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A unified model-based framework for
doublet or multiplet detection in single-cell
multiomics data
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Elisa Heidrich-O’Hare3, Yanshuo Chen6,7, Molin Yue1, Lang Zeng1, Ziqi Rong 8,
Tianmeng Chen 9, Timothy Billiar 9, Ying Ding 1, Heng Huang6,7,
Richard H. Duerr 3,10 & Wei Chen 1,5,10

Droplet-based single-cell sequencing techniques rely on the fundamental
assumption that each droplet encapsulates a single cell, enabling individual
cell omics profiling. However, the inevitable issue of multiplets, where two or
more cells are encapsulated within a single droplet, can lead to spurious cell
type annotations and obscure true biological findings. The issue of multiplets
is exacerbated in single-cell multiomics settings, where integrating cross-
modality information for clustering can inadvertently promote the aggrega-
tion of multiplet clusters and increase the risk of erroneous cell type annota-
tions. Here, we propose a compound Poisson model-based framework for
multiplet detection in single-cell multiomics data. Leveraging experimental
cell hashing results as the ground truth for multiplet status, we conducted
trimodal DOGMA-seq experiments and generated 17 benchmarking datasets
from two tissues, involving a total of 280,123 droplets. We demonstrated that
the proposed method is an essential tool for integrating cross-modality mul-
tiplet signals, effectively eliminating multiplet clusters in single-cell multio-
mics data—a task at which the benchmarked single-omics methods proved
inadequate.

The rapid development of droplet-based single-cell sequencing
methods has substantially improved biological insights into complex
gene regulatory networks through various analyses, such as clustering
analysis, differential expression analysis, and trajectory analysis. In
droplet-based platforms, a common issue is that some droplets can
encapsulate multiple cells rather than one or zero cells, leading to the
formation of cell multiplets1–3. A nonignorable percentage of multi-
plets could become a key confounding factor for cell clustering or

downstream analysis and lead to false biological discoveries. There-
fore, multiplet identification and removal are important and funda-
mental steps in any single-cell data analysis workflow. Doublets and
triplets are twomajor types ofmultiplets, with the former representing
two cells captured together (the dominant case) and the latter repre-
senting three cells captured together (the less common case). While
the terms “doublet” and “multiplet” are used interchangeably in most
literature, our aim of explicitly modeling the multiplet formation
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process necessitates differentiating them, and we specifically use
“doublet” to refer to a droplet that contains exactly two cells.

Several experimental approaches have emerged for the detection
of multiplets1,4,5. While these methods have demonstrated effective-
ness in identifying and removingmultiplets, their associated additional
costs and labor requirements have resulted in rare use in practice. In
contrast, computational methods that utilize the recorded data from
each droplet to infer its multiplet status offers a favorable alternative
that does not entail any additional data generation expenses. Com-
putationally, a popular approach for multiplet detection using scRNA-
seq data is to generate synthetic doublet labels through simulation
(e.g., merging the expression profiles from two observed droplets to
form an artificial doublet) and then classify the multiplets through
semi-supervised learning6–13. Some more recent methods aim to build
upon or integrate these existingmethods to enhance the performance
of multiplet detection14–16. Alternatively, several computational multi-
plet detection methods were tailored for leveraging single-cell assays
for transposase-accessible chromatin sequencing (scATAC-seq) data,
either by a similar semi-supervised learning approach15,17 or by identi-
fying chromatin regions with over two uniquely aligned reads18. The
popular semi-supervised approach can effectively rank the droplets
based on their similarities to simulated doublets. However, they typi-
cally use heuristic threshold selection for distinguishing between
multiplets and singlets, which can cause an imbalance between pre-
cision and recall. This imbalance compromises multiplet detection
reliability. In addition, the existing semi-supervised methods typically
utilize the tophighly variable genes (HVGs) as the input features, which
makes them sensitive to heterotypicmultiplets (i.e., multiplets formed
by different types of cells) but not to homotypic multiplets (i.e., mul-
tiplets formed by the same type of cells).

Recent advances in single-cell experiment technologies have
enabled simultaneous measurement of bimodal and trimodal single-
cell data. Bimodal single-cell data typically include transcriptomic
profiles combined with either cell surface protein data, as in CITE-seq
and REAP-seq19,20, or chromatin accessibility data, as in sci-CAR,
SNARE-seq, and SHARE-seq21–23; common trimodal single-cell data are
obtained by the simultaneous measurement of the transcriptome, cell
surface protein, and chromatin accessibility (DOGMA-seq and TEA-
seq)24–26. The integration of multiple modalities of information in
single-cell analysis enhances the sensitivity of cell type identification
but also increases susceptibility to the formation of multiplet clusters.
Consequently, there is a heightened demand for tailored multiplet
detection tools in single-cell multiomics data analysis. However, to the
best of our knowledge, none of the widely available doublet/multiplet
detection methods can effectively utilize single-cell multiomics data.
While there have been efforts to utilize CITE-seq or VDJ-seq27 data for
multiplet detection, they demand specialized knowledge and sub-
jective choices of thresholds from users, such as manual gating based
on the co-expression of mutually exclusive surface protein markers28.

In this study, we propose the COMpound POiSson multIplet
deTEction (COMPOSITE) model, the first statistical model tailored for
multiplet detection in single-cell multiomics data. COMPOSITE inno-
vatively utilizes stable features, which are ideal for the multiplet
detectionproblem since their recorded values aremore closely related
to multiplet status compared to highly variable features. Additionally,
COMPOSITE conducts statistically rigorous inference on the prob-
ability of multiplets, thereby attaining an optimal balance between
precision and recall for multiplet detection in practical settings.
COMPOSITE further leverages a statistical approach to integratemulti-
omics information, which substantially enhances its multiplet detec-
tion performance. Due to the lack of public single-cell multiomics
datasets with annotated multiplet status, we performed trimodal
DOGMA-seq experiments with the cell hashing technique and gener-
ated 17 single-cell multiomics datasets in a total of 280,123
droplets with experimental ground truth of multiplet status. We also

demonstrated the generalizability of COMPOSITE by applying it to two
additional datasets, each featuring cell types different from those
present in the 17 datasets used for benchmarking. We illustrate the
exceptional and robust performance of COMPOSITE in these single-
cell multiomics datasets. We have implemented COMPOSITE into a
Python package as well as a cloud-based application with a user-
friendly interface.

Results
Compound Poisson framework for multiomics multiplet
detection
Our proposed COMPOSITE method utilizes a statistical model to
provide an automated framework for multiplet detection (Fig. 1a). To
our knowledge, this is the first statistical multiplet detection model
that is compatible with both single-omics and multiomics single-cell
data. Specifically, our current model is compatible with three popular
single-cell omics data modalities: scRNA-seq, antibody-derived tags
(ADT, measuring surface protein epitopes), and scATAC-seq (mea-
suring chromatin accessibility). In contrast to the prevailing single-cell
data analysis methods that heavily depend on highly variable
features7,10,11, our proposed model harnesses the valuable information
embedded in stable features29. Stable features exhibit minimal varia-
bility across different cells within a dataset, and themagnitude of their
recorded values providesmore accurate indications ofmultiplet status
(Fig. S1a, b).

While multiplets generally exhibit higher stable feature values
than singlets, individual stable features remain noisy with a broad
range of values. This variability makes it challenging to infer the
multiplet status based solely on individual stable feature values. To
address this issue, COMPOSITE uses compound Poisson distributions
to model the distributions of stable features. We make the following
assumptions in the model: 1. For scRNA-seq and scATAC-seq mod-
alities (with scATAC-seq data represented as gene activity inferred by
Signac30,31), we assume that the contribution of a single cell to each
recorded stable feature value within the droplet follows a gamma
distribution (Fig. S1a, c). 2. For the ADTmodality, we assume that the
contribution of a single cell to each recorded stable feature value
within the droplet follows a Gaussian distribution (Fig. S1d). 3. We
assume that the recorded stable feature values in a multiplet depend
on the summed contributions of each cell within the multiplet. 4. We
model the number of cells present in each droplet using a Poisson
distribution. These assumptions fully specify a compound Poisson-
Gamma distribution for each stable feature in the RNA and ATAC
modalities and a compound Poisson–Gaussian distribution for each
stable feature in the ADT modality. Based on the compound Poisson
distributions, within each modality, we combine all selected stable
features across all cells to calculate the joint likelihood and estimate
the parameter values through maximum-likelihood estimation.
Afterwards, we perform statistical inference on the multiplet status.

In single-cell multiomics settings, once we have obtained the
inference results from eachmodality, we combine these results across
modalities by assigning droplet-specific modality weights. These
weights are calculated using a combination of overall modality
goodness-of-fit and droplet-specific data consistencies for each mod-
ality. In general, higher overall weights are assigned to the modalities
that exhibit better fits. Then, for each droplet, we refine the overall
modality weights to obtain droplet-specificmodality weights based on
the noisiness in each modality of the droplet. Specifically, for droplets
with noisy data within a modality, their weights for that modality are
adjusted downward and adjusted upward otherwise.

