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Abstract. During crowd navigation, robot motion plan needs to con-
sider human motion uncertainty, and the human motion uncertainty is
dependent on the robot motion plan. We introduce Interaction-aware
Conformal Prediction (ICP) to alternate uncertainty-aware robot motion
planning and decision-dependent human motion uncertainty quantifica-
tion. ICP is composed of a trajectory predictor to predict human trajec-
tories, a model predictive controller to plan robot motion with confidence
interval radius added for probabilistic safety, a human simulator to col-
lect human trajectory calibration dataset conditioned on the planned
robot motion, and a conformal prediction module to quantify trajectory
prediction error on the decision-dependent calibration dataset. Crowd
navigation simulation experiments show that ICP strikes a good balance
of performance among navigation efficiency, social awareness, and uncer-
tainty quantification compared to previous works. ICP generalizes well
to navigation tasks under various crowd densities. The fast runtime and
efficient memory usage make ICP practical for real-world applications.

Keywords: Human-Robot Interaction - Collision Avoidance.

1 Introduction

Despite decades of development in robot motion planning algorithms, it is only
recently that mobile robots have started navigating through crowds and serving
in our daily lives, because of the advancement on data-driven modeling of human
motion [10],[17], [3],[1], [13]. While these human models are getting more accu-
rate, how to effectively use predicted human motion for robot motion planning
still remains an open research problem. A classical paradigm performs motion
planning by treating the predictions as if they are ground truth future human
positions [12], [21]. However, there always exists prediction error, so the planned
robot motion does not have any safety guarantees in this paradigm. Recent efforts
are focused on calibration of the prediction error with uncertainty quantification
techniques like conformal prediction [31]. As a calibration trajectory dataset is
required for conformal prediction, previous works usually suffer from distribution
shift on human motion due to either (1) collecting offline human-only simulation
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data which overlooks the difference of human reactions to robot from to other
humans [20], or (2) impractical amount of online human-robot interaction data
required for achieving asymptotic safety guarantee [7].

We introduce Interaction-aware Conformal Prediction (ICP) to address the
distribution shift issue by alternation between (1) robot motion planning based
on the human motion uncertainty and (2) human motion uncertainty quantifi-
cation by online human simulation conditioned on the robot motion plan.

Specifically, ICP first assumes predictions are ground truth and generates a
robot motion plan (Fig. 1 b1, b2). Given the initial robot motion plan, ICP then
starts iteration: (1) simulate multiple episodes of crowd motion by assuming the
robot will execute the current plan to collect the calibration dataset dependent
on the current plan (Fig. 1 cl); (2) perform conformal prediction to acquire
the decision-dependent confidence interval radius (Fig. 1 ¢2); (3) plan the robot
motion by using the current confidence interval radius as the decision-dependent
probabilistic safety margin (Fig. 1 c3).

By explicitly capturing the mutual influence between the robot plan and
the human motion uncertainty, ICP achieves a good tradeoff among navigation
efficiency, social awareness, and uncertainty quantification in contrast to pre-
vious works in crowd navigation simulation experiments. We demonstrate that
ICP generalizes well to crowd scenarios of different number of humans, and its
fast runtime and small GPU memory usage shows the readiness of real world
applications.

Fig. 1. Interaction-aware Conformal Prediction (ICP) iteratively quantifies uncertainty
of human trajectory prediction by simulating human motion under the assumption that
the robot would execute the latest plan, and plans robot motion with the conformal
interval radius calibrated from the latest simulation dataset.
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2 Related Work

2.1 Conformal Prediction

Conformal prediction is a statistical tool designed to produce reliable and valid
prediction intervals or sets in machine learning. First introduced in [31], it offers
a rigorous framework to quantify the uncertainty of predictions without making
assumptions about the underlying distribution or predictive model [2]. Due to
its model-agnostic nature, conformal prediction has gained increasing popularity
in various communities ranging from healthcare [30], [24], to finance [32], [18].

The application of conformal prediction has also found great success in
robotics, including combination with reachability analysis [6], [23], adding safety
guarantees to trajectory prediction [20], [7], [28], and integration with robust
control to find control laws with probabilistic safety guarantees [33]. Most rel-
evant to our work is the study by [20], which applies conformal prediction and
model predictive control (MPC) to plan robot motion with safety guarantees.
Note that they run simulation of only human agents to collect a synthetic tra-
jectory calibration dataset and perform conformal prediction offline. Thus, they
compute fixed conformal interval radius as safety clearance for MPC. However,
human agents adjust their behavior according to the robot action during human-
robot interaction. A new robot plan will alter the distribution of human motion
and break the guarantees offered by these fixed conformal sets.

