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Abstract

Neural network pruning, particularly channel pruning,

is a widely used technique for compressing deep learning

models to enable their deployment on edge devices with

limited resources. Typically, redundant weights or struc-

tures are removed to achieve the target resource budget.

Although data-driven pruning approaches have proven to be

more effective, they cannot be directly applied to federated

learning (FL), which has emerged as a popular technique

in edge computing applications, because of distributed and

confidential datasets. In response to this challenge, we de-

sign a new network pruning method for FL. We propose

device-wise sub-networks for each device, assuming that the

data distribution is similar within each device. These sub-

networks are generated through sub-network embeddings

and a hypernetwork. To further minimize memory usage and

communication costs, we permanently prune the full model

to remove weights that are not useful for all devices. During

the FL process, we simultaneously train the device-wise sub-

networks and the base sub-network to facilitate the pruning

process. We then finetune the pruned model with device-wise

sub-networks to regain performance. Moreover, we provided

the theoretical guarantee of convergence for our method.

Our method achieves better performance and resource trade-

off than other well-established network pruning baselines, as

demonstrated through extensive experiments on CIFAR-10,

CIFAR-100, and TinyImageNet.

1. Introduction

Machine learning algorithms often rely on large amounts of

data, but privacy restrictions can prevent data from being

easily shared across different organizations. For instance,

hospitals may have isolated data that are limited in size

†This work was partially supported by NSF IIS 2347592, 2347604,

2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.
*These authors contributed equally to this work.

and cannot be used to train a high-quality model with good

predictive accuracy. Collaboration between organizations to

train a machine learning model on their combined data can

lead to better results, but sharing data is often not possible

due to privacy policies and regulations [1]. This problem of

‘data islands’ is not limited to hospitals and can be found in

other areas such as finance, government, and supply chains.

Federated learning [42, 49, 74] has emerged as a popular

research topic in the machine learning and computer vision

communities as a solution to these issues.

Convolution Neural Networks (CNNs) have achieved re-

markable success in various computer vision tasks[35, 56,

61], but to address real-world challenges, recent CNNs have

become wider and deeper, leading to improved performance

on various benchmarks. However, this increased capacity

comes at the cost of higher computational and storage re-

quirements, which prohibit CNNs from being deployed on

edge devices. Consequently, numerous efforts [17, 55] have

been made to reduce the size of CNNs to enable their deploy-

ment on mobile and embedded devices. Among different

directions, weight pruning [18] and structural pruning [38]

are two major ways to reduce the model size. Network

pruning methods have achieved promising results. However,

most existing methods do not consider heterogeneous (non-

iid) local data distributions. Instead, they upload local data

to the server to train and prune the model based on the whole

dataset.

There are several existing works [21, 27, 37, 52, 60]

on network pruning under non-iid local data distribu-

tions. These methods mainly focus on weight pruning.

SCBFwP [60] tries to perform channel pruning under non-iid

data distributions, but they mostly rely on channel norms as

the importance score, and they did not show how to scale

their method to larger CNNs. Our method is designed to

perform channel pruning given a certain computational bud-

get (measured in FLOPs) on each device. Because, unlike

weight pruning, channel pruning can achieve acceleration

and compression without any post-processing steps.

Previous research [22, 76] show that data-driven pruning
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approaches often perform much better than using a fixed

criterion (like channel norm [38]). Inspired by this result,

we propose to discover the proper sub-network following

the guidance of local data distributions. Specifically, we

divide the learning of sub-networks into two parts. In the

first part, we design a server-side sub-network, which is

used to serve as a base model for device-wise sub-network.

