

1 **Sequence similarity estimation by random
2 subsequence sketching**

3 **Ke Chen**

4 Department of Computer Science and Engineering, School of Electronic Engineering and Computer
5 Science, The Pennsylvania State University, United States

6 **Vinamratha Pattar**

7 Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa
8 Vidyapeetham, Bengaluru, India

9 **Mingfu Shao**

10 Department of Computer Science and Engineering, School of Electronic Engineering and Computer
11 Science, The Pennsylvania State University, United States

12 Huck Institutes of the Life Sciences, The Pennsylvania State University, United States

13 **Abstract**

14 Sequence similarity estimation is essential for many bioinformatics tasks, including functional
15 annotation, phylogenetic analysis, and overlap graph construction. Alignment-free methods aim to
16 solve large-scale sequence similarity estimation by mapping sequences to more easily comparable
17 features that can approximate edit distances efficiently. Substrings or k -mers, as the dominant
18 choice of features, face an unavoidable compromise between sensitivity and specificity when selecting
19 the proper k -value. Recently, subsequence-based features have shown improved performance, but
20 they are computationally demanding, and determining the ideal subsequence length remains an
21 intricate art. In this work, we introduce SubseqSketch, a novel alignment-free scheme that maps a
22 sequence to an integer vector, where the entries correspond to dynamic, rather than fixed, lengths of
23 random subsequences. The cosine similarity between these vectors exhibits a strong correlation with
24 the edit similarity between the original sequences. Through experiments on benchmark datasets,
25 we demonstrate that SubseqSketch is both efficient and effective across various alignment-free
26 tasks, including nearest neighbor search and phylogenetic clustering. A C++ implementation of
27 SubseqSketch is openly available at <https://github.com/Shao-Group/SubseqSketch>.

28 **2012 ACM Subject Classification** Applied computing → Bioinformatics; Applied computing →
29 Computational biology

30 **Keywords and phrases** Alignment-free sequence comparison, Phylogenetic clustering, Nearest neighbor
31 search, Edit distance embedding

32 **Digital Object Identifier** 10.4230/LIPIcs.WABI.2025.

33 **Supplementary Material Software (Source Code):** <https://github.com/Shao-Group/SubseqSketch>

34 **Funding** This work is supported by the US National Science Foundation (DBI-2019797 to M.S.)
35 and the US National Institutes of Health (R01HG011065 to M.S.).

36 **1 Introduction**

37 Estimating the similarity between biological sequences is a fundamental task in bioinformatics,
38 underpinning a wide range of applications including homology detection, gene annotation, and
39 phylogenetic analysis. Traditionally, sequence similarity has been assessed with alignment-
40 based methods, which attempt to find an optimal correspondence between characters from
41 two or more sequences. While providing the most accurate results, these methods often suffer
42 from high computational cost, especially when applied to large and divergent datasets.

43 Sketching-based methods have been developed to address this limitation. A sketch
44 summarizes a long sequence into a small set of representative fingerprints that can be rapidly

© Ke Chen, Vinamratha Pattar, and Mingfu Shao;
licensed under Creative Commons License CC-BY 4.0

25th International Workshop on Algorithms in Bioinformatics (WABI 2025).

Editors: Broňa Brejová and Rob Patro; Article No. ; pp. :1–:17

LIPICS Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Sequence similarity estimation by random subsequence sketching