Adaptive Conformal Prediction (ACP) attempts to address this issue by
collecting human and robot trajectories, updating calibration datasets and ad-
justing failure probability on the fly [7]. A practical limitation of ACP is its
asymptotic safety guarantee, where the average safety rate over all time steps
approaches the designated safety rate as time goes to infinity. This indicates
that a long warm-up period of online human-robot interaction data collection
is necessary for achieving the asymptotic safety guarantee, which does not meet
the efficiency requirement of crowd navigation applications. In contrast, our ICP
algorithm offers distribution-free safety guarantees with robot plan refinement
and human motion conformal set re-computation by leveraging online human
simulation conditioned on robot plans.

2.2 Crowd Navigation

Various methods have been developed to enhance robot navigation in crowded
environments. Reaction-based methods such as Optimal Reciprocal Collision
Avoidance (ORCA) [29] treat agents as velocity obstacles, whereas methods like
Social Force [11], DS-RNN [22], and [21] leverage attractive and repulsive forces
or interaction-based graphs to model interactions between agents.

While these works have made notable contributions, their frameworks suffer
from undetermined uncertainty quantification and are prone to safety problems.
Hence, [20] and [23] have made use of conformal prediction to endow crowd
navigation with probabilistic safety guarantees, where conformal prediction em-
powers their frameworks to deal with unknown data distribution. [23] uses a



4 Z. Huang et al.

specific prediction model and takes advantage of quantile regression models to
generate approximate confidence intervals on predicted actions. Their approach
is followed by implementing RollingRC, a conformal prediction method, to ad-
just composed intervals. Owing to the desirability of having confidence sets in
the spatial domain, [23] and [19] use HJ reachability method to form reachable
tubes for each agent. [23] obtains optimal trajectory for the ego agent by treating
each agent’s final forward reachable tube as a time-growing obstacle and max-
imizing the Hamiltonian. Unlike previous works, ICP captures the interactions
by iteratively computing conformal prediction sets and considering the effect of
planner outputs on agents trajectories.

2.3 Model Predictive Control

Model predictive control (MPC) is a control technique based on the iterative
solution of an optimization problem [3]. By using the system model and the
current state, MPC plans the optimal control sequence based on a cost function.
Due to its ability to handle multi-variable systems and state/input constraints,
MPC has received considerable attention and has been studied within diverse
research areas and application domains [9, 26]. In robotics, MPC has been used
to plan motions for mobile robots [5, 27], manipulators [14], and drones [15, 16].

Existing MPC-based methods for robot navigation in social environments
are often composed of two steps, prediction and planning, where the future
trajectories of the surrounding agents are first predicted and then the robot
action is planned by solving an optimization problem [5]. Park et al. proposes
the model predictive equilibrium point control (MPEPC) for wheelchair robot
navigation, where the uncertainty of obstacle motions is predefined and fixed [25].
Kamel et al. employs a model-based controller to navigate a micro aerial vehicle
(MAV) while avoiding collisions with other MAVs, where a constant velocity
model is used for obstacle trajectory prediction and the obstacles are inflated
for safety based on the uncertainty estimated by an extended Kalman filter [16].
A similar idea of enlarging the safety distance between the robot and a human
based on the covariance of the estimated state is adopted by Toit et al., where
several predefined dynamics are also explored for human trajectory prediction [8].
Chen et al. proposes an intention-enhanced ORCA (iORCA) as an advanced
pedestrian motion model, which can dynamically adjust the preferred velocity
of a pedestrian [5]. The predicted human trajectories from iORCA are then
incorporated into an MPC framework to realize safe navigation in dense crowds.
However, these approaches fail to take into account the effects of robot actions
on future human trajectories, and thus the distribution shift on human behaviors
exists, which can potentially lead to safety violations during execution.

3 Introduction to Conformal Prediction

In this section, we provide a brief introduction of conformal prediction. Con-
sider a classic supervised learning setting with n independent and identically
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distributed (i.i.d.) samples (z1,41),.-., (Zn,yn) € X x Y. Let p: X — Y be our
predictor. Given a new test sample (z,y) drawn from the same distribution, we
want to give a valid prediction region for y based on x. Formally, for a given
failure probability « € (0, 1), our goal is to find a set C' for y such that

Pr(yeC)>1-a. (1)

Conformal prediction offers a simple way to find such C. At its core, it uses the
following simple fact about exchangeable random variables.