Single-cell multimodal omics with cell hashing experiments
generate data with ground truth multiplet status
To evaluate the performance of COMPOSITE, due to the lack of
public single-cell multiomics datasets with annotated multiplet
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status, we conducted DOGMA-seq experiments to generate high-
quality single-cell multiomics data with ground truth multiplet
status obtained by cell hashing experiments (Fig. 1b). To generate
single-cell multiomics datasets for comprehensive benchmarking,
we conducted DOGMA-seq experiments using both T-cell-
enriched peripheral blood samples and solid tissue samples
(dissociated ileum mucosa biopsy immune-cell-enriched sam-
ples). We obtained ten peripheral blood T-cell-enriched and seven
ileum immune-cell-enriched DOGMA-seq with cell hashing data-
sets involving a total of 280,123 droplets (Table S1). These

datasets represent the most extensive trimodal single-cell data-
sets with experimentally labeled multiplet status to date. To
demonstrate the generalizability of our results, we incorporated
two additional datasets, each generated independently and
representing a wider variety of cell types. The first of these is
derived from a colon biopsy sample, specifically enriched for non-
immune cells (CD45−) through flow cytometry. Non-immune,
epithelial, and mesenchymal cells in dissociated intestinal biop-
sies pose greater challenges for single-cell multiomics experi-
ments. For this sample, we derived single-cell RNA data, which is

a

b

HTO 1

HTO 2

HTO 3
HTO 4

PoolingHTO labeling ADT staining & 
permeabilization

Encapsulation Library preparation

RNA
Library

ADT
Library

ATAC
Library

HTO
Library

Sequencing HTO demultiplexing

HTO 1 HTO 2

HTO 4

HTO 3

Input Prediction
No extra cell
(K=0, singlet)

Two extra cells
(K=2, triplet)

One extra cell
(K=1, doublet)

x•1
(RNA) x•2

(RNA) ...RNA

x•1
(ADT) x•2

(ADT) ...ADT

Droplet 1 Droplet 2 ...

x•1
(ATAC) x•2

(ATAC) ...ATAC

x•(n-1)
(RNA)

x•(n-1)
(ADT)

Droplet (n-1)

x•(n-1)
(ATAC)

x•n
(RNA)

x•n
(ADT)

Droplet n

x•n
(ATAC)

Average recorded value

S
ta

n
d

a
rd

 d
e

vi
a

ti
o

n

Stable:
Non-stable:

Stable feature
 selection

 i th stable feature in 
the modality q
(q    {RNA, ADT, ATAC})

xi•
(q)

O
b

se
rv

e
d

 d
e

n
si

ty

Fitting compound Poisson distribution, 
using all stable features within the modality

Fitted Poisson(θ(q))

0.5

1.0

K

0 1 2

P
ro

b
a

b
il

it
y 

m
a

ss

0.1

0.2

xi•
(q)

F
it

te
d

 d
e

n
si

ty

0.1

0.2

 Single-cell multiomics data

Singlet:
Doublet:

Triplet:Singlet

Doublet
Triplet

xi•
(q)

0.1

0.2

evaluation and modality 
weight assignment

Fitted density:
Observed density:

*K is unobservable

Within-modality Inference:
            P(q)(K>0|X(q)=x(q),          )

P1
(RNA)

RNA

P1
(ADT)

ADT

Droplet 1 Droplet 2 ...

w1
(ATAC)

ATAC

Droplet n

Multiplet 
probability

Weight

Multiplet 
probability

Weight

Multiplet 
probability

Weight

w1
(RNA)

w1
(ADT)

P1
(ATAC)

P2
(RNA)

P2
(ADT)

w2
(ATAC)

w2
(RNA)

w2
(ADT)

P2
(ATAC)

...

...

...

...

...

...

Pn
(RNA)

Pn
(ADT)

wn
(ATAC)

wn
(RNA)

wn
(ADT)

Pn
(ATAC)

Obtaining overall inference across modalities:

                                     Pj = Σ(q) [Pj 
(q)• wj 

(q)]

Output predicted multiplet label

False True ... FalseMultiplet

Droplet 1 Droplet 2 ... Droplet n

Fitted distribution for xi•
(q)

Fig. 1 | Overview of the COMPOSITE model and the experimental workflow for
generating the DOGMA-seq datasets with cell hashing-based ground truth.
a The recorded data from a droplet can come from a single cell (K =0), a composite
of two cells (K = 1), or a composite of three cells (K = 2), where K is an unobservable
random variable representing the number of extra cells in the droplet. The COM-
POSITE model can accept one or multiple modalities among RNA, ADT, and ATAC
for eachdroplet as input, depending ondata availability. The goal of themodel is to
infer K for each droplet given the observed data. Stable features that display high
mean-to-standard deviation values are selected for model fitting. In the fitted
compound Poisson distribution, the Poisson component represents the estimated
weights for eachmultiplet status, and the overall distribution of each stable feature
breaks into a mixture of three conditional distributions with intrinsic summation
relationships, respectively, for singlets, doublets, and triplets. The weight of each
mixture component is characterized by the Poisson component. Then, the overall

modality weights are assigned based on the goodness-of-fit of the corresponding
modalities and are further adjusted for each droplet according to droplet-specific
data quality for each modality. Afterwards, within each modality (q), statistical
inference on K is performed based on the observed data (x qð Þ) and the estimated
parameters ( ^ψ qð Þ). The final prediction is then the weighted combination of the
predictions from each modality. b Workflow of the DOGMA-seq experiment with
hashtag oligo (HTO) labeling. Before pooling the cells for the standardDOGMA-seq
workflow, cells from different samples or different aliquots of the same sample
were labeledwith differentHTOs. TheHTOdata from each droplet are used to infer
the multiplet status, which is then regarded as the experimental ground truth
multiplet label. We used eight HTOs in our experiments, but only four HTOs are
illustrated in the figure due to space limitations. Figure created with BioR-
ender.com, released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.
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generally a more reliable data modality for non-immune cells. The
second dataset, a PBMC DOGMA-seq dataset, was sourced from
an independent study conducted at the University of Pittsburgh
Medical Center. This contrasts with the 10 T cell-enriched per-
ipheral blood samples produced by our laboratory, as it encom-
passes a more diverse array of blood cell types.

COMPOSITE effectively captures the underlying mixture dis-
tribution of stable features
Since the RNAmodality is the most commonmodality inmost single-
cell studies, we provide a detailed demonstration of the model fitting
results on the RNA modality of an in-house peripheral blood dataset
(PB-1). As an example, we visualized the ground truth distributions of
one of the stable RNA features, RPL11 (Fig. 2a, b). Without knowing
the multiplet status of each droplet, the overall distribution of the
RPL11 expression level in all droplets is essentially a mixture dis-
tribution. However, the mixture distribution is dominated by sing-
lets, and it is a challenging task for ordinary mixture models to
capture the mixture components (Fig. 2a). In contrast, the COMPO-
SITE model handled this challenge well, and the gamma distributions
inferred by themodel closelymatched the ground truth distributions
(Fig. 2b, c). Additionally, the Poisson component of the COMPOSITE
model also effectively captured the distribution of the number of
cells within droplets (Fig. 2d). Hence, the COMPOSITE model can not
only differentiate between multiplets and singlets but also provide
an inference on the number of cells in the droplets. It calculates
statistically meaningful probabilities associated with different muti-
plet statuses for each droplet. The most probable multiplet status is
then the model classification result for that droplet. Importantly, the
model classification results were close to the ground truth obtained
by cell hashing (Fig. 2e).

COMPOSITE can also provide reliable prediction performance
when applied to the ADT and scATAC-seq modalities. Notably,
the goodness-of-fit metric we employed, the inverse of the
Kolmogorov–Smirnov (KS) statistics32–35, serves as a good indicator of
model prediction performance (Fig. 2f). Therefore, in scenarios where
only onemodality of data is available, the goodness-of-fit (GOF)metric
can assist in assessing the reliability of the model’s prediction results.
In general, a GOF value >3 indicates a good fit and reliable prediction
performance.

Multiomics data empowers COMPOSITE for enhancedmultiplet
detection
While COMPOSITE can provide reliable predictions when applied to a
single modality, one of its main strengths lies in its ability to integrate
information from multiple modalities, leading to enhanced perfor-
mance. Its successful integration of information across modalities
results from the sensible assignment ofmodality weights. COMPOSITE
calculates droplet-specific modality weights based on the product of
two components: 1. overall modality weights and 2. droplet-specific
modality consistencies. The first component roughly determines the
overall weight of each modality for all droplets, while the second
component helps adjust themodalityweights assigned to each droplet
based on the noisiness in each modality of that droplet. To demon-
strate the effectiveness of COMPOSITE in assigning droplet-specific
modality weights, we visualized how these two components were
related to the corresponding single modality prediction performance.

