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Abstract

Large language models such as ChatGPT and GPT-4 have recently achieved
astonishing performance on a variety of natural language processing tasks.
In this paper, we propose MANGO, a benchmark to evaluate their ability
to perform text-based mapping and navigation. Our benchmark includes
53 mazes taken from a suite of textgames: each maze is paired with a
walkthrough that visits every location but does not cover all possible paths.
The task is question-answering: for each maze, a large language model
reads the walkthrough and answers hundreds of mapping and navigation
questions such as “How should you go to Attic from West of House?”
and “Where are we if we go north and east from Cellar?”. Although these
questions are easy for humans, it turns out that even GPT-4, the best-to-
date language model, performs poorly when answering them. Further, our
experiments suggest that a strong mapping and navigation ability would
benefit the performance of large language models on relevant downstream
tasks, such as playing textgames. Our MANGO benchmark will facilitate
future research on methods that improve the mapping and navigation
capabilities of LLMs. We host our leaderboard, data, code, and evaluation
program at https://mango.ttic.edu and https://github.com/oaklight/mango/.

1 Introduction

Mapping and navigation are fundamental abilities of human intelligence (Spiers & Maguire,
2006; Epstein et al., 2017). Humans are able to construct maps—in their minds (Epstein et al.,
2017) or on physical media like paper—as they explore unknown environments. Following
these maps, humans can navigate through complex environments (Spiers & Maguire, 2006;
Spiers & Gilbert, 2015; Javadi et al., 2017), making informed decisions, and interact with
their surroundings. Such abilities empower humans to explore, adapt, and thrive in diverse
environments. An example is remote (e.g., deep-sea) exploration for which humans have
drawn upon their intuition to develop algorithms that enable robots to autonomously
navigate and map their surroundings based only on onboard sensing.

Do large language models (LLMs) possess such abilities? In this paper, we investigate this
research question by creating a benchmark and evaluating several widely used LLMs. Our
MANGO benchmark is the first to measure the mapping and navigation abilities of LLMs. It
includes 53 complex mazes, such as the one visualized in Figure 1. It pairs each maze with
hundreds of destination-finding questions (e.g., “Where will you be if you go north, north,
and then up from Altar?”) and route-finding questions (e.g., “How do you reach Dome
Room from Altar?”). For each maze, the language model has to answer these questions after
reading a walkthrough of the maze. Many questions involve possible routes that are not
traced during the walkthrough, making the benchmark challenging. In our experiments,
GPT-4 only correctly answered half of the route-finding questions, performing disastrously
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Figure 1: Map of Zork-I. Arrows denote the direction of travel during the walkthrough, while the
reverse direction is unseen but may be possible. Note that it is a 3D map projected onto a 2D plane so
up may not point upward in the 2D visualization (e.g., Rocky Ledge to Canyon View).

on the difficult questions (e.g., those involving long and unseen routes). MANGO will
facilitate future research in improving the mapping and navigation abilities of LLMs.

Another contribution of MANGO is to draw a novel connection between natural language
processing and robotics. There has been significant interest in employing LLMs to endow in-
telligent agents (including robots) with complex reasoning (Yang et al., 2023). Aligning with
this interest, MANGO enables the investigation of the LLMs’ capabilities in simultaneous
localization and mapping (SLAM) within text-based worlds. Focusing on this aspect, our
work stands out and complements previous SLAM-related research, which predominantly
relies on richer sensory inputs (e.g., vision and LiDAR).

2 MANGO: A Benchmark for Text-Based Mapping and Navigation

Our MANGO benchmark measures the mapping and navigation capabilities of LLMs.
It leverages a suite of text-based adventure games that offer expert-designed complex
environments but only require simple actions. Figure 1 is an example: it was drawn
according to the first 70 steps of the walkthrough of Zork-I, which can be found in Example 1.
This map is imperfect: the annotator had to draw the only Kitchen twice to avoid a
cluttered visualization; the Living Room was incorrectly placed outside the House. However,
equipped with this map, one could correctly answer questions about any route in the maze
such as “How do you reach Dome Room from Altar?” and “Where will you be if you go
north, north, and up from Altar?”. The walkthrough has not traced a route from Altar
to Dome Room, but humans possess the remarkable capacity to plan a route by identifying
the three individual steps—which the walkthrough has covered—from Dome Room to Altar
and retracing those steps. MANGO tests whether a large language model can perform the
same kind of reasoning. Particularly, when evaluating a language model, we first let it read
a walkthrough like Example 1 and then ask it questions like those in Examples 2 and 3. A
question like Example 2 is a destination-finding (DF) question, and a question like Example 3
is a route-finding (RF) question. Users of MANGO have the flexibility to phrase the DF and
RF questions in their own ways: as shown in Examples 4 and 5, we provide the skeletons of
these questions, which users can plug into their own templates.

2.1 Maze Collection: From Game Walkthroughs to Mazes

Our mazes are taken from the textgames in the Jericho game suite (Hausknecht et al., 2020).
The main release of Jericho includes 57 popular textgames as well as a program that can
generate walkthroughs for 56 of them. The original walkthrough of a game is a list of actions
(such as east, north, and open door) that one could execute to efficiently complete the
game. We enhanced each walkthrough by executing the sequence of actions and augmenting
each step with the new observation (i.e., the text feedback that the game engine provides
after the action is executed). Unless explicitly specified, the word “walkthrough” refers to
the enhanced, but not original, walkthroughs (such as Example 1) throughout the paper.
More details about walkthroughs can be found in Appendix A.1.

In a walkthrough, not every action triggers a location change: it may update the inventory
(such as take lamp and drop pen) or time (such as wait). For each game, we read the
walkthrough, labeled the actions (such as east and up) that change the locations, and made
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STEP NUM: 0
ACT: Init
OBSERVATION: West of House
You are standing in an open field west
of a white house, with a boarded front
door. There is a small mailbox here.

STEP NUM: 1
ACT: south
OBSERVATION: South of House
You are facing the south side of a
white house.

STEP NUM: 2
ACT: east
OBSERVATION: Behind House
You are behind the white house. A path
leads into the forest to the east. In
one corner of the house there is a
small window which is slightly ajar.
...

STEP NUM: 70
ACT: east
OBSERVATION: Gallery
This is an art gallery. Most of the
paintings have been stolen by vandals
with exceptional taste. The vandals
left through either the north or west
exits. Fortunately, there is still one
chance for you to be a vandal, for on
the far wall is a painting of
unparalleled beauty.

Example 1: An example of Zork-I walkthrough.

Starting from Altar, perform actions [
north, north, up], where are you now?

Example 2: A destination-finding question.

How can you go from Altar to Dome Room?

Example 3: A route-finding question.

S: Altar # starting location
A: north, north, up # list of actions

Example 4: Skeleton of DF question in Example 2.

S: Altar # starting location
D: Dome Roomm # destination

Example 5: Skeleton of RF question in Example 3.

S: Altar
A: north
D: Temple

S: Temple
A: north
D: Torch Room

S: Torch Room
A: up
D: Dome Room

Example 6: Full route of Examples 2 and 4.

note of the names of the locations (such as Temple and Altar). This annotation is nontrivial
and can not be automated. We had to pay extra attention to appropriately handle the tricky
cases including: ① the name of a location may be mentioned in a rich, but distracting context
(e.g., the context may have ten paragraphs and hundreds of words with the name briefly
mentioned in the middle); ② a location may be visited multiple times, so we need to assign
the same name to all its mentions; ③ different locations may be referred to with the same
name in the textual feedback, so we need to rename them in a sensible way.

The location name resolution (see Appendix A.2 for a full procedure) results in a maze for
each game. Three of the games have no location change, and so we left them out, resulting
in 53 mazes. We store each maze as a directed graph: each node is a named location
(e.g., Altar); each directed edge is a movement (e.g., north); and each node-edge-node
combination is a location-changing step that was followed in the walkthrough. Note that
a graph may be cyclic since the walkthrough may trace back-and-forth between locations
(e.g., Temple and Egyptian Room in Figure 1).

2.2 Generation of Question Skeletons: Traversing Mazes and Imputing Edges

To generate DF and RF skeletons for a maze, a naive approach is to perform brute-force
traversal. First, we collect all the possible S-P-D tuples, where S and D are locations and P is
a simple path from S to D. A simple path is a directed path that does not visit any location
more than once. This “simple” restriction ensures that we will have a finite number of S
-P-D tuples. Example 6 is a simple path of 3 S-A-D edges from Altar to Dome Room. Each
unique S-P-D tuple gives a unique DF skeleton: e.g., Example 4 is obtained from Example 6.
Each unique S-P-D tuple gives an RF skeleton as well, such as Example 5 obtained from
Example 6. However, the same RF skeleton may be obtained from other tuples since there
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may be multiple possible simple paths between the same pair of locations S and D. As a
consequence, we may end up with fewer RF questions than DF questions for a given maze.

The particular DF and RF questions in Examples 2 and 3 are challenging to large language
models, since they involve actions—such as going north from Altar to Temple—that are
not covered in the walkthrough. Answering such hard questions requires a deeper un-
derstanding of the spatial relationships between locations. However, also because these
steps are not in the walkthrough, the skeletons in Examples 4 and 5 can not be obtained
through a naive traversal of the directed graph in Figure 1. That is, we have to traverse an
extended graph that includes imputed edges. An imputed edge denotes a valid step that
is not explicitly mentioned in the walkthrough, such as going north from Altar to Temple
(i.e., Altar-north-Temple). Most mentioned edges involve directional moves (e.g., up, east),
so reversing them is a straightforward way to impute new edges. We manually examined
other edges: for some of them, we proposed intuitive reverses (such as exit for enter); for
the others (e.g., pray), no reverse could be found. We then examined the imputed edges
through real game play and discarded those failing to cause the expected location changes.
Appendix A.3 documents the full procedure of edge imputation and examination.

