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Abstract—The management of heavy traffic demands has been
significantly improved by employing synchronized traffic signal
control at multiple intersections. Multi-agent Reinforcement
Learning (MARL) techniques have been widely utilized to achieve
this coordination. However, these approaches predominantly
depend on manually crafted features from adjacent intersections,
which impedes their generalization to new scenarios. Further-
more, while displaying high accuracy for specific traffic flow
patterns, these methods often lack the necessary robustness for
other patterns. In this study, our objective is to develop an
effective signal timing plan by directly learning the minimal
required communication between intersections from traffic data.
We introduce a novel, comprehensive approach that combines
multi-agent reinforcement learning with a learned communica-
tion mechanism. Our model incorporates a coordinated actor
network and a centralized critic network to address the chal-
lenges of non-stationarity. We conducted extensive experiments
comparing our model with other commonly used non-RL and
benchmark MARL techniques. The evaluation results show that
our proposed model, which relies only on local sensory input
and a single message from neighboring intersections, excels
in managing various traffic flow patterns. Furthermore, our
model outperforms competing approaches in terms of robustness,
resilience, and overall performance.

Index Terms—Multi-agent Systems, Reinforcement Learning,
Traffic Signal Control

Code - https://github.com/Wenlu057/pairuplight

I. INTRODUCTION

The global concern over traffic congestion persists. The
2022 Global Traffic Scorecard! reveals that Boston, MA, saw a
72% increase in traffic delays, reaching 128 hours and ranking
it as the second highest in the United States for congestion.
The TomTom Traffic Index for 20232 identified London as the
slowest city for drivers, underscoring the extensive impact of
congestion on societal well-being and environmental health.
Urban intersections are primary sites for daily congestion.
Evidence indicates that coordinating traffic signal control at the
network level significantly reduces congestion, highlighting
the importance of Multi-intersection Traffic Signal Control
(TSC) in urban traffic management strategies.

1 Correponding author.
Uhttps://inrix.com/scorecard/
Zhttps://www.tomtom.com/traffic-index/ranking/

To enhance traffic management, Multi-Agent Reinforcement
Learning (MARL) is increasingly used for joint optimiza-
tion of multiple intersections. Each traffic signal controller
acts as a Reinforcement Learning (RL) agent, adaptively
adjusting signals based on real-time traffic conditions. MARL
outperforms isolated single RL agents due to its ability to
coordinate decision making across the network, as shown in
Figure 1. It enables agents to learn and adapt not only to
local traffic patterns but also to the dynamics of adjacent
intersections. This collaborative learning approach results in
more efficient overall traffic management, reducing congestion
more effectively by considering the interconnected nature of
urban traffic networks.
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Fig. 1. Coordinated traffic signal control, all the east-to-west direction green.

However, just because of this interconnected nature of in-
tersections, one significant challenge in MARL for TSC is the
non-stationarity of the environment. This challenge originates
from the scenario where individual agents, namely traffic
signal controllers, undergo learning and signal adjustments in
real-time. Such modifications can induce a cascading effect
on other agents within the system, thereby complicating the
learning process. This intricacy presents significant obstacles
in achieving stable and optimal learning outcomes, necessi-
tating that agents dynamically adapt not only to the evolving
traffic patterns but also to the attributes of other interconnected
agents within the network.

Some MARL-based TSC methods [1], [2] tackle the chal-
lenge of non-stationarity by incorporating data from intersec-
tions seen as having a certain temporal-spatial relationship
with the current one (physically adjacent intersections in most
cases). Techniques like graph neural networks [3] and attention



mechanisms [4], among other advanced neural networks, are
employed to distill relevant information from these agents.
These embedded representations, combined with the agent’s
local observations, create a comprehensive state used as input
for the vanilla reinforcement learning models (e.g., DQN [5],
PPO [6]). However, accurately capturing the intricate depen-
dencies between intersections (the “chain-rule effect”) remains
an unsolved challenge. There’s no consensus or theoretical
backing on what constitutes complete and essential input
for these models. Furthermore, even if we can identify and
correctly weight influential intersections, guaranteeing uniform
impact is challenging due to variations in their geometrical
configurations. Intuitively, the immediate neighbors have the
most significant influence, but this is not always true. Real-
world complexities, including differences in local intersection
layouts like spacing and lane arrangements, introduce varying
cascading effects, highlighting the difficulty in standardizing
an approach for all scenarios.

Is there a more effective method for coordinating multiple
intersections beyond merely integrating temporal-spatial rela-
tionships with others into the RL model’s input? In this work,
we advance towards this goal by leveraging the concept of how
communication develops among intelligent agents [7], akin to
how two people playing a game might cooperate through inter-
action. We propose the PairUpLight model, which introduces
a communication protocol within the RL framework, enabling
traffic control agents to exchange real-time congestion infor-
mation. Specifically, at every timestep, incoming messages
from one of the most congested upstream neighboring inter-
sections are fed into the RL model. This model then generates
outgoing messages for the next timestep’s communication.
This model minimizes dependence on specific intersection
configurations and reduces the necessity for extensive data
from neighboring intersections, effectively addressing the chal-
lenge of a non-stationary environment. By utilizing Proximal
Policy Optimization (PPO) [6] with Generalized Advantage
Estimation (GAE) [8] and parameter sharing, PairUpLight
demonstrates enhanced performance and stability across both
complicated synthetic and real-world traffic scenarios, show-
casing its superiority over existing MARL methods in manag-
ing traffic congestion and dynamics.

