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ABSTRACT

This paper presents a novel approach to Explainable AI (XAI) that
combines contrastive explanations with differential privacy for clus-
tering algorithms. Focusing on k-median and k-means problems,
we calculate contrastive explanations as the utility difference be-
tween original clustering and clustering with a centroid fixed to
a specific data point. This method provides personalized insights
into centroid placement. Our key contribution is demonstrating
that these differentially private explanations achieve essentially
the same utility bounds as non-private explanations. Experiments
across various datasets show that our approach offers meaningful,
privacy-preserving, and individually relevant explanations without
significantly compromising clustering utility. This work advances
privacy-aware machine learning by balancing data protection, ex-
planation quality, and personalization in clustering tasks.
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1 INTRODUCTION

Different notions of clustering are fundamental primitives in sev-
eral areas, including machine learning, data science, and operations
research [34]. k-means and k-median clustering remain among the
most important and widely used approaches, as demonstrated by
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recent advances in explainability, privacy, fairness, and contrastive
learning [12, 25, 26, 42]. These problems often involve significant
trade-offs between accessibility, resource allocation, and overall
cost. For example, in emergency response planning, authorities
must decide the optimal locations for ambulance stations to mini-
mize response times across a city. Residents might question why
an ambulance station isn’t located closer to their neighborhood,
especially if they feel imbalances in resource distribution. Similarly,
in retail, customers might wonder why a new store is not placed
near their area, despite being part of a high-demand demographic.
Explainability in these contexts provides transparency into how and
why certain decisions are made, addressing questions like: "Why
was this location chosen instead of another?" This is particularly
important in applications where the consequences of clustering
decisions directly affect individuals or communities. [2, 31]

Such questions fall within the area of Explainable Al, which is a
rapidly growing and vast area of research [4, 10, 24, 36, 37]. We
focus on post-hoc explanations, especially contrastive explanations,
e.g., [24, 33], which address “why P instead of Q?” questions. For ex-
ample, in warehouse optimization, contrastive explanations clarify
why a specific location was chosen as a distribution center, con-
sidering constraints like storage capacity or demand [42]. These
methods are widely applied in multi-agent systems, reinforcement
learning, and contrastive analysis [3, 4, 20, 37, 38]. In reinforcement
learning, they explain actions by highlighting trade-offs, such as
long-term rewards or risks [41].

Following the approach introduced in [33, 42], we explain clustering
decisions by comparing the costs in two scenarios: cost(S), the
cost of an optimal clustering solution on the whole dataset X =
{x1,...,%xn} and cost(S)), the cost of a modified solution where
we fix a center at a desired location requested by agent x; € X.
We explain the decision by showing cost(S(i)) — cost(S), i.e., how
much the overall clustering cost increases when we force a center
to be in a specific location. A higher clustering cost indicates worse
performance. This comparison reveals the trade-offs in clustering:
optimizing for one specific location often leads to a higher overall
cost, meaning a worse solution for everyone else. By examining
the difference between the optimal clustering cost and the cost of
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the forced fixed clustering, we can understand why the algorithm
chose certain locations for centers and not others. This approach
helps people grasp the complex balancing act involved in clustering
decisions, especially when trying to distribute resources fairly [42].

Data privacy is a crucial concern across various fields, and Differen-
tial Privacy (DP) is one of the most widely used and rigorous models
for privacy [8]. We focus on the setting where the set of data points
X = {x1,...,xp} are private; for instance, in the ambulance center
deployment problem, each x; represents an individual requiring
emergency services and seeking to keep their information private.
There has been a lot of work on the design of differentially private
solutions to clustering problems such as k-median and k-means in
such a privacy model [1, 13, 15, 40].

While there has been significant progress in various domains of
differential privacy, the intersection of explainability and differ-
ential privacy still needs to be explored. In clustering problems,
building on the formalization of explanations for combinatorial
problems we provide a private contrastive explanation to agent x;
by computing cost(Sg)) — cost(Se). Here, Se represents a private
solution using the privacy budget €, while Sél) denotes a private
solution, when we constrain one center to be at a location specified
by agent x; (this can be any point of interest, not necessarily the
agent’s own location). This difference quantifies how the clustering
cost changes when accommodating agent i’s position, offering a
privacy-preserving explanation of the clustering decision. How-
ever, giving such a private contrastive explanation to each agent i
naively using a private clustering algorithm would require a high
privacy budget due to composition, which impact the accuracy, and
lead to misleading or uninformative results. The central question
of our research: is it possible to offer each user an informative private
contrastive explanation with a limited overall privacy budget?

Our contributions.

1. We introduce the PRIVEC problem, designed to formalize private
contrastive explanations to all agents in clustering using k-median
and k-means objectives.

2. We present an e-DP mechanism, PrivateExplanations, which
provides a contrastive explanation to each agent while ensuring
the same utility bounds as private clustering in Euclidean spaces,
offering personalized insights without compromising privacy or
clustering quality. We use the private coreset technique of [13],
which is an intermediate private data structure that preserves simi-
lar clustering costs as the original data.

