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Abstract

State-of-the-art machine learning systems are vulnerable to

small perturbations to their input, where “small” is defined

according to a threat model that assigns a positive threat to

each perturbation. Most prior works define a task-agnostic,

isotropic, and global threat, like the ℓp norm, where the

magnitude of the perturbation fully determines the degree

of the threat and neither the direction of the attack nor its

position in space matter. However, common corruptions

in computer vision, such as blur, compression, or occlu-

sions, are not well captured by such threat models. This

paper proposes a novel threat model called Projected

Displacement (PD) to study robustness beyond existing

isotropic and global threat models. The proposed threat

model measures the threat of a perturbation via its align-

ment with unsafe directions, defined as directions in the input

space along which a perturbation of sufficient magnitude

changes the ground truth class label. Unsafe directions are

identified locally for each input based on observed training

data. In this way, the PD-threat model exhibits anisotropy

and locality. Experiments on Imagenet-1k data indicate that,

for any input, the set of perturbations with small PD threat

includes safe perturbations of large ℓp norm that preserve

the true label, such as noise, blur and compression, while

simultaneously excluding unsafe perturbations that alter

the true label. Unlike perceptual threat models based on

embeddings of large-vision models, the PD-threat model

can be readily computed for arbitrary classification tasks

without pre-training or finetuning. Further additional task

information such as sensitivity to image regions or concept

hierarchies can be easily integrated into the assessment of

threat and thus the PD threat model presents practitioners

with a flexible, task-driven threat specification that alleviates

the limitations of ℓp-threat models.

1. Introduction

Modern machine learning (ML) systems are nearing

widespread deployment in civilian life, and hence a com-
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prehensive understanding of their security vulnerabilities is

necessary [46]. One such vulnerability concerns the abil-

ity of a malicious adversary to tamper with predictions by

adding small imperceptible corruptions referred to as adver-

sarial perturbations [22, 42]. There is by now overwhelming

evidence that carefully crafted adversarial perturbations can

foil the prediction of state-of-the-art machine learning clas-

sifiers, i.e. they are not adversarially robust [6, 8]. Such

vulnerabilities have been observed in a wide variety of ap-

plications like computer vision [1, 49], speech recognition

[37, 55], autonomous driving [5, 45], and more. The goal of

designing safe and reliable ML systems remains incomplete

[4, 11] despite significant investment [23, 24, 33]. Often,

strategies that intend to foil performance, i.e. adversarial

attacks [6, 7, 22, 31, 44], have proven more successful than

strategies aimed at mitigating vulnerabilities, i.e. adversarial

defenses [3, 9, 34, 48, 52].

Meaningfully evaluating the adversarial robustness of

a machine learning system requires a formal specification

of a threat function, and an associated threat model that

limits the scope of malicious adversaries [20]. Informally,

a threat function d : R
d × R

d → R
g0 measures the

threat1 represented by a corruption δ ∈ R
d towards al-

tering the true label at input x ∈ R
d as d(x, δ). We let

S(x, d, ε) := {δ ∈ R
d | d(x, δ) f ε} denote the ε-sublevel

set of perturbations where the threat d is measured w.r.t. in-

put x. A threat model (d, ε) is a pair of a threat function

d and a permissible threshold ε that together define the set

of permissible perturbations S(x, d, ε). Under the threat

model (d, ε), the robust accuracy of a classifier h ∈ H is

the probability that the label prediction at x is locally invari-

ant to corruptions within the permissible set S(x, d, ε), see

Definition 2 for an explicit definition.

One of the most commonly used threat models is

the ℓp-threat model (dp, ϵ), corresponding to the choice2

dp(x, δ) := ∥δ∥p. The threat function dp is task-agnostic,

easy to evaluate, and induces a compact sub-level set

S(x, dp, ε) that allows efficient projection. Hence, the ℓp-

threat model (dp, ε) presents a natural starting point for in-

1The flexibility to define threat w.r.t. input x is critical to our work.
2For any vector δ ∈ Rd, the ℓp norm ∥·∥p for p g 1 is defined as

∥δ∥p :=
(
∑

i |¶i|
p
) 1

p .
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• x+ δ1

• x+ δ2
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• x+ tδ3

• x+ tδ4

dPD(x, tδ1) = 0.82

dPD(x, tδ2) = 3.16dPD(x, tδ4) = 0.38

dPD(x, tδ3) = 1.30

Figure 1. Corruptions with equal ℓ∞-threat, ∥δ1∥∞ = ∥δ2∥∞ =

∥δ3∥∞ = ∥δ4∥∞, but varying PD-threat.

vestigating robustness. RobustBench [8] maintains an up-

to-date leaderboard of the robust accuracies of benchmark

models under (dp, ε). Unfortunately, the progress towards

achieving perfect adversarial robustness (i.e. 100% robust

test accuracy) in RobustBench has plateaued in recent years.

