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Abstract

Open Relation Extraction (OpenRE) seeks to
identify and extract novel relational facts be-
tween named entities from unlabeled data with-
out pre-defined relation schemas. Traditional
OpenRE methods typically assume that the un-
labeled data consists solely of novel relations or
is pre-divided into known and novel instances.
However, in real-world scenarios, novel rela-
tions are arbitrarily distributed. In this paper,
we propose a generalized OpenRE setting that
considers unlabeled data as a mixture of both
known and novel instances. To address this, we
propose MixORE, a two-phase framework that
integrates relation classification and clustering
to jointly learn known and novel relations. Ex-
periments on three benchmark datasets demon-
strate that MixORE consistently outperforms
competitive baselines in known relation clas-
sification and novel relation clustering. Our
findings contribute to the advancement of gen-
eralized OpenRE research and real-world appli-
cations. Source code is available1.

1 Introduction

Open Relation Extraction (OpenRE) is a fundamen-
tal task in Information Extraction (IE) that aims to
identify and extract relational facts between named
entities from unlabeled data. Unlike traditional
Relation Extraction (RE), which relies on a pre-
defined set of relations and requires end-users to
specify their information needs and provide costly
annotations, OpenRE operates in a more flexible
“open-world” setting. It proactively discovers novel
relations, generalizes them into meaningful cate-
gories, and identifies additional instances, making
it a more adaptable approach for large-scale IE.

In recent years, OpenRE has attracted increas-
ing attention from researchers. Wang et al. (2022)
and Li et al. (2022) introduce prompt-based learn-
ing methods and advanced clustering techniques,

1https://github.com/qingwang-isu/MixORE

achieving impressive results on unlabeled data.
However, existing OpenRE methods typically as-
sume either that the unlabeled data consists entirely
of novel relations or that there is prior informa-
tion indicating whether an instance belongs to a
known or novel relation. These assumptions do not
accurately reflect the complexities of real-world
scenarios.

Hogan et al. (2023) further dispose of the sim-
plifying assumptions and make new assumptions
that the unlabeled data includes known and novel
instances and that novel relations are typically rare,
belong to the long-tail distribution, and tend to be
explicitly expressed. Their model, KNoRD, is built
around these assumptions. However, the “long-tail”
assumption may not always hold, particularly in
scenarios where novel relations emerge as newly-
recognized concepts in the real world that have not
yet been labeled. Additionally, novel relations may
arise when human annotators label only some rela-
tions within a large dataset, leaving many potential
relations unidentified. For novel relations that do
not follow the long-tail distribution, KNoRD tends
to introduce additional noise and its performance
degrades. Furthermore, we observe that a notice-
able performance gap still exists between known
and novel instances (Hogan et al., 2023), highlight-
ing the potential for further OpenRE research.

In this paper, we relax the “long-tail” assump-
tion and instead assume the unlabeled data contains
both known and novel instances, with no restric-
tions on the nature of these relations. We propose
MixORE model to effectively classify known in-
stances and identify novel relations within unla-
beled data. MixORE has two phases: novel re-
lation detection and open-world semi-supervised
joint learning (OW-SS joint learning).

In the first phase, our goal is to identify potential
novel relations within unlabeled data. We repre-
sent each known relation with a one-hot vector
in latent space and train a Semantic Autoencoder
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(SAE) (Kodirov et al., 2017) on labeled data. The
trained SAE then maps both labeled and unlabeled
instances into the shared latent space, where known
instances will cluster around their respective one-
hot vectors. In contrast, novel instances, which are
less likely to align with any known relations, tend
to appear as outliers in this mapping process. Fur-
thermore, instances in the same novel relation often
exhibit a clustering pattern. Therefore, we leverage
each unlabeled instance’s similarity to the known
relation one-hot vectors as a criterion for outlier
detection. Subsequently, we apply the Gaussian
Mixture Model (GMM) (Pedregosa et al., 2011) to
cluster these outliers into novel relation groups and
extract instances closest to each cluster centroid as
high-quality weak labels for further training.

In the second phase, OW-SS joint learning, we
utilize weak labels and adopt a continual learn-
ing strategy to align our approach with the evolv-
ing nature of OpenRE in real-world applications.
MixORE is designed based on the insight that
classifying known relations requires learning com-
pact and well-separated feature representations,
whereas detecting novel relations benefits from cap-
turing diverse and transferable features. To achieve
this, we incorporate contrastive learning by lever-
aging both labeled instances and data distribution
to form positive pairs and propose the OW-SS loss
function, which jointly optimizes relation classifi-
cation and clustering.

