “why”, or “how”. However, this approach
can still group different types of questions together.
To address this, we use a second layer to refine
the typing by analyzing two specific words in the
question. For example, the question shown in Fig-
ure 2 falls into the “how_many” category. Table
4 shows the statistics of question types of the NQ
dataset. Note that, we find 127 samples that are not
questions in the process, so we list them as “other”.

Determine Entity Type in MA to Change: Af-
ter categorizing the questions, we determine the
entity type in MA needs to be replaced. To achieve
this, we give each type of question an entity type,
and many questions can share the same entity type.
For example, both “when” and “what year” ask for
a time. So a time entity in MA should be substi-
tuted. The final set of entity types is summarized
in Table 5. We do not process questions starting
with “what”, “which” or “how”” due to the lack of
a unified entity type for these questions. Table 6
shows the statistics of the unprocessed questions.
These question types account for only 7.3% of the
NQ dataset (with 2, 98, 22, and O instances for
“how”, “what”, “which”, and “why”, respectively),
and this issue does not occur in the PopQA dataset.

Question:
1. how many episodes are in chicago fire season 4
2. what category was hurricane charley when it hit floride
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Figure 5: Two-layer Question Typing Tree

Question Type | Count
how_many 97
how_much 1
how_long 3
how_old 3
how 2
who_sings 100
who_plays 179
who_writes 65
who_wins 55
who 479
where 138
when 276
what_year 7
what_name 4
what 98
which_country 6
which_city 2
which_state 2
which_year 1
which 22
why 0
other 127
total 1667

Table 4: Distribution of Question Types and their Counts

Since the overall trends are consistent across both
datasets, we believe the missing questions will not
affect our conclusions.

Generate CMA with LLMs: Instead of manu-
ally editing the MA, we leverage the LLMs’ ability
to generate CMA by providing it with a carefully
designed prompt, which is shown in Table 11 (in-
dex 5). This prompt instructs the LLM to replace
the entity with a certain type in the MA (from Step
2) with an alternative, ensuring the generated CMA
differs from the MA.

The generated CMA must meet two key criteria:
1) The CMA must directly contradict the MA. To
ensure this, we employ a Natural Language Infer-
ence (NLI) model® to verify the contradiction be-
tween the two answers. 2) The alternative entity in
CMA must not appear in the question. We achieve

8https://huggingface.co/microsoft/deberta-v2-xxlarge-
mnli



Question Type Key Term
when, what_year, which_year, how_long time

where, which_city, which_state, which_country | location

who, what_name name of person
how_many, how_much number

who_sings singer’s name
who_plays player’s name
who_writes writer’s name
who_wins winner’s name
how_far distance
how_old age

Table 5: Question Types and Their Corresponding Key
Terms

Type | Count | Question Examples

how 2 how are leaders of the two parties in congress chosen
what 98 what is the setting of the story sorry wrong number
which 22 which domain of life are humans members of

why 0

other 127 | latest season on keeping up with the kardashians
total 1667

Table 6: Summary of Excluded Question Types in Mem-
ory Answer and Counter Answer Generation. The table
lists question types that were excluded from process-
ing due to either the difficulty in identifying a unified
entity type (“how”, “ which”) or not question
(“other”).

9%

what”,

this check by string matching. If the CMA fails to
meet either of these criteria, we prompt the LLM
to regenerate the CMA up to 5 times. If no proper
CMA is generated, we filter out this question.

A.2 Dataset Details

For the popQA dataset, we use the dataset from Xie
et al. (2024) by randomly selecting 1,000 questions
from the data intersection of the conflicts generated
by LLaMA2-7B, LLaMA2-70B, LLaMA3.2-3B,
ChatGPT, GPT-4 and Claude3.5. We use the MA
and CMA from Xie et al. (2024) and only generate
direct evidence and indirect evidence using our
framework. For the NQ dataset, we use the test set
from Longpre et al. (2021), which consists of 1,667
unique questions. The MA, CMA, and evidence
are all generated with our framework. The dataset
scale at each step is presented in Table 7.

A.3 Human Evaluation for Model Reliability

To ensure the reliability of the NLI model, Xie et al.
(2024) randomly sample 200 generated examples
and manually annotate whether the generated con-
tent entails the corresponding claim. The labels
are supportive (entailment in the NLI task) or not
supportive (either neutral or contradiction in the
NLI task). The accuracy is 99%.

Following this process, we evaluate how reliable

the generated CMA is. We randomly sample 200
generated examples in the NQ dataset and manually
annotate whether the correct entity in MA is found
and replaced with a same type alternative. The
accuracy is 98%, which means the generated CMA
is reliable.