Unlike supervised learning on clean data, scaling data, model

size and computing resources might be insufficient to bridge

the gap [4, 11]. Below we expand further on the fundamental

limitations of isotropic and global threat models.

1.1. Motivation: Specification of Threat Model

For image-based datasets, it is widely recognized that ℓp
norms are neither necessary nor sufficient for capturing per-

ceptual similarity [39, 40], which poses significant chal-

lenges for accurately evaluating robustness [26, 43]. In

Figure 1, x (at the center) is an image of class ROSE HIP

from the Imagenet-1k dataset, and x + δ1, x + δ2 are

two corrupted images equidistant (w.r.t. ℓ∞) from x, i.e.

∥δ1∥∞ = ∥δ2∥∞ = ε. Intuitively, both x+ δ1 and x+ δ2

share the same label as x, since its appearance still depicts

the fruit ROSE HIP. We refer to such perturbations that pre-

serve the class label as safe, while those that change it are

termed unsafe. Consider now moving further along these

directions to x + tδ1 and x + tδ2, for t > 1. These per-

turbed points are again equidistant from x, but while tδ1
does not alter the true label (i.e. it is safe), tδ2 does (and it is

unsafe). As a result, any threat model (d∞, t′ε) with t′ g t
necessarily incurs misspecification: any classifier h stable

to all perturbations in S(x, d∞, t′ε) produces an incorrect

prediction at x+ tδ2, i.e. h(x+ tδ2) = ROSE HIP. On the

other hand, shrinking the threat model is also futile, as then

the safe perturbation tδ1 is necessarily excluded.

This illustrates that standard ℓp-threat models are unable

to distinguish between the safe perturbations that preserve

the true label and the unsafe perturbations that alter the true

label. Hence, perfect robust accuracy under ℓp threat models

might be neither achievable nor desirable. Attempting to

resolve these limitations, Laidlaw et al. [32] formulate per-

ceptual threat models via neural perceptual metric based on

neural representations. Unfortunately (but unsurprisingly),

all neural perceptual distance metrics are themselves vulner-

able to adversarial attacks [17–19, 29].

1.2. Summary of Contributions

We propose a novel threat function called Projected Displace-

ment (PD), denoted by dPD (see Definition 7 for an explicit

description), that accounts for the local directional statis-

tics of the data via unsafe directions3 U(x) (Definition 6) at

each input x. For an input x with label y, any input x̃ with

label ỹ ̸= y represents the unsafe direction u := x̃−x

∥x̃−x∥
2

,

which will be estimated from observed training data. Then,

the degree of threat of each perturbation δ is the maximal

alignment with the set of unsafe directions: A large threat

dPD(x, δ) indicates that δ is well-aligned with an unsafe

direction u ∈ U(x). We highlight some key properties.

1. Disentangling safe vs unsafe perturbations. PD-threat

is able to distinguish between safe and unsafe perturba-

tions of equal ℓp norms. From Figure 1, different corrup-

tions (Gaussian noise tδ1, motion blur tδ3 and saturation

tδ4) applied to the original image x all have equal ℓ∞
norm of 240/255. Despite this, the true label of these

perturbed samples does not change, unlike that of cor-

ruption tδ2, which results in an image x + tδ2 with a

different class. For each perturbation tδi, the computed

values of PD threat in Figure 1 naturally reflect how close

they are to changing the class label. PD threat model is

competent with state-of-the-art neural perceptual threat

model DreamSim (denoted dDS) [15] for distinguishing

safe and unsafe perturbations (see Section 4).

2. Ease of use. As we will show, the sub-level set

S(x, dPD, ε) at each input x is convex, allowing for effi-

cient projections onto it. This enables a straightforward

plug-and-play mechanism for adapting existing adversar-

ial attacks to the PD-threat model. We incorporate such

an extension of AutoAttack [7] to evaluate the robustness

under the PD-threat model (dPD, ε) for state-of-the-art

robust classifiers registered at RobustBench [8].

3. Task-dependency. PD-threat models can readily inte-

grate additional task-relevant information via label anno-

tation, such as inter-class hierarchy (e.g. the Wordnet hier-

archy) or pixel annotation (e.g. segmentation masks)–see

Table 1– allowing for variations in the form of robustness

while retaining the above benefits (anisotropy, locality,

convex sub-level sets, and efficient projection).

1.3. Related Work

In this section, we highlight prior work that explores robust-

ness beyond ℓp-threat models.

3Directions refer to vectors u ∈ Rd with unit ℓ2 norm.
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PROPERTY FEATURES dp dDS [15] dPD

Degree of Threat Anisotropy, Locality 8 6 6

Label Annotation Inter-class Distance 8 ∼ 6

Pixel Annotation Segmentation 6 8 6

Table 1. Comparison of Threat Models

Common Corruptions. Neural networks are vulnerable to

image distortions (e.g. translation, rotation), common corrup-

tions (e.g. blur, noise), changes in lighting, view, depth, etc.

