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Abstract

Spatial transcriptomics technologies have shed light on the complexities of tissue structures by accurately mapping spatial microen-
vironments. Nonetheless, a myriad of methods, especially those utilized in platforms like Visium, often relinquish spatial details
owing to intrinsic resolution limitations. In response, we introduce TransformerST, an innovative, unsupervised model anchored
in the Transformer architecture, which operates independently of references, thereby ensuring cost-efficiency by circumventing
the need for single-cell RNA sequencing. TransformerST not only elevates Visium data from a multicellular level to a single-cell
granularity but also showcases adaptability across diverse spatial transcriptomics platforms. By employing a vision transformer-based
encoder, it discerns latent image-gene expression co-representations and is further enhanced by spatial correlations, derived from
an adaptive graph Transformer module. The sophisticated cross-scale graph network, utilized in super-resolution, significantly boosts
the model’s accuracy, unveiling complex structure-functional relationships within histology images. Empirical evaluations validate its
adeptness in revealing tissue subtleties at the single-cell scale. Crucially, TransformerST adeptly navigates through image-gene co-
representation, maximizing the synergistic utility of gene expression and histology images, thereby emerging as a pioneering tool in
spatial transcriptomics. It not only enhances resolution to a single-cell level but also introduces a novel approach that optimally utilizes
histology images alongside gene expression, providing a refined lens for investigating spatial transcriptomics.
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INTRODUCTION the structure-function interactions at enhanced resolution
Understanding the tissue structures at the spot and single-cell remains an open question in current spatial transcriptomics (ST)
resolution helps to extract fine-grained information for tissue  analysis. Contemporary ST technologies facilitate the inference
microenvironment detection. How tissue heterogeneity shapes of large-scale structural connectivity and the delineation of
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spatial heterogeneity patterns inherent in disease pathology.
[1, 2]. ST methods can be generally grouped into two main
categories: methods based on fluorescence in situ hybridization
or sequencing, such as segFISH [3, 4], seqFISH+ [5], MERFISH
[6, 7], STARmap (8] and FISSEQ [9], have the capability to attain
single-cell resolution. However, these technologies measure gene
expression with low throughput and less sensitivity. The in situ
capturing-based approach forms the second category, comprising
methods such as ST [10], SLIDE-seq [11], SLIDE-seqV2 [12], HDST
[13] and 10x Visium. These techniques are designed for high-
throughput gene expression analysis while maintaining the
integrity of spatial patterns. The primary limitation of in situ
capturing methods, a category of barcoding-based ST, is their
limited spatial resolution. This is particularly evident in widely
used technologies like Visium, where the resolution is typically
constrained to 20 to 100 cells per barcode. Such a resolution
makes it challenging to profile spatial neighborhoods in detail.
While other protocols like Slide-seq, PIXEL-seq, Seq-Scope and
Stereo-seq, as well as microfluidics-based barcoding methods
like DBIT-seq, achieve higher resolutions ranging from 10 pm to
approximately 500 nm per barcode, they are not inherently ‘cell
aware.’ The barcodes in these methods are randomly distributed
relative to cell positions, often overlapping cell-cell boundaries,
which complicates the association of a spatial barcode with a
specific cell. Furthermore, these methods generally exhibit lower
sensitivity, mainly due to the requirement for in situ reverse
transcription, and the cost per sample is often higher than
other methods. Despite these challenges, barcoding methods,
including Visium, offer significant advantages in throughput,
as the acquisition time does not increase with the sample size
or the number of features detected, allowing for the parallel
processing of multiple samples and bulk sequencing. Prominent
technologies offer spot measurements with diameters of 100 p
m in the ST platform and 55 g m in the Visium platform. Given
the constrained resolution of existing ST technologies, there is a
pressing need for advanced data analysis techniques to uncover
the intricate tissue heterogeneities in tumor microenvironments,
brain disorders and embryonic development [1, 14, 15].
Traditional approaches to ST analysis fall short in seamlessly
integrating original gene expression, spatial relationships and
histology images due to the following limitations. (1) A major-
ity of the current methods employ dimension-reduction tech-
niques to mitigate computational demands. Yet, these reduced
features often compromise the heterogeneity of gene expres-
sion in certain tissues. (2) Several workflows, like Seurat [16],
are tailored for single-cell RNA sequencing (scRNA-seq) analysis,
which can inadvertently distort the spatial relationships. (3) To
the best of our knowledge, minimal efforts have been directed
toward examining the heterogeneity across tissue structures at
both spot and enhanced resolutions. Several approaches such
as RCTD [17], stereoscope [18], SPOTlight [19], SpatialDWLS [20]
and cell?location [21] have been developed to integrate scRNA-
seq with ST, enhancing the resolution of spatial gene expression.
However, such methods hinge on the availability of appropriate
single-cell references. In many cases, the acquisition of appro-
priate single-cell references is impeded by financial limitations,
technical obstacles and biological factors [22, 23]. Some deconvo-
lution methods use public scRNAseq references such as Human
Cell Atlas [24], BRAIN Initiative Cell Census Network (BICCN)
[25] and Human BioMolecular Atlas [26] to solve the problem,
but the batch effects and tissue heterogeneity in samples may
result in incomplete cell types. Moreover, single-cell references

and ST are affected by different perturbations, which may affect
the deconvolution accuracy [27].