In summary, the contributions of this work are as follows:

e We demonstrate the effectiveness of a message passing
mechanism and propose PairUpLight, showcasing the benefits
of a learned communication protocol in addressing congestion.
Compared with other MARL methods with rich input infor-
mation, the average travel time is lower in both synthetic and
real-world datasets.

e We reveal that while current MARL-based methods
achieve high accuracy for certain traffic flow patterns, they fall
short in robustness across diverse traffic conditions. This lack
of stability hinders their applicability in real-world scenarios.

e Our work is the first to evaluate on a 6 x 6 synthetic grid
and a real-world dataset featuring a heterogeneous environ-
ment. We suggest the PPO with GAE framework for large-
scale TSC applications.

II. LITERATURE REVIEW
A. Traditional Traffic Signal Control Methods

Traditional Traffic Signal Control (TSC) methods can be
broadly categorized into two types: fixed-time control and
actuated control [9]. Both types of control methods are
primarily driven by predetermined signal timing parameters,
offering limited adaptability to real-world traffic fluctuations.
In contrast, modern adaptive signal control algorithms employ
real-time detection data to dynamically adjust signal timing
parameters in response to current traffic conditions. Within this
category, many research studies have focused on improving
traffic mobility using RL algorithms.

B. Reinforcement Learning in Traffic Signal Control

Some studies have applied Single-Agent Reinforcement
Learning (SARL) for TSC at individual intersections. For
instance, the study [10] introduced a model called 3DQN and
proved it to be an effective SARL model by highlighting
its superior performance. Despite their adaptability, these
algorithms are only effective for isolated intersections, and
their performance significantly deteriorates when applied to
interconnected intersections with complex traffic dynamics.

A growing body of literature has been dedicated to ex-
ploring the potential of MARL algorithms. Efforts have been
made to integrate deep learning (i.e., Deep MARL), attention
mechanisms, graph neural networks (GNNs), and other ad-
vanced techniques to improve coordination between agents and
enhance traffic efficiency. With the growing complexity and
interconnectedness of multiple intersections, addressing the
non-stationarity issue in the MARL setting becomes crucial.

In our review of recent studies leveraging MARL for TSC
at multiple intersections, presented in Table I, we identify
three primary limitations through detailed analysis. First, these
studies generally maintain the original structure of the RL
model, opting instead to augment it with advanced techniques
for extracting information from neighboring intersections for
input. For instance, Chu et al. [11] incorporate actions from
adjacent intersections as input features to an Actor-Critic
network. The second limitation pertains to the inadequate
description of traffic demand and the lack of evidence sup-
porting high or near-saturated traffic conditions, which are
essential for evaluating congestion management capabilities.
Without clear information on traffic demand, assessing the
effectiveness of these approaches in reducing congestion and
recovering from congested states becomes challenging. For
example, Wei, Xu, et al., [12] simulate a uniform traffic flow
that is unlikely to result in congestion, thereby not accurately
reflecting real-world complexities. Additionally, some studies
use real-world data without confirming if the scenarios in-
clude actual congestion events. Lastly, the majority of these
studies rely on simulation tools such as SUMO [13] and
CityFlow [14] for performance evaluation, where intersec-
tion geometries are simplified, creating a significant disparity
with real-world conditions. The scenario where right-turn and
through movements share a lane—a common occurrence in



TABLE I
TYPICAL WORKS THAT ADDRESS NON-STATIONARITY OF MARL IN LARGE-SCALE TRAFFIC SIGNAL CONTROL

Ref Model Peak Traffic Demand RL Agent Input Embedding

Wei, Xu, et al., 2019 [15] CoLight 300 Vehicles/Lane/Hour  Graph Attention Network (GAT)

Chu et al., 2019 [11] MA2C 1200 Vehicles/Hour Neighbors’ Observations and Fingerprints (Policy Network Parameters)
. . Graph Attention Network (GAT) Combined With Temporal Convolu-

Wu, Wang, et al., 2021 [16] - DynSTGAT  Not Specified tional Networks (TCNs) To Capture Neighbors’ Influences

Guo et al., 2021 [17] MaCAR Not Specified Message Propagation Graph Neural Network (MPGNN)

Devailly et al., 2022 [18] IG-RL 1800 Vehicles/Hour Qraph Convolqtlonal Networks (GCNs) By Aggregating Communica-

tions From Neighbors

Yang et al., 2023 [19] HG-M2I 360 Vehicles/Lane/Hour  Hierarchical Graph Neural Networks With Attention-based GRU

Zhu et al., 2023 [20] ALCORL 3600 Vehicles/Hour Autoencoder To Generate Communication Messages

Han et al., 2024 [21] MAAPPO 750 Vehicles/Hour Attention Mechanism For Selecting Neighbors’ State-action Pairs.

reality—raises questions about the applicability of proposed
methods in more realistic settings. Thus, while these studies
contribute valuable insights into MARL’s potential for traffic
light control, their real-world applicability and effectiveness in
addressing congestion under varied traffic conditions warrant
further investigation.

