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Abstract
Stochastic block models (SBMs) are a very com-
monly studied network model for community de-
tection algorithms. In the standard form of an
SBM, the n vertices (or nodes) of a graph are
generally divided into multiple pre-determined
communities (or clusters). Connections be-
tween pairs of vertices are generated randomly
and independently with pre-defined probabilities,
which depend on the communities containing the
two nodes. A fundamental problem in SBMs
is the recovery of the community structure, and
sharp information-theoretic bounds are known
for recoverability for many versions of SBMs.

Our focus here is the recoverability problem
in SBMs when the network is private. Un-
der the edge differential privacy model, we de-
rive conditions for exact recoverability in three
different versions of SBMs, namely Asymmet-
ric SBM (when communities have non-uniform
sizes), General Structure SBM (with outliers),
and Censored SBM (with edge features). Our
private algorithms have polynomial running time
w.r.t. the input graph’s size, and match the re-
covery thresholds of the non-private setting when
ϵ → ∞. In contrast, the previous best results for
recoverability in SBMs only hold for the sym-
metric case (equal size communities), and run
in quasi-polynomial time, or in polynomial time
with recovery thresholds being tight up to some
constants from the non-private settings.

1. Introduction
A very common first step in the analysis of networked
data in numerous applications, and unsupervised machine
learning is community detection or clustering, i.e., parti-
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tioning the network into “well-connected” communities,
e.g., (Blondel et al., 2008; Girvan & Newman, 2002; Hol-
land et al., 1983) (see survey by (Fortunato, 2010)). There
is limited theoretical understanding of community detec-
tion, since these notions are very problem-specific. One
exception is the stochastic block model (SBM) (Holland
et al., 1983), a probabilistic generative model with well-
defined communities, making them very amenable from a
theoretical perspective. Therefore, SBMs have been exten-
sively studied in network science, and have become stan-
dard test benches for community detection algorithms.

In the standard form of an SBM, the n vertices (or nodes) of
a graph are generally divided into multiple pre-determined
communities (or clusters). Connections between pairs of
vertices are generated randomly and independently with
pre-defined probabilities, which depend on the communi-
ties containing the two nodes; the Erdős-Rényi model is a
special case of SBM with a single cluster. The simplest
type of SBM is a Binary Symmetric SBM (BSSBM) (Abbe
et al., 2015), which consists of two communities with n/2
nodes each. A pair of nodes within the same community
are connected (forming an intra-cluster edge) with prob-
ability p, while a pair of nodes in the separate commu-
nities are connected with probability q (forming an inter-
cluster edge). BSSBMs are quite restricted in terms of their
structure, and many more complex SBMs have been de-
veloped to model more realistic networks, such as: mul-
tiple equal-sized clusters (Symmetric SBMs (SSBM)), al-
lowing two clusters of unequal sizes (Binary Asymmetric
SBM (BASBM)) (Hajek et al., 2016b), combining them to-
gether and with the existence of outliers (General Struc-
ture SBM (GSSBM)) (Hajek et al., 2016a), adding features
such as weight labels (Censored SBM (CSBM)) (Hajek
et al., 2016b), and by introducing new assumptions such
as degree distribution of vertices (Degree Corrected SBM),
e.g., (Qin & Rohe, 2013); see (Lee & Wilkinson, 2019) for
a survey on SBMs.

A fundamental problem is “recovering” the community
structure from a given SBM, and this has spurred a very
active area of research. Exact recovery is defined as when
the probability that the community detection algorithm suc-
cessfully recovers the ground-truth communities converges
to 1 when the size of the input graph (the number of ver-
tices n) goes to infinity, with the probability space is over
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the randomness of the SBM process (Abbe et al., 2015). A
celebrated result in this area is the exact recovery condition
for BSSBM, namely that it is possible if p = a log n/n,
q = b log n/n for constants a and b, and

√
a−
√
b ≥
√
2. In

some other regimes, for example, when
√
a−
√
b < 2 in the

above setting, or when p, q = Θ(1/n), it has been shown
that exact recovery is impossible. When

√
a −
√
b ≥
√
2,

exact recovery can be achieved by many different commu-
nity detection algorithms, such as using a Maximum Like-
lihood Estimator (MLE), Spectral methods, or by Semi-
definite programming (SDP) (Boppana, 1987; McSherry,
2001; Abbe et al., 2015; Massoulié, 2014; Gao et al.,
2017; Hajek et al., 2016a; Abbe et al., 2020; Wang et al.,
2020). Exact recovery has been studied for more com-
plex SBMs, such as BASBM, GSSBM, and CSBM (Hajek
et al., 2016b;a), but the conditions are much more com-
plex. For instance, in BASBM, the threshold for exact re-
covery is when a+b

2 − γ + (1−2ρ)τ
2 log ρ(γ+(1−2ρ)τ)

(1−ρ)(γ−(1−2ρ)τ) >

1, where τ = (a − b)/(log a − log b) and γ =√
(1− 2ρ)2τ2 + 4ρ(1− ρ)ab (Hajek et al., 2016b).

Data privacy is a very significant concern in a number of
applications. Differential Privacy (DP) (Dwork et al., 2014)
has become a de facto standard for privacy, due to its rig-
orous guarantees. DP algorithms guarantee that their out-
comes will be similar probabilistically, measured by pri-
vacy parameters ϵ, δ, if the input is slightly modified. In
context of networks and graph algorithms, two common
privacy models have been considered, namely edge- and
node-privacy (Kasiviswanathan et al., 2013; Blocki et al.,
2013; Mülle et al., 2015; Nguyen et al., 2016; Qin et al.,
2017; Imola et al., 2021; Blocki et al., 2013). The edge-
privacy model protects the existence and non-existence
of an arbitrary edge in the input graph. In contrast, the
node-privacy model provides protection to any node and
its incident edges. Most work on private algorithms on
community structures of graphs has focused on the edge-
DP model, since the output contains nodes, e.g., densest
subgraph (Nguyen & Vullikanti, 2021), community detec-
tion (Hehir et al., 2021; Mohamed et al., 2022; Nguyen
et al., 2016). Though the node-privacy model provides
a stronger privacy guarantee, the edge-privacy model still
provides meaningful protection in a number of applica-
tions. A concrete example of the protection of edge-DP
is against “Link disclosure” attack in social network anal-
ysis (Zhou et al., 2008; Kiranmayi & Maheswari, 2021),
where users are modeled as nodes and social relationships
between users are edges in the social graphs. For exam-
ple, in the analysis of a communication graph that models
the email interactions between students and faculty mem-
bers in a university, in which the relationship “who emails
whom” is considered sensitive, edge privacy can be applied
to protect the sensitive links to be exposed (Jiang et al.,
2021). We refer readers to these studies (Li et al., 2023;

Jiang et al., 2021) for the motivation for edge-DP and its
protection in many practical applications.

Community detection for SBMs under DP constraints (es-
pecially edge-DP) has been studied extensively in recent
years (Hehir et al., 2021; Mohamed et al., 2022; Seif et al.,
2023; Chen et al., 2023; Guo et al., 2023). The first rigor-
ous bound for recoverability in SBMs was established re-
cently by (Mohamed et al., 2022) for the special case of
symmetric SBMs; for BSSBMs, they show that the condi-
tion for exact recovery is

√
a −
√
b >

√
2 ·
√
1 + 3/2ϵ,

and that this can be extended to the case of r communities.
The conditions for exact recovery in all other SBMs under
differential privacy remain open.

1.1. Our contributions

We study the exact recoverability problem in SBMs under
the edge DP model— this model is the natural model to
consider (instead of node DP), since our goal is to output
the community structure. We consider three important ex-
tensions to the symmetric SBM model.

• Binary Asymmetric with unequal-sized clusters of size
ρn and (1− ρ)n, for some constant ρ ∈ [0, 0.5].

• Binary Censored, in which edges of a graph G(n, p)
(from the Erdős-Rényi model) are labeled as follows:
an intra-cluster (or inter-cluster) edge has label 1 (or
−1, respectively) with probability 1 − ξ, and has the
opposite label −1 (or 1, respectively) with probability
ξ, for some constant ξ ∈ [0, 0.5].

• General Structure, consisting of multiple and possi-
bly unequal clusters with outlier vertices that do not
belong to any cluster. Each intra-cluster connection is
generated with probability p, and all other connections
are generated with probability q.

We derive the first rigorous recoverability conditions in
three extensions of SBMs under the edge DP model, and de-
sign polynomial time algorithms for recoverability. Our re-
sults significantly extend the prior best theoretical result for
recoverability in symmetric SBMs (Mohamed et al., 2022).

We establish the rigorous conditions of parameters for re-
coverability by sophisticated analysis of the stability of the
Semi-definite program estimator on retrieving the true clus-
ter mapping for each SBM variant. The condition involves
both the graph model’s parameters (edge probabilities p
and q or edge label noisiness ξ), and the privacy parame-
ters ϵ and δ, to formalize the roles of different factors in the
success of recovery.

The main difficulties are the design and analysis of a set
of core conditions named C-concentration for each model
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with three simultaneous properties: (1) being satisfied by a
graph generated by the SBM with high probability (which
refers to probability at least 1 − 1/nc for a constant c, and
abbreviated by w.h.p.), (2) persisting under input graph per-
turbation up to log n edges, and (3) being sufficient to con-
struct a dual certificate for the SDP Relaxation determin-
istically. The SBMs of interest are all significantly more
complex than the symmetric SBMs, and differ substantially
from each other. Each SBM requires a new design of C-
concentration, with little common analysis among them.

We summarize the threshold in Table 1. Finally, we de-
sign the first polynomial-time algorithms for community
detection for SBMs with edge-DP for arbitrary small pri-
vacy parameter ϵ, matching the exact recovery threshold in
non-private settings when ϵ → ∞; none of the prior meth-
ods provide these guarantees.

Our results advance the boundaries of recoverability with
privacy on multiple variants of SBM. Our focus here is on
the theoretical foundations of the problem. We maintain a
full, updated version of this work at (Nguyen & Vullikanti,
2024).

1.2. Related work

(Mohamed et al., 2022) are the first to derive rigorous
bounds of exact recovery for SBMs under the edge-DP
model. They proposed several approaches, notably apply-
ing the Stability mechanism on MLE and SDP estimator
to achieve exact recovery in the symmetric settings with
arbitrary small ϵ in (ϵ, δ)-DP, with exponential and quasi-
polynomial time, respectively. Additionally, their proposed
methods can achieve exact recovery in polynomial time but
with the cost of ϵ = Ω(log n), or in pure-DP with the cost
of exponential time. Their best recovery threshold has the
bound

√
a−
√
b proportional to 1/

√
ϵ, and matches the non-

private setting when ϵ → ∞. (Seif et al., 2023) improved
the computational complexity of (Mohamed et al., 2022) by
using i.i.d. vertex sampling with probability ζ and perform-
ing the Stability mechanisms on the sampled subgraph. Af-
ter using private voting via the Laplace mechanism to clas-
sify unsampled nodes, they showed that exact recovery is
achieved for both sampled and unsampled nodes, with the
recovery thresholds increased by a factor of 1/

√
ζ. Their

asymptotic running times remain unchanged, being expo-
nential and quasi-polynomial for the MLE- and SDP-based
mechanisms, respectively. (Chen et al., 2023) are the first
to achieve exact recovery in polynomial time with any con-
stant ϵ. Their method relies on transforming the commu-
nity detection problem into an optimization problem. They
proved that once the optimization is strongly convex, the
sensitivity of its solution is bounded, hence adding noises
by the Gaussian mechanism provides privacy. This method
achieves exact recovery in the BSSBM with the threshold

being off from the non-private setting’s threshold by some
constant, and the bound

√
a−
√
b being proportional to 1/ϵ

(see Table 1). (Hehir et al., 2021), (Guo et al., 2023), (Ji
et al., 2019) studied the community detection in SBMs un-
der DP, but did not focus on the exact recovery questions.

2. Preliminaries
Stochastic Block Models. The stochastic block model
(SBM) is a family of random graph models in which a set
of vertices |V | = n is partitioned into r clusters (commu-
nities): C1, . . . , Cr plus some outliers that do not belong to
any cluster. In binary forms (r = 2), the clusters are repre-
sented by a vector σ∗ ∈ {±1}n where σ∗

i = 1 if vertex i
belongs to the first cluster and σ∗

i = −1 otherwise. When
r > 2, clusters are represented by r binary indicator vectors
ξ∗1 , . . . , ξ

∗
r ∈ {0, 1}n where ξ∗k(i) = 1 if vertex i belongs

to the cluster kth and ξ∗k(i) = 0 otherwise. Connections
between vertices are generated independently with proba-
bility p if the endpoints are in the same cluster and with
probability q in other cases to form a set of edges E. In this
paper, we focus on the dense regime, where p = a log n/n
and q = b log n/n for some constants a ≥ b > 0, of the
following three variants of SBMs:

1. Binary Asymmetric (BASBM): An SBM with r = 2 in
which the first cluster contains ⌊nρ⌋ and the second
one contains ⌈n(1 − ρ)⌉ vertices for some constant
ρ ∈ [0, 0.5].

2. Binary Censored (BCSBM): An SBM with r = 2 and
p = q. In other words, edges are generated by an
Erdos-Renyi model G(n, p). Each edge (i, j) has la-
bel Lij ∈ {±1} independently drawn from the distri-
bution: PLij = (1− ξ)1Lij=σ∗

i σ
∗
j
+ ξ1Lij=−σ∗

i σ
∗
j
.

3. General Structure (GSSBM): An SBM with r > 2,
where the kth cluster Ck has size Kk = ρkn and ρ1 ≥
. . . ≥ ρr > 0; and n −

∑
k∈[r] Kk outliers. We use

k = 0 (e.g., in C0,K0) to refer to the outliers, but the
edges among them are not considered intra-cluster.

Exact recovery. Given the input graph G = (V,E) as
described above and an algorithmA, exact recovery means
that A outputs the ground-truth cluster vector σ∗ up to a
permutation w.h.p., i.e., with probability tending to 1 when
n goes to infinity: Pr[A(G) ̸= ±σ∗] = o(1). For r > 2,
we often use the cluster matrix: Pr[A(G) ̸= Z∗] = o(1),
where Z∗ =

∑
k∈[r] ξ

∗
k(ξ

∗
k)

T .

Exact recovery is not always possible, for example, in
the sparse regime p, q = Ω(1/n). In the symmetric
SBM, exact recovery is possible in the dense regime if
and only

√
a −

√
b ≥

√
r. For Binary Asymmetric

SBM, the threshold for exact recovery is when a+b
2 −
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Algorithm SBM Model Recovery threshold Running time
Non-private SDP Binary Symmetric

√
a−
√
b ≥
√
2 O(poly(n))

MLE-Stability(1) Binary Symmetric
√
a−
√
b ≥
√
2
√

1 + 3/(2ϵ) O(exp(n))

SDP-Stability(1) Binary Symmetric
√
a−
√
b ≥
√
2
√

2 + 3/(2ϵ) nO(log n)

RR + SDP(1) Binary Symmetric ϵ = Ω(log n),
√
a−
√
b >
√
2×

√
eϵ+1√
eϵ−1

+ 1√
eϵ−1

O(poly(n))

(Chen et al., 2023) Binary Symmetric
√
a−
√
b ≥ 16, a− b ≥ 5002

ϵ2 + 64
ϵ

(4)
O(poly(n))

(Seif et al., 2023) (MLE) Binary Symmetric
√
a−
√
b ≥

√
2/ζ
√
1 + 3/(2ϵ)Θ(log (a/b)) O(exp(n))

(Seif et al., 2023) (SDP) Binary Symmetric
√
a−
√
b ≥

√
2/ζ
√
1 + 3/(ϵ)Θ(log (a/b))

(5)
nO(log n)

MSDP
Stbl FAST (Ours) Binary Symmetric(2)

√
a−
√
b ≥
√
2
√

1 + 2/ϵ (Cor. 1) O(poly(n))
√
a−

√
b(1 + log a

b ) >
√

c log a
b /ϵ

(6)

Binary Asymmetric Theorem 1 O(poly(n))
MSDP

Stbl FAST (Ours) Binary Censored Theorem 2 O(poly(n))(3)

General Structure Theorem 3 O(poly(n))(3)

Table 1. Summary of the algorithms; SBM variants in the dense regime p = a log n/n, q = b log n/n; recovery thresholds on a, b and
ϵ; time-complexity; at δ = n−2. For ϵ-DP, both (Mohamed et al., 2022; Chen et al., 2023) achieve exact recovery in exponential time.
(1) Algorithms of (Mohamed et al., 2022). (2) The threshold derives from our BASBM with ρ = 1/2 (Corollary 1). (3) for Binary
Censored and General Structure, MSDP

Stbl FAST takes O(poly(n)) if parameters a, b and ξ are known by the algorithms, otherwise we use
MSDP

Stbl that takes nO(logn). (4) is loosely equivalent to
√
a −

√
b ≥ 500/ϵ + 8/

√
ϵ. (5)ζ denotes vertex sampling probability. (6)

when ϵ → ∞, this condition is roughly equivalent to a > b.

γ + (1−2ρ)τ
2 log ρ(γ+(1−2ρ)τ)

(1−ρ)(γ−(1−2ρ)τ) > 1, where τ = (a −
b)/(log a− log b) and γ =

√
(1− 2ρ)2τ2 + 4ρ(1− ρ)ab.