[12, 16, 25, 27, 28, 36, 50]. Note that these are known safe

perturbations as they preserve the true label, even if they

have large ℓp norms. To measure this vulnerability, [25] for-

malized the notion of corruption robustness and presented a

standardized benchmark dataset, Imagenet-C containing 19

styles of common image corruptions (categorized into noise,

blur, weather, and digital). Training on Imagenet-C, or on

other augmentations, can result in over-fitting, particularly

to specific types of corruptions [36]. Additionally, [36] in-

troduced a newdataset, Imagenet-C̄, with 10 new corruption

styles identified from a larger set of real-world corruptions.

These will be useful later in our experiments.

Perceptual Distance Metrics. Since ℓp provides inaccurate

approximations to perceptual distances, several works have

attempted to propose alternatives, such as SSIM [47], FSIM

[53], and HDR-VDP-2 [35]. With the advent of learning

data-driven representations, [15, 54] hail the effectiveness

of internal representations of neural classifiers in capturing

perceptual similarity. DreamSim [15], the current state-of-

the-art among the neural perceptual distance metrics, is fine-

tuned on human perceptual similarity judgements.

2. Key Definitions

Notation. We denote scalar quantities in Roman letters and

vectors in boldface Roman letters. The empty set is given

by ∅. For any set V , we denote by 2V the power set of all its

subsets. For any set V ¢ R
d and a vector v ∈ R

d, V − {v}
is the Minkowski difference, i.e. the set {w− v | ∀ w ∈ V}
(subtracting v from all elements of V). We denote the unit

ball and the unit sphere in R
d w.r.t. the ℓp norm by B

d
p :=

{v ∈ R
d | ∥v∥p f 1} and S

d
p := {v ∈ R

d | ∥v∥p = 1},

respectively. A direction is an element of the unit sphere S
d
2.

2.1. Supervised Learning

We consider a supervised learning task with a bounded input

domain X ¢ R
d and labels Y = {1, . . . , C} such that

each input x is assigned a label by a deterministic true4

labeling function h⋆ : X → Y . The true labeling function h⋆

partitions the input domain X := ∪yXy , where Xy is the set

of inputs assigned label y, i.e. Xy = {x ∈ X | h⋆(x) = y}.

4Realizability in the context of adversarial robustness has also been

studied in Awasthi et al. [2], Tramèr et al. [43].

We assume that the partition sets X1, . . . ,XC are nonempty

and open in order to avoid degeneracies.

We let DX be a data distribution over the input domain X ,

and DZ the extension5 of DX to a distribution over the joint

domain Z := X ×Y using the true labeling function h⋆. The

true labeling function h⋆ and the marginal input distribution

DX are unknown, but we observe finite labeled training data

S := {(x(1), y(1)), . . . , (x(m), y(m))}
i.i.d.
∼ (DZ)

m. For any

classifier h : X → Y , accuracy is the probability of correctly

labeling a random input, i.e. Acc(h) := Probx∼DX
[h(x) =

h⋆(x)]. The task of supervised learning seeks a classifier h̄
in a hypothesis class H ¢ {h : X → Y} with high accuracy.

2.2. Adversarial Perturbations

In this article, we formally define adversarial perturbations

through the lens of the partition sets Xy .

Definition 1 (Adversarial Perturbation). A perturbation δ ∈
R

d is adversarial for predictor h at input x if it is,

1. Domain constrained: x+ δ ∈ X , i.e. δ ∈ X − {x}.

2. Label invariant: x+ δ has the same true label as x, i.e.

h⋆(x+ δ) = h⋆(x).
3. Adversarial: x+δ is misclassified by h, i.e. h(x+δ) ̸=

h⋆(x+ δ).

The labels assigned by h⋆ are considered the ground truth

and thus h⋆ has no adversarial perturbation at any input. The

presence of adversarial perturbations indicates an imperfect

labeling function h. Based on Definition 1, perturbations

δ ∈ R
d such that x+ δ /∈ X are not deemed adversarial as

the classifier h is not required to predict labels outside the

input domain. On the other hand, for x with true label y, a

perturbation δ such that h⋆(x+δ) ̸= y cannot be adversarial

at x as the corrupted input x + δ has a different true label.

Finally, if h predicts the label at x incorrectly, then 0 is

already an adversarial perturbation.

2.2.1. Adversarial Robustness via Threat Specification

A threat function d : X ×R
d → R

g0 presents practitioners a

way to specify the kind of robustness suitable for a particular

learning task. The ε-sublevel set of a threat function d at an

input x, S(x, d, ε) := {δ ∈ R
d | d(x, δ) f ε}, defines the

set of perturbations with a threat at most ε.