Ideally, weights that are not useful for any device will be re-

moved from the server-side sub-network. In the second part,

device-side sub-networks will be adaptively generated for

each device. The device-side sub-network will be pruned to

meet the specific resource requirement for each device. Both

the server-side sub-network and device-side sub-networks

are generated by mapping the device id(s) into the network

embedding space. The embedding for each sub-network will

then be fed into a hypernetwork [16] to generate the corre-

sponding structure. The hypernetwork and the embedding

are trained together through gradient-based optimization

algorithms in a federated fashion. To control the commu-

nication costs brought by training the hypernetwork, we

set the fraction of update steps for the hypernetwork to be

small. So that the overhead of training these sub-networks

is not large. In addition, to improve the training efficiency

given the limited update budget, we perform iterative train-

ing of model weights and the hypernetwork, which makes

the hypernetwork adapt to changes in model weights. The

training process of our method may pose challenges to the

convergence of the model. We show that our method can be

converted into a bi-level optimization problem under the FL

setting. We further provide the theoretical convergence guar-

antee showing that our method can converge to a stationary

point. The contribution of this work can be summarized as

follows:

• We proposed a novel channel pruning method for feder-

ated learning. A server-side network and device-wise sub-

networks are learned to achieve a better trade-off between

the performance and the computational resource.

• We proposed to use an embedding layer and a hypernet-

work to generate sub-networks on each device. As a result,

no sub-network structure needs to be stored for each de-

vice.

• We provided the theoretical guarantee of convergence for

our method for federated learning by reformulating our

method as a bi-level optimization problem.

• Extensive experiments on CIFAR-10, CIFAR-100, and

TinyImageNet show the effectiveness of our method

across different models like ResNet-56, ResNet-18/34,

and MobileNet-V2.

2. Related Works

Federated Learning. Federated learning (FL) is a new kind

of distributed learning approach that involves a server coor-

dinating a group of clients/devices to learn a model. In FL,

at each epoch, devices retrieve the model from the server,

train the model locally for several steps, and then upload

the updated model back to the server. The server aggregates

the updates from devices to update the global model. FL

presents several challenges that need to be addressed for

effective implementation. Firstly, devices in FL often have

different data distributions. Various methods are proposed

to solve the data heterogeneity [20, 29, 43, 44, 51, 58, 82].

Second, the communication between devices and the server

is expensive and is a critical bottleneck in FL training. Com-

pression techniques are applied in FL to reduce the com-

munication [24, 30, 45, 57, 64, 68], Finally, although in FL,

the server does not have access to the user data, model in-

version attack [15] is shown to recover the user information

based on the model updates. Cryptography techniques are

applied to improve the privacy of FL, such as homomorphic

encryption [39, 53], differential privacy [49] and multiparty

secure computation [66] etc.. In addition to the challenges

discussed, there are several other challenges in FL, such as

fairness and model interpretability, a more comprehensive

review of FL can be found in [28, 42].

Network Pruning. (1) Regular Setting. Most network

pruning methods assume they can easily access all samples

without restrictions. Early works [18, 38] simply use L1

or L2 norm to measure the importance of weights or struc-

tures. Calculating norms does not require samples, and it

can be seamlessly extended to the FL setting. However, the

performance of these methods is often worse than meth-

ods [11, 22, 76] that require samples for pruning. One

direction of data-driven pruning methods relies on batch

normalization (BN) [23] layers since BN is popular for the

design of recent CNNs [19, 59]. These methods utilize the

scaling factor of BN to indicate which channels are impor-

tant. Liu et al. [46] use sparse regularization on the scaling

factors of BN to prune channels, where a channel is pruned

if its corresponding scaling factor is small. Pruning methods

that involve BN are effective. However, BN layers can pose

challenges in the FL setting due to the varying data distribu-

tion across devices, leading to significant differences in BN

layers’ running mean and variance. Another research direc-

tion frames channel pruning as a constrained optimization

problem [8–14, 32, 76]. In this direction, learnable parame-

ters are utilized to control each channel, and these parameters

are end-to-end differentiable, allowing for gradient-based

optimization methods. Since these methods do not rely on

BN layers, they can potentially be extended to the FL setting.

Alongside advancements in vision, Natural Language Pro-

cessing (NLP) has significantly progressed, demonstrated by

key studies [62, 72, 77–81]. Concurrently, structure pruning

has emerged as a method to improve the efficiency of large

language models, as shown in recent research [67].

