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Abstract

Neighborhood attention reduces the cost of self attention by restricting each to-
ken’s attention span to its nearest neighbors. This restriction, parameterized by
a window size and dilation factor, draws a spectrum of possible attention pat-
terns between linear projection and self attention. Neighborhood attention, and
more generally sliding window attention patterns, have long been bounded by
infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the
development of custom kernels, which have been limited in either functionality,
or performance, if not both. In this work, we aim to massively improve upon
existing infrastructure by providing two new methods for implementing neighbor-
hood attention. We first show that neighborhood attention can be represented as
a batched GEMM problem, similar to standard attention, and implement it for
1-D and 2-D neighborhood attention. These kernels on average provide 895% and
272% improvement in full precision runtime compared to existing naive CUDA
kernels for 1-D and 2-D neighborhood attention respectively. We find that aside
from being heavily bound by memory bandwidth, certain inherent inefficiencies
exist in all unfused implementations of neighborhood attention, which in most
cases undo their theoretical efficiency gain. Motivated by the progress made into
fused dot-product attention kernels, we developed fused neighborhood attention;
an adaptation of fused dot-product attention kernels that allow fine-grained control
over attention across different spatial axes. Known for reducing the quadratic time
complexity of self attention to a linear complexity, neighborhood attention can now
enjoy a reduced and constant memory footprint, and record-breaking half precision
runtime. We observe that our fused implementation successfully circumvents some
of the unavoidable inefficiencies in unfused implementations. While our unfused
GEMM-based kernels only improve half precision performance compared to naive
kernels by an average of 548% and 193% in 1-D and 2-D problems respectively,
our fused kernels improve naive kernels by an average of 1759% and 958% in
1-D and 2-D problems respectively. These improvements translate into up to
104% improvement in inference and 39% improvement in training existing models
based on neighborhood attention, and additionally extend its applicability to image
and video perception, as well as other modalities. Our work is open-sourced at
https://github.com/SHI-Labs/NATTEN/.

1 Introduction

Inarguably among the most highly utilized and influential primitives in modern deep learning,
attention has long been cited for its complexity and memory footprint, especially when the query
and context sets are identical (self attention). For years since its adoption in deep learning [23], the
most common implementation of attention was through two batched GEMM (General Matrix-Matrix
Multiplication) operations, sometimes referred to as “BMM-style” attention. This implementation
stores attention weights to global memory, which can become a bottleneck in both speed and memory
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Figure 1: Overview of average improvement in speed on A100 from our proposed imple-
mentation. Baseline is the set of naive CUDA kernels introduced in Neighborhood Attention
Transformer [9]. GEMM-based NA improves 1-D problems by an average of 548% (forward pass)
and 502% (forward + backward), and 2-D problems by an average of 193% (forward pass) and
92% (forward + backward). GEMM-based NA does not implement 3-D problems yet. Fused NA
boosts performance further and improves 1-D problems by an average of 1759% (forward pass) and
844% (forward + backward), and 2-D problems by an average of 958% (forward pass) and 385%
(forward + backward), and 3-D problems by an average of 1135% (forward pass) and 447% (forward
+ backward).

footprint. As the number of tokens grow, the number of attention weights grow as well, and the
problem gets bounded by global memory bandwidth and capacity.

Over the past few years, some works proposed attention implementations in which attention weights
are kept in on-chip memory (shared memory or register file) instead, until the second matrix mul-
tiplication is performed and the resulting attention outputs are written directly to global memory
[18, 6]. These implementations, known as fused or memory-efficient attention, reduce the number
of global memory accesses in addition to global memory usage, and successfuly turn dot product
attention into a compute-bound problem at scale. Thanks to the first open-source implementation,
Flash Attention [6], these fused attention kernels have started replacing the standard BMM-style
implementations in many deep learning frameworks and inference engines such as PyTorch [16].

Orthogonal to these efforts, many have sought to address the quadratic complexity of self attention,
which can become a significant bottleneck in vision models more quickly. Neighborhood attention [9]
is one such method in which each query token is restricted to only interact with its nearest neighboring
context tokens. In most cases, this pattern creates a sliding window pattern, like that of the discrete
convolution operator heavily employed in vision models. This restriction can similarly be parame-
terized by a window size and dilation factor, and reduces the quadratic complexity of self attention
down to a linear complexity. This approach is, however, very difficult to implement at the tensor
library or deep learning framework level. Tensor views can represent sliding window attention [19],
but not the neighborhood attention pattern. In addition, standard GEMM implementations typically
do not support such tensor views in higher-rank/multi-dimensional spaces (2-D and 3-D) without
explicit copying into contiguous tensors, which in practice undoes the theoretical efficiency gain
from the reduced attention complexity. As a result, neighborhood attention was proposed along with
an extension carrying naive CUDA kernels [9] implementing the operation. While those kernels
provided competitive FP32 performance in eager mode inference, and in some cases even FP16/BF16
performance, they fall short of general adoption in larger scale experiments. In addition, fused
attention implementations, such as Flash Attention, effectively eliminate the O(n2) memory footprint
in self attention, while also reducing runtime significantly [6], making subquadratic attention patterns
that are only possible to implement “BMM-style” less practical.