In this paper, we advance the field in several key areas. First,
we enhance the vanilla RL model by introducing an innovative
RL agent designed to facilitate communication with other RL
agents. Second, we construct various traffic flow patterns to en-
sure the occurrence of congestion under traditional fixed-time
control methods. We then assess our proposed method within
this context to evaluate its efficacy in alleviating congestion
and its ability to facilitate rapid recovery from such conditions.
Lastly, we adopt a more realistic intersection scenario that
accommodates different movements within a single lane. To
bridge the gap with real-world applications, we also consider
the effective coverage of loop detectors, cameras, and other
sensors. We extend our evaluation to a 6 x 6 grid network,
examining the scalability of our proposed method in handling
increased network complexity.

III. BACKGROUND

In this section, we briefly explain the background knowl-
edge related to the proposed method.

A. Basic Traffic Engineering Principles

In traffic engineering, understanding and managing queue
length, pressure, and the saturated flow rate are pivotal for
optimizing traffic flow and reducing congestion at intersec-
tions.

Queue length, which indicates the number of vehicles
lined up at a traffic signal, serves as a primary indicator of
congestion, with long queues often highlighting bottlenecks
that impair network efficiency. This metric, measured via
technologies such as loop detectors, overhead cameras, and
advanced sensors, is crucial for identifying congestion points.

Pressure, on the other hand, assesses imbalances in traffic
flow by comparing the volume of incoming and outgoing
traffic at an intersection, guiding signal timing optimizations
to boost network throughput and decrease travel times.

The saturated flow rate represents the maximum throughput
of vehicles an intersection can handle under ideal conditions,

informing traffic engineers on optimal signal timings to en-
hance flow without exceeding capacity limits. Simulation tools
further augment these efforts by modeling multi-intersection
scenarios, employing lane area detectors to simulate real-world
vehicle tracking, thereby providing a comprehensive platform
for traffic management analysis and optimization.

B. Reinforcement Learning

An RL agent learns decisions through interactions with the
environment that is modeled as a Markov Decision Process
(MDP), defined as a tuple (S, A, P, R,~), where S denotes a
state space, A denotes an action space, P : Sx Ax S — [0,1]
denotes transition probabilities between states, R denotes a re-
ward function, and « € [0, 1] is a discount factor. Specifically,
at each time period ¢, the agent observes a state s; € .S and
takes an action a; € A, which is determined by the policy
m S — A. Then, the next state s;y; is reached with a
transition probability T'(s;+1|s¢,a¢), and the agent receives
a reward 7; € R. The action-value function Q™ is defined to
evaluate how good it is for an agent to pick the action a; based
on policy 7 in state s;. It is expressed as the expected cumu-
lative reward: Q™ (s, a) = E[> oo, ¥'retilst = s,a; = al. The
objective of an RL agent is to learn the optimal policy 7* for
maximizing Q7 (s, a).

1) Actor-Critic Method: In Reinforcement Learning (RL),
the Actor-Critic method is a type of policy gradient approach
that involves two main components: an actor and a critic. The
actor, represented as 7(als,6), learns a policy parameterized
by 6 to select actions a based on a probability distribu-
tion, given the current state of the environment at time t.
Concurrently, the critic, denoted as 0(s,w) and implemented
via a multi-layer neural network, evaluates the potential of
different states by computing an estimated value function. This
evaluation helps in assessing the advantage of being in a state,
defined as A(s) = Q(s,a) =V (s) = r+~V(s')=V(s), where
s’ is the subsequent state following s. The policy (#) and value
network (w) parameters are updated through optimization of
policy loss, value loss, and entropy loss. These losses are
mathematically expressed as:

1
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with the entropy loss included to promote exploration by the
actor in the policy space.

2) Proximal Policy Optimization: The Actor-Critic method,
while effective, faces challenges with high computational com-
plexity due to its reliance on a second-order derivative matrix,
making it less practical for large-scale applications. Proximal
Policy Optimization (PPO), building on the principles of Trust
Region Policy Optimization (TRPO) [22], simplifies this by
using a KL divergence constraint to limit the magnitude of
policy updates, thereby avoiding the computational burden
of second-order methods. PPO further eases implementation
and adjustment by incorporating this constraint as a penalty
within the objective function, rather than as a strict limit.
This approach enables gradual, controlled updates within a
defined “trust region”, facilitating convergence towards opti-
mal solutions. The core of PPO is a clipped surrogate objective
function, detailed as:

LEPT(9) = By [min(r(0) Ay, clip(r4(0), 1 —¢, 14+€) Ay)], (4)

where r;(6) represents the ratio of the new to the old policy
probabilities, and A, is the advantage estimate, measuring the
benefit of choosing action a; in state s;. This formulation
balances the exploration of new policies with the stability
of incremental learning, optimizing the trade-off between
exploration and exploitation.