After extending all the mazes in our benchmark, we collected 21046 DF skeletons and 14698
RF skeletons by traversing the extended graphs. Being evaluated on a maze, the LLM may
not be able to consume the entire walkthrough in its context window. That is, we may only
feed it an appropriate prefix of the walkthrough (e.g., the first 70 steps for Zork-I as shown
in Example 1), leaving some of the DF and RF skeletons unanswerable given that prefix.
Therefore, our benchmark provides the ANSWERABLE label (an integer) for each skeleton
such that this skeleton is only answerable if the maximum STEP NUM in that prefix (e.g.,
70 in Example 1) is greater than or equal to its ANSWERABLE label. Furthermore, given a
walkthrough prefix, an answerable skeleton may be easy or hard, depending on whether it
involves edges that are not covered in the prefix. Precisely, a DF skeleton is considered to be
easy if all the S-A-D edges in its corresponding simple path are covered in the walkthrough
prefix; an RF skeleton is easy if the shortest simple path from its starting location to its
destination only involves the S-A-D steps covered in the prefix. When a longer walkthrough
prefix is used, more answerable questions tend to become easy. Our benchmark provides
the EASY label (also an integer) for each skeleton: a skeleton is easy if the maximum STEP
NUM in the walkthrough prefix is no smaller than its EASY label; otherwise, it is a hard
skeleton. Table 3 in Appendix A documents the statistics of the full dataset, such as the
number of locations and the number of skeletons. Tables 5–8 in Appendix B shows the
information about the data on which each LLM was evaluated in our experiments.

2.3 Evaluation Program

The evaluation program in our benchmark implements a range of evaluation and analysis
methods. Reading the model-generated answers, it can return a set of evaluation scores
together with rich analysis. In this section, we introduce the most important scores used
in our main experiments. Other scores are discussed in Appendix A.6, with their related
experiments presented in Appendix C.

For DF questions, the most straightforward evaluation is the success rate: i.e., the fraction of
questions that the language model answers correctly. What answers will be considered to be
correct? A strict criteria is that the model answer is correct if and only if it exactly matches
the ground-truth location name. However, due to the variability of natural language, a
correct answer may not exactly match the ground-truth. For example, the model may yield
The House or That House when the ground-truth location name is just House. To account
for such cases, we generalize the success rate to allow partial matches. Given a model
answer Â and the ground-truth answer A, we compute their (character-level) edit-distance
d and define a correctness score c def

= 1 − d/ℓ where ℓ is the length of the longer answer. The
score is ∈ [0, 1]: when the answer exactly matches the ground-truth, we have c = 1; if they
have no character overlap at all, then c = 0. We then define the success rate to be the sum of
the correctness scores over all the questions, divided by the number of questions.

For RF questions, the main metric is still the success rate, but the definition of “success” is
different from that for DF questions. Note that an answer to an RF question is a sequence of
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The allowed actions are: ...
The list of places are: ...
Starting from S, perform a list of
actions [A], where are you now?
Describe the trajectory in a Python
list of Python dictionaries with keys ’
prev_node’, ’node’ and ’action’.
Start your response with ’[’.

Example 7: Our DF template.

The allowed actions are: ...
The list of places are: ...
How can you go from S to D?

Describe the trajectory in a Python
list of Python dictionaries with keys ’
prev_node’, ’node’ and ’action’.
Start your response with ’[’.

Example 8: Our RF template.

moves. We consider an answer to be correct if and only if it can reach the destination after
our evaluation program executes it in the maze. A correct answer to an RF question may
not be a good path: it doesn’t have to be the shortest; it doesn’t even have to be a simple
path. It is possible that an LLM-generated move is meaningful but doesn’t exactly match
any valid move in the graph: e.g., the LLM may give walk south, which means the same as
south. Therefore, when executing a model-generated move, our evaluation program will
select the closest (i.e., smallest edit-distance) valid move.

3 Experiments

In this section, we present the results our evaluation of several widely used LLMs.

3.1 Experiment Setup

The evaluated models are: GPT-3.5-turbo (Brown et al., 2020; Stiennon et al., 2020; Gao
et al., 2022), GPT-4 (OpenAI, 2023), Claude-instant-1 (Anthopic, 2023a), Claude-2 (Anthopic,
2023b), Llama-2 with 13B parameters (Touvron et al., 2023b), and RWKV with 14B parame-
ters (Peng et al., 2023). For GPTs and Claudes, we used the prompt templates in Examples 7
and 8, converting the DF and RF skeletons like Examples 4 and 5 into LLM-friendly ques-
tions like Examples 2 and 3. The templates were carefully designed and examined through
pilot experiments, in order to ensure that we do not underestimate the models on our
benchmark. In our templates, each question starts with a list of legal actions, followed by a
list of reachable locations; these lists help mitigate the hallucination of language models.
The templates ask the model to spell out the entire trajectory including all the intermediate
locations. This design is inspired by Chain-of-Thought prompting (Wei et al., 2022): eliciting
an LLM to give its entire reasoning process tends to improve its overall performance on
downstream tasks. In addition, it allows us to conduct a deeper evaluation and analysis,
such as the reasoning accuracies of the models (see Appendices A.6 and C). Note that our
templates request the model to form its answer as a list of Python dictionaries with specific
key names. We found that this restriction encourages the model to generate structured
answers—which are easy to parse and analyze—as well as improves its performance. For
Llama-2 and RWKV, we made moderate revisions to the prompts in order to generate
well-structured answers as well as optimize for their performance.

For GPT-3.5, we experimented with the 4K version, which can consume 4096 tokens in its
context window. This context limit restricts the length of the walkthrough that it can read,
and the number of DF and RF questions that it can answer. Table 5 shows the statistics
about the walkthrough prefix and questions that GPT-3.5 used for each maze. For GPT-4,
Claude-1 and Claude-2, we used the same walkthrough prefixes and questions as GPT-3.5
for a fair comparison. we used the same walkthrough prefixes and questions as GPT-3.5 for
a fair comparison. Llama-2 has a 4096 context window as well. But its tokenizer is different
from GPTs’ so we evaluated it on a slightly different set of questions. RWKV is capable of
handling infinite context. For each maze, we experimented it with the 70-step prefix of the
walkthrough so that its set of answerable questions includes all the questions answered by
all the other models. We also evaluated Llama-2 and RWKV in a simplified setting, where
the observation at each step of the walkthrough only includes the location name but nothing
else. For example, at STEP 1 of the simplified Example 1, OBSERVATION only has South of
House and everything else (i.e., Your are...) is omitted. We refer to Llama-2 and RWKV
with the simplified walkthroughs as Llama-2-S and RWKV-S, respectively. More details
about the experiment setup are in Appendix B.
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(a) On easy (left) and hard (right) DF questions.
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Figure 2: Success rates of the examined models on (a) DF and (b) RF questions, averaged over all 53
mazes. Appendix C provides similar graphs (e.g., Figure 6) for other evaluation metrics.

METHOD RWKV LLAMA-2 CLAUDE-1 CLAUDE-2 GPT-3.5 GPT-4 HARD|
RWKV * 0.20 | 0.24 0.19 | 0.41 0.19 | 0.51 0.19 | 0.33 0.19 | 0.62 *
LLAMA-2 0.43 | 0.20 * 0.24 | 0.41 0.24 | 0.45 0.24 | 0.31 0.24 | 0.66 *
CLAUDE-1 0.74 | 0.19 0.78 | 0.41 * 0.36 | 0.44 0.38 | 0.32 0.36 | 0.57 *
CLAUDE-2 0.82 | 0.19 0.85 | 0.41 0.81 | 0.72 * 0.44 | 0.32 0.44 | 0.58 *
GPT-3.5 0.59 | 0.19 0.61 | 0.42 0.57 | 0.74 0.57 | 0.83 * 0.32 | 0.59 *
GPT-4 0.86 | 0.19 0.90 | 0.42 0.84 | 0.72 0.83 | 0.81 0.86 | 0.57 * *
|EASY * * * * * * *

(a) Pairwise comparison on easy (lower left) and hard (higher right) DF questions.

METHOD RWKV LLAMA-2 CLAUDE-1 CLAUDE-2 GPT-3.5 GPT-4 HARD|
RWKV * 0.00 | 0.00 0.00 | 0.13 0.00 | 0.20 0.00 | 0.03 0.00 | 0.54 *
LLAMA-2 0.02 | 0.02 * 0.00 | 0.16 0.00 | 0.21 0.00 | 0.05 0.00 | 0.46 *
CLAUDE-1 0.36 | 0.01 0.34 | 0.03 * 0.11 | 0.19 0.13 | 0.03 0.11 | 0.45 *
CLAUDE-2 0.49 | 0.01 0.46 | 0.03 0.47 | 0.33 * 0.20 | 0.03 0.19 | 0.46 *
GPT-3.5 0.16 | 0.01 0.17 | 0.03 0.15 | 0.36 0.15 | 0.50 * 0.03 | 0.48 *
GPT-4 0.57 | 0.01 0.56 | 0.03 0.55 | 0.33 0.55 | 0.47 0.58 | 0.15 * *
|EASY * * * * * * *

(b) Pairwise comparison on easy (lower left) and hard (higher right) RF questions.

Table 1: Success rates on DF and RF questions broken down into pairwise comparisons. In each table,
the cell of row-A and col-B contains the success rates of the models—in the format of A | B—on the
intersection of the questions that A and B answered individually. The lower left triangle displays the
results on easy questions, while the upper right triangle shows the results on hard questions.

3.2 Main Results

Figure 2 presents the success rates of all models. For each kind of question (i.e., DF or
RF), we show the results on easy and hard questions separately. As we can see, GPT-4
significantly outperforms all the other models on all kinds of questions. However, it only
correctly answers half of the RF questions, far worse than what a human could do: in our
experiments, humans perfectly answered a randomly sampled set of questions. Note that
each model was evaluated on its specific set of questions determined by the length and
format of the walkthrough it read. To be fair, we also compared each pair of models on
the intersection of the questions that they answered. The results are presented in Table 1:
as we can see, GPT-4 and GPT-3.5 consistently outperform the other models and GPT-4
significantly outperforms GPT-3.5.