In this work, we present two new classes of neighborhood attention kernels: GEMM-based BMM-
style kernels (GEMM NA), and fused kernels (Fused NA), which are aimed at providing significantly
improved infrastructure for neighborhood attention. We first show that neighborhood attention, and by
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Figure 2: Illustration of the spectrum of possible attention patterns provided by neighborhood
attention. Neighborhood attention only attempts to center the query token (red) within the context
window (blue), unlike sliding window attention [19] which forces it. Neighborhood attention with
window size 1 is equivalent to linear projection (“no attention”). Neighborhood attention approaches
self attention as window size grows, and matches it when equal to input size. Dilation introduces
sparse global context, and causal masking prevents interaction between query tokens that have a
smaller coordinate than neighboring context tokens along the corresponding mode. Window size,
dilation, and whether or not causally masked, can be defined per mode/axis.

extension sliding window attention, both of which are GEMV (General Matrix-Vector Multiplication)
problems, can be expressed as GEMM problems with space-aware tiling and gather/scatter fusion.
This would allow implementing such attention patterns with performance-optimized GEMM primi-
tives, which can also utilize specialized hardware components such as NVIDIA’s Tensor Cores. We
then extend the same logic to fused attention kernels by removing all assumptions that the token mode
(“space”) is rank-1 (single-axis). We write specializations that support higher-rank/multi-dimensional
spaces, such as 2-D and 3-D. This, in theory, allows any fused attention kernel to be modified to
accommodate token spaces of any rank. In addition, part of the logic is evaluated at compile time,
resulting in less overhead. Finally, the structural simplicity of the resulting fused neighborhood
attention kernels allows for easily adding features such as varying window sizes / dilation values
across ranks/axes, causal masking, and more.

2 Related works

Attention being adopted as a deep learning primitive is largely owed to the Transformer architec-
ture [23], which despite its original application in machine translation rose to the position of being
the predominant deep learning architecture. Its design and use of the attention operator have been
extended to many other applications and modalities [15, 7, 1, 17]. Attention is defined as an operation
between a two sets of vectors: a query set and a context set. The two undergo linear projections, with
the latter projected into a set of key and value pairs. Scaled dot product of query and key vectors,
A, is mapped into a probability distribution through the softmax operator, which produces the final
attention weights, P . The output is a set of vectors, each derived from the weighted sum of all value
vectors according to the query vector’s attention weights. It can be expressed as follows:

Attention(Q,K, V ) =

P︷ ︸︸ ︷
softmax

QKT

√
d︸ ︷︷ ︸

A

V, (1)
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where Q, K, and V are matrices of query, key, and value vectors as rows respectively,
√
d is the scale

term, and d is the number of dimensions for which the dot product is computed (number of columns
in Q and K). Dot product self attention, or simply, self attention, is a special case in which the query
and context sets are identical. This means for a set of n input vectors, the attention weights matrix, P ,
is ∈ Rn×n, incurring an O(n2) time and space complexity. In addition, the softmax term requires
column-wise reduction over the attention weight matrix, making kernel fusion more challenging.

Nevertheless, fused attention kernels successfully eliminate the O(n2) global memory footprint,
which makes self attention finally bound by compute and not memory bandwidth. These two
achievements paved the way for the scaling and application of attention across modalities. To our
knowledge, the first open-source implementation of a fused multi-headed attention (FMHA) kernel
was contributed to the NVIDIA Apex 1 project by Young-Jun Ko, which was primarily used for
accelerating inference of Transformer-based language models. As a result of that, it was heavily
limited in terms of supported models and problem sizes, as it was performing a full softmax reduction
step within the kernel. On the other hand, Milakov and Gimelshein [14] presented a technique for
computing partial softmax statistics, over which we can perform a final reduction step and derive
exact softmax results. This method makes the fusion of attention kernels more practical, because they
would no longer be required to compute a full row of attention weights before proceeding to perform
the second matrix multiplication. Dao et al. [6] presented and open-sourced Flash Attention, which
utilizes online softmax in order to create a performant and generic fused attention implementation.
Outperforming BMM-style implementations available in both training and inference, Flash Attention
was quickly adopted by many frameworks such as PyTorch [16], and further improved for the
NVIDIA Ampere [5] and Hopper architectures [20].

Parallel to these efforts, many proposed restricted self attention patterns, in which context is restricted
to a subset in order to generate fewer attention weights, which in turn reduces the O(n2) time and
space complexity. Stand-alone self attention (SASA) [19] is a simple 2-dimensional sliding window
attention pattern, which was shown to effectively replace convolution operations in ResNet [10]
variants. Noting challenges in implementing such patterns without incurring additional overhead from
tensor copies and expansion, the authors later moved away from explicit sliding window attention
patterns to alternatives that relaxed the sliding window movement in HaloNet [22]. In addition to these
works, sliding window attention patterns in 1-dimensional spaces has been explored in language, in
works such as Sparse Transformers [4], Longformer [2], BigBird [26], and more recently, Mistral [11].
Neighborhood attention [9, 8] is the practice of restricting the context of each token to its nearest
neighbors, which in many cases behaves like a sliding window pattern, with the exception of corner
cases in which the query cannot be centered in a sliding window. Per definitions from SASA [19]
and Longformer [2], the sliding context window can go out of bounds, in which case the attention
weights corresponding to out-of-bounds tokens are masked. This means tokens close to spatial bounds
interact with fewer context tokens. This difference allows neighborhood attention to approach self
attention as window size grows. In addition, neighborhood attention defines a dilation factor [8],
where the number of such corner cases only increase. Fig. 2 depicts possible attention patterns for
a single token under different neighborhood attention parameters. Facing similar implementation
challenges as previous works [19], neighborhood attention was implemented with naive CUDA
kernels packaged as a PyTorch extension, named NATTEN . While those kernels have accelerated
research in this direction, they were simply not intended to fully utilize the underlying hardware. The
only exception is the tiled kernels, which are somewhat better optimized, but only apply to a fraction
of common use cases, and are not extensible. In addition, with the rise of fused attention kernels
such as Flash Attention [6], such implementations which are not performance-optimized and heavily
memory-bandwidth-bound, can hardly compete in terms of performance and memory footprint.