(2) Non-iid Setting. Without specialized treatment, regu-

lar pruning methods can impose strong biases in pruned mod-
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Figure 1. An overview of our proposed method. We first generate network embeddings for server-side and device-side sub-networks

given their ids. We then use them as the inputs to the hypernetwork to produce the corresponding sub-networks. We then optimize the

hypernetwork given loss functions on each device.

els because of heterogeneous (non-iid) local data distribu-

tions. Shao et al. [60] employs local training with a full-size

model to discard unimportant channels (measured in channel

norms) on devices. FedPrune [52] guides pruning based

on updated activations. LotteryFL [37] iteratively prunes

a full-size model on devices. PruneFL [27] reduces local

computational costs by finer pruning a coarse-pruned model.

ZeroFL [54] partitions weights into active and non-active

weights and stores sparsified weights and activations for

backward propagation, and it also needs to store non-active

weights and dense gradients. Bibikar et al. [3] employs mask

adjustment on devices and sparse aggregation and magnitude

pruning on the server to generate a new global model. The

FedTiny [21] approach incorporates an adaptive batch nor-

malization (BN) selection module, which adaptively obtains

an initially pruned model that can better fit deployment sce-

narios. Most aforementioned methods focus on weight-level

pruning/sparsity, often requiring high communication costs

to compute importance scores for all parameters. On the

other hand, our method learns the channel configuration of

each layer, which is less resource-demanding.

Federated Bilevel Optimization. Our channel pruning

can be viewed as a federated bilevel optimization problem

(FedBiO). The general FedBiO problem has been studied in

the literature [65, 71, 75]. FedNest [65] studied the general

nested federated problems with FedBiO being a special case,

and it utilized variance reduction to tackle the heterogeneity

of lower level problems; simFBO [71] and FedBiOAcc [41]

adapts the single loop bilevel optimization problems to the

federated learning setting. Some applications in FL can

be viewed as bilevel optimization problems, such as noisy

labels [40] and communication-efficient FL [41].

3. Method

3.1. Notations

We will first introduce our notations before formally de-

scribing our method. In a convolutional neural network

(CNN), the feature map of the lth layer is denoted by

Fl ∈ ℜCl×Wl×Hl , where Cl represents the number of chan-

nels, and Hl and Wl represent the height and width of the

current feature map. L denotes the total number of layers in

the CNN. For simplicity, we ignore the mini-batch dimension

of feature maps in our notation.

3.2. Federated Learning Setting

We first describe the federated learning problem considered

in this paper. In the FL setting, we train a neural network

on N local datasets Dn, n ∈ {1, 2, 3 · · · , N}. Through this

paper, the data distribution on local devices is heterogeneous.

To train a neural network in this setting, we want to optimize

the following optimization problem:

min
W

1

N

N
∑

n=1

L(W, Dn), (1)

where W is the weights of the CNN, and L is the objective

function. One common method to minimize communication

costs is by using local stochastic gradient descent (SGD),

where the local device performs several update steps with

their local data before averaging the model weights W . Fe-

dAvg [49] is a popular algorithm that adopts this approach.

3.3. Generate Sub­network Architectures

To prune a model, we need to first generate the corresponding

sub-network architectures. To achieve this goal, we use a

binary vector a ∈ {0, 1} to represent whether to keep or

prune a channel. To facilitate the learning of the sub-network

architecture, we use a hypernetwork [16] (HN) to generate

the architecture vector a:

a = HN(e; θHN), (2)
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where e is the network embedding of the corresponding

device or server, which will be discussed later, and θHN is

the parameters of the HN. We use Straight-Through Gumbel-

Sigmoid [25] to enable gradient calculation for the HN. To

control the pruning of each channel, we apply a to the feature

map of each layer:

F̂l = al »Fl, (3)

where F̂l is the feature map after applying al (the archi-

tecture vector of lth layer). Note that we insert al after

normalization and activation layers, which correspond to

control the output channels of the previous convolution layer

and input channels of the next convolution layer.

An alternative approach to control pruning is to add learn-

able parameters for each channel. However, this approach

presents challenges in the context of FL. If we only train a

single sub-network for compression, local parameters must

be accumulated on the server. Using individual learnable

parameters for each channel may result in significantly dif-

ferent parameters across devices due to the non-iid setting,

rendering the final parameters meaningless (often close to

0.5 before binarization). Additionally, if we aim to learn

device-wise sub-networks for pruning, we would need to

train N sets of parameters for all devices, making it unclear

how to share knowledge between devices.

