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Abstract—Reliability and real-time responsiveness in safety-critical sys-
tems have traditionally been achieved using error detection mechanisms,
such as LockStep, which require pre-configured checker cores, strict
synchronisation, static error detection regions, or limited preemptions.
However, these core-bound hardware mechanisms often lead to significant
resource over-provisioning and diminished real-time performance in
modern systems where tasks with varying reliability requirements are
consolidated on shared processors for efficiency and cost reduction.
To address these challenges, this work presents FlexStep, a systematic
solution that integrates hardware and software across the SoC, ISA,
and OS scheduling layers. FlexStep features a novel microarchitecture
that supports dynamic core configuration and asynchronous, preemptive
error detection. The FlexStep architecture naturally allows for flexible
task scheduling and error detection, enabling new scheduling algorithms
that enhance both resource efficiency and real-time schedulability.

I. INTRODUCTION

In safety-critical systems, such as automotives and avionics, pro-
cessor cores must simultaneously detect and correct faults during
execution [1]–[4] and guarantee task schedulability [5]–[7] as the
foundational components to ensure reliable system. However, since
reliability and schedulability address distinct safety dimensions, they
are usually achieved through different development phases and across
various architectural levels. Reliability is often ensured through
hardware-level error detection mechanisms, such as LockStep used
in ARM Cortex R series [8]–[11]. While software mechanisms
exist [12]–[15], they offer limited coverage and degrade performance
significantly. Conversely, schedulability is ensured through schedul-
ing algorithms implemented in the Operating System (OS) [16]–[18].
Existing works. As hardware computational capabilities advance and
software applications diversity expands, rising demand emerges to
execute multiple tasks with varying reliability requirements on shared
processor cores [19]–[23]. In this context, LockStep technology faces
significant limitations due to its rigid hardware design. LockStep
binds one or more identical cores, synchronously executing same
program and comparing output results at each cycle. This design
mandates that all tasks undergo the highest level of error detection,
irrespective of their actual reliability needs, which leads to inefficient
use of error detection capabilities, suboptimal resource utilisation,
significant power and area overheads, and challenges to system
schedulability. As Fig.1(a) demonstrates, LockStep’s mandatory error
checking for non-verification tasks like τ1 and τ3 causes unnecessary
resource consumption and the third job of τ1 to miss its deadline.

Methods supporting reconfiguration, such as LockStep with split-
lock [24]–[26], have been developed to reduce resource overhead.
For instance, the most recent Hybrid Modular Redundancy (HMR)
approach [24] explicitly separates mission-critical and performance-
critical code sections. It leverages hardware designs to enable run-
time reconfiguration for split-lock, providing a degree of flexibility.
However, the inherent limitations of the “core binding” still impose
significant constraints. Specifically, when reconfigured into verifica-
tion mode, checker cores must perform error detection synchronously
with main core. Moreover, this synchronous error-checking execution
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(c) FlexStep allowing asynchronous, selective, and preemptive checking.

Fig. 1: Schedules on different dual-core architectures. τ1, τ2, τ3 have
implicit deadlines and worst-case execution time of 15, 15, 5. Non-
verification tasks τ1 and τ3 do not require checking. An emergency occurs
when τ2’s first job arrives and requires checking its first 10 units of work.

cannot be preempted by non-verification tasks, even if those tasks
have higher priorities or earlier deadlines. Additionally, HMR can
only statically perform checking for pre-determined tasks, lacking
the capability to provide selective error checking based on dynamic
system requirements. These constraints significantly reduce flexibility
and impair schedulability. As shown in Fig. 1(b), although HMR with
runtime split-lock reduces resource wastage by not performing error
checking for non-verification tasks τ1 and τ3 (τ3 can be executed on
core 1), the “core binding” design still prevents τ1 from preempting
τ2’s error checking, resulting in τ1 missing its second deadline.
Contributions. To guarantee reliability and schedulability for safety-
critical systems while maintaining resource efficiency, developing
more flexible hardware error detection architecture has become an
industry necessity [26]–[28]. As illustrated in Fig. 1(c), such archi-
tecture should decouple cores from rigid LockStep and employ a flex-
ible error detection mechanism. This mechanism, with OS support,
should enable error detection that is asynchronous, selective, and
preemptable by non-verification tasks. However, achieving this level
of flexibility and efficiency presents significant technical challenges.

