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Abstract

State-of-the-art machine learning systems are vulnerable to
small perturbations to their input, where “small” is defined
according to a threat model that assigns a positive threat to
each perturbation. Most prior works define a task-agnostic,
isotropic, and global threat, like the {,, norm, where the
magnitude of the perturbation fully determines the degree
of the threat and neither the direction of the attack nor its
position in space matter. However, common corruptions
in computer vision, such as blur, compression, or occlu-
sions, are not well captured by such threat models. This
paper proposes a novel threat model called Pro jected
Displacement (PD) to study robustness beyond existing
isotropic and global threat models. The proposed threat
model measures the threat of a perturbation via its align-
ment with unsafe directions, defined as directions in the input
space along which a perturbation of sufficient magnitude
changes the ground truth class label. Unsafe directions are
identified locally for each input based on observed training
data. In this way, the PD-threat model exhibits anisotropy
and locality. Experiments on Imagenet-1k data indicate that,
for any input, the set of perturbations with small PD threat
includes safe perturbations of large {,, norm that preserve
the true label, such as noise, blur and compression, while
simultaneously excluding unsafe perturbations that alter
the true label. Unlike perceptual threat models based on
embeddings of large-vision models, the PD-threat model
can be readily computed for arbitrary classification tasks
without pre-training or finetuning. Further additional task
information such as sensitivity to image regions or concept
hierarchies can be easily integrated into the assessment of
threat and thus the PD threat model presents practitioners
with a flexible, task-driven threat specification that alleviates
the limitations of {,,-threat models.

1. Introduction

Modern machine learning (ML) systems are nearing
widespread deployment in civilian life, and hence a com-
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prehensive understanding of their security vulnerabilities is
necessary [46]. One such vulnerability concerns the abil-
ity of a malicious adversary to tamper with predictions by
adding small imperceptible corruptions referred to as adver-
sarial perturbations [22, 42]. There is by now overwhelming
evidence that carefully crafted adversarial perturbations can
foil the prediction of state-of-the-art machine learning clas-
sifiers, i.e. they are not adversarially robust [6, 8]. Such
vulnerabilities have been observed in a wide variety of ap-
plications like computer vision [1, 49], speech recognition
[37, 55], autonomous driving [5, 45], and more. The goal of
designing safe and reliable ML systems remains incomplete
[4, 11] despite significant investment [23, 24, 33]. Often,
strategies that intend to foil performance, i.e. adversarial
attacks [6, 7,22, 31, 44], have proven more successful than
strategies aimed at mitigating vulnerabilities, i.e. adversarial
defenses [3, 9, 34, 48, 52].

Meaningfully evaluating the adversarial robustness of
a machine learning system requires a formal specification
of a threat function, and an associated threat model that
limits the scope of malicious adversaries [20]. Informally,
a threat function d : R? x R? — RZ? measures the
threat' represented by a corruption § € R? towards al-
tering the true label at input x € R? as d(x,d). We let
S(x,d,e) == {6 € R?| d(x,8) < £} denote the e-sublevel
set of perturbations where the threat d is measured w.r.t. in-
put x. A threat model (d,¢) is a pair of a threat function
d and a permissible threshold ¢ that together define the set
of permissible perturbations S(x,d, ). Under the threat
model (d, ¢), the robust accuracy of a classifier h € H is
the probability that the label prediction at x is locally invari-
ant to corruptions within the permissible set S(x, d, ), see
Definition 2 for an explicit definition.

One of the most commonly used threat models is
the ¢,-threat model (d,, €), corresponding to the choice”
dp(x,0) = ||8]|,. The threat function d,, is task-agnostic,
easy to evaluate, and induces a compact sub-level set
S(x,d,, ) that allows efficient projection. Hence, the ¢,,-
threat model (d,, €) presents a natural starting point for in-

IThe flexibility to define threat w.r.t. input x is critical to our work.
ZFor any vector § € R, the ¢, norm [Ill, for p > 1 is defined as

181, = (3, 16:/7) 7.



dpp(x,td3) = 1.30 dpp(x,td;) = 0.82

dpp(x,t8,) = 0.38 dpp(x,t85) = 3.16

Figure 1. Corruptions with equal £o.-threat, [|d1]| = ||d2]|, =
18s]l . = ||84]|., but varying PD-threat.

vestigating robustness. RobustBench [8] maintains an up-
to-date leaderboard of the robust accuracies of benchmark
models under (d,,, €). Unfortunately, the progress towards
achieving perfect adversarial robustness (i.e. 100% robust
test accuracy) in RobustBench has plateaued in recent years.
Unlike supervised learning on clean data, scaling data, model
size and computing resources might be insufficient to bridge
the gap [4, 1 1]. Below we expand further on the fundamental
limitations of isotropic and global threat models.