Prior ST analysis techniques, particularly those utilizing Visium
technology, were unable to elevate gene expression to single-
cell resolution without relying on scRNA-seq data. BayesSpace
[28] employs a Bayesian prior to investigate the neighborhood
structure, enhancing the resolution to a subspot level, which
remains less refined than single-cell resolution. However, the high
computational complexity and lack of flexibility hinder its appli-
cation in multimodal ST data analysis. CCST [29] leverages graph
convolutional networks to integrate gene expression with overar-
ching spatial information. SpaGCN [30] combines gene expression,
spatial information and histology image through a graph con-
volution model. Importantly, many current methods, including
BayesSpace, CCST and SpaGCN, depend on principle component
analysis (PCA) to isolate highly variable features. This approach
falls short when it comes to uncovering nonlinear relationships.
As detailed in [31], STAGATE utilizes an adaptive graph attention
autoencoder to discern spatial domains. It achieves better perfor-
mance for the identification of tissue types and highly expressed
gene patterns. However, the utility of STAGATE is limited to spot
resolution analysis. ConST [32] is a cutting-edge ST data analysis
framework that uses contrastive learning techniques to effec-
tively process and integrate multi-modal ST data. DeepST com-
bines the capabilities of a graph neural network (GNN) autoen-
coder with a denoising autoencoder to craft an enriched latent
representation of augmented ST data. Moreover, as detailed in
[33], DeepST employs domain adversarial neural networks to
synchronize ST data from different batches, thereby elevating the
depth and accuracy of ST analysis. StLearn, as referenced in [34],
employs a deep learning approach tailored for the image domain
and relies on linear PCA for extracting features from spatial gene
expression. However, its limited focus on gene expression and spa-
tial relationships potentially constrains its efficacy across diverse
platforms. STdeconvolve [35] utilizes latent Dirichlet allocation to
deconvolve the cell type proportions within each multi-cellular
pixel. As highlighted in [35], STdeconvolve might struggle to dis-
tinguish specific cell types in the absence of highly co-expressed
genes unique to each type. Furthermore, it lacks the capability
to pinpoint the exact location of individual cell types within
each multi-cellular pixel. BLEEP [36] is a novel approach that
leverages contrastive learning to generate a low-dimensional joint
embedding space from a reference dataset, utilizing paired image
and gene expression profiles at micrometer resolution to accu-
rately impute gene expression in diverse image patches. TCGN
[37] is an innovative model combining convolutional layers, trans-
former encoders and GNNs to efficiently and accurately estimate
gene expressions from H&E-stained pathological slides, making
it a significant advancement in precision health applications.
SpatialPCA [38] is an innovative dimension reduction technique
tailored for ST. It effectively extracts significant biological signals
from data, maintains spatial correlation structures and facilitates
advanced analyses such as identifying spatial domains, infer-
ring developmental trajectories and constructing detailed spatial
maps, thereby uncovering essential molecular and immunologi-
cal patterns in intricate tissue contexts. Vesalius [39] is a cutting-
edge tool designed for ST data, utilizing image processing tech-
nology to decode tissue anatomy, uniquely identifying regions
comprising multiple cell types, and effectively revealing tissue
structures and cell-specific gene expression patterns in high-
resolution datasets, including mouse brain, embryo, liver and
colon.
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Current methodologies in ST analysis often underutilize
the rich information embedded within histology images when
combined with gene expression data. Predominant methods,
such as SpaGCN, typically leverage merely the spatial location of
each spot in constructing graphs, thereby neglecting the intricate
textural features present within the histology images. This
oversight potentially omits valuable contextual data regarding
cellular structures, tissue architectures and localized expression
patterns, which could otherwise enhance the granularity and
accuracy of spatial gene expression mappings. The nuanced
visual details within histology images, such as cellular align-
ments, tissue morphologies and pathological markers, can
provide an additional layer of data that, when effectively
integrated with ST, could unveil deeper insights into spatially
resolved biological phenomena and disease progressions. Thus,
there is a compelling need for the development of advanced
analytical methods that holistically integrate both the spatial
coordinates and the detailed textural features of histology images
to fully harness the synergistic potential of combining these data
with spatial gene expression. While our study focuses on ST, it is
contextualized by advancements in deep learning for drug discov-
ery as demonstrated in the works on multimodal representation
learning and interaction prediction in TripletMultiDTI [40], drug
combination studies using transformers in DeepTraSynergy [41]
and compound-protein interaction prediction enhancements in
DeepCompoundNet [42].

To address existing challenges, we developed TransformerST,
an innovative Transformer-based framework crafted to correlate
the heterogeneity of local gene expression properties with
various tissues in histology images, concurrently unveiling
the dependency of structural relationships at a single-cell
resolution (Figure 1). TransformerST encompasses three piv-
otal components: a vision transformer, an adaptive graph
Transformer model fortified with multi-head attention and a
cross-scale model dedicated to super-resolved gene expression
reconstruction. The initial component effectively incorporates
vision transformer structures, adeptly capturing genuine local
gene expression pattems in tandem with histology visuals.
This model takes in a co-representation of image and gene,
sourced from the histology images, and amalgamates both
local and overarching gene expressions within each spot,
culminating in the formation of a spot-to-spot correlation
graph. The adaptive graph transformer approach identifies
tissue types by amalgamating spatial gene expression, spatial
relationships and histology images, while also employing an
adaptive parameter learning step to more astutely explore the
relationship between spatial gene features and graph neighboring
dependence. Lastly, the super-resolved resclution is enhanced
through the cross-scale internal GNN, which recovers more
detailed tissue structures in histology images at a single-cell
resolution. The proposed approach offers the subsequent benefits.

¢ The proposed approach sheds light on the dynamic struc-
tural-functional relationships in ST at a single-cell resolu-
tion. While the incorporation of scRNA-seq data is prevalent
in deconvolution studies [17, 19, 43], it may introduce bias
when single-cell measurements are not available for real-
world applications. The proposed method can infer the tissue
microenvironment at both spot and single-cell resolution
without relying on scRNA-seq data. Our method can pro-
duce gene expression data for each pixel in histology images,
achieving a resolution higher than that of single-cell sequenc-
ing. However, the resolution of the enhanced spatial gene

TransformerST | 3

expression hinges on the ST technology, which can span from
subcellular to single-cell or multi-cell levels. Additionally, the
enhanced resolution is influenced by the quality of the image
captured. For instance, when supplied with a high-quality
histology image coupled with Visium data, our proposed
method has the capacity to generate single-cell resolution
gene expression data.

e The proposed approach enables the integration of heteroge-
neous spatial gene expression with histology images using
multimodal data. While most of the existing methods uti-
lize linear PCA for feature extraction, the proposed method
learns and reconstructs the original expressive gene pattern
with a large number of highly variable genes (HVGs). The
proposed method provides a novel pipeline for tissue type
identification, spatial-resolved gene reconstruction and gene
expression prediction from histology images (if available). It
can be easily transferred to different ST platforms, such as
STomics or 10x Visium.

e The proposed method is assessed to investigate the perti-
nence of various tissue types. This method represents the
first attempt to reconstruct gene expression at a single-
cell resolution without employing scRNA-seq as a reference.
Experimental outcomes, derived from various ST datasets,
highlight the robustness and effectiveness of our proposed
approach, outshining contemporary methods in terms of rep-
resentation quality.

While TransformerST is equipped for transcriptomics deconvolu-
tion, our main emphasis is on clustering and super-resolution.
Unlike deconvolution, which estimates cell type proportions
per spot, our super-resolution pinpoints both location and gene
expression for each cell. Coupled with the clustering task at
both the spot and single-cell levels, TransformerST is adept at
analyzing the cell type for each individual cell.

RESULTS

Overview of the proposed method and evaluations. Our proposed
methodology for analyzing spatial transcriptomic data across
multiple tissues addresses the limitations of existing techniques,
many of which depend on the availability of scRNA-seq data
to enhance resolution. This requirement is not always feasible,
especially in tissues such as the lung. In contrast, our method
is engineered to function without the need for a single-cell ref-
erence, significantly broadening its versatility. This expands its
applicability in ST studies considerably. Crucially, our approach is
tailored to enhance the resolution of spatial transcriptomic data
up to the granularity of individual cells, even in the absence of
a single-cell reference. This facilitates the categorization of cell
types at both the original and single-cell resolutions. Compared
with existing methods, TransformerST stands out for its efficiency,
requiring significantly less computational time for both clustering
and super-resolution tasks (Table 1 and Table 2). In Table 3, we
evaluate our method, TransformerST, in comparison with state-
of-the-art methods in ST. This comparison, which highlights the
varying capacities of different methods to handle a range of tasks
in ST analysis, is thoroughly detailed in Section 52 of the Sup-
plementary Material. While our clustering approach is similar to
existing methods, our proposed method is unique in its ability to
identify tissue type at both spot and enhanced resolution. To the
best of our understanding, this represents the inaugural approach
to attain single-cell resolution in ST without resorting to single-
cell reference datasets. While BayesSpace [28] and STdeconvolve
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Table 1: Computational time for tissue type identification with
LIBD human dorsolateral prefrontal cortex

Method Runtime/mins GPU/CPU
TransformerST-3000 HVGs 6.5 GPU
TransformerST-200 PCA 3 GPU
BayesSpace 21 CPU
stleam 0.5 GPU
SpaGCN 2 GPU
CCST 3 GPU
STAGATE 7 GPU
Gitto 17 CPU

Table 2: Computational time for super-resolved gene expression
reconstruction with IDC sample

Method Runtime/mins GPU/CPU
TransformerST-3000 HVGs 29 GPU
BayesSpace 200 CPU
STdeconvolve 54 CPU

[35] have shown incremental enhancements in ST data resolution,
they have not reached the granularity of single-cell resolution.