To address these challenges, we present two new implementations and integrate them into NATTEN ,
aiming to accelerate all neighborhood attention applications, reduce their existing memory overhead,
and extend existing functionality. We first simplify the operations that implement neighborhood
attention’s forward and backward pass into 3 primary operators, and show each can be implemented
as batched GEMM kernels with a fused gather/scatter operation. We then point out key limita-
tions in unfused neighborhood attention implementations that would prevent them from achieving
competitive performance compared to standard BMM-style attention implementations (in more
memory-bandwidth-bound cases.) Motivated by this, and the progress made in fused attention
kernels, we propose fused neighborhood attention, which directly extends our batched GEMM

1https://github.com/NVIDIA/apex
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Figure 3: Illustration of our GEMM-based implementation of the 2-D PN operation. Input
tensors Q and K are tiled according to their 2-D spatial layout. Q is tiled with a static tile shape,
Th × Tw. K is tiled with a haloed shape of the Q tile, T ′

h × T ′
w, which is a function of the attention

window size (kh × kw) and the Q tile coordinates. Once tiles are moved into local memory, they are
viewed in matrix layout, and a ThTw × T ′

hT
′
w × d shaped GEMM is computed (d is embedding dim).

Once done, the tile of dot products with shape ThTw × T ′
hT

′
w is scattered into valid attention weights

of shape Th × Tw × khkw.

methodology. Since our main objectives are efficiency, Tensor Core utilization, and performance
optimization, and our methodology requires significant flexibility in the programming model, we
implement both approaches in CUDA C++ using NVIDIA’s CUTLASS [21] framework. We show
that the batched GEMM kernels can successfully outperform most existing NATTEN kernels in
performance, and that our fused kernels can outperform our batched GEMM kernels while reducing
the memory footprint.

3 Methodology

Herein we describe three primary operations (excluding softmax) that are required to implement a
full neighborhood attention forward and backward pass. We then show that each operation can be
expressed as a batched GEMM problem, as long as tiling is done according to the underlying spatial
rank, and attention weights are scatter/gathered. However, we find that scatter/gather is a major
bottleneck for all unfused implementations of neighborhood attention, limiting their low-precision
performance specifically on more recent architectures (Ampere and later.) We then introduce our fused
neighborhood attention (FNA) formulation, which builds on our batched GEMM formulation and
tiles according to the underlying spatial rank. This approach no longer requires scatter/gathering of
attention weights to/from global memory by definition, and thereby circumvents the aforementioned
bottleneck and successfully boosts lower-precision performance on modern architectures.

3.1 Operators

A standard BMM-style attention forward pass (excluding softmax) is comprised of two operations:
QKT , which produces pre-softmax attention weights (A), and PV , which applies post-softmax
attention weights (P ) to values (V ). These operations are different due to layout differences in the
matrix multiplications (note that K is transposed, V is not). 2

In the case of neighborhood attention, and sliding window attention in general, these will become
General Matrix-Vector Multiplication (GEMV) problems. In QKT , each query token (vector) is
multiplied by its neighboring or surrounding key tokens (matrix), and in PV , the set of attention

2QKT is a TN-layout and PV is a TT-layout GEMM in BLAS.

5



weights corresponding to each query token (vector) is multiplied by corresponding value tokens
(matrix). Given that some of these operations can be reused in the backward pass, we dub the QKT

operation “Pointwise-Neighborhood” (PN) and the PV operation “Neighborhood-Neighborhood”
(NN). PN can compute the gradient for post-softmax attention weights (∇P ) when operating on the
output gradient instead of Q, and V instead of K. Similarly, NN can compute the gradient for Q
(∇Q) when operating on the pre-softmax attention gradient (∇A) instead of A and K instead of V .
We define a third operator, which can compute gradients for both K and V : Inverse-Neighborhood
(IN). This operation is very similar to NN, but differs in gather pattern, as well as the number of
attention weights. IN may require loading more attention weights for every token, because unlike in
self attention, the relationship between query and context tokens in neighborhood attention is not
commutative. In other words, query token at coordinate i attending to context token at coordinate j
does not imply that query token at coordinate j attends to context token at coordinate i.

BMM-style implementations of standard self attention have a clear edge over neighborhood and
sliding window attention implementations, because they are GEMM problems and by extension not
as bound by memory bandwidth as the latter, all of which are GEMV problems. In addition, GEMV
problems cannot effectively utilize matrix multiply and accumulate (MMA) accelerators, such as
Tensor Cores. We aim to minimize this issue by formulating all three operators as batched GEMM
problems with scatter/gather fusion, in order to better utilize modern hardware accelerators.

3.2 Batched GEMM NA

We transform the aforementioned GEMV problems into batched GEMMs with scatter/gather fusion.
At an abstract level, implementations of GEMM-based neighborhood attention predicate the execution
of tiled MMAs on whether any of the rows in the query tile interact with at least one of the rows in
the context tile, given the context window size, dilation, and other masking-related parameters. We
propose modifying a CUTLASS GEMM as follows in order to implement PN, NN, and IN:

1. GEMM tiling is done according to the original multi-dimensional layout of the token mode
in QKV. For example, if the attention problem is 1-D, query and context tensors are tiled
along the sequence into tiles of size 64, for a 2-D problem, the token mode, which is
comprised of height and width, are tiled by a 2-D tiler of the same size, like 8 × 8.

2. Predication logic, and global pointer iterators and accessors are modified to iterate according
to the original layout in global memory instead of assuming a standard rank-2 matrix layout.

3. Attention weights are required to be scattered to and gathered from global memory, which
in 16-bit or lower precision cannot be copied asynchronously (with LDGSTS), which breaks
pipelining in those kernels on modern architectures. This is because the minimum transaction
size for LDGSTS is 32 bits.