1.1. Motivation: Specification of Threat Model

For image-based datasets, it is widely recognized that /7,
norms are neither necessary nor sufficient for capturing per-
ceptual similarity [39, 40], which poses significant chal-
lenges for accurately evaluating robustness [20, 43]. In
Figure 1, x (at the center) is an image of class ROSE HIP
from the Imagenet-1k dataset, and x + &1, x + 9o are
two corrupted images equidistant (w.r.t. f,) from x, i.e.
101l = l|02]|c = €. Intuitively, both x 4 &; and x + &2
share the same label as x, since its appearance still depicts
the fruit ROSE HIP. We refer to such perturbations that pre-
serve the class label as safe, while those that change it are
termed unsafe. Consider now moving further along these
directions to x + td; and x + tdo, for t > 1. These per-
turbed points are again equidistant from x, but while ¢,
does not alter the true label (i.e. it is safe), td5 does (and it is
unsafe). As a result, any threat model (d,t'e) with ¢/ > ¢
necessarily incurs misspecification: any classifier h stable
to all perturbations in S(x, dw, t'¢) produces an incorrect
prediction at x + td2, i.e. h(x 4 td2) = ROSE HIP. On the
other hand, shrinking the threat model is also futile, as then
the safe perturbation ¢4 is necessarily excluded.

This illustrates that standard £,,-threat models are unable
to distinguish between the safe perturbations that preserve
the true label and the unsafe perturbations that alter the true
label. Hence, perfect robust accuracy under ¢, threat models
might be neither achievable nor desirable. Attempting to
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resolve these limitations, Laidlaw et al. [32] formulate per-
ceptual threat models via neural perceptual metric based on
neural representations. Unfortunately (but unsurprisingly),
all neural perceptual distance metrics are themselves vulner-
able to adversarial attacks [17-19, 29].

1.2. Summary of Contributions

We propose a novel threat function called Projected Displace-
ment (PD), denoted by dpp (see Definition 7 for an explicit
description), that accounts for the local directional statis-
tics of the data via unsafe directions® ¢/ (x) (Definition 6) at
each input x. For an input x with label y, any input x with
label § # y represents the unsafe direction u := Hii—;;ﬂz’
which will be estimated from observed training data. Then,
the degree of threat of each perturbation ¢ is the maximal
alignment with the set of unsafe directions: A large threat
dpp(x, d) indicates that § is well-aligned with an unsafe
direction u € U(x). We highlight some key properties.

1. Disentangling safe vs unsafe perturbations. PD-threat
is able to distinguish between safe and unsafe perturba-
tions of equal £, norms. From Figure 1, different corrup-
tions (Gaussian noise td7, motion blur td3 and saturation
td,) applied to the original image x all have equal /.,
norm of 240/255. Despite this, the true label of these
perturbed samples does not change, unlike that of cor-
ruption td2, which results in an image x + td, with a
different class. For each perturbation t9;, the computed
values of PD threat in Figure 1 naturally reflect how close
they are to changing the class label. PD threat model is
competent with state-of-the-art neural perceptual threat
model DreamSim (denoted dpg) [15] for distinguishing
safe and unsafe perturbations (see Section 4).

. Ease of use. As we will show, the sub-level set
S(x,dpp, €) at each input x is convex, allowing for effi-
cient projections onto it. This enables a straightforward
plug-and-play mechanism for adapting existing adversar-
ial attacks to the PD-threat model. We incorporate such
an extension of AutoAttack [7] to evaluate the robustness
under the PD-threat model (dpp, €) for state-of-the-art
robust classifiers registered at RobustBench [8].

. Task-dependency. PD-threat models can readily inte-
grate additional task-relevant information via label anno-
tation, such as inter-class hierarchy (e.g. the Wordnet hier-
archy) or pixel annotation (e.g. segmentation masks)—see
Table 1- allowing for variations in the form of robustness
while retaining the above benefits (anisotropy, locality,
convex sub-level sets, and efficient projection).

1.3. Related Work

In this section, we highlight prior work that explores robust-
ness beyond /,,-threat models.

3Directions refer to vectors u € R? with unit {5 norm.