3.4. Architecture Embedding for Server and Device
Side Sub­networks

Our method aims to find the appropriate server-side sub-

network and device-side sub-networks. The server-side

sub-network serves as the weight bank for device-side sub-

networks. In addition, it reduces the communication and

training costs at the finetuning stage and alleviates the mem-

ory burden on each device. Device-side sub-networks are

used to meet the resource constraint of each device at the

inference time, assuming the training and test data distri-

bution on each device are similar. Using HN potentially

provides a unique opportunity to share knowledge between

server-side and device-side sub-networks. To achieve this,

we introduce an embedding layer to produce the embedding

for each sub-network:

en = Emb(n; θEmb), n = 0, · · · , N, (4)

where θEmb is the parameters of the embedding layer Emb,

and n is the index for each device. In addition, we let n = 0
represent the embedding for the server-side sub-network.

By putting Eq. 2 and Eq. 4 together, we can generate the

server-side sub-network and device-side sub-networks by

using:

a
0 = HN(Emb(0; θEmb); θHN),

a
n = HN(Emb(n; θEmb); θHN), n = 1, · · · , N,

(5)

Algorithm 1: Learning Server-side and Device-side

Sub-networks

Input: Dn, Da

n ,ps, pnd , λ, S, K, rW , rθ , rHN

Initialization: kHN = 0.

broadcast the current state of the CNN

for k := 1 to K do

/* Training the CNN. Freeze θ of the

HN. */

for For each device in parallel do
1. Calculate gradients w.r.t to the loss function

defined in Eq. 7.

2. Update local CNN weights using the preferred

optimizer.

end

/* Server updates of the CNN. */

3. if k % rW = 0 then
Randomly sample S devices,

average states of the CNN and broadcasts the

updated states.

/* Training the HN. Freeze W of the

CNN. */

if k % rHN = 0 then

for For each device in parallel do
1. Calculate gradients w.r.t θ given the loss

function defined in Eq. 6.

2. Update local HN weights (including Emb)

using the preferred optimizer.

end

/* Server updates of the HN. */

3. if kHN % rθ = 0 then
Randomly sample S devices,

average states of the HN and broadcasts the

updated states.
4. kHN = kHN + 1

end

Pruning the model with resulting a
0, and fine-tuning it.

where a
0 is the server-side sub-network and a

n are device-

side sub-networks. The embedding layer is used more fre-

quently in natural language processing [50], but it well suits

our task since it can covert the device id into a corresponding

sub-network by combining Emb and HN.

3.5. Channel Pruning for Federated Learning

Given the aforementioned settings, we can now formally

introduce the objective function for channel pruning. The

channel pruning problem can be viewed as a constrained

optimization problem, where the constraint is used to control

the computational resource of the sub-network. The channel

pruning objective function can be formulated as follows:

min
θ

1

N

N
∑

n=1

L(W, Da

n;a
0 » a

n) (6)

+ λ[(R(T (a0), psTtotal) +
1

N

N
∑

n=1

R(T (a0 » a
n), pndTtotal)],
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where θ contains both θHN and θEmb, a0 and a
n are gener-

ated by using Eq. 5, Da

n is a subset of the local datasets

Dn, R is the regularization loss to control the FLOPs of the

sub-network, ps ∈ (0, 1] is a predefined hyperparameter to

control the preserved FLOPs of the server-side sub-network,

pnd ∈ (0, 1], n = 1, · · · , N are also predefined hyperparam-

eters to control the FLOPs of sub-networks on each device,

T (a0) or T (a0 » a
n) is the current FLOPs decided by the

sub-network architecture a
0 or a

0 » a
n, and Ttotal is the

total FLOPs of the CNN. The FLOPs constraint R(x, y)
is generally a regression problem, but regular regression

loss functions, like MAE and MSE, can hardly push R to

near zero values. We let R(x, y) = log(max(x,y)
y ) to push

R to be close to 0. In addition, we explicitly require that

if a channel is pruned by the server-side sub-network, the

corresponding device-side sub-networks should not update

the corresponding position, and the detail is shown in the

supplementary materials.

We perform iterative updates between model weights

and the sub-network architectures. When updating model

weights, we use the following equation:

min
W

1

N

N
∑

n=1

L(W, Dn;a
0 » a

n). (7)

When training model weights, we freeze the sub-networks

generated by the HN, and when training the HN, we also

freeze W .