In summary, our main contributions are:

• We comprehensively review the assumptions
made in previous OpenRE studies and intro-
duce a generalized OpenRE setting.

• We propose a two-phase framework MixORE
that learns discriminative features for known
relations while continuously incorporating
novel information from unlabeled data, mak-
ing it more adaptable to OpenRE in real-world
scenarios.

• Experimental results demonstrate that our
approach achieves remarkable performance
on both known and novel relations across
the FewRel, TACRED, and Re-TACRED
datasets.

2 Related Work

Relation Extraction (RE) is an essential Natural
Language Processing (NLP) task and has been ex-
tensively studied with approaches relying on super-

vised learning techniques trained on manually an-
notated datasets (Miller et al., 1998; Zelenko et al.,
2002; Peng et al., 2017; Zhong and Chen, 2021;
Wadhwa et al., 2023). While RE models achieve
high performance, their dependency on large-scale
labeled data presents a major limitation (Zhou et al.,
2023). Moreover, they operate under a “closed-
world” assumption, where relations are pre-defined,
limiting their ability to handle emerging or novel
relations. To address these challenges, OpenRE
is proposed to proactively identify novel relations
from unlabeled data in an “open-world” setting,
making it more suitable for real-world, large-scale
information extraction.

Existing OpenRE methods mostly operate un-
der two settings. The first setting is unsupervised
relation extraction (URE), where models identify
relations between named entities from unlabeled
data without relying on manual annotations. Liu
et al. (2022) propose a hierarchical exemplar con-
trastive learning framework that refines relation rep-
resentations by leveraging both instance-level and
exemplar-level signals for optimization. Wang et al.
(2023) strengthen the discriminative power of con-
trastive learning with both within-sentence pairs
augmentation and augmentation through cross-
sentence pairs extraction to increase the diversity
of positive pairs.

The second setting of existing methods, semi-
supervised OpenRE, involves training models on
labeled data with known relations, while the un-
labeled data consists entirely of novel relations or
is pre-divided into known and novel sets. Wang
et al. (2022) develop a novel prompt-based frame-
work that enables the model to generate efficient
representations for instances in the open domain
and learn clustering novel relational instances. Li
et al. (2022) design a co-training framework that
combines the advantage of type abstraction and the
conventional token-based representation.

There are some recent studies trying to address
the open-world semi-supervised learning (Open-
world SSL) setting, where unlabeled data contains
a mixture of both known and novel classes. Cao
et al. (2022) propose ORCA for computer vision
tasks. This method introduces uncertainty adaptive
margin loss objective to either classify unlabeled
image instances into one of the known classes or
discover novel classes and assign instances to them.
Hogan et al. (2023) later introduce KNoRD for
open-world relation extraction. With prompt-based
training, KNoRD effectively classifies explicitly
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Figure 1: Overview of MixORE Framework.

and implicitly expressed relations from known and
novel relations within unlabeled data. However,
the authors assume novel relations are typically
rare and belong to the long-tail distribution. In this
study, we relax this assumption and instead assume
the unlabeled data comprises both known and novel
instances, where the known and novel relations can
be arbitrary.

3 Task Formulation

We formalize the OpenRE task as follows. Let
x = [x1, ..., xn] denote a sentence, where xi rep-
resents the i-th (1 ≤ i ≤ n) token. In the
sentence, a named entity pair (eh, et) is recog-
nized in advance, where eh represents the head
entity and et represents the tail entity. Let Dl =
[(x1,y1), ..., (xM ,yM )] be the labeled data con-
sists of M instances with the corresponding sen-
tences, the target entity pairs, and relation labels.
Let Du = [(x1), ..., (xN )] be the unlabeled data
consists of N instances with only corresponding
sentences and target entity pairs. We denote the set
of relations in the labeled data as Cknown and the
set of relations in the unlabeled test data as Cu. Fol-
lowing Cao et al. (2022), we assume category/class
shift Cknown ⊆ Cu (i.e., the relations encountered
at test time may not have been explicitly labeled or
seen during training). We define the set of novel
relations Cnovel = Cu − Cknown.

The goal of OpenRE is to assign known in-
stances in Du to their respective known relations
Cknown, while also identifying |Cnovel| novel rela-
tion clusters, where |Cnovel| represents the number
of novel relations in the corpus.