IV. REINFORCEMENT LEARNING MODEL

Each traffic controller at an intersection is managed by an
RL agent. Designing effective state, action, and reward is
crucial in TSC. In the reminder of this section, we describe
the definitions of these three key elements.

A. State

The state S; at each intersection should provide a com-
prehensive snapshot of the current traffic situation, enabling
the RL agent to make informed decisions to optimize traffic
flow. Therefor, it is essential to capture the environmental
factors that significantly impact the decision-making process
for signal timing. Previous studies often use queue length (the
number of approaching vehicles) and accumulated waiting
time as the state, proving effective in isolated intersections.
However, these metrics may not fully represent traffic condi-
tions under high demand. This limitation partly stems from the
finite coverage of sensors or vehicular networks, visualized as
a narrow range highlighted in blue in Fig. 2. Relying solely on
queue length could lead to inaccuracies; for instance, a sensor
with limited range might detect only one vehicle in a congested
intersection. To address this, we advocate to include traffic
pressure into the state, offering a more accurate reflection of
the current traffic scenario.
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Fig. 2. One example of local observation. Link-level pressure and waiting
time can be captured via road-side sensors or cameras. If multiple movements
share one lane, it is equally distributed to link level.

Specifically, we use the pressure pressure,(L, M) and
accumulated waiting time wait:(L, M) of head vehicle at the
intersection ¢ at time ¢ to represent its current traffic condition:

ot; =pressure, (L, M),wait(L, M) 3)

where (L, M) denotes all input and output links at intersection
1. Vehicles entering input link in order to make movement join
a queue dedicated to that movement. As illustrated in Fig. 2,
the pressure of an intersection is defined as the difference
between the numbers of vehicles on the input links L and
output links M in the last time step. The wait is defined as
the cumulative delay of the first vehicle on each link in the
last time step.

This study acknowledges that a single lane can support mul-
tiple traffic flows, such as combined through/left-turn lanes, as
illustrated in Fig. 2. This configuration may lead to “Head of
Line” blocking, where a vehicle intending to proceed straight
is blocked by a vehicle ahead attempting a left turn. Our model
reflects this real-world scenario by equating the vehicle count
on a link to that in a shared lane.

B. Action Space

Based on the state, the controller chooses an action (i.e.,
signaling decision) to take. In our approach, the control action
for each local signalized intersection is represented as a phase
p, which corresponds to a specific set of permissible traffic
movements, as illustrated in Fig 3. At each time step ¢, each
agent selects a phase p as its action a! from the set of all
possible phases. Additionally, we establish a fixed execution
time At for each action, while including a yellow time ¢, for
the active phase to allow for the safe clearance of vehicles
already present in the intersection.

C. Rewards

After executing a signaling decision, the traffic controller re-
ceives feedback through a reward, indicating the effectiveness
of the action. This reward function serves as a critical guide
for the RL agent towards achieving a well-defined goal. In
rural settings, where traffic is light and congestion infrequent,
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Fig. 3. Sample phase set containing four phases. Phases 1 and 2 correspond
to North-South bound movements, while phases 3 and 4 correspond to West-
East bound movements. The actual size of the phase set may vary.

the reward should prioritize improving individual travel experi-
ences over congestion mitigation. Typically, a reward function
encompasses various performance indicators such as vehicle
delay, throughput, and queue length, assigning weights to each
based on their relevance to the traffic management system’s
goals.

Given our focus on reducing congestion, we incorporate
metrics like queue length and the maximum waiting time
across all lanes at an intersection into the reward function. The
reward at time ¢ for intersection ¢ is mathematically expressed
as:

T(t,q) = —(Z(haltingﬂ_m[l])+rlrl€£%LX(waitt+At[l]))7 (6)
leL

where halting;, as[!] denotes the count of halted vehicles
in lane [ at time ¢ + At, and wait wait,a[l] represents the
waiting time in lane [/ at the same timestep. By penalizing
the sum of halted vehicles and the maximum waiting time,
we encourage the agent to reduce both, enhancing traffic flow
efficiency.

V. PROPOSED APPROACH

We propose PairUpLight, a system that facilitates commu-
nication between two agents, as illustrated in Fig. 4. This
system activates a message pipeline where, at each time step,
the message my¢ flows from one agent to another along a
congested route, thereby helping to alleviate traffic congestion.
In this paper, a denotes the index of agent a. The most
straightforward method is to output a message alongside the
executable action, allowing this outgoing message to serve
as the incoming message for another agent in the subsequent
timestep. We will detail the backbone RL model and the design
of PairUpLight in the remainder of this section.