In the case of the Binary Censored model, the threshold is
a(
√
1− ξ −

√
ξ)2 > 1. The condition for exact recovery

in the General Structure is stated in (Hajek et al., 2016b).

Privacy model. We consider the exact recovery problem
under the edge-privacy model (Karwa et al., 2011). A ran-
domized algorithm A is (ϵ, δ)-differentially private (DP) if
for any pair of neighbor graphs that differ by exact one edge
(denoted as G ∼ G′), Pr[A(G) ∈ S] ≤ eϵ Pr[A(G′) ∈
S] + δ for any S ⊆ Range(A).

Stability mechanism. Given a function f , an input graph
G is called c-stable if ∀G′ : dist(G,G′) ≤ c, we have
f(G) = f(G′), where dist denotes the Hamming distance.
A graph is unstable if it is 0-stable. The distance to insta-
bility of input G on f , denoted by df (G) is the shortest
distance to reach to an unstable graph G′ from G. The
f -based Stability mechanism, as defined in Algorithm 1,
is (ϵ, δ)-DP (Dwork et al., 2014; Mohamed et al., 2022)
(The formal statement and proof are presented in Theo-
rem 5). It first calculate G’s private distance to instability,
by adding a Laplacian noise with magnitude 1/ϵ (Lap(b)
denotes the Laplace distribution with PDF Lap(x|b) =
1/(2b) exp(−|x|/b)), as the distance to instability always
have sensitivity of 1. Line 5 of the algorithm returns an un-
defined output (⊥) which keeps the privacy analysis sim-
ple, but in practice can be replaced by returning a random
output.

Utility of Stability mechanism. The utility of the Stabil-

Algorithm 1Mf
Stbl(G): Stability Mechanism

1: d̃f (G)← df (G) + Lap(1/ϵ)
2: if d̃f (G) > log 1/δ

ϵ then
3: Output f(G)
4: else
5: Output ⊥
6: end if

ity mechanism dictates its ability to achieve exact recov-
ery. Let f be any community detection algorithm that out-
puts the communities given an input G. Lemma 1 states
that with appropriate selections of δ, if an input graph G
is O(log n)-stable under f , then w.h.p. (with probability at
least 1− n−Ω(1)), the mechanism returns f(G). We exten-
sively utilize this property in our analyses. Hereafter, for
simplicity, we will refer to O(log n)-stable (or distance up
to O(log n)) as log n-stable (or distance up to log n).

Lemma 1. (Full proof in Lemma 6) The f -based Stabil-
ity mechanism with δ = n−c has Pr[Mf (G) ̸= f(G)] ≤
n−k1 +n−k2 , if a graph G is c+k1

ϵ log n-stable under func-
tion f with probability at least 1 − n−k2 . When k1, k2 =
Ω(1), Pr[Mf

Stbl ̸= f(G)] ≤ n−Ω(1).

Problem statement. Given an input graph G = (E, V ),
with |V | = n, assumed to generated by an SBM with a
fixed but unknown cluster vector σ∗ (or community matrix
Y ∗ in case of GSSBM), design an algorithm A such that:
(1) Pr[A(G) ̸= ±σ∗] = o(1) (exact recovery property) and
(2) A is (ϵ, δ)-DP.
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3. Exact Recovery under Differential Privacy
In non-private settings, using Semidefinite programming
(SDP) to estimate the clusters is an established method for
community detection and exact recovery. We apply the
SDP estimator with the Stability mechanism to design our
algorithms for differentially private exact recovery.

In this Section, we will present an inefficient algorithm by
a direct application of the Stability mechanism to output a
private SDP estimator with privacy. We show in this section
a high-level overview of our analyses by introducing the
generic conditions and analysis routines to guarantee exact
recovery for all three targeted SBMs above. In Section 4,
we will present the custom-built analyses for each of the
three models to fulfill the proof. Finally, in Section 5, we
will show how to design a novel polynomial-time algorithm
that still retains all privacy and utility guarantees. Due to
space limits, we leave the complete proofs in the Appendix.

There are two main steps in designing the algorithms. The
first step is to define the SDP relaxation of the SBMs based
on the input graph’s adjacency matrix A. The second step
is to treat the optimal solution of the SDP as a function
(denoted as SDP (G)) and apply it in the role of f in Al-
gorithm 1. Here is the SDP for the BASBM model:

max
σ

∑
ij

Aijσiσj (1)

s.t. σi ∈ {±1}, i ∈ [n]

oT1 = n(2ρ− 1)

ŶSDP =arg maxY ⟨A, Y ⟩ (2)
s.t. Y ≽ 0

Yii = 1, i ∈ [n]

⟨J, Y ⟩ = (n(2ρ− 1))2

Let σ be our estimator vector with σi = 1 if i is in the first
cluster and σi = −1 otherwise. The optimization problem
(1) maximizes the differences between intra-cluster edges
and inter-cluster edges while fixing the size of the two clus-
ters (the last constraint), namely Maximum Likelihood Es-
timator (MLE). Solving this is NP-hard. We relax the prob-
lem into the SDP optimization (2) as follows: let Y = σσT ,
σ = ±1 will be transformed to Yii = 1, and the size con-
straint will be equivalent to ⟨J, Y ⟩ = (n(2ρ−1))2. All fea-
sible matrices are rank-one positive semi-definite, which is
then relaxed to Y ≽ 0. Depending on the unique specifica-
tions of each SBM, their equivalent SDPs are vastly differ-
ent. Further details are presented in (Hajek et al., 2016b).

Applying the Stability mechanism. After defining the
SDP (and the function SDP (G), which denotes the op-
timal solution), we can directly apply it to the Stability
mechanism by substituting f(G) by SDP (G) to form an
SDP -based Stability mechanism. We note that for any
function f , the Mf

Stbl is (ϵ, δ)-DP. Theorem 5 formalizes
the privacy analysis of the mechanism. Exact recovery re-
quires extensive analysis of SDP under the effect of the
mechanism. To achieve exact recovery, SDP (G) must

be log n-stable w.h.p., due to Lemma 1. Though (Mo-
hamed et al., 2022) shows the analysis for the symmetric
SBMs, and it cannot be extended easily to cover any of the
three models above, due to their different SDP formulas, as
well as different criteria of the certificates of the optimality
of the SDPs. We next present the generic routine, which
consists of the three main steps below, to prove the log n-
stability property for a generic SBM, and then provide a
specific procedure for each of them in Section 4.

Generic analysis of logn-stability of SDP (G) is cen-
tered around the concept of C-concentration, parameterized
by a tuple of constants C. It is a set of special conditions
constructed from the specifications of the assumed SBM.
For example, ∥A − E[A]∥ ≤ c

√
log n is a condition pa-

rameterized by a constant c, where expected value E[A] of
the adjacency matrix A is dictated by the SBM. A graph
G is called C-concentrated when it satisfies all conditions
under C. Each SBM, and its equivalent SDP, has a distinct
C-concentration. To prove that SDP (G) is log n-stable,
we have to complete the following steps:

Step 1. C-concentration w.h.p. Over the randomness of
the generation process of an SBM, we prove that a random
graph G is C-concentrated w.h.p.. It often requires each
condition being satisfied w.h.p. and taking union bound on
all conditions. For example, we prove that the condition
∥A−E[A]∥ ≤ c

√
log n be satisfied w.h.p. for a graph gen-

erated by the SBM. This step also sets the restrictions on
the constants C, e.g., c in the above condition must be a
positive constant, which will determine the thresholds for
the exact recovery. It is formalized by the following propo-
sition:

Proposition 1. Given graph G generated by an SBM
of specific settings and its respective C-concentration
conditions, there exists some tuples of constants C =
{c1, c2, . . .} such that G is C-concentrated with probability
at least 1− n−Ω(1).

Step 2. C-concentration persists under up to logn edges
modifying. By proving the following proposition, we show
that modifying log n edges of a C-concentrated graph G
does not destroy its concentration properties (up to a new
tuple C′ as long as C′ satisfies the restriction in Step 1).
For example, with the condition ∥A − E[A]∥ ≤ c

√
log n,

modifying up to log n edges of the input graph G flips at
most 2 log n bits of A (due to the symmetry of A). For the
condition to persist, we need a new constant c′ = c + 2.
Since c′ > 0, it is a valid constant of C.

Proposition 2. If G is C-concentrated then for every graph
G′ : d(G,G′) < c log n, i.e., G′ can be constructed
by flipping at most c log n connections of G, G′ is C′-
concentrated, where C′ is a valid tuple of constants depend-
ing only on C, c, and the SBM’s constant parameters.
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Step 3. C-concentration implies SDP optimality at the
ground-truth. In this step, we will construct a (determin-
istic) dual certificate for the SDP Relaxation using the C-
concentration’s conditions. Once we do that, we can con-
firm that the ground-truth cluster matrix (Y ∗ or Z∗) is the
unique optimal solution of the SDP Relaxation. In other
words, when C-concentration holds, SDP (G) always out-
puts the ground-truth clusters. Lemma 2 states the cer-
tificates for the BASBM, i.e., the ground-truth community
matrix Y ∗ is the unique and optimal solution of the SDP
given appropriate D∗ and S∗. (Hajek et al., 2016b) shows
that D∗ and S∗ exist w.h.p. for the non-private setting. In
our design, we show that from C-concentration’s conditions
(such as ∥A−E[A]∥ ≤ c

√
log n), we can always, i.e., with

probability 1, construct D∗ and S∗ that satisfies Lemma 2.
Applying the lemma, we show that C-concentration implies
that the SDP has the optimal solution at the exact ground-
truth.
Lemma 2. (Lemma 3 of (Hajek et al., 2016b)) Suppose
there exist D∗ = diag{d∗i } and λ∗ ∈ R such that S∗ =
D∗−A+λ∗J satisfies S∗ ⋟ 0, λ2(S

∗) > 0 and S∗σ∗ = 0.
Then Y ∗ is the unique solution of the program SDP (G).
Proposition 3. If G is C-concentrated under an SBM, then
SDP (G) = Y ∗(or Z∗), i.e, the optimal solution SDP (G)
is the ground-truth cluster matrix Y ∗ (or Z∗).

Exact recovery. Step 2 & 3 guarantee that when an in-
put graph G is C-concentrated under an SBM with specific
settings, the function SDP (G) is log n-stable. Since G
is C-concentrated, SDP (G) outputs the ground-truth Y ∗,
or SDP (G) = Y ∗, by Proposition 3. Any graph G′ cre-
ated by flipping up to log n edges of G is C′-concentrated,
by Proposition 2. Now, applying Proposition 3 for G′, we
have SDP (G) = SDP (G′) = Y ∗. In other words, G is
log n-stable under the function SDP .

Finally, Step 1 shows that C-concentration happens w.h.p.
for an arbitrary graph generated by the SBM. In other
words, if G is generated by an SBM with appropriate
parameters, G is log n-stable under the function SDP
w.h.p.. Applying Lemma 1, substituting f by SDP ,
Pr[MSDP

Stbl (G) ̸= Y ∗(or Z∗)] ≤ n−Ω(1), or the ground-
truth clusters are recovered w.h.p..

4. Stability analyses for SBMs
In this Section, we develop the specific analysis for each of
the three SBMs based on the generic routine in Section 3.

4.1. Binary Asymmetric

The SDP Relaxation of the Binary Asymmetric model is
shown in Section 3. Recall that in BASBM, two clusters
have size ρn and (1 − ρ)n, p = a log n/n, b = b log n/n.
We define the C-concentration as follows:

Definition 1. G is called C = (c1, c2, c3, c4)-concentrated,
in which ci > 0, if G satisfies all 4 conditions:

• ∥A− E[A]∥2 ≤ c1
√
log n

• x̌⊤D∗x̌+ J (x̌) > c2 log n

• ∥(D∗ − E[D∗])x̌∥2 ≤ c3
√
log n

• d∗i ≥ c4 log n for every i ∈ [n];

in which τ = a−b
log a−log b , λ∗ = τ log n/n, d∗ ∈

Rn : d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j − λ∗(2K − n)σ∗

i , D∗ =
diag{d∗}, I is the identity matrix, J is the all-one ma-
trix, J (x) =

(
λ∗ − p+q

2

)
x⊤Jx, x̌ = argmaxx x

⊤Jx

subject to ∥x∥2 = 1 and ⟨x, σ∗⟩ = 0, h̃(x) =
aρ + b(1 − ρ) −

√
(τ(1− 2ρ)− x)2 + 4ρ(1− ρ)ab +

τ(1−2ρ)−x
2 log ρb

(1−ρ)a .

Assumptions of the parameters. These assumptions will
be used in our analyses to derive the conditions in which
exact recovery under DP is feasible.

The exists a constant c > 0 that for h̃(x) defined above:

h̃(c) = 1 + Ω(1) (3)

Lemma 3. (Complete proof in Lemma 14) A graph G gen-
erated by a Binary Asymmetric SBM for some constant
ρ ∈ [0, 0.5] and with p = a logn

n and q = b logn
n , there

exists some tuples of constants C that G is C-concentrated
with probability at least 1− n−Ω(1).

Proof sketch. The adjacency matrix A is a random ma-
trix where each cell is drawn i.i.d with probability of be-
ing 1 is log n/n. The first condition follows directly from
Lemma 7, saying with these properties, A is usually not far
from its expectation E[A]. The second and third conditions
are highly complex, and we have to decompose them into
sub-components for further analysis. Notice that D∗, by its
definition, is a random matrix computed from A. Therefore
we can treat x̌TD∗x̌ and ∥(D∗−E[D∗])x̌∥ as functions that
take independent variables as input, and apply Talagrand
inequality (Lemma 8) that says the output of 1-Lipschitz
convex functions is not far from its expected values. They
are then transformed to expressions of log n or

√
log n as

we see in the r.h.s. of the conditions. With that, the remain-
ing things to do is to prove the functions of interest are (1)
convex and (2) Liptschitz continuous. The fourth condi-
tion involves d∗i , or more specifically,

∑
j Aijσ

∗
i σ

∗
j . This

quantity is equal to the difference between two Binomial
distributions with different numbers of trials and probabili-
ties of success, and can be analyzed by Lemma 9. The final
detail of the proof is the tail bound of Lemma 9 refers to
the assumption in Equation 3, so that the tail probability is
set to less than n−1−Ω(1) for each d∗i .
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Lemma 4. (Complete proof in Lemma 15) If G is C =
(c1, c2, c3, c4)-concentrated then for every graph G′ :
d(G,G′) < c

ϵ log n, i.e., G′ can be constructed by flip-
ping at most c

ϵ log n connections of G, G′ is C′ =

(c′1, c
′
2, c

′
3, c

′
4)-concentrated, where c′1 = c1+

√
2c/ϵ, c′2 =

c2 − c/ϵ, c′3 = c3 +
√

2c(1− ρ)/ϵρ, c′4 = c4 − c/ϵ.

Proof sketch. The general idea is to construct worst-case
scenarios of quantities in the l.h.s. of the conditions when
adding/removing log n edges and edit C accordingly such
that all four conditions still hold for the new graph. For
example, we construct the adjacency matrix A′ obtained
by modifying log n entries of A. Assume E[A] = E[A′]
because they are assumed to be generated by the same
SBM, we can apply the triangle inequality property of ℓ-
norm to prove that the l.h.s. will be increased by at most
Θ
√
log n. We then adjust c′ by the same constant to com-

plete the proof for the first condition. For the second
condition, notice that D∗ will change by edge modifying.
Let ∆ = D′∗ − D∗, with D′∗ being the same quantity
as D∗ but in G′. We can prove that ∆ is also diago-
nal, with the sum of its entries being at most Θ(log n),
and its largest eigenvalue is Θ(log n). Then the differ-
ence after modifying log n edges is reduced to the quan-
tity x̌T∆x̌ ≤ λmax(∆)∥x̌∥22 ≤ Θ(log n), which means
we only need to alter c2 by some small constant for the
condition to persist. For the third condition, we reduce the
change in the l.h.s. of the condition by triangle inequality to
∥(D′∗−D∗)x̌∥. Expand this quantity by expanding D∗ and
D′∗ by their definitions to expressions of Aij and A′

ij , we
can reduce it to the F -norm of A−A′, which is no greater
than Θ(log n)). Since the r.h.s. of the third condition is also
Θ(
√
log n), we only need to change c3 by some small con-

stant for it to hold. For the fourth condition, for each i, the
difference quantity is bounded by

∑
j(A

′
ij−Aij)σ

∗
i σ

∗
j . Be-

cause A and A′ differ by at most Θ(log n) entries, it is clear
that changing the constant c4 a bit will cover the changes.

Lemma 5. (Complete proof in Lemma 17) If G is C-
concentrated, then SDP (G) = Y ∗, i.e., the SDP’s optimal
solution is the ground-truth cluster matrix Y ∗ = σ∗σ∗T .

Proof sketch. We will construct a (deterministic) dual cer-
tificate by the conditions of C-concentration. Lemma 16
states that SDP (G) = Y ∗, if we can construct a matrix

S∗ def
= D∗−A+λ∗J satisfies (1) S∗ ≽ 0, (2) λ2(S

∗) > 0,
and (3) S∗σ∗ = 0. The condition (3) is easy to verify by
expanding the definition of S∗. Because of this, proving
infx⊥σ∗,∥x∥=1 x

TS∗x > 0 is sufficient to satisfy all re-
maining conditions (1) and (2), since all feasible x plus
σ∗ will include a basis for the whole space, which means
∀y : yTS∗y ≥ 0 (S∗ ⋟ 0) and the solution set of S∗y = 0
has only 1 dimension (λ2(S

∗) > 0).