Definition 2 (Threat Model, Robust Accuracy). A threat

model (d, ε) is a pair of threat function d and permis-

sible threshold ε that together define the set of permis-

sible perturbations at each input x as the sublevel set

S(x, d, ε). Under the threat model (d, ε), the robust accu-

racy RobustAcc(h, (d, ε)) of a classifier h ∈ H is the proba-

bility of stable prediction upon corruptions within the permis-

sible set, i.e. Probx
[

∀ δ ∈ S(x, d, ε), h(x+ δ) = h⋆(x)
]

.

5Sampling z ∼ DZ is equivalent to sampling (x, h⋆(x)) where x ∼
DX .
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g
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Figure 2. An illustration of unsafe directions, and sub-level sets of

the PD-threat.

Thus we define robustness as the stability6 of a classifier’s

prediction under perturbations within the permissible sets.

The task of robust supervised learning seeks a classifier in

H with high robust accuracy.

Definition 3 (ε-robust). A classifier h ∈ H is ε-robust at

x w.r.t. a threat function d if, ∀ δ ∈ S(x, d, ε) ∩ (X −
{x}), we have h(x+ δ) = h⋆(x).

An ε-robust classifier predicts the same label h⋆(x) at

x+δ for any corruption δ within the ε-sublevel set S(x, d, ε).
We emphasize that robust accuracy and ε-robustness are mea-

sures of stability rather than correctness. In this way, each

threat model (d, ε) implicitly encodes a trade-off between

stability and correctness. [13]. Requiring more stability than

necessary can lead to incorrect predictions as in Figure 1.

3. Threat specification beyond ℓp norms

In this section, we design a principled threat model from first

principles that is local and anisotropic. We first theoretically

develop our exact PD⋆-threat model assuming knowledge

of the decision boundaries of the true labeling function h⋆

(Section 3.1), and later relax this assumption by developing

an approximation leveraging the observed training data and

obtaining a practical PD-threat (Section 3.2).

3.1. Measuring threat with class partition

Definition 4 (Unsafe Directions). At each input x, a direc-

tion u ∈ S
d
2 is called unsafe if there exists a step size t g 0

such that x+ tu ∈ X and h⋆(x+ tu) ̸= h⋆(x). We denote

the set of all unsafe directions at x as U⋆(x).

The minimum step size needed to alter the true label

can vary across unsafe directions. Further, U⋆(x) varies

6Note as per Definition 2, robust accuracy measures stability rather

than correctness since we aren’t evaluating probability of the event

{∀ δ ∈ S(x, d, ε), h(x+ δ) = h⋆(x+ δ)}.

with input. Directions v ∈ Bd
2 ∩ (U⋆(x))c are called safe,

since moving along them (whilst domain constrained) cannot

alter the true label. We note that adversarial perturbations

(Definition 1) are a characteristic of a learned predictor h ∈
H while unsafe directions are a characteristic of the true

labeling function h⋆. We propose to measure threat of a

perturbations δ using U⋆(x).

Definition 5 (PD⋆-threat). Let x ∈ X and let δ ∈ R
d be a

perturbation. The exact projected displacement threat func-

tion d⋆PD is defined as the maximum scaled displacement

of the Euclidean projection of the perturbation δ over all

unsafe directions,

d⋆PD(x, δ) := sup
u ∈ U⋆(x)

1

g⋆(x,u)
max (ïδ,uð, 0) (1)

where g⋆(u,x) is called the normalization function,

g⋆(x,u) := sup
R≥0

M s.t. x+ tu ∈ Xh⋆(x) ∀ t ∈ [0,M ].

At each x, the normalization function g∗(x,u) captures the

distance along the direction u to the boundary of the set

Xh⋆(x) and enables a comparison of the threat along differ-

ent unsafe directions (see Figure 2). In (1), the supremum

ensures that we do not underestimate the threat along a direc-

tion that potentially alters the true label. We highlight two

key characteristics.

Anisotropy. The threat function d⋆PD is anisotropic (the

threat of a perturbation δ at input x depends on both the

direction and magnitude of the perturbation) and does not

correspond to a norm in general, unlike ℓp threat models. For

a fixed x, the threat along different directions u varies based

on the alignment with unsafe directions U⋆(x). In particular,

d⋆PD can differentiate between the perturbations δ and −δ.

Locality. The threat function d⋆PD exhibits locality; i.e. a

fixed perturbation δ has varying threat d⋆PD(x, δ) depending

on the input x. Thus the permissible set varies with input7,

enabling an input-aware assessment of threat. We note that

weighted ℓp norms [14] can be anisotropic but not local.

3.1.1. Stability vs Correctness Trade­off

Since the normalization function g⋆ accounts for the class

partition {Xc}
C
c=1, the threat function d⋆PD has a principled

trade-off between stability and correctness. Specifically, the

true labeling function h⋆ exhibits a high level of robustness

under the PD⋆-threat8.

Theorem 1. The true labeling function h⋆ is 1-robust at

any input x ∈ X w.r.t. the threat d⋆PD. Additionally, if a

classifier h is not 1-robust at all inputs then there exists an

input x misclassified by h.