3. We evaluate our methods on diverse datasets with varying distri-
butions and feature dimensions. Our results demonstrate privacy-
utility trade-offs comparable to private clustering, with low clus-
tering errors even at reasonable privacy budgets, showcasing the
effectiveness of our approach. Our research stands out by seam-
lessly integrating differential privacy into contrastive explanations,
maintaining the quality of explanations even under privacy con-
straints. This work bridges the gap between privacy and explainabil-
ity, marking a significant advancement in privacy-aware machine
learning. A key technical contribution of our work is the derivation
of rigorous bounds on the approximation factors for all contrastive
explanations, ensuring their reliability and effectiveness. Due to
space limitations, we only present major technical details in the
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main paper. We maintain a full, updated version of this paper with
complete proofs and extended experimental results at [27].

2 RELATED WORK

Our work considers differential privacy for explainable Alin general
(XAI) and Multi-agent explanations (XMASE) in particular, focusing
on post-hoc contrastive explanations for clustering. We summarize
some of the work directly related to our paper; additional discussion
is presented in the Appendix, due to space limitations. Extensive
experiments presented in [35] demonstrate non-negligible changes
in explanations of black-box ML models through the introduction
of privacy.

[29] considers feature-based explanations (e.g., SHAP) that can
expose the top important features that a black-box model focuses on.
To prevent such expose they introduced a new concept of achieving
local differential privacy (LDP) in the explanations, and from that,
they established a defense, called XRAND, against such attacks.
They showed that their mechanism restricts the information that
the adversary can learn about the top important features while
maintaining the faithfulness of the explanations.

[14] study the security of contrastive explanations, and introduce
the concept of the “explanation linkage attack”, a potential vulnera-
bility that arises when employing strategies to derive contrastive
explanations. To address this concern, they put forth the notion
of k-anonymous contrastive explanations. As the degree of pri-
vacy constraints increases, a discernible trade-off comes into play:
the quality of explanations and, consequently, transparency are
compromised.

Closer to our application is the work of [11], which investigates
the privacy aspects of contrastive explanations in the context of
team formation. They present a comprehensive framework that
integrates team formation solutions with their corresponding expla-
nations, while also addressing potential privacy concerns associated
with these explanations. Additional evaluations are needed to de-
termine the privacy of such heuristic-based methods.

There has been a lot of work on private clustering and facility
location, starting with [15], which was followed by a lot of work on
other clustering problems in different privacy models, e.g., [9, 16, 30,
39, 40]. [15] demonstrated that the additive error bound for points
in a metric space involves an O(Ak? log n/e) term, where A is the
space’s diameter. Consequently, all subsequent work, including
ours, assumes points are restricted to a unit ball.

We note that our problem has not been considered in any prior
work in the XAI or differential privacy literature. The formulation
we study here will likely be useful for other problems requiring
private contrastive explanations.

3 PRELIMINARIES

Let X ¢ R? denote a dataset consisting of d-dimensional points
(referred as agents). We consider the notion of (k, p)-clustering, as
defined by Definition 1.

Definition 1. ((k, p)-Clustering [13]). Given k € N, and a multi-
set X = {x1,...,xp} of points in the unit ball, a (k, p)-clustering
is a set of k centers {c1,...,cx} minimizing costf((cl,...,ck) =
Yie[n] Minje gy lxi = c;lIP.
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For p = 1 and p = 2, this corresponds to the k-median and k-means
objectives, respectively. We drop the subscript X and superscript p,
when it is clear from the context, and refer to the cost of a feasible
clustering solution S by cost(S).

Definition 2. ((w, t)-approximation). Given k € N, and a multiset
X = {x1,...,xn} of points in the unit ball, letOPT)Iz’k =min; . cpd
costf((cl, ..., cg) denote the cost of an optimal (k, p)-clustering. We
sayci, ..., ck isa (w, t)—approximation to a (k, p)-optimal clustering

ifcoslf((cl, ) Swe OPT)‘Z’k +t.

Let OPT denote the cost of the optimal (k, p)-clustering, OPT; de-
note the cost of the optimal (k, p)-clustering, with a center fixed
at position z; (the location chosen by agent i) and the remaining
k-1 centers are chosen to optimize the objective. Let w’, w”’ denote
the maximum approximation (w.r.t. OPT and OPT; respectively) of
non-private clustering algorithms. These factors will be specified
in Sections 4.1 and 4.2.

A coreset (of some original set) is a set of points that, given any k
centers, the cost of clustering of the original set is “roughly” the
same as that of the coreset [13].

Definition 3. Fory,t > 0,p > LLk,d e N, aset X’ isa (p,k,y,t)-
coreset of X C RY if for every C = {c1,...,ck} € R%, we have
(1- y)costﬁ(C) —t < costx(C) < (1+ y)cost;;(C) +t.

Privacy model. We use the notion of differential privacy (DP),
introduced in [8], which is a widely accepted formalization of pri-
vacy. A mechanism is DP if its output doesn’t differ too much on
“neighboring” datasets; this is formalized below.

Definition 4. M : X — Y is (¢, 6)-differentially private if for any
neighboring datasets X ~ X’ € X andS C Y,

Pr[M(X) € S] < e Pr[M(X’) € S] + 6.
If 5 = 0, we say M is e-differentially private.