To address these challenges, we present FlexStep, a comprehensive
full-stack framework that integrates hardware and software to deliver
high flexibility and configurability building on three key technologies.
First, we modified the Rocket [29] microarchitecture to enable
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Fig. 2: FlexStep overview. At the hardware level, colored modules represent functional units added by FlexStep: orange hues denote identical
functionality, while yellow and blue hues highlight variations in functionality for different cores. a Register Checkpoint Management (Sec. III-A).
b Memory Access Log (Sec. III-B). c Data Buffering and Channelling (Sec. III-C). At the software level, FlexStep provides d customised ISA

(Tab. I) and enables e a control flow to perform context switching between verification and non-verification tasks and flexible scheduling.

dynamic hardware reconfiguration and asynchronous error detection
at thread level, establishing foundation for scheduling flexibility. Sec-
ond, through abstraction of hardware configurations into a customized
Instruction Set Architecture (ISA), we integrate runtime hardware
control with OS context switching, allowing dynamic task preemption
and resource reallocation. Third, the proposed full-stack framework
systematically coordinates multicore architecture extensions with
OS scheduling primitives, while our formalized theoretical model
enables novel scheduling algorithms that exploit hardware flexibility
to improve real-time schedulability. This approach overcomes the lim-
itations of synchronous, core-binding methods through preemptable
error detection and adaptive resource management for tasks with vary-
ing reliability requirements. We publicly release FlexStep’s source
code, at https://anonymous.4open.science/r/FlexStep-DAC25-7B0C.

We implemented FlexStep on AMD Alveo U280 FPGA and
evaluated it using various metrics. Results demonstrate that FlexStep
achieves microsecond-level detection latency with 1.07% slowdown,
2.21% area overhead, and 2.89% power consumption while delivering
improved schedulability compared to LockStep and HMR.

II. FLEXSTEP: HARDWARE/SOFTWARE CO-DESIGN FRAMEWORK

In FlexStep, any processor core can be configured as a main or
checker core. The main core executes applications like a standard
core, while checker core verifies the correctness of main core by re-
running the same program. Fig. 2 illustrates the FlexStep framework.

Unlike the synchronised verification in LockStep, FlexStep em-
ploys error detection based on Register Checkpoints (RCPs) – archi-
tectural states at specific points – and memory accesses, similar to
Paramedic [30]–[32]. Specifically, a user thread running on main core
is divided into small checking segments, which can be reproduced
on its associated checker core(s). Each segment is identified by Start
RCPs (SCPs) and End RCPs (ECPs) stored in RCP Management
units (Fig. 2. a , Sec. III-A). The checker core halts memory access
and sequentially replays the segments by initializing its architectural
state to the segment’s SCPs and compares its final state to the ECPs.
During execution, memory access data (e.g., addresses and data for
LD/ST, LR/SC, AMO instructions) recorded in Memory Access Log
(Fig. 2. b , Sec. III-B) are used for replay execution and verified at
runtime. Main core execution is deemed correct if the ECPs of all
checking segments and memory access data match the original traces.