Lemma 1. Let X, Xy,...,X,, be exchangeable random wvariables. Let Xy be

the k-th smallest value among X1, ..., X,. Then we have
- n+1
Proof. For simplicity, assume that there are no ties among X, X;,...,X,, al-

most surely. The same arguments would still apply but with more complicated
notations.

Let f be the joint density of X, X;,...,X,. Consider the event E that
{X,X1,..., X} = {xo,21,...,2,}. By exchangeability of X, Xy,...,X,, we
have

f(xo, Ty ,a:n) = f(a:o(o), To(1)s--- ,Jjg(n)).

Thus, for any permutation o of 0,...,n. Thus, for any i € {0,...,n}, we have

> o0(0)=i f (Zo(0)s To(1)s -+ To(n))

Pr(X =uxFE) =
Yoo J(Zo(0), To(r)s -+ -5 To(n))
(n+1)!
B 1
Cn+1°
It then follows that
k

Pr(X <au)|E)=Pr(X <Xu)|E)= e

But this holds for any other event E’ such that {X, X;,..., X,,} = {«{,2],...,2,}.
Therefore, we can marginalize and get

k
n+1

Pr (X < X)) =

O

Let £:Y x Y — R be the nonconformity measure that quantifies the quality of
our prediction. For example, one commonly used nonconformity measure is the
Euclidean distance: £(y, u(x)) = ||y — p(x)||2. Let s; denote the nonconformity
score of the i-th sample, i.e. s; := €(y;, u(z;)), and let s be the nonconformity
score of (x,y). The main result offered by conformal prediction is the following;:
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Theorem 1. Given i.i.d. samples (x1,91),-- -, (Tn,Yn), a test sample (x,y) from
the same distribution, a predictor u, a nonconformity measure £ and correspond-
ing nonconformity scores s1, ..., sy,. For a given failure probability o € (0,1), let
q:=[(n+1)(1 —a)]. Then the set

C={gey: L nx) <seq}

satisfies
PriyeC)>1-a.
Proof. Since sy, ..., s, arei.i.d., they are exchangeable. Then applying Lemma 1,
we get
q
P C)=P < = >1-oa.
r(y e C) (s < s(g) 12 e’

O

This result offers a potential way to construct safety sets with rigorous prob-
ability guarantees purely from samples. This alleviates the need to know the
underlying distribution, which can be really complex for robotic systems.

4 Method

4.1 Problem Formulation

In crowd navigation, a mobile robot navigates to a goal position g without col-
liding with any of N humans moving in a shared 2D space. The position of
the robot is denoted as %, and the positions of humans are denoted as xzﬂ-,
i€{l,...,N}. The robot has a speed limit v;,q,. We need to plan velocity ac-

1:t ,.1:t

tion v! given (g, xy 7xh,1:N>7 which the robot takes to reach the position at the

; t+1
next time step x,;"".

4.2 Preliminaries

Trajectory Prediction. A trajectory prediction model TP offers explicit mod-
eling of human motion in a near future for planning socially aware robot motion.
T P takes robot and human positions in an observation window of length T, as
input, and predict human positions in a future time window of length T},,.cq4. Our
algorithm can take arbitrary models as T'P. In this work, we use a learning-based
trajectory prediction model Gumbel Social Transformer (GST) [13], which cap-
tures social interaction among multiple agents. Note we use a pre-trained GST
with frozen weights which is only for inference.
e < TP (s, ) 8
Human Simulator. We use a human simulator to generate synthetic hu-
man trajectories for conformal prediction. We initialize the robot and the human
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positions in simulation as x% and z} ; . Assuming that we have generated a
robot plan, we enforce the robot to move along the planned robot trajectory
gt r and run ORCA [29] to generate actions for each human to inter-
act with the robot and human neighbors, so we can collect simulated human
trajectories x?llifgﬁ“ at the end of one simulation episode. Note that ORCA
is a multi-agent motion planning algorithm which applies low-dimensional lin-
ear programming to compute velocities for all agents to reach respective goals
without collision. ORCA has been extensively applied as a crowd simulator for
training reinforcement learning crowd navigation policies that are successfully
transferred to real world application without fine-tuning on real world human
data [4], [22], [21]. We randomize human goals and run multiple simulation
episodes, and use a sliding window of length 7,55 + Tpreq to split the collected
trajectories into batches to create a trajectory prediction calibration dataset D.