PROPERTY FEATURES dp dps[l5] dpp
Degree of Threat ~ Anisotropy, Locality X
Label Annotation  Inter-class Distance X
Pixel Annotation Segmentation X

Table 1. Comparison of Threat Models

Common Corruptions. Neural networks are vulnerable to
image distortions (e.g. translation, rotation), common corrup-
tions (e.g. blur, noise), changes in lighting, view, depth, efc.
[12, 16, 25, 27, 28, 36, 50]. Note that these are known safe
perturbations as they preserve the true label, even if they
have large £, norms. To measure this vulnerability, [25] for-
malized the notion of corruption robustness and presented a
standardized benchmark dataset, Imagenet-C containing 19
styles of common image corruptions (categorized into noise,
blur, weather, and digital). Training on Imagenet-C, or on
other augmentations, can result in over-fitting, particularly
to specific types of corruptions [36]. Additionally, [36] in-
troduced a newdataset, Imagenet-é, with 10 new corruption
styles identified from a larger set of real-world corruptions.
These will be useful later in our experiments.

Perceptual Distance Metrics. Since /,, provides inaccurate
approximations to perceptual distances, several works have
attempted to propose alternatives, such as SSIM [47], FSIM
[53], and HDR-VDP-2 [35]. With the advent of learning
data-driven representations, [15, 54] hail the effectiveness
of internal representations of neural classifiers in capturing
perceptual similarity. DreamSim [15], the current state-of-
the-art among the neural perceptual distance metrics, is fine-
tuned on human perceptual similarity judgements.

2. Key Definitions

Notation. We denote scalar quantities in Roman letters and
vectors in boldface Roman letters. The empty set is given
by (). For any set V, we denote by 2 the power set of all its
subsets. For any set V C R? and a vector v € R%, V — {v}
is the Minkowski difference, i.e. the set {w — v |V w € V}
(subtracting v from all elements of V). We denote the unit
ball and the unit sphere in R? w.r.t. the £, norm by Bg =
{veR?| [v]l, <1} and St = {veR| [vll, = 1},
respectively. A direction is an element of the unit sphere Sg.

2.1. Supervised Learning

We consider a supervised learning task with a bounded input
domain X C R and labels Y = {1,...,C} such that
each input x is assigned a label by a deterministic true*
labeling function 2* : X — ). The true labeling function ~*
partitions the input domain A" := U, X, where X, is the set
of inputs assigned label y, i.e. X, = {x € X' | h*(x) = y}.

4Realizability in the context of adversarial robustness has also been
studied in Awasthi et al. [2], Tramer et al. [43].
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We assume that the partition sets A7, .. ., Xo are nonempty
and open in order to avoid degeneracies.

We let Dy be a data distribution over the input domain A&,
and Dz the extension’ of Dy to a distribution over the joint
domain Z = X x ) using the true labeling function ~*. The
true labeling function h* and the marginal input distribution
D are unknown, but we observe finite labeled training data
s = {(xM,yM), ..., (x™, ym)} " (Dz)™. For any
classifier h : X — ), accuracy is the probability of correctly
labeling a random input, i.e. Acc(h) := Probxp, [h(X) =
h*(x)]. The task of supervised learning seeks a classifier i
in a hypothesis class H C {h : X — Y} with high accuracy.

2.2. Adversarial Perturbations

In this article, we formally define adversarial perturbations
through the lens of the partition sets X, .

Definition 1 (Adversarial Perturbation). A perturbation § €
R is adversarial for predictor h at input x if it is,
1. Domain constrained: x + 4 € X, i.e. d € X — {x}.

2. Label invariant: x + 6 has the same true label as x, i.e.
h*(x + 6) = h*(x).
3. Adversarial: x + ¢ is misclassified by h, i.e. h(x+8) #

h*(x + 9).

The labels assigned by h* are considered the ground truth
and thus h* has no adversarial perturbation at any input. The
presence of adversarial perturbations indicates an imperfect
labeling function h. Based on Definition 1, perturbations
d € R such that x + § ¢ X are not deemed adversarial as
the classifier h is not required to predict labels outside the
input domain. On the other hand, for x with true label y, a
perturbation 6 such that h*(x+4) # y cannot be adversarial
at x as the corrupted input x + & has a different true label.
Finally, if h predicts the label at x incorrectly, then O is
already an adversarial perturbation.

2.2.1. Adversarial Robustness via Threat Specification

A threat function d : X x R* — RZ0 presents practitioners a
way to specify the kind of robustness suitable for a particular
learning task. The e-sublevel set of a threat function d at an
input x, S(x,d, ) = {§ € R?| d(x,d) < ¢}, defines the
set of perturbations with a threat at most €.