To prove xTS∗x > 0, we have to utilize all four conditions

of C-concentration. First we expand xTS∗x = xTD∗x −
xTAx + xTλ∗Jx. Adding xTE[A]x − xTE[A]x to the
r.h.s. and grouping xTAx− xTE[A]x, we can use the first
condition to bound this quantity by c1

√
log n. We next

expand the remaining E[A] = p−q
2 Y ∗ + p+q

2 J − pI , and
reduce the equation to xTS∗x ≥ p−c1

√
log n+xTD∗x+

(λ∗ − p+q
2 )xTJx.

Let t(x) = xTD∗x + (λ∗ − p+q
2 )xTJx. We define E =

span(x̌, σ∗). Any y : y ⊥ σ∗, ∥y∥2 = 1 can be represented
as y = βx̌ +

√
1− β2x for x ∈ {x : x ⊥ E, ∥x∥2 = 1}

and β ∈ [0, 1]. For all x : x ⊥ σ∗, ∥x∥2 = 1:

infx t(x) = infx,β∈[0,1] t(βx̌+
√
1− β2x):

≥ inf
β∈0,1

(β2(x̌TD∗x̌+ J (x̌))

+ inf
x,β∈[0,1]

(2β
√
1− β2xTD∗x̌+ (1− β2)xTD∗x)

≥ inf
β∈0,1

(β2(x̌TD∗x̌+ J (x̌))

+ (1− β2)c4 log n)− c3
√
log n

≥1

2
min{c2, c4} log n− c3

√
log n, . (4)

where in the second last inequality, we apply the second
condition, third condition, fourth condition to bound
x̌⊤D∗x̌ + J (x̌), ∥(D∗ − E[D∗])x̌∥2, xTD∗x, respec-
tively. Applying this result to xTS∗x ≥ p − c1

√
log n +

xTD∗x+(λ∗− p+q
2 )xTJx ≥ 1

2 min{c2, c4} log n− (c1+
c3)
√
log n+ p > 0, when n is large enough and the Theo-

rem follows.

Finally, by the arguments in Section 3, we show that
MSDP

Stbl achieves exact recovery as follows:

Theorem 1. (Complete proof in Theorem 6)

Given a graph G generated by a Binary Asymmetric SBM
with two communities sized ρn and (1 − ρ)n for some
constant ρ, and with p = a logn

n and q = b logn
n ,

√
a −√

b(1 + log a
b ) >

√
c log a

b /ϵ, and h̃(c/ϵ) > 1, MSDP
Stbl

with δ = n−c exactly recovers the ground-truth community
σ∗, i.e., Pr[MSDP

Stbl (G) ̸= Y ∗] = n−Ω(1).

Corollary 1. When ρ = 1/2, the condition for ex-
act recovery is

√
a −

√
b ≥

√
2
√
1 + c/ϵ and

√
a −√

b(1 + log a
b ) >

√
c log a

b /ϵ.

4.2. Censored Binary

Privacy model. The adjacency matrix A(G) is defined as
Aij = 0 if there is no edge between i and j. Aij = Lij if
there is an edge generated between i and j. In this section,
we define the neighborhood between two graphs G ∼ G′

if A(G) and A(G′) differ by exactly two entries (due to the
symmetry). This privacy model can protect the existence
(and the non-existence) of an arbitrary edge (i, j), where
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any two neighboring adjacency matrices differ at element
ij (and ji): A(G)ij = 0 (not an edge) and A(G′)ij ̸= 0
(an edge). It can also protect the label of an arbitrary edge
(i, j) whenever (i, j) exists in the input graphs, that any two
neighboring adjacency matrix differ as follows: A(G)ij =
−1 and A(G′)ij = +1.

SDP Relaxation. We reuse the notation and arguments for
the Binary Asymmetric model to form the following opti-
mization problems for the Censored Binary model. Even
though they do not look much different from the BASBM’s
SDP, they have vastly different characteristics, because the
adjacency matrices A, in this case, implies much more
topological information.

max
σ

∑
ij

Aijσiσj (5)

s.t. σi ∈ {±1}, i ∈ [n]

ŶSDP =arg maxY ⟨A, Y ⟩ (6)
s.t. Y ≽ 0

Yii = 1, i ∈ [n]

Assumptions of parameters. Let p = a log n/n for
some fixed constant a (in the random edge generation
model G(n, p)). For the random label model: h(ξ, a) =
a(
√
1− ξ −

√
ξ)2 > 1, or h(ξ, a) = 1 + Ω(1).

Definition 2. G is called C-concentrated if there exists a
tuple C = (c1, c2) such that G satisfies two conditions:

• ∥A−E[A]∥2 ≤ c1
√
log n • d∗i ≥ c2 log n, i ∈ [n]

where d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j for every i ∈ [n].

Lemma 22, 23, and 25 are the analogues of Lemma 3, 4,
and 5 for BASBM. The first condition can be proved w.h.p.
using the same strategy as in BASBM. The second con-
dition, however, cannot be easily adapted. We can trans-
form d∗i =

∑n−1
j=1 Xj , where Xj

i.i.d.∼ p(1 − ξ)β+1 +
pξβ−1 + (1 − p)β0, in which βx is the Dirac delta func-
tion at x. In this case, d∗i cannot be represented by the dif-
ference between two Binomial distributions as in BASBM,
and we have to utilize Chernoff bound: Pr[

∑n
j=1 Xj <

c2 log n] ≤ exp(−nℓ( c2 logn
n )) where the function ℓ(x) is

defined as ℓ(x) = supλ≥0−λx − logE[e−λX ]. We then
solve the supremum at λ∗ and substituting x by c2 log n/n,
and utilizing the assumption h(ξ, a) > 1 to determine the
tail probability, which is bounded by n−1−Ω(1).

Theorem 2. (Complete proof in Theorem 7) Given graph
G generated by a CBSBM as described above where c/ϵ <
a and h(ξ, a) > 1, MSDP

Stbl with δ = n−c exactly recov-
ers the ground-truth community Y ∗, i.e., Pr[MSDP

Stbl (G) ̸=
Y ∗] = n−Ω(1)

4.3. General Structure

SDP Relaxation. Unlike the two other models, we use a
set of indicator vectors ξk to map a vertex to its cluster:
ξk(i) = 1 if i ∈ Ck and ξk(i) = 0 otherwise (ξk refers

to the variables while ξ∗k is the ground-truth). We form the
following optimization problems: the MLE on the left and
the transformed SDP Relaxation on the right.

max
ξ

∑
ij

Aij

∑
k∈[r]

ξk(i)ξk(j)

s.t. ξk ∈ {0, 1}n, k ∈ [r]

ξTk 1 = Kk, k ∈ [r]

ξTk ξk′ = 0, k ̸= k′

(7)

ẐSDP =arg maxY ⟨A,Z⟩
s.t. Z ≽ 0

Zii ≤ 1, i ∈ [n]

Zij ≥ 0, i, j ∈ [n]

⟨I, Z⟩ =
∑
k∈[r]

Ki

⟨J, Z⟩ =
∑
k∈[r]

K2
i (8)

Due to the space limits, we only present the C-
concentration definition for GSSBM and the final exact re-
covery statement and its conditions (Theorem 3) here. We
show the complete analysis in Section E.

Definition 3. G is called C-concentrated if there exists a
tuple of constants C = (c1, c2, c3, c4, c5) such that G satis-
fies these conditions:

• ∥A(G)− E[A(G)]∥ ≤ c1
√
log n

• mini∈[n] si ≥ (b+ 2c2)ρk(i) log n

• maxi∈[n],k:k ̸=k(i) e(i, Ck) ≤ (b + c2)Kk log n/n −
c3 log n

• mini,j:k(i)k(j)[k(i)−k(j)] ̸=0 e(Ck(i), Ck(j)) ≥
Kk(i)Kk(j)q − 2

√
Kk(i)Kk(j)

√
log n− c4 log n

• maxi∈C0
e(i, Ck:k ̸=0) ≥ τ̃Kr

logn
n − c5 log n,

where k(i) is i’s cluster, e(i, Ck) is the number of edges
between a node i and nodes from cluster Ck, e(Ck, Ck′) =∑

i∈Ck
e(i, Ck′), si = e(i, Ck(i)), τ̃ = b+ 2c2.

Theorem 3. (Complete proof in Theorem 8) Let I(x, y) =
x − y log ex

y . Given a graph G generated by a GSSBM as
above, MSDP

Stbl with δ = n−c exactly recovers the ground-
truth community Z∗, i.e., Pr[MSDP

Stbl (G) ̸= Z∗] = n−Ω(1),
if the following conditions are satisfied: I(a, b+ 2c

ϵρmin
) >

1/ρmin; I(b, b+
c
ϵ (

1
ρmin
−1)) > 1/ρmin; I(b, b+

c
ϵ (

2
ρmin
−

1)) > 1/ρmin.

5. Polynomial-time algorithm
In Algorithm 1, calculating dSDP (G) will takes at least
nO(log n) times due to calculating d(G). The main idea is
if we can estimate d(G) faster, we can design a faster al-
gorithm. Observe that when G is C-concentrated, d(G) ≥
c log n/ϵ. We test if the input graph is C-concentrated and
if the graph pass the test, we can set d̂(G) = d(G) ≥
c log n/ϵ and use d̂ instead of d. If G fails the test, we

8
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compute d̂(G) = min(d(G), c log n/ϵ). The main chal-
lenge is that, testing C-concentration requires knowledge
of the SBMs, i.e., p, q and most importantly, σ∗ (or ξ∗k in
r > 2 communities)–the quantities we are trying to output.

In several applications, the edge probabilities p and q (and
a, b respectively) may be known by the algorithms, which
makes the problem easier. When they are unknown, we
need a reliable way to estimate them from the input.

Suppose that we have access to oracles that can provide us
with these quantities. Let ORACLEσ∗ be the one that can
provide us the true value of σ∗ (or ξ∗k when r > 2). Let
ORACLEα

a,b be the one that can provide us the parameters
â, b̂ accurately up to a factor of 1 ± α from the true values
of a, b for a small constant α < 0.001.

We present Algorithm 3 with the unrealistic assumption of
the oracles. We then prove that Algorithm 3 (MStbl ORACLE)
retains the privacy and utility of Algorithm 1. Because
checking the C-concentration can be done in polynomial
time (in terms of n), and w.h.p. we do not invoke d(G), the
Algorithm takes polynomial time w.h.p.. After we confirm
that MStbl ORACLE has all the properties we need, we re-
place the oracles by realistic alternatives that we calculate
from the input graph G. We then prove that Algorithm 2
that w.h.p. is the same as Algorithm 3 and inherits all of its
properties.

Algorithm 2Mf
Stbl FAST(G, C): Fast Stability Mechanism

1: Ŷ ← f(G)
2: σ∗ ← Ŷ
3: (â, b̂)← Algorithm 4(G)
4: Ĉ ← adjust C on α = 0.001 to satisfy Proposition 4
5: Construct Ĉ-concentration using Ĉ, σ∗, â, b̂
6: if G is Ĉ-concentrated then
7: d̂(G)← c log n/ϵ
8: else
9: d̂(G)← min(c log n/ϵ, d(G))

10: end if
11: d̃(G)← d̂(G) + Lap(1/ϵ)
12: if d̃f (G) > log 1/δ

ϵ then
13: Output Ŷ
14: else
15: Output ⊥
16: end if

Proposition 4. In the context of Algorithm 3, if a graph G
is Ĉ-concentrated then it is C-concentrated.

In each SBM setting, the proposition can be easily
verified by checking all conditions of C-concentration.
ORACLEσ∗ guarantees us the true value of σ∗, so the dif-
ferences between C and Ĉ only come from the factor α of
ORACLEα

a,b. We use a tighter tuple of constants Ĉ (com-

pared to C) to balance the fact that â and b̂ may be off by
some factor of 1 ± α. This task can be done by adjusting
each condition by scaling the respective ck to a factor of
1± 2α in which direction makes the condition tighter.

Theorem 4. (Complete proof in Lemma 27, 28, 31)
MStbl FAST (Algorithm 2) is (ϵ, δ)-DP. When Mf

Stbl (Al-
gorithm 1) achieves exact recovery (under some specific
conditions of the SBMs under the view of Lemma 1),
Mf

Stbl FAST also achieves exact recovery under the same
conditions; and takes O(poly(n)) w.h.p..

Proof sketch.MStbl ORACLE differs fromMStbl FAST by ex-
act two steps: (σ∗ ← ORACLEσ∗ line 2) and ((â, b̂) ←
ORACLEα

a,b line 3). We then complete three big steps to
prove the Theorem. First, we prove that ∆d̂ = 1 (the
global sensitivity of d̂) and follows the arguments of Theo-
rem 5, substituting d by d̂ to confirm the privacy guarantee
ofMStbl ORACLE. Second, we utilizes Proposition 4, argu-
ing that Ĉ-concentration implies C-concentration, to show
that any graph G passes the test at line 6 is log n-stable.
Since Ĉ-concentration is a valid concentration, G passes
the test at line 6 w.h.p.. In view of Lemma 1,MStbl ORACLE

achieve exact recovery. Third, we replace the oracles (by
line 2, 3 of Algorithm 2), arguing that using Ŷ is as good
as ORACLEσ∗ w.h.p.. Similarly, the estimator by Algo-
rithm 4 is at least as good as ORACLEα

σ∗ w.h.p. in view
of Lemma 30. We now can confirm that w.h.p.,MStbl FAST

is as good asMStbl ORACLE and complete the proof.

6. Conclusion
Our work studied the community detection problem in
SBMs under differential privacy, focusing on the theoret-
ical boundaries for exact recovery. We show that, in three
variants of SBMs: Binary Asymmetric, Censored Binary,
and General Structure, exact recovery is possible by com-
posing the Stability mechanism and the Semi-definite pro-
gramming estimator. The main challenges lie in the design
and analysis of C-concentration–a key concept that deter-
mines the stability and optimality of the SDP Relaxation.
Our results extend the best theoretical boundaries for exact
recovery in SBMs for symmetric variants. We also propose
the first polynomial time algorithms for SBMs under edge
DP with arbitrary small ϵ that matches the non-private’s re-
covery threshold when ϵ→∞.
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Mathématiques de l’Institut des Hautes Etudes Scien-
tifiques, 81(1):73–205, 1995.

Tao, T. Topics in random matrix theory. Graduate Studies
in Mathematics, 132, 2011.

Wang, P., Zhou, Z., and So, A. M.-C. A nearly-linear time
algorithm for exact community recovery in stochastic
block model. In International Conference on Machine
Learning (ICML), pp. 10126–10135. PMLR, 2020.

Zhou, B., Pei, J., and Luk, W. A brief survey on
anonymization techniques for privacy preserving pub-
lishing of social network data. ACM Sigkdd Explorations
Newsletter, 10(2):12–22, 2008.

11

https://proceedings.mlr.press/v162/mohamed22a.html
https://proceedings.mlr.press/v162/mohamed22a.html
https://arxiv.org/abs/2406.02644
https://arxiv.org/abs/2406.02644


Differentially private exact recovery for stochastic block models

A. Stability Mechanism

Theorem 5. Mf
Stbl is (ϵ, δ)-differentially private

Proof. (Adapted from Lemma 3.2 of (Mohamed et al., 2022) for completeness and consistency)

The proof that the stability based mechanism satisfies (ϵ, δ))- DP follows directly from (Dwork et al., 2014). Given a pair
of neighbor graphs G ∼ G′, d(G) denotes the distance from G to its nearest unstable instance and d(G′) is the distance
from G′ to its nearest unstable instance. Due to the triangle inequality, |d(G) − d(G′)| ≤ 1, hence the sensitivity of d:
∆d = 1. Adding a Laplacian noise of magnitude of 1/ϵ guarantees ϵ-differential privacy for d̃. In order to verify (ϵ, δ)-DP
for the overall mechanism, we consider two scenarios: the first one, when the output of the mechanism is ⊥. In this case,
we have:

Pr[Mf
Stbl(G) =⊥] = Pr

[
d̃(G) ≤ log 1/δ

ϵ

]
(9)

≤ eϵ Pr

[
d̃(G′) ≤ log 1/δ

ϵ

]
(10)

= eϵ Pr[Mf
Stbl(G

′) =⊥]. (11)

where the first inequality follows from the fact that d̃(G) satisfies ϵ-DP. For the second scenario, when the output of the
mechanism f(G), we have to analyze two cases.

The remaining part of the proof, we prove that output f(G) in line 3 satisfies (ϵ, δ)-differential privacy to fulfill the proof
of the theorem. We analyze two cases (1) d(G) = 0 and (2) d(G) > 0.

Case 1. d(G) = 0, we have Pr[d̃(G) > log 1/δ
ϵ ] = Pr[Lap(1/ϵ) > log 1/δ

ϵ ] ≤ e− log 1/δ = δ. For any set of output
S ⊆ (Range(f) ∪ {⊥}), we have

Pr[Mf
Stbl(G) ∈ S] ≤ Pr[Mf

Stbl(G) ∈ (S ∪ {⊥})]

≤ Pr[Mf
Stbl(G) ∈ (S ∩ {⊥})] + Pr[Mf

Stbl(G) ̸=⊥]

≤ Pr[Mf
Stbl(G) ∈ (S ∩ {⊥})] + δ

≤ eϵ Pr[Mf
Stbl(G

′) ∈ (S ∩ {⊥})] + δ

≤ eϵ Pr[Mf
Stbl(G

′) ∈ S] + δ,

where the third inequality is because Pr[Mf
Stbl(G) ̸=⊥] = Pr[d̃(G) > log 1/δ

ϵ ] ≤ δ and the fourth inequality is because
S ∩ {⊥} is (a) ∅ or (b) {⊥}. When (a) happens, Pr[
Mf

Stbl(G) ∈ ∅] = Pr[Mf
Stbl(G

′) ∈ ∅] = 0 and when (b) happens, it follows above proof that Pr[Mf
Stbl(G) =⊥] ≤

eϵ Pr[Mf
Stbl(G

′) =⊥].