B Additional Studies

B.1 Memory Strength on Different Datasets

We illustrate the distributions of memory strength
on the popQA and NQ datasets for LLaMA2-7B,
LLaMA2-70B, LLaMA3.2-3B, ChatGPT, GPT-
4 and Claude3.5, respectively (shown in Figure
6). The results show that LLMs demonstrate
stronger memory for the NQ dataset than the
popQA dataset. For the NQ dataset, most ques-
tions fall within the bin of (0.25, 0]. Only a
few questions fall within bins of weaker mem-
ory strength. In contrast, the popQA dataset has a
greater number of questions in bins with weaker
memory strength. This phenomenon is consistent
across all six evaluated LLMs, indicating that the
LLMs have more knowledge of the NQ dataset
compared to the PopQA dataset. A possible ex-
planation is that the NQ dataset covers more com-
monly discussed subjects than those in the PopQA
dataset. These subjects may have been encountered
more frequently during the training of the LLMs,
making it easier for the models to recall the infor-
mation and resulting in stronger memory strength.

B.2 Order of Options

To test the effect of the order of options on R,,,
we conduct an experiment with one sentence direct
evidence by changing the order of options (MA
option and CMA option). We define the scenario
where the CMA option is presented first in the
prompt as “CMA first”, and the scenario where the
MA option is presented first as “MA first™. Figure
7 shows the results.

Across all six models (LLaMA2-7B, LLaMA2-
70B, LLaMA3.2-3B, ChatGPT, GPT-4 and
Claude3.5), we observe a consistent trend: MA
ratio (R,;) under “CMA first” is significantly
higher than that under “MA first”. Evaluations
under “CMA first” demonstrate that LLMs are less
context-faithful.

To further demonstrate the effect of the order
of options on R,,, we compare the performance
of experiments with “CMA first” and “MA first”

°All previous evaluations are under “MA first” conditions.



popQA

LLaMA2-7B | LLaMA2-70B | LLaMA3.2-3B | ChatGPT

NQ
GPT-4 | Claude3.5 | LLaMA2-7B | LLaMA2-70B | LLaMA3.2-3B | ChatGPT | GPT-4 | Claude3.5

Initial (# of Q) 1000 1000 1000 1000

1000 1000 1667 1667 1667 1667 1667 1667

Generate MA 1000 1000 1000 1000

1000 1000 1435 1392 1352 1532 1539 1482

Generate CMA 1000 1000 1000 1000

1000 1000 1152 1101 1140 1189 1252 1232

CMA filter 922 932 942 944

1228

946 934 1060 1027 1123 1110 1188

Direct Evidence 918 922 938 933

933 931 1042 1009 1002 1079 1171 1173

2 sentence indirect evidence 903 910 922 \ 921

923 914 990 985 965 ‘ 1038 1129 1116

3 sentence indirect evidence 907 897 925 ‘ 918

924 920 991 982 980 ‘ 1041 1125 1122

intersection of 2&3 sentence evidence 901 895 917 911

918 913 976 972 941 1025 1108 1059

Table 7: The dataset scale at each step across popQA and NQ dataset. “intersection of 2&3 sentence evidence” is

the count for indirect evidence.
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Figure 6: Memory Strength Distribution Across popQA and NQ Datasets. Each dataset is classified into 8 bins. The

x-axis shows the range of memory strength for each bin.

The y-axis shows the question count in each bin. The NQ

dataset exhibits higher overall memory strength. Additionally, larger models (e.g., GPT-4) show stronger memory

strength compared to smaller models.

under two evidence styles: Direct Evidence with
one sentence and Direct + Paraphrase with three
sentences. The results are presented in Table 8.
The results show that, for different evidence styles,
R, is higher in the “CMA first” compared to the
“MA first”. Comparing the results under the “CMA
first”, the R,, of Direct + Paraphrase with three
sentences is significantly lower than that of Direct
Evidence with one sentence. This demonstrates
that paraphrasing direct evidence is an effective
method for decreasing R,,. Our conclusion re-
mains unchanged.

B.3 Entity Type

To investigate how entity type influences context
faithfulness, we categorize NQ questions into three
types based on their expected answer entities: PER
(person), LOC (location), and TIM (time), fol-
lowing the classification summarized in Table 3.
Specifically:

* PER includes questions such as “who”,
“what_name”, “who_writes”, “who_sings”,
“who_wins”, and “who_plays”.

* LOC includes “where” and “which_country”.

* TIM includes “when”, “what_year”, and
“which_year”.

We then analyze the MA ratio (R,,,) across dif-
ferent entity types using ChatGPT and LLaMA?2-
7B as representative models. For each category,
we compute the question count, average memory
strength, and MA ratio. Results are shown in Table
9. We observe the following patterns:

e For PER and LOC, which involve textual enti-
ties, higher memory strength corresponds to
higher MA ratios. This is consistent with the
trend reported in Section 4.2.1, where stronger
memory increases the likelihood of memory-
aligned responses.

e For TIM, which involves numerical entities,
the MA ratio is substantially lower than for
textual entities. This finding aligns with ob-
servations made in Longpre et al. (2021).