We implemented these concepts by extending implicit GEMM (convolution) in CUTLASS (2.X
API) into kernels that compute the three neighborhood attention operators in 1-D and 2-D. Fig. 3
shows an illustration of the 2-D GEMM-based PN kernel. The first change is relatively inexpensive,
but the second change incurs additional predication and indexing logic that can result in additional
overhead and register pressure. The final change is a major bottleneck, and leads to lower-precision
kernels (FP16/BF16) providing little to no improvement compared to their full precision (FP32/TF32)
counterparts. NN and IN suffer from this issue more significantly, because gathering attention
weights (LDG) breaks pipelined kernels on Ampere, since they load GEMM operands asynchronously
(LDGSTS), which has a minimum transaction size of 32 bits. This forces our FP16/BF16 GEMM-
based kernels to fall back to global loads (LDG), which significantly impacts achievable runtime. To
our knowledge, this issue is unavoidable in most cases, and will continue to be a bottleneck as long
as attention weights are stored in global memory.

3.3 Fused NA

We extend our methodology for implementing neighborhood attention operators using batched GEMM
kernels to fused attention kernels like Flash Attention [6]. This is not only motivated by the potential
to reduce runtime and memory footprint, and potentially making neighborhood attention actually
bound by compute, but also to circumvent the bottleneck in the batched GEMM and naive kernels:
scatter/gathering attention weights to/from global memory. Since attention weights are only computed
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Figure 4: A simplified illustration of fused neighborhood attention. Q and KV tensors are
tiled according to their spatial layout (1-D, 2-D, 3-D), with the latter haloed to include the entire
neighborhood for all corresponding queries in the query tile. Resulting attention weights from the
first GEMM are masked according to neighborhood attention parameters, before undergoing online
softmax scaling, and going through the second GEMM with the corresponding value sub-tile.

at the threadblock level and never fully stored in global memory in fused kernels, the bottleneck
will simply cease to exist. We started off with xFormers FMHA [13], a fused multi-headed attention
kernel based on the CUTLASS 2.X API, which can target architectures even older than Ampere
(Maxwell, SM50; Volta, SM70; and Turing, SM75.) By carefully applying our methodology for
space-aware tiling, neighborhood attention masking, and software predication for multi-dimensional
tensor layouts, we successfully implemented neighborhood attention for 1-D, 2-D, and 3-D problems.
Fig. 4 presents an overview of how our fused kernels function when dealing with multi-dimensional
(multi-axis) data.

3.4 Dilation and causal masking

Our methodology allows for dilation support trivially, through simple partitioning and slicing ahead of
time. A dilated neighborhood attention problem can be mapped to a set of non-dilated neighborhood
attention problems over non-overlapping tiles of the input. All sub-problems can be computed within
the same kernel call, simply by issuing more CTAs in the grid. We additionally define and implement
causal neighborhood attention into our fused kernel, which can be crucial to certain applications
where only one spatial dimension requires causal masking (i.e. video embeddings may benefit from
causally masked attention across the time axis and standard attention across height and width axes,
which would be an exact 3-D spatio-temporal attention module.)

3.5 Notes on arithmetic intensity

Arithmetic intensity is the ratio of floating point operations over bytes of memory transactions, as
defined by the Roofline model [25]:

Arithmetic Intensity =
Nops

Nbytes
(2)

Arithmetic intensity is typically used to determine whether an implementation/algorithm is bound by
memory bandwidth or computational capacity, on a given problem size and hardware. Let’s consider
a simplified representation of self attention, where we only look at pure matrix multiplication FLOPs
and bytes. Self attention is comprised of two back-to-back BMMs, which would be 2bhn2d FLOPs
for each of the BMMs, where b, h, n, and d denote batch size, number of attention heads, sequence
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length, and per-head dimension respectively. In total, that would be 4bhn2d FLOPs. In the unfused
implementation, 4 tensors with size bhnd (Q, K, V and output) are accessed in global memory, along
with one intermediary tensor with size bhn2 (attention weights or P ), which is accessed twice. In
total, that is (4× bhnd+2× bhn2)× sdtype bytes, where sdtype is the byte size of the tensor element
type. When implemented with fused attention, however, the number of bytes accessed for matrix
multiplication from global memory is reduced to only reads and writes for Q, K, V , and attention
outputs, or 4× bhnd× sdtype.

Unfused implementations of attention are typically memory-bandwidth-bound at scale, given that
their arithmetic intensity approaches a constant value as sequence length grows. If we take the limit
of their intensity according to the aforementioned approximation of FLOPs and transaction bytes, as
n → ∞ with everything else as constants, we see that:

lim
n→∞

4bhn2d

(4bhnd+ 2bhn2)sdtype
= lim

n→∞

2nd

(2d+ n)sdtype
=

2d

sdtype
(3)

Fused attention therefore solves a key problem here, by reducing the number of memory transactions
from O(n2) to O(n), which means as sequence length grows, the limit of arithmetic intensity in
fused attention does not converge, and it will therefore only become bound by computational capacity.
This means that optimal fused attention kernels can almost fully utilize the underlying computational
power of modern GPUs, and is the reason behind FP8 attention kernels for the Hopper architecture
exceeding the 1 petaFLOP/s threshold [3, 20].

A natural question to ask is what happens to local attention patterns such as neighborhood attention,
which promised to deliver more efficiency. In fused implementations of neighborhood attention (i.e.
our proposed FNA), we can look at the growth of arithmetic intensity similar to self attention. If we
consider the FLOPs for neighborhood attention to be 4bhnℓd, where ℓ is the size of the attention
window, and that the number of global memory transaction bytes is the same as fused self attention
(worst case), 4× bhnd× sdtype, then we see that as n → ∞, we converge towards a constant again,
therefore making neighborhood attention more memory-bandwidth-bound as n alone scales:

lim
n→∞

4bhnℓd

4bhndsdtype
=

ℓ

sdtype
(4)

However, the constant here is a function of ℓ, the size of our attention window, which means that
as we scale the sequence length or feature map size, attention window size will determine whether
or not the problem is bound by memory bandwidth or computational power. Since smaller window
sizes are closer to linear projections, and larger window sizes are closer to self attention, the fact that
neighborhood attention can be bound by compute or memory bandwidth depending on window size
is not a surprise. Therefore, it is highly recommended to choose neighborhood attention window
sizes according to the input size and even hardware to maximize efficiency gain.