Case 2. d(G) > 0. In this case, G is at least 1-stable, which means: σ(G) = σ(G′) = σ, we have:

Pr[Mf
Stbl(G) = σ] = Pr[d̃(G) >

log 1/δ

ϵ
]

≤ eϵ Pr[d̃(G′) >
log 1/δ

ϵ
]

= eϵ Pr[Mf
Stbl(G

′) = σ],

and the Lemma follows.

Lemma 6. (Full version of Lemma 1) Given a function f : G → R, the f -based Stability mechanism with δ = n−t has
Pr[Mf (G) ̸= f(G)] ≤ n−k1 +n−k2 , if a graph G is t+k1

ϵ log n-stable under function f with probability at least 1−n−k2 .
When k1, k2 = Ω(1), Pr[Mf (G) ̸= f(G)] ≤ n−Ω(1).
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Proof. From the definition of the Stability mechanism, Mf (G) does not output f(G) when d̃(G) ≤ log 1/δ
ϵ. . For simplicity,

we denote d̃(G) and d(G) as d̃, d respectively in the following equations. Hence, we have:

Pr[Mf (G) ̸= f(G)] = Pr[d̃ <
log 1/δ

ϵ
] (12)

= Pr[d+ Lap(1/ϵ) <
log 1/δ

ϵ
] (13)

= Pr[Lap(1/ϵ) <
log 1/δ

ϵ
− d] (14)

= Pr[Lap(1/ϵ) <
log 1/δ

ϵ
− d|d ≥ t+ k1

ϵ
log n] Pr[d ≥ t+ k1

ϵ
log n] (15)

+ Pr[Lap(1/ϵ) <
log 1/δ

ϵ
− d|d <

t+ k1
log n] Pr[d <

t+ k1
ϵ

log n] (16)

≤ Pr[Lap(1/ϵ) <
log 1/δ

ϵ
− d|d ≥ t+ k1

ϵ
log n] + Pr[d <

t+ k1
ϵ

log n] (17)

≤ Pr[Lap(1/ϵ) <
log 1/δ

ϵ
− d|d ≥ t+ k1

ϵ
log n] + n−k2 (18)

≤ Pr[Lap(1/ϵ) <
t log n− (t+ k1) log n

ϵ
] + n−k2 (19)

≤ Pr[Lap(1/ϵ) <
−k1 log n

ϵ
] + n−k2 (20)

= Pr[Lap(1/ϵ) <
−k1 log n

ϵ
] + n−k2 (21)

≤ n−k2 + n−k2 , . (22)

and the Lemma follows.

B. Binary Asymmetric SBM (BASBM)
In this section we examine the Binary Asymmetric SBM (referred to as BASBM) where the sizes of the clusters are
defined by a parameter ρ ∈ (0, 1/2). We assume that the first cluster has size K = ρn and the second cluster has size
n−K = (1− ρ)n.

Problem Formulation and Definitions We adapt (Hajek et al., 2016b)’s analyses to formulate the Semi-definite program
to solve the community detection in the BASBM.

Definition 4. We define quantities in our analysis as follows:

• Y = σσT

• Y ∗ = σ∗σ∗T

• τ = a−b
log a−log b

• λ∗ = τ log n/n

• d∗ ∈ Rn : d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j − λ∗(2K − n)σ∗

i

• D∗ = diag{d∗}

• I is the identity matrix

• J is the all-one matrix

• J (x) =
(
λ∗ − p+q

2

)
x⊤Jx

• x̌ = argmaxx x
⊤Jx subject to ∥x∥2 = 1 and ⟨x, σ∗⟩ = 0

13
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• h(α) = aρ+ b(1− ρ)−
√
α2 + 4ρ(1− ρ)ab+ |α|

2 log ρb
(1−ρ)a

• h̃(x) = aρ+ b(1− ρ)−
√
(τ(1− 2ρ)− x)2 + 4ρ(1− ρ)ab+ τ(1−2ρ)−x

2 log ρb
(1−ρ)a

Definition 5. Definition of Concentration.

We assume a graph G is generated by a Binary Symmetric SBM with two communities sized ρn and (1 − ρ)n for some
constant ρ. The link between two endpoints from the same community are generated with probability p = a logn

n and the
link between two endpoints from different communities are generated with probability q = b logn

n .

G is called (c1, c2, c3, c4)-concentrated for some constants ci > 0 if G satisfies all 4 conditions:

• ∥A− E[A]∥2 ≤ c1
√
log n

• x̌⊤D∗x̌+ J (x̌) > c2 log n

• ∥(D∗ − E[D∗])x̌∥2 ≤ c3
√
log n

• d∗i ≥ c4 log n for every i ∈ [n]

Assumptions of the parameters

We have several assumptions of the parameters of the SBM. These assumptions will be used in our analyses to derive the
conditions in which Exact Recovery under Differential Privacy is feasible.

The exists a constant c > 0 such that

h̃(c) > 1 or equivalently, h(c− τ(1− 2ρ)) > 1 (23)

In other words, we can say that:

h̃(c) = 1 + Ω(1) or equivalently, h(c− τ(1− 2ρ)) = 1 + Ω(1) (24)

The Binary Asymmetric SBM can be solve in the non-privacy setting by solving the following SDP relaxation. We denote
SDP (G) as a function taking input graph G and outputting the optimal solution of the SDP relaxation constructed by its
adjacency matrix A(G).

Definition 6. SDP Relaxation of the Binary Asymmetric SBM:

ŶSDP = arg maxY ⟨A, Y ⟩ (25)
s.t. Y ⋟ 0 (26)

Yii = 1, for i ∈ [n] (27)

⟨J, Y ⟩ = (2K − n)2 (28)

Lemma 7. Theorem 5 of (Hajek et al., 2016a). Let A be a symmetric and zero-diagonal random matrix, where the entries
Aij(i < j) are independent and [0, 1]-valued. Assume that E[Aij ] ≤ p, where c0 log n/n ≤ p ≤ 1 − c1 for arbitrary
constants c0, c1 > 0. Then for any c > 0, there exists c′ > 0 such that for any n ≥ 1,Pr[∥A−E[A]∥2 ≤ c′

√
np] ≥ 1−n−c.

Lemma 8. Theorem 2.1.13 of (Tao, 2011) (Originally from (Talagrand, 1995)). Let P > 0, and let X1, . . . , Xn be
independent complex variables with |Xi| ≤ P for all 1 ≤ i ≤ n. Let F : Cn → R be a 1-Lipschitz convex function. Then
for any λ one has

Pr[|F (X)− E[F (X)]| ≥ λP ] ≤ C exp(−cλ2) (29)

for some absolute constants C, c > 0.
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Lemma 9. Lemma 2 of (Hajek et al., 2016b). Suppose a, b > 0, α ∈ R, and ρ1, ρ2 > 0. Let X,R be independent with
X ∼ Binom(m1,

a logn
n ) and R ∼ Binom(m2, b), where m1 = ρ1n+ o(n) and m2 = ρ2n+ o(n) as n→∞. Let k ∈ I

such that k = α log n+ o(log n). If α ≤ aρ1 − bρ2,

Pr[X −R ≤ k] = n−g(ρ1,ρ2,a,b,α)+o(1), (30)

where g(ρ1, ρ2, a, b, alpha) = aρ1 + bρ2 − γ − α
2 log (γ−α)aρ1

(γ+α)bρ2
with γ =

√
α2 + 4ρ1ρ2ab.

Furthermore, for any m1,m2,∈ N, k ∈ I such that k < (m1a−m2b) log n/n,

Pr[X −R ≤ k] ≤ n−g(m1/n,m2/n,a,b,k/ logn) (31)

Lemma 10. A graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1 − ρ)n for some
constant ρ and with p = a logn

n and q = b logn
n , there exists some constant c2 : 0 < c2 < τ − b such that

x̌⊤D∗x̌+ J (x̌) > c2 log n, (32)

with probability at least 1− n−Ω(1).

Proof. The second condition relies on Talagrand’s concentration inequality for Lipschitz convex functions (Lemma 8).
For the context of Lemma 8, set the function F (A) = x̌⊤D∗x̌ where the adjacency matrix A is the argument of the function
F (as D∗ can be represented as a mapping of A). The next step is to prove that F (A) is Lipschitz continuous in A.

We note that x̌⊤D∗x̌ = ⟨A,B⟩ − λ∗(2K − n)
∑n

i=1 x̌
2
iσ

∗
i where Bij = σ∗

i σ
∗
j x̌

2
i , which makes x̌⊤D∗x̌ is Lipchitz

continuous with Lipschitz constant ∥B∥F =
√

(1−ρ)2

ρ + ρ2

1−ρ + o(1)We treat all Aij as X in Lemma 8 with P = 1 (as

0 ≤ Aij ≤ 1). By Lemma 8, for any c there exists some constants C, c′2 and λ = c′2
√
log n that:

Pr[|x̌⊤D∗x̌− E[x̌⊤D∗x̌]| ≥ c′2
√
log n] ≤ C exp(−c log n) (33)

It follows that if we pick any constant c > 0, then with probability at least 1− n−Ω(1), we have:

x̌⊤D∗x̌− E[x̌⊤D∗x̌] > −c′2
√
log n (34)

We now analyze J (x̌). Because x̌⊤Jx̌ = 4K(n−K)/n, we have:

J (x̌) =
(
λ∗ − p+ q

2

)
x̌TJx̌ (35)

=

(
τ − a+ b

2

)
4K(n−K) log n/n2 (36)

= (2τ − a− b)2K(n−K) log n/n2 (37)

= (τ − a)2K(n−K) log n/n2 + (τ − b)2K(n−K) log n/n2 (38)

And then we analyze E[x̌⊤D∗x̌]:

In the first case: σ∗
i = 1:

E[d∗i ]
def
= d̄+ = (K(a− τ) + (n−K)(τ − b)− a) log n/n (39)
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In the second case: σ∗
i = −1:

E[d∗i ]
def
= d̄− = ((n−K)(a− τ) + (K(τ − b)− a) log n/n (40)

Then we have:

E[x̌⊤D∗x̌] = (n−K)d̄+/n+Kd̄−/n (41)

=
(
2K(n−K)(a− τ) + (K2 + (n−K)2)(τ − b)− na

)
log n/n2 (42)

= 2K(n−K)(a− τ) log n/n2 +K2(τ − b) log n/n2 + (n−K)2(τ − b) log n/n2 − a log n/n (43)

.

Compose with the result of equation 38, taking the sum of the two quantities, we have:

E[x̌⊤D∗x̌] + J (x̌) = (τ − b) log n

n2

(
K2 + (n−K)2 + 2K(n−K)

)
− a log n

n
(44)

= (τ − b) log n− a log n

n
(45)

Back to the second condition, composing the results of equations 34, 43, 38, 45, we rewrite the second condition as follows:

x̌⊤D∗x̌+ J (x̌) = x̌⊤D∗x̌− E[x̌⊤D∗x̌] + E[x̌⊤D∗x̌] + J (x̌) (46)

≥ −c′2
√

log n+ (τ − b) log n− a log n

n
(47)

> c2 log n, (48)

for some constants 0 < c2 < τ − b and n large enough. Since equation 34 holds with probability at least 1− n−Ω(1), the
Lemma follows.

Lemma 11. A graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1 − ρ)n for some
constant ρ and with p = a logn

n and q = b logn
n , there exists some tuples of constant c3 such that

∥(D∗ − E[D∗]∥2)x̌ ≤ c3
√

log n, (49)

with probability at least 1− n−Ω(1).

Proof. The third condition can be constructed in a similar way to the second condition. First, we have:

∥(D∗ − E[D∗])x̌∥22 =
∑
i

∑
j

(Aij − E[Aij ])σ
∗
i σ

∗
j x̌− i

2

(50)

=
∑
i

x̌2
iσ

∗
i
2

∑
j

(Aij − E[Aij ])σ
∗
j

2

(51)

=
∑
i

x̌2
i

∑
j

(Aij − E[Aij ])σ
∗
j

2

(52)
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Then we analyze the expectation of ∥(D∗ − E[D∗])x̌∥2:

E[∥(D∗ − E[D∗])x̌∥2] ≤
√
E [∥(D∗ − E[D∗])x̌∥22] (53)

=

√√√√√√E

∑
i

x̌2
i

∑
j

(Aij − E[Aij ])σ∗
j

2
 (54)

=

√√√√√√∑
i

x̌2
iE


∑

j

(Aij − E[Aij ])σ∗
j

2
 (55)

(a)
=

√∑
i

x̌2
i

∑
j

Var(Aij) (56)

≤

√√√√∑
i

x̌2
i

∑
j

a log n

n

(
1− a log n

n

)
(57)

≤
√∑

i

x̌2
i a log n (58)

=

√
a log n

∑
i

x̌2
i (59)

=
√
a log n, (60)

where (a) is because of:

E


∑

j

(Aij − E[Aij ])σ
∗
j

2
 (61)

=

E

∑
j

(Aij − E[Aij ])σ
∗
j

2

+ Var

∑
j

(Aij − E[Aij ])σ
∗
j

 (62)

(b)
=

∑
j

E[(Aij − E[Aij ])]σ
∗
j

2

+
∑
j

Var
(
(Aij − E[Aij ])σ

∗
j

)
(63)

=0 +
∑
j

σ∗
j
2Var(Aij − E[Aij ]) (64)

=
∑
j

Var(Aij), (65)

where (b) is because of linearity of expectations and Aijs are independent.

Next we prove that ∥(D∗ − E[D∗])x̌∥2 is convex and Lipschitz continuous in A with Lipschitz constant bounded by

max
{√

1−ρ
ρ ,
√

ρ
1−ρ

}
. For any A,A′, let D∗, D∗′ be the respectively diagonal matrices, we have:
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∣∣∥(D∗ − E[D∗]x̌)∥2 − ∥(D∗′ − E[D∗′]x̌)∥ 2
∣∣ ≤ ∥(D∗ −D∗′)x̌∥2 (66)

=

√√√√√∑
i

x̌2
i

∑
j

(Aij −A′
ij)σ

∗
j )

2

(67)

≤

√√√√√∑
i

∑
j

(Aij −A′
ij)σ

∗
j

2

max

{√
n−K

nK
,

√
K

n(n−K)

}
(68)

≤ ∥A−A′∥F max

{√
1− ρ

ρ
,

√
ρ

1− ρ

}
(69)

Then we apply Lemma 8, with P = 1, for any c > 0 there exists C, c′3 > 0 and λ = c′3
√
log n such that:

Pr[|∥(D∗ − E[D∗])x̌∥2 − E[∥(D∗ − E[D∗])x̌∥2]| ≥ c′3
√

log n] ≤ C exp(c log n) (70)

Choosing a constant c > 0, with probability at least 1− n−Ω(1), we have:

∥(D∗ − E[D∗])x̌∥2 − E[∥(D∗ − E[D∗])x̌∥2 < c′3
√

log n (71)

As before we prove that E[∥(D∗ − E[D∗])x̌∥2 ≤
√
a log n, setting c3 = c′3 +

√
a, we have that with probability at least

1− n−Ω(1):

∥(D∗ − E[D∗])x̌∥2 ≤ c3
√
log n (72)

Lemma 12. Let function h and g be defined as above, with fixed values of τ, ρ, a, b and some constants c4, we have:

h(−τ(1− 2ρ) + c4) < g(ρ, 1− ρ, a, b,−τ(1− 2ρ) + c4) ,and (73)
h(τ(1− 2ρ) + c4) < g(1− ρ, ρ, a, b,−τ(1− 2ρ) + c4). (74)

Furthermore, for function h(α), if |α1| < |α2| then h(α1) > h(α2).