The fundamental idea is that, as long as all data related to RCPs
and memory accesses – required for execution replay and verification

– are recorded and buffered, the checker thread can be executed
asynchronously on any other core. Therefore, checker core can
execute other tasks instead of verifying, as long as the necessary
data of verification task have been extracted from main core. This
design improves both utilisation and flexibility. FlexStep allows user
threads running on any core to be duplicated and verified on different
core(s) using a data buffer and configurable interconnected channel
(Fig. 2. c , Sec. III-C). Unlike LockStep and HMR, which supports
specific modes such as Dual-Core LockStep (DCLS) and Triple-Core
LockStep (TCLS) by binding cores via shared input path , FlexStep’s
interconnected channel can be configured to operate in one-to-one
(similar to DCLS), one-to-two (similar to TCLS), or more modes.
This accommodates scenarios with varying safety-criticality demands.

To manage cores and schedule error detection, FlexStep abstracts
the configurable hardware control interfaces as a customised ISA
(Fig. 2. d , Tab. I) and integrates a control flow into OS. The
ISA defines the instructions specific to main or checker core and
global instructions, exposing all core attributes (main, checker, or
compute) to OS for runtime configuration and scheduling facilitation
(Fig. 2. e ). Preemptive execution is supported, allowing any core to
be interrupted and enabling more urgent tasks to be executed. Thus,
the OS can dynamically configure core attributes and verification
modes as needed, leveraging asynchronous verification and task pre-
emption to optimise real-time scheduling while ensuring reliability.

III. MICROARCHITECTURE (µ-ARCH)

Implementing hardware-level FlexStep requires µ-arch modifica-
tions adding several key functional units, as illustrated in Fig. 2. We
used the Rocket core as a case study to implement our framework and
evaluate its effectiveness. Noted that incorporating identical units into
each core is crucial for dynamic attribute switching, which requires
maximising functional unit reuse to enhance utilisation and reduce
area costs. This section discusses the details of the modified µ-arch.

A. Register Checkpoint Management Units (RCPM)

RCPM (Fig. 2. a ) consists of Checkpoint Control (CPC) and
Architectural State Snapshot (ASS). CPC controls the start and
end of a checking segment in the main core, and identify segment
boundaries and verify execution correctness in the checker core. ASS
is a storage unit, which captures Register Checkpoint snapshots and
releases them for transmitting or applying under the control of CPC.



TABLE I: FlexStep ISA, abstracting control interface for software.

Instruction Description
G.IDs.contain Return core attributes (Main/Checker)
G.Configure Configure the main and checker cores’ID
M.associate Allocate one or multiple checker core(s) to main
M.check Enable/Disable the checking function
C.check_state Switch the checking state (busy/idle)
C.record Record the context to ASS
C.apply Apply the SCP from data channel
C.jal Jump to the next pc (npc) of SCP
C.result Return the comparison result

Checkpoint Control (CPC) includes an instruction counter (Fig. 2.
Inst.Cnt) and a privilege mode monitor (Fig. 2. Priv.Mntr). FlexStep
only supports user mode checking and all cores could enter kernel
during execution, resulting in premature extermination (Fig. 3. 1 )
and temporary deviation (Fig. 3. 2 ) of a checking segment.
CPC’s Mechanism. For main core, a new checkpoint is generated
when: a) privilege mode switches; b) instruction count limit is reached
(default is 5000). At ECP, the counter stops and records the number
of instructions of the segment. During the segment, main core sends
SCP, LD/ST log, instruction count (IC), and ECP in order (Fig. 3)
for checker core to receive. For checker core, upon applying SCP, it
begins checking till the instruction count reaches the same value as
main core before using its own architectural state to verify ECP.

Architectural State Snapshot (ASS) facilitates duplicate execution
by temporarily storing Checkpoints and architectural states. It enables
immediate access to architectural states and reduces the overhead of
frequent memory access, achieving fast execution state switching.

B. Memory Access Log Unit (MAL)

For main core, information required for duplicate execution and
verification needs to be recorded and transmitted during checking
segments. MAL (Fig. 2. b ) records data and addresses of a memory
instruction, packaging them for transmission in the main core, or
making comparisons to report potential errors in the checker core.
Handling instructions with multiple micro-ops. Regular LD/ST
instructions are packaged into a single entry, while multi-micro-op
instructions (LR, SC and AMO) use multiple entries to minimize data
width. This introduces slight latency but reduces storage overhead,
outweighing disadvantages due to their low frequency in workloads.