The overview of our method is shown in Fig. 1. The

algorithm of training our method for one epoch is shown

in Alg. 1. In Alg. 1 Dn and Da

n are local datasets and their

sub-set for training the HN. λ is the hyperparameter to con-

trol FLOPs constraints, S is the number of sampled devices,

K is the number of iterations within one epoch, rW is the

state average interval for the CNN, rθ is the state average

interval for the HN, rHN decides the frequency of training

the HN. To control the communication and the additional

training costs, we introduce three hyperparameters: rW , rθ
and rHN. rW , rθ controls the communication costs for train-

ing the model and the HN. Larger rW and rθ will reduce

the communication costs, but it may also negatively affect

the quality of the final model and generated sub-networks

under the FL setting. rHN controls the overall training costs

brought by HN. Similarly, larger rHN results in smaller addi-

tional training costs, but it makes the training of HN harder

since the difference of model weights is larger between con-

secutive training iterations of the HN. We follow Mime [31]

for averaging states of the optimizers.

3.6. Theoretical Guarantee of Convergence

The objective of channel pruning is finding an optimal sub-

network such that the FLOPs constraint is satisfied and the

model performance is maximized. In fact, channel pruning in

our setting can be viewed as a federated bilevel optimization

problem [63, 69]. More formally, we combine Eq.(6) and

Eq. (7) to have:

min
θ

h(θ) :=
1

N

N
∑

n=1

L(Wθ, D
a

n;a
0 » a

n)

+ λ[(R(T (a0), psTtotal) +
1

N

N
∑

n=1

R(T (a0 » a
n), pndTtotal)],

s.t.Wθ = argmin
W

1

N

N
∑

n=1

L(W, Dn;a
0 » a

n). (8)

From a bilevel’s perspective, we do channel pruning by

iteratively performing the following steps until convergence:

for a given sub-network structure from the HN and Emb,

we first find the optimal model weight W(solving the lower

level problem in Eq. (8)); then we optimize the sub-network

based on this optimal model weight(solving the upper level

problem in Eq. (8)). Finding the optimal model weight is

expensive, especially for modern deep neural networks; we

instead optimize the HN and Emb weights θ and the model

weight W alternatively as in Alg. 1. Furthermore, the gradi-

ent w.r.t the sub-network structure includes both a direct part,

which is the direct gradient w.r.t θ, and an indirect part due

to Wθ is a function of θ (the minimizer of the lower level

problem). However, the indirect gradient is expensive to

evaluate and leads to minor empirical improvement in prac-

tice, so we only consider the direct gradient when updating θ

in Alg. 1. The convergence of our alternative update method

is guaranteed under mild assumptions [26, 73] as stated in

Theorem 3.1 below:

Theorem 3.1. Suppose we choose the upper level learning

rate η and the lower level learning rate γ as:

η = min

{

1

4Lrθ
,

(

2bN∆θ

KHNLσ2

)1/2}

,

and

γ = min

{

1

4L
,

(

λbN

KHNL2σ2

)1/2}

,

then we have:

1

KHN

KHN−1
∑

kHN=0

E∥∇h(θ̄kHN
)∥2 = O

(

1

(bNKHN )1/2

)

where b is the mini-batch size, N is the number of devices,

and KHN is the number of update steps to the upper level

variable θ.

As stated in Theorem 3.1, our algorithm converges to

a stationary point of Eq. (8), with a convergence rate of

O(K−0.5
HN ). Furthermore, the algorithm achieves linear speed

up w.r.t the number of devices and mini-batch size.
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Method Dataset Architecture Base Acc ∆-Acc Acc ³ FLOPs (D) ³ FLOPs (S)

Filter Pruning [38]

CIFAR-10 ResNet-56 91.22%

-0.93% 90.29% 50% 50%

FedOSP -0.28% 90.94% 50% 50%

FedILP -0.08% 91.14% 50% 50%

DWNP +0.66% 91.88% 50% 20%

Filter Pruning [38]