Definition 2 (Threat Model, Robust Accuracy). A threat
model (d,¢) is a pair of threat function d and permis-
sible threshold ¢ that together define the set of permis-
sible perturbations at each input x as the sublevel set
S(x,d, €). Under the threat model (d, €), the robust accu-
racy RobustAcc(h, (d, €)) of aclassifier h € H is the proba-
bility of stable prediction upon corruptions within the permis-
sible set, i.e. Probx [V 8 € S(x,d,¢), h(x+8) = h*(x)].

3Sampling z ~ Dz is equivalent to sampling (x, h* (x)) where x ~
Dx.



Figure 2. An illustration of unsafe directions, and sub-level sets of
the PD-threat.

Thus we define robustness as the stability® of a classifier’s
prediction under perturbations within the permissible sets.
The task of robust supervised learning seeks a classifier in
‘H with high robust accuracy.

Definition 3 (e-robust). A classifier h € H is e-robust at
x w.rt. a threat function d if, V § € S(x,d,e) N (X —
{x}), we have h(x + §) = h*(x).

An e-robust classifier predicts the same label h*(x) at
x—+6 for any corruption d within the e-sublevel set S(x, d, €).
We emphasize that robust accuracy and e-robustness are mea-
sures of stability rather than correctness. In this way, each
threat model (d, €) implicitly encodes a trade-off between
stability and correctness. [13]. Requiring more stability than
necessary can lead to incorrect predictions as in Figure 1.

3. Threat specification beyond 7, norms

In this section, we design a principled threat model from first
principles that is local and anisotropic. We first theoretically
develop our exact PD*-threat model assuming knowledge
of the decision boundaries of the true labeling function h*
(Section 3.1), and later relax this assumption by developing
an approximation leveraging the observed training data and
obtaining a practical PD-threat (Section 3.2).

3.1. Measuring threat with class partition

Definition 4 (Unsafe Directions). At each input x, a direc-
tionu € Sg is called unsafe if there exists a step size t > 0
such that x + tu € X and h*(x + tu) # h*(x). We denote
the set of all unsafe directions at x as U*(x).

The minimum step size needed to alter the true label
can vary across unsafe directions. Further, U/*(x) varies

%Note as per Definition 2, robust accuracy measures stability rather
than correctness since we aren’t evaluating probability of the event

{Vé eS(x,d,e), h(x+6) =h*(x+9)}.

9957

with input. Directions v € Bg N (U*(x))* are called safe,
since moving along them (whilst domain constrained) cannot
alter the true label. We note that adversarial perturbations
(Definition 1) are a characteristic of a learned predictor h €
‘H while unsafe directions are a characteristic of the true
labeling function A*. We propose to measure threat of a
perturbations § using U/*(x).

Definition 5 (PD*-threat). Letx € X andlet 6 € R? be a
perturbation. The exact projected displacement threat func-
tion dp, is defined as the maximum scaled displacement
of the Euclidean projection of the perturbation § over all
unsafe directions,

L nax((8,u),0)

TDD (X’ 5) = (X7 Ll)

(D

sup -
ueu*(x) 9

where g* (u, x) is called the normalization function,

g (x,u) = sup M s.t. x +tu € Xjpu(x) V1t € [0, M].

R20

At each x, the normalization function g*(x, u) captures the
distance along the direction u to the boundary of the set
A+ (x) and enables a comparison of the threat along differ-
ent unsafe directions (see Figure 2). In (1), the supremum
ensures that we do not underestimate the threat along a direc-
tion that potentially alters the true label. We highlight two
key characteristics.

Anisotropy. The threat function djy, is anisotropic (the
threat of a perturbation § at input x depends on both the
direction and magnitude of the perturbation) and does not
correspond to a norm in general, unlike £, threat models. For
a fixed x, the threat along different directions u varies based
on the alignment with unsafe directions /*(x). In particular,
d}p, can differentiate between the perturbations § and —d.

Locality. The threat function dp, exhibits locality; i.e. a
fixed perturbation d has varying threat dfp (x, §) depending
on the input x. Thus the permissible set varies with input’,
enabling an input-aware assessment of threat. We note that
weighted £, norms [14] can be anisotropic but not local.

3.1.1. Stability vs Correctness Trade-off

Since the normalization function g* accounts for the class
partition { X, }<_,, the threat function djp, has a principled
trade-off between stability and correctness. Specifically, the
true labeling function ~A* exhibits a high level of robustness

under the PD*-threat®.

Theorem 1. The true labeling function h* is 1-robust at
any input x € X w.r.t. the threat dj,. Additionally, if a
classifier & is not 1-robust at all inputs then there exists an
input x misclassified by h.