To showcase the strength of the proposed method, we eval-
uated its performance with several publicly available datasets.
In tissue identification experiments at original resolution, we
showed the spot resolution clustering results with human dorso-
lateral prefrontal cortex data (DLPFC). We additionally validated
TransformerST using our in-house mouse lung data, which were
generated with the 10x Visium platform. A portion of this in-house
data features fluorescence staining as an alternative method for
obtaining ground truth information (Figure 2 and Figure 3). Trans-
formerST outperforms several state-of-the-art approaches such
as stlearn [34], Mclust, Kmeans, Louvain, Giotto, BayesSpace [28],
CCST [29], STAGATE [31] and SpaGCN [30]. To evaluate the super-
resolution performance of TransformerST, we used three data
from different ST platforms. Specifically, we used the melanoma
data from the ST platform to evaluate the super-resolution perfor-
mance at subspot reselution when the histology image is miss-
ing (Figure 4). We demonstrated the improved resolution perfor-
mance at the single-cell level using invasive ductal carcinoma
(IDC) samples that were human epidermal growth factor receptor
2 amplified (HER+), obtained through the 10x Visium platform
(Figure 5). The IDC was manually annotated by a pathologist to
exclude the overexposed regions.

Moreover, our research, as detailed in Section 54 and depicted
in Supplementary Figure 3, employed the 36 tissue sections
from the HER2+ breast cancer dataset [44] to evaluate the
effectiveness of TransformerST in gene expression prediction and
super-resolution. Utilizing a leave-one-out evaluation method
(36 fold), we trained the clustering and super-resolution model
on 32 sections, with the remaining section used for evaluation.
This singular experimental approach effectively showcased
TransformerST's capabilities in predicting gene expression and
achieving super-resolution at the single-cell level.

Subsequently, in the supplementary material detailed in
Section S5 and visualized in Supplementary Figure 4, we
explored the accuracy of detecting spatial variable genes
(SVGs) and meta-genes using DLPFC and IDC samples. Our
proposed method notably reduces computational complexity
and more efficiently reconstructs enhanced gene expression at
a single-cell resolution. The SVGs and meta-genes identified by

our approach demonstrate superior biological interpretability.
Additionally, we compared TransformerST with SpatialPCA and
Vesalius using Moran's I and Geary's C statistical tests to further
underscore TransformerST's performance in capturing spatial
gene expression patterns.

We employed the Xenium in situ data from a human breast
cancer block in a simulation experiment, demonstrating our
method’s effectiveness in clustering and super-resolution. These
findings are elaborated in Supplementary Section 56 and depicted
in Supplementary Figure 5.

It should be noted that all the baseline methods were applied
with the default parameters. Besides the experiments described in
the manuscript, we also employed data from Stereo-seq sourced
from mouse olfactory bulb and mouse lung tissues [45]. The
results of these additional analyses can be found in Section S3
of the supplementary material.

Tissue type identification at original resolution

Tissue identification in human dorsolateral prefrontal cortex
Visium data. The LIBD recently procured data for the human
DLPFC using the 10x Visium technique. This comprehensive
dataset includes 12 tissue samples, with each one having manual
annotations distinguishing six cortical layers and the white
matter. The annotations, as detailed in the original research by
[46], offer a foundation for assessing the efficacy of identifying
tissue types at the granularity of individual spots. We evaluated
the tissue type identification of TransformerST compared with
StLearn, Mclust, Kmeans, Louvain, Giotto, BayesSpace, CCST,
STAGATE, DeepST, conST and SpaGCN. We employed the adjusted
Rand index (ARI) as a metric to measure the congruence between
the actual annotations and the outcomes of our clustering
approach [44].

The clustering accuracy (ARI) of sections 151672 and 151508 are
shown in Figure 2A and Figure 2B. Compared with the baseline
methods, TransformerST could learn the dynamic graph repre-
sentation between spatial gene expression and spatial neighbors.
Specifically, the proposed method was implemented using the
top 3000 HVGs; other comparison methods, such as BayesSpace
and SpaGCN, used 15 PCs from the top 3000 HVGs. Gitto, CCST,
STAGATE, ConST, DeepST and Stlearn used the recommended
parameters in the previous papers. The proposed method could
use the highly expressive gene and spatial dependence of neigh-
boring embedding to achieve the highest tissue identification
performance of both samples. In our analysis focused on section
151672 of the human DLPFC dataset, Figure 2A shows meth-
ods such as TransformerST, Gitto, STAGATE, ConST, DeepST, and
SpaGCN effectively highlight spatial gene expression patterns
that closely match manual annotations. Among these, Transform-
erST achieves the highest Adjusted Rand Index (ARI) of 0.687,
indicating superior alignment, followed by Gitto with an ARI of
0.573,STAGATE at 0.561, ConST at 0.544, and SpaGCN at 0.565. The
visual difference among these results is not significant. BayesS-
pace, Mclust, DeepST and CCST also provided decent results (ARI
is 0.439 for BayesSpace, 0.479 for Mclust, 0.45 for DeepST and
0.427 for CCST) and outperformed Louvain, StLearn and Kmeans.
In Figure 2B, for section 151508, TransformerST had the highest
clustering accuracy and provided distinct layers of clusters (ARI
is 0.592). CCST and STAGATE outperformed other methods but
provided a worse performance than TransformerST.

