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ABSTRACT
With the increase in the computation intensity of the chip, the
mismatch between computation layer shapes and the available
computation resource significantly limits the utilization of the chip.
Driven by this observation, prior works discuss spatial accelerators
or dataflow architecture to maximize the throughput. However,
using spatial accelerators could potentially increase the execution
latency. In this work, we first systematically investigate two execu-
tion models: (1) sequentially (temporally) launch one monolithic
accelerator, and (2) spatially launch multiple accelerators. From the
observations, we find that there is a latency throughput tradeoff
between these two execution models, and combining these two
strategies together can give us a more efficient latency throughput
Pareto front. To achieve this, we propose spatial sequential architec-
ture (SSR) and SSR design automation framework to explore both
strategies together when deploying deep learning inference. We
use the 7nm AMD Versal ACAP VCK190 board to implement SSR
accelerators for four end-to-end transformer-based deep learning
models. SSR achieves average throughput gains of 2.53x, 35.71x, and
14.20x under different batch sizes compared to the 8nm Nvidia GPU
A10G, 16nm AMD FPGAs ZCU102, and U250. The average energy
efficiency gains are 8.51x, 6.75x, and 21.22x, respectively. Com-
pared with the sequential-only solution and spatial-only solution
on VCK190, our spatial-sequential-hybrid solutions achieve higher
throughput under the same latency requirement and lower latency
under the same throughput requirement. We also use SSR analytical
models to demonstrate how to use SSR to optimize solutions on
other computing platforms, e.g., 14nm Intel Stratix 10 NX.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; • Hardware → Hardware-software codesign.

KEYWORDS
Heterogeneous Computing, Domain-Specific Accelerator, Versal
ACAP, Transformers, Design Space Exploration, Latency Through-
put Tradeoff, Deep Learning
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1 INTRODUCTION
Latency and throughput are two crucial performance metrics when
deploying deep learning models on various computing platforms.
Depending on the nature of the applications and different user
expectations, different application scenarios have different latency
requirements. For example, the latency requirement in autonomous
driving is more stringent than that in video conferencing. The for-
mer requires milliseconds or submillisecond latency [1, 2, 3, 4] for
a life-critical system whereas the latter has a looser latency require-
ment of hundreds of milliseconds. Furthermore, throughput is also
needed to be considered. For example, in data center services, e.g.,
Microsoft [5, 6, 7, 8], Google [9], AWS [10], etc, higher through-
put means less amount of data center servers and therefore less
power consumption for the same workload. On the other hand, it
can also support more volumes of users while ensuring real-time
user content updates with the same amount of servers. For au-
tonomous vehicles, to safely navigate the changing environments,
higher throughput means processing higher amounts of sensor data
to make real-time decisions [11].

The two factors are also intertwined and there is a design tradeoff
between latency and throughput. In general cases, a system can not
get high throughput and low latency simultaneously. If a design
requires higher throughput which can be achieved by batching
more data, the system would have to sacrifice latency. While users
can only explore latency throughput tradeoff by changing the batch
size when using the off-the-shelf deep learning framework on GPUs,
FPGA accelerators [12, 13, 14, 15, 16] and other tiled accelerators [17,
18, 19, 20, 21, 22, 23, 24] provide more flexibility and users have a
larger design space to explore the latency throughput tradeoff.

By using on-chip local scratchpad memory and configurable pro-
cessing elements, users can design customized accelerators (accs)
that fit certain computations, and this is called accelerator (acc) cus-
tomization. There are different strategies when mapping multiple
layers within a deep learning model onto FPGAs or tiled acceler-
ators. One common method is to design one unified acc that can
compute different layers within the model graph and the unified
accelerator is launched sequentially to finish all the layers [26].
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Figure 1: Execution models for sequential, spatial, and our
proposed spatial-sequential-hybrid architecture (SSR).
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Figure 2: Latency and throughput tradeoff under different
strategies for one representative vision transformer model,
i.e., DeiT-T [25]. SSR (ours) achieves a better Pareto front than
sequential acc and fully spatial accs designs.

The execution model timeline is shown in Figure 1(a). Here we
use a graph with four layers 0-3 to illustrate. The arrows show
the layer dependencies in the graph. Where there is only one acc,
ACC0, four layers L0, L1, L2, L3 are launched sequentially while
honoring the dependencies in the graph. When users increase the
batch size, in the timeline, L0-L3 will become longer. We also ap-
ply the sequential acc design strategy and map one representative
deep learning application, an INT8 quantized vision transformer
model DeiT-T [25] for image classification task on AMD ACAP
VCK190 [27]. We sweep the batch size from 1 to 6 and find the
customized monolithic acc that gives the highest throughput under
each batch size. We plot the latency and corresponding throughput
for each batch size as a 2-D scatter plot and add the trendline as
shown in Figure 2. From point A to point B, the latency increases
from 0.22 ms to 1.3 ms. The effective throughput slightly increases
from 10.90 TOPS to 11.17 TOPS, which means the sequential acc
design strategy achieves 10.9% utilization of the peak INT8 compu-
tation performance (102 TOPS) for AMD VCK190. The underlying
reasons for such a utilization are: (1) the computation and commu-
nication patterns for different layers in DeiT-T vary a lot; (2) there
is a huge mismatch between the small matrix multiply layer shape
and the huge computation resource. Therefore, the first question
arises: Can we achieve a higher throughput?

A common solution is to apply an alternative design strategy,
i.e., implementing spatial accs [8] and mapping each layer with

a dedicated specialized acc, i.e., fully spatial acc design. The corre-
sponding execution model timeline is shown in Figure 1(b), where
there are four accs, ACC0-ACC3. Since there are dependencies be-
tween layers 0-3, four layers in the same batch data B0L0, B0L1,
B0L2, B0L3 have to be launched sequentially. As can be observed
from Figure 1(b), if there is only one batch, ACC0-ACC3 will be se-
verely underutilized. However, when there are more batches, e.g.,
B1-B3, the executions for different layers from different batches
can be pipelined. Therefore, the utilization of ACC0-ACC3 is greatly
improved. This also matches the trendline in Figure 2 from point C
with throughput as 5.66 TOPS to point Dwith throughput improved
to 26.70 TOPS.