A. Backbone RL Model

We selected PPO, an Actor-Critic architecture, with Gen-
eralized Advantage Estimation (GAE) as the backbone RL
model, due to its proven effectiveness in stabilizing the
learning process and reducing variance in policy updates.
The integration of the advantage function facilitates efficient
learning by prioritizing actions that yield higher rewards. The
policy gradient is updated as follows:

V(T (0)) = Eqimpm aima [Vologma(se, ar) A0
+ BVeH(mo(s:))] (1)
where ASAE(W\) represents the Generalized Advantage Es-

timator. In many cases, the Actor and Critic share initial
neural network layers before diverging into separate “heads”
for distinct tasks. However, given the complexity of the
multi-intersection environment, we utilize completely separate
networks for the Actor and Critic. This approach ensures
each network is specialized and optimized for its respective
role without compromising on the needs of the other com-
ponents. Specifically, we incorporate our proposed message-
passing mechanism into the Actor network and integrate
information from direct and two-hop neighbors as input to
the Critic network, resulting in a coordinated Actor network
and a centralized Critic network. Furthermore, we embrace the
Centralized Training with Decentralized Execution (CTDE)
paradigm and employ parameter sharing to enhance sample
efficiency.

CTDE. In the CTDE framework, agents are trained together
on a central server, leveraging centralized knowledge for
coordination. After training, the Actor network is deployed
at each intersection for autonomous operation. This method
combines centralized training’s comprehensive network in-
sight with decentralized execution, allowing intersections to
independently manage traffic flow while maintaining effective
communication and coordination.

Parameter Sharing. In our study focusing on homogeneous
intersections, we utilize parameter sharing to train a unified
Actor and Critic network across all intersections, enhancing
sample efficiency and convergence speed. Each agent, during
decentralized execution, operates independently with its own
copy of the Actor network, enabling diverse behaviors based
on unique observations of the state and communications.
Our experiments predominantly explore these homogeneous
settings to leverage shared learning benefits. Additionally, to
assess our model’s adaptability to varied environments, we
tested it on heterogeneous intersections without parameter
sharing, aiming to evaluate its generalizability.

B. PairUpLight

Coordinated Actor Network. The coordinated Actor net-
work explicitly learns a communication protocol. We aim to
facilitate the exchange of valuable information with the other
agent. It enables PairUpLight to jointly find the global optimal
solution. The local policy is calculated as follows:

Tt+1,a, Mt+1,a = WG*("St,a7mt,a’)a ®
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during the inference phase.

where, s; , represents the local observation (e.g., intersection
information from loop detectors, and cameras) that is pro-
vided as input to the network at time step t. The output is
the action probability distribution, and the action is selected
based on an e-greedy strategy. To activate the communication
mechanism, an additional real-valued message, v ./, is fed
into the network from either the current agent itself or one
of its neighboring agents. On the output side, the system also
produces a message m41,4, Which is later processed by the
regularizer unit and used to update the corresponding message.
The network architecture of the coordinated Actor network is
depicted in the upper part of Fig. 5.

Determining with whom the current agent should commu-
nicate is a key question in our approach. Through empirical
study, we have found that among the neighboring nodes,
including itself, the one that experiences congestion first (up-
stream intersection) is crucial for the current node. Therefore,
in our design each intersection pairs up with the most con-
gested upstream intersection and an communication channel
is established between these two. By carefully determining
the relevant communication partners based on congestion and
latent congestion risk, our coordinated actor network focuses

on exchanging critical information that influences the decision-
making process. This targeted communication approach allows
agents to effectively share important traffic information.

Centralized Critic Network. A separate Critic network
is employed, mirroring the Actor network’s architecture with
key differences in inputs and outputs, as depicted in Fig. 5.
Unlike the Actor network, which concentrates on coordination
and communication across intersections, the Critic network
underscores the centralized learning component of the multi-
agent system. The critic network is defined as follows:

V(s B, s w), )

where, h¢_1, denotes the hidden state from the LSTM layer.
Assuming that accessing broader observations, including the
global state, facilitates value learning for the critic network,
we propose incorporating traffic conditions from one hop
and two hop neighboring intersections into its input. This
approach aims to provide a more comprehensive view of the
traffic network, capturing both the direct impact of immediate
neighbors and the broader influence of two hop neighbors.
By doing so, the critic network gains a deeper understand-
ing of traffic dynamics and patterns, enhancing its decision-
making process. This rich information not only improves value

U§Q)7 hgfl‘)/ =
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estimates by acknowledging wider traffic impacts but also
stabilizes and boosts the learning process, leading to better
performance in the MARL framework. Notably, incorporating
up to two-hop neighbor information presents a challenge for
edge intersections in the grid, which have fewer neighbors than
those in the center. To address this, we use a padding technique
for intersections lacking two-hop neighbors, filling in missing
neighbor information. This strategy ensures the critic network
accommodates various intersection configurations uniformly
across the grid, facilitating efficient and accurate learning.