7Unlike ℓp threat models where S(x, dp, ε) = εBd
p ∀ x ∈ X .

8The proofs of all our results can be found in Section 8.
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In other words, for any pairs of inputs x, x̃ ∈ X with

different labels, the threat d⋆PD(x, x̃ − x) is always larger

than 1. Thus seeking h ∈ H that is 1-robust at any input

under d⋆PD is not at odds with learning h⋆.

3.2. Measuring threats with observed data

Computing d⋆PD(x, ·) from Definition 5 requires explicitly

characterizing the set of unsafe directions U⋆(x) and the

normalization function g⋆(u,x), both of which need knowl-

edge of the partition sets {Xc}
C
c=1 induced by h⋆. In this

subsection, we propose a heuristic empirical approximation.

Approximating U⋆(x). We have access to training data S

and incomplete information on the partition sets {Xc}
C
c=1 via

the partition S = {Sc}
C
c=1, where Sc := {x ∈ X | (x, c) ∈

S} ¢ Xc. At every training input x ∈ Sy for each input

x̃ ∈ Sc (for c ̸= y), the direction u = x̃−x

∥x̃−x∥
2

is an unsafe

direction. For computational considerations, we choose a

collection
⋃

c Sc,k of representative subsets Sc,k ¢ Sc of

size k. As a heuristic choice, we select subsets Sc,k by

solving a discrete-k-center optimization problem (detailed

in Sec. 9.1). We are now ready to define an observed subset

of the unsafe directions based on Sc,k.

Definition 6 (Observed Unsafe Directions). For each x ∈
Sy , we identify a set of (C− 1)k-observed unsafe directions

based on the representative subsets Sc,k,

Uk(x) :=

{

x̃− x

∥x̃− x∥2

∣

∣

∣
x̃ ∈ ∪

c ̸=y
Sc,k

}

¢ U⋆(x).

Approximating g⋆(x,u). At any x ∈ Xy, for each u ∈
Uk(x), there exists x̃ ∈ ∪c ̸=ySc,k such that u = x̃−x

∥x̃−x∥
2

.

normalization function can be bounded as g⋆(x,u) f
∥x̃ − x∥2, since h⋆(x̃) ̸= h⋆(x). In practice, we use the

heuristic g´(u,x) := ´ ∥x̃− x∥2, where ´ ∈ (0, 1) is a

scaling hyper-parameter.

Definition 7 ((k, ´)-PD threat). Let x ∈ X and let δ ∈
R

d be a perturbation. The projected displacement threat is

defined as

dPD,k,´(x, δ) := max
u ∈ Uk(x)

1

g´(x,u)
max (ïδ,uð, 0) .

The quality of the approximation of the exact threat d⋆PD

by dPD,k,´ depends on the choice of representative unsafe

directions Uk(·) via the k-subset Sc,k and on the heuristic

choice of the approximate normalization g´ , via the scaling

hyper-parameter ´. In this article, we fix (k, ´) = (50, 1
2 )

as the default hyper-parameters (see Section 9.3 for an ex-

panded discussion on choosing hyper-parameters (k, ´) for

any learning task). For brevity, we refer to the observed

unsafe directions (Definition 6), the heuristic normaliza-

tions and the PD threat (Definition 7) as U(x), g(x, δ) and

dPD(x, δ), respectively.

We now state a few important properties of our proposed

empirical approximation dPD. Clearly dPD inherits the

anisotropy and locality properties of the exact threat d⋆PD.

Growth and Sensitivity. The growth of PD threat along

any direction is linear, i.e., dPD(x, tδ) = tdPD(x, δ), and

the rate of growth scales inversely with the (approximate)

normalization. In particular, for a fixed x, dPD(x, ·) is
(

maxu∈U(x) 1/g(x,u)
)

-Lipschitz w.r.t ℓ2 norm.

Projection onto sublevel sets. For any threat model

(d, ε), the ability to efficiently project a perturbation δ onto

the sub-level sets S(d,x, ε) enables one to leverage a wide

literature on gradient-based attacks to conduct a rigorous

evaluations of adversarial robustness. The sublevel sets of

PD threat model, i.e., S(x, d, ε), are convex for all x for

all ϵ g 0. In particular, S is the intersection of at most

k · C half-spaces characterized by unsafe directions U(x),
as S(x, dPD, ε) = ∩

u∈U(x)
{δ ∈ R

d | ïδ,uð f ε · g(x,u)}.

Further, the sub-level sets are monotonic w.r.t. the threshold,

i.e., for ε1 g ε2 g 0, S(x, dPD, ε2) ¦ S(x, dPD, ε1).

Linearity of growth and convexity of the sub-level sets

together provide a straightforward approximate projection

algorithm, since for any perturbation δ, the scaled pertur-

bation ε
dPD(x,δ)δ lies in the permissible set S(x, dPD, ε).