When choosing from these two strategies, sequential vs. spatial,
the optimal design varies under different design constraints. For ex-
ample, in Figure 2, if the latency requirement is 0.43 ms, sequential
acc is more favorable than spatial acc as point A achieves a higher
throughput and a smaller latency than point C. This is intuitive
to understand. When the batch size is 1, as each spatial acc has
a smaller resource than the one monolithic acc, each layer takes
longer execution time on separate spatial accs than on one mono-
lithic acc. However, if the latency requirement is 1.3 ms, spatial acc
is more favorable than sequential acc as point D achieves a higher
throughput and smaller latency than point B. This is also intuitive
to understand. When the batch size is large, spatial accs tend to
have better customization and more batches fill the pipeline gaps
and improve the utilization. Based on this observation, one follow-
up question arises: Can we combine sequential acc and spatial acc
strategies together and gain the best of both worlds?

Our answer is “Yes". The key idea is to enable more schedul-
ing flexibility to map any layers to any accs where the number of
accs can be one to the maximum number of layers. We illustrate
such a sequential-spatial hybrid architecture (SSR) in Figure 1(c).
In this approach, there are two accs, ACC0 and ACC1. Layer 0 and
3 map to acc0. Layer 1 and 2 map to acc1. By using such hybrid
architecture, users can find an even better throughput than sequen-
tial acc and spatial acc strategies. For example, in Figure 2, if the
latency requirement is 0.43 ms, the SSR hybrid strategy (point E)
achieves throughput 18.56 TOPS, which is 1.70x throughput im-
provement than the sequential acc strategy (point A) and 3.28x
than the spatial acc strategy (point C). The new design points
enabled by the SSR strategy constitute a better Pareto front in
latency throughput tradeoff. That is, our SSR sequential spatial
hybrid solutions achieve higher throughput under the same latency
requirement or lower latency under the same throughput require-
ment compared with the sequential-only solution and spatial-only
solution. In summary, our main contributions are:

• Design Challenges Analysis: To understand the performance,
we first perform an in-depth kernel profiling of DeiT-T on Nvidia
GPU A10G in Section 2. Then we discuss the challenges of explor-
ing latency throughput tradeoff for deep learning applications
and propose our design principles.

• SSR Accelerator and Framework: We propose SSR accelera-
tor, a novel sequential and spatial hybrid accelerator template,
and SSR framework, a programming mapping solution, in Sec-
tion 4 to leverage the ACAP’s heterogeneous components within
the same system-on-chip, including FPGA and AIE vector cores.
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• SSR Implementations:We deploy the SSR framework to ex-
plore latency throughput tradeoff of four models on VCK190 in
Section 5. Our on-board experiments demonstrate that under var-
ious latency constraints, SSR achieves average throughput gains
as 2.53x, 35.71x, and 14.20x under different batch sizes compared
to the 8nm Nvidia GPU A10G, 16nm AMD FPGAs ZCU102, and
U250. The average energy efficiency gains are 8.51x, 6.75x, and
21.22x, respectively.

• Open-source Tools and Discussions on Mapping Insights:
We open-source our tools with detailed guides to reproduce all
of the results presented in this paper: https://github.com/arc-
research-lab/SSR. We also discuss mapping insights in Section 6.

2 DESIGN CHALLENGES AND PROPOSED
SOLUTION

Exploring latency throughput tradeoff requires a deep understand-
ing of the performance. To understand the performance of different
layers within a deep learning application, we first perform an in-
depth kernel profiling by using TensorRT [28] to deploy an INT8
quantized DeiT-T inference on Nvidia GPU A10G. Built with 8nm
fabrication, the Nvidia A10G GPU has 72 stream multiprocessor
(SM)s with 4 tensor cores per SM, reaching the peak INT8 perfor-
mance as 140 TOPS and peak FP32 performance as 35 TFLOPS, as
specified in Table 1. We profile DeiT-T and set the batch size as 6.
The measured end-to-end latency is 1.43 ms. We show the kernel
time breakdown in Figure 3.We have the following observations: 1○
The matrix-multiply or convolution-type kernel utilization
is low. This includes matrix-multiply (MM), batch matrix-multiply
(BMM), and patch embedding, i.e., convolution. We calculate the
effective throughput in these layers as 18 TOPS, which is only 13%
of the peak INT8 throughput on A10G (140TOPS). 2○ The non-
linear layers including Softmax, GELU, and LayerNorm take
significant GPU cycles. These layers consume less than 1% of
the total computation operations, however, take around 28% of the
total time. These layers are mapped to CUDA cores on the GPU. 3○
The data layout change kernel consumes non-negligible GPU
cycles, around 8% of the total latency. The data layout change
kernel, i.e., Transpose, is introduced either implicitly as certain
data layouts are favorable for GPU Tensor Cores computation, e.g.,
the least dimension of the tensor is aligned with 32, or explicitly
as specified in the model. 4○ The data type conversion kernel
Reformat to convert between INT8 and FP32 also consumes
non-negligible GPU cycles, around 5% of the total latency.
This happens, e.g., when the FP32 output from Softmax needs to be
used as the input of the next matrix-multiply layer.

Table 1: Comparisons between Nvidia GPU A10G and AMD
Versal ACAP VCK190 on peak FP32 and INT8 performance,
and peak off-chip bandwidth (BW).

Hardware Specification FP32 INT8 Off-chip BW
Nvidia GPU A10G [29] 35 T 140 T 600 GB/s

AMD ACAP VCK190 [27] 6.4 T 102.4 T 25.6 GB/s

We deploy the same INT8 quantized model, DeiT-T, on the AMD
ACAP architecture [30] VCK190 [27] board using CHARM [19].
CHARM [19] is the state-of-the-art deep learning inference acceler-
ator and mapping framework on ACAP architecture, which features
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Figure 3: Kernel breakdown of DeiT-T inference latency on
GPU A10G, batch size = 6.

FPGA, AIE vector processors, and CPU on the system-on-chip. The
end-to-end latency when using CHARM [19] is 12ms, 8.4x larger
than that of GPU A10G under batch size 6. The main reason is that
CHARM maps heterogeneous accelerators on ACAP and the data
transfer among accelerators has to go to/from off-chip DDR. As
specified in Table 1, the VCK190 board has 25.6 GB/s off-chip band-
width, which is much smaller than that of A10G. 5○ Programming
on ACAP creates new unsolved challenges.Without careful de-
sign, performance on the ACAP will be constrained by the off-chip
communication among accelerators, which leads to longer latency.

+ +×

×

× × × ×

S

× MM&BMM + Residual LinkGELU LayerNormSoftMaxS

Figure 4: Layers & their dependencies in a transformer block.