The remaining clustering results with all 12 DLPFC samples
are shown in Figure 2C. TransformerST achieved the best
performance with a mean ARI (0.564). Compared with the second
performer STAGATE with mean ARI (0.502), TransformerST

G20z aunp og uo}senb Aq 2208 19//25098q9/2/S /3191 e/qIq/Wi0a°dno-oiWapese)/:sdyy Wol) pspeojumog


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae052#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae052#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae052#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae052#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae052#supplementary-data

Table 3: Comparison between TransformerST with baselines

TransformerST | 5

Methods Objective Super-resolution Reference-free Histology image
TransformerST Clustering, super-resolution Single-cell Yes Yes
SpaGCN Clustering Original No Yes
BayesSpace Clustering, super-resolution Multi-cellular Yes No
CCST Clustering Original No No
STAGATE Clustering Original No No
DeepST Clustering Original No Yes
stLeamn Clustering Original No No
STdeconvolve Deconvolution Multi-cellular Yes No
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Figure 1. Schematic representation of TransformerST. A, The VisionTransformer encoder amalgamates spatial gene expression, spatial location and
histology image, facilitating the exploration of image-gene expression co-expression. B, The Adaptive Graph Transformer model is employed to harness
spatial neighboring dependence, enabling the association of spatial gene expression patterns at the original resolution. C, The Cross-scale Internal Graph
Network is utilized for the superresolved reconstruction of gene expression, taking concatenated embedding and histology image as inputs to elevate

gene expression from multicellular to single-cell resolution.

increased the tissue identification performance by 12.4%. The dif-
ference between BayesSpace, CCST, DeepST, ConST and SpaGCN
is not significant. Additionally, the runtime of TransformerST at
spot resolution is comparable with other clustering methods for
spot-level annotation, which uses 6.5 min with 3000 HVGs and
3 min for 200PCs. (Table 1). These results further demonstrate

the superiority of TransformerST in exploring spatial expression
patterns and provide clear cluster differences between brain
layers.

Tissue identification in mouse lung Visium data at spot
resolution. To further assess the performance of TransformerST
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Figure 2. Tissue identification in human dorsolateral prefrontal cortex Visium data at spot resolution. The ARIis used to evaluate the similarity between
cluster labels acquired by each method against manual annotations. A, Tissue types assignments by different spatial clustering methods for sample
151672. B, Tissue types assignments by different spatial clustering methods for sample 151508. C, Summary of all 12 samples’ clustering accuracy.

in tissue identification, we performed Visium experiments on
slices of mouse lung tissues [47]. Single-cell suspension processed
side-by-side was subjected to a scRNA-seq experiment and
utilized to deconvolute the Visium data.

A pathologist subsequently pinpointed areas of interest, such
as airways and blood vessels, based on the histological images
provided [47]. Airways were delineated based on the proportion of
club cells deconvoluted within each tissue section. In the study
by [47], a pathologist manually determined the thresholds for
each tissue section to align the chosen spots with the histological
representation of the airways. Spots were identified as airways
when the percentage of club cells exceeded the set threshold
(top 20% for slice Al, top 20% for slice A2, top 10% for slice A3

and top 10% for slice A4). Blood vessels were identified based on
their correspondence with the vascular regions depicted in the
histological images. We employed a random trees pixel classifier
in QuPath (version 0.2.3), set at a downsample rate of 16, to predict
the likelihood of blood vessels presence within each spot across
all tissue slices. All the training samples of the random trees pixel
classifier came from the manual annotation of slice Al1. Then, the
pathologist [47] used the threshold 0.5 to select the blood vessels
(Figure 3A and Figure 3C).

After defining these histological structures, TransformerST
was utilized to reveal the internal heterogeneity within visually
homogeneous blood vessel and airway tissue regions. The cluster
numbers of all comparison methods were set to 4. Figure 3B
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Figure 3. Tissue identification in mouse lung Visium data at spot resolution. A, Manual annotations of airways (left) and blood vessels (right) of the
first slice. Pathologists identified regions of significant regions according to the histology image. Airways were defined in line with the proportion of
club cells {middle) within each slice. B, Tissue types assignments by different spatial clustering methods for the first sample. C, Manual annotations of
airways (left) and blood vessels (right) of the second slice. D, Tissue types assignments by different spatial clustering methods for the second sample.
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Figure 4. Tissue identification with super-resolved gene expression in melanoma ST data. A, Tissue type assignments by different spatial clustering
methods for melanoma sample. B, Enhanced subspot tissue identification of melanoma sample with BayesSpace, STdeconvolve and TransformerST.

shows, for the first slice sample, SpaGCN, STAGATE and StLearn
were able to distinguish the airways but failed to identify the
tissue region of blood vessels. Surprisingly, BayesSpace failed
to identify the significant tissue types such as blood vessels
and airways (Figure 3B). Other comparison methods such as
Mclust, Kmeans, CCST and Louvain had worse performance,
which is contrary to the manual annotation (Figure 3A). Gitto
could identify the major tissue types, but its result is very noisy.
The most interesting finding is that TransformerST is able to
identify the whole blood vessel regions and provide a more robust
signal with detailed textural features (Figure 3B).

Moreover, we used the club cell tissues to evaluate the
performance of TransformerST. As shown in Figure 3B, for
the first slice sample, TransformerST, SpaGCN, Gitto, STAGATE
and Stlearn identified the club cell regions, an indicator of
airways. We observed that the spatial expression patterns of
club cells between the clusters were largely in line with the
clinical annotations (Figure 3A). BayesSpace, CCST and non-
spatial methods (Mclust, Kmeans and Louvain) failed to detect the
spatial patterns of club cell structures. Comparing these results,
it could be seen that spatial expression patterns acquired by
TransformerST better reflect the club cell structures with detailed
information on the boundaries.

The relative performance remains the same for the second
slice sample (Figure 3C); TransformerST, StLearn, Gitto, STAGATE
and SpaGCN were able to identify the heterogeneity within club
cells structure (Figure 3d). As illustrated in Figure 3d, other meth-
ods, excluding TransformerST, displayed considerable noise and
lacked clear spatial distinction between club cells. BayesSpace,
Mclust, Louvain, CCST and Kmeans provided worse performance

which violates the biological interpretation. The existing methods
are not applicable to mouse lung tissue identification. Transform-
erST could identify the spatial patterns with histology images and
provide finer details of manual annotations (Figure 3C).

ST super-resolution at enhanced resolution

Tissue identification and super-resolution in melanoma ST
data at subspot resolution. We assessed the super-resolution
performance at the subspot level using the publicly accessible
melanoma ST dataset, as annotated and detailed in the study by
Thrane et al. [14]. The manual annotation of melanoma, stroma
and lymphoid regions (Figure 4A) were included to evaluate
the performance of the TransformerST. Similar to manual
annotations, we set the cluster number to 4. As the histology
image is missing, both BayesSpace and TransformerST could
enhance the resolution of ST expression to subspot resolution.
We show the tissue identification results of the proposed method
in both spot and subspot resolution in Figure 4A and Figure 4B.
Comparison of the results of TransformerST with those of
other methods (Mclust, Kmeans, Louvain, Gitto, SpaGCN, CCST,
STAGATE and BayesSpace) confirms that TransformerST reveals
similar patterns to the manual annotation.

Specifically, the melanoma tissue could be divided info
two types, central tumor region and outer of the mixture of
tumor and lymphoid tissue. Surprisingly, only TransformerST
was able to identify the lymphoid regions at the original
resolution (Figure 4A). The results of comparison methods
could not identify lymphoid regions at the original resolution.
The tissue identification results at enhanced resolution are

§20Z sunp Og o }sanb Aq 2208 19./25098qQ/Z/S Z/3101NE/qIG/W00 dNO DlWBapeE)/:SdRY WOl PSPEC|UMOQ



A

Mclust: 0.357 Kmeans: 0.10

g

Clusters Clusters
12 3
.3 Lo
v 4 . - 4
..'- 5 e RP - 5
StLearn: 0.257 SpaGCN: 0.369
Clusters

.0
.1
.2

3

Clusters
‘0
.1
"2
« 3
4

e ae
BayesSpace: 0.42 TransformerST: 0.493
Clusters Clusters
-1 =0
-] =1
- 3 L1
. 4 -3
5 4

il“.