Further, due to the convexity of sublevel sets, an exact pro-

jection (in ℓ2 distance) can be computed using the iterative

greedy scheme outlined in the Algorithm 2 (deferred to the

appendix). Thus the PD threat provides the practitioner with

the flexibility of a fast approximate projection or an exact

projection at the expense of increased computation. Together,

these projection algorithms enable immediate adaptation of

existing adversarial attacks to our proposed threat model.

We note that efficient exact projection algorithms are also

known for ℓp threat models. However, for neural perceptual

threat models such as DreamSim [15], the sub-level sets

are non-convex and a projection can only be approximately

computed [32] and is typically not computationally efficient.

4. Experiments on Real World Data

In this section we illustrate the qualitative and quantitative

characteristics of the PD-threat in comparison to existing

threat models. We evaluate 4 threat functions: d∞, d2, dDS,

and our proposed PD threat function dPD, where dDS is

the neural perceptual threat function dDS(x, x̃ − x) :=
DreamSim(x, x̃) from DreamSim [15]. Note that we focus

on DreamSim due to its superior performance over other neu-

ral perceptual threat models [15], but the following compari-

son applies to any modern neural perceptual threat model.

Experimental Setup. We seek to measure the ability

of threat functions to distinguish between safe and unsafe

corruptions. The threat models dPD and dDS depend on the

Imagenet-1k training dataset S. All threat models are evalu-

ated on the Imagenet-1k validation dataset Sval. For any pair

9958



CATEGORY CORRUPTION STYLES

Noise Gaussian, Shot, Impulse, Speckle, Blue,

Brown, Perlin, Single-Frequency, Plasma

Blur Gaussian, Defocus, Glass, Motion,

Concentric Sine Waves, Caustic Refraction

Compression Pixelate, JPEG

Digital Brightness, Contrast, Saturate, Elastic

Transform

Weather Frost, Fog, Snow

Occlusion Spatter, Checkerboard Cutout, Sparkles,

Inverse Sparkles

Table 2. Categories of corruptions studied, from Imagenet-C [25]

and Imagenet-C̄ [36].

of labelled inputs (x, y), (x̃, c) ∈ Sval with distinct labels

(c ̸= y), the perturbation δ := x̃− x is an unsafe perturba-

tion at x. This way, we can evaluate the statistics of threat

under unsafe perturbations for each threat function. To char-

acterize threat under safe perturbations, we consider a set Ω
of 150 distinct common corruptions consisting of 30 styles

× 5 severity levels, i.e., severity ∈ {1, 2, 3, 4, 5} – the sup-

plementary material contains visual examples (see Figures 8

and 9), sourced from Imagenet-C [25] and Imagenet-C̄

[36] accompanied with their threat assessment.

For a specific corruption style such as Gaussian noise

and a severity level 5, we let ΩGaussianNoise,5 denote the

corresponding corruption function. To aid visualization, we

group the corruption styles into 6 distinct categories (listred

in Table 2) so that Ω := ∪i∈[5] Ωi where Ωi is the set of all

corruption styles at severity level i,

Ωi :=
(

Ωnoise,i∪Ωblur,i∪Ωcompression,i∪Ωdigital,i∪Ωweather,i∪Ωocclusion,i

)

.

Each individual corruption É ∈ Ω is applied to a sub-

set S̄ ¢ Sval of 5,000 images chosen uniformly at ran-

dom. For each threat function d ∈ {d∞, d2, dPD, dDS}
and corruption É ∈ Ω, for each image x ∈ S̄, we de-

note by avg(d, É), the average threat statistic, avg(d, É) :=
1
|S̄|

∑

(x,y)∈S d(x, É(x) − x), where É(x) is the corrupted

input and É(x)− x is the safe perturbation at x.

4.1. Disentangling Safe and Unsafe Corruption

We now measure the ability of threat models to distinguish

safe and unsafe corruptions. Each corruption É ∈ Ω de-

fines a point in Figure 3a having as the horizontal coordinate

avg(d∞, É) and avg(dPD, É) as the vertical coordinate, pro-

ducing a comparison of our PD threat to the ℓ∞-threat model.

Similarly, Figure 3b compares PD threat to the DreamSIM-

threat model.

A specification of threat model (d, ε) corresponds to the

choice of a horizontal line for dPD or a vertical line for (d∞

or dDS) in Figure 3. We note that a size-able set of common

corruptions incur large d∞ threat, in particular as large as

the unsafe corruptions (as indicated in Figure 1), thus any

vertical line in Figure 3a is bound to exclude such common

corruptions. In contrast, both dPD and dDS admit choices

of ε that exclude unsafe perturbations while including most

common corruptions. Hence, PD threat and DS threat are

able to disentangle safe and unsafe corruptions.