45 compared in place of the original sequences for similarity estimation. Together with its
46 variants, the most widely used sketching method is MinHash (MH) [1]. In its simplest form,
47 MH utilizes a hash function that maps each k -mer of a sequence to a number and only
48 keeps the k -mer with the minimum hash value as the representative of that sequence. It
49 is easy to see that the probability for two sequences to be represented by the same k -mer
50 is proportional to the Jaccard similarity of the two sequences (viewed as sets of k -mers),
51 namely, the number of shared k -mers between the sequences normalized by the total number
52 of distinct k -mers among them. Hence, by repeatedly choosing min- k -mers with different
53 hash functions and keeping track of the number of occurrences that the picked k -mers match
54 between the two sequences, the Jaccard similarity can be estimated. In this process, the
55 list of all representative k -mers of a sequence is called the MH sketch of this sequence. Two
56 MH sketches are compared by the Hamming similarity – number of identical k -mers at the
57 same indices. Order Min Hash (OMH) [19] extends this idea by estimating the weighted
58 Jaccard similarity. Instead of picking one representative k -mer at a time, each entry of an
59 OMH sketch is generated by picking several k -mers and putting them together following the
60 original order in the sequence. OMH has been proved to be a locality-sensitive hashing family
61 for the edit distance. A more comprehensive review of sketching algorithms for genomic
62 data can be found in [21]. Note that both MH and OMH can be considered substring-based
63 sketching methods because they pick substrings as the representatives. They therefore face
64 the commonly observed difficulty in choosing a proper k : larger k is desirable to eliminate
65 spurious matches but there are very few shared long k -mers even between closely related
66 sequences.

67 To address this fundamental limitation of k -mers, several recent works [14, 11, 13]
68 have advocated for the use of unrestricted subsequences instead. Subsequences relax the
69 requirement that matching base pairs must be consecutive, allowing them to naturally tolerate
70 gaps in the underlying – often unknown and computationally expensive – true alignment
71 between sequences. This enables the identification of longer and hence more reliable matches,
72 which in turn enhances the accuracy of downstream tasks. To fully leverage the benefits
73 of subsequences, one must overcome a key algorithmic challenge: unlike the linear number
74 of k -mers in a sequence, the number of subsequences grows exponentially, making MH-like
75 strategies that rely on enumerating all candidates impractical. In this work, we seek to
76 exploit structural properties of subsequences to overcome this computational barrier. To this
77 end, we develop SubseqSketch, an efficient sketching method that summarizes long sequences
78 into compact, subsequence-based features that are highly correlated with edit similarities.
79 Through experiments on typical downstream applications, including nearest neighbor search
80 and phylogenetic clustering, we demonstrate that SubseqSketch is both efficient and effective.

81 1.1 Related work

82 Recently, a sketching method named LexicHash [8] proposes to compare sketches based on
83 the length of their common prefixes, rather than relying on fully matched k -mers. This
84 has the effect of sketching with k -mers for all lengths k up to a predefined maximum value.
85 However, LexicHash still suffers from the common issue of k -mer-based methods, namely,
86 a small number of edits can destroy all long k -mer matches between two similar sequences.
87 Furthermore, LexicHash is designed for the task of overlap detection, rather than estimating
88 the similarity between two sequences. In particular, the authors define the LexicHash
89 similarity score between two sequences as the length of the longest matching prefix among
90 their sketches. So a score k only indicates that the two sequences share a common k -mer,
91 which may be effective for detecting overlapping reads, but appears to be insufficient for edit

92 similarity estimation (see Figure 4). In fact, choosing a proper distance function between
 93 sketches to facilitate a proper similarity estimation requires careful considerations for any
 94 sketching method, see Section 2.3 for further discussion.

95 To the best of our knowledge, the only existing subsequence-based sketching method is
 96 Tensor Slide Sketch (TSS) [11]. Instead of picking k -mers from the input sequence, TSS aims
 97 at producing a sketch by counting all subsequences. Since there is an exponential number of
 98 them, TSS has to group Subsequences in a smart way to facilitate counting. However, to
 99 make it efficient, TSS is restricted to count all short subsequences, which limits its capacity
 100 in distinguishing similar and dissimilar sequences.