More results are in Appendix C, including results on other evaluation metrics (e.g., weighted
success rates) and comparison between Llama-2 with Llama-1 and Llama-2-chat. We also
explored an alternative approach that first maps a walkthrough to a symbolic graph and
then uses a search algorithm to answer the given (DF or RF) question. Results and analysis
of this approach can be found in Appendix C.4. Overall, we found it to be very challenging
to translate natural language walkthroughs into searchable symbolic graphs in the first
place, making this approach not promising.
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(a) Easy DF.
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(c) Easy RF.
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(d) Hard RF.

Figure 3: Success rates of GPT-3.5 and GPT-4 broken down into individual games. Figure 7 in
Appendix B provides a similar visualization of reasoning accuracy.

3.3 Analysis of GPTs

Now, we focus our analysis on the best model, namely GPT-4. Particularly, we would like
to understand the improvements of GPT-4 over GPT-3.5 as well as its current bottlenecks,
shedding light on opportunities for future improvements.

By analyzing the errors of GPT-3.5 and GPT-4, we discovered that these models occasionally
hallucinate nonexistent locations or edges. Once they made such a mistake at any step of
reasoning, they would be misled and deviate from the correct path towards the correct
answer. Furthermore, we found that the mazes are not equally difficult for the models.
Figure 3 displays the success rates of the GPT models broken down into their per-game
results. In Figure 3, each dot is a maze: the x-axis coefficient is the performance of GPT-3.5
on this maze while the y-axis is that of GPT-4. As we can see, the success rates of the models
vary across different mazes as well as across different kinds of questions. GPT-4 consistently
outperforms GPT-3.5 across nearly all the mazes. The only exception is Seastalker: there
are too few hard DF questions for this maze, and thus it is a noisy outlier. Apparently, both
GPTs tend to work better on easy questions than on hard questions. However, some mazes
seem to be particularly challenging to GPT-4, such as Zenon and OMNIQuest.

What makes those mazes challenging? We collected some important statistics about the
mazes and analyzed their correlation with the success rates of the models. To understand
the success rates on the easy questions, it is interesting to investigate:

• number of locations (# locations) and number of explicit edges (# exp edges). They
directly measure the size of a maze, which may be a key indicator of its difficulty.

• number of potentially confusingly named locations (# conf locations). Recall from sec-
tion 2.1 that different locations may have similar or related names, which may confuse a
language model. To quantify the number of confusingly named locations, we compute
a confusion score for each location, and then sum the scores across all the locations.
For a location name A, the confusion score is defined to be the maximum word-level
edit distance between A and any other location name in the maze, divided by the maxi-
mum word-level length of the pair of location names being compared. Technically, it is
maxB (edit-distance(A, B)/ max(len(A), len(B))), and it is ∈ [0, 1].

• average length of the easy simple paths (avg len easy), i.e., the simple paths that do not
include any imputed edges. A longer path may tend to be more difficult for models.

• average number of words in the scene descriptions (avg len scene). The walkthroughs
exhibit very diverse styles: for some of them, the text description for each scene is
very concise and the name of each location is appropriately highlighted; for others, each
description may be verbose (e.g., ten paragraphs and hundreds of words) and the location
names are often not obvious from the contexts. It is useful to analyze whether a long
scene description poses a challenge for the models.

In order to understand the models’ performance on hard questions, we analyze the effects
of the variables above (except avg len easy) as well as the following:

• number of imputed edges (# imp edges);
• average length of hard—i.e., involving imputed edges—simple routes (avg len hard);
• average number of imputed edges in the hard simple routes (avg # imp in hard).
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We use regression analysis to understand the effects of these variables on model performance.
In particular, for each model on each type of question (DF or RF, easy or hard), we ran single-
variable linear regression to understand how the success rate varies with each variable.
Detailed results (e.g., coefficients and p-values) are Appendix C.3. Overall,

• on easy questions, GPTs are significantly influenced by the size of the maze, the confusion
level of location name, and the path length. The p-values are extremely small.

• on easy questions, the average length of the scene descriptions does not have a significant
effect on the performance of GPT-3.5, but interestingly has a significant positive effect
on GPT-4’s performance. It is perhaps because GPT-4 possesses a strong capability to
understand texts and can leverage the rich contexts in each description. This allows it to
better distinguish confusingly named locations and establish a better internal representa-
tion of the map. However, this richness seems to confuse GPT-3.5 and impede its ability
to create a good internal representation of the maze, possibly due to GPT-3.5’s weaker
overall language understanding capabilities.

• on hard questions, the variables do not significantly affect the performance of GPT-3.5.
Note that GPT-3.5 yields very low success rates when answering the hard DF and RF
questions. GPT-3.5 seems to struggle when it has to reason about a path with any number
of imputed edges, making the effect of other factors less important to its performance.

• on hard questions, GPT-4 exhibits a stronger ability to handle paths with imputed edges,
compared to GPT-3.5. However, it will experience difficulties when the challenge of
inferring imputed edges is amplified by other factors such as the size of the maze or the
length of the path. As a result, nearly all the variables have significant effects on GPT-4.

The results of our regression analysis are consistent with the plots in Figure 3. For example,
both Zenon and OMNIQuest stay at the lower-left corners of the hard-question plots in
Figure 3 since their mazes are particularly challenging to both GPT-3.5 and GPT-4: they both
have substantially larger numbers of imputed edges than the other mazes; OMNIQuest also
has more locations. Wishbringer and Lost Pig have several imputed edges, but their paths
are short, so they fall in the upper-left corners of the hard-question plots in Figure 3.

3.4 Human Performance

We measured human performance on a subset of our data. This subset includes 30 DF
questions (21 easy and 9 hard) and 31 RF questions (20 easy, 11 hard). The student authors
participated in two rounds of evaluation: in the first round, each author answered a random
split of the questions, and all the questions were answered; in the second round, we
randomly sampled 10 DF and 10 RF questions and let each of them be re-evaluated by a
different author. The second round allows us to analyze human agreement; this analysis
can be found in Appendix C.6.

TASK DIFFICULTY SUCCESS RATE REASONING ACCURACY

ROUTE FINDING
ALL (31) 0.8211 0.6129
EASY (20) 0.7727 0.5500
HARD (11) 0.9091 0.7273

DESTINATION FINDING
ALL (30) 1.0000 0.5667
EASY (21) 1.0000 0.6667
HARD (9) 1.0000 0.3333

Table 2: Human Evaluation Results

As shown in Table 2, humans generally achieve high success rates on both RF and DF
questions, and exhibit small to no difference across easy and hard questions. This is
interesting since LLMs tend to struggle on hard questions. Reasoning accuracies are lower
than success rates; this is because human answers exhibit a relatively high variability in
writing (e.g., location names with special symbols).

Despite the high scores, answering the questions is actually not trivial for human raters.
Answering each DF question takes an average of 15 minutes, while answering each RF
question takes an average of 30 minutes. All the human raters needed to take notes (e.g.,
drawing maps) while completing these tasks.
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... # previous actions and observations
Small local map info: if you want to go to North
of House, you should go south; if you want to go
to Up a Tree, you should go up; if you want to go
to Altar, you should go west.

Consider what you should do next, and choose one
appropriate action from the valid actions list: [
up, take on egg, put down egg, go around forest,
throw egg at tree, open egg with all, north,
south, west, east]
Please just tell me the selected action without
any extra words.

Example 9: A prompt of the playing game experiments
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Figure 4: Playing minigames.

3.5 Does Mapping and Navigation Ability Matter in Downstream Tasks?

Now we present a case study showing that a strong mapping and navigation ability of
an LLM would benefit it in downstream tasks. In particular, we selected 284 minigames
in the Jericho game suite, and investigated how the map knowledge may improve the
performance of an LLM in playing these minigames. Each minigame is a selected prefix of a
walkthrough from one of 53 textgames; the selection criterion is that the best action to take
at this step is a movement. In other words, each minigame is a scenario where the LLM
has to figure out the best action to take given its previous actions and observations (i.e., the
prefix of walkthrough up to the current step). This task is different and more challenging
than answering the DF and RF questions: the LLM is not explicitly given a route (as in DF
questions) or a destination (as in RF questions), but has to spontaneously figure out which
action may contribute to its long-term goal.

For this task, we evaluated GPT-3.5 and GPT-4. For each model, we tried two settings: the
first is to condition the LLM on the walkthrough like Example 1; the second is to include in
the prompt the information about the nearby locations, and an example of the full prompt is
given in Example 9. The information about nearby locations is the ground-truth information
that the LLM, in principle, should have learned from the walkthrough prefix. If the LLM
had a perfect mapping and navigation ability, it would be able to perfectly spell it out
and use that information to guide its decision making. Figure 4 presents the results of
this experiment. GPT-4 significantly outperforms GPT-3.5 in playing these minigames,
consistent with their relative performance when answering the DF and RF questions of
our MANGO benchmark. For each of the GPT models, having access to nearby location
information significantly improves its performance, demonstrating that a strong mapping
and navigation ability is essential to succeeding at relevant downstream tasks.

4 Related Work

Over the past few years, the field of natural language processing has experienced remarkable
advancements with the emergence of large language models. This progress has spurred a
multitude of research endeavors that propose benchmarks challenging the limits of these
models. Those benchmarks assess the capacities of LLMs in linguistics (Wang et al., 2018;
2019), reading comprehension (Richardson et al., 2013; Lai et al., 2017), commonsense
reasoning (Zellers et al., 2019; Bisk et al., 2020; Huang et al., 2019; Talmor et al., 2019),
arithmetic reasoning (Miao et al., 2020; Cobbe et al., 2021; Patel et al., 2021), and knowledge
memorization and understanding (Clark et al., 2018; Mihaylov et al., 2018; Khot et al.,
2020; Clark et al., 2020; Hendrycks et al., 2021; Srivastava et al., 2022). Recent models have
achieved remarkable performance not only on these benchmarks, but also across a diversity
of human-oriented academic and professional exams (OpenAI, 2023) as well as general
tasks (Bubeck et al., 2023). Our benchmark presents a unique challenge to large language
models, evaluating their capacity to acquire spatial knowledge about new environments and
answering complex navigation questions; it is a dimension orthogonal to the aforementioned
reasoning abilities.