We assume that the data points in X (i.e., users) are private, and
say X, X’ are neighboring (denoted by X ~ X’) if they differ in one
data point. When a value is disclosed to an individual agent i, it
is imperative to treat the remaining clients in X — {i} as private
entities.

Definition 5. A mechanism M is e-i-exclusion DP if, VX, X' : i €
X,ie X', X\ {i} ~ X'\ {i}, and for all S C Range(M):

PrM(X) € S] < e Pr[M(X’) € S].

We extend this to say that M is e-Y -exclusion DP if the above holds
VX, X' :YCX,YCX ,X\Y~X"\Y.

We now define the PRIVEC problem for providing private con-
trastive explanations, where each agent x; seeks an explanation for
a center fixed at a location of their choosing denoted by z;.

Definition 6. Private and Explainable Clustering problem
(PRIVEC) Given an instance X C RY, clustering parameters k, p, and
a contrastive set of points Z C R, the goal is to output:

Private: An e-DP clustering solution S¢ (available to all)
Explainable: For each agent x; € X, output cost(Séi)) - cost(Se).
Séi) is a private solution computed by the clustering algorithm with
one centroid fixed at the position requested by agent i.
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We assume that Sél) is not revealed to any agent, but cost(Sél)) -
cost(Se) is released to agent i as contrastive explanation, which is
e-i-exclusion DP.

Lemma 1. With probability at least 1 — 5, cost(Se) (clustering cost)
is a (w, t)-approximation of OPT, where!:

w=w(1+a),

t =W Op.a (k1)< V) polylog(n/p) e

a is the approximation parameter for the utility of clustering and
explanations. f is the failure probability of the utility guarantees of
clustering and explanations.

Lemma 2. DP of fixed centroid yield additional cost. Fix an i.
IfOPT; > w" (1+a)OPT +t'!) | then with probability at least 1 — 23,
cost(Se ) and cost(Séi) ) computed by Algorithm PRIVATEEXPLANATIONS
satisfies that cost(Séi)) > cost(Se).

4 PRIVATEEXPLANATIONS MECHANISM

We design PRIVATEEXPLANATION (Algorithm 1) for providing con-
trastive explanations for each agent. Specifically, it takes as inputs:
(1) x; which specifies the location of each agent i, and the con-
trastive location z; for which they want an explanation, (2) original
and target dimensions (d, d’), number of clusters (k), privacy budget
€, and { (explained later). The algorithm’s key components are:

Algorithm 1 PrivateExplanation

Input: (x1,...,%n), (21,....2n),d,d" . k., €,{

Output: (¢, §)-differentially private explanation for agents
t: (x1,...,Xp) < DimReduction((x1, ..., xn),d,d")
2: Z' « DimReduction((z1,...,zn),d,d")
3 Y — PRIVATECORESETe/Z(xi, I AYe)
4 (ci,...,c;c),cost(Sé) « NonPrivateApprox(Y, k)
5: cost(Se) = RevertDimValue * cost(S.)
6: € — DIMREVERSEG/Z((C;, .. "Cllc)’ (x],..
7: for 2] € Z' do
8: cost(Sgi)) — NonPrivateApproxFC(Y, k, z})
9 cost(Sél)) = RevertDimV alue * cost(Sé(l))

10: end for )

1: return cost(Sél)) — cost(Se)|i € range(1,...,|X])

%))

—_

Dimension Reduction: Using DIMREDUCTION from [13], we
transform input data (in dimension d) to a lower-dimensional
space d’. This reduction is crucial since our coreset algorithm
is exponential in the dimension, but by reducing to logarithmic
dimensions, it becomes polynomial-time.

Private Coreset: We create a differentially private coreset
Y using PRIVATECORESET from [13], ensuring €/2 differential
privacy; the coreset is defined in Definition 3.

Clustering: The coreset is clustered using a non-private ap-
proximation algorithm (NoNPRIVATEAPPROX). We can use a
non-private clustering algorithm here since the coreset itself is
already private, and by the Post-Processing property of differ-
ential privacy, the final result remains private.

'We use the notation Op,« to explicitly ignore factors of p, &
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e Cost Scaling: In line 5 of the algorithm, by multiplying by
REVERTDIMVALUE = (log(n/f)/ 0.01)?/2 we scale the cluster-
ing cost (cost(S.)) (in the low-dimensional space) back to the
original dimension (cost(S¢)) as shown in [21]. This reversal
is necessary because while we computed costs in reduced di-
mensions for efficiency, we need the final cost in the original
dimensions for accuracy.

e Dimension Reverse: Centroids are mapped back to the origi-
nal space using DIMREVERSE, maintaining e-differential privacy.