Conformal Prediction. The trajectory prediction calibration dataset D
includes M samples of past robot trajectories, past human trajectories and future
human trajectories. We use T'P to make trajectory prediction for each sample,
and compute prediction errors of each human’s position at each prediction time

step in each sample.

ef? = ||ager T — apet g i {1, Ny el MY re{L, ... Threa}
(4)
We aggregate the prediction errors in terms of the prediction time step £7 =
{eim ti=1:n,j=1:1. We assume the errors in £7 are from an exchangeable proba-
bility distribution, and sort the errors in a non-decreasing order {e(Tl)}ZZL NxM-
For a given failure probability «, we define confidence interval radius at each
prediction time step

Tep = e([1-a)(NxM)])>  TELL oo Tpred} (5)

By treating the trajectory prediction error for any human ¢ at the current time
step t as the N x M + 1th sample from the exchangeable error distribution, we
achieve probabilistic guarantees for prediction at each time step

Pr (11855 = aft71l2 <73,) = Pr(evansn < ea-ayovan) 2 1-a (6)

Note that in ICP, the calibration dataset is composed of the robot plan generated
by model predictive control, and the human trajectories simulated based on the
assumption that the robot will execute the generated plan.

Model Predictive Control. The model predictive control module (MPC)
plans robot motion to reach the goal while satisfying dynamics constraints, con-
trol limit constraints, and collision avoidance constraints. In the collision avoid-
ance constraints, r,. is robot radius and rj, is human radius. The conformal inter-
val radii r7,’s are incorporated in the collision avoidance constraints to inform
MPC about the uncertainty on the predicted human positions. In the optimiza-
tion problem presented in Equation 7, the step-wise cost function includes the
goal-reaching cost, the velocity jerk cost, and a regularization cost from the last
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round of MPC solution, since our algorithm iteratively run MPC. The regular-
ization cost helps constrain the change of robot plan through iterations, which
prevents the drastic oscillation of conformal interval radius and facilitates conver-
gence. The regularization cost is ignored when it is the first round of MPC. Note
the collision avoidance constraints make the optimization problem non-convex,
but there are usually feasible solutions in practice.

t+Trpe t+Tmpe—
minimize Y wgll7] — gl + wVHvT“—@:H%
X,V

T=t T=t

t+Tmpe

+ > wrellaT — 374413
T=t

subject to Z; ' =Z] + 0] AT, 7 =t,...,t+ Tonpe — 1,
||1_}:||2 < Vmaz, T=1,. t"'Tmpc —1,

||ZLtT — t+T||2>rr+rh+rcp, i=1,...,N, 7=1,...,Tpred,

(7)

’HT’"‘”) is the planned robot

where the optimization variable x, = (z%, zl™!, ...z,
trajectory, v, = (oL, vit? ..., oeTmre 1y ig the planned robot velocity, and AT

is the time interval between two points on the planned robot trajectory.

4.3 Interaction-aware Conformal Prediction

To explicitly address the mutual influence between the robot and the humans
during the interaction, Interaction-aware Conformal Prediction (ICP) alternates
model predictive control for robot motion planning and conformal prediction for
human trajectory prediction, which is presented in Algorithm 1.

At time t, we first feed observed robot and human trajectories into T'P to
generate predictions of human trajectories :c,:rll ;,Jr rred With the predictions, we
run MPC by assuming confidence interval radius as zero and obtain a nominal
robot trajectory fﬁ_)l #+Tmre Note this nominal robot plan does not have any
safety guarantees because no uncertainty quantification has been done for the
predicted human trajectories used in MPC.

Thus, we introduce an inner iteration to iteratively calibrate the uncertainty
of the human trajectory prediction and finetune the robot plan. We simulate
crowd motions reacting to the most recent robot plan :Ef,f t1+T’"”" and to collect
a trajectory prediction calibration dataset Dj. We perform conformal prediction
for the prediction model T'P on the calibration dataset Dy to calculate the con-
formal interval radius rlpr”d We then run MPC with the collision avoidance
constraints incorporating the updated conformal interval radius, and the regu-
larization cost with respect to the latest MPC solution to generate a new robot

plan a’:?kl T e The new robot plan is used to initiate the next iteration until
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an iteration limit is reached, or the robot plan and the conformal prediction ra-
dius converge. The robot will execute the actions of next T¢ .. steps vt it Tegee—1
of the final robot plan generated from the iterations.