C. Data Buffering and Channelling Units (DBC)

DBC (Fig. 2. c ) consists of Data Buffer FIFO to buffer data
of checking segments for conflict resolution and asynchronous error
checking and System Interconnect that establishes and alters links
of the FIFOs between main cores and their associated checker cores.
Configurable Inter-core Channels. Inter-core communication chan-
nels between main and checker cores are achieved through the System
Interconnect, a fully connected MUX-DEMUX network laid out
between FIFO of each core. A global register, which can be modified
by custom instructions, generates control signals for MUX/DEMUX
to establish channels between the main core and one or more checker
cores. This design eliminates communication conflicts and ensures
minimal communication latency at a small scale. As the design scales
up, the wiring complexity grows exponentially, and the interconnect
could be replaced with a bus interconnect or NoC.
Buffering for Conflict Resolving and Asynchrony. In line with
previous work [30]–[32], an SRAM-based FIFO is used for data
buffering, enabling the checker core to retrieve information directly
from the FIFO instead of main memory. This supports asynchronous
verification; with larger capacity comes greater flexibility in schedul-
ing. The main core’s FIFO resolves conflicts when multiple main

cores compete for a checker core, buffering data until the checker
core is available. Additional main memory buffering, accessed via
DMA, can further support conflict resolution and asynchrony.
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Fig. 3: Checking segments: their components, main and checker execution
of them, and them of default length or interrupted by kernel.

IV. NEW ISA AND OS KERNEL ADD-ONS

In FlexStep, the OS plays a pivotal role in managing hardware
resources and ensuring real-time schedulability. To enhance its func-
tionality, we leverage a control interface within the ISA (Tab. I),
enabling efficient core management with minimal modifications to
the OS. This approach ensures compatibility with existing application
programs while improving overall scheduling performance.

A. New ISA Support

As shown in Tab. I, the new ISA is classified into three categories
for the main core (M.x()), checker core (C.x()) and both (G.x()).
Global instructions include IDs.contain to identify core attributes
and Configure to write the IDs of main and checker cores into
global configuration registers. For main cores, associate allocates
checker cores for redundant execution, and check controls the
checking capability by managing the relevant units. For checker
cores, we present check_state for changing the checking state
of the core, and record for recording the architectural state into
the ASS. In addition, a pair of “atomic” instructions apply and
jal are presented to replay the checking segment on checker cores.

Algorithm 1: Each core’s context switch.

1 Function Context Switch(task *current, core core id):
2 if (G.Main IDs.contain(core id)) then
3 M.check.disable();

4 else if (G.Checker IDs.contain(core id)) then
5 C.check state(idle);

6 Kernel.Intr(DISABLE);
7 task *next = NULL;
8 Kernel.Context.save(current);
9 next = Kernel.Find next();

10 if (next→new release) then
11 /* Configure the main and checker core’s ID */
12 G.Configure(Main IDs, Checker IDs);
13 Kernel.Context.init(next);

14 else then Kernel.Context.restore(next);
15 current = next;
16 Kernel.Intr(ENABLE);
17 if (G.Main IDs.contain(core id)) then
18 /* Associate checker cores and enable checking */
19 M.associate(Checker ID(s));
20 M.check.enable();
21 else if (G.Checker IDs.contain(core id) and

next→checker thread) then
22 C.check state(busy);

23 Kernel.Context.jalr(current→pc);



The apply is used to update the architectural registers, while
the jal is used to jump to the main thread, which is modified
from the standard jump instruction with a designated target from
the main cores for accurate branch misprediction handling without
necessitating any changes to the microarchitecture. Finally, result
reports the comparison result at each ECP.