101 2 SubseqSketch

102 The idea of SubseqSketch is to identify long common subsequences between input sequences
 103 through random sampling. Computing the sketch of a sequence s can be figuratively thought
 104 of as answering a survey in which each question asks whether s contains a randomly selected
 105 sequence as a subsequence. By comparing the answers of two sequences, their similarity
 106 can be estimated. We note that this idea does not work well with substrings (k -mers):
 107 As the number of k -mers in a sequence is negligible comparing to the number of length- k
 108 subsequences, the chance of successfully finding a reasonably sized common substring by
 109 random sampling is low, even between highly similar sequences. For a concrete example,
 110 according to Figure 3, if length-100 sequences are taking our survey, we can choose a query
 111 sequence to have length 25 and expect half of the answers to be “yes”. Furthermore, a
 112 matching “yes” answer for a pair of sequences suggests a (partial) alignment between them
 113 that involves at least a quarter of their bases. In contrast, if we were to ask whether a
 114 query 8-mer is a substring, the vast majority of sequences would answer “no”, resulting in
 115 a very weak, if functional at all, classifier for distinguishing between similar and dissimilar
 116 sequences.

117 While sampling long subsequences is beneficial for similarity estimation, it becomes
 118 computationally expensive on long inputs. In the following section, we introduce the
 119 concept of tokenization to effectively generalize the above strategy to genome-scale sequences.
 120 Combined with the idea of an “enhanced survey”, where binary yes/no questions are upgraded
 121 to integer-scale queries, we present the full-fledged SubseqSketch as an effective and efficient
 122 sketching method.

123 2.1 Tokenized subsequence

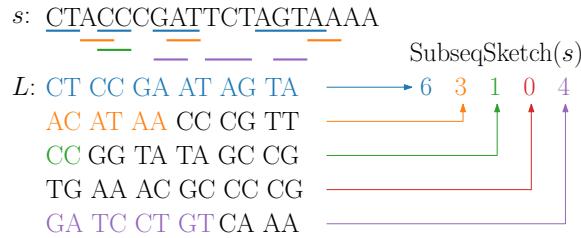
124 A sequence x of length kt over an alphabet Σ can be viewed as a sequence of k “tokens”
 125 each of which is a string of length t . We say x is a *tokenized subsequence* of a length- n
 126 sequence s if there is a list of indices $1 \leq i_1 < i_2 < \dots < i_k \leq n - t + 1$ such that the length- t
 127 substring of s starting at i_j matches the j -th token of x . Note that when $t = 1$, a tokenized
 128 subsequence is a regular subsequence; it is not necessarily the case when $t > 1$, as the tokens
 129 are allowed to overlap, see Figure 1 for an example.

s: CTACCCGATTCTAGTAAAA
 x: CT CC GA AT AG TA

Figure 1 An example of tokenized subsequence. The bottom sequence x is tokenized with token size 2. It is a tokenized subsequence of the top sequence s , on which the corresponding tokens are underlined. Observe that x is not a regular subsequence of s .

130 **2.2 Construction of SubseqSketch**

131 To construct SubseqSketch for input sequences, we first generate a list L of random sequences
 132 of length kt each, where k and t are predefined parameters. We call L the list of testing
 133 subsequences. Two SubseqSketches are comparable only if they were generated with the same
 134 list L ; in this sense, L serves as shared randomness in the sketching process, analogous to the
 135 shared random ordering of k -mers in MH sketches. Given an input sequence s , SubseqSketch
 136 takes a testing subsequence in L and determines the maximum number of its prefix length- t
 137 tokens that form a tokenized subsequence of s . The resulting vector consists of $|L|$ integers,
 138 one for each testing subsequence. This vector is the sketch of s , denoted as $\text{SubseqSketch}(s)$.
 139 See Figure 2 for an illustration.



■ **Figure 2** An illustration of SubseqSketch construction with $t = 2$, $k = 6$, and $|L| = 5$. For each testing subsequence in L , its maximum prefix tokens that form a tokenized subsequence of s are colored. Their matching tokens in s are underlined.