We further plot the layers within a transformer block in DeiT-T
and show the dependencies between different layers in Figure 4.
When considering the sequential spatial hybrid strategies, we can
consider mapping different layers on one physical accelerator. For
example, we can map all MM and batch MM layers using one MM
accelerator and map all the other non-MM layers to separate accel-
erators. Using only one MM accelerator can potentially give us the
lowest achievable latency for MM layers as discussed in Section 1.
However, we should also consider the data communication between
this one MM accelerator and all the other non-MM accelerators.
For example, the dataflow design and input & output data layout
design of this MM accelerator should be carefully chosen. Other-
wise, it could be the case that the data layout of this MM accelerator
matches with one neighboring non-MM accelerator but it does not
match another one. Therefore, it needs data layout change, which
means extra communication overhead in addition to the computa-
tion of each layer. Therefore, 6○ when considering sequential
spatial hybrid strategies, the data dependencies in the graph
will make the communication patterns between accelerators
more complex, and the inter-acc communication should be
co-optimized during the accelerator design time.

To tackle these challenges, we propose SSR to optimize perfor-
mance, which brings the latency of mapping DeiT-T on VCK190
from 12 ms to 0.54 ms when batch size is 6, achieving a 22.22x
speedup. Our SSR solution beats the latency of GPU A10G by

https://github.com/arc-research-lab/SSR
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2.53x. SSR also enables efficient latency throughput tradeoff design
space exploration as described in Section 1. How does SSR achieve
this? First, SSR explores sequential spatial hybrid strategies when
mapping MM and BMM layers to enable the latency and through-
put tradeoff. SSR map these layers onto the AIE part of ACAP.
Second, SSR considers on-chip forwarding when the model size
fits on-chip. This greatly reduces the communication. But it also
means the design complexity of the on-chip buffers increases. We
discuss how to apply SSR in general cases when the model size does
not fit on-chip in Section 6.Third, SSR designs efficient accelerators
for nonlinear layers (Softmax, GELU, and LayerNorm), data layout
change (Transpose), and data type conversions (Reformat) on the
FPGA part. The flexibility provided by FPGA enables customization
for various types of non-MM layers, which GPU CUDA cores lack.
Fourth, SSR enables a fine-grained pipeline between MM layers
on the AIE and non-MM layers on the FPGA to hide the non-MM
latency, which further reduces the latency. Fifth, SSR considers the
inter-acc communication during the layer-to-accelerator mapping
stage and also the accelerator design stage. This further reduces
the inter-acc communication overhead.

3 RELATED WORK
In this section, we first introduce existing approaches of sequen-
tial, spatial, and hybrid accelerators in Sections 3.1, 3.2, 3.3, and
discuss their key features. We then summarize the comparisons
between SSR and the prior works in Table 2.

3.1 Sequential Accelerators
GPUs are typically used as sequential accelerators in frameworks
such as Tensorflow [39], Pytorch [40], etc. With a lot of comput-
ing resources, GPUs achieve high throughput by batch processing.
TensorRT [28] provides general solutions for mapping deep learn-
ing models on GPUs. However, it does not provide customization
on certain model workloads. Gemmini [41] is an automatic ac-
celerator generator. It can generate both systolic-array-based and
parallel vector engines like hardware accelerators. Gemmini has
been widely applied to deep learning acceleration. For example,
Sehoon et. al. [18] use Gemmini in Transformer inference. The
authors identify the characteristics of Transformer-based models
and propose various optimization methods. ViTCoD [34] designs
a dedicated accelerator for sparse and dense workloads to boost
hardware utilization for vision transformers. Auto-ViT-Acc [36]
designs an FPGA accelerator for multi-head attention and an FPGA-
aware quantization algorithm to make better use of FPGA resources.
HeatViT [35] accelerates vision transformer on embedded FPGAs
using image-adaptive token pruning and 8-bit quantization. How-
ever, these sequential accelerators use a generic accelerator for all
layers with different shapes, which possibly leads to shape mis-
match and results in larger latency.

3.2 Spatial Accelerators
Different from deep learning training, real-time AI inference appli-
cations usually do not have large batching inputs to fully explore
parallelism, and therefore, many throughput-optimized systems for
batch processing can only use a small portion of resources for a
single inference request. Microsoft BrainWave [5, 6, 7, 8] targets
real-time AI inference in the data center scale production system. It
explores parallelism within a single task and achieves much lower

latency on FPGAs compared with GPUs without sacrificing system-
level throughput. Andrew et. al. [37] identify the gap between
hardware’s peak performance and achievable performance in real
applications on Intel Stratix 10 NX FPGA. To minimize this gap in
small batch AI inference, they re-implement BrainWave [5, 6, 7, 8]
and propose enhanced neural processing unit (NPU) architecture
on Intel Stratix 10 NX FPGA. By leveraging the flexibility of FPGA,
they achieve significantly higher hardware utilization over GPUs
with a comparable peak performance.
3.3 Hybrid Accelerators
DNNExplorer [38] proposes a hybrid design methodology. Specifi-
cally, applying spatial accelerators for the first several layers and
using a generic accelerator for the rest layers to enable deep net-
works while achieving acceptable performance. DNNExplorer only
supports a fine-grained pipeline between linear kernels, which can
reduce latency to a certain extent, while in our work, we extend
the pipeline to nonlinear kernels to further reduce end-to-end la-
tency. SET [17] is a framework that automatically schedules deep
neural network (DNN) nodes onto tiled accelerators. SET proposes
a universal notation and formally defines the mapping space for
analyzing tradeoffs among different schedule choices. However,
it assumes a very flexible Network-on-Chip (NoC) to connect the
accelerators which consumes non-negligible resources and may
cause large overhead because of the data congestion in the NoC.
CHARM [19] composes heterogeneous accelerators for deep learn-
ing applications on ACAP. However, CHARM does not support
on-chip data forwarding which results in longer inference latency.
DiviML [31] formalizes the DNN partition problem on the hetero-
geneous computing systems in which different accelerators such
as GPUs are connected through PCIe links. DiviML proposes a
linear programming model to search for both model and data paral-
lelism and a heuristic schedule algorithm to optimize both latency
and throughput. However, in DiviML, data transfer only happens
after one layer finishes its computation, and overlap between com-
putation and communication is not supported. Herald [33] and
MAGMA [32] optimize DNN on heterogeneous computing systems,
but different accelerators can only communicate with each other
via off-chip memory, resulting in high latency.

We summarize the comparisons of SSR with prior works in
Table 2. SSR adopts sequential spatial hybrid strategies, enables
more scheduling flexibility to map layers to accelerators, designs
fine-grained pipelines across different types of accelerators, and
co-optimizes inter-acc communication with accelerator designs. All
together, SSR achieves a better latency throughput Pareto front.