CIFAR-100

ResNet-18 66.57%

-1.31% 65.26% 50% 50%

FedOSP -0.61% 65.96% 50% 50%

FedILP -0.20% 66.37% 50% 50%

DWNP +1.74% 68.31% 50% 20%

Filter Pruning [38] -2.52% 64.05% 70% 70%

FedOSP -1.79% 64.78% 70% 70%

FedILP -1.44% 65.13% 70% 70%

DWNP +0.05% 66.62% 70% 50%

Filter Pruning [38]

ResNet-34 69.05%

-1.22% 67.83% 50% 50%

FedOSP -0.29% 68.76% 50% 50%

FedILP +0.44% 69.49% 50% 50%

DWNP +2.17% 71.72% 50% 20%

FedILP
MobileNet-V2 66.76%

-0.22% 66.64% 48% 48%

DWNP +1.46% 68.22% 48% 20%

Table 1. Results of CIFAR-10 and CIFAR-100. ‘Base Acc’ represents the baseline training accuracy. ‘∆-Acc’ represents the accuracy

changes before and after pruning. ‘Acc’ represents the accuracy after pruning. ‘↓ FLOPs (D)’ and ‘↓ FLOPs (S)’ represent the pruned

FLOPs of device-side and server-side sub-networks.

Architecture Method Base Top-1 Acc Base Top-5 Acc ∆ Top-1 Acc ∆ Top-5 Acc ³ FLOPs (D) ³ FLOPs (S)

ResNet-18

Filter Pruning [38]

54.99% 78.60%

-1.01% -0.33% 50% 50%

FedOSP -0.18% +0.48% 50% 50%

FedILP +0.07% +0.65% 50% 50%

DWNP +1.06% +1.10% 50% 20%

ResNet-34

Filter Pruning [38]

56.32% 79.37%

-0.91% -0.21% 50% 50%

FedOSP -0.20% +0.21% 50% 50%

FedILP -0.03% +0.34% 50% 50%

DWNP +0.80% +0.74% 50% 20%

Table 2. Comparison results on TinyImageNet with ResNet-18/34. ‘Base Top-1/5’ represents the baseline training Top-1/5 accuracy. ‘∆

Top-1/5 Acc’ represents the Top-1/5 accuracy changes before and after pruning.

4. Experiments

4.1. Settings

Datasets and Models. We use CIFAR-10 [34], CIFAR-

100 [34], and TinyImageNet [6, 36] to evaluate the perfor-

mance of our method. Our method uses ps and pnd to control

the FLOPs for the server and each device. In the experiment

section, we assume pnd has the same value for different de-

vices for a fair comparison with other methods. The detailed

choices of ps and pnd are listed in supplementary materials.

We choose ResNets [19] and MobileNet-V2 [59] for com-

parison. For CIFAR-10, we compare our method with other

baselines on ResNet-56. For CIFAR-100, we compare our

method with other baselines on ResNet-18, ResNet-34, and

MobileNet-V2. For TinyImageNet, ResNet-18 and ResNet-

34 are used for comparisons. To reduce the negative effects

caused by batch normalization layers, we replace batch nor-

malization with layer normalization [2], which has been used

frequently in recent designs of vision transformers [7] and

CNNs [47]. For the main experiments, we consider N = 10

devices. We use the Dirichlet distribution with α = 0.5, as

described in [48], to create non-iid partitions on the devices

for all datasets. Other settings of N and α are also verified

for specific models and datasets. As described in section 3,

we assume the training and test datasets on each device are

similar. To accomplish this, we apply a random permutation

to the samples drawn from the Dirichlet distribution for the

training dataset and then split the test dataset based on the

permuted samples. As a result, the training and test datasets

distributions on each device are similar but not the same.

More details are given in the supplementary materials. Base-

lines. In addition to the proposed method, we also build three

baselines from the literature on channel pruning. (1) Filter

Pruning: we directly adapt the Filter Pruning [38] to the FL

setting, where there are no communication costs for pruning.