Algorithm 1 Interaction-aware Conformal Prediction
Load a pre-trained trajectory prediction model TP.
Set terminal constraints g, and control limit constraints vmq, for model predictive
control.
fort=1to 7T do
Predict future human trajectories CL‘}:LI
trajectories as input to T'P.

At Tpred by taking past robot and human

Initialize conformal interval radius rifé’ e as zero.
Set the initial constraints of model predictive control with robot position zt.
Set the collision avoidance constraints of model predictive control with predicted

t+1:t+Tphred . . e g qe
human trajectories &), , """, human radius, robot radius, and the initialized con-

1:Ty,
formal interval radius 7., 5"
‘e . _tit+Tinpe—1
Run model predictive control to generate action sequence v, , ™" = and
. . _t4 14T,

corresponding robot trajectory Z, mee,

for k=1 to K do

_t+ Lt Tompe

Simulate human motion by assuming robot executes the plan Z, ) "
with multiple runs, and collect a trajectory prediction calibration dataset Dk

Run conformal prediction by evaluating T'P on Dy, collecting trajectory
15Tpred

ok with safe

prediction errors, and computing the kth conformal interval radius r
probability 1 — a.
Update the collision avoidance constraints of model predictive control with
the kth conformal interval radius r pT,fTEd
Run model predictive control to generate the kth action sequence
@i:fme”"_l and the kth robot trajectory :z: 1 - Tmpe
"end for
The robot executes the actions v,

end for

t: t+Tezec 1

When Algorithm 1 converges in the sense that the planned trajectory from
the last iteration induces the same human behavior as the previous iteration,
then we have the following safety guarantee

Theorem 2. Assume that Algorithm 1 converges at time t, and the optimization

problem in Equation 7 is feasible at t with prediction horizon Tprcq. Then the

gLt T, ,
P satisfies

planned trajectory x
Pr (12557 = 27 |la 2 7y 4+ 70, Y7 € [Tppeal, ¥ € [N]) 21 = aN T

Proof. By the convergence assumption and Theorem 1, for each h € {1,..., N}
and each 7 € {1,...,Tpreq}, we have

~t t
r (Il — 2l <vg) 21—
Further, from the optimization constraints in Equation 7, we have

|z — 24 Ml > e + 10 477,
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and thus
Pr (||££+T — 1:2'7”2 >r.+ rh) >1-q.

Then taking the union bound over 7 and h, we get our result. a

5 Experiments

5.1 Experiment Setup

Simulation Environment. We conduct crowd navigation simulation experi-
ments for evaluation. In each test case, the initial and goal positions of the robot
and the humans are randomized. The humans are controlled by ORCA[29] to re-
act to each other and the robot. Both robot radius r,- and human radius r;, are set
as 0.4 m. Both robot max speed and human max speed are set as Vpq, = 1m/s.
We apply holonomic kinematics to both robot and humans. One time step At
is set as 0.25s. We run 100 test cases for each configuration of ICP and each
baseline to report the performance.

Baselines. We show effectiveness of alternating conformal prediction and
planning for interaction awareness by comparing ICP to the following methods:

— Offline Conformal Prediction (OffCP) [20]: an offline method to pre-compute
conformal interval radius, and then use the fixed conformal interval ra-
dius throughout planning and execution. Note OffCP performs simulation of
crowd motion among human agents without the robot agent offline, of which
the data distribution ignores interaction between robot and humans.

— Adaptive Conformal Prediction (ACP) [7]: an online method which adap-
tively modifies the failure probability « to adjust the conformal interval
radius based on conformal prediction from the dataset formed by most re-
cent human and robot trajectories. The original work did not discuss how
to compute gradient on the failure probability for multiple humans scenario.
We propose two versions: ACP-A averages the gradients computed for each
human whether their trajectory prediction error is within the conformal
interval radius; ACP-W takes the worst possible gradient, by treating all
humans have prediction error beyond the conformal interval radius when-
ever any of them has prediction error beyond the conformal interval radius.
Note that ACP-W retains the asymptotically probabilistic safety guarantees,
while ACP-A does not.

— Optimal Reciprocal Collision Avoidance (ORCA) [29]: a reactive naviga-
tion method based on the assumption that all agents are velocity obstacles
which make similar reasoning on collision avoidance. The robot ORCA con-
figuration is set the same as the human ORCA configuration in simulation
experiments.