4 SSR ACCELERATOR ARCHITECTURE
AND SSR DESIGN FRAMEWORK

In this section, we first introduce SSR framework and heterogeneous
architecture overview in 4.1 and 4.2. We then discuss hardware de-
signmethodologies and how to do efficient design space exploration
in Sections 4.3 and 4.4. Section 4.5 discusses code generation and
compilation flow.

4.1 SSR Framework Overview
Figure 5 illustrates the proposed SSR framework. The automatic
framework takes the transformer model and hardware resource
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Table 2: Comparisons between SSR (ours) and prior works.

Prior Works Computing Platform Architecture Features

Type Spatial
Accelerator

Hardware
Specialization

On-chip
Forwarding

Fine-grained
Pipeline Hybrid Inter-acc Comm.

&Acc Co-Design

TensorRT [28] GPU × × × × × ×
DiviML [31] CPU+GPUs ✓ ✓ × × ✓ ×

MAGMA [32], Herald [33] ASIC ✓ ✓ × × ✓ ×
ViTCoD [34] ASIC × ✓ × × × ×
SET [17] ASIC ✓ ✓ ✓ × ✓ ×

HeatViT [35], Auto-ViT-Acc [36] FPGA × ✓ × × × ×
BrainWave [5, 6, 7, 8, 37], Intel NPU [37] FPGA ✓ ✓ ✓ × × ×

DNNExplorer [38] FPGA ✓ ✓ ✓ × ✓ ×
CHARM [19] ACAP ✓ ✓ × ✓ ✓ ×

SSR
(Ours) ACAP and FPGA ✓ ✓ ✓ ✓ ✓ ✓
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Figure 5: SSR framework overview.

constraints as input and generates the spatial sequential hybrid exe-
cution scheduling as well as the corresponding hardware implemen-
tation on the Versal ACAP heterogeneous system. Our SSR frame-
work systematically optimizes the system throughput under certain
latency constraints through two levels of optimization including
Layer→Acc level and Acc-Customization level.

At the Layer→Acc level, given an application graph, the Layer→
Acc scheduler will first generate the layer-accelerator assignment
map by partitioning the graph into multiple sub-graphs and allo-
cating each one to a specific accelerator. For example, as shown in
Figure 5(a), the graph consists of four layers. In strategy 0 (left),
layers {0, 3} are assigned to Acc0, and layers {1, 2} are assigned to
Acc1. Based on the different layer-accelerator assignment maps, the
scheduler can determine the execution order of the nodes with the
dependency in the application graph being resolved. Assume there
are two batches of input, denoted by B0 and B1, in strategy 0, it
requires 6 units of time to finish two batches. In contrast, strategy
1 (right), requires 5 unit time. When considering the actual time in
each unit, the Acc-Customization plays an important role, thus it
leads to a coupled Layer→Acc/Acc-Customization problem. After
the Layer→Acc assignment and scheduling, our framework will

allocate the initial resource allocation constraints on each acceler-
ator. Then the Acc-Customizer will optimize the configuration of
each accelerator including the AIE array design, memory pinning
strategy (❶), and non-linear kernel fine-grained pipeline design
(❷). Most importantly, to reduce the data transfer overhead be-
tween different accelerators, we apply an inter-acc communication
and accelerator co-design and introduce a customized memory par-
titioning strategy (❸). Guided by the configuration provided by
the SSR scheduler, the automatic code generator will generate the
source code for the host CPU, PL, and AIE respectively.

4.2 SSR Heterogeneous Architecture Overview
The hardware architecture overview in our SSR framework is shown
in Figure 6. It consists of N (∈ 1,...,n) spatial accelerators imple-
mented on the AIE and PL. Within each spatial accelerator, there
are two basic blocks, the heterogeneous matrix multiply (HMM)
unit, and the heterogeneous customized engine (HCE).

The AXI DMA in the spatial accelerator is responsible for sending
the AXI request to the NoC that loads the image data/stores the
final results from/to the off-chip DDR4 memory. The HMM units
handle the computation-intensive MM and BMM kernels using the
high throughput AIE arrays. The HCE units contain senders and
receivers to transfer the data between AIE and PL. The sender and
receiver modules are not only responsible for generating the AXI
stream protocols needed by the AIE array but also for computing
the nonlinear and element-wise kernels. SSR supports extension for
future applications as any customized function units can be included
in our HCE units for data pre/post-processing. The intermediate
data can move between different spatial accelerators through on-
chip forwarding directly.

4.3 SSR Hardware Design Methodology
After introducing the overall SSR architecture, we elaborate on the
detailed hardware design methodology.
❶ HMM configuration and memory pinning strategy. In or-
der to sustain the computation of 400 AIEs under the limited PLIO
constraint [42], we design two types of HMMs demonstrated in
Figure 6. For HMM-type0, by pinning the weights to the local mem-
ory of AIEs it only takes one operand (activations) to reduce the
utilized PLIOs. However, the multi-head attention layers in trans-
former models involve two activation operands, which cannot be
implemented by HMM-type0. Thus HMM-type1 is designed to deal
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Figure 7: Element-wise and nonlinear kernel pipeline.

with such general matrix multiply operations. To apply the weights
pinning and PLIO reduction strategy to the entire application graph,
we mark each Layer→Acc assignment with an optimizable flag.
This is achieved by checking if attention layers are included in
the assignment. For example, in Figure 5(a), nodes 1 and 2 repre-
sent the multi-head attention layers with two activation inputs.
When applying strategy 0, only non-attention layers are assigned
to accelerator 0, thus we enable the optimization for searching the
configuration to pin all the weights in the local memory of AIEs.
By using this strategy, SSR enables high utilization of AIEs without
routing congestion, for example, 394 AIEs out of a total of 400 AIEs
are successfully implemented in the SSR-Spatial design.
❷ Fine-grained pipeline for element-wise and nonlin-
ear kernels. In order to reduce the latency of the non-computation-
intensive kernels, we explore the fine-grained pipeline between the
HMM and HCE units. The operations whose data reuse distance
are one, such as Transpose, VectorAdd and Reformat (data type
conversion), can be easily fused with the HMM kernels. However,
nonlinear operations such as Softmax, LayerNorm, and GeLU per-
form the reduction in an array resulting in the reuse distance larger
than 1. Take the LayerNorm operation as an example as shown
in Figure 7(a), before calculating the final results, it computes the
average(𝜇) and standard derivation(𝜎) along the embedding dimen-
sion. Moreover, the dependency also exists between average and
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Figure 8: On-chip data forwarding between spatial accelera-
tors with force RAM bank partition.