e Contrastive Explanations: For each data point, we execute
fixed-centroid clustering (NonPrivateApproxFC) on the coreset,
constraining one centroid to a location chosen by the agent.
This algorithm, detailed in Sections 4.1 and 4.2, is our key con-
tribution as it modifies standard k-means and k-median algo-
rithms to fix one centroid while maintaining their original util-
ity bounds from literature, ensuring meaningful explanations.
Without utility bounds, agents could challenge the validity of
the explanation, arguing that the fixed centroid might degrade
the clustering solution to an unacceptable extent. However,
by guaranteeing the same utility bounds as the original algo-
rithms, we ensure that the explanations are grounded in the
vicinity of optimal clustering solutions, leaving no room for
users to dispute the fairness or validity of the explanation. This
alignment between explanation quality and clustering utility
reinforces the trustworthiness of the algorithm and the insights
it provides. After clustering, we apply REVERTDIMVALUE to
transform the cost back to the original space (cost(Séi))). By
combining lines 5 and 9 of the algorithm, we derive the out-
put: cost(Sél)) - cost(Se) for each agent. This value captures the
loss of optimality when fixating one centroid, quantifying how
much the clustering quality degrades due to this constraint,
serving as a contrastive explanation.

Theorem 1. DP of Explanation. The solution (cy,...,ci) and
cost(Se) computed by Algorithm PRIVATEEXPLANATIONS are €-DP. For
all clients i and Sél) computed by Algorithm PRIVATEEXPLANATIONS
is e-i-exclusion DP.

Privacy analysis, as demonstrated in Theorem 1, we establishes
the privacy guarantees of PRIVATEEXPLANATIONS. Y coreset is €/2-
differentially private as an output of €¢/2-DP algorithm. Conse-
quently, (cf, ... ,c/’c) and cost(S¢) maintain €/2-DP status, under
the Post-Processing property.

Applying DIMREVERSES/? to find the centers in the original space,

¢ ={c1,...,cr}is e-DP by Composition theorem. For each i, cost(Séi))
is produced by Post-Processing of Y with only 27, hence cost(Sé'))
satisfies e-i-exclusion-DP.

Running Time Analysis.

Algorithm 1 has a total runtime of O((k/ ﬁ)OPv”’(l) poly(nd)), which
is polynomial in the input size. The key components contributing
to this complexity include PRIVATECORESET, DIMREVERSE, and in-
stances of (k, p)-clustering with and without fixed centers.

PRIVATECORESET runs in O((k/ﬁ)OP-“(l)poly(n)) time, as it sets
d’ = O(p*log(k/p)) to satisfy the Dimension-Reduction Lemma
(Appendix Section B) and uses Lemma 42 from [13]. DIMREVERSE,
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which includes the FINDCENTER operation (detailed in the Appen-
dix), has a time complexity of O(poly(np)) and is invoked k times.
Additionally, we execute one standard (k, p)-clustering and |X| in-
stances of (k, p)-clustering with a fixed center. Together, these steps
ensure the algorithm’s overall polynomial runtime. All symbols
used in this analysis are defined in Table 2 in the Appendix.

Theorem 2. Assume there exist polynomial-time algorithms for
(k, p)-clustering and (k, p)-clustering with a fixed center. The total
running time of Algorithm 1 is O((k/[i)ol’ﬂ(l)poly(nd)).

This computational complexity demonstrates that our algorithm
is efficient for large datasets, balancing the additional overhead
of fixed-centroid clustering with practical runtimes. Theorem 2
follows from the detailed steps, as PRIVATECORESET and FINDCEN-
TER contribute manageable computational overhead. Finally, the
algorithm integrates a critical utility analysis to ensure robust per-
formance. In the following sections, we present rigorous upper
bounds and specific constraints for k-means and k-median, illus-
trating the practicality and effectiveness of our approach.

Utility Analysis. PRIVATECORESET uses parameters ¢ (which is
a function of «) and privacy budget €/2, derived from [13] and
detailed in our Appendix. This algorithm produces a coreset Y
that ensures the clustering cost on Y closely approximates the
cost on the projected dataset X’. Specifically, the approximation

is within a (1 + 0.1«) factor, plus an additive O(polylog(n/f)/e)
term. Then, by applying the Dimensional Reduction lemma (in the
Appendix), which states that the cost of a specific clustering on X’
(d’-dimensional space) is under some constant factor of the same
clustering on X (d-dimensional space), we can bound the cost(Se (i)
by its optimal clustering OPT;. We first state the approximation
factor derived using [13], since this is used in our analysis.

Theorem 3. Cost of explanations due to privacy. Fix an agent
i. With probability at least 1 — f3, cost(Sél)) computed by Algorithm
PRIVATEEXPLANATIONS is a (w, t)-approximation of OPT;, with

w=w"(1+a)

t =" Opa (/)% polylog(n/p)/e)

As Sél) results from a randomized mechanism, its cost is higher
than S¢’s most of the time with high probability, ensuring a positive
private explanation.

Tight Approximation Ratios. The most challenging aspect of

our analysis is determining the precise approximation factor w’’
for k-means and k-median in the context of fixed-centroid clus-
tering. In the following sections, we will present modifications to
well-known k-median and k-means algorithms, adapting them for
fixed-centroid clustering scenarios. We will then demonstrate that
these modified algorithms achieve the same tight approximation
factors. Formally, we show how the well-known utility bounds of
k-means and k-median can be preserved while fixing one centroid
to a requested location, ensuring the robustness of these algorithms
under such constraints. Corollary 1 and Corollary 2 will conclude
this section by presenting the specific, tight approximation ratios
(w””) achieved after applying our NoNPRIVATEAPPROXFC algorithm.
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These corollaries will provide detailed confirmation of our algo-
rithm’s effectiveness in achieving these optimal approximation
ratios within the constraints of differential privacy.