The advances of LLMs have sparked a recent wave of endeavors that integrate these models
into embodied agents (Huang et al., 2022c; Yang et al., 2023; Vemprala et al., 2023; Wang et al.,

9



Published as a conference paper at COLM 2024

2023a). Generally, they utilize language models as a means to understand human instruc-
tions and plan executable actions (Driess et al., 2023; Liang et al., 2022; Huang et al., 2022b;
Ichter et al., 2023). This includes instructions related to object manipulation and tool opera-
tion (Wang et al., 2023b; Ren et al., 2023) as well as localization and navigation (Majumdar
et al., 2020; Gadre et al., 2023; Shah et al., 2023; Huang et al., 2022a). Our MANGO bench-
mark aligns with the growing trend to deploy LLMs in embodied agents and provides a
comprehensive investigation of their capacities in mapping and navigation. Our benchmark
operates in text-based environments, distinguishing itself from previous benchmarks (Puig
et al., 2018; Shridhar et al., 2020; Fan et al., 2022) that allow agents to utilize visual signals.
This “text-only” design enables us to conduct controlled experiments that investigate the
capacity of language models to acquire knowledge about environments solely from textual
inputs and answer navigation questions based on that knowledge. It complements the
existing benchmark and methodological research in vision-language navigation (Duvallet
et al., 2014; Mei et al., 2016; Anderson et al., 2017; Fried et al., 2018; Zhu et al., 2020; Min et al.,
2021). Our work is related to recent studies that demonstrate the emergence of maps with
learned neural representations as a consequence of navigation (Huynh et al., 2020; Wijmans
et al., 2023) with the key distinction that our agents are provided with textual descriptions
of their environments.

Given our focus on mapping and navigation, it is worth noting the work on simultaneous
localization and mapping (SLAM), a classic problem in which a mobile agent (e.g., a robot
or hand-held camera) is tasked with mapping an a priori unknown environment while
concurrently using its estimated map to localize itself in the environment (Mur-Artal et al.,
2015; Cadena et al., 2016). Particularly relevant are the methods that maintain spatial-
semantic maps of the environments based on natural language descriptions (Walter et al.,
2013; Hemachandra & Walter, 2015), however they rely on non-linguistic observations (e.g.,
vision) to ground these descriptions.

5 Conclusion

We present MANGO, a benchmark that evaluates the mapping and navigation abilities of
large language models. Our benchmark covers a diversity of mazes as well as a variety of
evaluation and analysis programs, offering a comprehensive testbed in a great breadth and
depth. In our experiments, the current best model still performs poorly on the benchmark,
with a sharp degradation on the more difficult questions. We release our benchmark—along
with the source code for data generation and evaluation—to track the advances of the
mapping and navigation capabilities of future LLMs as well as to facilitate future research
in related areas. Several interesting future directions are discussed in Appendix D.
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A Benchmark Details

Our data and program is released at https://mango.ttic.edu and https://github.com/
oaklight/mango/. In the data folder, each game has a folder that contains multiple JSON files.
The most important files are the DF and RF skeletons (where X is the game name such as
zork or detective):

• X.df: it contains the DF skeletons like Example 4.

• X.rf: it contains the RF skeletons like Example 5.

As introduced in section 2.2, each skeleton is paired with an ANSWERABLE label and an
EASY label: given a prefix of the walkthrough, the ANSWERABLE label indicates whether
this skeleton is answerable, and the EASY label will decide whether this skeleton is easy
or hard given this walkthrough prefix. Table 3 displays some important statistics of the
full dataset broken down into each individual maze, including the number of DF and RF
skeletons. In total, our full dataset has about 3M DF questions and 200K RF questions. On
average, each maze has around 60K DF questions and 4K RF questions. Noticeably, the 53
games in our dataset are very diverse: they cover a range of topics and genres; they are
situated in different eras; they cover a wide variety of maps (small vs. big houses, long vs.
short halls, towns vs. forests, verbose vs. concise scene descriptions, etc). In addition, we
also provide the following data files for easy reference:

• X.walkthrough: it contains the full walkthrough of the game. See Appendix A.1 for
details.

• X.locations: it lists all the locations. Details about annotating these locations can be
found in Appendix A.2.

• X.moves: it lists all the moves that may change the location.

• X.all_pairs: it contains all the pairs of distinct locations.

• X.all2all: it contains all the simple paths between any pair of distinct locations.

In the following subsections, we will explain the details about collecting this data.

A.1 Walkthrough Details

In this section, we document the technical details about walkthroughs.

The only game that doesn’t have a walkthrough is Leather Goddesses of Phobos (LGoP).

There may be multiple correct ways to complete a game with the same level of efficiency.
So the program has some randomness. In our experiments, we fixed the random seed for
better reproducibility.

Each action in the program-generated walkthroughs is a highly abbreviated symbol such
as E for East and NW for Northwest. For a better readability, we use the full words in our
enhanced walkthrough such as Example 1.

A.2 Location Resolution Details

For each maze, our human annotator read the walkthrough and annotated all the locations.
In most cases, the surrounding description given by the game engine includes the name
of the location, and the annotator needs to manually extract it from the text; this process is
difficult to automate because the text is often unstructured and an automatic extractor is
hard to build. What makes this annotation tricky is

• a location may be visited more than once in the walkthrough but we should avoid
assigning multiple names to it.

• distinct locations may be referred to in the same way by the game engine but we should
distinguish them. The game of Night is an example: hallways on different floors are all
referred to as Hall; we renamed each of them, e.g., with Hall (1st floor, north end).
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MAPS # LOCS # EDGES AVG LEN PATH # STEPS
DF RF

EASY HARD EASY HARD

905 5 7 1.88 22 11 5 11 5
ADVENT 70 137 19.38 277 24788 4220 4694 0
ADVENTURELAND 23 48 7.46 170 1117 208 484 22
AFFLICTED 13 24 3.18 99 156 0 156 0
ANCHOR 118 228 27.46 531 66133 23564 13573 0
AWAKEN 15 28 5.02 57 365 45 171 25
BALANCES 12 20 3.22 122 136 1 94 1
BALLYHOO 39 90 9.26 416 18148 6298 1444 0
CURSES 150 304 33.83 816 1951931 549433 22201 0
CUTTHROAT 52 108 10.76 336 5969 2688 1832 59
DEEPHOME 66 127 8.64 327 4161 235 4161 1
DETECTIVE 32 41 8.76 51 505 6 505 6
DRAGON 24 52 8.9 101 1100 2262 529 23
ENCHANTER 57 110 10.93 265 5118 2602 2773 99
ENTER 18 34 3.88 102 306 0 306 0
GOLD 22 44 4.99 345 682 0 462 0
HHGG 42 65 7.02 361 3794 3 1602 1
HOLLYWOOD 109 219 27.33 397 21641 15557 11451 213
HUNTDARK 12 13 4.24 67 66 2 66 2
INFIDEL 58 122 9.27 250 2786 1729 2158 453
INHUMANE 43 91 6.49 122 1623 3020 1474 332
JEWEL 43 74 8.66 223 1157 61 1157 61
KARN 56 124 15.36 362 24479 108983 3025 0
LIBRARY 7 12 2.48 52 42 0 42 0
LOOSE 12 21 4.18 50 94 27 94 27
LOSTPIG 13 26 4.5 146 492 105 114 0
LUDICORP 86 176 14.96 364 7099 7281 6002 1308
LURKING 60 116 13.04 294 5187 2316 2946 105
MOONLIT 6 9 2.2 59 18 7 18 7
MURDAC 84 157 11.05 304 6914 2016 5967 1005
NIGHT 20 41 6.93 90 633 59 380 0
OMNIQUEST 32 65 7.55 78 648 1431 642 90
PARTYFOUL 4 8 1.92 56 24 0 12 0
PENTARI 18 31 3.76 49 208 20 208 4
PLANETFALL 69 138 12.41 399 7100 2246 3887 247
PLUNDERED 45 87 13.46 189 3705 2394 1393 26
REVERB 17 31 5.26 74 321 20 256 16
SEASTALKER 20 43 7.55 204 1123 1143 260 3
SHERLOCK 71 140 12.39 339 16417 11758 4214 27
SNACKTIME 4 6 1.5 34 12 0 12 0
SORCERER 64 120 11.72 254 4042 2285 2503 264
SPELLBRKR 73 111 13.62 412 8713 1762 3462 1
SPIRIT 229 466 26.39 1264 111102 47410 51531 226
TEMPLE 24 46 6.07 181 563 106 486 21
THEATRE 20 38 5.33 296 329 130 329 51
TRINITY 94 189 20.39 610 65049 131324 8742 0
TRYST205 73 139 10.04 518 5089 392 3983 181
WISHBRINGER 46 94 13.32 184 4988 5646 2070 0
YOMOMMA 9 25 3.55 98 189 263 64 0
ZENON 17 32 4.85 83 144 128 144 128
ZORK1 84 166 20.79 396 20984 26857 6889 0
ZORK2 66 136 11.79 296 15174 13081 3798 178
ZORK3 55 105 15.37 273 6202 2754 2294 133
ZTUU 16 30 3.27 84 225 15 225 15

Table 3: Statistics of full data. Here, # LOCS represents the number of locations in each walkthrough;
# EDGES represents the number of edges; AVG LEN PATH denotes the average length of all paths;
# STEPS indicates the number of steps in each walkthrough; EASY and HARD of the DF and RF
respectively represent the number of easy and hard skeletons of the DF and RF tasks. When counting
the easy and hard skeletons, we assume that the full walkthrough will be used. For the statistics of the
data used in our experiments, please see Tables 5–8.
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We solved the problems above by hacking into the source code of the game engines and
conducting multiple rounds of human verification. First, for each maze, we checked the
source code of the game provided by the Jericho game suite (Hausknecht et al., 2020) and
found the unique ID for each location. Matching IDs with human annotations allows us to
perform the following post processing:

• when a location is given multiple names, our human annotators work together to select
the most proper unique name that they all agree on. The selection principles are: it
is descriptive; whenever this location is visited in the walkthrough, the name has an
intuitive match with the surrounding description given by the game engine.