B. OS Kernel Add-ons and Customised Checker Thread

The modification of OS (Fig. 2. e ) is shown in Al. 1, which
requires minimal code additions to the scheduler’s context switch
function. During context switch, cores executes different instructions
based on its attributes to switch off checking function (Al. 1: lines 2
- 5). Additionally, when a new task is released, Configure (re-
)initializes the global registers (Al. 1: line 12). Finally, for main
cores, associate equips it with the specific checker core(s), while
check_enable activates the checking function (Al. 1: lines 19 -
20). For checker cores, it will switch to busy state upon receiving
verification tasks(Al. 1: line 22) and enter a checker thread.

Besides the general modification of the context switch, we have
also developed a dedicated thread for checker cores (Al. 2). Similar
to the regular context switch, record is used to store current
architectural state in ASS for state restoration (Al. 2: line 4). Next,
the checker core will enter a loop and continuously request new SCP
from the FIFO (Al. 2: line 6). Once a new SCP arrives, apply will
deploy it to the architectural registers (Al. 2: line 7), followed by jal
to control the directional jump of PC (Al. 2: line 8), thereby ensuring
that the checker core executes the correct sequence of instructions.
Lastly, the verification result is returned by result (Al. 2: lines 5),
and the correction mechanism will be triggered if an error is detected.

Algorithm 2: Customised checker thread.

1 Function Checker Thread():
2 /* launching checker thread with P-Thread */
3 ...
4 C.record(ASS); // return position after checking
5 if(!C.rslt()) then ReportErr();
6 while (C.NewSCP() != ready);
7 C.apply(C.NewSCP.data);
8 C.jal(C.NewSCP.npc);

V. SYSTEM MODEL AND SCHEDULING ANALYSIS

We now describe formal model and analysis for scheduling prob-
lem with verification ensuring reliability and real-time guarantees.
Model. We seek to schedule a task set consisting of n sporadic tasks
on m cores. Each task τi is characterised by its worst-case execution
time Ci, period Ti, and implicit deadline Di = Ti. Tasks can be
classified into three types: (1) A task in T N is a non-verification
task that only needs to execute its normal work once every period
and meet its deadline. (2) A task in T V 2 may require double-check
online. (3) A task in T V 3 may require triple-check online. In the
event of an emergency, the system dynamically triggers additional
error checking for one or more jobs of specific verification tasks
based on the nature of the emergency. Double-check (or triple-check)
verification involves duplicating the computation under verification
once (or twice) and reproducing it on one (or two) cores distinct
from the core performing the original computation.

If asynchronous verification is supported, the duplicated computa-
tions can be executed after the original computation but must still be
completed before the job deadline to ensure timely error detection and
maintain system reliability. As discussed earlier, FlexStep supports

both asynchronous verification and selective error checking, allowing
error checking to be dynamically triggered for a task and performed
on specific portions as needed. As an initial step in modeling of this
flexibility, we limit our focus on asynchronous verification only, while
assuming that all jobs of verification tasks require full error checking
and must meet their deadlines. Without additional information, such
as the probability of dynamic verification or assumptions allowing
low-criticality tasks to miss deadlines during system emergencies,
this formulation represents the system’s worst-case behaviour.
Scheduling algorithm and analysis. For this scheduling problem,
we propose a simple scheduling algorithm and corresponding schedu-
lability analysis based on the partitioned Earliest Deadline First
(partitioned EDF). The algorithm partitions all non-verification tasks,
verification tasks, and their duplicated computations for double-check
or triple-check verification on m available cores.

Algorithm 3: Scheduling with asynchronous verification.