3.6 Limitations

Our formulation of GEMM-based and fused neighborhood attention kernels poses a critical question:
how much overhead can one expect from switching from a standard self attention kernel to neighbor-
hood attention? As pointed out in Sec. 3.2, our GEMM-based kernels suffer from a major bottleneck,
especially in lower-precision, which stems from scatter/gathering of attention weights. We consider
this to be an unavoidable issue in unfused implementations of neighborhood and sliding window
attention. Unsurprisingly, our proposed changes to fused implementations are also not free. Changes
that we find unavoidable, which in some cases can cause our fused kernels to incur higher runtime
than the self attention baseline (xFormers FMHA) are the following (ordered by most significant to
least significant):

1. Kernels specialized for 2-D and 3-D problems are no longer GEMMs, they are General
Tensor-Tensor contractions (GETTs)! Similar to convolution, if the input layout is multi-
dimensional, then the GEMM is converted to a special case of GETT. On older GPU
architectures, this requires more complicated software predication, which will incur more
instructions and heavier register usage, whereas on modern architectures like Hopper, the
Tensor Memory Accelerator (TMA) can easily provide hardware predication. Our software
predication logic is similar to standard practice for such cases in CUTLASS 2.X GEMMs,
and similarly less performant than predication for contiguous matrix layouts. We find this to
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Table 1: FP16 forward pass benchmark overview.
We benchmark naive neighborhood attention ker-
nels against our proposed GEMM and fused kernels
in half precision, over a large set of problem sizes
varying in batch size, spatial size, number of atten-
tion heads, and dimensions per head, and over dif-
ferent window sizes and dilation values. For every
problem size, we also benchmarked self attention
running with the xFormers FMHA (our baseline)
and Flash Attention V2.

NA Kernel % of problems matched or outperformed
neighborhood attn self attn

Naive GEMM Fused FMHA FAv2
1-dimensional neighborhood attention

Naive - 1.7 % 0.0 % 21.8 % 8.8 %
GEMM 98.7 % - 0.0 % 72.0 % 54.2 %
Fused 100.0 % 100.0 % - 100.0 % 98.2 %

2-dimensional neighborhood attention

Naive - 16.4 % 0.0 % 32.9 % 15.8 %
GEMM 84.0 % - 0.0 % 59.3 % 29.8 %
Fused 100.0 % 100.0 % - 98.6 % 92.4 %

3-dimensional neighborhood attention

Naive - - 0.0 % 43.5 % 20.2 %
Fused 100.0 % - - 97.3 % 87.0 %

Table 2: FP32 forward pass benchmark
overview. We benchmark naive neighborhood
attention kernels against our proposed GEMM
and fused kernels in full precision, over a large
set of problem sizes varying in batch size, spa-
tial size, number of attention heads, and dimen-
sions per head, and over different window sizes
and dilation values. For every problem size, we
also benchmarked self attention running with
the xFormers FMHA (our baseline).

NA Kernel % of problems matched or outperformed
neighborhood attn self attn

Naive GEMM Fused FMHA
1-dimensional neighborhood attention

Naive - 0.0 % 0.0 % 34.6 %
GEMM 99.9 % - 37.7 % 98.4 %
Fused 100.0 % 64.8 % - 99.9 %

2-dimensional neighborhood attention

Naive - 11.7 % 5.4 % 52.0 %
GEMM 89.5 % - 28.1 % 92.4 %
Fused 96.0 % 74.0 % - 99.3 %

3-dimensional neighborhood attention

Naive - - 0.0 % 61.1 %
Fused 100.0 % - - 98.6 %

be the most significant contributor to additional runtime in our fused kernels, when compared
to the baseline fused self attention kernel, FMHA. However, FNA is perfectly capable of
hiding this additional overhead in many cases, and only falls behind in cases close to self
attention (window size is approximately the same as input size.)

2. The attention masking logic, which depends on corresponding query and context token
coordinates, original layout, and window size, introduces additional indexing logic in order
to map linear indices to coordinates (unlike in 1-D problems where the mapping is the
identity function), and it gets more complicated with more dimensions. This, along with
additional statements in the masking condition, contributes to runtime, and is expected to
worsen with more dimensions. Together, these contribute to more serious register spilling
than the original 1-D kernel.

Despite these issues, we find that our fused kernels can still match or outperform our self attention
baseline in approximately 100% of 1-D, 98.6% of 2-D, and 97.3% of 3-D problem sizes that we
benchmarked.

4 Experiments

We evaluate the performance of our proposed methods by measuring their runtime against existing
kernels in NATTEN . Most use cases in NATTEN target naive CUDA kernels, with the exception
of 2-D neighborhood attention with 32-dimensional attention heads. NATTEN implements tiled
kernels for those cases for up to and including window size 13 × 13, and only for the QK operation.
However, we treat all kernels in NATTEN as our baseline, and will refer to them as naive kernels.
We use a fixed set of problem sizes that vary in batch size, spatial size, number of attention heads,
and dimensions per attention head, and run them through every implementation on an NVIDIA A100
GPU and measure their runtime using CUDA events. We iterate through multiple neighborhood
attention window sizes and dilation values for every problem size. A summary of these benchmarks
is presented in Tab. 1 (FP16) and Tab. 2 (FP32). We find that our GEMM-based kernels can improve
or match the naive runtime in approximately 99% of 1-D problems (of 6150), and 84% of 2-D
problems (of 5676) in half precision, and approximately 100% of the 1-D problems and 96% of
the 2-D problems in full precision. Note that over 40% of the 2-D problems target tiled kernels in
NATTEN , which we find can sometimes outperform our GEMM-based kernels. Another point
of disadvantage in the FP16/BF16 variants of our GEMM-based kernels is using LDGs in pipelined
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kernels, noted in Sec. 3.2. On the other hand, our fused kernels improve or match the naive runtime
in approximately 100% of both 1-D (of 6150) and 3-D problems (of 2448) in both half precision
and full precision, an 100% of 2-D problems in half precision, while only improving approximately
96% of 2-D problems in full precision. We also find that our fused kernels match or outperform
our GEMM kernels in 100% of both 1-D and 2-D problems in half precision, while only doing so
in approximately 65% of 1-D problems and 74% of 2-D problems in full precision, which is not
very surprising given that full precision is typically more memory-bandwidth-bound. In both Tab. 1
and Tab. 2 we also inspect the percentage of problem sizes in which using our fused neighborhood
attention kernel is outperformed by the FMHA kernel. This is only to inspect additional overhead
caused by our implementation, which we expect to be more noticeable in 2-D and 3-D problems.
Some of the overhead may be avoidable, but our takeaway is that it is unlikely to be fully avoidable,
as pointed out in Sec. 3.6.