"Unlike £, threat models where S(x, dp, ) = eBd Vx € X.
8The proofs of all our results can be found in Section 8.



In other words, for any pairs of inputs x,x € X with
different labels, the threat dj(x, X — x) is always larger
than 1. Thus seeking h € H that is 1-robust at any input
under dpp, is not at odds with learning A*.

3.2. Measuring threats with observed data

Computing dfp (x, -) from Definition 5 requires explicitly
characterizing the set of unsafe directions /*(x) and the
normalization function g*(u, x), both of which need knowl-
edge of the partition sets {X.}<_, induced by h*. In this
subsection, we propose a heuristic empirical approximation.

Approximating /*(x). We have access to training data S
and incomplete information on the partltlon sets { X, }C_, via
the partition S = {S.}&_;, where 5. = {x € X | (x,¢) €
S} C X.. Atevery training input x € Sy for each input
x € S, (for ¢ # y), the direction u = H” x” is an unsafe
direction. For computational considerations, we choose a
collection Uc Sc,k of representative subsets S, C S, of
size k. As a heuristic choice, we select subsets S, by
solving a discrete-k-center optimization problem (detailed
in Sec. 9.1). We are now ready to define an observed subset
of the unsafe directions based on S .

Definition 6 (Observed Unsafe Directions). For each x €
Sy, we identify a set of (C' — 1)k-observed unsafe directions
based on the representative subsets S, i,

X—X -
’XG U Sck

Ay

) = { beuwe

Hi_XH2

Approximating ¢* (x, u).
Uy (x), there exists X € Uq»,Sc  such that u =

Atany x € X, foreachu €
X—X
llx—xll, -
normalization function can be bounded as g*(x,u) <
Ix — x||2, since h*(X) # h*(x). In practice, we use the
heuristic gg(u,x) = §|% —x||,, where § € (0,1) is a

scaling hyper-parameter.

Definition 7 ((k, 5)-PD threat). Let x € X and let § €
R? be a perturbation. The projected displacement threat is
defined as

max —_—
uel(x) ga(x,u)

dPD,k,ﬁ(X, 5) = ax((&,u),O) .

The quality of the approximation of the exact threat dj,
by dpp kg depends on the choice of representative unsafe
directions Uy (-) via the k-subset S, and on the heuristic
choice of the approximate normalization gg, via the scaling
hyper-parameter 3. In this article, we fix (k, 8) = (50, 3)
as the default hyper-parameters (see Section 9.3 for an ex-
panded discussion on choosing hyper-parameters (k, 3) for
any learning task). For brevity, we refer to the observed
unsafe directions (Definition 6), the heuristic normaliza-
tions and the PD threat (Definition 7) as U (x), g(x, d) and
dpp(x, 0), respectively.
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We now state a few important properties of our proposed
empirical approximation dpp. Clearly dpp inherits the
anisotropy and locality properties of the exact threat d .

Growth and Sensitivity. The growth of PD threat along
any direction is linear, i.e., dpp(x,td) = tdpp(x,4d), and
the rate of growth scales inversely with the (approximate)
normalization. In particular, for a fixed x, dpp(X,-) is
(max, ey (x) 1/9(x, u))-Lipschitz w.r.t £ norm.

Projection onto sublevel sets. For any threat model
(d, €), the ability to efficiently project a perturbation & onto
the sub-level sets S(d, x, €) enables one to leverage a wide
literature on gradient-based attacks to conduct a rigorous
evaluations of adversarial robustness. The sublevel sets of
PD threat model, i.e., S(x,d, €), are convex for all x for
all € > 0. In particular, S is the intersection of at most
k - C half-spaces characterized by unsafe directions U (x),
as S(x,dpp,€) = 69( ){5 e RY|(5,u) <e-g(x,u)}.

Further, the sub-level sets are monotonic w.r.t. the threshold,
ie., fore; > e9 > 0,S(x,dpp,e2) C S(x,dpp,1).
Linearity of growth and convexity of the sub-level sets
together provide a straightforward approximate projection
algorithm, since for any perturbation é, the scaled pertur-
bation 7—&—5 lies in the permissible set S (x,dpp,€).
Further, due to the convexity of sublevel sets, an exact pro-
jection (in /5 distance) can be computed using the iterative
greedy scheme outlined in the Algorithm 2 (deferred to the
appendix). Thus the PD threat provides the practitioner with
the flexibility of a fast approximate projection or an exact
projection at the expense of increased computation. Together,
these projection algorithms enable immediate adaptation of
existing adversarial attacks to our proposed threat model.
We note that efficient exact projection algorithms are also
known for ¢, threat models. However, for neural perceptual
threat models such as DreamSim [15], the sub-level sets
are non-convex and a projection can only be approximately
computed [32] and is typically not computationally efficient.