* We further divided TIM into four groups based
on memory strength levels: low, mid-low, mid-
high, and high. The results shown in Table 10
and these results demonstrate a positive corre-
lation between memory strength and MA ratio,
which aligns with the conclusion presented in
Section 4.2.1.

These results suggest that entity type, particu-
larly the distinction between textual and numerical



Dataset | Evidence Style g4 | LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5
[Bnl Ret Ry [Rml Ret Ry [Rnl Ret Ry [Rnl Rt Ry [Rnl Ref Ry [BRml Ref Ru
MA first
Direct [ 11044 9956 00 [ 108 987 022 7.69 8515 7.6 | 332 9475 193 | 1329 8457 214 ] 0.65 8331 16.04
A | Direct+ Paraphrase [ 3 [ 0.1T 9989 0.0 [ 043 9935 022 107 9786 107 [ 139 9828 032] 129 985 021[ 0.1l 9806 1.83
popQ CMA first
Direct [ 1 ]5937 4041 022] 575 9327 098] 188 69.12 1207 ] 622 9196 1822144 7524 3.32] 043 7696 22.61
Direct + Paraphrase | 3 | 1749 8251 0.0 | 1.74 98.05 022 | 1464 79.92 545 | 182 9775 043 | 279 9678 043 | 021 96.88 291
MA first
Direct [T [ 72 928 00 ] 307 9693 00 [2641 59.88 13711946 7516 538 [50.04 4799 196 | 1.96 564 41.64
NQ Direct + Paraphrase | 3 | 3.26 9674 0.0 | 1.19 9861 02 | 938 8327 736 | 955 8675 3.71 | 1127 8728 145] 026 93.09 6.65
CMA first
Direct [ 1 ]2226 7773 00 [ 19.13 8038 05 | 4133 4244 16233448 61.82 371 | 49.19 4799 282 ] 478 3985 5538
Direct + Parapharse | 3 | 48 9511 0.1 | 872 90.39 0.89 | 24.19 65.62 10.18 | 18.63 78.96 241 | 17.76 80.02 222 | 128 7884 19.88

Table 8: Results of LLM Receptiveness to Different Evidence Styles Across popQA and NQ Datasets. The table
presents the MA ratio (R,,), CMA ratio (R,.), and UCT ratio (R,,) for Direct Evidence and Direct + Paraphrase
Evidence with CMA first and MA first scenarios. All the ratios are in %.

Memory Answer Ratio and Counter Answer Ratio with Different Order of Options
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Figure 7: Impact of Option orders on Memory and Counter Ratios Across NQ and popQA Datasets. Either the
memory answer ("mem first") or the counter answer ("ctr first") is introduced first to six models.

LLM Entity Count Mem. Strength MA Ratio (%)
PER 664 -0.4467 24.54
ChatGPT LOC 107 -0.5033 19.62
TIM 217 -0.3244 9.21
PER 680 -0.6149 8.52
LLaMA2-7B  LOC 95 -0.4344 9.47
TIM 174 -0.4359 1.15

Table 9: Impact of different entity types (PER: Person,
LOC: Location, TIM: Time) on memory strength and
MA ratio for ChatGPT and LLaMA2-7B.

LLM low mid-low mid-high high
ChatGPT 4.76 9.09 9.09 10.08
LLaMA2-7B  0.00 2.13 0.00 2.53

Table 10: MA ratios (%) on TIM-type questions across
different memory strength levels.

entities, affects context faithfulness, and that mem-
ory strength remains a key influencing factor across
different entity types.

B.4 Case Study

Poor reasoning ability may be one of the reasons
that LLMs provide MA. In our case study, we
prompt LLMs to provide a rationale alongside the

answer. We discover that some LLLMs seem to ex-
hibit reasoning errors. Below is an example that
shows this phenomenon.

Information: Michigan State University
holds the record for the highest number
of Big Ten football championships, with
a total of 36 titles.

Question: who has the most big ten
championships in football

Options:

A: Ohio State University has the most
Big Ten championships in football with
36 titles.

B: Michigan State University has the
most Big Ten championships in football
with 36 titles.

C: Uncertain.

Answer:

A: Ohio State University has the most
Big Ten championships in football with
36 titles.

According to the information provided,
Michigan State University holds the
record for the highest number of Big Ten
football championships, with a total of
36 titles. Therefore, option A is the
correct answer.

In this case, option A represents MA, and option
B represents CMA. While the model select MA as



the final answer, its rationale indicates that it suc-
cessfully received and processed the information
from CMA. However, for some unknown reason,
it still provides the MA as the final answer. This
reasoning process is highly confusing. We suspect
that the cause of MA can be attributed to LLMs’
weakness in reasoning ability. This finding raises
an interesting question about the relationship be-
tween reasoning ability and memory strength of
LLMs. We leave this for future work.