The first component, overall modality weights, is designed to be
proportional to the overall goodness-of-fit of the corresponding
modalities. The COMPOSITE model is a parametric statistical model,
and its prediction performance relies on model fitting. Hence, the
modalities with better model fitting are upweighted as they tend to

a b c
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(7.82%)

(4.08%)

(3.84%)

(1.67%)
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Fig. 2 | COMPOSITE model fitting performance on single-omics data. The data
for a–e are from the RNAmodality of the PB-1 dataset. a–c Using one of the stable
RNA features (RPL11) to demonstrate how the compound Poisson-gamma dis-
tribution captures the ground truth distribution of the recorded expression level
for different underlying multiplet statuses. a Observed overall distribution.
bObserveddistribution stratified by ground truthmultiplet status. c Fitted Gamma
distributions associated with each multiplet status. The parameters of the Gamma
distributions were estimated by the compound Poisson-Gamma model.
d Histogram comparing ground truth multiplet status distribution vs.
multiplet status distribution simulated using Poisson(0.20), which is the fitted

Poisson component for this dataset in the COMPOSITE framework. e Contingency
table comparing ground truth vs. predicted multiplet status from COMPOSITE.
The numbers on each intersection point of the grids represent the number
and proportion of droplets that belong to the corresponding category, and
the sizes of the dots on the grid intersections represent the magnitudes of the
corresponding numbers. f Scatter plot displaying the relationship between
the goodness-of-fit and the prediction performance in terms of F1 score. Each
dot represents the prediction made using one modality of a specific dataset
from the 17 in-house DOGMA-seq datasets. Source data are provided as a
Source Data file.
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provide more reliable prediction results. To assess the usefulness of
the overall modality weights, we visualized the relationship between
single modality prediction performances (measured by F1 scores) and
their corresponding overall modality weights for each of the 17 in-
houseDOGMA-seq samples (Fig. 3a). As expected,wenoted thatwithin
each sample, the modalities that can provide better prediction per-
formances were associated with higher overall modality weights in

general. These results indicate that the COMPOSITE model effectively
upweights the modalities with better prediction performances.

The second component, droplet-specific modality consistencies,
quantifies the level of consistency between the signals of individual
stable features and the overall signal of the entire modality within a
droplet. We visualized the relationship between the droplet-specific
modality consistencies and the corresponding modality-specific
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prediction performances within the Ileum-1 DOGMA-seq sample
(Figs. 3b, S2a, b). We use the ADT modality as an example to illustrate
the interpretation of these results. Specifically, we generated visuali-
zations illustrating the prediction performance of each modality at
different ADT consistency levels (Fig. 3b). To enhance the clarity of
visualization, we rounded the ADT consistency of each droplet to the
nearest decimal point. As the ADT consistency increases, the predic-
tion performances based on the ADT modality demonstrate the most
notable improvement compared to the RNA and ATAC modalities.
These results indicate that COMPOSITE can effectively upweight the
ADT modality for the droplets with good ADT modality prediction
performances since the droplet-specific modality weights are defined
to be proportional to droplet-specific modality consistencies. Similar
results were observed when we stratified on RNA or ATAC consistency
(Fig. S2a, b).

To demonstrate the enhanced performance of COMPOSITE when
applied to single-cell multiomics data, we conducted a comparison of
its single-omics and multiomics prediction results on our in-house
DOGMA-seq datasets. Specifically, we considered various combina-
tions of the available data to simulate different types of single-cell
multiomics data generated from popular experimental techniques.
These combinations include RNA +ATAC (simulating 10× multiome),
RNA+ADT (simulating CITE-seq), and RNA+ADT+ATAC (DOGMA-
seq). We use F1 score as the primary evaluation metric because it
provides a balanced assessment of precision and recall, whichmakes it
suitable for assessing the prediction performance in practical settings.
For the peripheral blood samples, each combined multiomics predic-
tion achieved amarkedly highermedianF1 score thananyof the single-
omics predictions within the combination (Fig. S3a; Table S2). Since
the RNA and ADT modalities are generally assigned higher overall
weights than theATACmodality, theDOGMA-seqpredictions are close
to the RNA+ADT predictions. However, with the ATAC information
added, every DOGMA-seq prediction still achieved observable
improvement in the F1 score compared to the corresponding
RNA+ADT prediction. For the ileum samples, multiomics combina-
tions also achieved better performances in general, with the DOGMA-
seq combination yielding the best predictions (Fig. S3b; Table S2).
We noticed that the ATAC predictions for several of the ileum
samples were unsatisfactory, with the F1 scores for three out of
seven samples <0.4. However, when the ATAC data were combined
with the RNA data, the combined predictions were greatly improved,
with none of the F1 scores falling below 0.4. In addition to
F1 scores, the area under the precision-recall curve (AUPRC) metric
also indicates that multiomics prediction substantially improves the
COMPOSITEperformanceover the single-omics prediction (Fig. S3c, d;
Table S2).

Multiplet removal with COMPOSITE effectively reduces bias in
downstream analysis
We evaluated the effects of using COMPOSITE for multiplet removal
on downstream analyses, particularly focusing on clustering and tra-
jectory inference, which serve as foundational steps for further ana-
lyses, such as differential expression (DE) analysis.

We use the PB-1 dataset as an example for illustration. In the
clustering analysis, before multiplet removal, clusters 3–6 all have

significant proportions of multiplets (Fig. S4a, b), potentially biasing
the downstream analysis. After multiplet removal with COMPOSITE
(DOGMA), none of the identified clusters contain a significant amount
of multiplets, thus reducing potential biases in subsequent analyses
(Fig. S4c, d). For trajectory inference, from the PB-1 dataset, we
extracted CD4+ T cells based on ADT expressions in scenarios both
before and after multiplet removal with COMPOSITE (DOGMA)
(Fig S5a, b). Subsequently, we performed trajectory inference inde-
pendently for each scenario using Monocle 336 (Fig. S5c, d). Before the
removal of multiplets, trajectory analysis revealed two branches,
marked by red circles in Fig. S5c, extending into clusters identified as
multiplets according to experimental ground truth (Fig. S5c, e).
In contrast, after applying COMPOSITE (DOGMA) for multiplet
removal, these aberrant branches were no longer present, indicating a
cleaner trajectory inference free from the influence of multiplets
(Fig. S5d, f).

Comparison with existing multiplet detection methods
One fundamental challenge faced by existing methods is the selection
of an appropriate cut-off for distinguishing multiplets from singlets
after ranking the droplets from the most likely multiplets to the least
likelymultiplets. Someof them select the classification threshold using
a heuristic computational approach7,12,15, while others estimate multi-
plet rates based on cell loading densities in the experiments6,10,11. The
heuristic selection of thresholds lacks statistical rigor and may com-
promise the reliability of multiplet classification, and estimating mul-
tiplet rates based on cell loading densities is inherently unreliable, as
the multiplet rate can vary significantly even when the cell loading
density remains constant. Unlike the existing methods, COMPOSITE is
a statistical model-based method that utilizes statistical inference to
infer the multiplet status of each droplet, and it does not need a
threshold selection process. Furthermore, the primary advantages and
novelties of COMPOSITE lie in its capacity to leverage single-cell
multiomics data for enhanced performance. Due to the lack of widely
available multiomics multiplet detection methods, we benchmarked
COMPOSITE with the state-of-the-art single-omics multiplet detection
methods. For the scRNA-seqmultiplet detectionmethods, we selected
scDblFinder15, DoubletFinder10, DoubletDetection12, scds6 (including
the bcds, cxds, and hybrid versions), and Scrublet11 for benchmarking,
as they had good performances in a previous benchmarking paper on
single-omics multiplet detection37,38. For the scATAC-seq multiplet
detection methods, we selected scDblFinder and AMULET, where
scDblFinder is compatiblewith both RNA andATACdata, andAMULET
is the only existing read count-based multiplet detection method.
scDblFinder and AMULET do not require manual parameter tuning,
and we used the default parameter setting (selecting 0.05 as the false
discovery rate cut-off for AMULET). The other methods require para-
meter tuning and manual selection of the expected multiplet rate. We
estimated the multiplet rates for the methods that accept manual cut-
off selections based on the cell loading densities following the guide-
lines provided by 10X Genomics (https://kb.10xgenomics.com/hc/en-
us/articles/360054599512-What-is-the-cell-multiplet-rate-when-using-
the-3-CellPlex-Kit-for-Cell-Multiplexing-). In terms of COMPOSITE, we
considered the following three popular combinations: RNA +ATAC
(simulating 10x multiome), RNA+ADT (simulating CITE-seq), and

Fig. 3 | COMPOSITE multiplet detection performance in single-cell multiomics
setting. a Scatter plot displaying the relationship between the overall modality
weight and the prediction performance in terms of the F1 score. Gray lines connect
the three modalities from the same dataset. The upward trends indicate that the
modalities that can provide better prediction performances are associated with
higher overall modality weights in general. This suggests that the COMPOSITE
model effectively upweights the modalities with better prediction performances.
b Prediction performances (in terms of F1 score) of each modality at different ADT
consistency levels. The data are from the Ileum-1 dataset. c and d Boxplots showing

the performances (in terms of F1 score) of eachmultiplet detection method on the
in-house DOGMA-seq datasets (n = 10) from peripheral blood samples (c) and
DOGMA-seq datasets (n = 7) from ileum biopsy samples (d). In the boxplots, the
box spans from the first to the third quartile, with the median depicted as a line in
the middle. The whiskers extend to 1.5 times the interquartile range (IQR). In the
labels of the x-axis, the texts within the parenthesis indicate the modalities of data
that were used as input into the corresponding method. Source data are provided
as a Source Data file.
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RNA+ADT+ATAC (DOGMA-seq). We evaluated the performances of
these methods in terms of their real-world application, where the
ultimate goal for using multiplet detection methods is to predict the
multiplet status of eachdroplet, rather than solely ranking thedroplets
based on their likelihood of being multiplets. Therefore, we used the
F1 score as the evaluation metric because it considers the balance
between precision and recall, which is crucial in practical settings. We
compared their prediction performances on all 17 DOGMA-seq data-
sets. COMPOSITE consistently achieved markedly higher median
F1 scores in both peripheral blood (Fig. 3c) and ileum biopsy samples
(Fig. 3d), demonstrating enhancedmultiplet detection capabilities and
an optimal balance between precision and recall.