4. Experiments on Real World Data

In this section we illustrate the qualitative and quantitative
characteristics of the PD-threat in comparison to existing
threat models. We evaluate 4 threat functions: d, ds, dps,
and our proposed PD threat function dpp, where dpg is
the neural perceptual threat function dpg(x,%X — x) =
DreamSim(x, X) from DreamSim [15]. Note that we focus
on DreamSim due to its superior performance over other neu-
ral perceptual threat models [15], but the following compari-
son applies to any modern neural perceptual threat model.
Experimental Setup. We seek to measure the ability
of threat functions to distinguish between safe and unsafe
corruptions. The threat models dpp and dpg depend on the
Imagenet-1k training dataset S. All threat models are evalu-
ated on the Imagenet-1k validation dataset S,;. For any pair



CATEGORY CORRUPTION STYLES
Noise Gaussian, Shot, Impulse, Speckle, Blue,
Brown, Perlin, Single-Frequency, Plasma
Blur Gaussian, Defocus, Glass, Motion,
Concentric Sine Waves, Caustic Refraction
Compression Pixelate, JPEG
Digital Brightness, Contrast, Saturate, Elastic
Transform
Weather Frost, Fog, Snow
Occlusion Spatter, Checkerboard Cutout, Sparkles,

Inverse Sparkles

Table 2. Categories of corruptions studied, from Imagenet-C [25]
and Imagenet-C [36].

of labelled inputs (x,y), (X,¢) € Sy, with distinct labels
(¢ # ), the perturbation § := X — x is an unsafe perturba-
tion at x. This way, we can evaluate the statistics of threat
under unsafe perturbations for each threat function. To char-
acterize threat under safe perturbations, we consider a set €2
of 150 distinct common corruptions consisting of 30 styles
x 5 severity levels, i.e., severity € {1,2,3,4,5} — the sup-
plementary material contains visual examples (see Figures 8
and 9), sourced from Imagenet-C [25] and Imagenet-C
[36] accompanied with their threat assessment.

For a specific corruption style such as Gaussian noise
and a severity level 5, we let QgaussianNoise,5 denote the
corresponding corruption function. To aid visualization, we
group the corruption styles into 6 distinct categories (listred
in Table 2) so that €2 := U;¢[5) §; where €2; is the set of all
corruption styles at severity level 7,

Q; = (Qnoise,iUleur,iUQcompre«ion,iUQdigiwl,iUQwemher,iUroclusion,i)-

Each individual corruption w € £ is applied to a sub-
set S C Sya of 5,000 images chosen uniformly at ran-
dom. For each threat function d € {dw,d2,dpp,dps}
and corruption w € £, for each image x € S, we de-
note by avg(d,w), the average threat statistic, avg(d, w) :=
T8 2 eyyes A%, w(x) — x), where w(x) is the corrupted
input and w(x) — x is the safe perturbation at x.

4.1. Disentangling Safe and Unsafe Corruption

We now measure the ability of threat models to distinguish
safe and unsafe corruptions. Each corruption w €  de-
fines a point in Figure 3a having as the horizontal coordinate
ave(deo,w) and avg(dpp,w) as the vertical coordinate, pro-
ducing a comparison of our PD threat to the /. -threat model.
Similarly, Figure 3b compares PD threat to the DreamSIM-
threat model.

A specification of threat model (d, €) corresponds to the
choice of a horizontal line for dpp or a vertical line for (dx
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or dpg) in Figure 3. We note that a size-able set of common
corruptions incur large d, threat, in particular as large as
the unsafe corruptions (as indicated in Figure 1), thus any
vertical line in Figure 3a is bound to exclude such common
corruptions. In contrast, both dpp and dpg admit choices
of ¢ that exclude unsafe perturbations while including most
common corruptions. Hence, PD threat and DS threat are
able to disentangle safe and unsafe corruptions.

For each of the comparisons in Figure 3, we identify 4
quadrants I-IV, distinguishing between low-threat and high-
threat corruptions as measured by the corresponding threat
models. We define the quadrants by choosing thresholds of
1,0.5, and 0.25 for dpp, dso, and dpg, respectively’, and
comment on the qualitative behavior observed:

* Quadrant I'V contains corruptions that are characterized
as low-threat by both threat models. As expected, almost
all corruptions having a low severity (1) lie in this region.
However, we already see deficiencies of the d, threat, as
some blur, noise, and occlusion corruptions of severity 1
in Figure 3a are not characterized as low-threat by at least
one of the threat models.