In this setting, pruning is purely based on the channel norm

of the weights. (2) FedOSP (Federated One-Shot Pruning):

this baseline can be seen as an improved version of channel

pruning methods with differentiable gates [11, 32, 76] in the

one-shot pruning setting. In this setting, we use the HN to

generate one sub-network for all devices. The HN is learned

in a one-shot setting when model weights are frozen. (3)

FedILP (Federated Iterative-Learning and Pruning): this

baseline can be seen as the simplified version of our method

without device-side sub-networks. Through the experiment

section, our method is abbreviated as DWNP (Device-Wise

Network Pruning). For all settings, we report the mean
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(a) α = 0.05 (b) α = 0.10 (c) α = 0.50

Figure 2. The layer-wise pruning rates for device-side sub-networks, the union of device-side sub-networks, and the server-side sub-network

with different α. The union of device-side sub-networks represents the union of kept channels from all devices.

Method
N = 10 N = 25 N = 50

Base Acc Base Acc Base Acc

FedILP

66.57%

66.37%

65.86%

65.37%

65.13%

64.88%

-0.20% -0.49% -0.25%

DWNP
68.31% 68.09% 67.58%

+1.74% +2.23% +2.45%

Table 3. Performance of pruned models given different numbers of

devices N with ResNet-18 on CIFAR-100.

results across three runs.

Training Settings. We describe the hyperparameters in

Alg. 1 in this section. For all methods, we let S = N ,

λ = 2.0, rW = 5, rθ = 2 and rHN = 10. K is the number

of iterations for training one epoch. For Filter Pruning and

FedOSP, we train a base model for 200 epochs, and this

base model also servers as the baseline model in Tab. 1 and

Tab. 2. For FedILP and DWNP, we train the model and the

hypernetwork from scratch for 200 epochs. For FedIPL and

DWNP, we start the training of the hypernetwork after 1
4 of

the total training epochs, which avoids misleading pruning

results when weights are not properly trained. We finetune

the model for 200 epochs for all methods to recover the

performance. For each local dataset, we sample 10% of the

training samples to construct Da

n. When updating the local

W , we use SGD with momentum 0.9 and a start learning

rate 0.1. When updating the local θ, we use Adam [33] with

a start learning rate of 10−3. Other training details are shown

in the supplementary materials.

4.2. Results

CIFAR-10/CIFAR-100. We tested different settings on

CIFAR-10 and CIFAR-100 and found that our method

DWNP consistently achieved the best performance across

different model architectures and pruning rates. Specifically,

DWNP outperformed the original model by 0.66%, 1.74%,

2.17%, and 1.46% for ResNet-56, ResNet-18, ResNet-34,

and MobileNet-V2, respectively. This demonstrated that

the design of device-wise sub-networks is beneficial for

achieving a good trade-off for channel pruning under the

federated learning setup. Our method even surpassed the

original model when pruning 70% of FLOPs on ResNet-

18. The relative ranking of other baselines is Filter Pruning,

Method Architecture
α = 0.5 α = 0.1 α = 0.05

Base Acc Base Acc Base Acc

FedILP

ResNet-18 66.57%

66.37%

63.22%

62.77%

61.61%

60.50%

-0.20% -0.55% -1.11%

DWNP
68.31% 64.51% 62.59%

+1.74% +1.29% +0.98%

FedILP

ResNet-34 69.05%

69.49%

66.77%

66.46%

64.52%

63.54%

+0.44% -0.31% -0.98%

DWNP
71.72% 68.20% 65.53%

+2.17% +1.43% +1.01%

Table 4. Performance of pruned models given different choices of

α with ResNet-18/34 on CIFAR-100.

FedOSP, and FedILP. Our method achieved a prominent

trade-off between performance and computational costs on

more complex datasets, like CIFAR-100, with an improve-

ment of 0.05%∼2.17% over the original model when prun-

ing 50% FLOPs or more. The performance of our method

on MobileNet-V2 demonstrated that it could be seamlessly

extended to lightweight models.

TinyImageNet. We present the results of ResNet-18

and ResNet-34 on TinyImageNet in Tab. 2. DWNP is

1.06%/1.10% better than the original model regarding the

Top-1/5 accuracy for ResNet-18. For ResNet-34, the ad-

vantage is 0.80%/0.74% regarding the Top-1/5 accuracy.

The advantage of our method compared to other baselines

is still obvious, which ranges from 1.13% ∼ 2.07% and

0.45% ∼ 1.75% for ∆ Top-1/5 accuracy for ResNet-18. We

have similar observations for ResNet-34.