4 Methodology

In this section, we introduce the proposed
MixORE, a two-phase framework that integrates
relation classification and clustering to jointly learn
known and novel relations. Our methodology in-
corporates novel relation detection for obtaining
weak labels and open-world semi-supervised joint
learning (OW-SS joint learning) to progressively
refine the model. Figure 1 provides an overview of
the framework.

4.1 Relation Encoder

Given a sentence along with its named entities
and entity types, the relation encoder generates
a vector representation that captures the relation-
ship between the entities. To highlight the enti-
ties of interest, we adopt entity marker tokens, a
widely used technique in relation extraction models
(Soares et al., 2019; Xiao et al., 2020; Liu et al.,
2022; Wang et al., 2023).

Specifically, for a given sentence x =
[x1, ..., eh, ..., et, ..., xn], we insert <e1:type> and
</e1:type> to denote the beginning and end of
the head entity eh, and similarly, <e2:type> and
</e2:type> for the tail entity et, where "type"
is replaced with the actual entity type. We use
BERTbase model (Devlin et al., 2019) to obtain the
contextualized sentence representation h. To effec-
tively capture relational context and enhance focus
on the target entity pair, we derive the following
fixed-length relation representation:

hr = [h<e1:type>|h<e2:type>] (1)
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Figure 2: Semantic Autoencoder (SAE)

to express the relation between the marked entities
in x , where | denotes the concatenation.

4.2 Novel Relation Detection

In the first phase of MixORE, our objective is to
identify potential novel relations within unlabeled
data. These novel relations, once detected, can be
leveraged as weak labels to enhance the training
process, particularly in real-world scenarios where
labeled data is scarce or unavailable.

Our novel relation detection approach is founded
on the assumption that known instances naturally
cluster around their respective relation centroids,
forming well-defined groups. In contrast, novel
instances, which do not correspond to any known
relations, are likely to appear as outliers. How-
ever, in practice, the lack of labeled data for novel
relations results in ambiguous feature representa-
tions, making it challenging to differentiate be-
tween known and novel relations. Additionally,
clustering algorithms such as K-Means and Gaus-
sian Mixture Models (GMM) often struggle with
high-dimensional feature spaces, further complicat-
ing the task of accurately grouping novel instances.

To effectively learn a low-dimensional projec-
tion function that generalizes well to both known
and novel relations, we employ the encoder-
decoder paradigm. In this approach, the encoder
maps a feature vector into an intermediate low-
dimensional space, while the decoder imposes an
additional constraint by ensuring that the projected
representation can accurately reconstruct the orig-
inal feature vector. Specifically, we adopt the Se-
mantic Autoencoder (SAE) (Kodirov et al., 2017),
a simple and extremely efficient architecture, as
illustrated in Figure 2.

The labeled data Dl is first processed by the re-
lation encoder (defined in Sec. 4.1), generating
the input data matrix X l = [(h1

r), ..., (h
M
r )]. It

is projected into a latent space of |Cknown| dimen-
sional with a projection matrix W . The latent
space is constrained to serve as a semantic repre-
sentation space. To enforce independence among
relations, we incorporate one-hot vectors to encode
known relations and obtain the latent representa-
tion Sl. To further simplify the model, we use tied
weights, that is, the transposed projection matrix
W T projects the latent representation Sl back to
the feature space, and becomes X̂ l. The learning
objective is as follows:

min
W

∥Xl −W⊤Sl∥2F + λ∥WXl − Sl∥2F , (2)

where λ is a weighting coefficient that balances the
contributions of the first and second terms, corre-
sponding to the losses of the decoder and encoder,
respectively. Following Kodirov et al. (2017), we
efficiently derive the optimal solution for W with
Bartels-Stewart algorithm (Bartels and Stewart,
1972), a closed-form solver that eliminates iterative
updates and thus accelerates computation. To keep
the first phase lightweight, we leave the BERTbase

parameters in the relation encoder frozen.
During inference, we input all unlabeled data

Du into the relation encoder, and subsequently pass
the resulting relation representations Xu through
the encoder of the SAE to obtain the latent represen-
tation Su. For each vector v in Su, we calculate its
cosine similarity with each known relation one-hot
vector and record the highest similarity score as its
mapping score. This process assigns each instance
in Du to the most probable known relation. In line
with the conventional 5% significance level used
in statistical hypothesis testing, we designate the
5% of unlabeled instances with the lowest mapping
scores as outliers.