140 A straightforward linear scan computes the $|L|$ sketch entries in $O(|L||s|)$ time. This
 141 worst-case time complexity can be improved by preprocessing the input sequence s to build
 142 an index that facilitates rapid lookup for the occurrence of the next token of a testing
 143 subsequence. For example, for token size $t = 1$, we can build an automaton on s in $O(|s||\Sigma|)$
 144 time and space. In the automaton, each character s_i stores $|\Sigma|$ pointers. The pointer
 145 corresponds to $c \in \Sigma$ points to the next appearance of c after s_i (or null if no c exists after
 146 s_i). Then for a testing subsequence x , we can simply follow the pointers according to the
 147 characters of x , until either a null pointer is encountered or x is exhausted. This takes $O(|x|)$
 148 time for each testing subsequence so the total sketching time is $O(|s||\Sigma| + |x||L|)$.

149 For larger token size, a similar idea can be applied: we can preprocess s to build a lookup
 150 table of size $|\Sigma|^t$ where each entry records the occurring positions of that token on s , either
 151 in a sorted array or some other data structures that supports quick search. Each testing
 152 subsequence can then be processed by following this lookup table until all tokens are used or
 153 the end of a position array is reached. This allows each integer in the sketch to be computed
 154 in $O(k \log |s|)$ time, instead of a $O(|s|)$ linear search. We provide this preprocessing approach
 155 as an option in our implementation. However, through experiments we found that the linear
 156 search `std::string::find` provided in the standard C++ library is almost always faster. The
 157 overhead of preprocessing may only be justified for a large number of very long testing
 158 subsequences with a small token size, which is not a recommended setting for our sketching
 159 algorithm (see Section 2.4).

160 **2.3 Choice of similarity function**

161 The SubseqSketch of a sequence s provides a highly informative representation of s . To build
 162 intuition, consider two sequences s and t . If both sketches show large numbers at the same
 163 index, then s and t must share a long tokenized subsequence and hence likely similar in

164 terms of the edit distance. Conversely, if one sketch has a large value while the other has a
 165 small value at the same index, it suggests that the sequences are likely dissimilar.

166 As with other sketching methods, a similarity measure over the sketches is required to
 167 translate the above intuition into a quantitative score that accurately reflects the true simi-
 168 larity between input sequences. Methods that compare sketches for equality at correspond-
 169 ing indices, such as MH and OMH, naturally employ Hamming similarity, which counts the
 170 number of matching entries between sketches. SubseqSketch, on the other hand, generates
 171 integer-valued vectors, enabling the use of a wide range of well-established distance/simi-
 172 larity metrics. We empirically evaluate a list of metrics using the data from Section 3.1.
 173 SubseqSketches are first computed, after which similarities scores are calculated using various
 174 metrics. The Pearson correlations between these scores and the ground truth edit similarities
 175 are reported in Table 1.

■ **Table 1** The Pearson correlations between edit similarities and sketch similarity scores using various metrics.

Metric	Pearson correlation
Canberra	0.920
Bray-Curtis	0.919
Correlation	0.919
Cosine	0.918
Hamming	0.914
Manhattan	0.913
Squared Euclidean	0.901
Jaccard	0.881
Euclidean	0.857
Minkowski	0.809
Chebyshev	0.306

176 As shown in the table, cosine similarity is among the most effective metrics for producing
 177 estimates that are strongly correlated with the true edit similarity. According to its definition,

$$178 \frac{\text{SubseqSketch}(a) \cdot \text{SubseqSketch}(b)}{\|\text{SubseqSketch}(a)\|_2 \|\text{SubseqSketch}(b)\|_2},$$

179 where \cdot denotes the vector dot product, pairwise cosine similarities between two sketching
 180 matrices can be computed using a single matrix multiplication (assuming the rows are
 181 normalized), which is highly optimized in modern hardware and numerical libraries. We
 182 therefore adopt cosine similarity between SubseqSketches in our implementation for its
 183 effectiveness and computational efficiency.