Metrics. We use metrics in terms of navigation efficiency, social awareness
and uncertainty quantification to comprehensively evaluate our method com-
pared to the baselines. We use success rate (SR), robot navigation time (NT)
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and navigation path length (PL) as performance metrics. SR is the ratio of test
cases where the robot successfully reaches the goal without collision with hu-
mans. We use intrusion time ratio (ITR) and social distance during intrusion
(SD) adopted in [21] as social awareness metrics. ITR is the ratio between the
number of time steps when the robot collide with any human’s ground truth
future positions in the prediction horizon window of Tj.q, and the number of
time steps for robot to reach the goal. SD is the average distance between the
robot and the closest human during intrusion. We use coverage rate (CR) to
check the performance on uncertainty quantification. For each human i at time
t, we check whether the trajectory prediction within the prediction horizon are
within the computed conformal interval radius of the ground truth future po-
sitions. We average across all N humans through the whole time period T to
obtain the coverage rate of one test case. Note the unit of NT is second, and the
unit of PL and SD is meter.

Tpred

T N
1 ~t4+T T T
CR= S S T ety ol < ) ®

t=11i=1 7=1

Implementation Details. We study the first hypothesis by setting the
number of humans as 5, 10, 15, and 20, and running 100 test cases for each crowd
setup. We set the number of iterations as 1, 3, and 10 for ICP to investigate the
second hypothesis. Note 1 iteration is also interaction-aware, because it includes
two rounds of MPC and one round of simulation. The size of the calibration
dataset mentioned in the third hypothesis is adjusted by controlling the number
of episodes to run in the simulator, which we define as calibration size (CS). The
calibration size is tested across 2, 4, 8, 16, 32, and 64 with 100 test cases run for
each configuration. We examine the fourth hypothesis by evaluating two types
of execution scheme (ES). The first type is we execute a sequence of actions
ﬁiit;T””‘i_l of length T}cq from the robot plan, which is named as Pred-Step
Execution (PSE). The second type is we execute only one step of action 17? I
which is named as Single-Step Execution (SSE). We set prediction horizon Tpycq
as 5 time steps (1.25 second). The failure probability « is set as 0.05 for all
conformal prediction related methods. Based on union bound argument, we can
bound the probability that a human trajectory stays within the conformal radius
of the entire prediction horizon as follows

Pr (Ha:«g;; — Tl < vl VT e {1, ,de}) >1 - al)req. 9)

Thus, the lower bound of coverage rate is 1 — 0.05 x 5 = 0.75.

The human simulator used in ICP is run separately from the experiment
simulator. In the ICP simulator, we add noises to human goals at random steps
during each episode to add randomness to the human behavior and diversify the
collected data for calibration. We run the ICP simulator in multiple threads to
parallelize the calibration data collection process. When the calibration size is
less than 8, the number of threads is equal to the calibration size. Otherwise, we
set the number of threads as 8.
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We set the weight parameters in the cost function of MPC w, as 1, w, as
5, and wyeq as 0.5 across ICP, ACP and OffCP. To handle the cases when the
constraints are too extreme and there are no feasible MPC solutions, we cache
the most recent feasible plans for execution. We tune parameters of ACP-A and
ACP-W, where the learning rate of ACP-A is set as 0.05, and the learning rate
of ACP-W is set as 0.01. The time window used for online calibration dataset
collection is set as 30 time steps (7.5 second) for both ACP-A and ACP-W.

5.2 Experiment Results

We report quantitative performance of ICP with different configurations and
baselines in 10-human crowd test cases for both PSE and SSE scheme in Table 1.

Table 1. Performance of ICP with different configurations and baseline algorithms
in 100 crowd navigation test cases of 10 humans. The subscript of ICP denotes the
index of configuration. NI denotes number of iterations, CS denotes calibration size, ES
denotes execution scheme, SR denotes success rate, ITR denotes intrusion time ratio,
SD denotes social distance, PL denotes robot path length, NT denotes robot navigation
time. CR denotes coverage rate, where 0.75 is the lower bound corresponding to the
failure probability a as 0.05. The best performance for PSE and SSE configurations
are independently highlighted.