Histology Image

G ST-deconvolve E

R T

TransformerST | 9

Louvain: 0.151 Clusters Giotto: 0.274
» .1
.2
b Clusters
v 5 =1
"6 2
- 7 -3
« 8 “ 4
.9 5
: . .8 NA
Can i
CCST: 0.208 14
Clusters Clusters
=0 1
. v 2
. -2 6
. e -3 -4
il 3 s
Ground Truth
Clusters
* Invasive
+ Non-tumor
= Insitu
* Unclassified tumor
Benign hyperplasia
BayesSpace

e e

Cluster

L N NN NN N

W b WO

ee

Figure 5. Tissue identification with superresolved gene expression in IDC Visium data. A, Tissue type assignments by different spatial clustering
methods for IDC sample. The pathologist annotated different regions in different colors (carcinoma in situ outlined in red, invasive carcinoma (IC)
in Blue, Nontumor in Brown, benign hyperplasia in yellow and unclassified tumor in orange). B, Histology imaging of tissue. C, Cell type proportion of
IDC sample with ST-deconvolve. D, Enhanced super-resolved tissue identification of IDC sample with BayesSpace at subspot resclution. E, Enhanced
super-resolved tissue identification of IDC sample with TransformerST at single-cell resolution.

in line with the finding that TransformerST identifies the
lymphoid region in the tumor border with a higher resolution
(Figure 4B). In accordance with a recent study, BayesSpace and
STdeconvolve also identified the lymphoid regions of the tumor
at the enhanced resolution (Figure 4B). The findings from this
research suggest that while all the methods compared were
able to discern the differences between the tumor's edge and
its center, they were unable to detect the Ilymphoid tissue at the
initial resolution. TransformerST, STdeconvolve and BayesSpace
provided enhanced resolution of tissue structures, which makes
it possible to identify the Iymphoid tissue. The observational
results suggest TransformerST provides higher resolution and
robust tissue identification results at both original and enhanced
resolution.

Tissue identification and super-resolution in IDC Visium data at
single-cell resolution. We assessed the performance of single-cell
super-resolution using the IDC Visium data, which was stained
with immunofluorescence for 4 6-diamidino-2-phenylindole
(DAPI) and T cells staining CD3, as described in the study by Zhao
et al. [28]. Pathologists, as referenced in the study by Zhao et al.
[28], pinpointed regions predominantly characterized by invasive
carcinoma (IC), carcinoma in situ and benign hyperplasia. These
regions were included in the evaluation of clustering accuracy at
spot resolution (Figure 5A and Figure 5B). Similar to the manual
annotations, we clustered the IDC sample into five clusters at
spot resolution. We used ARI to evaluate the clustering accuracy
at spot resolution. The results of the clustering experiment at the
original resolution indicate that TransformerST achieves the best
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clustering accuracy with an ARI of 0.493 (Figure 5A). The ARI is
0.42 for BayesSpace against 0.369 for SpaGCN, 0.357 for Mclust
and 0.274 for Gitto. However, some comparison methods did not
improve the clustering performance (ARI is only 0.257 for StLearn,
0.234 for STAGATE, 0.208 for CCST, 0.151 for Louvain and 0.101 for
Kmeans).

We further improved the resolution of ST to highlight its biolog-
ical significance using TransformerST, STdeconvolve and BayesS-
pace, as depicted in Figure 5C, Figure 5D and Figure 5E. In accor-
dance with the BayesSpace paper [28], we set the cluster number
k = 10. As shown in Figure 5D and Figure 5E, TransformerST
could identify four clusters (0,3,4,8) related to predominantly IC,
one cluster (2) related to carcinoma regions and one cluster (7)
identifies the benign hyperplasia regions. And clusters (1,5,6,9)
are related to the unclassified regions. The result of ByesSpace
was consistent with the previous report in [28]. It is hard to eval-
uate the cluster accuracy at enhanced resolution quantitatively.
The results of the three methods show the spatial heterogeneity
among tumors, which is inaccessible to histopathological anal-
ysis. However, we saw the visual difference between carcinoma
and benign hyperplasia regions via TransformerST compared with
BayesSpace and STdeconvolve. TransformerST exhibited a spatial
organization more similar to manual annotations. BayesSpace
could only increase the IDC data to subspot resolution; Trans-
formerST could predict the heterogeneity within each tissue at
single-cell resolution. STdeconvolve revealed the proportion of
each cell type but failed to identify the location of cell patterns
within each spot. The runtime of TransformerST at enhanced
resolution is comparable with other methods for gene expression
reconstruction, which uses 29 min (Table 2). TransformerST pro-
vides a more efficient approach to identifying the super-resolved
tissue microenvironment than BayesSpace and STdeconvolve.

DISCUSSIONS

In our research, we introduce an innovative approach that
leverages Transformer architectures to seamlessly integrate
gene expression data, spatial coordinates and accompanying
histological images (when provided). The proposed method,
called TransformerST, stands out as the pioneering technique
that elevates the resolution of ST to the single-cell level, all
without the need for a scRNA-seq reference. Different from
most of the existing ST analysis methods, TransformerST does
not require linear PCA preprocessing and ensures the intricate
understanding of the spatially dispersed tissue structures
present in multimodal datasets, such as ST and 10x Visium.
The innovative graph transformer model, equipped with mult-
head attention, facilitates the integration of multimodal graph
representations. This, in turn, uncovers the intricate relationships
within the heterogeneity map, shedding light on the dynamics
of tissue functionality. With the help of a cross-scale internal
graph network, TransformerST enables the effective and efficient
analysis of super-resolved tissue microenvironment at single-cell
resolution. We assessed the efficacy of TransformerST using a
variety of datasets, each produced using different ST techniques.
When juxtaposed with leading-edge techniques, TransformerST
demonstrates superior capability in discerning tissue clusters
at both the spot level and single-cell resolution. TransformerST
overcomes the limitation of the low resolution of current ST
technology and provides an efficient way to explore the spatial
neighboring relationship. The findings from our experiments
underscore the significance of regional variability and the
inherent relationship between structure and function within the

dynamic tissue microenvironment. TransformerST could lower
the computation complexity and memory usage than existing
methods.

While the study of tissue type identification remains a pivotal
aspect of contemporary ST analysis, our experimental findings
highlight that a majority of the leading techniques fall short in
accurately discerning the cellular diversity inherent to individ-
ual cell types. We expect TransformerST could help to provide
a better resolution of ST data analysis. TransformerST could
achieve super-resolved resolution of a single cell per subspot with-
out the requirement of additional scRNA-seq reference. However,
TransformerST could be easily adapted to incorporate additional
single-cell references for deconvolution tasks. In the following
assessments, including SVGs and meta-gene evaluations, Trans-
formerST proved adept, revealing biological tissue structures that
resonated well with manual annotations.