Instances belonging to the same novel relation
also tend to cluster together. We subsequently
employ the Gaussian Mixture Model (GMM) (Pe-
dregosa et al., 2011) to cluster these outliers into
|Cnovel| novel relation clusters. GMM assumes
that the data points are generated from a mixture of
several Gaussian distributions, each representing a
cluster. The model defines the probability density
function (PDF) of the data as:

p(v|Θ) =

|Cnovel|∑
i=1

πiN (v|µi,Σi), (3)

where p(v|Θ) is the likelihood of observing data
point v, πi is the mixture weight of the i-th Gaus-
sian component, and N (v|µi,Σi) represents the



multivariate Gaussian distribution with mean µi

and covariance matrix Σi.
To extract high-quality weak labels for subse-

quent training, we select instances closest to each
cluster centroid. Specifically, we retain instances
with a GMM posterior probability greater than 0.95,
ensuring that only those with high confidence in
their cluster assignments are used as weak labels.
The resulting set of weakly-labeled instances is
denoted as Dw.

4.3 Open-world Semi-supervised Joint
Learning

The ultimate goal of the Open-world SSL setting is
to adaptively expand the model’s understanding of
novel relations while preserving high performance
on known relations. To effectively handle both
known and novel relations, we employ a continual
learning (Wang et al., 2024) strategy. In the OW-SS
joint learning phase, the proposed MixORE model
is first warmed up by training on Dl, which consists
of known relations only. Following the rehearsal-
based strategy in Continual Relation Extraction
(Cui et al., 2021; Wu et al., 2024), MixORE is con-
tinually trained on both labeled known instances
Dl and the weakly-labeled novel instances Dw.

First, for relation classification, we employ the
following cross-entropy loss function:

Lc = − 1

Dc

Dc∑
i=1

|Cu|∑
r=1

yirlog(ŷ
i
r), (4)

where yir is 1 if sample i belongs to relation r oth-
erwise 0, ŷir is the predicted probability of sample i
belongs to relation r, |Cu| = |Cknown|+ |Cnovel| is
the number of relations in the unlabeled data, and
Dc represents the number of labeled instances in
the current epoch.

Zhang et al. (2022) demonstrate that, in com-
puter vision tasks, discriminative features are pre-
ferred for classifying known classes, whereas rich
and diverse features are essential for identifying
novel classes. Such findings should also apply
to OpenRE tasks, as classifying known relations
requires learning compact and well-separated fea-
ture representations, while detecting novel relations
benefits from capturing diverse and transferable
features that generalize beyond the labeled data.

Contrastive Learning, a strategy widely adopted
by state-of-the-art RE models (Liu et al., 2022;
Wang et al., 2023; Wu et al., 2024), enhances rela-
tion representations by pulling semantically simi-

lar relation sentences (positive pairs) closer while
pushing apart sentences with different relations
(negative pairs). We integrate contrastive learn-
ing using two strategies to form positive pairs:
sampling from labeled instances and leveraging
the data distribution. This approach enables us to
jointly capture classification signals and the un-
derlying data distribution, leading to more robust
relation representations.

We begin by utilizing labeled data to construct
positive pairs. Since weak labels can be noisy,
to minimize the risk of introducing false posi-
tive pairs from Dw, we restrict the generation
of positive pairs to Dl. Specifically, we sample
instances from Dl such that two instances shar-
ing the same relation form a positive pair and
ensure that each relation has an equal number
of positive pairs sampled, except in cases where
there are insufficient instances to enumerate. Let
P = [(ar

1,pr
1), ..., (ar

Dm ,pr
Dm)] denote the

set of relation representations of the sampled Dm

positive pairs. In this work, we fix the number
of sampled positive pairs to Dm = 5Dc. As
noted by Wang et al. (2023), relation semantics
between two sentences should not be treated as a
strict “same/different” distinction but rather as a
similarity spectrum. To handle this, the triplet mar-
gin loss function for the labeled data positive pairs
is defined as:

Llm =
1

Dm

Dm∑
i=1

max{dist(ai
r,p

i
r)

− dist(ai
r,n

i
r) + γ, 0},

(5)

where dist(·) denotes the cosine distance function,
ni
r represents a randomly sampled negative exam-

ple for ai
r, and γ, known as the margin, is a hyper-

parameter.
To further incorporate data distribution, we en-

courage relation representations to align more
closely with their respective cluster centroids while
pushing them away from other clusters. Each in-
stance and its corresponding virtual centroid are
treated as a positive pair, reinforcing the cluster
structure in the representation space. Following Liu
et al. (2022), we select relational exemplars at mul-
tiple granularities by computing cluster centroids
for different values of k using K-Means algorithm.
These exemplars dynamically adjust in response
to parameter updates in the relation encoder dur-
ing each training epoch. Since an instance either
belongs to a cluster or not, we use the following



clustering exemplar loss function:

Le = −
Dc∑
i=1

1

L

L∑
l=1

log
exp(hi

r · elj/τ)∑cl
q=1 exp(h

i
r · elq/τ)

,

(6)
where j ∈ [1, cl] represents the j-th cluster at gran-
ularity layer l, elj is relation representation of the
exemplar of instance i at layer l, and τ is a is a
temperature hyperparameter (Wu et al., 2018).