Method [NI CS ES | SRt  ITR{ SDt PL{ NT| CR1 (0.75)
ORCA | - - - [0.99 0.26+0.17 1.23+0.10 12.664+1.24 17.48+4.02 -

OffiCP | - 8 PSE|0.99 0.1740.14 1.2840.14 12.57+0.62 11.35+1.65 0.85:0.08
ACP-A | - - PSE|0.99 0.16+0.13 1.2940.14 12.89+1.38 11.60+2.29 0.89+0.04
ACP-W| - - PSE|0.98 0.16+0.14 1.3040.14 12.96+1.43 11.66+2.32 0.91+0.04
ICP; |3 8 PSE|0.98 0.154+0.12 1.32+0.16 12.594+0.67 11.12+1.25 0.93+0.05
ICP, |3 2 PSE|0.97 0.154£0.12 1.32+0.15 12.684+0.98 11.21£1.64 0.93+0.05
ICP; |3 4 PSE|0.96 0.1440.12 1.32+0.16 12.614+0.61 11.13£1.32 0.93+0.05
ICP, |3 16 PSE|0.97 0.154+0.12 1.32+0.16 12.594+0.62 11.09+1.28 0.93-+0.05
ICPs |3 32 PSE|0.96 0.154+0.12 1.32+0.16 12.614+0.78 11.11£1.35 0.93+0.05
ICPs |3 64 PSE|0.96 0.154+0.12 1.32+0.16 12.624+0.78 11.12+1.36 0.93+0.05
ICP; |1 PSE|0.98 0.164+0.12 1.32+0.16 12.614+0.61 11.16+1.28 0.93+0.05
ICPs |10 8 PSE|0.99 0.164+0.12 1.30+£0.15 12.584+0.55 11.10£1.20 0.93+0.05
OffCP | - 8 SSE|1.00 0.16+0.13 1.2940.14 12.39+0.56 11.25+1.22 0.8240.08
ACP-A | - - SSE|098 0.1540.12 1.2740.14 12.5840.79 11.58+1.45 0.91+0.03
ACP-W| - - SSE|0.96 0.14+0.11 1.3040.13 13.46+2.59 12.95+4.11 0.96+0.02

ICPy 3 8 SSE|0.97 0.144+0.12 1.314+0.15 12.584+0.76 11.33+1.40 0.9040.04

In PSE scheme, we see the coverage rate of ICP is consistently higher than
the baselines to provide better safety guarantees, while ICP still achieves state-
of-the-art performance in navigation and social-awareness. Fig. 2 shows that ICP
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reaches a sweet spot of the lowest navigation time and the highest coverage rate
in PSE scheme regardless of the crowd density of the scenes. We find that OffCP
has a consistently lower coverage rate than online methods including ICP and
ACP. This matches our claim that OffCP calibrates human motion uncertainty
of based on samples from a shifted distribution which ignores the interaction
between the robot and the humans, and would lead to inaccurate uncertainty
quantification.

coverage rate navigation time
100 18

16 4

14 4

5

20 5 20

10 15 10 15
num of humans num of humans

Fig. 2. Coverage rate (CR) and robot navigation time (NT) of algorithms with Pred-
Step Execution scheme in crowd scenes of different number of humans. The error bars
denote the standard deviation. The unit of robot navigation time is second. We use
ICP; among all ICPs with PSE configurations for comparison.

Fig. 3 presents the comparison of performance between ICP; and ACP-W
for each test case in both PSE and SSE schemes. We clearly see the effect of
number of humans on the distribution of coverage rate over test cases in ACP-W
in both left of Fig. 2 and the top row of Fig. 3, where there is a notable number
of violations of coverage rate lower bound in 5-human test cases. This is due to
the fact that ACP collects the calibration dataset on the fly, of which the size is
insufficient and dependent on the number of humans. In contrast, the coverage
rate of test cases run with ICP is both high and stable as the simulation provides
abundant interaction-aware samples for uncertainty calibration even when the
number of humans is low. We argue this is also the reason why ICP5_g whose
calibration size spans from 2 to 64 have similar performance across all metrics.
Running 2 simulation episodes turns out to be sufficient to calibrate human
motion uncertainty when the robot needs to navigate through 10 humans.