Proof. We prove the first inequality as follows: setting γ =
√
(−τ(1− 2ρ) + c4)2 + 4ρ(1− ρ)ab the definition of g, if

c4 < τ(1− 2ρ) we have:
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g(ρ, 1− ρ, a, b,−τ(1− 2/ρ) + c4) (75)

=aρ+ b(1− ρ)− γ − −τ(1− 2ρ) + c4
2

log
(γ − (−τ(1− 2ρ) + c4))aρ

(γ + (−τ(1− 2ρ) + c4))b(1− ρ)
(76)

=aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

(γ + (τ(1− 2ρ)− c4))aρ

(γ − (τ(1− 2ρ)− c4))b(1− ρ)
(77)

≥aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

aρ

b(1− ρ)
, since τ(1− 2ρ)− c4 ≥ 0 (78)

≥aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

bρ

a(1− ρ)
, since a > b (79)

=aρ+ b(1− ρ)−
√
(τ(1− 2ρ)− c4)2 + 4ρ(1− ρ)ab+

τ(1− 2ρ)− c4
2

log
bρ

a(1− ρ)
(80)

=h(−τ(1− 2ρ) + c4). (81)

In case c4 > τ(1− 2ρ), we have:

g(ρ, 1− ρ, a, b,−τ(1− 2/ρ) + c4) (82)

=aρ+ b(1− ρ)− γ − −τ(1− 2ρ) + c4
2

log
(γ − (−τ(1− 2ρ) + c4))aρ

(γ + (−τ(1− 2ρ) + c4))b(1− ρ)
(83)

=aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

(γ + (τ(1− 2ρ)− c4))aρ

(γ − (τ(1− 2ρ)− c4))b(1− ρ)
(84)

≥aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

aρ

b(1− ρ)
, since τ(1− 2ρ)− c4 ≤ 0 (85)

≥aρ+ b(1− ρ)− γ +
τ(1− 2ρ)− c4

2
log

a(1− ρ)

bρ
, since 1− ρ > ρ (86)

=aρ+ b(1− ρ)− γ +
c4 − τ(1− 2ρ)

2
log

bρ

a(1− ρ)
(87)

=aρ+ b(1− ρ)−
√
(τ(1− 2ρ)− c4)2 + 4ρ(1− ρ)ab+

c4 − τ(1− 2ρ)

2
log

bρ

a(1− ρ)
(88)

=h(−τ(1− 2ρ) + c4). (89)

Similarly, the second inequality can be proved as follows: setting γ =
√
(τ(1− 2ρ) + c4)2 + 4ρ(1− ρ)ab (note that this

γ is different from the one in the first inequality above), we have:

g(1− ρ, ρ, a, b, τ (1− 2/ρ) + c4) (90)

=a(1− ρ) + bρ− γ − τ(1− 2ρ) + c4
2

log
(γ − (τ(1− 2ρ) + c4))a(1− ρ)

(γ + (τ(1− 2ρ) + c4))bρ
(91)

=a(1− ρ) + bρ− γ +
τ(1− 2ρ) + c4

2
log

(γ + (τ(1− 2ρ) + c4))bρ

(γ − (τ(1− 2ρ) + c4))a(1− ρ)
(92)

≥a(1− ρ) + bρ− γ +
τ(1− 2ρ) + c4

2
log

bρ

a(1− ρ)
, since τ(1− 2ρ) + c4 ≥ 0 (93)

≥aρ+ b(1− ρ)− γ +
τ(1− 2ρ) + c4

2
log

bρ

a(1− ρ)
, since a > b and ρ ≤ 1− ρ (94)

=h(τ(1− 2ρ) + c4). (95)
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Finally, for |α1| < |α2|, we have:

h(α1)− h(α2) = −
√
α2
1 + 4ρ(1− ρ)ab+

|α1|
2

log
bρ

a(1− ρ)
+
√
α2
2 + 4ρ(1− ρ)ab− |α2|

2
log

bρ

a(1− ρ)
(96)

> 0 +
log bρ

a(1−ρ)

2
(|α1| − |α2|) (97)

≥ 0, (98)

where the last inequality is because bρ
a(1−ρ) < 1 then log bρ

a(1−ρ) < 0 and |α1| − |α2| < 0.

Lemma 13. A graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1 − ρ)n for some
constant ρ and with p = a logn

n and q = b logn
n , there exists some tuples of constant c4 such that

min
i∈[n]

d∗i ≥ c4 log n, (99)

with probability at least 1− n−Ω(1).

Proof. The fourth condition will be analyzed in two cases: for nodes in the first cluster (σ∗
i = 1) and for nodes in the

second cluster (σ∗
i = −i).

The first case: σ∗
i = 1. We first set two random variables X ∼ Binom(K − 1, a logn

n ) and R ∼ Binom(n−K, b logn
n ).

Setting m1 = K − 1, m2 = n − K, k = −τ(1 − 2ρ) log n + c4 log n, α = −(τ(1 − 2ρ) + c4). Fix a node i in the
first cluster, we have

∑
j Aijσ

∗
i σ

∗
j = X − R. Applying Lemma 9 and selecting some constants c4 > 0) that satisfies

Equation 24, we have:

Pr

∑
j

Aijσ
∗
i σ

∗
j ≤ −τ(1− 2ρ) log n+ c4 log n

 ≤ n−g(ρ,1−ρ,a,b,−τ(1−2ρ)+c4) (100)

(a)

≤ n−h(−τ(1−2ρ)+c4) (101)
(b)
= n−h̃(c4) (102)
(c)

≤ n−1−Ω(1), (103)

where (a) is because of the result Lemma 12 such that h(−τ(1− 2ρ) + c4) ≤ g(ρ, 1− ρ, a, b,−τ(1− 2ρ) + c4), and (b)
is because of the definitions of h and h̃, and (c) is the assumption at equation (24).

With the assumption that h̃(c4) > 1, applying union bound on all nodes i in the first cluster we have that with probability
at least 1− n−Ω(1):

∑
j

Aijσ
∗
i σ

∗
j > −τ(1− 2ρ) log n+ c4 log n (104)

Recall that d∗i =
∑

j Aijσ
∗
i σ

∗
j − σ∗

i τ(2K − n) log n/n, with σ∗
i = 1, we have:

d∗i =
∑
j

Aijσ
∗
i σ

∗
j + τ(1− 2ρ) log n (105)

> −τ(1− 2ρ) log n+ c4 log n+ τ(1− 2ρ) log n (106)
= c4 log n. (107)
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The second case: σ∗
i = −1. We set two random variables X ∼ Binom(n−K − 1, a logn

n ) and R ∼ Binom(K, b logn
n ).

Setting m1 = n−K−1, m2 = K, k = τ(1−2ρ) log n+ c4 log n, α = τ(1−2ρ)+ c4. Fix a node i in the second cluster,
we have

∑
j Aijσ

∗
i σ

∗
j = X −R. Applying Lemma 9, we have:

Pr

∑
j

Aijσ
∗
i σ

∗
j ≤ τ(1− 2ρ) log n+ c4 log n

 ≤ n−g(1−ρ,ρ,a,b,τ(1−2ρ)+c4) (108)

(a)

≤ n−h(τ(1−2ρ)+c4) (109)
(b)

≤ n−h(−τ(1−2ρ)+c4) (110)
(c)
= n−h̃(c4) (111)
(d)

≤ n−1−Ω(1), (112)

where (a) is because of the result Lemma 12 such that h(τ(1 − 2ρ) + c4) ≤ g(1 − ρ, ρ, a, b, τ (1 − 2ρ) + c4), and (b) is
because of the result of Lemma 12 such that such that h(−τ(1− 2ρ) + c4) ≤ h(τ(1− 2ρ) + c4), and (c) is because of the
definitions of h and h̃, and (d) is the assumption at equation (24).

With the assumption that h̃(c4) > 1, applying union bound on all nodes i in the second cluster we have that with probability
at least 1− n−Ω(1):

∑
j

Aijσ
∗
i σ

∗
j > τ(1− 2ρ) log n+ c4 log n (113)

Recall that d∗i =
∑

j Aijσ
∗
i σ

∗
j − σ∗

i τ(2K − n) log n/n, with σ∗
i = −1, we have:

d∗i =
∑
j

Aijσ
∗
i σ

∗
j − τ(1− 2ρ) log n (114)

> τ(1− 2ρ) log n+ c4 log n− τ(1− 2ρ) log n (115)
= c4 log n. (116)

Composing equations 107 and 116 we have that with probability at least 1− n−Ω(1):

min
i∈[n]

d∗i > c4 log n (117)

Lemma 14. A graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1−ρ)n for some con-
stant ρ and with p = a logn

n and q = b logn
n , there exists some tuples of constants c1, c2, c3, c4 such that G is (c1, c2, c3, c4)-

concentrated with probability at least 1− n−Ω(1).

Proof. In this analysis, we inherit some analyses from Lemma 3 and Theorem 1 of (Hajek et al., 2016b). We use different
bounds on the Second and the Fourth conditions, which are stronger than similar bounds in (Hajek et al., 2016b).

The first condition can be derived directly from (Hajek et al., 2016a)’s Theorem 5. We adapt ((Hajek et al., 2016a),
Theorem 5) as Lemma 7 for the convenience of our analyses. Since each edge of G is generated with probability at least
b log n/n and at most a log n/n, by Lemma 7, with probability at least 1−n−Ω(1), there exists some constant c1 such that:
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∥A− E[A]∥2 ≤ c1

√
n
log n

n
= c1

√
log n (118)

Applying the union bound on the statement above and the results of Lemma 10 (for Second condition), Lemma 11 (Third
condition), and Lemma 13 (Fourth condition), there exists some tuples of constants ci such that G is (c1, c2, c3, c4)-
concentrated with probability at least 1− n−Ω(1).

Lemma 15. If G is (c1, c2, c3, c4)-concentrated then for every graph G′ : d(G,G′) < c
ϵ log n, i.e., G′ can be constructed

by flipping at most c
ϵ log n connections of G, G′ is (c′1, c

′
2, c

′
3, c

′
4)-concentrated, where c′1 = c1+

√
2c/ϵ, c′2 = c2−c/ϵ, c′3 =

c3 +
√
2c(1− ρ)/ϵρ, c′4 = c4 − c/ϵ.

Proof. Given the graph G is (c1, c2, c3, c4)-concentrated, it means that the graph G satisfies all four conditions of the
concentration notation. We prove that all graph G′ that can be constructed by flipping up to c logn

ϵ connections of G will
also satisfy all four conditions of concentration, albeit with slightly different tuples of constants.

The first condition: We follow (Mohamed et al., 2022) to prove that G′ will satisfy the first condition. Let Ā be the
expected adjacency matrix of graphs generated by the SBM. For both G and G′ generated by the same SBM, we have
E[A] = E[A′] = Ā. Also, because G′ can be formed by flipping up to c logn

ϵ connections of G, then ∥A − A′∥F ≤√
2c log n/ϵ. Now consider the ℓ2-norm of the difference between A′ and E[A′]:

∥A′ − E[A′]∥2 = ∥A′ − Ā∥2 (119)
= ∥A′ −A+A− Ā∥2 (120)
≤ ∥A− Ā∥+ ∥A′ −A∥2 (121)

≤ c1
√
log n+ ∥A′ −A∥F (122)

≤ c1
√
log n+

√
2c log n/ϵ (123)

= (c1 +
√

2c/ϵ)
√

log n (124)

= c′1
√
log n. (125)

The second condition: We revisit the second condition: x̌⊤D∗x̌ + J (x̌) > c2 log n holds for the graph G, where
J (x̌) =

(
λ∗ − p+q

2

)
x̌⊤Jx̌. By the definitions of the elements of the second conditions, x̌, λ∗, p, q are all constants that

are determined by the SBM and are not dependent on any instance of graph G and J is a constant matrix. Only the matrix
D∗ is associated with and dependent on each instance of the graph G. Let D∗, D∗′ be the matrices that are associated with
G and G′, we have to prove that: x̌⊤D∗′x̌+ J (x̌) > c′2 log n for the graph G′.

We have that:

x̌⊤D∗′x̌+ J (x̌) =
(
x̌⊤D∗′x̌− x̌⊤D∗x̌

)
+
(
x̌⊤D∗x̌+ J (x̌)

)
(126)

> x̌⊤(D∗′ −D∗)x̌+ c2 log n. (127)

Now we analyze x̌⊤(D∗′−D∗)x̌. Let ∆∗ = D∗′−D∗, we have that ∆∗ is also a diagonal matrix which |∆∗
ii| = |d∗

′
i−d∗i | =

|
∑

j(Aij −A′
ij)σ

∗
i σ

∗
j | ≤

c logn
ϵ , since there are at most c logn

ϵ different entries between Aij and A′
ij for any fixed i. Also,

it is similar to check that |
∑

i ∆
∗
ii| ≤ 2c log n/ϵ. We set ∆ = {∆ : |

∑
i ∆ii| ≤ 2c log n/ϵ, |∆ii| ≤ c log n/ϵ}.

Also, we have:
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x̌⊤(D∗′ −D∗)x̌ ≥ −|x̌⊤(D∗′ −D∗)x̌| (128)

≥ −
∣∣∣∣ max
D∗′′:d(G,G′′)≤c logn/ϵ

x̌⊤(D∗′′ −D∗)x̌

∣∣∣∣ (129)

≥ −
∣∣∣∣max
∆∈∆

x̌⊤∆x̌

∣∣∣∣ (130)

(a)

≥ −
∣∣∣∣max
∆∈∆

λmax(∆)∥x̌∥22
∣∣∣∣ (131)

(b)

≥ −
∣∣∣∣max
∆∈∆

λmax(∆)

∣∣∣∣ (132)

(c)

≥ −c log n

ϵ
, (133)

where

• (a) is because of x̌⊤∆x̌ ≤ λmax(∆)∥x̌∥22 for any symmetric ∆;

• (b) is because of ∥x̌∥ = 1 by its definition;

• and (c) is because of ∆ is a diagonal matrix so max∆ λmax(∆) = max∆ maxi ∆ii ≤ c log n/ϵ. Adding this lower
bound to Equation 127, we have x̌⊤D∗′x̌+ J (x̌) > (c2 − c/ϵ) log n = c′2 log n.

The third condition: We will prove that ∥(D∗′ − E[D∗′)x̌]∥2 ≤ c′3
√
log n.

We first analyze E[D∗′]. By the definition of D∗′, E[D∗′] = diag(E[d∗′]). For every i, we have E[d∗′i] = E[
∑

j Aijσ
∗
i σ

∗
j−

λ∗(2K − n)σ∗
i ]. By the linearity of expectation, we have:

E[d∗′i] =
∑
j

E[A′
ij ]σ

∗
i σ

∗
j − λ∗(2K − n)σ∗

i (134)

=
∑
j

E[Aij ]σ
∗
i σ

∗
j − λ∗(2K − n)σ∗

i (135)

= E[d∗i ], (136)

since we assume that all graphs G and G′ are generated by the same SBM so each entry of their adjacency matrices must
have the same expected value, and all other elements of the equations above are constants that only depend on the SBM’s
parameters. It follows that E[D∗′] = E[D∗].

Applying the property to (D∗′ − E[D∗′):

∥(D∗′ − E[D∗′)x̌]∥2 = ∥(D∗′ −D∗ +D∗ − E[D∗)x̌∥2 (137)

≤ ∥(D∗′ −D∗)x̌∥2 + ∥(D∗ − E[D∗)x̌∥2 (138)

≤ ∥(D∗′ −D∗)x̌∥2 + c3
√

log n (139)

For the quantity ∥(D∗′ −D∗)x̌∥2, using a similar analysis as in Lemma 11, we have;
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∥(D∗′ −D∗)x̌∥2 =

√√√√√∑
i

x̌2
i

∑
j

(Aij −A′
ij)σ

∗
j )

2

(140)

≤

√√√√√∑
i

∑
j

(Aij −A′
ij)σ

∗
j

2

max

{√
n−K

nK
,

√
K

n(n−K)

}
(141)

≤ ∥A−A′∥F max

{√
1− ρ

ρ
,

√
ρ

1− ρ

}
(142)

≤
√

2c log n

ϵ

√
1− ρ

ρ
(143)

=

√
2c(1− ρ)

ϵρ

√
logn. (144)

Substituting it to Equation 139, we have:

∥(D∗′ − E[D∗′)x̌]∥2 ≤

√
2c(1− ρ)

ϵρ

√
logn+ c3

√
log n (145)

≤

(√
2c(1− ρ)

ϵρ
+ c3

)√
log n (146)

= c′3
√
log n (147)

The fourth condition: For any graph G′, we prove that d∗′i ≥ c′4 log n for every i ∈ [n]. By the definition of d∗′, we have
∀i:

d∗′i =
∑
j

A′
ijσ

∗
i σ

∗
j − λ∗(2K − n)σ∗

i (148)

=
∑
j

A′
ijσ

∗
i σ

∗
j −

∑
j

Aijσ
∗
i σ

∗
j +

∑
j

Aijσ
∗
i σ

∗
j − λ∗(2K − n)σ∗

i (149)

=
∑
j

A′
ijσ

∗
i σ

∗
j −

∑
j

Aijσ
∗
i σ

∗
j + d∗i (150)

≥
∑
j

(A′
ij −Aij)σ

∗
i σ

∗
j + c4 log n (151)

(a)

≥ −c log n

ϵ
+ c4 log n (152)

=
(
−c

ϵ
+ c4

)
log n (153)

= c′4 log n, (154)

where (a) is because for each fixed i, Aijs and A′
ijs differ by at most c log n/ϵ entries across all j.

Lemma 16. (Lemma 3 of (Hajek et al., 2016b)) Suppose there exist D∗ = diag{d∗i } and λ∗ ∈ R such that S∗ =
D∗ −A+ λ∗J satisfies S∗ ⋟ 0, λ2(S

∗) > 0 and S∗σ∗ = 0. Then Y ∗ is the unique solution of the program SDP (G).
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Lemma 17. If G is C-concentrated then SDP (G) = Y ∗, i.e, the optimal solution of SDP (G) is the ground truth
community matrix Y ∗ = σ∗σ∗T .

Proof. With D∗ and λ∗ defined as above, we show that when a graph G is C-concentrated, S∗ = D∗ − A+ λ∗J satisfies
Lemma 16’s requirements and the Lemma follows.