For each of the comparisons in Figure 3, we identify 4

quadrants I-IV, distinguishing between low-threat and high-

threat corruptions as measured by the corresponding threat

models. We define the quadrants by choosing thresholds of

1, 0.5, and 0.25 for dPD, d∞, and dDS, respectively9, and

comment on the qualitative behavior observed:

• Quadrant IV contains corruptions that are characterized

as low-threat by both threat models. As expected, almost

all corruptions having a low severity (1) lie in this region.

However, we already see deficiencies of the d∞ threat, as

some blur, noise, and occlusion corruptions of severity 1
in Figure 3a are not characterized as low-threat by at least

one of the threat models.

• Quadrant II contains corruptions that are characterized as

high-threat by both threat models. These include digital

and weather corruptions of high severity (5) as they tend

to remove most of the signal in the input.

• Quadrant I contains corruptions having low PD-threat but

high d∞ or dDS and showcases the resilience of our PD-

threat model to natural corruptions like blur and Gaussian

noise, which retain a lot of the information in the image

relevant to the classification task. Indeed, a visual inspec-

tion of these corruptions (see Section 10 in the Appendix)

reveals that even at a high severity, a human is able to

discern task-relevant information from the corrupted im-

ages, and hence these corruptions should be assigned a

low threat.

• Quadrant III contains corruptions with high PD threat but

low d∞ or dDS threat. We note that corruptions rate as

high threat by dPD are largely also rated highly by dDS.

Since the PD and DS threats are aligned, the corruptions

in Quadrant III in Figure 3a indicate that low d∞ is not

sufficient to characterize hard corruptions.

As a final point, we note that while the size of markers

in Figure 3 indicate the severity levels, different corruptions

of similar severity levels are qualitatively different. For

e.g, weather corruptions of severity level 5 are uniformly

harder than noise corruptions such as shot noise, Gaussian

noise. Figure 11 illustrates heatmap of average threat for

each corruption category across increasing severity. We

observe that both PD and DS threat exhibit largely monotonic

9These thresholds were chosen to approximately be half of the average

threat of unsafe perturbations that alter the true label. Admittedly, this binary

threshold is coarse, and the Appendix contains fine-grained qualitative

examples of corruptions of varying threat.
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increase across severity unlike d∞. At this point, we will

pause to summarize the benefits of PD-threat.

(a)

(b)

Figure 3. Comparison of Threat models w.r.t. various common

corruptions. The size of a marker represents the severity level.

PD vs DreamSim. The PD-threat compares well to the

DS-threat but does not require pre-trained large vision mod-

els or fine-tuning on a curated dataset of human percep-

tual similarity judgements. For real-world classification

tasks where perceptual similarity between pairs of input

is harder to quantify even with expert human annotators,

instantiation of high-quality neural perceptual distance met-

rics is harder. Further, unlike perceptual distance metrics

[15, 17, 18, 32, 54], the growth of the PD-threat is linear and

interpretable along any direction, the sub-level sets induced

by the PD-threat model are convex, and admit efficient pro-

jection algorithms and hence PD threat presents a promising

alternative.

5. Measuring threat with Task Annotation

We described two practical design choices for PD-threat

in Section 3.2: (1) a choice of the set of unsafe directions

U(x) at each input, and (2) a choice of normalization g(x,u)
for each unsafe direction. Next, we incorporate additional

task-relevant information to refine PD-threat further.

5.1. Segmentation­aware Threat Specification

Segmentation masks isolate regions of the input that con-

tain semantic information relevant to the class label, and

can be generated efficiently following recent advances in

foundational models for image segmentation [30, 38]. We

demonstrate a straightforward method to incorporate seman-

tic masks in the assessment of threat.

Definition 8 (PD-S threat). Let x ∈ X and let δ ∈ R
d. Let

a ∈ {0, 1}d be a boolean mask. The segmented PD threat,

dPD−S(x,a, δ) := max
u ∈ U(x)

1

gβ(x,u)
max (ïδ[a],u[a]ð, 0) .

Here the u[a] denotes a sub-vector whose indices are se-

lected by the boolean mask a. The threat model (dPD−S, ε)
is aligned with Xiao et al. [51]’s proposal to learn models

robust to adversarially chosen backgrounds.For each image,

we generate automatic masks by prompting SAM10 with

the center pixel coordinates. Figure 4 illustrates the differ-

ence between PD and PD-S threat on 2 corruptions that are

background-only and foreground-only respectively. PD-S

threat is oblivious to background corruption but more sensi-

tive to foreground corruption.

Original Image PD = 1.4

PD-S = 0.0

PD = 0.68

PD-S = 1.78

Figure 4. Comparison of threat on background vs foreground.

We note that ℓp threat models are also capable of inte-

grating segmentation masks as they are pixel-based, but it is

unclear if perceptual threat can account for pixel annotation.