Our overall OW-SS loss function is defined as
the addition of classification loss Lc, labeled data
triplet margin loss Llm, and clustering exemplar
loss Le:

L = Lc + Llm + Le, (7)

which jointly optimizes relation classification and
clustering. The model architecture consists of a
BERT encoder followed by a fully connected linear
layer. The BERT encoder is fine-tuned using Eq. 7,
while the linear layer parameters are updated based
on Eq. 4.

4.4 Inference

During inference, each instance is encoded using
the trained model to obtain its relation represen-
tation and predicted label. If the predicted label
corresponds to a known relation, it is directly ac-
cepted as the final result. However, since novel
relations are trained with weak labels, their pre-
dicted labels may not be accurate. Therefore, we
leverage relation representations for novel relations
instead. Specifically, we employ Faiss K-Means
clustering algorithm (Johnson et al., 2021), an ef-
ficient implementation of K-Means optimized for
large-scale and high-dimensional data, to cluster
these relation representations and assign relations
based on the clustering results.

4.5 Data Augmentation

Several studies have demonstrated that data aug-
mentation can significantly enhance the perfor-
mance of RE models (Liu et al., 2021, 2022;
Wang et al., 2023). In this work, we apply the
data augmentation technique proposed by Wang
et al. (2023), which leverages within-sentence pairs
augmentation and augmentation through cross-
sentence pairs extraction to increase the diversity
of positive pairs.

5 Experiments

5.1 Datasets
Following Hogan et al. (2023), we adopt FewRel
(Han et al., 2018), TACRED (Zhang et al., 2017),
and Re-TACRED (Stoica et al., 2021) datasets to
train and evaluate our model. To simulate the
OpenRE task in real-world scenarios, we assign
|Cnovel| = 6 relations as novel relations for each
dataset, and the remaining relations are considered
as known relations. For each known relation, we al-
locate half of its instances to the labeled dataset Dl.
The unlabeled dataset Du consists of the remaining
half known instances along with all instances from
novel relations.

FewRel dataset includes additional relation hi-
erarchies. To challenge the generalizability of
OpenRE models, we assign each instance its top-
level relation as the ground-truth label. We identify
six single relations without a parent and designate
them as novel relations. For TACRED and Re-
TACRED datasets, novel relations are randomly
selected from all relations. For more details about
each dataset’s split, see Table 1 and Appendix A.1.

Dataset |Cknown| |Dl| |Cu| |Du|
FewRel 35 22050 41 26250

TACRED 35 10074 41 11692
Re-TACRED 33 15586 39 18082

Table 1: Statistics of labeled and unlabeled datasets.

5.2 Baselines
We compare the proposed model MixORE with the
following state-of-the-art OpenRE methods: (1)
ORCA (Cao et al., 2022), (2) MatchPrompt (Wang
et al., 2022), (3) TABs (Li et al., 2022), (4) Hi-
URE (Liu et al., 2022), (5) AugURE (Wang et al.,
2023), and (6) KNoRD (Hogan et al., 2023). Ex-
cept for KNoRD, these baselines are not inherently
designed for the generalized OpenRE setting and
therefore require extensions. The extended base-
lines and related modifications are discussed as
follows.

ORCA: As a computer vision model designed for
a similar generalized open-world setting, ORCA
does not require structural modifications. It is
adapted to the relation extraction task by replac-
ing ResNet with DeBERTa (He et al., 2021) and
generating relation representations.