We recall that

• τ = a−b
log a−log b

• λ∗ = τ log n/n

• d∗ ∈ Rn : d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j − λ∗(2K − n)σ∗

i

• D∗ = diag{d∗}

For any i, we have σ∗
i σ

∗
i = 1. Therefore, d∗i σ

∗
i =

∑n
j=1 Aijσ

∗
i σ

∗
jσ

∗
i −λ∗(2K−n)σ∗

i σ
∗
i =

∑n
j=1 Aijσ

∗
j−λ∗(2K−n). We

have D∗σ∗ = Aσ∗−λ∗(2K−n)1. It follows that S∗σ∗ = D∗σ∗−Aσ∗+λ∗Jσ∗ = Aσ∗−λ∗(2K−n)1−Aσ∗−λ∗Jσ∗ =
0, which satisfies the condition that S∗σ∗ = 0. Because of this, proving infx⊥σ∗,∥x∥=1 x

TS∗x > 0 is sufficient to satisfy
all remaining conditions, since all feasible x plus σ∗ will include a basis for the whole space, which means ∀y : yTS∗y ≥ 0
(S∗ ⋟ 0) and the solution set of S∗y = 0 has only 1 dimension (λ2(S

∗) > 0).

From now, we will show that when a graph G is C-concentrated,

inf
x⊥σ∗,∥x∥=1

xTS∗x > 0 (155)

with probability 1.

Note that E[A] = p−q
2 Y ∗ + p+q

2 J − pI . For any x : x ⊥ σ∗, ∥x∥ = 1:

xTS∗x = xTD∗x− xTAx+ xTλ∗Jx (156)

= xTD∗x− xT (A− E[A])x− xTE[A]x+ xTλ∗Jx (157)

= xTD∗x− xT (A− E[A])x− p− q

2
xTY ∗x− p+ q

2
xTJx+ pxT Ix− λ∗xTJx (158)

= xTD∗x− xT (A− E[A])x− p− q

2
xTσ∗σ∗Tx− p+ q

2
xTJx+ pxT Ix− λ∗xTJx (159)

(a)
= xTD∗x− xT (A− E[A])x+ (λ∗ − p+ q

2
)xTJx+ p∥x∥2 (160)

= xTD∗x− xT (A− E[A])x+ (λ∗ − p+ q

2
)xTJx+ p (161)

(b)

≥ p− λ1(A− E[A])∥x∥22 + xTD∗x+ (λ∗ − p+ q

2
)xTJx (162)

= p− λ1(A− E[A]) + xTD∗x+ (λ∗ − p+ q

2
)xTJx (163)

(c)

≥ p− ∥A− E[A]∥2 + xTD∗x+ (λ∗ − p+ q

2
)xTJx (164)

(d)

≥ p− c1
√
log n+ xTD∗x+ (λ∗ − p+ q

2
)xTJx, (165)

where:
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• (a) is because xTσ∗ = 0,

• (b) is because xTBx < λ1(B)∥x∥22 for any symmetric matrix B,

• (c) is because λ(B) < ∥B∥2 for any matrix B,

• and (d) is because of the First condition of C-concentration.

Let t(x) = xTD∗x + (λ∗ − p+q
2 )xTJx. By the definition of x̌ (Definition 4), we define E = span(x̌, σ∗). Any

y : y ⊥ σ∗, ∥y∥2 = 1 can be represented as y = βx̌+
√

1− β2x for x ∈ {x : x ⊥ E, ∥x∥2 = 1} and β ∈ [0, 1]. We have:

inf
x⊥σ∗,∥x∥2=1

t(x) = inf
x⊥E,∥x∥2=1,β∈[0,1]

t(βx̌+
√
1− β2x) (166)

(a)
= inf

x⊥E,∥x∥2=1,β∈[0,1]

(
β2(x̌TD∗x̌+ J (x̌)) + 2β

√
1− β2xTD∗x̌+ (1− β2)xTD∗x

)
(167)

≥ inf
β∈0,1

(β2(x̌TD∗x̌+ J (x̌)) + inf
x⊥E,∥x∥2=1,β∈[0,1]

(2β
√
1− β2xTD∗x̌+ (1− β2)xTD∗x) (168)

(b)

≥ inf
β∈0,1

(β2c2 log n+ inf
x⊥E,∥x∥2=1,β∈[0,1]

(2β
√
1− β2xTD∗x̌+ (1− β2)xTD∗x) (169)

(c)

≥ inf
β∈0,1

(β2c2 log n− 2β
√
1− β2∥(D∗ − E[D∗])x̌)∥+ inf

x⊥E,∥x∥2=1,β∈[0,1]
(1− β2)xTD∗x) (170)

(d)

≥ inf
β∈0,1

(β2c2 log n− 2β
√
1− β2c3

√
log n+ inf

x⊥E,∥x∥2=1,β∈[0,1]
(1− β2)xTD∗x) (171)

(e)

≥ inf
β∈0,1

(β2c2 log n− 2β
√

1− β2c3
√
log n+ (1− β2)min

i
d∗i ) (172)

(f)

≥ inf
β∈0,1

(β2c2 log n− 2β
√

1− β2c3
√
log n+ (1− β2)c4 log n) (173)

≥ inf
β∈0,1

(β2c2 log n+ (1− β2)c4 log n)− c3
√
log n (174)

≥ 1

2
min{c2, c4} log n− c3

√
log n. (175)

where:

• (a) is because Jx = 0,

• (b) is because x̌TD∗x̌+ J (x̌) ≥ c2 log n as the second condition,

• (c) is because infx⊥E,∥x∥2=1 x
TD∗x̌ = infx⊥E,∥x∥2=1 x

T (D∗ − E[D∗])x̌ ≥ −∥(D∗ − E[D∗])∥,

• (d) is because ∥(D∗ − E[D∗])∥ < c3
√
log n as the third condition,

• (e) is because D∗ is a diagonal matrix constructed from d∗i ,

• (f) is because minid
∗
i ≥ c4 log n as the fourth condition.

Substituting the lower bound of t(x) to Equation 165, we have:

xTS∗x ≥ 1

2
min{c2, c4} log n− (c1 + c3)

√
log n+ p (176)

> 0, (177)

where n is large enough.
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Lemma 18. A graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1 − ρ)n for some
constant ρ and with p = a logn

n and q = b logn
n is c

ϵ log n-stable under SDP (G) with probability at least 1− n−Ω(1)

Proof. By Lemma 14, G is C-concentrated with probability at least 1 − n−Ω(1). By Lemma 15, all graphs G′ (which
include G itself) with distance up to c

ϵ log n from G are also C′-concentrated. By Lemma 17, since all graphs G′ are C ′-
concentrated, SDP (G′) always output the optimal and unique solution σ∗ with probability 1, or SDP (G) = SDP (G′) =
σ∗ for all G′. It follows that G is c

ϵ log n-stable under SDP with probability at least 1− n−Ω(1).

Theorem 6. Given a graph G generated by a Binary Asymmetric SBM with two communities sized ρn and (1 − ρ)n for
some constant ρ, and with p = a logn

n and q = b logn
n , h̃(c/ϵ) > 1,

√
a −

√
b(1 + log a

b ) >
√

c log a
b /ϵ, MSDP with

δ = n−Ω(1) exactly recovers the ground-truth community σ∗, i.e., Pr[MSDP (G) ̸= σ∗] = n−Ω(1)

Proof. Lemma 18 states the stability property of G under SDP , i.e., G is c
ϵ log n-stable under SDP . It also implies that

SDP (G) = σ∗ under the effect of C-concentration. By applying Lemma 6, Pr[MSDP (G) ̸= SDP (G)] = n−Ω(1) or
Pr[MSDP (G) ̸= σ∗] = n−Ω(1).

The condition for the Theorem is that C′ is a valid constant combination, i.e., c′2 > 0 and c′4 > 0, or c2 − c/ϵ > 0 and
c4 − c/ϵ > 0 with pre-determined c, ϵ.

Lemma 13 requires that h̃(c4) > 1, which means h̃(c/ϵ) > 1

Lemma 10 requires that c2 < τ − b, which means c/ϵ < τ − b. This is equivalent to a− b(1 + log a
b ) > c log a

b /ϵ, which
can be simplified to

√
a−

√
b(1 + log a

b ) >
√
c log a

b /ϵ.

C. Censored Binary SBM (CBSBM)
In this section we analyze the Stability mechanism on the recoverability of the Censored Binary SBM. In this model, the
generated graphs are bedge-weighted. The vertices are consists of nodes from two clusters with possibly unequal sizes.
Edges between these nodes are generated by an Erdos-Renyi model G(n, p), regardless of the endpoint’s communities.
With a fixed constant ξ ∈ [0, 0.5], each edge (i, j) has a label Lij ∈ {+1,−1} drawn from the following distribution:

Definition 7. Definition of CBSBM.

PLij |σ∗
i ,σ

∗
j
= (1− ξ)1Lij=σ∗

i σ
∗
j
+ ξ1Lij=−σ∗

i σ
∗
j

(178)

Privacy model. The adjacency matrix A(G) is defined as Aij = 0 if there is no edge between i and j. Aij = Lij if
there is an edge generated between i and j. In this section, we define the neighborhood between two graph G ∼ G′ if
A(G)andA(G′) differ by exact one element. This privacy model can protect the existence (and the non-existence) of an
arbitrary edge (i, j), where any two neighboring adjacency matrices differ at element ij: A(G)ij = 0 (not an edge) and
A(G′)ij ̸= 0 (an edge). It can also protect the label of an arbitrary edge (i, j) whenever (i, j) exists in the input graphs,
that any two neighboring adjacency matrix differ as follows: A(G)ij = −1 and A(G′)ij = +1.

In the non-private setting, communities in the CBSBM can be recovered exactly by solving the following SDP Relaxation:

Definition 8. SDP Relaxation of the Censored Binary SBM:

ŶSDP = arg max⟨A, Y ⟩ (179)
s.t. Y ⋟ 0 (180)

Yii = 1, i ∈ [n]. (181)

Assumptions of parameters. We assume that p = a log n/n for some fixed constant a (in the random edge generation
model G(n, p)). For the random label model: h(ξ, a) = a(

√
1− ξ −

√
ξ)2 > 1, or h(ξ, a) = 1 + Ω(1). We may drop

parameter a when the context is clear (CBSBM with a fixed a).

In this section, we denote the SDP (G) as a function taking input graph G and outputting the optimal solution of the SDP
Relaxation constructed by its adjacency matrix A(G).
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Definition 9. In this section, we define the following quantities:

• d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j for every i ∈ [n]

• D∗ = diag{d∗}

Definition 10. Definition of C-concentration. Assume a graph G is generated by a CBSBM with two communities with
ground truth vector σ∗, edge probability p = a logn

n , and edge labels are generated by the above process with some
constant ξ ∈ [0, 0.5].

G is called C-concentrated if there exists a tuple (c1, c2) such that G satisfies two conditions

• ∥A− E[A]∥2 ≤ c1
√
log n

• d∗i ≥ c2 log n for every i ∈ [n]

Lemma 19. (Theorem 9 of(Hajek et al., 2016b)) Given a graph G generated by a CBSBM as in Definition 7, there exists
a constant c1 > 0 such that with probability at least 1− n−Ω(1), we have:

∥A− E[A]∥2 ≤ c1
√
log n (182)

Lemma 20. (Lemma 1 of (Hajek et al., 2016b)) Let X ∼ Binom(m, a log n/n) for m ∈ N where m = ρn + o(n) for
some ρ > 0 as n→∞. Let kn ∈ [m] be such that kn = τρ log n+ o(log n) for some 0 ≤ τ ≤ a, then:

Pr[X ≤ kn] = nρ(a−τ log ea
τ +o(1)). (183)

Lemma 21. Given a graph G generated by a CBSBM as in Definition 7, there exists a constant 0 < c2 < a such that with
probability at least 1− n−Ω(1), we have:

min
i∈[n]

d∗i ≥ c2 log n (184)

Proof. The proof here is inspired by (Hajek et al., 2016b), with the main differences are the bound in the original proof is
in order of logn

log log n , where we need a bound in order of log n for the remaining proof of Stability to work. By definition,

d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j . In the generation process, it is equivalent to d∗i =

∑n−1
j=1 Xj , where Xj

i.i.d.∼ p(1−ξ)β+1+pξβ−1+

(1 − p)β0 where βx is the Dirac delta function at x. Hence, we will prove that with probability at least 1 − n−Ω(1), there
exist some constant c2 > 0 that for every i:

Pr[
n∑

j=1

Xj < c2 log n] ≤ n−Ω(1) (185)

We first analyze the case when ξ = 0. Then
∑n

j=1 Xj ∼ Binom(n, a log n/n). It follows that:

Pr[
n∑

j=1

Xj < c2 log n] ≤ n−ρ(a−τ log ea
τ +o(1)) by Lemma 20 (186)

= n−a+c2 log ea
c2

−o(1) by substituting ρ = 1, τ = c2 (187)

≤ n−a−o(1) since c2 < a (188)

≤ n−h(ξ) since h(ξ) = a when ξ = 0 (189)

≤ n−1−Ω(1). (190)

Taking the union bound over all nodes i, we have d∗i ≥ c2 log n with probability at least 1− n−Ω(1).
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Now we analyze the case when ξ > 0. By the Chernoff bound:

Pr[
n∑

j=1

Xj < c2 log n] ≤ exp(−nℓ(c2 log n
n

)), (191)

where the function ℓ(x) is defined as ℓ(x) = supλ≥0−λx − logE[e−λX ] with X ∼ p(1 − ξ)β+1 + pξβ−1 + (1 − p)β0,
or E[e−λX ] = 1 + p(e−λ(1− ξ) + eλξ − 1). Since ℓ(x) is concave (in λ), the supremum at λ∗ is:

−x+
p(e−λ∗

(1− ξ)− eλ
∗
ξ

1 + p(e−λ∗(1− ξ) + eλ∗ξ − 1)
= 0. (192)

Substituting x = c2 logn
n ≈ 0, we solve λ∗ as follows:

e−λ∗
(1− ξ)− eλ

∗
ξ = o(1) (193)

=⇒ eλ
∗
(e−2λ∗

(1− ξ)− xi) = o(1) (194)

=⇒ e−2λ∗
=

ξ

1− ξ
+ o(1) (195)

=⇒ −2λ∗ = log
ξ

1− ξ
+ o(1) (196)

=⇒ λ∗ =
1

2
log

1− ξ

ξ
+ o(1). (197)

Substituting x = c2 logn
n and λ∗ = 1

2 log
1−ξ
ξ + o(1), we have:

ℓ(
c2 log n

n
) = −λ∗ c2 log n

n
− log(1 + p(e−λ∗

(1− ξ) + eλ
∗
ξ − 1)) (198)

= −1

2
log

1− ξ

ξ
× c2 log n

n
− log(1− p(

√
1− ξ −

√
ξ)2) + o(

log n

n
) (199)

⪅ − log(1− p(
√
1− ξ −

√
ξ)2) + o(

log n

n
), since

c2 log n

n
⪆ 0 (200)

= −p(
√

1− ξ −
√
ξ)2 + o(

log n

n
), since log(1− x) = −x at x ≈ 0 (201)

=
a log n

n
(
√

1− ξ −
√
ξ)2 + o(

log n

n
). (202)

Applying the above result to Equation 191, we have:

Pr[
n∑

j=1

Xj < c2 log n] ≤ exp(−nℓ(c2 log n
n

)) (203)

≤ exp(−n× a log n

n
(
√
1− ξ −

√
ξ)2 − n× o(

log n

n
)) (204)

≤ exp(−a log n(
√

1− ξ −
√
ξ)2 − o(log n)) (205)

≤ n−h(ξ)−Ω(1) (206)

≤ n−1−Ω(1). (207)

Taking the union bound over all nodes i, we have d∗i ≥ c2 log n with probability at least 1 − n−Ω(1) and the Lemma
follows.
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Lemma 22. A graph G generated by a CBSBM as in Definition 7, there exists some tuple of constants (c1, c2) such that
with probability at least 1− n−Ω(1), G is (c1, c2)-concentrated (C-concentrated).

Proof. Refer to the definition of C-concentrated for CBSBM (Definition 10), the First condition follows from Lemma 19
and the Second condition follows from Lemma 21. Applying union bound on both conditions, we have that with proba-
bility at least 1− n−Ω(1), G is C-concentrated.

Lemma 23. Assume a fixed CBSBM models, if a graph G generated by a CBSBM is (c1, c2)-concentrated then every graph
G′ within distance c logn

ϵ of G, i.e. d(G,G′) < c logn
ϵ , is (c′1, c

′
2)-concentrated where c′1 = c1 +

√
8c/ϵ, c′2 = c2 − c/ϵ.

Proof. The first condition: It is clear that A(G′) can be obtained by changing up to c logn
ϵ cells of A(G), with the

largest impact (to the concentration properties) by changing some cell ij from A(Gx)ij = 1 to A(G′)ij = −1 or vice
versa. It follows that ∥A(G) − A(G′)∥2F ≤

8c logn
ϵ . Also, since we assume G and G′ are under the same CBSBM,

E[A(G′)] = E[A(G)] = Ā.

Now we analyze ∥A(G′)− E[A(G′)]∥2:

∥A(G′)− E[A(G′)]∥2 = ∥A(G′)− Ā∥2 (208)
= ∥A′ −A+A− Ā∥2 (209)
≤ ∥A′ −A∥2 + ∥A− Ā∥2 (210)

≤ ∥A′ −A∥2 + c1
√
log n (211)

≤
√

8c log n

ϵ
+ c1

√
log n (212)

= (
√
8c/ϵ+ c1)

√
log n (213)

= c′1
√
log n, (214)

which means that G′ satisfies the First condition with some constant c′1.