standard derivation. If without any pipeline design, these operations
can take even longer time compared to the computation-intensive
HMM Units in Figure 7(c). To reduce the latency and improve hard-
ware utilization, we apply the bypass line-buffer structure in the
customized Layernorm kernel on the PL side to overlap the latency
in different stages as depicted in Figure 7(b). As illustrated in Fig-
ure 7(d), it receives data from HMM units and temporally pushes it
into the line buffer. Right after the average 𝜇 of the first row is ready,
it will read the data from the line buffer and calculate the standard
derivation 𝜎 , so that the dependency can be resolved with a small
waiting time. In general, this methodology can also be applied to
other nonlinear kernels which reduces its latency to nearly half.
❸ Inter-acc communication and accelerator co-design.
When exploring the spatial-sequential architecture, the data com-
munication patterns between accelerators become more complex
and are prone to cause communication overhead because of the
mismatch in accelerator configurations or memory conflicts. For
example, the latency overhead appears in the consecutive matrix
multiply scenarios as shown in Figure 8(a) where MatMul0 and Mat-
Mul1 are mapped to HMM0 and HMM1 respectively. The output
matrix of Matmul0 serves as the input activation of Matmul1. When
designing the HMM kernels for MM with size M×K×N, there are
three corresponding parallel choices at the AIE array level including
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here noted as A, B, and C. In other words, the A×B×C AIEs work
concurrently with the A×C AIEs generating the output at the same
time. In Figure 8(b), while HMM0 parallels on A and C forming a
2×2 AIE array, the HMM1 parallels on A and B forming a 4×1 AIE
array. Since A×C tiles of output will be transferred through PLIO
and received by the downstream PL BRAM/URAM simultaneously,
to prevent the HMM0 from stalling, A×C bank partitioning is re-
quired shown in the RAM of HMM0. However, the data stored in
the 2×2 banks needs to be forwarded to the subsequent HMM1 as
input activation in the format of 4×1, resulting in bank conflicts.
One straightforward solution to resolve bank conflicts is to intro-
duce a non-overlapping operation that moves the data from RAM0
to RAM1 sequentially thus introducing a huge latency overhead
in the pipeline as illustrated in Figure 8(c). In this work, we pro-
pose a force-partition strategy to resolve the bank conflicts, while
maintaining low latency. More specifically, during the runtime of
optimization, we parse the data transaction among accelerators. For
the pairs that do have communication, we configure the parallelism
of the them to be divisible by each other. For example, the parallel
parameters A, C of HMM0 should be fully divisible by the A, B of
HMM1 or vice versa. Then we force the RAM bank partition of the
subsequent HMM1 to be compatible with the previous HMM0. As
illustrated in Figure 8(b), originally four banks of RAM are suffi-
cient to guarantee the execution of the 4×1 HMM1 unit. However
only by partitioning the RAM to 4×2, can the on-chip forwarding
latency be overlapped by HMM0 shown in Figure 8(d).

4.4 SSR Design Space Exploration.
Layer→Acc evolutionary algorithm (EA). The main challenge
to optimize the spatial-sequential solution is the extremely large
design space. For example, the complexity for only Layer→Acc
scheduling is already over 𝑂 (9.9𝑛) [17] where 𝑛 is the number
of layers in the graph. To solve this problem, we propose several
heuristics at Layer→Acc and Acc-Customization levels that explore
the design space efficiently. At the Layer→Acc level, we apply an
evolutionary algorithm [43] based solution to optimize the through-
put of the system while achieving the latency constraints demon-
strated in Algorithm 1. In our framework, the algorithm takes the
execution graph, hardware resources, and latency constraints as
input. By using the Layer→Acc and Acc-Customization passes,
it can generate the specialized configuration for each accelerator
and the Layer→Acc scheduling that will be used by our automatic
generation to implement the design. The algorithm is inspired by
the processes of biological evolution. It first randomly generates
some Layer→Acc strategies shown in Figure 5(a-b) as the popu-
lation and evaluates the design points in the current population
through proposed SSR optimization passes ("SSR_DSE" Lines 3-5).
Then it selects the best assignment strategy to do crossover which
generates the children generation (Lines 8-12). By introducing the
mutation to the children generation it is possible to obtain a better
assignment strategy (Lines 13-18). After evaluating all the design
points, it will record the throughput optimal point under latency
constraints and update the new population by selecting the top
solutions (Lines 19-24).

During the SSR Layer→Acc and Acc-Customization processes
(line 5 & 18 defined in lines 27-37), by using a greedy algorithm,
it first generates the Layer→Acc scheduling pipeline and the data

Algorithm 1 SSR Evolutionary Algorithm
Input: Execution Graph (G), Hardware Constraints (HW_Cons), Latency Constraints
(Lat_Cons)
Output: SSR Spatial Acc Configuration (Conf), Layer-Acc scheduling (schedule)
Hyperparmeters: nAcc, nBat, nPop, nChild, nIter

⊲ nAcc and nBat refers to the number of accelerators and batch of graphs, nPop,
nChild and nIter are the parameters for EA search

1 assign_pop = zeros(nPop) #initialize layer-acc assignment
2 layer_acc_flag = 1 #enable inter-acc aware Acc-Customization
3 #Initialize first generation
4 assign_pop[:]=layer_acc_assign(nAcc)
5 latency, cost_thput_par[i], Conf, schedule=SSR_DSE(assign_pop[:],G)
6
7 for iter in range(nIter): #Run EA by nIter generations
8 # Choose the best parent assignment and do single point crossover
9 for k in range(nChild//2):
10 p1,p2 = assign_pop [select(cost_thput_par[:])]
11 ch1,ch2 = sp_crossover(p1,p2)
12 assign_chi.append(ch1,ch2)
13 # Randomly exchange two layer-acc assignment to do mutation
14 for k in range(nChild):
15 assign_chi[k]=mutate(assign_chi[k])
16 #Launch SSR optimization passes
17 latency, cost_thput_chi[k], Conf, schedule =
18 SSR_DSE(assign_chi[k], G)
19 if latency < Lat_Cons and cost_thput_chi[k]>best_thput:
20 best_thput = cost_thput_chi[k]
21 final_Conf, final_schedule = record(Conf, schedule)
22 # Select top design points as new population
23 assign_pop = population_update (assign_pop, assign_chi)
24 latency = cost_update (cost_thput_par, cost_thput_chi)
25 return final_Conf, final_schedule
26
27 def SSR_DSE (assign, Graph, layer_acc_flag):
28 #Gready Algorithm based Layer->Acc scheduling
29 acc_trans, schedule = layer_acc_schedule (assign, Graph)
30 # First-round memory allocation based on data transfer among Accs
31 mem_alloc = mem_allocation (acc_trans)
32 # Determine AIE, PLIO, RAM, and DSP for each Acc
33 hw_part = hw_partition (mem_alloc, schedule)
34 # Launch SSR Acc-Customization DSE to get latency, throughput
35 latency, thput, Conf = SSR_Acc_DSE (hw_part, schedule, ...
36 assign, acc_trans, layer_acc_flag)
37 return latency, thput, Conf, schedule