1 Input: Γ: Task set τi ∈ {T N , T V 2, T V 3}, m available cores
2 Output: Deadline-compliant task partitioning
3 for each core k ∈ {1, . . . ,m} do ∆[k]← 0;
4 for each τi ∈ {T V 3, T V 2} do
5 if τi ∈ T V 2 then D′

i ← Di/2;
6 else if τi ∈ T V 3 then D′

i ← (
√
2− 1)Di;

7 δo
i ← Ci/D

′
i; δ

v
i ← Ci/(Di −D′

i);
8 k ← argmink∈{1,...,m}∆[k];
9 Assign τoi to core k; ∆[k]← ∆[k] + δo

i ;
10 k′ ← argmink′∈{1,...,m}\{k}δ[k

′];
11 Assign τvi to core k′; ∆[k′]← ∆[k′] + δv

i ;
12 if τi ∈ T V 3 then
13 k′′ ← argmink′′∈{1,...,m}\{k,k′}∆[k′′];
14 Assign τv

′
i to core k′′; ∆[k′′]← ∆[k′′] + δv

i ;

15 for each τi ∈ T N do
16 δo

i ← Ci/Di;
17 k ← argmink∈{1,...,m}∆[k];
18 Assign τi to core k; ∆[k]← ∆[k] + δo

i ;

19 for each core k ∈ {1, . . . ,m} do
20 if ∆[k] > 1 then return Fail;

21 return Success;

Since error-checking computations cannot begin before the original
computation, our algorithm assigns a virtual deadline D′

i to each
verification task to reserve enough time for verification. This virtual
deadline is used for scheduling the original computation on its
assigned core using EDF, while the original deadline is used for
scheduling the duplicated computations. For a double-check task
τi ∈ T V 2, D′

i = Di/2, and for a triple-check task τi ∈ T V 3,
D′

i = (
√
2 − 1)Di. The virtual deadline is chosen to minimise the

sum of the density of the original computation δoi = Ci/D
′
i and the

density of the duplicated computation δvi = Ci/(Di−D′
i), optimising

system schedulability. Note that, in practice, duplicated computations
can start as soon as the original computation begins execution.
However, our schedulability analysis consider the worst-case scenario
— the error-checking starts only after the virtual deadline.

Our partitioning algorithm (Al. 3) partitions verification tasks
with descending utilisation and ensures that their original and error-
checking computations are allocated to different cores (Al. 3: lines
4-14). Their calculated densities δoi , δ

v
i update the total density

of allocated cores. Non-verification tasks are then partitioned with
descending utilisations (Al. 3: lines 15-18). As EDF is used to execute
tasks allocated to each core, core k is schedulable if its total density



(∆[k]) of assigned tasks does not exceed one. The entire task set is
guaranteed to be schedulable if all tasks (and their error-checking) are
successfully assigned to cores and all cores remain schedulable (Al. 3:
lines 19-20). Since our schedulability test is a sufficient test,when
the test fails and hard real-time guarantees are not required, we can
remove the virtual deadline and use the verification task’s original
deadline and utilisation for scheduling and partitioning.

VI. EVALUATION

We built FlexStep featuring homogeneous SoC with multiple
Rockets and implemented the microarchitecture upon an open-source
platform Chipyard [33] (v1.8.0). With TSMC 28nm PDKs [34], we
synthesised the RTL using Synopsys (v2019.12). We deployed the
RTL design on the AMD Alveo U280 FPGA using FireSim [35] to
simulate the settings in Tab II and boot Linux kernel (v5.7), executing
full SPECint 06 [36] and Parsec V3 [37] with simmedium dataset.

TABLE II: Hardware configurations evaluated.