• when multiple locations share a name, our human annotators work together to dis-
tinguish them by adding descriptive marks. An example is the Halls mentioned
above: we renamed them to be Hall (1st floor, north end of north/south hall),
Hall (1st floor, middle of north/south hall), and Hall (2nd floor, middle
of north/south hall). There are rare cases in which all the annotators agreed that
no marks could be added and the location names had to be kept fuzzy (i.e., a name corre-
sponds to multiple different locations). The rationale is: if a human may confuse with
these locations, then it is reasonable for a model to have the same confusion. Then allow-
ing them to share the name is essentially to apply a looser evaluation to the models: e.g.,
if the name Forest is overloaded, then when the model answers “how to reach Forest
from House”, any path that ends at any of the Forests will be considered to be correct.
This treatment is equivalent to merging the locations with the same human-annotated
name.

In our repository, there is a data-intermediate folder that tracks such intermediate an-
notations. In the folder of each game, the JSON files anno2code and code2anno track the
mapping between machine IDs and human-annotated location names.

Why don’t we just use the unique IDs as the location names? Because the IDs are often not
intuitive or descriptive and they are often just strings of digits. Such IDs may not match any
content in the walkthrough so a human or model may be confused when asked about the
path between “loc12” and “loc5” after reading the very descriptive walkthrough.

In addition, we also provide an alternative version of our data in which location names
include machine IDs. Precisely, while resolving each location name, we

• add the machine ID (e.g., “(obj59)”) to the location name as a mark (e.g., “in debris room”
to “in debris room (obj59)”);

• if the location name already has a mark (e.g., 1st floor, north end of north/south
hall, thanks to the name resolution process), we replace the mark with the machine ID
(e.g., “hall (1st floor, middle of north/south hall)” to “hall (obj66)”).

A.3 Move Resolution Details

During human annotation, we labeled all the moves that change the locations. Like in
Appendix A.2, we used the source code of the game engine to verify the human annotations.
This annotation led to a map for each game—like what’s shown in Figure 1—but this map
is incomplete since there exist implicit moves between locations. For example, south is a
movement that can end up at Altar if we start from Temple; see Figure 1. It means that
north is also a possible move from Altar and it leads to Temple; but this edge has never
explicitly shown up in the walkthrough. We would like our questions to cover such implicit
edges, so we examined every possible implicit edge and inserted the valid ones into our
map (though Figure 1 only displays the explicit edges).

The examination was carried out through real game playing by our human annotators. For
each directional move (e.g., south), we tested if its reverse directional move (e.g., north
for south, down for up) could lead to the previous location. Not every move is directional:
e.g., in Zork-I, you may enter and exit the House; pray moves the player from Altar to
Forest. We had such edges examined by human annotators: for some (e.g., enter), we
could find intuitive reverse moves and verify them; for the others (e.g., pray), we didn’t
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propose any reverse. Usually, the list of moves we ended up for a game includes eight
possible directional moves as well as a few special moves.

A.4 Path Details

Once we have figured out all the locations and moves for a game, we will end up with a
map. We collected all the unique pairs of distinct locations in the map and stored them in
the all_pairs file: for each pair of locations A and B, we could ask a route finding question
that aims to reach B from A. Note that A,B and B,A are different pairs.

For each pair of the starting point A and destination B, we collected all the simple paths P
that connects from A to B. Each (A,B,P) tuple defines a destination finding question about
where one will be if they go through path P from A.

A.5 Program Details

Our graph and path operations (e.g., finding simple paths) are handled by
the networkx package. Its documentation is at https://networkx.org/. Particu-
larly, the program that finds all the simple paths for a pair of graph nodes
is at https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.
algorithms.simple_paths.all_simple_paths.html.

A.6 Evaluation Details

Another important—yet more strict—evaluation is the reasoning accuracy. This evaluation
requires the language model to spell out its planned trajectories of moves when answering
questions (like requested in our Examples 7 and 8). For an RF question, the reasoning
process is correct if and only if the model-generated trajectory is a valid path from the
starting position S to the destination D: the first step starts from S; each step starts from
where it ended up in the last step; the final step reaches D. For a DF question, the model-
generated trajectory has to be a valid path from S to the model-generated destination D; in
addition, the sequence of moves in the trajectory has to match the given list of actions A.
Like we explained in section 2.3, the “match” here is not an exact match: if the closest valid
move is the correct move, then it is counted as a “match”.

B Experiment Details

In this section, we present our experiment details for reproducing the results.

B.1 Model Configuration Details

The specific GPTs used in our experiments are GPT-4-0314 and for GPT-3.5-turbo-0301. For
Claude-1 and Claude-2, the specific model versions we are using are Claude-instant-1.2 and
Claude-2.0. For 14B RWKV model, the specific model version we are using is “RWKV-4-Pile-
14B-20230313-ctx8192-test1050”. For Llama-2, we used the ckeckpoint officially released by
Meta.

For all the models, we set the temperature of the LLMs to be 0 for reproducibility.

B.2 Prompt Details

For GPTs, our prompts are the concatenation of walkthrough like in Example 1 and the
questions like in Examples 2 and 3; the questions are obtained by filling the templates
in Examples 7 and 8. When calling OpenAI API, we set the “role” to be “user” and the
“content” to be the prompt. After receiving the response from the API call, we processed the
output string by fetching the content from the structured output (recall that we request the
models to return Python lists of Python dictionaries).

What prompts are to LLMs are like what hyperparameters are to classifical deep neural nets.
Our experiments show that the structure of LLM output is sensitive to the prompts, and
thus we had to carefully tune the prompts such that LLMs could return easy-to-parse output.
For example, we found it helpful to ask LLMs to format their answers as a Python list of
Python dictionaries; we also found it helpful to end our prompt with the symbol ‘[’—i.e.,
the start symbol of a Python list—to elicit the LLM to actually output in the desired format.
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Fortunately, as long as the output follows the desired structure, its content is relatively
robust to the prompts. In our pilot experiments, we found that different prompts (created
by different authors) would generate the same or similar content (regardless of its format)
and achieve the same level of success rates (after parsing).

To ensure that we could obtain the optimal results of RWKV and Llamas, we tuned the
prompts—more precisely, experimented with variants of the prompts of GPTs—and ended
up with a set of new prompts that are mostly the same but exhibit some prose differences.
For example, at the beginning of the prompts, we added “Here is a walkthrough of a text
game.” It is worth noting that, even though we carefully tuned the prompts, the non-
GPT models still suffer a high chance of failing to return well-structured answers. Table 4
shows the average number of answered questions as well as how many of them received
ill-formatted answers. As we could see, GPT-3.5 and GPT-4 could generate well-structured
answers for a large portion of the DF and RF questions, but the other models often gave
ill-structured answers. As a result, we could only evaluate the non-GPT models on the
questions to which the answers were well-structured and thus could be parsed. We also
experimented with the function-calling interface of GPTs, but it didn’t lead to an increased
amount of well-structured answers compared to our prompt design.

MODEL
RF QUESTION DF QUESTION

# ANSWERABLE # ILL-STRUCTURED # ANSWERABLE # ILL-STRUCTURED
RWKV 277.32 240.04 397.08 325.98
LLAMA-2 138.40 112.25 157.98 98.0
CLAUDE-1 184.34 3.88 244.92 4.66
CLAUDE-2 184.34 6.28 244.92 1.86
GPT-3.5 184.34 30.81 244.92 65.60
GPT-4 184.34 2.49 244.92 5.74

Table 4: Average (per-maze) numbers of answerable questions and ill-structured answers for each
model.

B.3 Walkthrough and Question Details

Due to the context window size of an LLM, it is often the case that we have to only use a
prefix of the walkthrough when evaluating an LLM on a maze. Recall from section 2.2 that
not every question is answerable given a walkthrough prefix. Therefore, each model was
evaluated on a different set of questions. Tables 5–8 display the statistics about the data that
each LLM was actually evaluated on in our experiments.
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MAPS # LOCS # EDGES AVG LEN PATH # STEPS
DF RF

EASY HARD EASY HARD

905 5 7 1.88 21 11 5 11 5
ADVENT 31 57 7.79 70 692 100 532 100
ADVENTURELAND 18 35 6.13 70 579 80 260 46
AFFLICTED 10 16 2.78 40 67 0 67 0
ANCHOR 13 24 3.94 24 95 91 82 74
AWAKEN 14 24 4.8 44 262 12 157 12
BALANCES 11 18 3.09 67 96 8 76 8
BALLYHOO 14 28 4.8 56 225 99 156 13
CURSES 14 24 3.3 53 122 13 122 0
CUTTHROAT 22 40 5.81 62 303 158 202 107
DEEPHOME 17 28 4.35 49 175 10 175 10
DETECTIVE 26 34 7.17 43 334 4 334 4
DRAGON 14 25 3.59 29 105 64 111 58
ENCHANTER 21 38 5.69 53 216 165 216 165
ENTER 2 1 1.0 20 1 0 1 0
GOLD 11 17 2.82 47 83 0 83 0
HHGG 8 9 2.6 51 29 1 29 1
HOLLYWOOD 8 14 2.71 50 43 13 43 13
HUNTDARK 10 9 3.67 55 45 0 45 0
INFIDEL 13 26 3.6 55 114 138 88 68
INHUMANE 21 40 4.8 49 275 240 261 159
JEWEL 16 30 4.39 60 166 74 166 74
KARN 19 35 6.37 65 339 86 231 63
LIBRARY 7 12 2.48 49 42 0 42 0
LOOSE 8 14 3.0 39 56 0 56 0
LOSTPIG 6 9 1.96 56 16 9 16 9
LUDICORP 22 43 4.91 70 351 111 351 111
LURKING 10 16 2.89 56 66 16 65 16
MOONLIT 4 6 1.67 45 9 3 9 3
MURDAC 30 52 6.34 70 537 195 528 183
NIGHT 20 41 6.93 70 633 59 380 0
OMNIQUEST 29 59 7.75 70 536 1198 290 298
PARTYFOUL 4 6 1.67 24 12 0 11 1
PENTARI 18 30 3.72 48 208 4 208 4
PLANETFALL 21 37 5.27 68 246 50 246 50
PLUNDERED 10 11 3.23 32 47 0 47 0
REVERB 12 21 4.07 40 129 12 120 12
SEASTALKER 10 15 2.7 53 50 3 50 3
SHERLOCK 8 13 2.48 33 43 5 43 0
SNACKTIME 4 6 1.5 33 12 0 12 0
SORCERER 15 26 3.53 54 120 17 120 17
SPELLBRKR 15 23 3.6 52 120 17 120 16
SPIRIT 15 26 3.55 50 171 12 171 12
TEMPLE 10 15 3.11 46 48 18 48 18
TRINITY 10 10 3.61 45 45 1 45 1
TRYST205 9 14 1.93 65 57 0 57 0
WISHBRINGER 18 30 5.2 45 174 48 175 47
YOMOMMA 8 15 2.39 41 49 17 31 18
ZENON 13 24 4.05 63 83 73 83 73
ZORK1 19 34 7.16 70 351 46 279 45
ZORK2 22 33 5.65 50 242 18 146 103
ZORK3 23 44 6.84 61 600 167 394 68
ZTUU 11 18 2.79 43 91 0 91 0