4.1 NONPRIVATEAPPROXFC for k-median

We have developed a non-private fixed centroid clustering algo-
rithm, which we call NONPRIVATEAPPROXFC. This algorithm is an
adaptation of [5]. In the following section, we will prove that our
modified algorithm, which works with a fixed centroid (referred to
as z), achieves an 8-approximation factor. To grasp how we adapted
the algorithm to suit our needs, it’s essential to understand the
symbols used in [5]. In this section, we adopt the notation from [5]
to avoid confusion with the symbols used in this paper, where d
and d’ denote the original and reduced dimensions, respectively.
In their work, d; represents the demand at each location j € N,
serving as a weight that reflects the importance of the location. N
refers to the set of agents 1,...,n.

For the conventional k-median problem, each dj is initially set to 1
for all j € N. The term c;; represents the cost of assigning any i to
J» xij represents if location j is assigned to center i and y; indicates
if the location i is selected as a center.

We assume the fixed center is one of the input data points N. [5]
demonstrates that the k-median problem can be formulated as an
integer programming problem, and in order to adapt the algorithm
we add a constraint in line 9 to treat z as a fixed centroid. This
modification allows the algorithm to account for the fixed centroid
requirement. We then relax the integer program (IP) into a linear
program (LP) and show that it preserves the same utility bound as
the original algorithm. By specifying that y, > 1, we ensure that y,
is designated as a centroid in our linear programming formulation.
Throughout the solution process, y, remains fixed as a centroid.

minimize Z djcijxij (1)
ijeN
s.t.inj:lforeachjeN;Zyj:k (2)
ieN JjEN
xij < yjforeachi,je N 3)
Xij,yi = 0foreachi,je N 4)
Yz, Xzz > 1forafixedz e N (5)

Let (%, 7)) be a feasible solution of the LP relaxation and let C; =
2lieN CijXij for each j € N as the total (fractional) cost of client j.
Throughout the three steps, we demonstrate that solving this linear
program with the added constraint does not introduce any addi-
tional approximation factor. The program is solved with the same
efficiency and accuracy as it would be without the fixed centroid
constraint.

The first step. We group nearby locations by their demands with-
out increasing the cost of a feasible solution (X, 7), such that loca-
tions with positive demands are relatively far from each other. By
re-indexing, we get C; < C; < C3 < ...Cp.

We will show that it’s always possible to position C, as the first
element of the list, i.e., C; is equal to the minimum value of all .
Recall that: C; = ¥ ;e N CizXiz = XjeN,i#z CizXiz + CzzXzz = 0, since
we know that };en Xiz = 1,Xz; > 1 and ¢z = 0.

The remaining work of the first step follows [5]. We first set the
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modified demands d j' < dj.For j € N, moving all demand of loca-
tion j to a location i < j s.t. dlf > 0andcjj < 4CJ-, i.e., transferring
all j’s demand to a nearby location with existing positive demand.
Demand shift occurs as follows: dlf — dlf + d;., d} « 0. Since we
initialize d, = d; = 1, and we never move its demands away, it
follows that d, > 0.

Let N’ be the set of locations with positive demands N’ = {j €
N, d} > 0}. A feasible solution to the original demands is also a
feasible solution to the modified demands.

Lemma 3. Locations i, j € N’ satisfy: cjj > 4max(C;, Cj).

Proor. The lemma follows the demands moving step (in the first
step of the algorithm): for every j to the right of i (which means
Cj > C;) and within the distance of C; (that also covers all points
within distance C;), we move all demands of j to i, hence j will not
appear in N’. o

Lemma 4. The cost of the fractional (%, §) for the input with modified
demands is at most its cost for the original input.

PrOOF. The costofthe LPCrp = Y jen djCjandCl, = X jen d;.C’j.
Since we move the demands from C 'j to a location i with lower cost
C;i < C; the contribution of such moved demands in C” is less than
its contribution in C, it follows that C; ,, < Crp. O

The second step. We analyze the problem with modified demands
d’. We will group fractional centers from the solution (%,7) to
create a new solution (x’,y’) with cost at most 2C;p such that
y; = 0foreachi ¢ N" and y > 1/2 for each i € N’. We also ensure
that y, > 1/2 in this step, i.e., z will be a fractional center after this.
A solution is called 1/2-restricted if y; > 1/2 for any point j € N
and y; = 0 otherwise. This restriction balances the assignment of
demand, ensuring that no single center dominates excessively. The
concept of 1/2-restricted solutions is used to create more equitable
distributions of demand and is key to transitioning to a {1/2,1}-
integral solution. The next lemma leverages this property:

Lemma 5. For any 1/2-restricted solution (x’,y’) there exists a
{1/2, 1}-integral solution with no greater cost.