While TransformerST focuses on the ST and Visium platform,
it could be easily applied to other platforms with slight mod-
ification. In summary, TransformerST presents a powerful and
streamlined approach for a range of unsupervised ST analyses,
including tissue identification, super-resolved gene expression
reconstruction. For future work, we aim to enhance the accuracy
of tissue type identification by estimating the contribution of cell-
specific gene expression. Additionally, we plan to refine the graph
transformer model to delve into the heterogeneity of tissue types
within various micro-environments. Furthermore, we aspire to
analyze meta-genes and SVGs utilizing TransformerST.

METHODS

Data description. TransformerST is evaluated using several
publicly available datasets and one in-house dataset, most
of which were obtained via the Visium platform. Specifically,
the DLPFC dataset comprises 12 sections, with each section
containing between 3498 to 4789 spots. The regions of the DLPFC
layers and white matter were manually delineated by expert
pathologists. To reconstruct gene expression at the enhanced
resolution, we use the publicly available melanoma ST data
which were annotated and described in Thrane et al. [14] We
demonstrate the efficacy of our super-resolution approach at
single-cell resolution by analyzing IDC Visium data, which
have been subjected to immunofluorescence staining for
4 6-diamidino-2-phenylindole (DAPI) and T-cell marker CD3 in
[28]. We conducted a simulation experiment using the Xenium
in situ data from a human breast cancer block to demonstrate
the performance of our method with respect to clustering and
super-resolution capabilities.

In-house data preprocessing. For our in-house mouse lung data,
the 10X Genomics Visium platform was used to perform the ST
experiment. Following the extraction of mouse lungs, the left
lobes were filled with a 1mL solution comprising an equal mix
of sterile PBS and Tissue-Tek OCT compound (SAKURA FINETEK).
Subsequently, they were frozen using an alcohol bath on dry ice.
Until they were processed further, OCT blocks were kept at —80°C
Following the 10x Genomics Visium fresh frozen tissue processing
protocol, OCT blocks were sliced to a thickness of 10um and
dimensions of 6.5 mm x 6.5 mm, mounted onto Visium slides, and
subsequently stained with hematoxylin and eosin. An Olympus
Fluoview 1000 fluorescence and tile scanning microscope was
employed to capture H&E images. Following this, the tissue was
removed from the slides, and library generation was carried out
according to the protocol provided by 10x Genomics.
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Every sequenced ST library was aligned to the mm10 mouse
reference genome using the 10x Genomics' Space Ranger software
(version 1.2.2). UMI counts were then compiled for every spot.
Tissue overlying spots were identified based on the images in
order to distinguish them from the background. Upon generating
the filtered UMI count matrices, only the barcodes linked to spots
overlaying the tissue were retained. Furthermore, we manually
removed spots identified by Space Ranger that were not covered
by tissue. We then refined the UMI count matrices for each slice
(Al1:32 285 genes x 3689 spots; A2: 32 285 genes x 2840 spots; A3:
32 285 genes x 3950 spots; A4: 32 285 genes x 3765 spots).

Public data preprocessing. All Visium samples were generated
from 10x Genomics procured from BiolVT:ASTERAND. The
remaining melanoma and breast cancer samples were obtained
using the ST platform. We use the second replicate from biopsy
1 to detect the lymphoid sub-environment. For all datasets, raw
gene expression counts expressed in fewer than three spots were
filtered and eliminated. Seurat was introduced to find the top 3000
HVGs for each spot. The gene expression values are transformed
into a natural log scale. We use both histology images (when
available) and spatial gene expression to exploit tissue sub-
environment at the super-resolved resolution.

Utilizing Vision and Graph Transformers for Single-Cell
Resolution Enhancement. The methodology of our proposed
approach is meticulously illustrated in Figure 1A, addressing
a pivotal challenge in ST analysis: the discernment of spatial
patterns in gene expression and the exploration of image-gene
expression co-representation. To adeptly hamess and utilize the
spatial information encapsulated in ST, we enhance the resolution
of ST data to a single-cell level, employing a structured, three-
tiered process. This approach not only illuminates the intricate
spatial patterns embedded within the gene expression data but
also intricately explores the co-representation of image and gene
expression, providing a nuanced, high-resolution insight into the
cellular landscape of the tissue under investigation.

During the image processing stage, two distinct types of image
patches are extracted: spot-centric and sliding-window patches.
Spot-centric patches are extracted in alignment with each spot
location, ensuring each spot is associated with a unique, non-
overlapping patch. On the other hand, sliding-window patches are
densely extracted within each spot region, producing overlapping
image patches.

In the initial step, a Vision Transformer encoder is employed
to learn the co-representation of image-gene expression, which
is adept at predicting the gene expression of each spot from
its corresponding spot-centric image patches, as illustrated in
Figure 1A. Following this, the image patch embedding for each
spot and its gene expression are concatenated to formulate a
graph.

In the second step, we leverage the Graph Transformer,
which adeptly links spatial information to spatial graphs.
Simultaneously, the adaptive graph transformer is employed
to aggregate gene expression based on the relationships of
neighboring data points and the associated histology image, as
illustrated in Figure 1B. An iterative unsupervised deep clustering
model is introduced to detect heterogeneous tissue types at the
original spot resolution, while the adaptive graph transformer
facilitates the association of spatial patterns with gene expression
at spot resolution.

In the pursuit of further enhancing the spatial gene expression
resolution, the third step employs cross-scale internal graph
networks, meticulously designed to fully leverage both gene
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expression and histology image data. These networks utilize the
concatenated embedding and histology image patches as inputs,
synthesizing gene expression at the single-cell resolution, as
depicted in Figure 1C. This pivotal step is bifurcated into two sub-
steps: graph reconstruction and patch aggregation. Both stages
play a pivotal role in elevating spatial resolution and guaranteeing
accuracy in gene expression prediction. This holistic method
optimally harnesses gene expression and histological imagery,
facilitating precise reconstruction and forecasting of spatial gene
expression at a superior resolution.

Vision Transformer for Image-Gene Expression Co-Representa-
tion Learning in ST. In our research, we leverage the Vision Trans-
former (ViT) model to proficiently learn the encoding and decod-
ing of image features extracted from histology images, which are
crucial for comprehending the cellular structures and variations
within tissue samples. Initially, the histology images are seg-
mented into patches corresponding to the spot locations in the ST
data, ensuring that the image features are localized and relevant
to the respective gene expression profiles. Each patch, encap-
sulating localized morphological information, is then processed
through the ViT model, which, with its transformer architecture,
is adept at handling image data by dividing it into non-overlapping
patches and linearly embedding them into the model. The ViT
model is designed to forecast gene expression from associated
image patches. A loss function is employed to reduce the discrep-
ancy between the predicted and true gene expression, guaran-
teeing that the model establishes a reliable correlation between
image attributes and gene expression. Subsequently, the learmed
image features are amalgamated with ST spot gene expression
data, forming a comprehensive feature set that encapsulates both
morphological and gene expression information. This enhanced
combined feature set is then used to build a graph, where each
node signifies a spatial spot and is defined by the integrated
features. Edges in the graph denote spatial relationships and/or
similarities in the feature space between the spots, thereby encap-
sulating the spatial dependencies and co-expression patterns
prevalent in the tissue. This graph serves as a comprehensive
visual summary of spatial transcriptomic data, enhanced with
details from histological images. It forms the basis for advanced
analyses, including clustering or classification of cellular struc-
tures and identification of spatially co-expressed gene sets. These
steps enable a deeper exploration of the tissue’s spatial molecular
diversity.