Homogeneous Core
Core In-order scalar Rocket, @1.6GHz

Pipeline 5-stage pipeline, 64 Int/FP Phy Registers,
1 ALU, 1 DIV, 1 FPU, 1 CSR

Branch Pred. 512-entry BHT, 28-entry BTB, 6-entry RAS
Memory Hierarchy

L1 I-Cache 16 KB, 4-way, Blocking, 2 LatencyCycles
L1 D-Cache 16 KB, 4-way, Blocking, 2 LatencyCycles
L2 Cache 512 KB, 8-way, 8 MSHRs, 40 LatencyCycles

A. Performance Overhead

Experiment setup. We executed SPECint and Parsec with dual-core
mode and compared the performance slowdown of Flexstep with the
most widely used hardware scheme Lockstep, and the only available
open-source software error-detection scheme Nzdc [38] which fails
to compile on some workloads (e.g., bodytrack, ferret, gcc).
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Fig. 4: Performance slowdown using LockStep, FlexStep and Nzdc.

Results. As shown in Fig. 4, FlexStep incurs a performance slow-
down (geomean) of 1.07% when running Parsec and 1.24% when
running SPEC, which is attributed to the extraction of RCPs and
backpressure from Data Buffering resulting from cores undergoing
different kernel mode switches and instruction executions. In contrast,
the slowdown of Nzdc is almost 57.7% in Parsec and 91.5% in SPEC,
roughly 1.56x and 1.89x slower than FlexStep. Nzdc experiences a
significant performance degradation due to the redundant checking
instructions. While LockStep incurs no performance drop, it requires
an additional equivalent area. FlexStep achieves minimal slowdown

with reasonable area overheads (Sec. VI-E), highlighting its advan-
tages in both performance and resource efficiency.
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Fig. 5: Performance slowdown in dual-core and triple-core mode.

We further compare the slowdown of Parsec under different verifi-
cation modes in Fig. 5. Results indicate that the slowdown (geomean)
in triple-core mode increases slightly to 1.77%. This modest increase
is attributed to having more checker cores, which exacerbates the
execution inconsistency between cores, leading to more frequent
backpressure on the main core. Overall, the performance overhead in
both modes remain minimal, demonstrating that FlexStep’s support
for different verification modes is highly performance-efficient.

B. Percentage of Schedulable Task Sets

Experiment setup. To assess FlexStep’s schedulability improve-
ments, we conducted numerical simulations using randomly gener-
ated task sets across various configurations. Task sets were generated
following the UUnifast algorithm [39]. We compared three error
detection schemes: LockStep, HMR, and FlexStep, under partitioned
EDF. For LockStep, tasks with different reliability levels were parti-
tioned into separate queues and ordered by descending utilisation.
Verification tasks were allocated first, minimising the number of
checker cores by only allocating a new group of main and checker
cores when the current group was full. Non-verification tasks were
allocated last across all cores. For HMR, verification tasks were also
allocated first. Then non-verification tasks were assigned, first filling
cores without verification tasks and then cores with lowest utilisation.
The partitioning of FlexStep is described in Sec. V.
Results. Fig. 6 shows that FlexStep consistently outperforms Lock-
Step and HMR, especially at higher utilisation levels. As utilisation
increases, FlexStep and HMR exhibit a more gradual performance
decline, whereas LockStep experiences a sharp drop. This difference
arises from LockStep’s rigid verification approach. HMR encounters
few deadline misses even under moderate utilisation, mainly due to
the fact that non-verification tasks cannot preempt verification tasks
allocated on the same core. FlexStep’s flexibility allows for more
efficient resource allocation, mitigating these issues.

Comparing Figs. 6(a), 6(b), and 6(c), it is evident that FlexStep
achieves greater performance improvements when there are fewer
verification tasks, as more non-verification tasks are required to share
cores with verification tasks. As FlexStep allows flexible switching
between verification and non-verification tasks, without requiring
binding between main and checker cores, it enhances resource
utilisation and improves system schedulability. The improvement
persists with an increased number of cores or higher utilisations
of individual tasks, as shown in Figs. 6(e) and 6(f). Comparing
Figs. 6(b) and 6(d), the addition of triple-check tasks significantly
increases resource demand, leading to varying degrees of performance
degradation across all three methods. However, LockStep and HMR
exhibit a sharper decline in performance compared to FlexStep, as
their core binding between main and checker cores limits flexibility
in scheduling. In contrast, FlexStep enables more flexible verification
and scheduling, optimising resource utilisation to meet deadlines,
even in more demanding scenarios.
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Fig. 6: Percentage of schedulable task sets (y-axis) under LockStep, HMR, and FlexStep with increasing task set utilisations (x-axis) and varying
system configurations: m (number of cores), n (number of tasks), α (percentage of double-check tasks), and β (percentage of triple-check tasks).