Table 5: Map statistics for GPTs and Claudes. Here, # LOCS represents the number of locations in each
walkthrough; # EDGES represents the number of edges; AVG LEN PATH denotes the average length
of all paths; # STEPS indicates the number of steps in each walkthrough; EASY and HARD of the DF
and RF respectively represent the number of easy and hard skeletons of the DF and RF tasks.
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MAPS # LOCS # EDGES AVG LEN PATH # STEPS
DF RF

EASY HARD EASY HARD

905 5 7 1.88 21 11 5 11 5
ADVENT 31 57 7.79 70 692 100 532 100
ADVENTURELAND 18 35 6.13 70 579 80 260 46
AFFLICTED 11 20 2.95 70 100 10 100 10
ANCHOR 25 46 5.99 70 327 153 302 132
AWAKEN 15 28 5.02 56 365 45 171 25
BALANCES 11 18 3.09 70 96 8 76 8
BALLYHOO 17 35 4.83 70 302 188 213 59
CURSES 14 27 3.62 70 182 13 182 0
CUTTHROAT 25 49 6.66 70 471 362 360 216
DEEPHOME 27 49 4.83 70 429 19 429 19
DETECTIVE 32 40 8.79 50 505 4 505 4
DRAGON 21 44 7.11 70 533 990 272 148
ENCHANTER 23 43 6.35 70 265 219 265 219
ENTER 14 26 3.36 70 117 65 117 65
GOLD 15 25 3.45 70 143 0 143 0
HHGG 9 11 2.85 70 38 1 38 1
HOLLYWOOD 12 22 3.36 70 84 48 84 48
HUNTDARK 12 11 4.33 66 66 0 66 0
INFIDEL 24 48 7.53 70 312 446 264 288
INHUMANE 30 57 5.54 70 614 555 483 280
JEWEL 17 32 4.4 70 187 85 187 85
KARN 19 35 6.37 70 339 86 231 63
LIBRARY 7 12 2.48 51 42 0 42 0
LOOSE 12 21 4.18 49 94 27 94 27
LOSTPIG 7 11 2.28 70 22 14 22 14
LUDICORP 22 43 4.91 70 351 111 351 111
LURKING 16 29 4.29 70 144 97 143 97
MOONLIT 6 9 2.2 58 18 7 18 7
MURDAC 30 52 6.34 70 537 195 528 183
NIGHT 20 41 6.93 70 633 59 380 0
OMNIQUEST 29 59 7.75 70 536 1198 290 298
PARTYFOUL 4 9 1.97 55 24 6 11 1
PENTARI 18 30 3.72 48 208 4 208 4
PLANETFALL 22 39 5.48 70 267 63 267 63
PLUNDERED 22 37 6.02 70 450 52 289 26
REVERB 17 31 5.26 70 321 20 253 19
SEASTALKER 10 15 2.7 70 50 3 50 3
SHERLOCK 18 28 4.36 70 175 5 175 0
SNACKTIME 4 6 1.5 33 12 0 12 0
SORCERER 26 46 7.09 70 340 48 340 48
SPELLBRKR 20 31 4.84 70 295 23 276 21
SPIRIT 22 41 4.09 70 354 87 354 87
TEMPLE 19 33 4.72 70 178 69 178 69
TRINITY 17 17 5.96 70 136 1 136 1
TRYST205 9 15 1.94 70 64 0 64 0
WISHBRINGER 21 40 6.34 70 259 214 251 169
YOMOMMA 9 20 2.74 70 82 59 43 21
ZENON 14 26 4.27 70 96 86 96 86
ZORK1 19 34 7.16 70 351 46 279 45
ZORK2 22 45 7.01 70 536 754 239 130
ZORK3 23 45 6.93 70 627 174 414 70
ZTUU 15 26 3.15 70 183 0 183 0

Table 6: Map statistics for RWKV, RWKV-S, Llama-1-S, Llama-2-S, Code-Llama-S, Code-Llama-Instruct-
S. Here, # LOCS represents the number of locations in each walkthrough; # EDGES represents the
number of edges; AVG LEN PATH denotes the average length of all paths; # STEPS indicates the
number of steps in each walkthrough; EASY and HARD of the DF and RF respectively represent the
number of easy and hard skeletons of the DF and RF tasks.
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MAPS # LOCS # EDGES AVG LEN PATH # STEPS
DF RF

EASY HARD EASY HARD

905 5 7 1.88 19 11 5 11 5
ADVENT 12 21 3.73 18 67 30 67 30
ADVENTURELAND 8 11 2.09 20 32 1 32 1
AFFLICTED 3 3 1.25 8 4 0 4 0
ANCHOR 5 5 1.91 5 10 1 7 4
AWAKEN 6 8 2.32 10 24 4 21 4
BALANCES 5 5 1.91 16 10 1 10 1
BALLYHOO 5 4 2.0 9 10 0 10 0
CURSES 6 8 1.95 12 17 2 17 0
CUTTHROAT 2 2 1.0 13 1 1 1 1
DEEPHOME 3 3 1.25 11 3 1 3 1
DETECTIVE 7 8 2.35 16 23 0 23 0
DRAGON 4 4 1.57 4 6 1 6 1
ENCHANTER 9 13 2.63 15 38 13 38 13
ENTER 0 0 0 3 0 0 0 0
GOLD 5 5 1.91 9 11 0 11 0
HHGG 4 4 1.57 15 6 1 6 1
HOLLYWOOD 4 5 1.56 10 6 3 6 3
HUNTDARK 3 2 1.33 10 3 0 3 0
INFIDEL 6 8 1.9 9 16 5 17 4
INHUMANE 6 8 1.95 14 19 2 19 2
JEWEL 6 9 2.08 17 21 4 21 4
KARN 3 4 1.33 20 6 0 6 0
LIBRARY 2 1 1.0 12 1 0 1 0
LOOSE 4 3 1.67 8 6 0 6 0
LOSTPIG 3 3 1.25 17 3 1 3 1
LUDICORP 8 11 2.62 24 32 0 32 0
LURKING 3 3 1.25 21 4 0 4 0
MOONLIT 3 2 1.33 14 3 0 3 0
MURDAC 11 19 3.75 25 110 8 102 8
NIGHT 11 12 3.62 17 58 0 58 0
OMNIQUEST 10 18 2.73 22 54 36 54 36
PARTYFOUL 0 0 0 4 0 0 0 0
PENTARI 8 10 2.78 7 28 4 28 4
PLANETFALL 2 2 1.0 20 1 1 1 1
PLUNDERED 2 1 1.0 9 1 0 1 0
REVERB 5 5 1.91 8 10 1 10 1
SEASTALKER 2 2 1.0 12 1 1 1 1
SHERLOCK 4 3 1.67 7 6 0 6 0
SNACKTIME 2 2 1.0 15 2 0 2 0
SORCERER 4 7 1.56 16 7 2 7 2
SPELLBRKR 3 3 1.25 10 3 1 3 1
SPIRIT 4 4 1.57 9 6 1 6 1
TEMPLE 3 3 1.25 11 3 1 3 1
TRINITY 4 4 1.57 14 6 1 6 1
TRYST205 3 2 1.33 9 3 0 3 0
WISHBRINGER 7 8 2.35 11 23 0 23 0
YOMOMMA 4 5 1.57 8 6 1 4 3
ZENON 4 4 1.57 21 6 1 6 1
ZORK1 8 12 2.27 22 34 3 34 3
ZORK2 8 10 2.65 11 29 2 29 2
ZORK3 7 14 2.59 17 40 24 30 12
ZTUU 5 4 2.0 5 10 0 10 0

Table 7: Map statistics for Llama-1. Here, # LOCS represents the number of locations in each walk-
through; # EDGES represents the number of edges; AVG LEN PATH denotes the average length of all
paths; # STEPS indicates the number of steps in each walkthrough; EASY and HARD of the DF and
RF respectively represent the number of easy and hard skeletons of the DF and RF tasks.
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MAPS # LOCS # EDGES AVG LEN PATH # STEPS
DF RF