The spatial gene expression data are represented by the matrix
X with dimensions N x B. Here, N stands for the total number
of spots, while B indicates the total genes present. When ana-
lyzing the histological image, we carefully segment patches that
align with the dimensions and positioning of every spot. These
segmented patches from a tissue section are then compiled and
reshaped into an N x (3 x W x H) matrix, serving as the primary
input for the Vision Transformer. In this context, the number 3
corresponds to the color channels, and W and H represent the
patch's width and height, respectively. We employ a modifiable
layer, denoted as w, to modify the histology image features from
an N x (3 x W x H) matrix to an N x 1024 matrix labeled F.
Another essential input component is the N x 2 position matrix,
which contains the (x,y) coordinates for each spot in the ST
(ST) dataset. The x-coordinate data are converted into a one-hot
encoded matrix, termed PP, with dimensions N x m. Here, m is the
maximum count of x-coordinates spanning all tissue sections.

In the pursuit of establishing a robust model for image-gene
co-expression representation leamning, we introduce a two-step
approach utilizing a Transformer model. Initially, a feature vector,
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F, is constructed, amalgamating histology image features and
spatial coordinates, serving as the preliminary input for the sub-
sequent Transformer model. The Transformer, designed to predict
gene expression, outputs a representation, denoted as Fyr, which
is subjected to a reconstruction loss, Lrecon, When compared with
the actual spot gene representation, Fepot. Mathematically, the
reconstruction loss is defined as

1 N
Lremn = ﬁ Z(Fsput,i = F\.ﬁ‘T,i)Z- (1)

=

where N represents the number of spots, aiming to minimize the
discrepancy between the predicted and actual gene expression
representations. The optimization of the Transformer parameters,
Oyir, is conducted by minimizing Lrecon through iterative update
rules in the training process, thereby enabling the model to accu-
rately reconstruct the spot gene representation from the input
features. The approach not only enables precise forecasting of
spatial gene expression but also guarantees that the derived rep-
resentations, Fyr, align with the genuine gene expressions, Fspat.
By combining these, Fyir + Fspat, for each node feature, it offers
a thorough and precise framework for examining the tissue’s
spatial molecular diversity.

To elucidate the transformer mechanism, the Multihead Atten-
tion mechanism in Transformer models is designed to enhance
the model's capability to focus on different positions, or words,
in the input sequence simultaneously, thereby capturing various
types of information and dependencies from the input. For every
attention head, denoted by i, the mathematical representation of
the mechanism is given by

head; = Attention(QW<, KW¥, VW) ()

In this representation, Q, K and V stand for the query, key and
value matrices, respectively. The weight matrices for the i-th head
for query, key, and value projections are given by WIQ WE and WY.
The function Attention(Q,K, V) signifies the scaled dot-product
attention mechanism.

The results from each of the heads are merged together and
then undergo a linear transformation to yield the ultimate output.

Multihead(Q, K, V) = Concat(head,, heads, ..., head,)W?, (3)

where h is the number of heads and W° is the final linear
transformation weight matrix.

Graph reconstruction for spatial gene expression. Transform-
erST reconstructs the cell-cell relationship using an undirected
graph G(V,E). Each vertex V symbolizes the spot, characterized
by the output of the Vision Transformer given by Fvir + Fspot.
And the edge E measures the weighted relationships between
two vertices. We map each spot back to the histology image and
define the corresponding pixel using similar smooth and rescale
steps in SpaGCN [30]. The adjacency matrix A is constructed by
calculating the Euclidean distance between vertices using image
coordinates. For each spot, the top 20 neighbors are selected to
form this matrix.

Adaptive graph-transformer for spatial embedding. The pro-
posed method utilizes the adaptive graph transformer model to
embed the spatial relationship of neighboring spots. The proposed
method concatenates the gene expression embedding Fysr + Fspat

and edge weights to cluster each spot. In the subsequent analysis,
the Graph Transformer layer is employed in conjunction with the
multi-head attention model to aggregate the features of all nodes.
The multi-head attention mechanism takes in three components:
the query, key and value. For each edge and for each layer [, the
multi-head attention is defined as follows:

qlc,i = “ﬂcqh{ i b]c,q

k‘q- = W‘Ikh} +b,

C
ec,i_;i = Wc,eeij + bc,e 2 (4)

1 (qlcli‘ k]c‘j + ec.ij}
oy =

pIENT I I

where (q.k) = exp(%) denotes the scaled exponential dot-
product. Here, d signifies the dimensionality of each head’s
hidden state. We use the learnable parameters W.,, WL, bl bL,
to transform each source feature 1! and distant feature Phl into
query vector qéliand key vector k! i The additional edge feature e;
is also added into the key vector k! i

The message aggregation from j to i is defined as follows:

! i T3
U= Wc.uhj T bc.u
- 5
h:+l = Z ai_i}- ('I.-'l'Tc‘;| + ec,{j) ( )
jeNG)
A gated residual connection between layers is adopted to pre-
vent over-smoothing.

= Wikl + 1}
B! = sigmoid(W} [+ A — 1] (6)

EOANY 1

h+t = ReLU(LayerNorm(1 — g+t + girl)

The output from the final layer is derived by taking the average
of the outputs from all the attention heads.

& L
h}+1 — E ZI: Z “i‘ij(uij +Eclfj):|

=1 “jeNii) (7)

Rt = (1— BHA + B +1}

Adaptive Graph transformer representation learning The previous ST
clustering method only considers the spatial information to con-
struct the graph representation. We present an adaptive Graph
Transformer model designed to capture both the spatial and fea-
ture representations of the entire graph. The model is formulated
as follows:

A=21A; +(1-MA,, (8)

where Ay is the initial adjacency matrix, while A; denotes the
adjacency matrix that is iteratively learmed at each step. The
initial adjacency matrix is constructed using the k nearest neigh-
borhood using the histology image. The adaptive updating mech-
anism helps to learn the global and local representation of ST
data. The hyperparameter i serves to strike a balance between the
spatial and feature-based graph structures, ensuring that neither
dominates the leamning process.
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Identifying tissue types with iterative clustering. Based on the out-
puts of the Graph Transformer encoder, the proposed method
iteratively identifies the tissue type in an unsupervised manner.
The beginning of our proposed approach draws inspiration from
Louvain's technique. The clustering process is segmented into two
distinct stages. In the preliminary stage, we designate a soft clus-
ter category, denoted as y;, to every spot embedding represented
by z; in the manner described below:

_ 4 z—mi®)
2+ zi— s 1D

©)

i

Subsequently, we fine-tune the clusters using an auxiliary
target distribution, denoted as p, which is derived fromy;;

Y PRI (10)

bij I3 N
Z}-:i(}fé/ L)

Similar to the previous iterative clustering algorithm in scRNA-
seq analysis, the loss function is formulated using the Kullback-
Leibler (KL) divergence.