We provide a detailed illustration of the multiplet prediction
outcomes using a peripheral blood dataset (PB-1) and an ileum
biopsy dataset (Ileum-1). For COMPOSITE, we present its prediction
results on the three modalities of DOGMA-seq, as this combination
demonstrated the best performance and robustness (Fig. 3c, d), and
we also present its prediction results on each single modality for a
comparison with other single-omics approaches. For comparison, we
visualized the prediction results from three existing methods,
selected either for their unique approaches or for achieving high
F1 scores in our benchmarking: scDblFinder, DoubletFinder, and
AMULET.

For the PB-1 dataset, all these methods were successful in elim-
inating a significant proportion of ground truth multiplets and dis-
played their importance in practice (Figs. 4a–d and S6a–d).
COMPOSITE (RNA) achieved comparable results to the other single-
omics multiplet detection methods, while COMPOSITE (DOGMA) dis-
played the highest sensitivity for multiplet detection. The most pro-
minent differences between COMPOSITE (DOGMA) and the other
methods on the weighted nearest neighbors39 (WNN) UMAP plots are
in the circled cluster (Fig. 4a–d), where COMPOSITE (DOGMA) almost
completely removed the circled cluster while the other methods,
including the experimental cell hashing approach, only removed part
of it. After removing the ground truth multiplets, the Azimuth39

annotation results based on the ADTmodality indicate that the circled
cluster is unusual, as it was annotated as a mixture of B cells, CD4
T cells andCD8T cells (Fig. 4e). By checking the quality controlmetrics
(Fig. S7a–c), we confirmed that these cells are not low-quality singlets
but are likely multiplets since they have unusually high total gene
expression levels. Within the circled cluster, we also observed the co-
expression of multiple exclusive ADT markers, including CD19 and
CD3 (Fig. 4f–h), CD4 and CD8 (Fig. S8a–c), and CD4 and CD16
(Fig. S8d–f), which provide strong evidence that the circled cluster is a
multiplet cluster. Therefore, in Fig. 4a, most of the droplets that
appeared to be false positives are, in fact, truemultiplets that were not
identified by the experimental ground truth labeling. Despite being
regarded as the gold standard for multiplet detection40, the experi-
mental cell hashing technique is unable to identify multiplets in dro-
plets containing cells with identical hashtag oligos (HTOs). This
limitation introduces minor inaccuracies in the ground truth labels,
contributing to its inability to remove the circled multiplet cluster
(Fig. 4e). The high sensitivity of COMPOSITE (DOGMA) to the multi-
plets in the circled cluster was contributed by the multiplet signals
from the ADT modality. When using only the ADT data, COMPOSITE
was still able to remove most of the droplets in the circled cluster
(Fig. S6a). Importantly, noneof thosevisualized exclusiveADTmarkers
were selected as the stableADT features for input into theCOMPOSITE
model, showcasing the model’s robust performance independent
from the highly variable features.

In comparison, within the same dataset (PB-1), we visualized the
prediction results of COMPOSITE (DOGMA), COMPOSITE (RNA),
scDblFinder (RNA), and DoubletFinder (RNA) on the UMAP plots
generated using only the RNA modality (Fig. S9a–d). The multiplet
clusters detected by these scRNA-seq multiplet detection methods

closely aligned with the ground truth on the RNA UMAP plots,
especially for COMPOSITE (RNA) and scDblFinder (RNA). After
removing the ground truth multiplets, the droplets co-expressing
exclusive ADTmarkers (Fig. S10a–k) or showingmultiplet-like quality
control metrics (Fig. S11a–c) did not concentrate in any specific
clusters, indicating that the unremoved multiplets induced little bias
to analytical outcomes. In contrast, in the previous single-cell mul-
tiomics settings, the capacity of WNN clustering to integrate infor-
mation frommultiplemodalities for enhanced cell type identification
simultaneously increased its susceptibility to biases from multiplet
signals across modalities. This inadvertently led to the identification
of a spurious cell cluster, even when experimental ground truth
multiplets had been removed. Specifically, in the PB-1 dataset, if the
circled WNN cluster remained unremoved (Fig. 4e), it might be
mistakenly classified as CD3+/CD19+ B cells (Fig. 4f–h); this cell type
is rare but has been recognized for its biological significance in prior
single-cell studies41,42. Among all evaluated methods, including the
experimental cell hashing technique, which served as ground truth,
COMPOSITE (DOGMA) was the only one to successfully eliminate the
circled cluster (Fig. 4a). These results highlight the importance of
integrating multiplet signals across modalities for multiplet detec-
tion in single-cell multiomics settings and demonstrate the sub-
stantial value of COMPOSITE even when experimental ground
truth data are available. The comparisons of these methods on the
UMAP plots for the other nine peripheral blood samples are in
Figs. S12–S20.

For the Ileum-1 dataset (Figs. 5a–d and S21a–d), the most obvious
discrepancies between COMPOSITE (DOGMA) and the existing meth-
ods were highlighted by the red ellipses on the UMAP plots, where the
droplets were mostly annotated as Natural Killer (NK) cells (Fig. 5e).
The quality control metrics (Fig. S22a–c) and exclusive ADT markers
(Fig. S23a–h) did not provide much evidence that these droplets were
the multiplets missed by cell hashing. Therefore, we can assert with a
high degree of confidence that within the regions marked by the
ellipse, the single-modality multiplet detection methods—particularly
those based on semi-supervised learning—have produced numerous
false positives, leading to the erroneous exclusion of a substantial
number of NK cells. These results indicate that the semi-supervised
learning-based methods lack robustness in the smaller clusters. In
contrast, in the highlighted areas, the false positive rate for COMPO-
SITE (DOGMA) remained low. In addition, compared to COMPOSITE
(RNA) (Fig. 5b), COMPOSITE (DOGMA) (Fig. 5a) yielded significantly
fewer false positive results in the circled cluster, indicating that
COMPOSITE can effectively integrate information acrossmodalities to
minimize false detections of multiplets. The comparisons of these
methods on the UMAP plots for the other six ileum samples are in
Figs. S24–S29.

We evaluated the generalizability of COMPOSITE by testing it on
two additional datasets, each representing a broad spectrum of cell
types. The first dataset was derived from a colon biopsy sample
enriched for non-immune cells (CD45−) via flow cytometry. Single-
cell multiomics experiments on solid tissues face greater challenges
than those on immune cells, particularly due to the less developed
protocols for surface protein analysis, which typically focus on
immune cell markers. We obtained scRNA-seq data for 6784 droplets
from this challenging tissue type for benchmarking. As expected for
non-immune, epithelial, and mesenchymal cells in dissociated
intestinal biopsies, the data was relatively poor in quality in com-
parison to that from immune cells. In this context, the single-
modality application of COMPOSITE still surpassed all other existing
methods (Fig. S30). That demonstrates the effectiveness of COM-
POSITE on relatively poor-quality datasets from challenging
cell types.

The second dataset is a PBMC DOGMA-seq dataset, featuring
DOGMA-seq data across 9643 droplets. This dataset was obtained
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from an independent study conducted by a separate laboratory
at the University of Pittsburgh Medical Center. In contrast to
our laboratory’s ten T cell-enriched peripheral blood samples, this
dataset provided a more varied representation of blood cell types.
Within this dataset, COMPOSITE demonstrated superior perfor-
mance over existing methods, showing particular improvement
when leveraging information from the ADT modality (Fig. S31).

Simulation results demonstrate COMPOSITE’s proficiency in
handling homotypic and larger multiplets
Through simulation, we compared COMPOSITE with scDblFinder, the
leading competitor based on real-data benchmarking, to highlight
COMPOSITE’s capabilities on (1) the identification of homotypic mul-
tiplets and (2) handling the datasets with a significant proportion of
larger multiplets, such as triplets. For simulation, we first removed all
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ground truthmultiplets from the datasets and then simulated artificial
multiplets by combining expression profiles from ground truth sing-
lets within the datasets.

For homotypic multiplet simulation, we focused on CD4+T cells
and simulated 20 datasets that only contained artificial homotypic
doublets simulated by combining expression profiles of two
CD4+T cells. In comparison, we simulated 20 general DOGMA-seq
datasets with artificial doublet generated by aggregating expression
profiles from pooled ground truth singlets from the peripheral blood
samples. Specifically, for each scenario, two simulated datasets were
generated from each of the 10 peripheral blood sample datasets. We
then compared COMPOSITE (DOGMA) to scDblFinder (RNA) using the
datasets simulated under these two settings. Compared to the general
setting (Fig. S32a), COMPOSITE (DOGMA) displayed greater super-
iority over scDblFinder (RNA) in the homotypic setting (Fig. S32b).
Therefore, the simulation results support COMPOSITE’s effectiveness
in detecting homotypic multiplets, surpassing existing methods that
largely rely on highly variable genes.