EASY HARD EASY HARD

905 5 7 1.88 21 11 5 11 5
ADVENT 25 45 7.52 54 473 76 355 76
ADVENTURELAND 18 33 5.91 56 413 42 260 46
AFFLICTED 9 14 2.43 32 46 0 46 0
ANCHOR 9 15 3.0 19 50 16 41 13
AWAKEN 13 18 3.98 34 114 4 90 4
BALANCES 8 12 2.51 49 38 1 38 1
BALLYHOO 12 21 3.98 43 111 35 101 11
CURSES 10 17 2.93 42 67 9 67 0
CUTTHROAT 19 28 4.75 42 180 9 136 53
DEEPHOME 12 21 3.43 40 102 10 102 10
DETECTIVE 25 32 6.99 40 307 4 307 4
DRAGON 11 20 3.16 22 68 42 70 40
ENCHANTER 17 31 4.61 41 142 114 142 114
ENTER 0 0 0 15 0 0 0 0
GOLD 8 14 2.5 40 56 0 56 0
HHGG 7 8 2.35 39 22 1 22 1
HOLLYWOOD 7 8 2.5 34 21 3 21 3
HUNTDARK 7 6 2.67 41 21 0 21 0
INFIDEL 12 24 3.34 42 102 116 78 54
INHUMANE 18 34 4.82 40 218 168 190 116
JEWEL 15 25 3.77 46 141 30 141 30
KARN 15 27 4.11 49 136 38 144 30
LIBRARY 7 11 2.22 40 32 0 32 0
LOOSE 8 13 2.86 28 49 0 49 0
LOSTPIG 5 7 1.69 47 11 5 11 5
LUDICORP 19 37 4.14 65 291 51 291 51
LURKING 6 9 2.42 40 30 1 29 1
MOONLIT 3 2 1.33 36 3 0 3 0
MURDAC 23 43 5.9 62 355 171 346 160
NIGHT 20 39 5.79 53 380 19 380 0
OMNIQUEST 26 49 6.28 58 348 180 222 192
PARTYFOUL 4 6 1.67 19 12 0 11 1
PENTARI 17 29 3.67 42 191 4 191 4
PLANETFALL 17 29 4.96 52 164 16 164 16
PLUNDERED 7 7 2.59 26 22 0 22 0
REVERB 12 15 3.54 28 68 2 68 2
SEASTALKER 10 15 2.7 43 50 3 50 3
SHERLOCK 6 9 2.08 21 25 0 25 0
SNACKTIME 4 6 1.5 33 12 0 12 0
SORCERER 10 18 2.3 44 60 13 60 13
SPELLBRKR 10 13 2.71 41 60 2 59 2
SPIRIT 13 21 3.22 38 99 6 99 6
TEMPLE 9 14 2.84 37 39 18 39 18
TRINITY 8 8 2.93 37 28 1 28 1
TRYST205 8 13 1.92 49 49 0 49 0
WISHBRINGER 18 30 5.2 38 174 48 175 47
YOMOMMA 7 13 2.18 31 36 14 26 10
ZENON 12 22 3.71 52 70 62 70 62
ZORK1 19 32 7.25 56 332 22 279 45
ZORK2 19 27 5.15 42 176 18 107 76
ZORK3 18 35 4.78 48 282 100 199 45
ZTUU 8 11 2.26 28 38 0 38 0

Table 8: Map statistics for Llama-2, Code-Llama, Code-Llama-Instruct. Here, # LOCS represents the
number of locations in each walkthrough; # EDGES represents the number of edges; AVG LEN PATH
denotes the average length of all paths; # STEPS indicates the number of steps in each walkthrough;
EASY and HARD of the DF and RF respectively represent the number of easy and hard skeletons of
the DF and RF tasks.
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C More Results

C.1 Success Rate Weighted by Route Length

Following the evaluation standard proposed by Anderson et al. (2018), we also computed
the success rates weighted by route length, which are shown in Appendix C.1. As we can
see, the ranking of the models stays the same as in Figure 2.
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Figure 5: Success rates weighted by route length on DF (a) and RF (b) questions, averaged over all 53
mazes.

C.2 Reasoning Accuracy Results

In this section, we present the results of each LLM measured by reasoning accuracy, the
metric introduced in Appendix A.6. Results are shown in Figure 6, with their pair-wise
comparison shown in Table 9. As we can see, the trend measured by this metric is similar to
what’s shown in section 3: GPT-4 is the best among all the evaluated models but still suffers
a low accuracy. Figure 7 shows the reasoning accuracies of GPT-3.5 vs. GPT-4 broken down
into individual games, showing similar patterns with Figure 3.
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Figure 6: Reasoning accuracy of each model on DF (a) and RF (b) questions, averaged over all 53
mazes.
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(a) GPT-3.5 vs. GPT-4 on DF questions.
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Figure 7: Reasoning accuracies of GPT-3.5 and GPT-4 broken down into individual games. Similar
to Figure 3, in each subfigure, the left scatterplot is for easy questions while the right is for hard
questions.
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METHOD RWKV LLAMA-2 CLAUDE-1 CLAUDE-2 GPT-3.5 GPT-4 HARD|
RWKV * 0.00 | 0.02 0.00 | 0.15 0.00 | 0.18 0.00 | 0.05 0.00 | 0.41 *
LLAMA-2 0.15 | 0.00 * 0.01 | 0.20 0.01 | 0.24 0.01 | 0.07 0.01 | 0.52 *
CLAUDE-1 0.51 | 0.00 0.62 | 0.15 * 0.11 | 0.13 0.13 | 0.05 0.11 | 0.29 *
CLAUDE-2 0.60 | 0.00 0.72 | 0.15 0.58 | 0.47 * 0.16 | 0.05 0.13 | 0.29 *
GPT-3.5 0.32 | 0.00 0.38 | 0.15 0.28 | 0.52 0.28 | 0.63 * 0.05 | 0.35 *
GPT-4 0.71 | 0.00 0.79 | 0.15 0.67 | 0.47 0.67 | 0.58 0.73 | 0.28 * *
|EASY * * * * * * *

(a) Pairwise comparison on easy (lower left) and hard (higher right) DF questions.

METHOD RWKV LLAMA-2 CLAUDE-1 CLAUDE-2 GPT-3.5 GPT-4 HARD|
RWKV * 0.00 | 0.00 0.00 | 0.12 0.00 | 0.20 0.00 | 0.03 0.00 | 0.51 *
LLAMA-2 0.02 | 0.00 * 0.00 | 0.14 0.00 | 0.19 0.00 | 0.04 0.00 | 0.45 *
CLAUDE-1 0.33 | 0.00 0.32 | 0.02 * 0.10 | 0.17 0.12 | 0.02 0.10 | 0.42 *
CLAUDE-2 0.46 | 0.00 0.45 | 0.03 0.45 | 0.31 * 0.18 | 0.02 0.17 | 0.43 *
GPT-3.5 0.15 | 0.00 0.16 | 0.03 0.15 | 0.34 0.14 | 0.48 * 0.02 | 0.46 *
GPT-4 0.56 | 0.00 0.55 | 0.02 0.53 | 0.31 0.53 | 0.45 0.56 | 0.15 * *
|EASY * * * * * * *

(b) Pairwise comparison on easy (lower left) and hard (higher right) RF questions.

Table 9: Reasoning accuracies on DF and RF questions broken down into pairwise comparison.

METRIC
GPT-3.5 GPT-4

DF RF DF RF
β p β p β p β p

# LOCATIONS −0.076 0.001 −0.084 0.000 −0.073 0.000 −0.120 0.000
# EXP EDGES −0.068 0.003 −0.081 0.001 −0.067 0.000 −0.096 0.003
# CONF LOCATIONS −0.056 0.017 −0.067 0.006 −0.065 0.000 −0.088 0.006
AVG LEN EASY −0.066 0.005 −0.081 0.001 −0.066 0.000 −0.131 0.000
AVG LEN SCENE −0.037 0.119 −0.002 0.939 0.031 0.036 0.069 0.035

(a) Regression analysis results on easy questions.

METRIC
GPT-3.5 GPT-4

DF RF DF RF
β p β p β p β p

# LOCATIONS −0.049 0.088 −0.055 0.043 −0.083 0.007 −0.115 0.006
# EXP EDGES −0.052 0.070 −0.064 0.018 −0.080 0.010 −0.107 0.011
# IMP EDGES −0.059 0.038 −0.032 0.252 −0.118 0.000 −0.152 0.000
# CONF LOCATIONS −0.045 0.125 −0.055 0.043 −0.068 0.030 −0.081 0.061
AVG LEN HARD −0.072 0.011 −0.055 0.046 −0.094 0.002 −0.122 0.004
AVG # IMP IN HARD −0.057 0.046 −0.022 0.428 −0.081 0.009 −0.096 0.024
AVG LEN SCENE 0.032 0.268 0.050 0.069 0.084 0.007 0.105 0.013

(b) Regression analysis results on hard questions.

Table 10: Regression analysis results, where β is the regression coefficient and p denotes the p-value.
When p < 0.001, we write 0.000 for presentation simplicity.

C.3 Analysis Details of GPTs

As discussed in section 3.3, we used regression analysis to understand the effects of the
aforementioned variables on model performance. In particular, for each model (GPT-3.5
or GPT-4) on each type of question (DF or RF, easy or hard), we ran single-variable linear
regression to understand how the success rate varies with each of the variables of interest.
Table 10 displays the regression results.

In our pilot experiments, we ran a multivariate regression analysis that used the afore-
mentioned variables jointly. However, the results of this regression are misleading: due to
colinearity among the explanatory variables, the estimated coefficients are unreliable and the
p-values are inflated. We also tried principled component regression, but the first principle
component has nearly equal loadings across all the variables, making it inconvenient to
interpret the results.
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C.4 Results of Search-Based Approaches

We also explored an approach that first maps a walkthrough to a symbolic graph and then
uses a search algorithm to answer the given (DF or RF) question. However, we found it to
be very challenging to translate natural language walkthrough into searchable symbolic
graphs in the first place, making this approach not promising.

We tried two different settings. In the first setting, we did 5-shot prompting and each
in-context example is a single S-A-D triplet; the examples are the first five steps in the
walkthrough. In the second setting, we did 0-shot prompting and the prompt includes the
entire walkthrough; the LLM has to generate a sequence of S-A-D triplets which then could
be used to construct the graph. For each setting, we ran experiments on the following six
mazes: Zork-I, Night, Partyfoul, Plundered, Spirit, and Temple.