MatchPrompt′ and TABs′: The OpenRE meth-
ods MatchPrompt and TABs are inherently limited



Dataset Method P R F1 B3 V-measure ARIPrec. Rec. F1 Hom. Comp. F1

FewRel

ORCA 0.6095 0.6328 0.6210 0.6347 0.4823 0.5481 0.6335 0.4848 0.5492 0.4318
MatchPrompt′ 0.7575 0.6271 0.6862 0.3031 0.8196 0.4426 0.4036 0.7599 0.5272 0.2394

TABs′ 0.7296 0.6955 0.7121 0.9193 0.7125 0.8028 0.9088 0.7071 0.7953 0.7746
HiURE∗ 0.4441 0.4260 0.4349 0.9660 0.8147 0.8838 0.9615 0.8042 0.8758 0.8735

AugURE∗ 0.5005 0.4770 0.4884 0.9720 0.7914 0.8723 0.9647 0.7941 0.8711 0.8568
KNoRD 0.7701 0.7775 0.7738 0.8230 0.6587 0.7318 0.8286 0.6519 0.7297 0.6945
MixORE 0.8606 0.8067 0.8328 0.9585 0.8426 0.8968 0.9490 0.8206 0.8802 0.8817

TACRED

ORCA 0.6845 0.7534 0.7173 0.7501 0.4751 0.5817 0.7381 0.4696 0.5740 0.4622
MatchPrompt′ 0.7145 0.5989 0.6516 0.9357 0.6046 0.7345 0.9288 0.6468 0.7626 0.7159

TABs′ 0.7650 0.8175 0.7904 0.8908 0.5462 0.6772 0.8937 0.6214 0.7331 0.6647
HiURE∗ 0.4976 0.4699 0.4831 0.8908 0.7289 0.8003 0.9010 0.7520 0.8194 0.7953

AugURE∗ 0.4989 0.4751 0.4867 0.8966 0.7743 0.8309 0.9071 0.7718 0.8340 0.8001
KNoRD 0.8404 0.8638 0.8519 0.8860 0.6778 0.7680 0.8967 0.7033 0.7883 0.7193
MixORE 0.8624 0.9052 0.8833 0.8973 0.8429 0.8682 0.9081 0.8182 0.8599 0.8473

Re-TACRED

ORCA 0.6578 0.7520 0.7018 0.6782 0.7810 0.7260 0.6388 0.6783 0.6579 0.5552
MatchPrompt′ 0.7160 0.5564 0.6262 0.9875 0.5416 0.6995 0.9805 0.6301 0.7672 0.6223

TABs′ 0.5976 0.6056 0.6015 0.9715 0.5054 0.6649 0.9653 0.6136 0.7503 0.5582
HiURE∗ 0.4341 0.4041 0.4185 0.9721 0.7174 0.8253 0.9694 0.7250 0.8294 0.8494

AugURE∗ 0.4551 0.4313 0.4429 0.9942 0.7575 0.8596 0.9908 0.7639 0.8625 0.8767
KNoRD 0.8493 0.8853 0.8669 0.9698 0.4763 0.6389 0.9583 0.5903 0.7306 0.5081
MixORE 0.8972 0.9349 0.9156 0.9779 0.7918 0.8750 0.9718 0.7733 0.8613 0.8925

Table 2: Performance of all methods on FewRel, TACRED, and Re-TACRED datasets. Precision (P), Recall (R),
and F1 score are reported on ground-truth known instances. B3, V-measure, and ARI evaluate the clustering
performance on ground-truth novel instances. The details of baseline methods can be found in Sec. 5.2.

in their ability to differentiate between known and
novel instances within unlabeled data. To address
this, we treat all relations as novel and allow these
models to effectively cluster the unlabeled data. We
then apply the Hungarian Algorithm (Kuhn, 2010)
to align some clusters with known relations, en-
abling performance evaluation on both known and
novel relations.

HiURE∗ and AugURE∗: The original HiURE
and AugURE models both operate in an unsuper-
vised manner. For fair comparisons, we incorporate
a supervised cross-entropy loss in addition to their
overall loss function to help fine-tune their relation
encoders. Similarly, we leverage the Hungarian
Algorithm to assign clusters to known relations.
Additionally, we exclude the use of ChatGPT in
the AugURE model.

5.3 Evaluation Metrics

We evaluate the model performance on the un-
labeled dataset Du. For instances belonging to
ground-truth known relations, we measure the per-
formance using precision, recall, and F1 score. For
ground-truth novel relation instances, we evaluate
clustering performance using B3 (Bagga and Bald-
win, 1998), V-measure (Rosenberg and Hirschberg,
2007), and Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985). For all of these metrics, higher

values indicate better performance.

• B3 precision and recall measure the quality
and coverage of relation clustering, respec-
tively. B3 F1 score is computed to provide
a balanced evaluation of clustering perfor-
mance.