Proor. The cost of the %-restricted solution (by Lemma 7 of [5])

is:
’ ’ ’ ’
Crp= Z djcs(jyj = Z djcs ()Y (6)

JjeN’ JEN’

Let s(j) be j’s closest neighbor location in N’, the first term above
is independent of y’ and the minimum value of y} is 1/2. We now
construct a {1/2, 1}-integral solution (x, ) with no greater cost.
Sort the location j € N”, j # z in the decreasing order of the weight
d}cs(j)j and put z to the first of the sequence, set §; = 1 for the
first 2k — n’ locations and §j; = 1/2 for the rest. By doing that,
we minimize the cost by assigning heaviest weights d}cs( jj to
the maximum multiplier (i.e., 1) while assigning lightest weights
d;.cs(j)j to the minimum multiplier (i.e., 1/2) for each j € N’, j # z.
Any feasible 1/2-restricted solution must have y, = 1 to satisfy
the constraint of z so that the contribution of 7, is the same as its
of y7. It follows that the cost of (£, §j) is no more than the cost of

(", y"). o
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The third step. This step is similar to the part of Step 3 of [5] that
converts a {1/2, 1}-integral solution to an integral solution with
the cost increases at most by 2. We note that there are two types of
center §; = 1/2 and §; = 1, hence there are two different processes.
All centers j with §j; = 1 are kept while more than half of centers
Jj with §; = 1/2 are removed. Since we show that §, = 1 in the
previous step, z is always chosen by this step and hence guarantees
the constraint of z.

Theorem 4. Approximation factor of fixed centroid k-median.

For the metric k-median problem, the algorithm above outputs an
8-approximation solution.

Proor. It is obvious that the optimal of the LP relaxation is the
lower bound of the optimal of the integer program. While con-
structing an integer solution for the LP relaxation with the modified
demands, [5] states that there is a 1/2-restricted solution (x’, y’)
which costs at most 2Cyp. And now the third step multiplies this
cost by a factor of 2, making the cost of the solution (to the LP)
at most 4Cp p. Transforming the integer solution of the modified
demands to a solution of the original input adds an additive cost of
4Crp by Lemma 4 of [5] and the Theorem follows. O

Having demonstrated that our modification of [5] to execute fixed-
centroid k-median instead of standard k-median yields an 8-factor
approximation of the optimal solution, we can now proceed to
prove that our private explanation closely approximates the optimal
solution for the fixed-centroid scenario.

Corollary 1. Running PRIVATEEXPLANATIONS with NONPRIVATEAP-
PROXFC be the above K-median algorithm, with probability at least
1-5, Sél) is a (w, t)-approximation of OPT;—the optimal K-median
with a center fixed at position z;, in which:

w=28(1+a)
t = 80p.a ((k/)°r D) polylog(n/B)/e) .

4.2 NONPRIVATEAPPROXFC for k-means

In this section, we present our NONPRIVATEAPPROXFC algorithm
for k-means with a fixed center. Based on [19], we achieve a 25-
approximation. We will analyze this approximation factor in detail
below. We adapt the work by [19] by adding a fixed center constraint
to the single-swap heuristic algorithm. As in their result, we need
to assume that we are given a discrete set of candidate centers C
from which we choose k centers. The optimality is defined in the
space of all feasible solutions in C, i.e., over all subsets of size k of
C. We then present how to remove this assumption, with the cost
of a small constant additive factor.

Definition 7. Let O = (01,0,...,0x) be the optimal clustering
with Oy be the cluster with the fixed center z. A set C C R? isay-
approximate candidate center set if there exists z € {c1,c2,...,c} €
C, such that: cost(c1,¢,...,cx) < (1 +y)cost(O).

Given u,0 € R?, let A(u,0) denote the squared Euclidean distance
between u and v: A(u,v) = dist?(w, ). For a set S C RY, the total
squared distance between all points in S and a point v is given
by A(S,0) = Y ,es Ay, v). Similarly, for a set P ¢ R%, Ap(S) rep-
resents the total squared distance between each point ¢ € P and
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its closest point s € S. Here, g refers to an individual data point
in set P, and sq is its nearest neighbor in S. When the context is
clear, we drop P for simplicity. This notation captures the essential
relationships between points and their nearest centroids.

Let z be the fixed center that must be in the output. Let C be the set
of candidate centers, that z € C. We define stability in the context
of k-means with a fixed center z as follows. We note that it differs
from the definition of [19] such that we never swap out the fixed
center z:

Definition 8. A set S of k centers that contains the fixed center z
is called 1-stable if: A(S\ {s} U {o}) = A(S), foralls € S\ {z},
0€0\{z}.

Algorithm. We initialize $(°) as a set of k centers form C that
z € S _For each set S() | we perform the swapping iteration:

Select one center s € S() \ z

Select one replaced center s’ € C \ S()

LetS =sW\sug

If S’ reduces the distortion, S(*1) = §’. Else, S(i+1) = s()

We repeat the swapping iteration until § = sm) e, after m it-
erations, is a 1-stable. Theorem 5 states the utility of an arbitrary
1-stable set, which is also the utility of our algorithm since it al-
ways outputs an 1-stable set. We note that if C is created with some
errors y to the actual optimal centroids, the utility bound of our
algorithm is increased by the factor ©(y), i.e., oursis a (25+©O(y))-
approximation to the actual optimal centroids.