The PairUpLight framework combines the Actor network’s
coordination capabilities with the Critic network’s centralized
learning to efficiently mitigate traffic congestion and optimize
traffic flow. The proposed method’s pseudo-code is presented
in Algorithm 1.

VI.

This section’s experiments evaluate PairUpLight’s perfor-
mance in managing congestion, its communication effective-
ness, and resilience across high-demand traffic scenarios.

NUMERICAL EXPERIMENTS

A. Datasets and Environment Settings

Experiments utilize the microscopic traffic simulator
SUMO [23], which allows for the configuration of traffic
environments including road networks, traffic flow patterns
and traffic signal timings. SUMO serves as the environment for
agent (traffic signal controller) interaction. During simulations,
data such as traffic flow, vehicle waiting times, and other
metrics are collected to train the RL agents.

Intersection Modeling. We extend the network from Chu
et al. (2019) [11] and evaluate PairUpLight on a synthetic

Algorithm 1: PairUpLight

1 Parameter: «, learning rate; v, discount factor; 7T,
planning horizon per episode; |B|,batch size; M,
minibatch size; K, epochs; €, epsilon-greedy;

2 Initialize: 6, the parameters for policy; w, the
parameters for critic V' using Orthogonal initialization;

3 repeat

4 5§ < initial state, h§ < 0, m§ < O for each agent
a,t+ 0, B=0;
5 for each episode e do
/+ explore experience */

6 fori =11 B do
7 for all agents a do
8 Get message mg"} . of previous

time-steps from agents a’:

Py hE Dmy) =
< . B 1 i6);

) o) = V(s 10, )
10 Wlth probability e pick random uE“),

else u( - maxp(a)
11 Set message

mg“) = Logi.stic(J\f(m]Ea)7 o))
12 end
13 Execute actions u;, observe 7y, S;41,;

/+ save all agents’ data to

the buffer */
14 B<—BU{(St,Ut77"t,Ut7ht7mt)};
15 t+—t+1;
16 end
17 if not Terminated then
18 f(BaJ)ru h(g—)&-l v = V(SB+17 h’B viw):
19 end

/+ update network parameters */

20 Compute advantage estimate A via GAE;
21 Compute reward-to-go R;
2 update 6 on L(6), w on L(w) with K epochs

and minibatch size M (Eq. (7));
23 end
24 until Stop condition reached,

6x6 grid network, marking the largest scale-up to date, as
depicted in Fig. 6, which includes intersections with two-lane
arterial streets and one-lane avenues. In one-lane avenues, a
single lane accommodates left turns, straight movement, and
right turns. On two-lane arterial streets, the right lane supports
both straight movement and right turns, while the left lane is
designated for left turns. The separation between intersections
is 200 meters, with loop detectors and cameras monitoring
lanes up to 50 meters away. This intersection design aims
to more closely replicate real-world traffic scenarios. Addi-
tionally, each intersection’s signal timing follows a four-phase
plan, similar to the one shown in Fig. 3, with each phase



Four Traffic Patterns
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Fig. 6. Four different traffic patterns with time-varying flow rate. The circular area in the center of each scenario represents the configuration of each
intersection. The arrows’ directions indicate the movement of traffic flowS. The dotted lines represent the flows that begin after the 900" seconds.

lasting five seconds, plus a two-second yellow phase for safety.

Traffic Flow Design. To assess PairUpLight’s effectiveness
across diverse traffic scenarios, we create four traffic patterns
(Flow Pattern 1-4) with time-varying traffic flows to simulate
congested conditions. We illustrate how traffic is managed in
these four scenarios in Fig. 6, with each having two from
the four groups (F1-F4) and corresponding origin-destination
or OD pairs. Initially, for the first 1800 seconds, eastbound
and southbound traffic is loaded. Then, from 900" seconds
onward, we introduce westbound and northbound traffic to
increase complexity. Take F1 1-12 for instance, one flow
begins by loading vehicles from the southbound lane of Node
1 as soon as the simulation starts, with all vehicles exiting at
Node 12. The peak flow rate for this direction occurs at the
900" second. Simultaneously, the reverse traffic flow from
Node 12 to Node 1 initiates. These two flows overlap from
the 900*" to the 1800 second, at which point the reverse flow
hits its peak rate of 500 vehicles per hour. During the overlap
period, a total of 16 O-D pairs (i.e., 16 arrows as indicated in
Fig. 6) coexist within the network. To the best of the authors’
knowledge, this represents the highest number of O-D pairs
reported in recent studies. We employ high traffic volumes to
demonstrate that PairUpLight can recover from oversaturated
conditions. Additionally, we evaluate PairUpLight’s generaliz-
abiliy in light traffic conditions using a uniform flow pattern
(Flow Pattern 5), with 300 vehicles per hour in the west-east
direction and 90 vehicles per hour in the south-north direction.

Our congestion generation strategy, informed by empirical
studies, includes: 1) Adding more intersecting O-D pairs
to increase traffic intersections, and 2) Staggering vehicle
departure times across various O-D pairs to overlap traffic
flows and induce congestion.