• V-measure is another widely used metric for
evaluating clustering quality. Unlike B3,
which treats each instance individually, V-
measure evaluates both intra-cluster homo-
geneity and inter-cluster completeness, offer-
ing a more comprehensive assessment of clus-
tering performance by considering the overall
structure of the clusters.

• Adjusted Rand Index (ARI) measures the level
of agreement between the clusters produced
by the model and the ground truth clusters. It
ranges from [−1, 1], where a value close to 1
indicates strong agreement, 0 represents ran-
dom clustering, and negative values suggest
disagreement.

5.4 Main Results
We evaluate MixORE against state-of-the-art base-
line models on the FewRel, TACRED, and Re-
TACRED datasets. Additional implementation de-
tails are provided in Appendix A.2. For all models,



Method P R F1 B3 V-measure ARIPrec. Rec. F1 Hom. Comp. F1
MixORE 0.8606 0.8067 0.8328 0.9585 0.8426 0.8968 0.9490 0.8206 0.8802 0.8817

− NRD (pred_known) 0.7374 0.8440 0.7871 - - - - - - -
− NRD (pred_novel) - - - 0.9709 0.8065 0.8807 0.9612 0.8016 0.8741 0.8651
− Continual Learning 0.8484 0.8056 0.8264 0.8573 0.7830 0.8134 0.8648 0.7746 0.8154 0.7516
− Clustering Loss Le 0.8440 0.8063 0.8246 0.9373 0.7972 0.8615 0.9256 0.7771 0.8448 0.8382

Table 3: Ablation study on FewRel dataset.

the average performance of two random runs is
reported. The main results are shown in Table 2.

On ground-truth known relations, MixORE con-
sistently outperforms the baseline models across
all datasets, achieving the highest precision, recall,
and F1 score. Notably, MixORE surpasses the
previous best OpenRE model, KNoRD, by 5.90%,
3.14%, and 4.87% in F1 score on FewRel, TA-
CRED, and Re-TACRED, respectively. This high-
lights the effectiveness of MixORE in improving
the classification performance of known relations.

In novel relation clustering, MixORE demon-
strates competitive performance, consistently rank-
ing among the top-performing models. Although
other baselines occasionally achieve higher scores
on certain metrics, MixORE exhibits the strongest
overall performance, especially on the TACRED
dataset, where it attains the highest B3 F1 score,
V-measure F1 score, and ARI. Compared to the
second-best model, AugURE∗, MixORE achieves
improvements of 3.73%, 2.59%, and 4.72% in
these metrics on the TACRED dataset, respectively.

These results suggest that MixORE effectively
captures meaningful relation representations while
maintaining a balance between known relation clas-
sification and novel relation clustering.

5.5 Ablation Study

To evaluate the contribution of different compo-
nents, we conduct an ablation study by systemati-
cally excluding specific components. The results
on FewRel dataset are presented in Table 3.

To assess the impact of the novel relation de-
tection (NRD) module, we remove all the weakly-
labeled novel instances from the training set (re-
ferred to as “− NRD”). Without NRD, the model
cannot distinguish between known and novel rela-
tions in the unlabeled data, so we present the results
as two separate settings: (1) pred_known, where
the model assumes all relations are known and per-
forms classification on the unlabeled data, and (2)
pred_novel, where the model treats all relations
as novel and performs clustering using K-Means

algorithm. Subsequently, setting (1) and setting
(2) are evaluated against ground-truth known and
novel instances, respectively. The results reveal
that excluding NRD leads to a notable -4.57% drop
in the F1 score of known relation classification and
a slight decline in novel relation clustering perfor-
mance. This indicates that the weak labels play
an essential role in enhancing the discriminative
power on the relation classification task.

We also evaluate the performance of MixORE
without the continual learning paradigm, where
the model is initially provided with both labeled
data and the weakly-labeled novel instances (re-
ferred to as “− Continual Learning”). As a result,
we observe a minor decrease in known relation
classification performance and a significant drop
(-8.34%, -6.48%, and -13.01% in B3 F1 score, V-
measure F1 score, and ARI, respectively) in the
clustering performance of novel relations. These
results demonstrate that continual learning allows
MixORE to use previously acquired knowledge to
more effectively learn novel relations, making it
well-suited for dynamic and evolving tasks.

To study the advantage of incorporating data dis-
tribution, we exclude the clustering exemplar loss
function Le from MixORE’s parameter updates
(referred to as “− Clustering Loss Le”). The re-
sults show a small decrease in the classification
performance of known relations. For novel relation
clustering, we see a performance change of -3.53%,
-3.54%, and -4.35% in B3 F1 score, V-measure F1
score, and ARI, respectively. This suggests that
considering data distribution is beneficial for both
known relation classification and novel relation
clustering tasks.