It is surprising to note that the top row of Fig. 3 indicates the coverage rate
of ACP-W is in the SSE scheme is better than in the PSE scheme, which is
reverse to our expectation as SSE makes the lower bound of the coverage rate
not hold anymore. Nevertheless, The coverage rate of ACP-W comes at the price
of unstable navigation time performance in contrast to ICP, which is shown in
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Fig. 3. Performance comparison between ICP and ACP-W for both Pred-Step Execu-
tion (PSE) Scheme and Single-Step Execution (SSE) Scheme. One black dot is for one
test case in the Pred-Step Execution, where ICP and ACP-W share the same configu-
rations on start and goal positions for the robot and the humans. One red triangle is for
one test case in the Single-Step Execution. The X value of a black dot or a red triangle
shows the performance of ICP, and the Y value shows the performance of ACP-W.
Note we use ICP; for PSE comparison.

the middle row of Fig. 3. Regarding the social metrics, the bottom row of Fig. 3
shows that ACP-W and ICP tend to have more comparable intrusion time ratio
per test case when the number of humans are lower (e.g., 5). We reason that
that lower number of humans indicates simpler interaction patterns, which are
less sensitive to different robot plans from ACP and ICP.

Fig. 4 demonstrates crowd navigation of OffCP, ACP-W, and ICPg in SSE
scheme. We see that the conformal interval radius of ICP during the crowd-robot
interaction (¢ = 5) is greater than before (¢ = 2.5) and after (¢ = 7.5), which
illustrates that the human motion uncertainty is higher when the crowd-robot
interaction is more involved. ACP-W exhibit similar trend by implicitly captur-
ing the mutual influence with online calibration dataset collection. However, the
higher coverage rate of ACP-W is at the price of excessive collision constraints
caused by the large confidence interval radius, which leads to overly conservative
and deviated robot motion. Off CP fails to capture the mutual influence and has
fixed small confidence interval radius assuming no presence of the robot through
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the whole episode, and results in robot motion similar to treating the predictions
as ground truth future positions, which exhibits less social awareness.

OffCP

ACP-W

ICP

Fig. 4. Snapshots of one crowd navigation test case in SSE scheme. We use ICPy for
ICP visualization. The last column shows the snapshots whe n the robot reaches the
goal. The bright yellow disk denotes the robot. The star denotes the robot goal. The
orange circles with indices denote the humans with the predicted positions. The bright
blue circles denote human radius bloated by the confidence interval radius. The red dots
denote the history of the robot positions. The blue dots denote the generated plan to
be executed by the robot. The dark yellow dots with indices denote the corresponding
human’s goal.

We investigate the practicality of ICP in real world applications by reporting
runtime and GPU memory usage in the appendix. We find that ICP with ap-
propriate configurations can be readily applied in real-time in either PSE (1.25
sec) or SSE (0.25 sec) scheme. The GPU memory usage of the algorithm is also
manageable for a standard commercial GPU (e.g., GeForce RTX 2080 with total
memory 8192 MiB).

6 Limitations

As demonstrated in Fig. 4, higher coverage rates may cause excessively con-
strained conditions, which leads to infeasible solutions. When this occurs, we
use a cached plan which may not remain optimal. If the cached plan is used
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beyond T).q steps, the probabilistic safety guarantee no longer exists, and the
robot and the humans are susceptible to collision. To address this challenge,
we are interested in exploring the integration of the adaptive failure probability
idea from ACP into ICP, where the adaptation is dependent on the feasibility
of optimization problem in MPC.

The performance comparison between ICP, ICP~, and ICPg in Table 1 in-
dicates that having 1 iteration of ICP can already capture interaction between
robot and humans well. We argue that this is because ORCA is used both in
the human simulator of ICP algorithm and for generating human motion in test
scenarios. We expect that the sim-to-real gap between the human simulator and
the real world human behavior pattern would require more iterations for better
performance, which is left for future work.

7 Conclusions

We present Interaction-aware Conformal Prediction (ICP) to explicitly address
the mutual influence between robot and humans in crowd navigation problems.
We achieve interaction awareness by proposing an iterative process of robot
motion planning based on human motion uncertainty and conformal prediction
of the human motion dependent on the robot motion plan. Our crowd navigation
simulation experiments show ICP strikes a good balance of performance among
navigation efficiency, social awareness, and uncertainty quantification compared
to previous works. ICP generalizes well to navigation tasks across different crowd
densities, and its fast runtime and manageable memory usage indicates potential
for real-world applications.

In future work, we will address infeasible robot planning solutions with adap-
tive failure probability, and conduct real-world crowd navigation experiments to
evaluate the effectiveness of ICP. As ICP is a task-agnostic algorithm, we would
like to explore its applications in manipulation settings, such as collaborative
manufacturing.
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