N K Pii
KL(P || T) = ZZpaJ-logﬁ (12)
i oF Y

Reconstructing the super-resolved gene expression at the sub-
spot resolution. In order to explore the tissue sub-environment
at the enhanced resolution, we partition each spot to a single-
cell resolution, leveraging the associated histological image for
guidance. If the histology is missing in real-time applications, we
adopt the setting of BayesSpace [28], each ST spot is divided into
nine smaller subspots, while each Visium data spot is split into
six subspots. Given that the diameter of ST spots is 100 p m
and that of Visium spots is 55 p m, TransformerST is capable of
attaining gene expression at a single-cell resolution, as opposed
to the traditional approach that amalgamates data from dozens
of cells. The proposed super-resolved reconstruction components
are divided into two steps, histology image super-resolution, and
spatial gene expression reconstruction.

In the formulation of the intermal cross-scale super-resolution
model, we commence with a preprocessing phase on the histology
image, extracting image patches—termed ‘spot-centric patches'—
based on each spot location, ensuring a unique, non-overlapping
patch is associated with each spot. Subsequently, for every spot
region, we extract patches with increased density, producing over-
lapping image patches, dubbed ‘sliding-window patches'. The
model aims to predict gene expression at a single-cell resolution.
We model the internal cross-scale relationship between each
sliding-window image patch at the original spot resolution and
its corresponding spot-centric patch neighbors, forming a graph.
In this graph, each sliding-window image patch becomes a vertex,
and the edge signifies the weighted connection between the spot-
centric patch and the sliding-window image patch. The proposed
method unfolds in two segments: graph construction and patch
aggregation. Employing the mapping function, we can identify the
k nearest neighboring spot-centric image patches. Consequently,
the reconstructed graph yields k spot mapping pairs of spot-
centric and sliding-window patches. Following this, we utilize the
patch aggregation model to amalgamate k spot-centric patches,
conditioned on the similarity distance. With the patch aggregation
model, we introduce learnable weights for the k nearest neighbors,
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enabling us to use the weights and k spot-centric image patches
to estimate the gene expression at the center of each sliding-
window segment. Given the limitations of current ST technol-
ogy, obtaining ground truth data at the enhanced resolution is
challenging. We hypothesize that the spatial gene expression
at the spot resolution represents the averaged mixture of its
corresponding single-cell segments. Instead of directly calculat-
ing the reconstruction loss at the enhanced resolution, we aver-
age the single-cell components into a spot to steer the training
process.

Graph reconstruction. In our approach, we initiate by extracting
two specific types of image patches: spot—centric patches P, and
sliding—window patches Py, denoted mathematically as

Pse = {Pse;, Psey,y oo, Pyl Psw = {Pswy, Powsy oo+, Powg b (12)
where each patch is a 3D matrix of dimensions W x H x C, repre-
senting the width, height and the number of channels (typically
3 for RGB images), respectively. After the extraction process, we
utilize a Vision Transformer as described in Equation 1 to derive
the embedded features of the patches. These features, represent-
ing both spot-centric and sliding-window patches, are captured
in dimensions N x 1024, where N signifies the total number of
patches:

Fy, = VisionTransformer(Py,), Fe, = VisionTransformer(Psy) (13)

Subsequently, we explore the internal cross-scale relationship
between sliding-window patches P, and their corresponding
spot-centric patches P, by constructing a graph. Each vertex
in this graph represents a sliding-window patch, and edges
represent the weighted connections to its k neighboring spot-
centric patches. The Euclidean distance, defined as

E
D(Fst}': stj) = Z(Fscu == FS'LIJI'J )2, {14'}
J =1

is utilized to determine these neighbors, where L is the length
of the embedded feature vectors, and Fsx, and Fay, are the It
elements of the embedded features Fy, and Fay, respectively. The k
neighboring spot-centric patches for a given sliding-window patch
Py, are identified by selecting the k patches Py, that minimize
the Euclidean distance D(Fy, Fsy). This methodology facilitates
the exploration and modeling of the spatial relationships between
different resolution scales in the histological image, providing a
foundation for predicting gene expression at a single-cell resolu-
tion.
Patch aggregation. We weight the k neighboring patches on the
similarity distance and aggregate the enhanced gene expression
as

. 1

M=

> exp(Eo(D(Fsq,, Fsuy ) Hsc,, (15)

where 8(Fs) = 2., eXp(Es(D(Fsq;, Fswy;))) denotes the normalization
factor. Ey(D(Fs;, Fsyy)) 1 used to estimate the aggregation weight
for each neighboring patch. The output feature for each spot
situated at location i is denoted by H, in Equation 7. Additionally,
I € n, signifies the k nearest neighbor patches of patch j, with
i being the central spot of that patch. ﬁswj denotes the central
feature embedding of the sliding window patch j. The term Hgy,
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represents the intermediate output from our super-resolution
model, which can be utilized for clustering at a single-cell resolu-
tion. Furthermore, F;,;, can be viewed as the super-resolved gene
expression for each individual cell.

The loss functions for the reconstruction of the Vision Trans-
former pertaining to spot gene expression, denoted as Lgene, and
for the image patches, denoted as Ling, are formulated as follows:

1 N
Lgene = ﬁ Z(Psc,i — Iagi )2
i=1
s , (16)
Limg = 37 2, IPsw; — Powjl}
j=1

where N is the number of spots, Fyp.: ; is the actual gene expression
of spot i, ngm is the predicted gene expression of spot i, M is
the number of sliding window image patches, Pg,; is the original
sliding window image patchj and P, ;18 the reconstructed sliding
window image patch j. The total loss, L, used to train the model is
a combination of these two losses, typically weighted to balance
their contributions during training:

L = Lgene + Limg (17)

Key Points

¢ Advanced Model Integration: The TransformerST model
employs both graph and vision transformer architec-
tures to synergize histological imagery with spatial gene
expression data, facilitating a novel image-gene co-
representation not achieved by conventional methods.

¢ Super-Resolution with TransformerST: The Transform-
erST model's cross-scale super-resolution feature facili-
tates the achievement of single-cell resolution in ST data
without requiring single-cell references. This enhances
the clarity of data from lower resolution methods such
as 10x Visium.

¢ TransformerST’s High-Dimensional Gene Expression
Reconstruction: TransformerST enhances the compu-
tational efficiency of reconstructing original, high-
dimensional gene expression patterns, offering both
speed and precision that refine the single-cell resolution
data analysis beyond the capabilities of traditional PCA-
based methods.

¢ Versatile and High-Quality Performance: The Trans-
formerST model has been validated for its robust perfor-
mance and exceptional accuracy, showcasing adaptabil-
ity across diverse ST platforms, including STomics and
10x Visium.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.
com/bib.
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TransformerST is implemented in Python. The source code can
be downloaded from the website: https://github.com/Zhaocy-
Research/TransformerST.
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amplified (HER+) invasive ductal carcinoma (IDC) sample [28]; (4)
Our in-house mouse lung data are deposited in Gene Expression
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