To evaluate the performance of COMPOSITE on datasets with
significant proportions of large multiplets, such as triplets, we con-
ducted simulations across scenarios with artificial doublet rates from
5% to 30% and triplet rates from 2% to 8%, generating 20 simulated
datasets for each scenario. Specifically, two simulated datasets were
generated from each of the 10 peripheral blood sample datasets. Our
results consistently show the superior performance of COMPOSITE
(DOGMA) over scDblFinder (RNA), particularly as the rate of triplets
increases (Fig. S33a–d). These results suggest that by distinguishing
doublets and triplets in the modeling process, COMPOSITE can
effectively handle the datasets with significant proportions of larger
multiplets.

Discussion
We have developed COMPOSITE, a unified statistical model based on
the compound Poisson framework, which exhibits exceptional per-
formance in multiplet detection, especially within the realm of
single-cell multiomics. COMPOSITE can effectively leverage stable
features within each modality to identify multiplet signals and
combine these signals across modalities to enhance multiplet
detection performance.

Notably, COMPOSITE is the first statistical model tailored to uti-
lize single-cell multimodal information for multiplet detection. By
employing statistical inference, COMPOSITE produces more reliable
prediction results compared to existing methods in practical applica-
tions. Additionally, we demonstrated through simulation that the use
of stable features endows COMPOSITE with robustness against both
heterotypic and homotypic multiplets, whereas the existing methods
only demonstrate sensitivity to heterotypic multiplets due to their
reliance on highly variable features. One major limitation of COMPO-
SITE, like many other parametric statistical models, is that its perfor-
mance can be negatively impacted when the assumptions are violated.
When the data are too sparse, and the distributions of stable features
cannot be adequately fitted by the model, the method’s performance
may lack robustness. To address this issue, we offer goodness-of-fit

metrics that aid in evaluating the fitting of the model and inferring the
reliability of its predictions.

We expect that COMPOSITE will offer substantial benefits to all
laboratories engaged in single-cell experiments, particularly those
aiming to conduct large-scale single-cell multiomics experiments.
Single-cell multiomics data can reveal cell types and states that may
not be distinguishable using a singlemodality of data. However, it also
increases the likelihood ofmultiplet cluster isolation and the potential
generation of spurious cell types. COMPOSITE harnesses multiplet
signals across modalities to effectively identify and remove multiplets
in multiomics settings, significantly enhancing the reliability of
downstream analyses.

In addition, COMPOSITE aids in reducing cost and addressing the
scalability issue of single-cell multiomics experiments. Single-cell
multiomics profiling provides great potential for a deeper under-
standing of the relationship among different modalities. However,
single-cellmultiomics experiments, such as DOGMA-seq and CITE-seq,
can be financially demanding, and the cost factor is amajor bottleneck
for their widespread adoption. Increasing the cell loading densities in
such experiments can effectively reduce the average library prep cost
per cell. However, this increase in throughput also yields a higher rate
ofmultiplets, compromising data reliability and resulting in inaccurate
biological discoveries. While experimental approaches exist for mul-
tiplet detection and removal, they incur additional costs. COMPOSITE,
on the other hand, provides a rapid and robust solution for multiplet
removalwithout any additional expenses, effectively reducing costs by
enabling high throughput while preserving the reliability of biological
inferences.

COMPOSITE is currently compatible with threemodalities of data
(scRNA-seq, ADT, and scATAC-seq). However, it offers a flexible fra-
mework that can be expanded to accommodate additional modalities
as new techniques and data types emerge. Moreover, while the
COMPOSITE model is specifically designed for multiplet detection, its
compound Poisson statistical framework has wide applicability in the
modeling of single-cell data. For example, for spatial transcriptomic
data, the compound Poisson framework is potentially helpful in esti-
mating the number of cells and unraveling the cell composition within
each spot43–45. We anticipate that these interesting directions will be
explored in future studies.

By leveraging GPU acceleration, the COMPOSITE method can
efficiently perform multiplet detection for a single 10X Chromium
well within minutes (Fig. S34). Multiple-well data will be processed in
parallel, so our streamlined approach should be applied to any
droplet-based experiments without concern of computational
burden.

By applying COMPOSITE to DOGMA-seq datasets from both
blood samples and solid tissue samples, we showcased its outstanding
and consistent efficacy in multiplet detection. The COMPOSITE pipe-
line is available as a cloud-based application with a user-friendly
interface https://shiny.crc.pitt.edu/shinyproj_composite/. We antici-
pate COMPOSITE to be an invaluable tool for enhancing the reliability
of biological inferences and achieving cost reduction in all single-cell
studies. It is particularly beneficial in single-cellmultiomics studies, not

Fig. 4 | Benchmarkingofmultiplet predictionmethodson the PB-1dataset. a–d
UMAP plots displaying the comparison between multiplet predictions and the
ground truth on the PB-1 dataset. The multiplet detection methods shown are
COMPOSITE (DOGMA) (a), COMPOSITE (RNA) (b), scDblFinder (RNA) (c), and
DoubletFinder (RNA) (d). True positive (Prediction \ Ground truth), false positive
(Prediction =2 Ground truth), and false negative (Ground truth =2 Prediction) pre-
dictions for multiplets are highlighted with green, red, and dark blue, respectively.
Comparing the results from a–d, the circled cluster shows the most prominent
difference among the prediction results from different methods. COMPOSITE
(DOGMA) almost completely removed the circled cluster, while the othermethods,
including the experimental cell hashing approach, only removed part of it.

e Azimuth39 cell type annotation based on the ADT data after removing ground
truth multiplets. The clustering and UMAP visualization were generated from
weighted nearest neighbors using all three modalities of data39. The red circle in
emarks the cluster where the droplets were predicted to be various contradicting
cell types by Azimuth. f–h Scatter plots comparing the expression of two exclusive
ADT markers, CD3 and CD19, among all droplets before multiplet removal (f),
among the remaining droplets after removing ground truth multiplets (g), and
among the remaining droplets after removing COMPOSITE (DOGMA)-predicted
multiplets (h). In f–h, the droplets that belong to the circled cluster in a-e are
highlighted in red. Source data are provided as a Source Data file.
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only due to its exceptional performance for multiomics multiplet
detection but also because the expensive single-cell multiomics
experiments are ingreater demand formultiplet detection tools due to
the generally more significant multiplet issues resulting from high-
density cell loading in cost-saving efforts.

Methods
The COMPOSITE model
The COMPOSITEmodel is designed to performmultiplet detection for
both single-omics andmultiomics single-cell data. It followsa four-step
approach: (1) stable feature selection, (2) multiplet detection using

Fig. 5 | Benchmarking ofmultiplet detection on the Ileum-1 dataset. a–d UMAP
plots displaying the comparison between multiplet predictions and the ground
truth on the Ileum-1 dataset. The multiplet detection methods shown are COM-
POSITE (DOGMA) (a), COMPOSITE (RNA) (b), scDblFinder (RNA) (c), and Dou-
bletFinder (RNA) (d). True positive (Prediction \ Ground truth), false positive
(Prediction =2 Ground truth), and false negative (Ground truth =2 Prediction) pre-
dictions for multiplets are highlighted with green, red, and dark blue, respectively.
Comparing the results from a–d, the circled cluster shows the most prominent

difference among the prediction results from different methods. In the circled
cluster, the three prediction methods based on RNA data resulted in many false
positives (b–d), while the false positive rate for COMPOSITE (DOGMA) remained
low (a). e Manual cell type annotation based on ADT data after removing ground
truth multiplets. The clustering and UMAP visualization were generated from
weighted nearest neighbors using all three modalities of data39. Source data are
provided as a Source Data file.
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single-omics data, (3) model fitting evaluation, and (4) integrating
multiomics data if available.

Stable feature selection
In contrast to most existing multiplet detection methods that pri-
marily rely on highly variable features, the COMPOSITEmodel takes a
different approach by leveraging stable features. Because they
remain relatively stable across different cell types in the dataset, their
abundance is more closely related to multiplet status (Fig. S1a–d).
Different datasets may have different stable features; hence, we
require a stable feature selection process for every dataset. For RNA
and ADT modalities, the stable feature selection is the only pre-
processing step required for COMPOSITE, and we have implemented
that in the COMPOSITE pipeline. For the ATAC modality, the
Signac30,31 pipeline needs to be applied to infer the gene activity
matrix to reduce sparsity, and then the stable features are selected
from the inferred gene activity matrix. To select stable features, we
adapt the analytic framework in scMerge46. In this paper, stable fea-
tures were used for dataset integration. Although the goals are dif-
ferent, the stable feature selection process is adaptable to our
problem. The key principle is to select features that have a low
proportion of zero values among droplets and show a high signal-to-
noise ratio. We first compute the proportion of zero counts among
all droplets for each feature and then screen out features with a
proportion of zero values higher than 50%. The second step is to
compute the mean/standard deviation (SD) ratio for each feature
that passes the first criterion, and features with the highest mean/SD
ratios are considered candidate features for multiplet detection
(Fig. S35). It is worth noting that the data are log 1p transformed
(log 1pðxÞ= logðx + 1Þ) when computing the mean and SD to avoid the
influence of outlier expression. In practice, the model performance
increases with the number of stable features selected at first and then
reaches a plateau (Fig. S36). In our study, we used 300 stable features
for RNA and ATAC modalities. For the ADT modality, we use the top
10% most stable features instead of setting a fixed number, as the
number of ADT features may vary in different experiments. Users
may adjust this threshold to include more or fewer stable features,
and the COMPOSITE model is robust to variations in the number of
stable features.