The first condition: By the definition of d′∗i , we have:

d′∗i =

n∑
j=1

A′
ijσ

∗
i σ

∗
j (215)

=
n∑

j=1

(A′
ij −Aij)σ

∗
i σ

∗
j +

n∑
j=1

Aijσ
∗
i σ

∗
j (216)

≥
n∑

j=1

(A′
ij −Aij)σ

∗
i σ

∗
j + c2 log n (217)

≥ −2c log n

ϵ
+ c2 log n (218)

= (c2 −
2c

ϵ
) log n (219)

= c′2 log n, (220)

which means that G′ satisfies the Second condition with some constant c′2, and the Lemma follows.

Lemma 24. (Lemma 9 of(Hajek et al., 2016b)) Suppose there exists D∗ = diagd∗i such that S∗ = D∗ − A satisfies
S∗ ⋟ 0, λ2(S

∗) > 0 and S∗σ∗ = 0. Then Y ∗ is the unique solution of the program SDP (G).

Lemma 25. If G is C-concentrated then SDP (G) = Y ∗, i.e., the optimal solution of SDP (G) is the ground truth
community matrix Y ∗ = sigma∗σ∗T .
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Proof. Constructing d∗i =
∑n

j=1 Aijσ
∗
i σ

∗
j , we will prove that S∗ satisfies the condition of Lemma 24 and due to

Lemma 24, the Lemma follows that Y ∗ is the optimal solution of SDP (G).

First, we prove that S∗σ∗ = 0. By definition of S∗ = D∗ −A, S∗σ∗ = D∗σ∗ −Aσ∗ = A∗σ∗ −A∗σ∗ = 0

Second, proving that infx⊥σ∗,∥x∥=1 x
TS∗x > 0 satisfies other conditions since all feasible x plus σ∗ will include a basis

for the whole space, which means ∀y : yTS∗y ≥ 0, or S∗ ⋟ 0 and the solution set of S∗y = 0 has only 1 dimension
λ2(S

∗) > 0.

Therefore, the next step is to prove that when G is C-concentrated, infx⊥σ∗,∥x∥=1 x
TS∗x > 0 with probability 1 and the

proof follows. For any x ⊥ σ∗, ∥x∥ = 1, we have:

xTS∗x = xTD∗x− xTAx (221)

= xTD∗x− xT (A− E[A])x− xTE[A]x (222)
(a)

≥ min
i∈[n]

d∗i − ∥A− E[A]∥2 − xTE[A]x (223)

(b)

≥ c2 log n− c1
√

log n− xTE[A]x (224)
(c)
= c2 log n− c1

√
log n+ (1− 2ξ)pxTY ∗x (225)

= c2 log n− c1
√
log n+ (1− 2ξ)p (226)

= c2 log n− c1
√
log n+ (1− 2ξ)a log n/n (227)

≥ 0 where n is large enough, (228)

where:

• (a) is because of ∥x∥ = 1,

• (b) is because of the C-concentration’s conditions,

• (c) is because of E[A] = (1− 2ξ)Y ∗.

Lemma 26. A graph G generated by a CBSBM as in Definition 7 is c
ϵ log n-stable under SDP (G) with probability at

least 1− n−Ω(1).

Proof. By Lemma 22, G is C-concentrated with probability at least 1 − n−Ω(1). By Lemma 23, all graphs G′ (which
include G itself) with distance up to c

ϵ log n from G are also C′-concentrated. By Lemma 25, since all graphs G′ are C ′-
concentrated, SDP (G′) always output the optimal and unique solution σ∗ with probability 1, or SDP (G) = SDP (G′) =
Y ∗ for all G′. It follows that G is c

ϵ log n-stable under SDP with probability at least 1− n−Ω(1).

Theorem 7. Given graph G generated by a CBSBM as in Definition 7 , and c/ϵ < a and h(ξ, a) > 1, c/ϵ < a, MSDP

with δ = n−Ω(1) exactly recovers the ground-truth community Y ∗, i.e., Pr[MSDP (G) ̸= Y ∗] = n−Ω(1)

Proof. Lemma 26 states the stability property of G under SDP , i.e., G is c
ϵ log n-stable under SDP . It also implies that

SDP (G) = Y ∗ under the effect of C-concentration. By applying Lemma 6, Pr[MSDP (G) ̸= SDP (G)] = n−Ω(1) or
Pr[MSDP (G) ̸= Y ∗] = n−Ω(1).

The condition for the Theorem is that C′ is a valid constant combination, i.e., c′2 < a and hence, h(ξ, a) > 1 and
c/ϵ < a.
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D. Polynomial Algorithms
In Algorithm 1, there are two computation tasks: computing dSDP (G) and SDP (G). Solving the SDP Relaxation can be
done in polynomial-time. Therefore, the remaining question is how long it takes to compute dSDG(G). One way is to start
with all neighbors G′ of distance k = 1 of G and test if SDP (G)

?
= SDP (G′). If all G′ satisfy the test, we can conclude

that G is at least 1-stable, otherwise G is unstable. If G is unstable, we increase k by one and repeat the procedure until we
find the first G′′ that has SDP (G′′) ̸= SDP (G) and dSDP (G) = k. We may apply the trick of (Mohamed et al., 2022)
that stops when k = c log n/ϵ. In this case, because there are nO(log n) neighbors of distance up to c log n/ϵ from G, we
have to invoke the solver for the SDP Relaxation nO(log n) times. Since dSDP (G) = O(log n) w.h.p., Algorithm 1 takes
nO(log n) w.h.p..

The main idea is if we can estimate d(G) faster, we can design a faster algorithm. We note that if the input graph is
C-concentrated, then d(G) ≥ c log n/ϵ. Therefore, we can test if the input graph is C-concentrated. If the test comes out
as positive, we can set d̂(G) = d(G) ≥ c log n/ϵ and use d̂ instead of d. Else, we compute d̂(G) = min(d(G), c log n/ϵ).
It is clear that w.h.p., the test is positive. The main challenge is that, testing C-concentration requires knowledge of the
SBMs, i.e., p, q and most importantly, σ∗ (or ξ∗k in r > 2 communities)–the quantities we are trying to output.

In several settings of applications, the edge probabilities p and q (and therefore a, b respectively) may be known, which
makes the problem easier. Generally, it is safe to assume that we do not know a and b. To construct the conditions of
C-concentration, we need a reliable way to estimate them from the input graph.

Suppose that we have access to oracles that can provide us these quantities. Let ORACLEσ∗ be the one that can provide us
the true value of σ∗ (or ξ∗k respectively). Let ORACLEα

a,b be the one that can provide us the parameters â, b̂ accurately up
to a factor of 1± α from the true values of a, b for a small constant α < 0.001.

We present Algorithm 3 with the unrealistic assumption of the oracles. We then prove that Algorithm 3 retains the privacy
and utility of Algorithm 1, which means it is private and achieve exact recovery. Because checking the C-concentration
can be done in polynomial time, and w.h.p., we do not have to invoke high computational cost d(G), the Algorithm
takes polynomial time. After we confirm thatMStbl ORACLE has all the properties we need, we will replace the oracles by
realistic components that we calculate from the input graph G. We then present Algorithm 2 that w.h.p. is the same with
Algorithm 3.

In order to do that, we employ an estimator derived from the results of (Hajek et al., 2016b) and formalize it in Algorithm 4.

Algorithm 3Mf
Stbl ORACLE(G, C): Fast Stability Mechanism with ORACLE

1: Ŷ ← f(G)
2: σ∗ ← ORACLEσ∗

3: (â, b̂)← ORACLEα
a,b

4: Ĉ ← adjust C on α to satisfy Proposition 4
5: Construct Ĉ-concentration using Ĉ, σ∗, â, b̂
6: if G is Ĉ-concentrated then
7: d̂(G)← c log n/ϵ
8: else
9: d̂(G)← min(c log n/ϵ, d(G))

10: end if
11: d̃(G)← d̂(G) + Lap(1/ϵ)
12: if d̃f (G) > log 1/δ

ϵ then
13: Output Ŷ
14: else
15: Output ⊥
16: end if

In each SBM setting, the proposition can be easily verified by checking all conditions of C-concentration. ORACLEσ∗ guar-
antees us the true value of σ∗, so the differences between C and Ĉ only come from the factor α of ORACLEα

a,b. We use a
tighter tuple of constants Ĉ (compared to C) to balance the fact that â and b̂ may be off by some factor of 1± α. This task
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can be done by adjust each condition by scaling the respective ck to a factor of 1 ± 2α in which direction that makes the
condition tighter.

Lemma 27. Algorithm 3 is (ϵ, δ)-differentially private.

Proof. Suppose that ∆d̂ = 1 (the global sensitivity of d̂). Using the same arguments in the proof of Theorem 5, substituting
d by d̂, it follows that the algorithm is (ϵ, δ)-differentially private. It remains that we need to prove ∆d̂ = 1.

Suppose we have a pair of neighbors G ∼ G′. By definition ∆d̂ = maxG∼G′ |d̂(G) − d̂(G′)|. If both of them pass the
test in line 6, d̂(G) = d̂(G′) = c log n/ϵ which means |d̂(G) − d̂(G′)| = 0 < 1. If both of them fail the test in line 6,
d̂(G) = d(G) and d̂(G′) = d(G), which means |d̂(G)− d̂(G′)| = |d(G)− d(G′)| ≤ 1.

In the last case, assume that G passes the test in line 6 while G′ fails. It means that d̂(G) = c log n/ϵ and d̂(G′) = d(G′).
Suppose d(G′) ≤ c log n/ϵ − 2, because ∆d = 1 and G ∼ G′, d(G) ≤ d(G′) + 1 ≤ c log n/ϵ − 1. But it contradicts
with the fact that G is Ĉ-concentrated which implies that that G is c log n/ϵ-stable or d(G) ≥ c log n/ϵ. It shows that
d(G′) > c log n/ϵ− 2 or d̂(G′) ≥ c log n/ϵ or d̂(G)− d̂(G′) ≤ 1 and the Lemma follows.

Lemma 28. IfMf
Stbl (Algorithm 1) achieves exact recovery (under some specific conditions of the SBMs under the view

of Lemma 1),Mf
Stbl ORACLE (Algorithm 3) also achieves exact recovery under the same conditions.

Proof. Since Ĉ-concentration is a valid concentration, it follows that Pr[G is Ĉ-concentrated] ≥ 1 − n−Ω(1). Also, since
Ĉ-concentration implies C-concentration by Proposition 4, and all graphs satisfies C-concentration are c log n/ϵ-stable in
view of the assumed SBM. It follows that all graphs that satisfies Ĉ-concentration are at least c log n/ϵ-stable in view of
the assumed SBM. Applying Lemma 1,Mf

Stbl ORACLE (Algorithm 3) achieves exact recovery in the same conditions.

Lemma 29. IfMf
Stbl (Algorithm 1) achieves exact recovery (under some specific conditions of the SBMs under the view

of Lemma 1), Algorithm 3 takes O(poly(n)) times w.h.p..

Proof. Using the same arguments as in Lemma 28, the input graph G satisfies c log n/ϵ-stable in view of the assumed
SBM. It means that w.h.p., d̂(G) is set to c log n/ϵ in line 6 instead of going through the computation of d(G) in line
9. Since checking the concentration conditions takes O(poly(n)) times, and solving the SDP Relaxation at line 1 takes
O(poly(n)) times, it follows that w.h.p., Algorithm 3 takes O(poly(n)).

Lemma 30. (Proof in Appendix B of (Hajek et al., 2016b)) Given G generated by a BASBM with ρ ≤ 0.5, Algorithm 4
outputs (â, b̂) = (a, b) + o(1) w.h.p..

Lemma 31. IfMf
Stbl (Algorithm 1) achieves exact recovery (under some specific conditions of the SBMs under the view

of Lemma 1), Algorithm 2 (Mf
Stbl FAST) is the same with Algorithm 3 (Mf

Stbl ORACLE) w.h.p..

Proof. Algorithm 2 is identical with Algorithm 3, except in two steps that Algorithm 3 invokes the oracles.

For the first oracle in line 2, we replace ORACLEσ∗ by Ŷ , which is our estimation of σ∗ by the solving the SDP Relaxation.
It is clear that under our assumption of exact recovery, Ŷ = σ∗(σ∗)T w.h.p.. Therefore using Ŷ is as good as asking
ORACLEw.h.p.

For the second oracle in line 3, we replace ORACLEα
a,b by â, b̂ estimated by Algorithm 4, derived from (Hajek et al., 2016b).

Due to Lemma 30, (â, b̂) = (a, b)+o(1) w.h.p.. It means that when n is large enough, â, b̂ is at least as good as ORACLEα
a,b

and the Lemma follows.
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Algorithm 4 ParamEstimate(G): Algorithm to estimate a, b for BASBM
1: Let A be the adjacency matrix of the input graph G
2: di ←

∑
j Aij

3: wi ← di

logn

4: ŵ ← 1
n

∑
i wi

5: ρ̂← 1
n

∑
1{wi≤ŵ}

6: ŵ+ ← 1
n

∑
wi1{wi≥ŵ}

7: ŵ− ← 1
n

∑
wi1{wi≤ŵ}

8: â← (1−ρ̂)ŵ+−ρ̂ŵ−
1−2ρ̂

9: b̂← (1−ρ̂)ŵ−−ρ̂ŵ+

1−2ρ̂

10: Return â, b̂

E. General Structure SBM (GSSBM)
In the General Structure SBM (GSSBM), there are multiple possibly unequal communities (i.e., r > 0 clusters) and some
outliers. The cluster kth, k ∈ [r], or Ck has size Kk = ρk × n as n → ∞. For any i > j, assume that ρi ≥ ρj > 0. The
are n −

∑
k∈[r] Kk outlier vertices do not belong to any cluster. We use k = 0 (e.g., in C0,K0) to refer to the outliers.

Similar to other SBM, we consider the dense regime, where edges are generated with probability Ω(log n/n). The ground
truth community matrix Z∗ =

∑
k∈[r] ξ

∗
k(ξk)

T where ξk is the indicator vector of community Ck.

Definition 11. A graph G with r communities indicated by vectors ξi, i ∈ [r]. Edges whose endpoints from a same cluster
are generated with probability p = a logn

n and other edges are generated with probability q = b logn
n for some constants

a > b > 0.

In the non-private setting, the community matrix Z can be obtained by solving the following SDP Relaxation. We use
SDP (G) to denote the function taking input G and outputting the optimal solution of the SDP Relaxation.

Definition 12. The SDP Relaxation of GSSBM.

ẐSDP = arg max⟨A,Z⟩ (229)
s.t. Z ≽ 0 (230)
Zii ≤ 1 for i ∈ [n] (231)
Zij ≥ 0 for i, j ∈ [n] (232)

⟨I, Z⟩ =
r∑

k=1

Kk (233)

⟨J, Z⟩ =
r∑

k=1

K2
k (234)

Definition 13. We define some quantities used in our analyses:

• A(G) is the adjacency matrix of graph G. We drop the parameter when the context is clear.

• e(i, Ck) is the number of edges between a node i and nodes from cluster Ck

• k(i) is i’s cluster

• si = e(i, Ck(i))

• τ̃ = b+ 2c2

• λ∗ = τ̃ log n/n

• d∗i =

{
si − ∥A− E[A]∥2 − λ∗Kk for i ∈ Ck, k ∈ [r]

0 for i ∈ C0
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• D∗ = diag{d∗}

• B∗ ∈ Sn, B∗
ij =


λ∗ +

e(Ck(i),Ck(j))

K(k(i))K(k(j))
− e(i,Ck(j))

Kk(j)
− e(j,Ck(i))

Kk(i)
for k(i) ̸= k(j), k(i), k(j) ∈ [r]

λ∗ − e(i,Ck(j))

Kk(j)
for k(i) = 0, k(j) ∈ [r]

λ∗ − e(j,Ck(i))

Kk(i)
for k(j) = 0, k(i) ∈ [r]

0 for k(i) = k(j)

• Er = span{ξ1, ξ2, · · · , ξr}

• E[A] is a constant matrix that denotes the expected values of A over the randomness of the SBM process. E[A] =
(p− q)Z∗ − pI(in) − qI(out) + qxTJx

• ρk,k∈[r] = Kk/n

• ρmin = mink∈[r]ρk

• I(x, y) = x− y log ex
y

Assumptions of parameters

I(a, b+ 2c2) > 1/ρmin or I(a, b+ 2c2) = 1/ρmin +Ω(1) (235)
I(b, b+ c2 − c3/ρmin) > 1/ρmin or I(b, b+ c2 − c3/ρmin) = 1/ρmin +Ω(1) (236)
I(b, b+ 2c2 − c5/ρmin) > 1/ρmin or I(b, b+ 2c2 − c5/ρmin) = 1/ρmin +Ω(1) (237)

Definition 14. Definition of C-concentration for GSSBM. Given a graph G generated by a GSSBM defined is Defi-
nition 11. G is called C-concentrated if there exists a tuple of constants (c1, c2, c3, c4, c5) such that G satisfies these
conditions:

• ∥A(G)− E[A(G)]∥ ≤ c1
√
log n

• mini∈[n] si ≥ (b+ 2c2)ρk(i) log n

• maxi∈[n],k:k ̸=k(i) e(i, Ck) ≤ (b+ c2)Kk log n/n− c3 log n

• mini,j:k(i)k(j)[k(i)−k(j)] ̸=0 e(Ck(i), Ck(j)) ≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− c4 log n

• maxi∈C0
e(i, Ck:k ̸=0) ≥ τ̃Kr

logn
n − c5 log n

Lemma 32. Given a graph G generated by a GSSBM defined is Definition 11. There exists some constant c2 such that:

min
i∈[n]

si ≥ (b+ 2c2)ρk(i) log n (238)

with probability at least 1− n−Ω(1).