B. Comparison Methods

We have carefully selected representative baselines from
the field for providing comprehensive benchmarking. These
methods, as shown below, have been widely used as standard
benchmarks in similar studies.

« Fixedtime: It adopts predetermined signal timing values
and does not adapt to changing traffic conditions.

« SingleAgentRL: A single agent is trained using the PPO
algorithm, and its learned policy is uniformly applied to
all intersections. This approach does not involve inter-
agent communication or the use of neighboring intersec-
tions’ information

« MA2C [11]: MA2C, a MARL-based TSC approach, inte-
grates policy fingerprints from neighboring intersections
and is based on the Actor-Critic RL algorithm.

o CoLight [12]: CoLight is a MARL-based TSC method
that enhances sampling efficiency through parameter
sharing and employs Graph Attention Networks (GAT)
to determine the significance of adjacent intersections. It
utilizes the Deep Q-Learning algorithm as its backbone
RL model.



C. Experiment Result

We evaluate PairUpLight and other models using the previ-
ously mentioned five traffic flow patterns, training all models
solely on traffic pattern F1 and then evaluating them on the re-
maining patterns. This approach reflects real-world conditions
where traffic patterns fluctuate with time and situation. Unlike
previous studies where RL models are trained and tested on
identical traffic flows with minimal variance, our method aims
to enhance real-world applicability by introducing variability
in testing scenarios.

Additionally, to support our viewpoint that benchmark
models perform well under light, congestion-free traffic but
significantly decline in performance as conflicting flow rates
increase, we present further experimental results. Here, all
models are trained and evaluated exclusively on the uniform
traffic pattern (i.e., Flow Pattern 5).

Performance Metrics. We evaluate performance based on
average waiting time and average travel time, in line with
standard practice. Average waiting time is calculated as the
mean of the maximum waiting times for vehicles across
all incoming lanes at every intersection. Meanwhile, average
travel time is determined by averaging the travel times of all
vehicles entering and exiting the network.

Results During Training. The training performance of
PairUpLight is presented in Fig. 7, as indicated by the average
waiting time per timestep. It is trained for 1000 episodes,
and it starts with a high average waiting time but quickly
improves, with the trend showing a sharp decline as the
episodes progress. The lowest average waiting time achieved
by PairUpLight dips significantly below the performance levels
of both the fixed-time control and the single agent RL model,
suggesting that PairUpLight outperforms these methods after
sufficient training. The wide variance at the beginning that nar-
rows over time indicates that the model becomes more stable
and consistent in its performance as it learns.  Additionally,

Training Performance of PairUpLight
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Fig. 7. Training performance of PairUpLight over 1000 episodes, depicted
with a solid blue line and shaded area indicating variance. Best performance
occurs at episode 980 with a 3.13-second waiting time.

we compared the training progress of PairUpLight with that
of CoLight and MA2C over the first 200 episodes, as shown

in Fig. 8. Despite an initial lag due to the complexity
of learning effective communication strategies, PairUpLight
eventually outperforms the other two methods. PairUpLight’s
final convergence at 76 seconds reflects an improvement of
81.46% over CoLight and 83.72% over MA2C.

Comparative Analysis of Average Waiting Time per Timestep
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Fig. 8. Training performance over the first 200 episodes for various models.

To illustrate the significance of the communication module,
we performed an ablation study by removing the communi-
cation module and noted a negative impact on performance.
Figure 8 shows this effect, with the orange dotted line indi-
cating performance in the absence of communication.

TABLE 11
EVALUATION OF AVERAGE TRAVEL TIME (SECONDS)
IN VARIOUS TRAFFIC SCENARIOS

Model Pattern 1  Pattern 2 Pattern 3  Pattern 4 | Pattern 5
Fixedtime 3395.34  6236.73  3446.64  4807.81 262.81
SingleAgent | 936.11 3298.14  2740.10 4118.31 99.91
MA2C 1548222 13327.66 16589.37 15210.02 | 375.35
CoLight 3072.75  3157.26  2472.13  3151.64 779.16
PairUpLight | 388.47 414.29 330.84 445.21 87.50

Evaluation Result. During the evaluation, we take the
average travel time in seconds as the performance measure
to evaluate the effectiveness of the algorithms and the gen-
eralizability to other traffic scenarios. The result is shown in
Table II. We have the following oberservations:

o During the evaluation phase, the performance of MA2C
and CoLight, despite being promising in training, was
unsatisfactory and even worse than the SingleAgent and
FixedTime methods in light traffic conditions (Flow Pat-
tern 5). Specifically, CoLight’s performance is 7.8 times
poorer than SingleAgent and 3 times poorer than Fixed-
Time when tested on Flow Pattern 5. This confirms our
perspective that current MARL approaches face general-
izability challenges and require a robust communication
design to perform well across various traffic conditions.

o PairUpLight consistently leads during evaluations, show-
casing its ability to manage congestion effectively. Al-
though tailored for congestion mitigation, PairUpLight



also excels under light traffic conditions where commu-
nication is unnecessary.

e MA2C’s performance declines in the evaluation phase as
it struggles with over-saturated traffic conditions, partially
due to the absence of parameter sharing among agents.
In such conditions, data tends to stay constant, failing
to guide improvements. Conversely, PairUpLight’s pa-
rameter sharing enables agents to collaboratively tackle
congestion and its associated challenges.

o PairUpLight outperforms CoLight in evaluations by its
success in pinpointing key intersections essential for
alleviating congestion. CoLight uses GAT to include
neighboring data but lacks a specific method to identify
and prioritize critical intersections. Consequently, CoL-
ight may not optimally manage resources at the most
congested intersections.