B.5 Impact of Memory Strength with
Different Evidence Styles

To demonstrate the relationship between context-
faithfulness and memory strength with other evi-
dence styles, we categorize the questions in each
dataset into four groups according to the memory
strength intervals [-2, -1], (-1, -0.5], (-0.5, -0.25]
and [-0.25, 0], The evidence styles are direct + para-
phrase evidence with two sentences and indirect
evidence with two sentences. Figures 8,9 show the
result. The figures show that there is a clear posi-
tive correlation between memory strength and MA
ratio for both evidence styles, which implies that
this positive correlation between memory strength
and MA ratio is general.

To demonstrate the relationship between context-
faithfulness and memory strength with “CMA first”
scenario, we show MA, CMA, and UCT ratios with
direct evidence with one sentence under “CMA
first” scenario in Figure 10. The positive correla-
tion between memory strength and MA ratio stays
unchanged.

C Prompts

In Table 11, we present a detailed list of all the
prompts used throughout this study.



(a) popQA dataset (b) NQ dataset

10T 10
. MA
0.8 WEE CMA 0.8
ucT
o 0.6 0.6
2
& 041 0.4
021 0.2
o0 o mimhhi o mimh b lo mimh hi_fo mimh il mimh b o mimh hi 00 lo mmh hi  lo mmhhi  lo mmhhi o mimhhi lomimhhi lomimhhi
LLaMA2-7B  LLaMA2-70B LLaMA3.2-3B  ChatGPT GPT-4 Claude3.5 LLaMA2-7B  LLaMA2-70B LLaMA3.2-3B  ChatGPT GPT-4 Claude3.5
c) popQA dataset d) NQ dataset
200 (c) popQ 200 (d) NQ
- 600 4 600
S 4004
3 400 400
o 2001 200
® " lomimh hi o mimhhi o mimhh o mimhh o mimhhi o mimh hi ° lo mmh hi  lo mmhhi  lo mmhhi o mimhhi lomimhhi lomimhhi
LLaMA2-7B  LLaMA2-70B LLaMA3.2-3B  ChatGPT GPT-4 Claude3.5 LLaMA2-7B  LLaMA2-70B LLaMA3.2-3B  ChatGPT GPT-4 Claude3.5

Figure 8: Relationship between Memory Strength and Different Answers’ Ratios with Direct + Paraphrase Evidence
with Two Sentences.
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Figure 10: Relationship between Memory Strength and Different Answers’ Ratios with Direct Evidence. The option

order is Counter First.




Step index | Prompt Name | Prompts
Question Generate 7 meaningful paraphrases for the following question: [Question].
1 paraphrase Read the question carefully.
prompt Paraphrases:
Determine whether the paraphrased question describes the same thing as the
. original question, and give "Contradicted" if they are not the same, otherwise
Question LT "
’ equivalent give "Same" as the result.
Step 1: check prompt Q1: [Paraphrased Q1]
Memory Q2: [Paraphrased Q2]
Strength Keep the answer short and concise.
Determine whether the answer ‘A1’ is ‘Contradicted’ or ‘Same’ with the answer
‘A2’ for the question ‘Q’. You need to check whether the two answers exactly
have the same answer to the question. The answer could be person, name, place,
time, number, genre, occupation, sport, entity, digit, or arithmetical results. If
Answer . . . .
. the two answers are the same, give “Same”, otherwise give “Contradicted” as
3 consistency
check prompt the result:
Q: [question]
Al: [LLM answer 1]
A2: [LLM answer 2]
Keep the answer short and concise.
Answer the question with one sentence with object and subject only. Give a
statement that is most likely to be true directly.
4 Close book QA
prompt Question:
Step 2: E}l;z:g:n]
MA and Context:
CMA '
Change MA to [CMA]
5 Change the [entity type] part of the context. When multiple parts need to be
CMA prompt
changed, only choose one part to change.
Answer:
Please paraphrase the following sentence by changing the terms, order, and
6 Direct evidence | phrases, but keep the meaning the same.
prompt
Sentence: [CMA]
Given a claim, please write a short piece of detailed evidence to support it.
Step 3: Please ignore the correctness of the claim. You can make up fake content and
Evidence Indirect supporting evidence but it should be as realistic as possible.
7 evidence Claim:
prompt [counter memory answer]
Evidence:
Give the answer in [2 or 3] sentences directly.
According to the given information, choose the best choice from the following
options.
Evaluate with Inforn.lation: [ev%dence]
Step 4: . Question: [question]
. 8 evidence .
Evaluation prompt Option:
A: [option 1]
B: [option 2]
Answer:

Table 11: Prompts for LLMs in this paper. “[PLACEHOLDER]” is the corresponding input.
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