We further present a breakdown of our benchmarks in Tab. 3, where we report the average, minimum,
and maximum improvement observed from switching from naive to GEMM-based, naive to fused,
and GEMM-based to fused kernels. GEMM-based kernels exhibit strong performance compared to
both naive and fused kernels in full precision, where fused kernels only have a very minimal edge
over unfused. GEMM-based kernels also outperform naive kernels in half precision, especially in
cases where tiled kernels are not available. While the tiled kernels are sometimes the better choice,
we note that they simply cannot generalize to all problem sizes as our GEMM-based kernels can, nor
are they easily extensible.

Table 3: Forward pass benchmark breakdown. Both GEMM-based and fused NA improve the
baseline naive kernels on average. However, there exist cases in which naive kernels may be preferable
to GEMM-based in both FP16 and FP32, but naive is rarely a good choice in half precision where
both naive and GEMM are more memory bandwidth bound than fused.
Dim GEMM over naive Fused over naive Fused over GEMM

Average Min Max Average Min Max Average Min Max
FP16

1-D ↑ 548 % ↓ -53 % ↑ 3025 % ↑ 1759 % ↑ 60 % ↑ 11885 % ↑ 180 % ↑ 71 % ↑ 466 %
2-D ↑ 193 % ↓ -57 % ↑ 862 % ↑ 958 % 0 % ↑ 7169 % ↑ 257 % ↑ 38 % ↑ 1199 %
3-D - - - ↑ 1135 % ↑ 118 % ↑ 5497 % - - -

FP32

1-D ↑ 874 % ↓ -31 % ↑ 3565 % ↑ 978 % ↑ 13 % ↑ 4419 % ↑ 17 % ↓ -54 % ↑ 136 %
2-D ↑ 386 % ↓ -43 % ↑ 1933 % ↑ 564 % ↓ -30 % ↑ 4043 % ↑ 43 % ↓ -53 % ↑ 451 %
3-D - - - ↑ 712 % ↑ 25 % ↑ 3029 % - - -

5 Future work & Conclusion

In this work, we formulated the neighborhood attention problem, and by extension multi-dimensional
sliding window attention, which are inherently GEMV problems, as GEMM/GETT problems.
Through this finding, we implemented extensible GEMM-based and fused CUDA kernels that
implement neighborhood attention, which can significantly improve upon existing kernels in the
NATTEN project. These kernels will not only speed up previously-proposed models based on
neighborhood attention, but can also significantly enhance ongoing research efforts in this direction.
In addition, our fused kernels are the most flexible in terms of parameterization, by supporting
varying window sizes, dilation factors, and causal masking across different axes, which enable unique
applications such as 3-D spatio-temporal attention with causal masking across time. They also enjoy
a reduced memory footprint, and can avoid being bound by memory bandwidth at scale.

Future directions in this area include but are not limited to: support for Context Parallelism (CP),
implementations using more efficient predication (i.e. with the Hopper TMA), extension to more
modern architectures (warp-specialized kernels in Hopper and Blackwell), extension to other AI
accelerators, and better auto-tuning (or alternatives involving graph compilation).

We’ve shown that multi-dimensional local attention can indeed serve as solutions for scaling future
large-scale long-context architectures, when provided with suitable software infrastructure. We hope
that this inspires more research into multi-dimensional attention, as deep learning systems continue
to grow larger in both model and input size.
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A Auto-tuner

GEMM kernels are, among other settings, parameterized by their tiling shape. Multi-dimensional
variants (2-D and 3-D neighborhood attention) can also be parameterized by their fine-grained tile
sizes, introduced by our formulation. As mentioned earlier, a GEMM with row tile size 64 can be
reinterpreted as a number of 2-D and 3-D tiles (i.e. x × y for all positive integers x and y where
xy = 64, and x× y × z for all positive integers x, y, and z where xyz = 64.) As a result, selecting
tiling sizes based on factors such as problem size, hardware, and environment can further decrease
achievable runtime. We therefore implement a very simple auto-tuning method as a proof of concept.
Auto-tuning creates and maintains a cache for the lifetime of the application, which maps problems
(defined by problem size, data type, and other such factors) to a tiling configuration. On a cache miss,
the problem is benchmarked over a set of tiling configurations, and the best configuration gets cached.

While the auto-tuner can noticeably improve performance even further, we note that it is presently
limited in the following:

1. Distributed training. auto-tuner context is limited to a single process, meaning jobs involv-
ing distributed training or inference will run the auto-tuner separately in each individual
process. Aside from the possibility of different processes choosing different settings, which
can slightly impact numerical determinism, this behavior is counter-intuitive. A more
advanced auto-tuner would distribute possible settings over available processes and reduce
auto-tuning time in the process, and guarantee the same settings across processes.