In both settings, GPT-3.5 yields a low accuracy of the S-A-D triplet completion, indicating
the difficulty of translating natural language into symbolic graphs. In the first setting,
the average accuracy is 70.5 %. In the second setting, the average success rate is 6.3 %.
The second setting is more challenging because any mistake would cause all subsequent
steps to be incorrect. Some LLM mistakes and our error analysis can be found at https:
//github.com/Oaklight/mango/tree/camera-ready/utils/supp_exp.

C.5 More Llama Results

The Llama-2 we used in the experiments of section 3 is the base model. We also experimented
with the the 32.5B Llama-1 model released earlier (Touvron et al., 2023a), 13b CodeLlama
and 13b CodeLlama-Instruct (Rozière et al., 2024). Llama-1 has a significantly smaller
context window, so it had to read shorter walkthrough prefixes and answer fewer questions.
The results of comparing different Llamas are in Figure 8, Figure 9, Table 11, and Table 12.
As we can see, both CodeLlama and CodeLlama-Instruct outperform Llama-2, and Llama-1
performs the best in the group. In the main paper, we present the results of Llama-2-base
because it is commonly considered to be the standard choice of the Llama series.
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(b) On easy (left) and hard (right) RF questions.

Figure 8: Success rates of the Llama-1 and Llama-2 on DF (a) and RF (b) questions, averaged over all
53 mazes.
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(a) On easy (left) and hard (right) DF questions.
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(b) On easy (left) and hard (right) RF questions.

Figure 9: Reasoning accuracy of the Llama-1 and Llama-2 on DF (a) and RF (b) questions, averaged
over all 53 mazes.

METHOD LLAMA-1 LLAMA-2 CODE-LLAMA CODE-LLAMA-INSTRUCT HARD|
LLAMA-1 * 0.29 | 0.25 0.34 | 0.38 0.34 | 0.38 *
LLAMA-2 0.47 | 0.65 * 0.24 | 0.30 0.24 | 0.30 *
CODE-LLAMA 0.65 | 0.67 0.60 | 0.44 * 0.31 | 0.31 *
CODE-LLAMA-INSTRUCT 0.65 | 0.67 0.60 | 0.44 0.58 | 0.58 * *
|EASY * * * * *

(a) Pairwise comparison on easy (lower left) and hard (higher right) DF questions.

METHOD LLAMA-1 LLAMA-2 CODE-LLAMA CODE-LLAMA-INSTRUCT HARD|
LLAMA-1 * 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 *
LLAMA-2 0.05 | 0.18 * 0.00 | 0.01 0.00 | 0.01 *
CODE-LLAMA 0.03 | 0.20 0.04 | 0.03 * 0.01 | 0.01 *
CODE-LLAMA-INSTRUCT 0.03 | 0.20 0.04 | 0.03 0.03 | 0.03 * *
|EASY * * * * *

(b) Pairwise comparison on easy (lower left) and hard (higher right) RF questions.

Table 11: Llamas’ success rates on DF and RF questions broken down into pairwise comparison.

METHOD LLAMA-1 LLAMA-2 CODE-LLAMA CODE-LLAMA-INSTRUCT HARD|
LLAMA-1 * 0.09 | 0.01 0.16 | 0.19 0.16 | 0.19 *
LLAMA-2 0.25 | 0.40 * 0.02 | 0.06 0.02 | 0.06 *
CODE-LLAMA 0.47 | 0.47 0.34 | 0.18 * 0.07 | 0.07 *
CODE-LLAMA-INSTRUCT 0.47 | 0.47 0.34 | 0.18 0.32 | 0.32 * *
|EASY * * * * *

(a) Pairwise comparison on easy (lower left) and hard (higher right) DF questions.

METHOD LLAMA-1 LLAMA-2 CODE-LLAMA CODE-LLAMA-INSTRUCT HARD|
LLAMA-1 * 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 *
LLAMA-2 0.05 | 0.18 * 0.00 | 0.00 0.00 | 0.00 *
CODE-LLAMA 0.02 | 0.18 0.03 | 0.03 * 0.00 | 0.00 *
CODE-LLAMA-INSTRUCT 0.02 | 0.18 0.03 | 0.03 0.02 | 0.02 * *
|EASY * * * * *

(b) Pairwise comparison on easy (lower left) and hard (higher right) RF questions.

Table 12: Llamas’ reasoning accuracies on DF and RF questions broken down into pairwise comparison.
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C.6 Human Performance Details

To measure human agreement, we computed the mean square error (MSE) for each metric
across the questions that were answered by more than one human rater. As shown in
Table 13, the human agreement turns out to be high.

ALL EASY HARD
TASK TYPE SR RA SR RA SR RA
ROUTE FINDING 0.1442 0.3333 0.0425 0.1429 0.5000 1.0000
DESTINATION FINDING 0.0000 0.6000 0.0000 0.5714 0.0000 0.6667

Table 13: Human agreement measured by MSE. SR stands for success rate, while RA denotes reasoning
accuracy.

C.7 More Results About Playing Minigames

In section 3.5, we have shown that a strong mapping and navigation ability can help an
LLM achieve better performance in playing the minigames. Now we show the fine-grained
results for that set of experiments. Precisely, Table 14 shows the spelled-out success rates
of GPT-3.5 and GPT-4 on each maze, where M/N means that M of N minigames were
successfully played by this model. Since GPT-4 by default has a larger context window size
(8K) than GPT-3.5 (4K), in order to make a fair comparison, we restrict the context window
size to 4K for both GPTs.

D Future Directions

Our MANGO benchmark sets up a leaderboard, measuring the mapping and navigation
abilities of LLMs. An interesting future direction is to investigate how the internal represen-
tations of each LLM have—if any—captured the structures of the maps. For example, one
may probe the LLM representations and examine whether these representations are predic-
tive of certain characteristics of the maze, similar to the experiments of Li et al. (2023) in
board games. This can potentially reveal critical insights into the underlying mechanism of
an LLM to represent spatial relations, benefiting their application into real-world scenarios.

The second interesting direction is to investigate how low-cost-adaptation can improve
the performance of an LLM. For example, can an LLM, trained on a limited set of mazes,
generalize its knowledge and reasoning capability to unseen mazes? Findings in this
direction could enhance their usefulness in dynamic environments.

Another direction is to upgrade the MANGO benchmark by enriching its spatial and
structural configurations on top of the current maps. These configurations include:

• spatial notations (e.g., distance in meters, area in square meters) such that one would
need complex movements to achieve a target (e.g., not "north" but "north 3 meters");

• notions of facing directions and rotations such that one would need to turn to switch
facing directions.

Such upgrades will enhance its practical application in more complex scenarios. They will
also enable investigation in interesting topics, including

• LLMs’ generalization to significantly out-of-distribution navigation scenarios (e.g., differ-
ent structures, styles, and configurations);

• LLMs’ robustness to distracting context.
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GAMES
GPT-3.5 GPT-4

W/O MAPS W/ MAPS W/O MAPS W/ MAPS

905 0/0 0/0 0/0 0/0
ADVENT 3/9 3/9 4/9 5/9
ADVENTURELAND 1/7 1/7 3/7 5/7
AFFLICTED 0/12 1/12 4/12 4/12
ANCHOR 0/2 0/2 2/2 2/2
AWAKEN 0/7 0/7 3/7 7/7
BALANCES 0/3 1/3 2/3 2/3
BALLYHOO 1/6 1/6 3/6 2/6
CURSES 2/7 3/7 2/7 6/7
CUTTHROAT 4/5 5/5 4/5 4/5
DEEPHOME 3/10 6/10 8/10 10/10
DETECTIVE 4/6 5/6 6/6 6/6
DRAGON 0/6 1/6 0/6 2/6
ENCHANTER 0/1 1/1 1/1 1/1
ENTER 0/0 0/0 0/0 0/0
GOLD 1/7 2/7 3/7 4/7
HHGG 0/0 0/0 0/0 0/0
HOLLYWOOD 2/6 2/6 4/6 5/6
HUNTDARK 0/0 0/0 0/0 0/0
INFIDEL 1/4 2/4 2/4 2/4
INHUMANE 1/2 2/2 2/2 2/2
JEWEL 0/10 1/10 4/10 7/10
KARN 0/8 0/8 4/8 5/8
LIBRARY 1/5 2/5 5/5 5/5
LOOSE 3/4 3/4 3/4 3/4
LOSTPIG 0/1 0/1 0/1 1/1
LUDICORP 1/13 2/13 9/13 10/13
LURKING 1/4 0/4 0/4 2/4
MOONLIT 0/2 2/2 2/2 2/2
MURDAC 1/2 1/2 2/2 2/2
NIGHT 5/16 8/16 9/16 13/16
OMNIQUEST 1/11 1/11 1/11 7/11
PARTYFOUL 0/2 1/2 1/2 1/2
PENTARI 4/13 3/13 4/13 8/13
PLANETFALL 3/6 4/6 3/6 5/6
PLUNDERED 0/0 0/0 0/0 0/0
REVERB 0/2 0/2 1/2 1/2
SEASTALKER 0/2 0/2 0/2 2/2
SHERLOCK 3/3 3/3 3/3 3/3
SNACKTIME 0/3 0/3 3/3 3/3
SORCERER 4/5 4/5 3/5 4/5
SPELLBRKR 1/1 1/1 1/1 1/1
SPIRIT 4/14 5/14 8/14 10/14
TEMPLE 0/2 1/2 1/2 2/2
TRINITY 0/0 0/0 0/0 0/0
TRYST205 0/3 1/3 0/3 1/3
WISHBRINGER 0/1 1/1 0/1 0/1
YOMOMMA 0/4 0/4 0/4 1/4
ZENON 1/5 3/5 5/5 5/5
ZORK1 2/18 3/18 10/18 13/18
ZORK2 4/9 5/9 7/9 8/9
ZORK3 0/6 1/6 0/6 4/6
ZTUU 0/9 0/9 7/9 7/9

Table 14: The experiment results (# successful / # answerable minigames) of each model.
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