transaction between accelerators with the dependencies resolved
according to the layer-accelerator mapping (Lines 28-29). More
specifically, for a layer in the graph, we assign it to the pipeline
as soon as its corresponding accelerator is available and its de-
pendencies are already resolved as illustrated in Figure 5(c). Then
by analyzing the data transaction among accelerators, it deter-
mines a minimum memory allocation strategy that can buffer both
the activations and weights on-chip while keeping the accelera-
tor running without memory stall (Lines 30-31). Before doing the
Acc-Customization (Lines 35-36, Algorithm 2), the framework pre-
allocates the resources to each accelerator including AIE, PLIO,
RAM, and DSP. While the number of AIE together with PLIO is
proportional to the total number of operations assigned to the ac-
celerator, the memory budget is assigned according to the memory
allocation strategy (Lines 32-33).
Inter-acc communication aware optimization at the Acc-
Customization level. In theAcc-Customization stage, SSR searches
the configurations of each accelerator represented as a config_vector
(h1, w1, w2, A, B, C, Part_A, Part_B, Part_C). In the configuration,
(h1, w1, w2) define the workload allocation per AIE, (A, B, C) de-
termine the AIE array parallelism, and (Part_A, Part_B, Part_C)
determine the extra bank partitions for inter-acc communication
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Algorithm 2 SSR inter-acc comm. aware customization
⊲ hw_part, schedule and acc_trans are described in Algorithm 1. hw_part contains
the resource constraints for nAcc accelerators

1 def SSR_Acc_DSE (hw_part,schedule,assign,acc_trans,inter_acc_flag)
2 # Return the order for searching Accs
3 index = trace_assignment(schedule)
4 for i in index:
5 final_thput = 0 #Initialize final throughput
6 #exhaustive search the configuration in the design space
7 for conf_vector[i] in Design_Space:
8 util <-- Eq1 (conf_vector[i])
9 #Check if resource utilization is under the constraints
10 if util > hw_part[i]:
11 continue
12 #If inter-acc-aware is enabled,
13 if inter_acc_flag==1:
14 #Check if the current configuration aligns with others
15 if force_partition(conf_vector[i],assign)==false:
16 continue
17 else: #Force memory partitioning to avoid overhead
18 update(conf_vector[i])
19 cycle, thput <-- Eq2 (conf_vector[i],assign)
20 if thput > final_thput:
21 final_thput = thput
22 final_cycle = cycle
23 final_conf_vector[i] = conf_vector[i]
24 final_cycle, final_thput= comm_overhead(final_cycle, schedule)
25 return final_cycle, final_thput

aware optimization. In our design space, we find all integer solu-
tions that make sure a single AIE workload can be fit in 32Kb AIE
local memory and AIE utilization doesn’t exceed the number of
AIE. SSR sequentially launches the DSE for each accelerator accord-
ing to the order of the accelerator appearing in the Layer→Acc
scheduling (Lines 2-4). This ensures that the other accelerators
can get the information from the accelerators they depend on as
much as possible. For example, for the first Layer→Acc scheduling
shown in Figure 5, Acc0 will be searched before Acc1. Then SSR
exhaustively searches the configuration of each accelerator within
the design space defined before and makes sure the configurable
meets the utilization constraints (Lines 6-11). The utilization can
be calculated by Equation 1 where the RAM_util represents the
number of RAMs needed in each partition and the DSP_Util is
the DSP utilization for each nonlinear processor. Then in order
to avoid the communication overhead among accelerators due to
the memory conflict problem discussed in Section 4.3, SSR takes
two steps. First, it checks the AIE array configuration (A, B, C)
of the current accelerator to align with the other accelerator that
has data transactions. Then force memory bank partition is able
to be launched (Line 12-18). The performance of each accelerator
for its layers can be calculated by Equation 2, since the nonlinear
layers can be fully overlapped by MM kernels we omit it in the
equation. After recording the configurable of each accelerator with
the best performance (Line 20-23), it fine-tunes the communication
overhead based on the knowledge of all the accelerators(Line 24).

𝐴𝐼𝐸 = 𝐴 ∗ 𝐵 ∗𝐶
𝑃𝐿𝐼𝑂 = (𝐴 +𝐶 ) ∗ 𝐵

𝑅𝐴𝑀 = 𝑃𝑎𝑟𝑡𝐴 ∗ 𝑃𝑎𝑟𝑡𝐵 ∗ 𝑃𝑎𝑟𝑡𝐶 ∗ 𝑅𝐴𝑀_𝑢𝑡𝑖𝑙
𝐷𝑆𝑃 = 𝐴 ∗𝐶 ∗𝐷𝑆𝑃_𝑢𝑡𝑖𝑙

(1)

𝐶𝑦𝑐𝑙𝑒 =
𝑀 ∗ 𝑁 ∗𝐾

𝐴 ∗ 𝐵 ∗𝐶 ∗𝑀𝐴𝐶/𝐸𝑓 𝑓

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
#𝑂𝑃𝑠

𝐶𝑦𝑐𝑙𝑒/𝐹𝑟𝑒𝑞

(2)

Table 3: Different vision transformer models configurations.
Model #Head Embed. Dim Depth Model (M) MACs (G)
DeiT-T 3 192 12 5.6 1.3
DeiT-160 4 160 12 4 0.9
DeiT-256 4 256 12 7.4 2.1
LV-ViT-T 4 240 12 6.75 1.6

Table 4: Experimental hardware platforms.