5.2. Concept­aware Threat Specification

The PD-threat assumes no hierarchy of class labels; i.e. all

labels are distinct to the same degree. However, classification

tasks are often accompanied with an additional hierarchy that

identifies groups of class labels based on similar semantic

content. We propose to account for such a hierarchy by

refining our choice of normalization. Suppose x has label

10In particular we use the default ViT-H SAM checkpoint.
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y and u = x̃−x

∥x̃−x∥
2

where x̃ ∈ Sc,k has label c. Let W :

[C]× [C] ∈ [0, 1] denote a relative11 distance between class

labels based on Wordnet-hierarchy (refer to Section 9.5 for

explicit details). We propose the weighted normalization

gβ,W (x,u) := ´ · W (y, c) ∥x̃− x∥2, so that perturbation

between nearby classes are weighted higher in threat.

Definition 9 (PD-W threat). Let x ∈ X with label y and let

δ ∈ R
d. The weighted PD threat is defined as,

dPD−W(x, δ) := max
u ∈ U(x)

1

gβ,W (x,u)
max (ïδ,uð, 0) .

The threat model (dPD−W, ε) is weaker than (dPD, ε),
since S(x, dPD−W, ε) ¦ S(x, dPD, ε). Thus PD-W is a re-

laxation of PD threat with a softer requirement of stability

between nearby classes. Figure 5 depicts the average rela-

tive12 threat vs relative distance W (·, ·) of class labels on the

Imagenet-1k validation dataset. The decreasing PD-W threat

for increasing class distance is aligned with the following

intuition - failure to distinguish between semantically dis-

tant classes such as ENGLISH FOXHOUND and FIRE TRUCK

should incur lower robust accuracy than failure to distinguish

between similar classes such as ENGLISH FOXHOUND and

IRISH WOLFHOUND.

0.04 0.13 0.22 0.31 0.40 0.49 0.58 0.67 0.75 0.84
Relative distance of class labels

0.00
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Figure 5. Relative Threat vs relative inter-class distances

In summary our novel threat specification framework en-

ables evaluation of robustness to adversarial perturbations

and common corruptions while enabling sensitivity to se-

mantic regions of an image and class hierarchy by incorpo-

rating additional task annotation. As a consequence, our

threat model unifies adversarial robustness with variants

of corruption robustness suggested by several independent

benchmarks [25, 36, 51].

6. Evaluation of benchmark ℓp robust models

Finally, we evaluate state-of-the-art robust models against

our proposed thread models. Note that, as per Theorem 1,

11Relative since we require a normalized value in [0,1]
12Due to different scaling of PD-W and PD, we visualize average threat

in each relative to maximum value on data.

one should hope for classifiers that are 1-robust to cor-

ruptions under the PD-threat. The corresponding permis-

sible set of corruptions cover regions IV and I in Fig-

ure 3. We evaluate robustness to corruptions in the set

S(x, dPD, ε) ∩ S(x, d∞, ε). We denote the corresponding

threat model (d∞
⋂
dPD, ε). A robust evaluation for such

a threat model can be executed in practice by generating

adversarial perturbations with standard AutoAttack [7] for

(d∞, ε) followed by projection onto S(x, dPD, ε). Table 3

shows the robustness of benchmark classifiers registered

at RobustBench order by d∞ robustness (column 1) when

evaluated against (d∞
⋂
dPD, 16/255) threat model for the

Imagenet-1k classification task.

Benchmark Model d∞ PD PD-S PD-W

ConvNeXt-L [33] 0.25 0.32 0.31 0.31

Swin-B [33] 0.12 0.21 0.20 0.21

ConvNeXt-B [33] 0.1 0.19 0.18 0.18

ConvNeXt-B-ConvStem [41] 0.09 0.19 0.19 0.19

ViT-S-ConvStem [41] 0.05 0.13 0.12 0.12

XCiT-L12 [10] 0.04 0.17 0.18 0.18

Table 3. Robust Evaluation for ε = 16/255.

We note that robust accuracies uniformly improve under

our threat specification in comparison to (d∞, ε), indicating

a meaningful restriction of unsafe corruptions. The ordering

of robust accuracies highlights diversity, e.g. [10]’s XCiT-

L12 fares better under PD threat than suggested by the d∞
leaderboard. The indistinguishability across PD, PD-S and

PD-w is surprising. Similar levels of robustness w.r.t PD-W

and PD indicate that models are unable to distinguish distant

classes, while similar levels under PD and PD-S indicate

adversarial attacks are often aligned with foreground masks.

We note that adversarial attacks adapted to the threat specifi-

cation often lead to a more accurate pessimistic evaluation

of robustness.

7. Conclusion

This work proposes a novel task-dependent threat specifi-

cation Projected Displacement threat that is adapted to the

shape of decision boundaries based on observed training data.

Unlike standard ℓp-threat models, the proposed threat model

exhibits anisotropy and locality and is thus able to distinguish

between safe and unsafe perturbations. The proposed threat

specification framework is flexible and can effectively ac-

count for additional task information, such as image regions

or label hierarchies. We invite the community to suggest

further adaptive attacks and effective training strategies to

encourage robustness in PD threat.
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