Proof. Since si is the number of edges between i and vertices from the same cluster with i, we have si ∼
Binom(Kk(i),

a logn
n ), where Kk(i) = ρk(i)n. Applying Lemma 20, with kn = (b+ 2c2) log n, we have:

Pr[si ≤ (b+ 2c2)ρk(i) log n] = n−ρk(i)(a−(b+2c2) log
ea

b+2c2
+o(1)) (239)

≤ n−ρk(i)I(a,b+2c2) (240)

≤ n−1−Ω(1), (241)

where the first inequality is because of the definition of I and the last inequality is because of the assumption of parameters.
Taking union bound on all vertices i and the Lemma follows.
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Lemma 33. Given a graph G generated by a GSSBM defined is Definition 11. There exists some constant c2, c3 such
that:

max
i∈[n],k:k ̸=k(i)

e(i, Ck) ≤ (b+ c2)Kk − c3 log n, (242)

with probability at least 1− n−Ω(1).

Proof. By the definition of e(i, Ck:k ̸=k(i)), it is the number of edges of a vertex i and vertices from a different cluster
k ̸= k(i), or e(i, Ck:k ̸=k(i)) ∼ Binom(Kk,

b logn
n ). Applying Lemma 20, with kn = (b+ c2 − c3/ρk) log n, we have:

Pr[e(i, Ck) ≥ kn] = Pr[e(i, Ck) ≥ (b+ c2 − c3/ρk) log n] (243)

≤ n
−ρk(b−(b+c2−c3/ρk) log

eb
b+c2−c3/ρk

+o(1)) (244)
(a)

≤ n−ρkI(b,b+c2−c3/ρk) (245)
(b)

≤ n−1−Ω(1), (246)

where:

• (a) is because of the definition of I ,

• (b) is because of the assumption of parameters.

Taking union bound on all vertices i and the Lemma follows.

Lemma 34. Given a graph G generated by a GSSBM defined is Definition 11. There exists some constant c4 such that:

min
i,j:k(i)k(j)[k(i)−k(j)] ̸=0

e(Ck(i), Ck(j)) ≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− c4 log n, (247)

with probability at least 1− n−Ω(1).

Proof. Let k = k(i), k′ = k(j). The condition implies that k and k′ are two cluster and not outliers.

By the definition, e(Ck, Ck′) = Binom(KkKk′ , q). By applying standard Chernoff bound, we have:

Pr[e(Ck, C
′
k) ≤ (1− α)KkKk′ × q] ≤ e−α2KkKk′q/2. (248)

Setting,

α =
2
√
KkKk′

√
log n+ c4 log n

qKkKk′
, (249)

because |c4 log n| <<
√
KkKk′

√
log n,

α >

√
KkKk′

√
log n

qKkKk′
(250)

=
log n

q
√
KkKk′

. (251)
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Substituting α to Equation 248, we have:

Pr[e(Ck, Ck′) ≤ qKkKk′ − 2
√
log n

√
KkKk′ − c4 log n] = Pr[e(Ck, Ck′) ≤ (1− α)KkKk′ × q] (252)

≤ e
−(

√
log n

q
√

KkK
k′

)2KkKk′q/2
(253)

= e−
log n
2q (254)

= n− 1
2q (255)

< n−2−Ω(1), where n is large enough, (256)

Taking the union bound on all k, k′, the Lemma follows.

Lemma 35. Given a graph G generated by a GSSBM defined is Definition 11. There exists some constant c5 such that:

max
i∈C0

e(i, Ck(j)) ≥ τ̃Kr
log n

n
− c5 log n, (257)

with probability at least 1− n−Ω(1).

Proof. By the definition of e(i, Ck,k ̸=0), it is the number of edges of an outlier i and vertices from a cluster k ̸= 0, or
e(i, Ck) ∼ Binom(Kk,

b logn
n ). Applying Lemma 20, with kn = (τ̃ − c3/ρk) log n, we have:

Pr[e(i, Ck) ≥ kn] = Pr[e(i, Ck) ≥ (τ̃ − c5/ρk) log n] (258)

≤ n
−ρk(b−(τ̃−c5/ρk) log

eb
τ̃−c5/ρk

+o(1)) (259)
(a)

≤ n−ρkI(b,b+2c2−c5/ρk) (260)
(b)

≤ n−1−Ω(1), (261)

where:

• (a) is because of the definition of I ,

• (b) is because of the assumption of parameters.

Taking union bound on all vertices i and the Lemma follows.

Lemma 36. Given a graph G generated by a GSSBM defined is Definition 11. There exists some tuples of constants
C = (c1, c2, c3, c4, c5) such that, G is C-concentrated, with probability at least 1− n−Ω(1).

Proof. The First condition can be proved using the same arguments and settings as in Lemma 14, in which the edges of G
are generated with probabilities Ω(log n/n). It means that the exists some constant c1 such that ∥A− E[A]∥2 ≤ c1

√
log n

with probability at least 1 − n−Ω(1). Using union bound on it and the Second condition (Lemma 32), Third condition
(Lemma 33), Fourth condition (Lemma 34), and the Fifth condition (Lemma 35), there exists some tuples of constants
C = (c1, c2, c3, c4, c5) such that G satisfies all the conditions with probability at least 1 − n−Ω(1). It means that with
probability 1− n−Ω(1), G is C-concentrated.

Lemma 37. Given a graph G generated by a GSSBM defined is Definition 11. If G is C-concentrated then for every graph
G′ : d(G,G′) < c

ϵ log n, i.e., G′ can be constructed by flipping at most c
ϵ connections of G, G′ is C′ = (c′1, c

′
2, c

′
3, c

′
4, c

′
5)-

concentrated, where
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c′1 = c1 +
√
2c/ϵ (262)

c′2 = c2 −
c

ϵρmin
(263)

c′3 = c3 −
c

ϵ
(264)

c′4 = c4 + c/ϵ (265)

c′5 = c5 −
c

ϵ
. (266)

Proof. The First condition follows from the same arguments in Lemma 15’s First condition. We will prove the remaining
conditions.

We denote s′(), e′() as the same s(), e() but with the graph G′ instead of G. We note that G and G′ differ by at most
c log n/ϵ edges.

The Second condition, we have:

s′i ≥ si −
c log n

ϵ
(267)

≥ (b+ 2c2)ρk(i) log n−
c log n

ϵ
(268)

= (b+ 2c2 −
c

ϵρk(i)
)ρk(i) log n (269)

≥ (b+ 2c2 −
c

ϵρmin
)ρk(i) log n (270)

= (b+ 2c′2)ρk(i) log n, (271)

which implies mini∈[n] s
′
i ≥ (b+ 2c′2)ρk(i) log n.

The Third condition, we have:

e′(i, Ck) ≤ e(i, Ck) +
c log n

ϵ
(272)

≤ (b+ c2)Kk log n/n− c3 log n+
c log n

ϵ
(273)

≤ (b+ c2)Kk log n/n− (c3 −
c

ϵ
) log n (274)

= (b+ c2)Kk log n/n− (c′3) log n, (275)

which implies maxi∈[n],k:k ̸=k(i) e
′(i, Ck) ≤ (b+ c2)Kk log n/n− c′3 log n.

The Fourth condition, we have:

e′(Ck(i), Ck(j)) ≥ e(Ck(i), Ck(j))−
c log n

ϵ
(276)

≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− c4 log n−

c log n

ϵ
(277)

≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− (c4 +

c

ϵ
) log n (278)

≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− c′4 log n, (279)
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which implies mini,j:k(i)k(j)[k(i)−k(j)] ̸=0 e
′(Ck(i), Ck(j)) ≥ Kk(i)Kk(j)q − 2

√
Kk(i)Kk(j)

√
log n− c4 log n.

The Fifth condition, we have:

e′(i, Ck) ≤ e(i, Ck) +
c log n

ϵ
(280)

≤ (b+ 2c2)Kk log n/n− c5 log n+
c log n

ϵ
(281)

≤ (b+ 2c2)Kk log n/n− (c5 −
c

ϵ
) log n (282)

= (b+ 2c2)Kk log n/n− (c′5) log n (283)
= τ̃Kk log n/n− (c′5) log n, (284)

which implies maxi∈C0
e′(i, Ck:k ̸=0) ≥ τ̃Kr

logn
n − c′5 log n, and complete the proof of the Lemma.

Lemma 38. Given graph G generated by the GSSBM in Definition 11 that is C-concentrated, d∗i > 0 for every node i
belongs to a community, i.e., k(i) ̸= 0.

Proof. Recall that by our choice, d∗i is define as:

d∗i =

{
si − ∥A− E[A]∥2 − λ∗Kk for i ∈ Ck, k ∈ [r]

0 for i ∈ C0

(285)

where λ∗ = (b + 2c2)
logn
n . Because G is C-concentrated, A − E[A] ≤ c1

√
log n because of the First condition and

mini∈[n] si ≥ λ∗Kk(i) + c2 log n because of the Second condition. We have for node i : k(i) ̸= 0:

d∗i = si − ∥A− E[A]∥2 − λ∗Kk(i) (286)

≥ λ∗Kk(i) + c2 log n− c1
√
log n− λ∗Kk(i) (287)

= c2 log n− c1
√

log n (288)
> 0 with n large enough, (289)

and the Lemma follows.

Lemma 39. Given graph G generated by the GSSBM in Definition 11 that is C-concentrated, B∗
ij > 0 for every vertices i

and j belong to different communities, i.e., k(i) ̸= k(j).

Proof. Recall that B∗ ∈ Sn, B∗
ij =


λ∗ +

e(Ck(i),Ck(j))

K(k(i))K(k(j))
− e(i,Ck(j))

Kk(j)
− e(j,Ck(i))

Kk(i)
for k(i) ̸= k(j), k(i), k(j) ∈ [r]

λ∗ − e(i,Ck(j))

Kk(j)
for k(i) = 0, k(j) ∈ [r]

λ∗ − e(j,Ck(i))

Kk(i)
for k(j) = 0, k(i) ∈ [r]

0 for k(i) = k(j)

,

then we only care about the first three cases.

In the first case, since G is C-concentrated, we have e(i, Ck(j)) ≤ (b+ c2)Kk(j)− c3 log n due to the Third condition and
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e(Ck(i), Ck(j)) ≥ Kk(i)Kk(j)q − 2
√
Kk(i)Kk(j)

√
log n− c4 log n due to the Fourth condition, we have: l m

B∗
ij = λ∗ +

e(Ck(i), Ck(j))

K(k(i))K(k(j))
−

e(i, Ck(j))

Kk(j)
−

e(j, Ck(i))

Kk(i)
(290)

≥ τ̃ log n

n
− (b+ c2)Kkmin

− c3 log n

Kk(i)
− (b+ c2)Kkmin

− c3 log n

Kk(i)
(291)

+
q ×Kk(i)Kk(j) − 2

√
Kk(i)Kk(j)

√
log n− c4 log n

Kk(i)Kk(j)
(292)

≥ (b+ 2c2 + c3/ρmin − b− c2 + c3/ρmin − c2 + b)
log n

n
− 2
√
log n

ρminn
− c4 log n

ρminn2
(293)

=
2c3
ρmin

log n

n
− 2
√
log n

ρminn
− c4 log n

ρ2minn
2

(294)

> 0 when n is large enough. (295)

The second and third cases are similar. W.L.O.G., let k(i) = 0, k(j) ̸= 0, we have:

B∗
ij = λ∗ −

e(i, Ck(j))

Kk(j)
(296)

≥ (b+ 2c2) log n

n
− τ̃Kr log n

ρminn2
+

c5 log n

ρminn
(297)

=
c5 log n

ρminn
(298)

> 0, (299)

where the first inequality is because of the Fifth condition of C-concentration that G satisfies as the assumption of the
Lemma, which completes the proof and the Lemma follows.

Lemma 40. (Lemma 10 of (Hajek et al., 2016b)) Suppose there exists D∗ = diag{d∗i } with d∗i > 0 for non-outlier vertices
and d∗i = 0 for outlier vertices, B∗ = Sn with B∗ ≥ 0 and B∗

ij > 0 whenever i and j are in different clusters, η∗ ∈ R and

λ∗ ∈ R such that S∗ def
= D∗−B∗−A+ η∗I +λ∗J satisfies that S∗ ≽ 0, λr+1(S

∗) > 0 where λr(S
∗) is the rth smallest

eigenvalue of S∗, and

S∗ξ∗k = 0 for k ∈ [r], (300)
B∗

ijZ
∗
ij = 0 for i, j ∈ [n]. (301)

Then Z∗ is the unique solution to the SDP in Definition 12

Lemma 41. If a graph G generated by the GSSBM in Definition 11 is C-concentrated, then SDP (G) = Z∗, i.e., the
ground truth community matrix Z∗ is the optimal solution of the SDP Relaxation in Definition 12.

Proof. We now prove that we can construct S∗ that satisfies the requirement of Lemma 40. By that, we provide a certificate
deterministically constructed from the C-concentration property that guarantees that the optimal solution SDP Relaxation
is the ground-truth community matrix Z∗. In other words, solving the SDP in Definition 12 when the input graph G is
C-concentrated gives us the ground-truth community matrix Z∗ with probability 1.

Lemma 38 and Lemma 39 show us a way to construct D∗ and B∗ that satisfies Lemma 40. The remaining part is to prove
that S∗ ≽ 0. It is equivalent to prove that xTS∗x ≥ 0 for x ∈ Rn and x ⊥ Er, where Er = span{ξ1, cdots, ξr}.

It is clear that:
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xTB∗x =
∑
k ̸=k′

∑
i∈Ck

∑
j∈Ck′

B∗
ijxixj (302)

= 0. (303)

Now we analyze xTE[A]x. With E[A] = (p−q)Z∗−pI(in)−qI(out)−qJ where I(in) and I(out) are the identity matrices
for in-cluster nodes and outliers, i.e., I(in)ii = 1 for every k(i) ̸= 0 and I

(out)
ii = 1 for every k(i) = 0. We have:

xTE[A]x = (p− q)xTZ∗x− pxT I(in)x− qxT I(out)x+ qxTJx (304)

= −p
∑

i:k(i)̸=0

x2
i − q

∑
i:k(i)=0

x2
i + qxTJx, (305)

where the last equality is because xTZ∗x = 0 for every x ⊥ Er.

By the definition of S∗ = D∗ −B∗ −A+ η∗I + λ∗J , choosing η = ∥A− E[A]∥2, we have:

xTS∗x = xTD∗x− xTB∗x− xTAx+ η∗xT Ix+ λ∗xTJx (306)
(a)
= xTD∗x− xTAx+ xT (A− E[A])x+ λ∗xTJx (307)

≥ xTD∗x− xTE[A]x+ (b+ 2c2)
log n

n
xTJx (308)

(b)

≥ xTD∗x+ p
∑

i:k(i)̸=0

x2
i + q

∑
i:k(i)=0

x2
i −

b log n

n
xTJx+ (b+ 2c2)

log n

n
xTJx (309)

≥ xTD∗x+ p
∑

i:k(i)̸=0

x2
i + q

∑
i:k(i)=0

x2
i + 2c2

log n

n
xTJx (310)

≥ xTD∗x+ p
∑

i:k(i)̸=0

x2
i + q

∑
i:k(i)=0

x2
i + 2c2

log n

n
(
∑
i

xi)
2 (311)

≥ xTD∗x (312)
(c)

≥ 0, (313)

where:

• (a) is because xTB∗X = 0 for x ⊥ Er (Equation 303) and η∗ = ∥A− E[A]∥2,

• (b) is because of Equation 305,

• (c) is because of the result of Lemma 38;

and the Lemma follows.

Lemma 42. A graph G generated by a GSSBM as in Definition 11 is c
ϵ log n-stable under SDP (G) with probability at

least 1− n−Ω(1).

Proof. By Lemma 36, G is C-concentrated with probability at least 1 − n−Ω(1). By Lemma 37, all graphs G′ (which
include G itself) with distance up to c

ϵ log n from G are also C′-concentrated. By Lemma 41, since all graphs G′ are C ′-
concentrated, SDP (G′) always output the optimal and unique solution σ∗ with probability 1, or SDP (G) = SDP (G′) =
Y ∗ for all G′. It follows that G is c

ϵ log n-stable under SDP with probability at least 1− n−Ω(1).
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Differentially private exact recovery for stochastic block models

Theorem 8. A graph G generated by a GSSBM as in Definition 11 , and I(...) > 1, MSDP with δ = n−Ω(1) exactly
recovers the ground-truth community Y ∗, i.e., Pr[MSDP (G) ̸= Y ∗] = n−Ω(1)

Proof. Lemma 42 states the stability property of G under SDP , i.e., G is c
ϵ log n-stable under SDP . It also implies that

SDP (G) = Y ∗ under the effect of C-concentration. By applying Lemma 6, Pr[MSDP (G) ̸= SDP (G)] = n−Ω(1) or
Pr[MSDP (G) ̸= Y ∗] = n−Ω(1).

The condition for the Theorem is that C′ is a valid constant combination, or c/ϵ satisfies the condition of c2, c4, c5. It
means:

I(a, b+
2c

ϵρmin
) > 1/ρmin (314)

I(b, b+
c

ϵ
(

1

ρmin
− 1)) > 1/ρmin (315)

I(b, b+
c

ϵ
(

2

ρmin
− 1)) > 1/ρmin (316)
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