2. Vast search space. there exist in the order of thousands of valid settings for any given
problem size, and searching over all of them is intractable. Our solution so far has been
to generate far fewer possible settings, and even reduce the number of settings further
by introducing a “thorough mode”, which is disabled by default, but when enabled, will
allow users to search over more settings and potentially gain more in speed. This issue
is a common problem in modern computational packages, and we hope to alleviate it by
common practices such as reducing benchmark time, distributing the process, caching to
disk, lazy benchmarking, and approximate performance models.

B Additional experiments

Herein we present some additional performance metrics from our GEMM-based and fused kernels
compared against the baseline.

In Tab. 4, we break down expected performance improvements at the operation level from a single for-
ward and backward pass. Both our GEMM-based and fused kernels provide significant improvement
on average over the baseline, while there still exist cases where naive could potentially perform better,
especially compared to our GEMM-based kernels. As pointed out in Sec. 3.2, the scatter and gather
operation in our GEMM kernels are a significant bottleneck, especially in lower-precision and in
NN and IN operations. In lower precision, NN and IN, which account for 75% of the backward pass
operations (excluding softmax) will fail to hide their prefetch runtime from global reads, which are
not asynchronous, and this will essentially impact the backward pass more than it does the forward
pass. This issue, however, is limited to our unfused variant, and our fused kernels maintain their
superior performance levels, offering up to an order of magnitude improvement in all variants (1-D,
2-D, and 3-D).

Table 4: Forward + backward pass benchmark breakdown. Improvements over naive, while not
as significant as in the forward pass, are still significant. We report benchmark the full forward and
backward pass in half precision only, because most training is done in lower precision.
Dim GEMM over naive Fused over naive Fused over GEMM

Average Min Max Average Min Max Average Min Max
1-D ↑ 502 % ↓ -48 % ↑ 3017 % ↑ 844 % ↓ -20 % ↑ 7605 % ↑ 57 % ↓ -50 % ↑ 229 %
2-D ↑ 92 % ↓ -70 % ↑ 474 % ↑ 385 % ↓ -61 % ↑ 3723 % ↑ 150 % ↓ -49 % ↑ 855 %
3-D - - - ↑ 447 % ↓ -45 % ↑ 2824 % - - -

In addition to our operation-level benchmarks, we also evaluate the effect of our proposed methodol-
ogy on existing models that use neighborhood attention as a primitive, NAT [9] and DiNAT [8]. We
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benchmark the throughput from all variants according to ImageNet-1K [12] specifications, and report
FP16 and FP32 measurements in Tab. 5 and Tab. 6 respectively. We also benchmark a style-based
generative adversarial (GAN) model based on neighborhood attention, StyleNAT [24] and report
performance improvements in Tab. 7. We find that at least in problem sizes that the ImageNet
classification models NAT and DiNAT typically require, which are typically smaller in spatial size
and window size, and larger in batch size, our GEMM-based approach fails to improve the baseline
in half precision, and only minimally improves it in full precision. Our fused kernels on the other
hand never fail to improve upon the baseline, but they only provide significant improvement in half
precision, and cases that use dilation frequently (DiNAT [8] variants). Improvements in the generative
model, StyleGAN [24], are only observed in full precision (half precision is not recommended in
this application), where again we find that both our GEMM-based and fused kernels can improve
inference speed compared to existing naive kernels, with our fused kernels having a much more
noticeable edge.

Table 5: Model-level throughput changes when using our proposed GEMM-based and fused
kernels in ImageNet classification. Hierarchical vision transformers NAT and DiNAT can see
between 26% to 104% improvement in FP16 throughput on an A100 (batch size 128) with our
proposed fused kernel. Suffering from the memory alignment issue, our half precision GEMM
kernels usually result in a much smaller improvement over naive kernels, particularly the tiled
variants. The same measurements with FP32 precision are presented in Tab. 6.

Model # of FLOPs Throughput Top-1
Params Naive GEMM Fused Accuracy

(M) (G) (imgs/sec) (%)

NAT-M 20 2.7 2975 2660 ( ↓ -11 % ) 3742 ( ↑ 26 % ) 81.8
DiNAT-M 20 2.7 2672 2548 ( ↓ -5 % ) 3930 ( ↑ 47 % ) 81.8

DiNATs-T 28 4.5 2850 2504 ( ↓ -12 % ) 3847 ( ↑ 35 % ) 81.8
NAT-T 28 4.3 2167 1939 ( ↓ -11 % ) 2772 ( ↑ 28 % ) 83.2
DiNAT-T 28 4.3 1910 1845 ( ↓ -3 % ) 2909 ( ↑ 52 % ) 82.7

DiNATs-S 50 8.7 1800 1571 ( ↓ -13 % ) 2445 ( ↑ 36 % ) 83.5
NAT-S 51 7.8 1457 1309 ( ↓ -10 % ) 1879 ( ↑ 29 % ) 83.7
DiNAT-S 51 7.8 1360 1313 ( ↓ -3 % ) 2145 ( ↑ 58 % ) 83.8

DiNATs-B 88 15.4 1351 1178 ( ↓ -13 % ) 1837 ( ↑ 36 % ) 83.8
NAT-B 90 13.7 1110 997 ( ↓ -10 % ) 1448 ( ↑ 30 % ) 84.3
DiNAT-B 90 13.7 982 950 ( ↓ -3 % ) 1517 ( ↑ 54 % ) 84.4

DiNATs-L 197 34.5 846 744 ( ↓ -12 % ) 1119 ( ↑ 32 % ) 86.5
DiNAT-L 200 30.6 669 647 ( ↓ -3 % ) 1042 ( ↑ 56 % ) 86.6
DiNATs-L(384 × 384) 197 101.5 295 239 ( ↓ -19 % ) 391 ( ↑ 33 % ) 87.4
DiNAT-L(384 × 384) 200 92.4 153 134 ( ↓ -12 % ) 312 ( ↑ 104 % ) 87.5