Multiplet detection using single-omics data
After stable feature selection, the COMPOSITE model takes the selec-
ted stable features as input. In this section, we describe the COMPO-
SITE prediction on single-omics data.

To specify the statisticalmodel, we define the following notations:
q 2 fRNA,ADT,ATACg denotes the indicator of modalities.
X ðqÞ
ij denotes the random variable that models the value of the ith

stable feature (i= 1, . . . ,mðqÞ) of the jth droplet (j = 1, . . . ,n) in mod-
ality q.

Kj denotes the random variable that models the number of extra
cells in the jth droplet, Kj =0,1, . . . ,1. Kj =0 indicates that the jth
droplet is a singlet. Kj + 1 is the total number of cells in the jth droplet.

Z ðqÞ
ijl denotes the random variable that models the contribution of

the jth (l =0,1, . . . ,Kj) extra cell in the jth droplet to X ðqÞ
ij , where l =0

indicates the first cell in the droplet. Note that there is no intrinsic
order for the cells in a droplet and we define the order only for model
specification. The relationship between X ðqÞ

ij and Z ðqÞ
ijl is as follows:

X ðqÞ
ij =

XKj

l =0

Z ðqÞ
ijl

ð1Þ

Our goal is to perform statistical inference on the number of
extra cells in each droplet given the observed data for that

droplet. That is, we need to calculate PðKjjXðqÞ
�j =x

ðqÞ
�j Þ. Then, 1�

PðKj =0jXðqÞ
�j =x

ðqÞ
�j Þ is the probability that the jth droplet is a multiplet.

Here, the lower-case characters, suchasx, denote the specific values of
the corresponding random variables.

Although the single-cell features are recorded as count data,
the stable features have high recorded values in general
and their distributions are close to continuous distributions.
Based on the observed distribution of the data (Fig. S1a–d), we make
the following assumptions on the distributions of the random
variables:
1. If q=RNA or ATAC, Z qð Þ

ijl follows a Gamma distribution.
2. If q=ADT, Z ðqÞ

ijl follows a Gaussian distribution.
3. Z ðqÞ

ijl ’s (for l =0,1, . . . ,Kj) are independent and identically dis-
tributed (i.i.d), conditional on Kj .

4. Kj ∼PoissonðθðqÞÞ, where θðqÞ is shared across all droplets, i.e., all
droplets are assumed to have the same probabilities for capturing
extra cells.

The parameters for characterizing the distribution of Z ðqÞ
ijl depend

on Kj, the number of extra cells in the droplet. When the number of
cells within a droplet increases, the expected contributions of indivi-
dual cells within that droplet will decline (Fig. S37). We define this
effect as the “decline effect” and introduce a decline parameter dðqÞ to
model this effect. The expected feature values for multiplets contain-
ing k + 1 cells can be characterized by

E X qð Þ
ij jKj = k

� �
= k + 1ð Þ*f dðqÞ, k

� �
*E Z qð Þ

ij0jKj =0
� �

ð2Þ

E X qð Þ
ij jKj = k

� �
= k + 1ð Þ*f dðqÞ, k

� �
*E X qð Þ

ij jKj =0
� �

ð3Þ

where k >0 and f dðqÞ,k
� �

<1. We assume that in a multiplet with k + 1
cells (k > 0), the expected feature values are greater than those in
singlets but are less thank + 1 times those values in singlets.Weexpress
this assumption using the following set of inequalities:

E X qð Þ
ij jKj = k

� �
> E X qð Þ

ij jKj =0
� �

E X qð Þ
ij jKj = k

� �
< ðk + 1Þ*E X qð Þ

ij jKj =0
� � ,for k >0

8><>: ð4Þ

We define f dðqÞ,k
� �

to have the following form such that
E X qð Þ

ij ,j,Kj = k
� �

, as expressed in Eq. (3), satisfies the set of inequalities
(4):

f dðqÞ,k
� �

=
1

k + 1
+ 1� 1

k + 1

� �
1

1 + exp �dðqÞ
� �

24 35 ð5Þ

where dðqÞ 2 ð�1, +1Þ is the decline parameter shared by all droplets
within the same modality in a dataset. Then, we can fully specify the
distributions of Z ðqÞ

ijl and X qð Þ
ij .

For q=RNA or ATAC,

Z ðqÞ
ijl ∼Gamma

1
Kj + 1

+ 1� 1
Kj + 1

 !
1

1 + exp �dðqÞ
� �

24 35αðqÞ
i ,βðqÞ

i

0@ 1A ð6Þ

which ensures that the set of inequalities (4) is satisfied. The dis-
tribution of X qð Þ

ij is then a compound Poisson-Gamma distribution. The
probability density function (PDF) of X qð Þ

ij is:

f X qð Þ
ij

xð Þ=
X1
k =0

P Kj = k
� �

f X qð Þ
ij

xjKj = k
� �

ð7Þ
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f X qð Þ
ij

xð Þ=
X1
k =0

P Kj = k
� �

fPk

l =0
Z qð Þ
ijl

ðxÞ ð8Þ

where P Kj = k
� �

is the Poisson probability mass function (PMF):

P Kj = k
� �

=
θðqÞk expð�θðqÞÞ

k!
ð9Þ

Note that we also considered and implemented zero-inflated
Poisson (ZIP). The fitting results typically assign close-to-zero weights
to the zero component, causing the distribution to degenerate into an
ordinary Poisson distribution. Therefore, here we do not separately
introduce the ZIP case. Since Z qð Þ

ijl ’s (l =0, . . . ,Kj) are i.i.d random vari-
ables, by the properties of Gamma distribution,

XKj

l =0

Z qð Þ
ijl jKj = k

0@ 1A∼Gamma
1

k + 1
+ 1� 1

k + 1

� �
1

1 + exp �d qð Þ
� �

24 35 k + 1ð Þα qð Þ
i ,β qð Þ

i

0@ 1A
ð10Þ

In theory, k can go to infinity, but in our implementation, con-
sidering the practical needs and computational efficiency, we do not
model beyond triplets in the default setting (kmax = 2) but allow users
to change it if desired. After setting a kmax value, the Poisson dis-
tribution is right truncated. The right truncated Poisson distribution
PMF is

PT Kj = k
� �

=
θðqÞ

k
expð�θðqÞ Þ
k!Pkmax

p=0

θðqÞ
p
expð�θðqÞ Þ
p!

, k 2 f0,1, . . . ,kmaxg ð11Þ

We assume that the droplets are independent, then the joint PDF
for stable feature i across all droplets is

f X qð Þ
i�

xð Þ=
Yn
j = 1

Xkmax

k =0

PT Kj = k
� �

fPk
l =0

Z qð Þ
ijl

ðxÞ ð12Þ

Note thatmost of the stable features, such as housekeeping genes
and mitochondrial genes, do not have regulatory relationships with
eachother and are biologically independent.Moreover, conditional on
the same multiplet status, the correlations among stable features are
close to zero (Fig. S1e, f). Therefore, we assume that the stable features
are independent conditional on the number of cells in the droplet. The
joint PDF for all droplets across all stable features within modality q is
then:

f X ðqÞ xð Þ=
YmðqÞ

i= 1

Yn
j = 1

Xkmax

k =0

PT Kj = k
� �

fPk
l =0

Z qð Þ
ijl

ðxÞ ð13Þ

We use ψðqÞ to denote the set of parameters that need to be
estimated, i.e.,

ψðqÞ = θ qð Þ,α qð Þ
i ði= 1, . . . ,m qð ÞÞ,β qð Þ

i ði= 1, . . . ,mðqÞÞ,d qð Þ
n o

ð14Þ

The joint log-likelihood is

l ψðqÞjX qð Þ =x qð Þ
� �

= log
YmðqÞ

i= 1

Yn
j = 1

Xkmax

k =0

PT Kj = k
� �

fPk
l =0

Z qð Þ
ijl

xð Þ ð15Þ

l ψðqÞjX qð Þ =x qð Þ
� �

=
Xn
j = 1

XmðqÞ

i = 1

log
Xkmax

k =0

PT Kj = k
� �

fPk
l =0

Z qð Þ
ijl

xð Þ

0B@
1CA ð16Þ

Within each modality, the parameter values are estimated
through maximum likelihood maximization. Once the parameter
values ^ψðqÞ have been estimated, the next step is to perform statistical
inference on Kj’s to predict the number of cells in each droplet:

P Kj = kjX qð Þ
�j =x qð Þ

�j ,dψðqÞ
� �

=
PT Kj = k,x

qð Þ
�j jdψðqÞ

� �
PT x qð Þ

�j jdψðqÞ
� � ð17Þ

P Kj = kjX qð Þ
�j =x qð Þ

�j ,dψðqÞ
� �

=
f X qð Þ

�j
x qð Þ
�j jKj = k,

dψðqÞ
� �

PT Kj = kjdψðqÞ
� �

P
s f X qð Þ

�j
x qð Þ
�j jKj = s,

dψðqÞ
� �

PT Kj = sjdψðqÞ
� �

ð18Þ

P Kj = kjX qð Þ
�j =x qð Þ

�j ,dψðqÞ
� �

=

QmðqÞ
i= 1 f X qð Þ

ij
x qð Þ
ij jKj = k,

dψðqÞ
� �� �

PT Kj = kjdψðqÞ
� �

P
s

QmðqÞ
i= 1 f X qð Þ

ij
x qð Þ
ij jKj = s,

dψðqÞ
� �� �

PT Kj = sjdψðqÞ
� �

ð19Þ

where the distribution of ðX qð Þ
ij jKj = k,

dψðqÞÞ is fully specified as

Gamma
1

k + 1
+ 1� 1

k + 1

� �
1

1 + exp �dd qð Þ
� �

2664
3775 k + 1ð Þdα qð Þ

i ,dβ qð Þ
i

0BB@
1CCA ð20Þ

The probability that the j th droplet is a singlet is then

P Kj =0jX qð Þ
�j =x qð Þ

�j ,dψðqÞ
� �

. We classify the j th droplet as a singlet if that

probability is ≥0.5 and classify it as a multiplet otherwise.

For q=ADT,

Z ðqÞ
ijl ∼Gaussian

1
Kj + 1

+ 1� 1
Kj + 1

 !
1

1 + exp �d qð Þ
� �

24 35μ qð Þ
i ,σ2 qð Þ

i

0@ 1A
ð21Þ

By default, we still assume that the stable features are indepen-
dent conditional on the number of cells in the droplet, and this default
setting can handle most of the cases. Nonetheless, for ADT data, it is
possible that the selected stable features are not biologically inde-
pendent, because in some experiments, there are too few ADT fea-
tures, and all of them are highly variable across different cell types.
Therefore, for the ADT modality we also implemented a model
assuming non-zero correlation between the features:

Z ðqÞ
�jl ∼MVG

1
Kj + 1

+ 1� 1
Kj + 1

 !
1

1 + exp �d qð Þ
� �

24 35μðqÞ,ΣðqÞ

0@ 1A ð22Þ

The set of parameters that need to be estimated for the ADT
modality is

ψðqÞ = θ qð Þ,μðqÞ,ΣðqÞ,d qð Þ
n o

,q=ADT ð23Þ
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Bydefault, for q=ADT, the expression of the joint likelihood is the
same as (16), and theonlydifference is that the distribution of

Pk
l =0Z

qð Þ
ijl

becomes:

XKj

l =0
Z qð Þ
ijl jKj = k

� �
∼Gaussian

1
k + 1

+ 1� 1
k + 1

� �
1

1 + exp �d qð Þ
� �

24 35 k + 1ð Þμ qð Þ
i ,kσ2 qð Þ

i

0@ 1A ð24Þ

The statistical inference onKj ’s follows the same derivations as in
Eqs. (17)–(19):

P Kj = kjX qð Þ
�j =x qð Þ

�j ,dψðqÞ
� �

=

QmðqÞ
i= 1 f X qð Þ

ij
x qð Þ
ij jKj = k,

dψðqÞ
� �� �

PT Kj = kjdψðqÞ
� �

P
s

QmðqÞ
i= 1 f X qð Þ

ij
x qð Þ
ij jKj = s,

dψðqÞ
� �� �

PT Kj = sjdψðqÞ
� �

ð25Þ

The only difference from the scenarios where q=RNA or ATAC is
that the distribution of ðX qð Þ

ij jKj = k,
dψðqÞÞ is given by:

Gaussian
1

k + 1
+ 1� 1

k + 1

� �
1

1 + exp �dd qð Þ
� �

2664
3775 k + 1ð Þdμ qð Þ

i , k
d
σ2 qð Þ

i

0BB@
1CCA
ð26Þ

The probability that the j th droplet is a singlet is then
P Kj =0,j,X qð Þ

�j =x qð Þ
�j , ^ψðqÞ

� �
calculated according to Eq. (25).

Model fitting evaluation
Since COMPOSITE is a parametric statistical model, its performance is
contingent uponhowwell itfits the data.Wemeasure the goodness-of-
fit based on the Kolmogorov–Smirnov (KS) statistics. The KS statistic
measures the maximum difference between the empirical cumulative
distribution function (CDF) and the fitted CDF. The empirical CDF for
the i th stable feature in the modality q is defined as:

F nð Þ
i,ðqÞ xð Þ= 1

n

Xn
j = 1

Iðx qð Þ
ij ≤ xÞ ð27Þ

The fitted CDF for the i th stable feature in the modality q is:

F̂ i,ðqÞ xð Þ=PðX qð Þ
ij ≤ xj ^ψðqÞÞ=

X
s

P Kj = s
� �

PðX qð Þ
ij ≤ xjKj = s,

^ψðqÞÞ,8j 2 1, . . . ,nf g ð28Þ

The KS statistic for the i th stable feature in modality q is then:

KSðqÞi =maxx F nð Þ
i, qð Þ xð Þ � F̂ i, qð Þ xð Þ

��� ���,x 2 R+ ð29Þ

We take the average of the KS statistics across all stable features
within modality q to get the average KS statistic for modality q:

KSðqÞ =
1

mðqÞ
XmðqÞ

i= 1

KSðqÞi =
1

mðqÞ
XmðqÞ

i = 1

maxx F nð Þ
i, qð Þ xð Þ � F̂ i, qð Þ xð Þ

��� ���,x 2 R+ ð30Þ

We define the overall goodness-of-fit for modality q as

GOFðqÞ =
1

KSðqÞ
ð31Þ

This goodness-of-fit metric is a good indicator of the reliability of
the prediction result. A higher goodness-of-fit value is associated with
better model prediction performance.

Integrating multiomics data
If multi-modality (multiomics) data are available, COMPOSITE first
obtains the prediction from each individual modality of data and then
combines the prediction across modalities by assigning droplet-
specific modality weights. COMPOSITE calculates droplet-specific
modality weights based on the product of two components: 1. over-
all modality weights, and 2. droplet-specific modality consistencies.

For the first component, the basic idea is that the modalities with
better goodness-of-fit values are anticipated to demonstrate superior
prediction performance and should be assigned higher overall
weights. Therefore, the overall weight for each modality is defined to
be proportional to the overall goodness-of-fit of the modality. The
overall modality weight for modality q is denoted as W ðqÞ:

WRNA =GOFRNA =
1

KS
RNA ð32Þ

WADT =GOFADT =
1

KS
ADT ð33Þ

WATAC = λ � GOFATAC = λ 1

KS
ATAC , λ 2 0,1½ � ð34Þ

We down weight the ATAC modality since predictions based on
ATAC data generally lack sensitivity. By default, we set λ=0:5.

The second component, droplet-specific modality consistencies,
measures how consistent the signals from individual stable features
arewith the overall signal from the entiremodality within a droplet. To
calculate the droplet-specific modality consistencies, we compare the
posterior probability of singlet conditional respectively on the single
stable feature values and all stable feature values within the modality.
The posterior probability of a singlet for the j th droplet given the
observed value of a single stable feature i in the q th modality is:

P Kj =0jxðqÞij ,dψðqÞ
� �

=
f x qð Þ

ij jKj =0,
dψ qð Þ

� �
P Kj =0jdψðqÞ
� �

P
sf x qð Þ

ij jKj = s,
^ψ qð Þ

� �
P Kj = sjdψðqÞ
� � ð35Þ

The posterior probability of a singlet for the j th droplet given the
observed value of all stable features in the q th modality is:

P Kj =0jx qð Þ
�j , ^ψ qð Þ

� �
=

f x qð Þ
�j jKj =0,

dψ qð Þ
� �

PðKj =0jdψ qð ÞÞ
P

sf x qð Þ
�j jKj = s,

dψ qð Þ
� �

PðKj = sjdψ qð ÞÞ
ð36Þ

The droplet-specific modality consistency for the j th droplet is

RðqÞ
j =

XmðqÞ

i= 1

IðuðPðKj =0jx qð Þ
ij , ^ψ qð ÞÞÞ=uðPðKj =0jx qð Þ

j ,dψ qð ÞÞÞÞ
mðqÞ

ð37Þ

where I is the indicator function and

u xð Þ= 0,if x> 1
2

1,if x ≤ 1
2

(
ð38Þ

To define the cell-specificmodality weight, we take the product of
the two components and then pass it through the SoftMax
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transformation to make it a proper weight:

wðqÞ
j = SoftMax W ðqÞ ×RðqÞ

j

� �
=

eW
ðqÞ ×RðqÞ

jP
qe

W ðqÞ ×RðqÞ
j

ð39Þ

The final inference on Kj is obtained by calculating a weighted
sum of the inference results for Kj from each individual modality:

PðKj = kjx�j ,bψÞ=
X
q

w qð Þ
j ×P Kj = kjx qð Þ

�j ,dψ qð Þ
� �

ð40Þ

Toobtain thefinalmultiomicsprediction of themultiplet status of
the j th droplet, we compare PðKj =0jx�j,bψÞ to 0.5. We classify the j th
droplet as a singlet if that probability is ≥0.5 and classify it as a mul-
tiplet otherwise.