GPU

Board NVIDIA A10G
Fabrication 8nm
Frequency 1.71GHz

TDP 300W
Library TensorRT-8.6.1.6

FPGA

Board AMD U250
Fabrication 16nm
Frequency 250MHz

TDP 225W

FPGA

Board AMD ZCU102
Fabrication 16nm
Frequency 250MHz

TDP 90W

ACAP

Board AMD VCK190
Fabrication 7nm
Frequency PL:230MHz, AIE:1GHz

TDP 180W

4.5 Automatic Code Generation & Compilation
Our SSR framework includes a Python interface to take model de-
scription as input and the output is the design source code files
including ARMCPU host code, FPGA high-level synthesis code, and
AIE intrinsic C/C++ code. Based on our analytical model-guided
design space exploration, the code generation toolflow can in-
stantiate the code template to generate the design source code
files. SSR framework calls corresponding backend tools in AMD
Vitis [44] 2021.1 to generate both the hardware bitstream and host
binaries, which can be readily deployed on the board.

5 EXPERIMENTS
5.1 Experimental Setup
We evaluate SSR on AMD ACAP VCK190 [27] board with PL and
AIE running on 230MHz and 1GHz respectively. We compare SSR
with other state-of-the-art implementations of FPGA and GPU on
four transformer-based applications shown in Table 3. The experi-
ments setup for GPU, FPGA, and ACAP is summarized in Table 4.
On GPU, we use ONNX 1.14.0 and TensorRT 6.1[28] to convert
deep learning models from Pytorch and deploy inference with Ten-
sorRT. Thenwemeasure the performance on Nvidia A10GGPU [29]
and use nvidia-smi [45] to measure the power consumption. On
FPGA, we apply HeatViT [35] on AMD Zynq ZCU102 [46] and
AMD Alveo U250 [47] as our baseline. AMD Board Evaluation and
Management [48] is used to measure the power of ACAP boards.

5.2 Performance & Energy Efficiency
Comparisons

5.2.1 Comparison of performance and energy efficiency among GPU,
FPGA, and ACAP. We apply the proposed SSR framework to four
applications under three different batches. We verify the SSR de-
signs on the AMD Versal VCK190 board and compare the latency,
throughput, and energy efficiency with TensorRT [28] solution on
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Table 5: Performance and energy efficiency comparisons across different solutions.

TensorRT [28] on A10G GPU HeatViT [35] on ZCU102 HeatViT [35] on U250 SSR (ours) on VCK190
model Metrics Batch=1 Batch=3 Batch=6 Batch=1 Batch=3 Batch=6 Batch=1 Batch=3 Batch=6 Batch=1 Batch=3 Batch=6
DeiT-T Latency (ms) 0.76 1.03 1.43 5.50 15.14 29.79 2.23 5.60 10.66 0.22 0.39 0.54

Throughtput (TOPS) 3.19 7.05 10.16 0.44 0.48 0.49 1.09 1.30 1.36 10.90 18.62 26.70
Energy Eff (GOPS/W) 26.54 40.76 48.37 46.82 48.96 49.25 14.02 16.66 17.04 246.15 368.75 453.32

DeiT-T-160 Latency (ms) 0.73 1.05 1.45 4.22 11.81 23.18 2.21 5.67 10.88 0.21 0.37 0.50
Throughtput (TOPS) 2.39 4.98 7.21 0.41 0.44 0.45 0.79 0.92 0.96 8.19 14.92 20.90
Energy Eff (GOPS/W) 20.05 28.59 34.98 44.86 46.58 46.94 10.44 12.13 12.57 196.03 296.11 360.90

DeiT-T-256 Latency (ms) 0.81 1.17 1.69 9.10 25.56 50.51 3.52 9.07 17.24 0.40 0.66 0.98
Throughtput (TOPS) 5.09 10.56 14.63 0.45 0.48 0.49 1.17 1.36 1.43 10.30 18.73 25.22
Energy Eff (GOPS/W) 38.53 51.78 66.78 543.55 46.48 46.16 15.05 17.43 18.27 229.37 363.59 423.89

LV-ViT-T Latency (ms) 0.92 1.37 1.91 7.24 20.27 39.95 3.11 7.91 15.11 0.38 0.62 0.85
Throughtput (TOPS) 3.39 6.84 9.81 0.43 0.46 0.47 1.01 1.18 1.24 8.21 15.10 22.03
Energy Eff (GOPS/W) 21.34 35.79 45.19 43.97 46.20 45.52 12.53 14.69 15.32 181.74 296.74 360.04

Table 6: Comparisons on the optimal throughput (TOPS) un-
der four different latency constraints (ms) for four solutions
including TensorRT on GPU A10G, and SSR designs (ours)
on VCK190 for DeiT-T. SSR-hybrid includes designs from
SSR-sequential and SSR-spatial.

Latency
Constraints

GPU
(TensorRT)

SSR-
sequential
(ours)

SSR-
spatial
(ours)

SSR-
hybrid
(ours)

2 ms 11.32 11.17 26.70 26.70
1 ms 5.28 11.12 26.70 26.70
0.5 ms × 11.05 19.37 19.37
0.4 ms × 10.90 × 18.56

Note: × means can not find a valid solution under the latency constraint.

Table 7: Latency comparison for DeiT-T between SSR analyt-
ical modeling and on-board measurements.

# of Accs Estimation(ms) On-board(ms) Error Rate

1 1.29 1.30 1%
2 1.14 1.08 -6%
3 0.88 0.85 -4%
4 0.81 0.83 3%
5 0.77 0.79 2%
6 0.54 0.54 -1%

Nvidia A10G GPU, HeatViT [35] solution on AMD ZCU102 [46]
and U250 FPGAs [47].

As shown in Table 5, SSR outperforms all three other solutions
under 3 different batch sizes in terms of latency, throughput, and
energy efficiency. For SSR, the reported latency is measured when
the number of accelerator(s) is set as the batch number. For all
four applications with 3 different batch sizes of each, the average
throughput gains SSR achieves are 2.53x, 35.71x, and 14.20x when
compared to Nvidia A10G GPU, AMD ZCU102, and U250 FPGA.
The average energy efficiency gains are 8.51x, 6.75x, and 21.22x,
respectively. Specifically, when batch size = 1, the throughput gains
are 2.84x, 21.67x and 9.38x, and the energy efficiency gains are 8.38x,
4.76x and 16.52x; when batch size = 3, the throughput gains are
2.37x, 35.54x and 14.05x, and the energy efficiency gains are 8.64x,
7.01x and 21.80x; when the batch size comes to 6, the throughput
gains are 2.38x, 49.92x, and 19.18x, and the energy efficiency gains
are 8.51x, 8.50x, and 25.35x, when compared to Nvidia A10G GPU,
AMD ZCU102, and U250 FPGA respectively.