Finally, we also attempted to estimate improvements in training time compared to our baseline. As
suggested by our earlier findings regarding the limit of our GEMM-based implementation in the
backward pass, we do not see any improvement in training time compared to the naive baseline.
However, we find that our fused kernels deliver on the promise of improved half precision training
time. We present our estimates in Tab. 8, which are based on measurements from training NAT [9]
and DiNAT [8] variants according to their original specifications. We ran each model for 1 warmup
epoch, and 1 benchmark epoch, the average throughput of which is used to estimate training time for
300 epochs.
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Table 6: Model-level throughput changes when using our proposed GEMM-based and fused
kernels in ImageNet classification (full precision). While fused attention kernels are not expected
to have as large of an edge over BMM-style attention kernels in FP32, our fused kernels still happen
to outperform naive kernels in full precision. It is also visible that our GEMM kernels can outperform
naive kernels when we eliminate the memory alignment issue. That said, our FP32 GEMM kernels
still impose a maximum alignment of 1 element on the attention weights tensor, which limits its
ability to compete with other BMM-style attention kernels.

Model # of FLOPs Throughput Top-1
Params Naive GEMM Fused Accuracy

(M) (G) (imgs/sec) (%)

NAT-M 20 2.7 2416 2481 ( ↑ 3 % ) 2658 ( ↑ 10 % ) 81.8
DiNAT-M 20 2.7 2217 2364 ( ↑ 7 % ) 2905 ( ↑ 31 % ) 81.8

DiNATs-T 28 4.5 2270 2255 ( ↓ -1 % ) 2771 ( ↑ 22 % ) 81.8
NAT-T 28 4.3 1739 1802 ( ↑ 4 % ) 1942 ( ↑ 12 % ) 83.2
DiNAT-T 28 4.3 1591 1706 ( ↑ 7 % ) 2123 ( ↑ 33 % ) 82.7

DiNATs-S 50 8.7 1403 1393 ( ↓ -1 % ) 1717 ( ↑ 22 % ) 83.5
NAT-S 51 7.8 1160 1199 ( ↑ 3 % ) 1293 ( ↑ 11 % ) 83.7
DiNAT-S 51 7.8 1102 1183 ( ↑ 7 % ) 1490 ( ↑ 35 % ) 83.8

DiNATs-B 88 15.4 1020 1009 ( ↓ -1 % ) 1240 ( ↑ 22 % ) 83.8
NAT-B 90 13.7 867 897 ( ↑ 3 % ) 966 ( ↑ 11 % ) 84.3
DiNAT-B 90 13.7 795 851 ( ↑ 7 % ) 1059 ( ↑ 33 % ) 84.4

DiNATs-L 197 34.5 609 601 ( ↓ -1 % ) 721 ( ↑ 18 % ) 86.5
DiNAT-L 200 30.6 506 540 ( ↑ 7 % ) 669 ( ↑ 32 % ) 86.6
DiNATs-L(384 × 384) 197 101.5 211 193 ( ↓ -9 % ) 245 ( ↑ 16 % ) 87.4
DiNAT-L(384 × 384) 200 92.4 116 115 ( ↓ -1 % ) 179 ( ↑ 54 % ) 87.5

Table 7: Model-level throughput changes when using our proposed GEMM-based and fused
kernels in style-based image generation. We benchmark StyleNAT [24], a style-based generative
adversarial model based on neighborhood attention under different kernels. We experimented with
different batch sizes in order to achieve peak performance, and settled for 64 for the 256 × 256
variant, and 8 for the 1024 × 1024. StyleNAT does not recommend lower-precision, therefore these
measurements are only done in FP32.

Dataset # of Throughput FID
Params Naive GEMM Fused

(imgs/sec)

FFHQ (256 × 256) 48.9 M 36.7 40.6 ( ↑ 11 % ) 45.5 ( ↑ 24 % ) 2.05
FFHQ (1024 × 1024) 49.4 M 8.2 8.5 ( ↑ 3 % ) 11.5 ( ↑ 40 % ) 4.17
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Table 8: Training time improvement when using fused neighborhood attention kernels. We ran
each of the classification models based on neighborhood attention for one warmup epoch and one
benchmark epoch, all with half precision (the typical training scenario), and report the estimated
training time. Note that these numbers exclude positional biases, as our fused backward kernel does
not support it.

Model # of FLOPs Training time estimate
Params Naive GEMM Fused

(M) (G) (hours)

NAT-M 20 2.7 19.4 20.4 ( ↓ -5 % ) 16.6 ( ↑ 17 % )
DiNAT-M 20 2.7 20.4 21.2 ( ↓ -4 % ) 17.4 ( ↑ 17 % )

DiNATs-T 28 4.5 21.1 22.0 ( ↓ -4 % ) 17.4 ( ↑ 21 % )
NAT-T 28 4.3 26.5 28.2 ( ↓ -6 % ) 24.0 ( ↑ 10 % )
DiNAT-T 28 4.3 27.4 28.5 ( ↓ -4 % ) 21.9 ( ↑ 25 % )

DiNATs-S 50 8.7 33.3 33.2 ( 0 % ) 25.1 ( ↑ 33 % )
NAT-S 51 7.8 39.2 41.8 ( ↓ -6 % ) 33.7 ( ↑ 16 % )
DiNAT-S 51 7.8 38.0 40.1 ( ↓ -5 % ) 30.8 ( ↑ 23 % )

DiNATs-B 88 15.4 45.4 46.1 ( ↓ -2 % ) 32.6 ( ↑ 39 % )
NAT-B 90 13.7 51.1 54.6 ( ↓ -6 % ) 47.7 ( ↑ 7 % )
DiNAT-B 90 13.7 54.4 56.0 ( ↓ -3 % ) 41.0 ( ↑ 33 % )

16


	Introduction
	Related works
	Methodology
	Operators
	Batched GEMM NA
	Fused NA
	Dilation and causal masking
	Notes on arithmetic intensity
	Limitations

	Experiments
	Future work & Conclusion
	Auto-tuner
	Additional experiments