Quadrant II contains corruptions that are characterized as
high-threat by both threat models. These include digital
and weather corruptions of high severity (5) as they tend
to remove most of the signal in the input.

Quadrant I contains corruptions having low PD-threat but
high d., or dps and showcases the resilience of our PD-
threat model to natural corruptions like blur and Gaussian
noise, which retain a lot of the information in the image
relevant to the classification task. Indeed, a visual inspec-
tion of these corruptions (see Section 10 in the Appendix)
reveals that even at a high severity, a human is able to
discern task-relevant information from the corrupted im-
ages, and hence these corruptions should be assigned a
low threat.

Quadrant III contains corruptions with high PD threat but
low d or dpg threat. We note that corruptions rate as
high threat by dpp are largely also rated highly by dps.
Since the PD and DS threats are aligned, the corruptions
in Quadrant III in Figure 3a indicate that low d, is not
sufficient to characterize hard corruptions.

As a final point, we note that while the size of markers
in Figure 3 indicate the severity levels, different corruptions
of similar severity levels are qualitatively different. For
e.g, weather corruptions of severity level 5 are uniformly
harder than noise corruptions such as shot noise, Gaussian
noise. Figure 11 illustrates heatmap of average threat for
each corruption category across increasing severity. We
observe that both PD and DS threat exhibit largely monotonic

9These thresholds were chosen to approximately be half of the average
threat of unsafe perturbations that alter the true label. Admittedly, this binary
threshold is coarse, and the Appendix contains fine-grained qualitative
examples of corruptions of varying threat.



increase across severity unlike d... At this point, we will
pause to summarize the benefits of PD-threat.
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Figure 3. Comparison of Threat models w.r.t. various common
corruptions. The size of a marker represents the severity level.

PD vs DreamSim. The PD-threat compares well to the
DS-threat but does not require pre-trained large vision mod-
els or fine-tuning on a curated dataset of human percep-
tual similarity judgements. For real-world classification
tasks where perceptual similarity between pairs of input
is harder to quantify even with expert human annotators,
instantiation of high-quality neural perceptual distance met-
rics is harder. Further, unlike perceptual distance metrics
[15,17, 18, 32, 54], the growth of the PD-threat is linear and
interpretable along any direction, the sub-level sets induced
by the PD-threat model are convex, and admit efficient pro-
jection algorithms and hence PD threat presents a promising
alternative.
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5. Measuring threat with Task Annotation

We described two practical design choices for PD-threat
in Section 3.2: (1) a choice of the set of unsafe directions
U(x) at each input, and (2) a choice of normalization g(x, u)
for each unsafe direction. Next, we incorporate additional
task-relevant information to refine PD-threat further.

5.1. Segmentation-aware Threat Specification

Segmentation masks isolate regions of the input that con-
tain semantic information relevant to the class label, and
can be generated efficiently following recent advances in
foundational models for image segmentation [30, 38]. We
demonstrate a straightforward method to incorporate seman-
tic masks in the assessment of threat.

Definition 8 (PD-S threat). Let x € X and let § € R?. Let
a € {0, 1} be a boolean mask. The segmented PD threat,

dpp-s(x,a,0) == max max ((d[a], u[a]),0).

ueu(x) gg(x,u)

Here the u[a] denotes a sub-vector whose indices are se-
lected by the boolean mask a. The threat model (dpp_g, €)
is aligned with Xiao et al. [51]’s proposal to learn models
robust to adversarially chosen backgrounds.For each image,
we generate automatic masks by prompting SAM'? with
the center pixel coordinates. Figure 4 illustrates the differ-
ence between PD and PD-S threat on 2 corruptions that are
background-only and foreground-only respectively. PD-S
threat is oblivious to background corruption but more sensi-
tive to foreground corruption.

PD=14
PD-S =0.0

PD = 0.68
PD-S=1.78

Original Image

Figure 4. Comparison of threat on background vs foreground.

We note that £, threat models are also capable of inte-
grating segmentation masks as they are pixel-based, but it is
unclear if perceptual threat can account for pixel annotation.

5.2. Concept-aware Threat Specification

The PD-threat assumes no hierarchy of class labels; i.e. all
labels are distinct to the same degree. However, classification
tasks are often accompanied with an additional hierarchy that
identifies groups of class labels based on similar semantic
content. We propose to account for such a hierarchy by
refining our choice of normalization. Suppose x has label

101n particular we use the default VIT-H SAM checkpoint.