5.6 Analysis of Clustering-Derived Weak
Labels

MixORE leverages novel relation detection (Sec.
4.2) to generate weak labels for novel relations.
A natural concern is the potential propagation of
clustering errors to final model performance. To
better understand this dependency, we evaluate the



quality of the weak labels by measuring the number
of novel relations successfully identified and cluster
purity. Each dataset contains six novel relations,
and the results are summarized in Table 4.

Dataset # Identified Novel Relations Purity
FewRel 5 0.608

TACRED 3 0.556
Re-TACRED 3 0.636

Table 4: Quality of Clustering-Derived Weak Labels.

Cluster purity is calculated as:

Purity =
1

No

|Cnovel|∑
i=1

max
j

|Ci ∩ Lj | , (8)

where No is the total number of detected outliers,
Ci is the set of data points in cluster i, and Lj is the
set of data points belonging to ground-truth class
j. While the weak labels are not perfectly accurate,
they provide useful guidance for modeling novel
relations. We observe strong and consistent final
performance across all datasets despite moderate
purity levels. This suggests MixORE’s robustness
to label noise and highlights its ability to learn
meaningful representations even under imperfect
supervision.

6 Conclusion

This paper explores the generalized OpenRE task
and introduces MixORE, a two-phase framework
that jointly optimizes relation classification and
clustering. MixORE effectively learns discrimi-
native features for known relations while progres-
sively integrating novel information from unlabeled
data. Experiments on three benchmark datasets
show the superiority of MixORE over competitive
baselines, highlighting its effectiveness in balanc-
ing known relation classification and novel relation
discovery. Our work advances the OpenRE task by
introducing a more adaptable approach and offer-
ing valuable insights for both future research and
real-world applications.

Limitations

While our proposed framework demonstrates
strong performance in generalized OpenRE, it has
certain limitations that call for further exploration.

One limitation of our approach is that it cannot
automatically determine the number of novel re-
lations present in the unlabeled data. Instead, it
relies on a pre-defined number of clusters, which

may not always align with the true distribution of
novel relations. Future work could explore adaptive
clustering techniques to dynamically estimate the
number of novel relations, enhancing the flexibility
and applicability of our framework.

Another limitation stems from our implicit as-
sumption that relations are independent of each
other. In reality, relations may have hierarchical
dependencies, such as being child or parent rela-
tions of other relations. Our current method does
not explicitly model these dependencies, which
may lead to suboptimal performance. Future re-
search could incorporate relational hierarchies into
the learning process, enabling a more comprehen-
sive understanding of relation dependencies and
improving the model’s ability to handle complex
relation structures.
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A Appendix

A.1 Novel Relations in Each Dataset

The six single relations without a parent we used
as FewRel novel relations are as follows:

“publisher”
“nominated for”

“instrument”
“notable work”

“competition class”
“position played on team/speciality”

The randomly selected novel relations from TA-
CRED are as follows:

“per:city_of_birth”
“org:stateorprovince_of_headquarters”

“org:member_of”
“per:date_of_death”
“per:city_of_death”

“per:children”

The randomly selected novel relations from Re-
TACRED are as follows:

“per:siblings”
“org:founded_by”

“org:city_of_branch”
“per:countries_of_residence”

“per:date_of_birth”
“per:city_of_death”

A.2 Implementation Details

In the first phase, we set the weighting coefficient
to λ = 100. During the second phase, we optimize
the loss using AdamW (Loshchilov and Hutter,
2019). The encoder is warmed up for 2 epochs and
continually trained for 5 epochs, all with a learning
rate of 1e − 5. We set the margin for the triplet
margin loss on labeled data to γ = 0.75. For the
clustering exemplar loss function, we use a temper-
ature parameter of τ = 0.02 and include J = 10
negative examples. We implement the granularity
layer with L = 4, setting cl ∈ [16, 32, 41, 64] for
FewRel and TACRED, and cl ∈ [16, 32, 39, 64] for
Re-TACRED. All experiments are conducted on an
NVIDIA Tesla V100 GPU.

This work and its associated artifacts are licensed
under the Creative Commons Attribution 4.0 In-
ternational (CC BY 4.0) License, allowing unre-



stricted use, distribution, and reproduction, pro-
vided the original work is properly cited using stan-
dard academic practices.
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