Across all settings, FedILP often performs better than

FedOSP, indicating that learning model weights and archi-

tectures simultaneously are beneficial, as explained in sec-

tion 3.6. In general, data-driven approaches perform better

than pruning methods based on channel norms, suggesting

that local data distributions should be considered explicitly

when pruning under the FL setting. Indeed, the performance

gain of DWNP is not free. For the server-side sub-network,

the FLOPs reduction for DWNP is much smaller than other

methods, and DWNP has to occupy more storage space on

the server.

Other Settings. To verify whether our method can perform

well in other settings, we change N and α to create different

FL settings. In the first experiment, we use ResNet-18 on

CIFAR-100 to verify whether our method can achieve sim-

12348

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:06 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. (a, e): normalized FLOPs regularization loss values for the server-side sub-network. (b, f): normalized FLOPs regularization loss

values for device-side sub-networks. (d, h): test accuracy given different choices of rHN. (d): communication costs. (h): trade-off between

server-side and device-side sub-networks. Experiments are conducted on CIFAR-100 with ResNet-18 and when pruning 50% FLOPs (a,b,c)

and 70% FLOPs (f,g,h) on devices.

ilar performance when changing the number of devices N .

From Tab. 3, we can see the ∆-Acc is increased given more

devices, which shows that our method is more resilient when

increasing the number of devices N . On the other hand,

the ∆-Acc of FedILP is similar or worse when increasing

the number of devices, probably because the learning of the

sub-network becomes harder when increasing N . In Tab. 4,

we show the results when changing α on ResNet-18/34. A

smaller α represents more diverse local data distributions

and is often harder for model training. The table shows that

both DWNP and FedILP are affected by decreasing α. How-

ever, DWNP can still maintain a positive performance gain

for both ResNet-18/34. We plot the layer-wise pruning rate

for channels with different α in Fig. 2. It can be seen that the

sub-network architecture changes when changing local data

distributions. For high heterogeneity (α = 0.05), DWNP

prefers to perverse more later layer channels, which is plau-

sible because feature maps of later layers are more diverse

on each device. In addition, the early stages of the model

are not well utilized by device-side sub-networks. On the

one hand, it is reasonable since CNNs tend to learn uniform

representations from early stages. On the other hand, maybe

we can add constraints to encourage the utilization of early

stages or adjust the server-side sub-network so that it can be

better used.

Detailed Analysis. We examine how rHN changes the train-

ing dynamics during the optimization process. The training

of model weights is not the focus of our paper, so we did

not study rW . The effect of rθ is not obvious compared to

rHN. We present our study in Fig. 3. We plot the first 50
epochs for regularization loss values after the training of

HN begins. As described in the settings 4.1, the training of

HN starts after 50 epochs of model weights training. We

test 4 settings of rHN: {5,10,20,30}. In short, our method

performs well when rHN f 10. We can see an obvious per-

formance drop when rHN = 30. We also plot the overall

communication costs for W and θ in Fig. 3d, and the red

dashed line represents the costs for W only. For rHN g 10,

the communication overhead from training the HN becomes

marginal. As a result, rHN = 10 provides a good trade-off

between performance and additional communication costs.

In Fig. 3h, we show the trade-off between the model per-

formance and the server-side FLOPs when pruning 50% of

FLOPs on devices with ResNet-18 on CIFAR-100. We can

see that our method can maintain a good performance when

the remained server-side FLOPs are larger than 75%.

5. Conclusion

In this paper, we proposed a new channel pruning method

under the Federated Learning settings. Specifically, we gen-

erate device-side sub-networks from the server-side sub-

network through a hypernetwork and a network embedding

layer for device-wise pruning. Our method can be opti-

mized in an end-to-end differentiable fashion, which is very

efficient. In addition, the extra communication costs and

training costs for the hypernetwork and the embedding layer

can be easily controlled using only two hyperparameters.

Furthermore, we establish a theoretical guarantee of conver-

gence, affirming that our method converges to a stationary

point. Our method achieves competitive performance on

CIFAR-10, CIFAR-100, and TinyImageNet datasets with

ResNets and MobileNet-V2.
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