Theorem 5. Approximation factor of fixed centroid k-mean.
IfS is an 1-stable k-element set of centers, A(S) < 25A(0O). Further-
more, if C is a g—s—approximate candidate center set, S is a (25 +y)-
approximate of the actual optimal centroids in the Euclidean space.

Having demonstrated that our modification of [19] to execute fixed-
centroid k-means instead of standard k-means yields a 25-factor
approximation of the optimal solution, we can now proceed to
prove that our private explanation closely approximates the optimal
solution for the fixed-centroid scenario.

Corollary 2. Running PRIVATEEXPLANATIONS with NONPRIVATEAP-
PROXFC be the above k-means algorithm, with probability at least
1-5, Sél) is a (w, t)-approximation of OPT;—the optimal k-means
with a center fixed at position x;, in which:

w=(25+y)(1+a)
t = (25+7)Op.a (k1)< V) polylog(n/B) e

With the utility bounds for k-means and k-median under the fixed-
centroid constraint proven, it is clear that altering the original
algorithms preserves the same utility bounds as their non-fixed
counterparts. This ensures that accommodating fixed centroids
does not compromise clustering quality. Notably, these bounds
refer to clustering utility, not explanation bounds. By showing
that fixed-k-means and fixed-k-median perform as effectively as
standard versions, users can trust the quality of the explanations.
Without these guarantees, users might question the validity of
centroid placements. Our results ensure the explanations are based
on clustering solutions that are as robust and reliable as the original
algorithms.
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Figure 1: A visualization of our dataset (Heart Disease dataset from the UCI ML Repository), projected into an 8-dimensional
space. (a) t-SNE of our data. (b) Comparison of k-median clustering with fixed and non-fixed centroids, both private and
non-private. (c) Bar graph showing contrastive explanation differences for differential private and non-private k-median with a
fixed centroid. (d) We fix the privacy budget of 0.6 while demonstrating the contrastive explanation across various dimensions.

5 EXPERIMENTS

Our study examines how the privacy budget € affects the trade-off
between privacy and accuracy, focusing on the quality of differen-
tially private explanations. We use four key metrics: Private Optimal
(PO, S¢), Private Contrastive (PC, Sél) ), Regular Optimal (RO, OPT),
and Regular Contrastive (RC, OPT;), to compare clustering costs
with and without fixed centroids in both private and non-private
algorithms. To assess explanation quality, we define two derived
metrics: Average Private Explanation (APE, PC - PO, cost(Séi)) -
cost(Se)) and Average Explanation (AE, RC - RO, cost(S (D) - cost(S)).
APE measures utility loss in private clustering as an explanatory
output, while AE provides a non-private baseline. These metrics
help us evaluate the explanatory power of our approach. By analyz-
ing these metrics across different € values, we explore the balance
between privacy and utility, highlighting the trade-offs in our dif-
ferentially private clustering and explanation framework.
Datasets Our research utilizes a diverse set of datasets to demon-
strate the versatility and effectiveness of our approach, as sum-
marized in Table 1. We employed the Heart Disease dataset fea-
turing 13 dimensions, and the Breast Cancer dataset with 30 fea-
tures, including both numeric and categorical fields. Both datasets
were taken from the UCI Machine Learning Repository Those
higher-dimensional datasets were crucial in validating our theoret-
ical framework. Additionally, we used two-dimensional activity-
based population datasets from Charlottesville City and Albemarle
County, Virginia, previously employed in mobile vaccine clinic de-
ployment studies [23]. To complement these real-world datasets,
we also generated a synthetic two-dimensional dataset. By testing
our method on both high-dimensional and two-dimensional data,
as well as on real and synthetic datasets, we showcase its robustness
across different data complexities and origins.

Data Preprocessing: We normalized all datasets to fit within a
unit ball to ensure consistency with prior work and standardize our
analysis framework. While this normalization alters the absolute
scale, it preserves the relative relationships between data points,
which is crucial for clustering. The entire preprocessed dataset
was used for analysis, as there is no ground truth labeling for a
traditional train-test split in this unsupervised task.
Dimensionality Our study explored both 2D and higher-dimensional
datasets. A crucial aspect of our methodology, DIMREDUCTION,

1554

employs Principal Component Analysis (PCA) for initial dimen-
sionality reduction. This process normalizes the data and creates
lower-dimensional representations. We performed extensive ex-
periments, reducing high-dimensional datasets to various lower
dimensions, including 2D, with additional low-dimension experi-
ments. Remarkably, our results remained consistent across differ-
ent reduced dimensionalities. Even when reducing data from 13
dimensions to 2, we observed similar trends and results as with
other dimensional reductions, despite significant information loss.
This consistency underscores our method’s robustness across vary-
ing dimensions. By addressing high-dimensional data challenges
through PCA reduction, we ensure our technique’s applicability and
efficiency across diverse dataset complexities, maintaining result
integrity regardless of original data dimensionality.