C. Error Detection Latency

Experiment setup. To evaluate detection latency, we injected errors
in the forwarded data from the main core, e.g., memory access data of
MAL and architectural register data of ASS, simulating the hardware
faults without disrupting the main core’s normal execution. For each
workload, 5,000 - 10,000 faults were randomly generated, resulting
in over 100,000 sample points in total to ensure the validity of results.
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Fig. 7: Probability distribution of error detection latency of Parsec.

Results. Fig. 7 shows the density distribution of detection latency
across different workloads. For most workloads, the majority of de-
tection latencies are concentrated around 20 µs, while the maximum
latency seen in blackscholes is 2 to 3 times higher, reaching up to 50
µs. Overall, FlexStep maintains an actual error detection latency of
no more than 50µs in most cases, which is sufficient to cover over
99.9% of hardware faults and guarantee the system reliability.

D. Scalability

Experiment setup. To evaluate scalability, we increased the number
of cores for both FlexStep and Vanilla (based on the original unmod-
ified microarchitecture). We assessed their area and average power
consumption using Design Compiler (v2019.12) for RTL synthesis
and PrimeTime PX (v2019.12) for post-simulation analysis.
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Fig. 8: The average power and area overheads on the SoC with different
core numbers for Vanilla and FlexStep, including L1$ and L2$.

Results. Fig. 8 presents comparison of average power (Fig. 8(a)) and
area (Fig. 8(b)) for Vanilla and FlexStep across varying core counts,
indicating that the increase in average power and area for FlexStep
relative to Vanilla remains nearly linear, rather than exponential, as

the SoC scales from dual-core to 32-core. This demonstrates that
FlexStep offers strong scalability in multi/many-core systems.

E. Hardware Overheads

Experiment setup. We used the same setup as in scalability to
evaluate the hardware overheads of FlexStep compared to Vanilla.

TABLE III: Average power & area of Vanilla and FlexStep (4 cores).

Vanilla FlexStep
Core Rocket Rocket ×

Tech. (nm) 28 28 ×
Power (w) 0.485 0.499 2.89%

Area (mm2) 2.71 2.77

O
v erhead 2.21%

Results. With the reuse of homogeneous checker cores, FlexStep in-
troduces minimal hardware overhead. Compared to Vanilla, FlexStep
incurs the storage overhead per core of only 1614 bytes: 8 bytes for
CPC, 518 bytes for ASS, and 1088 bytes for DBC. For a 4-core SoC
shown in Tab. III, FlexStep occupies 2.77 mm2 of area and consumes
0.499w of power, representing just 2.21% and 2.89% overhead,
respectively, compared to Vanilla. This validates that the hardware
overhead for implementing FlexStep is well within reasonable limits.

VII. CONCLUSION

In this work, we developed FlexStep, a homogeneous-core error-
detection framework. Using a hardware-software co-design approach,
we implemented FlexStep by adding lightweight modifications to ex-
isting cores and integrating simple OS-level scheduling codes. Eval-
uated on an FPGA prototype, FlexStep demonstrates microsecond-
level error detection capabilities with low performance and hardware
overheads, high scalability, and dynamic verification mode switching,
making it an efficient solution for practical applications. In future
works, FlexStep enables flexible task scheduling and unlocks signif-
icant potential for developing new scheduling algorithms to enhance
system efficiency, improve real-time responsiveness, and adapt to
dynamic reliability requirements in safety-critical applications.
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