Findings in Light Traffic Scenario. We evaluated a uni-
form light traffic flow (Traffic Pattern 5) in both training and
evaluation phases. The results are presented in Table III.

TABLE 11T
EVALUATION OF AVERAGE TRAVEL TIME (SECONDS)
IN LIGHT TRAFFIC SCENARIO

| Fixedtime | SingleAgent | MA2C | CoLight | PairUpLight
Pattern 5| 26281 | 9991 | 24564 | 192.17 |  86.33

Our experiments on light traffic scenarios reveal that MARL
may be unnecessary and potentially adds complexity in such
conditions. Specifically, MARL models, including CoLight,
underperformed compared to single-agent RL methods in light
traffic. This suggests that in low-demand scenarios, single-
agent RL or even well-designed fixed-time controls could
suffice. These insights highlight the importance of choosing
between MARL and single-agent RL based on the traffic
scenario’s specific demands and conditions.

Fig. 9. Traffic scenario in Monaco. The singalized intersections in the network
are marked as green. The traffic flows are highlighted in red.

D. Study of Real-world Heterogeneous Environments

We trained PairUpLight on traffic scenarios in Monaco,
utilizing a real-world dataset derived from signalized inter-
sections in the region [11]. The Monaco dataset comprises 30
signalized intersections with varying lane configurations and
pre-defined signal phase sets, as shown in Fig. 9. Multiple
conflicting flows with a peak flow rate of 975 vehs/h were
loaded to generate saturated conditions. We presented the
performance in Fig. 10. Due to the diverse characteristics of
intersections, parameter sharing was not feasible. Therefore,
we compared PairUpLight with MA2C and fixed-time control.
Single-agent RL and CoLight, while effective in simulated
environments with uniform intersections, face challenges in
adapting to the heterogeneous nature of real-world settings.
Despite the complexity and heterogeneity of the real-world
intersections in Monaco, PairUpLight demonstrated its ability
to perform effectively and provide efficient traffic management
solutions.

Training Performance in Real-world Setting
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Fig. 10. Training performance under the real-world setting.

E. Communication Overhead Analysis

In PairUpLight, we facilitate coordinated agent behavior
towards a global goal with efficient communication, uniquely
minimizing the need for data from neighboring intersections
to reduce communication delays. Our evaluation, shown in
Table IV, compares PairUpLight’s communication bandwidth
with that of CoLight and MA2C. This comparison underscores
PairUpLight’s minimal communication requirements during
evaluation, presenting an effective, low-overhead solution for
traffic management.

TABLE IV
COMMUNICATION OVERHEAD ANALYSIS

Model Information from Other Intersections Communication
Overhead
MA2C queue length, policy network outputs | 1280bits
from four neighbors
CoLight link-level pressure from four neighbors | 1536bits
PairUpLight | message from one of its four neighbors | 32bits




We conducted experiments to identify the optimal commu-
nication bandwidth for our PairUpLight model, as shown in
Fig. 11. Contrary to expectations, we found that increasing
the bandwidth did not improve cooperative strategies; instead,
it hindered the agents’ ability to identify optimal actions.
The PairUpLight’s Actor network outputs both the action
probability distribution and a communication vector, enabling
information flowing among agents. Remarkably, a single mes-
sage proved most effective in our context. By adjusting the
communication bandwidth, we optimized agent coordination
in PairUpLight, achieving efficient and effective collaboration.

Training Performance by Message Size Settings
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Fig. 11. A comparison of communication length between 1 and 2 32-bit

integers during training. Increasing the length of the communication vector
does not enhance performance.

VII. CONCLUSION

In this work, we present PairUpLight, a novel multi-agent
reinforcement learning framework that learns effective signal
timing plans by minimizing required communication between
intersections. By combining a coordinated actor network with
a centralized critic, our approach addresses non-stationarity
and enables scalable coordination using only local sensory
input and a single message from neighbors. Extensive experi-
ments on synthetic and real-world traffic scenarios demonstrate
that PairUpLight outperforms traditional MARL methods and
baselines like MA2C and CoLight, achieving superior perfor-
mance, robustness, and resilience. Our results highlight the
critical role of efficient communication in traffic signal control
and establish PairUpLight as a strong foundation for future
intelligent transportation systems.
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