DOGMA-seq experiment details
Preparation of peripheral blood T cell DOGMA-seq datasets. T cells
were enriched from 15ml of whole blood donated by young adult
human study subjects using a magnetic bead-based negative selection
method andwere then cryopreserved. For each experiment, cells from
one to four subjects were thawed simultaneously, and each subject’s
cells were cultured in different stimulation conditions, including
Human CD3/CD28/CD2 T Cell Activator, IL-1B and IL-23, with or with-
out Prostaglandin E2 (PGE2), for varying time periods. Following cen-
trifugation and resuspension, ~300,000 cells from each condition
were incubated with Human TruStain FcX™ (BioLegend) for 10min on
ice and then stained with a unique TotalSeq™-A anti-human Hashtag
antibody (BioLegend) in 50μl for 30min at 4 °C. Cells were then
washed in the Laminar Wash™Mini System (Curiox Biosystems). After
cell collection, up to 1.5 million cells from the 8 to 13 hashtagged
samples were pooled. The cells were then stained with TotalSeq™-A
Human Universal Cocktail, V1.0 (BioLegend), consisting of antibodies
bound to antibody-derived tag (ADT) oligonucleotides. Cells were
washed asdescribed above. Finally, the cells underwent theCG000338
Chromium Next GEM Multiome ATAC plus Gene Expression Rev. D
(10X Genomics) protocol for Gene Expression and ATAC library con-
struction, to which adjustments were made following the “Cell per-
meabilization with Digitonin (DIG)” section of the DOGMA-seq (NYGC
Innovation Lab) protocol24 to accommodate the DOGMA-seq
technique.

Preparation of PBMC DOGMA-seq dataset
Blood samples were obtained from human study subjects. PBMCs
were isolated by standard Ficoll centrifugation. The isolated cells
were cryopreserved. This dataset comprises cells derived from four
distinct samples, each originating from a unique subject. The four
samples were processed in parallel, which were thawed in the 37 °C
water batch and transferred to a 50ml conical tube after thawing
was complete. One milliliter of thawing medium (RPMI with 10%
FBS) was added dropwise (5 s/drop), followed by 2, 4, 8, and 16ml
thawing medium at ~1-min intervals. The cell preparation steps for
DOGMA-seq mirrored those described in the subsection “Prepara-
tion of peripheral blood T cell DOGMA-seq datasets.” Generally,
each sample was first split into two 1.5ml low-binding tubes
(~0.5 million cells/tube). Each tube was incubated with Human
TruStain FcX™ (BioLegend) for 10min and then incubated with a
unique TotalSeq™-A anti-human Hashtag antibody (BioLegend) for
30min. After 3 times of wash (1350 rpm*5min, PBS + 2% FBS),
187,500 cells/tube from 8 tubes were pooled into one 1.5ml low-
binding tube and incubated with TotalSeq™-A Human Universal
Cocktail, V1.0 (BioLegend) for 30min. After 3 times of wash
(1350 rpm*5min, PBS + 2%FBS), cells were permeabilized with 100 μl
Digitonin lysis buffer for 1min and then washed with 1mL Digitonin

wash buffer (pipette 5 times up and down, then 1350 rpm*5min). All
the reactions were performed at 4 °C. Finally, 30,000 nuclei were
loaded on one well of 10x Genomics Chip. The DOGMA-seq library
preparation process followed the same steps outlined in the sub-
section titled “Preparation of peripheral blood T cell DOGMA-seq
datasets.”

Preparation for Crohn’s disease ileum mucosa immune cells
For each Crohn’s disease patient, biopsies from macroscopically non-
inflamed and/or inflamed mucosa were obtained and then cryopre-
served. For each experiment, six cryopreserved ileummucosa samples
from three patients were thawed, digested, and dissociated into a
single-cell suspension, filtered through a 30-μm strainer, centrifuged,
and resuspended. Cells from each mucosa were then split into two
aliquots, and each of the 12 aliquots was stained with a unique Total-
Seq™-A anti-human Hashtag antibody (BioLegend) plus Apotracker in
100μl for 30min at 4 °C. After filtering through a FACS tube strainer,
7AAD was added, and live, non-apoptotic cells (7AAD− Apotacker-) in
each aliquot were enriched by flow cytometry cell sorting. The vast
majority of the sorted cells were immune cells, as most non-immune
cells were in the excluded dead or apoptotic cell populations. The 12
post-sorted samples were centrifuged, resuspended, counted, and
combined for a 10-min incubation with Human TruStain FcX™ (Bio-
Legend) on the ice, followed by antibody staining with TotalSeq™-A
Human Universal Cocktail, V1.0 (BioLegend) and TotalSeq™-A0123
anti-human CD326 (Ep-CAM) (BioLegend). Without washing, the cells
underwent the CG000338 Chromium Next GEMMultiome ATAC plus
Gene Expression Rev. D (10X Genomics) protocol for Gene Expression
and ATAC library construction, which was adjusted following the “Cell
permeabilization with PFA/LLL” section of the DOGMA-seq (NYGC
Innovation Lab) protocol24 to accommodate the DOGMA-seq
technique.

Preparation for Crohn’s disease colonmucosa non-immune cells
Similar to the steps described above, four cryopreserved colon
mucosa samples from two patients were processed into a single-cell
suspension. Cells from each mucosa were then split into either one or
two aliquots. After incubated with Human TruStain FcX™ (BioLegend),
eachof the aliquotswas stainedwith a uniqueTotalSeq™-A anti-human
Hashtag antibody (BioLegend), as well as anti-CD45 fluorescent anti-
body and Apotracker, and then washed. After cells were filtered
through Flowmi strainer, 7AAD was added, and live, non-apoptotic,
CD45− cells (7AAD- Apotacker- CD45−) in each aliquot were enriched by
flow cytometry cell sorting. The vast majority of the sorted cells were
non-immune cells.

DOGMA-seq library sequencing and preprocessing
The DOGMA-seq libraries were pooled, sometimes with libraries from
other projects, and sequenced on the NovaSeq 6000 sequencing
platform (Illumina) at the University of Pittsburgh Medical Center
Genome Center. Cell Ranger ARC software (version 2.0.1) was used for
processing and aligning sequenced RNA and ATAC libraries to the
GRCh38 human reference genome, and Kallisto|Bustools workflow
(kallisto version 0.46.1, bustools version 0.39.3) was used for aligning
sequenced ADT and HTO libraries. After data filtering and modality
combination (RNA+ATAC +ADT+HTO), HTO libraries were demulti-
plexed using GMMDemux47. The following groups of datasets origi-
nated from Gel Bead-In-EMulsion (GEM) wells loaded with distinct
aliquots from the same pool of hashtagged cells: PB-1 and PB-2; PB-3
and PB-4; PB-5, PB-6, and PB-7; PB-8 and PB-9; Ileum-1 and Ileum-2;
Ileum-3 and Ileum-4; Ileum-5 and Ileum-6.

Model performance evaluation and benchmarking
In our study, two metrics were used for the evaluation of model per-
formance: the area under the precision-recall curve (AUPRC) and the
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F1 score. The F1 score is defined as

F1 score=
2*precision*recall
precision+ recall

ð41Þ

The AUPRCmetric has been widely used for the benchmarking of
multiplet detection methods37, as it is suitable for the scenario where
the two binary classes are imbalanced48. However, AUPRC is not suf-
ficient for assessing the model performances in real applications. A
model with a high AUPRC can still exhibit poor prediction perfor-
mance if the classification threshold or cutoff is not appropriately
chosen, particularly in cases of imbalanced precision and recall. The
F1 score, however, provides a balanced assessment of precision and
recall. Therefore, the F1 score provides a more comprehensive eva-
luation of themodel performance in real applications, andwe used the
F1 score as the major evaluation metric for multiplet prediction
performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information file. The cell
hashing data and the single-cell stable feature data generated in this
study have been deposited in Zenodo under accession code https://
doi.org/10.5281/zenodo.11167173 [https://doi.org/10.5281/zenodo.
11167174]49. Source data are provided with this paper.

Code availability
COMPOSITE has been implemented in the “sccomposite” Python
package, which is available at https://github.com/CHPGenetics/
COMPOSITE. Relevant experiment codes and results are available in
the GitHub repository and on Zenodo under the accession code
https://doi.org/10.5281/zenodo.11166717 [https://zenodo.org/records/
11166718]50. The COMPOSITE pipeline is also available as a cloud-based
application https://shiny.crc.pitt.edu/shinyproj_composite/.
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