Table 8: SSR hardware utilization for DeiT-T on INT8 mode.
Modules REG LUT BRAM URAM DSP PLIO AIE
Total 849527 619956 624 104 1797 199 394

AXI DMA 10316 5482 12 0 12 – –
Layernorm 308736 256678 0 0 1024 – –
Softmax 179544 78549 192 0 336 – –
GeLU 3888 2400 0 0 0 – –

Transpose 13541 5720 0 0 0 – –
Other HCE 333502 271127 420 104 425 – –

HMM 0 0 0 0 0 199 394

5.2.2 Latency throughput tradeoff. In Table 6, we demonstrate the
latency throughput tradeoff by comparing the throughput of A10G
GPU, SSR-sequential design, SSR-spatial design, and SSR-hybrid
design under certain latency requirements. In general, all the plat-
forms achieve higher throughput when the latency constraints
become looser. As described in Section 1, the GPU designs can only
explore the latency throughput tradeoff by changing the batch size.
Thus for the real-time scenarios with stringent latency constraints,
e.g., <2ms as illustrated in Table 6, the small workload can’t sus-
tain the computation of GPU, and this results in relatively lower
throughput. Moreover, GPU is unable to meet more critical latency
requirements, e.g., <0.5ms.

Since the SSR-spatial design is specialized for each layer in the
application, it can achieve high computation utilization when the
pipeline is filled with a sufficient number of batches. However, due
to the resource partitioning, it has to sacrifice latency. Therefore it
cannot meet the most critical time budget (<0.4ms). While the SSR-
sequential design is capable of meeting all the latency constraints,
due to the lack of specialization, it leads to shape mismatches be-
tween layers and the accelerator. Therefore it can’t achieve high
throughput. Among the design points, by adopting all the hardware
optimization techniques and covering large design space, our pro-
posed SSR-hybrid design is able to meet all the latency requirements
and achieves the highest throughput under each latency constraint.

5.2.3 Analytical modeling VS. On-board implementations. We com-
pare the latency of the DeiT-T model between the reported results
by the SSR analytical model and the real on-board measurements
in Table 7. The design points are verified under the number of
batches=6 with different numbers of accelerators. The error rate in
percentage refers to the difference between the estimated latency
by the SSR analytical model and the real on-board implementation.
On average, the SSR modeling achieves less than 5% error rate
indicating that it can predict the hardware behavior accurately.
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5.2.4 Implementation layout & resource utilization breakdown. The
implementation layout of the proposed SSR-spatial design is shown
in Figure 9. In this case, we design specialized MM accelerators
on the AIE array for every node within one block of DeiT-T, e.g.
QKV layer, attention layers, and MLP layers. The nonlinear kernels
including layernorm, and softmax are implemented on the PL side.
The corresponding hardware utilization breakdown is shown in
Table 8 where specialized HMM units utilize 394 (98.5%) AIEs and
perfectly match the shape of layers in the DeiT-T model providing
high AIE utilization. For the HCE units that support fine-grained
pipeline, 799.8k (44.4%) REG, 588.8k (65.4%) LUT, 624 (64.5%) BRAM,
104 (22.5%) URAM and 1785 (90.7%) DSPs are utilized.

5.2.5 Search Efficiency. We apply the SSR design space exploration
to optimize the throughput of the end-to-end inference under the la-
tency constraints of less than 2ms.We compare the search efficiency
of two proposed communication-aware strategies in Figure 10. The
inter-acc aware strategy optimizes the communication overhead
among accelerators by considering the configuration and bank par-
tition of the other accelerators and thus is capable of pruning large
inefficient design space. The baseline strategy exhaustively searches
the design space and finally post-verifies the configuration of each
accelerator and adds the communication overhead. We conduct the
search on an Intel Xeon Gold 6346 CPU utilizing 16 cores that run
at 3.10GHz. For DeiT, compared to the baseline exhaustive search,
the SSR inter-acc aware strategy finds the optimal solution of 26.70
TOPs within 1000s whereas the exhaustive search takes more than
4000s and still can not find high throughput designs.

5.2.6 SSR Step-by-step optimization analysis. SSR enables several
design optimizations, including (1) on-chip data forwarding, (2)
spatial accelerators, and (3) fine-grained pipeline. We measure the
baseline design on VCK190 which none of the three optimizations is
enabled. The latency of the baseline design is 12 ms for the DeiT-T
model under batch=6, which is 22.2x slower than SSR 0.54 ms (ours).
Compared to the baseline, when feature (1) is enabled, SSR achieves
a 3.4x latency reduction on DeiT-T. When feature (2) is enabled,
it gives 2.4x more latency reduction. When feature (3) is further
applied, SSR achieves another 2.7x latency reduction.

6 DISCUSSION OF MAPPING INSIGHTS
Q1: Can we leverage SSR in other architectures?
A1: Yes. SSR can be applied to other architectures.
SSR can be used as a general solution and we can apply SSR map-
ping method to other platforms, for example, Intel Stratix 10 NX
FPGA [49], which has AI-optimized tensor blocks with up to 143
INT8 TOPS, 16MB on-chip memory, and 512GB/s high bandwidth
memory. We use SSR analytical models to estimate the latency after
we change the hardware resource configurations to be fed into the
modeling. In our modeling, we use data from [37] and [8] to get a
reasonable INT8 computation efficiency for MM kernels and other
non-MM kernels on Intel Stratix 10 NX. The modeled latency when
adopting SSR to map DeiT-T on Intel Stratix 10 NX FPGA is 0.49ms,
which is comparable to 0.54ms on VCK190 (0.41m ms if VCK190
has 102GB/s off-chip bandwidth). This indicates one of the key
contributions of SSR , i.e., SSR provides a general mapping solution
that can improve performance across platforms.
Q2: Can we leverage SSRwhenmodel sizes do not fit on-chip?
A2: Yes. If a model can not fit on a single board, we can lever-
age SSR to explore how the model is most effectively parti-
tioned onto multiple devices.
Extensive works have discussed partitioning a large model onto
multiple devices spatially whereas part of the model could fit onto
the chip. Microsoft Catapult/Brainwave projects deploy large ap-
plications (machine learning, search engine, etc.) onto multiple
directly connected FPGAs [5] within a server rack or onto a larger
number of FPGAs connected with secondary rack-scale networks
for inter-FPGA communication [6, 7, 8]. Specifically, we can use a
similar assumption as in [8], where the system stores deep learning
models’ weights in distributed on-chip SRAM memories. For exam-
ple, the DeiT-Base model is 16x larger than DeiT-T in parameter
size. According to the inter-FPGA latency reported in [8, 7], we can
scale out our design onto 12 VCK190 boards connected via 100Gb/s
QSFP28 with 0.1 ms inter-FPGA board communication overhead
across each board.
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