X—X

and u = ===~
Yy Tx—xI

where X € S, has label c. Let W :

[C] x [C] € [0,1] denote a relative'" distance between class
labels based on Wordnet-hierarchy (refer to Section 9.5 for
explicit details). We propose the weighted normalization
ga,w(x,u) == 3 - W(y,c)||x — x|, so that perturbation
between nearby classes are weighted higher in threat.

Definition 9 (PD-W threat). Let x € X’ with label y and let
0 € R%. The weighted PD threat is defined as,

1
max

————max ((4,u),0).
weux) ggw(x,u) (8, w.0)

dprw(X, 6) =
The threat model (dpp_w,¢€) is weaker than (dpp, ),
since S(x, dpp—_w, &) C S(x,dpp, €). Thus PD-W is a re-
laxation of PD threat with a softer requirement of stability
between nearby classes. Figure 5 depicts the average rela-
tive'” threat vs relative distance W (-, -) of class labels on the
Imagenet-1k validation dataset. The decreasing PD-W threat
for increasing class distance is aligned with the following
intuition - failure to distinguish between semantically dis-
tant classes such as ENGLISH FOXHOUND and FIRE TRUCK
should incur lower robust accuracy than failure to distinguish
between similar classes such as ENGLISH FOXHOUND and
IRISH WOLFHOUND.

Average relative threat vs relative class distances

IS Weighted PD
=3 PD

004 013 022 031 040 049 058 067 075 084
Relative distance of class labels

Figure 5. Relative Threat vs relative inter-class distances

In summary our novel threat specification framework en-
ables evaluation of robustness to adversarial perturbations
and common corruptions while enabling sensitivity to se-
mantic regions of an image and class hierarchy by incorpo-
rating additional task annotation. As a consequence, our
threat model unifies adversarial robustness with variants
of corruption robustness suggested by several independent
benchmarks [25, 36, 51].

6. Evaluation of benchmark ¢, robust models

Finally, we evaluate state-of-the-art robust models against
our proposed thread models. Note that, as per Theorem 1,

1 Relative since we require a normalized value in [0,1]
12Dye to different scaling of PD-W and PD, we visualize average threat
in each relative to maximum value on data.
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one should hope for classifiers that are 1-robust to cor-
ruptions under the PD-threat. The corresponding permis-
sible set of corruptions cover regions IV and I in Fig-
ure 3. We evaluate robustness to corruptions in the set
S(x,dpp,€) N S(x,d, ). We denote the corresponding
threat model (ds [ dpp, €). A robust evaluation for such
a threat model can be executed in practice by generating
adversarial perturbations with standard AutoAttack [7] for
(deo, €) followed by projection onto S(x, dpp, €). Table 3
shows the robustness of benchmark classifiers registered
at RobustBench order by d, robustness (column 1) when
evaluated against (ds [ dpp, 16/255) threat model for the
Imagenet-1k classification task.

Benchmark Model doo PD PD-S PD-W
ConvNeXt-L [33] 0.25 0.32 031 0.31
Swin-B [33] 0.12 0.21 0.20 0.21
ConvNeXt-B [33] 0.1 0.19 0.18 0.18
ConvNeXt-B-ConvStem [41] 0.09 0.19 0.19 0.19
ViT-S-ConvStem [41] 0.05 0.13 0.12 0.12
XCiT-L12 [10] 0.04 0.17 0.18 0.18

Table 3. Robust Evaluation for £ = 16/255.

We note that robust accuracies uniformly improve under
our threat specification in comparison to (d«, €), indicating
a meaningful restriction of unsafe corruptions. The ordering
of robust accuracies highlights diversity, e.g. [10]’s XCiT-
L12 fares better under PD threat than suggested by the d
leaderboard. The indistinguishability across PD, PD-S and
PD-w is surprising. Similar levels of robustness w.r.t PD-W
and PD indicate that models are unable to distinguish distant
classes, while similar levels under PD and PD-S indicate
adversarial attacks are often aligned with foreground masks.
We note that adversarial attacks adapted to the threat specifi-
cation often lead to a more accurate pessimistic evaluation
of robustness.

7. Conclusion

This work proposes a novel task-dependent threat specifi-
cation Projected Displacement threat that is adapted to the
shape of decision boundaries based on observed training data.
Unlike standard ¢,,-threat models, the proposed threat model
exhibits anisotropy and locality and is thus able to distinguish
between safe and unsafe perturbations. The proposed threat
specification framework is flexible and can effectively ac-
count for additional task information, such as image regions
or label hierarchies. We invite the community to suggest
further adaptive attacks and effective training strategies to
encourage robustness in PD threat.
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