Running Time Analysis: The computational complexity of our
algorithm varies by clustering method. For k-means, we use the
linear-time algorithm from [19], while the k-median approach relies
on polynomial-time Linear Programming (LP). We have optimized
performance with GPU parallelization, reducing execution times
from minutes to seconds for both differentially private coresets and
clustering tasks. Our method is data-agnostic, handling any data
distribution efficiently, independent of sparsity. For reproducibil-
ity, we provide our code, experimental details, and pre-processed
datasets in a public repository.

5.1 Experimental results

Figure 1 presents four key visualizations of our differentially pri-
vate clustering and explanation framework across various dimen-
sions. The t-SNE plot (leftmost) shows the 2D representation of
our dataset, revealing potential clusters and patterns. The second
plot illustrates K-median cost versus € for our four metrics (PC,

Dataset Dim Size Source
Heart Disease 13 303 UCI MLR
Breast Cancer Wisconsin 31 569 UCI MLR
Charlottesville 2 33K [23]
Albemarle 2 74K [23]
Synthetic dataset 2 1k Generated

Table 1: Datasets used in our research
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Figure 2: A visualization of another dataset (Breast Cancer dataset (30 features) from the UCI ML Repository), projected into a
16-dimensional space. (a) t-SNE of our data. (b) Comparison of k-means clustering with fixed and non-fixed centroids, both
private and non-private. (c) Bar graph showing contrastive explanation differences for differential private and non-private

k-means with a fixed centroid.

PO, RC, RO), demonstrating the privacy-accuracy trade-off and the
consistency of our contrastive explanations.

In plots (b) and (c) of Figure 1, the x-axis represents the privacy
budget €, which we tested over the range [0, 1] in intervals of 0.05.
This granularity allows for a detailed analysis of the privacy-utility
trade-off. Smaller values of € enforce stronger privacy guarantees, as
reflected in higher clustering costs for PC and PO. Conversely, as €
increases, these costs gradually decrease, highlighting the improved
utility that comes with relaxed privacy constraints. Importantly,
the observed trends demonstrate that the framework consistently
balances privacy and utility, even at stricter privacy levels. Addition-
ally, the stability of the non-private metrics (RC and RO) across the
€ range provides a robust baseline for evaluating the performance
of our private clustering and explanation methods.

As expected, both PC and PO costs decrease as € increases, demon-
strating the trade-off between privacy and accuracy. The non-
private metrics (RC and RO) remain constant across € values, serv-
ing as baselines for comparison. Notably, the gap between PC and
PO remains relatively consistent, indicating that our contrastive
explanations maintain their relative quality at different levels of
privacy. The third plot illustrates the Explanation Utility for both
private (Average Private Explanation) and non-private (Average
Non-Private Explanation) scenarios across various € values. This
graph quantifies the difference in clustering cost between the opti-
mal solution and the solution with a fixed centroid, representing
our contrastive explanations. Notably, we observe that the Aver-
age Private Explanation remains relatively stable across different
€ values. This stability is crucial as it indicates that the quality of
our contrastive explanations in the private setting is consistent,
regardless of the privacy budget. The consistent performance across
different € values underscores the robustness of our method, pro-
viding reliable explanations even under strict privacy constraints.
The rightmost plot demonstrates the difference between PC and PO
across dimensions for a fixed ¢, illustrating our method’s scalability
with dimensionality.

Figure 2 follows a similar format but uses another high-dimensional
dataset. This dataset was reduced from 30 dimensions to 16 to test
the robustness of our approach on different datasets and higher
dimensions. Unlike Figure 1, this figure presents results obtained
using the k-means algorithm. Furthermore, we extended our ex-
periments to include other reduced dimensions for both k-means
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and k-median, with the detailed results provided in the Appendix.
These additional experiments further validate the adaptability and
robustness of our framework across different clustering methods
and dimensionality settings.

6 CONCLUSIONS

Our work explores the design of private explanations for clustering,
particularly focusing on the k-median and k-means objectives for
Euclidean datasets. We formalize this as the PRIVEC problem, where
each agent receives a contrastive explanation corresponding to the
loss in utility they experience when a cluster centroid is placed at
a strategic position chosen by the agent. Our algorithm provides
explanations to each user while maintaining the same approxima-
tion factor as private clustering, within a predefined privacy budget.
The related work in this domain has shown the development of
algorithms for contrastive explanations, but our contribution stands
out by integrating differential privacy guarantees.

Our experiments demonstrate the resilience of our approach. De-
spite the added layer of providing differentially private explanations
on top of differentially private clustering, the quality of our expla-
nations remains uncompromised. The extended experiments on
all our datasets further validate our approach’s efficacy. The bal-
ance between privacy and utility, the robustness of contrastive
explanations, and the negligible impact of € on explainability were
consistent across datasets. These findings underscore the potential
of our method for diverse real-world applications.

Our approach is not restricted to k-means and k-median but can
be applied to other clustering algorithms as well. The methodol-
ogy leverages fundamental principles common to many cluster-
ing techniques, such as centroids and utility functions. As long
as a clustering algorithm defines centroids and evaluates cluster-
ing quality using these metrics, our approach can be adapted to
provide privacy-preserving contrastive explanations. This adapt-
ability makes it suitable for extending to other paradigms, such as
density-based or hierarchical clustering, extending its applicability
to various datasets and contexts.
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