184 2.4 Choice of parameters

185 SubseqSketch has three parameters: the token size t , the number of tokens k in each testing
 186 subsequence, and the size $|L|$ of the testing list. The parameter $|L|$ controls the size of the
 187 sketches. In particular, a SubseqSketch takes $|L| \log k$ bits space to store. As with other
 188 sketching methods, increasing the sketch size improves estimation accuracy but comes at the
 189 cost of greater time and storage requirements. In the experimental sections, we compare the
 190 sketching methods at the same sketch size.

XX:6 Sequence similarity estimation by random subsequence sketching

191 The parameters t and k are related. In the resulting sketches, each entry is an integer
 192 between 0 and k . If t is too large (for example, close to the input length n), most entries
 193 would be 0; on the other hand, if both t and k are small, most entries would max out at k ,
 194 regardless of the input sequence s . Neither case is desirable as the sketches cannot provide a
 195 strong distinction between similar and dissimilar input sequences. Note that we can always
 196 choose a large k to ensure that few, if any, sketch entries reach the maximum value. However,
 197 this increases the sketch file size, as each entry requires $\log k$ bits – an inefficient use of space
 198 if most entries are significantly smaller than k .

199 We now try to derive an optimal choice of k for $t = 1$. In a recent paper [7], the authors
 200 motivated their sequence sampling method with an interesting puzzle (paraphrased): is the
 201 number of DNA 5-mers containing the substring ACGT the same as that for the substring
 202 AAAA? Astute readers will immediately answer “no” because it is impossible for a 5-mer
 203 to both start and end with ACGT – taking the union of the two disjoint groups gives the
 204 correct number – which is not the case for AAAA whose symmetry would cause the same
 205 strategy to double-count the 5-mer AAAAA.

206 As a curious extension, the same question can be asked, replacing substring with sub-
 207 sequence, namely, we do not require the containment to be consecutive. This seemingly
 208 more complicated version turns out to have a counterintuitively nicer answer: the number of
 209 n -mers containing a given k -mer as a subsequence is a function of n and k , independent of
 210 the choice of the k -mer. Consider a length- k sequence x , we count the number of length- n
 211 sequences s whose subsequence $1 \leq i_1 < i_2 < \dots < i_k \leq n$ is x . To avoid over-counting,
 212 we only count s if (i_1, \dots, i_k) is the first occurrence of x in s . It means the characters in s
 213 before i_1 cannot be x_1 , leaving them $|\Sigma| - 1$ choices each. The same holds for regions in
 214 between i_j and i_{j+1} , and finally all characters after i_k are free to be anything in Σ . This
 215 leads to $(|\Sigma| - 1)^{i_k - k} |\Sigma|^{n - i_k}$ choices. Note that the expression only depends on i_k (i.e., any
 216 combination of i_1, \dots, i_{k-1} yields the same number), so we can group the terms and sum over
 217 choices of i_k to get the answer

$$218 \sum_{i_k=k}^n \binom{i_k - 1}{k - 1} (|\Sigma| - 1)^{i_k - k} |\Sigma|^{n - i_k}.$$

219 We emphasize that the calculation is independent of the chosen subsequence. An example is
 220 shown in Figure 3. We can then use the formula to compute a value of k such that at most a
 221 small threshold fraction (e.g., 0.01) of the sketch entries reach the maximum value k . In this
 222 example, $k = 36$ would suffice.

223 For larger t , the derivation is not as neat. We can view a regular sequence s over the
 224 alphabet Σ as a tokenized sequence over the alphabet Σ^t and apply the above formula. But
 225 unlike adjacent characters in the original sequence, consecutive tokens with an overlap of
 226 length $t - 1$ are not independent, causing the formula to significantly overestimate. Since
 227 using a small k makes the sketching faster to compute and smaller to store, with an exception
 228 in Table 3, we fix $k = 15$ in the following experiments (namely, each entry in the sketch fits
 229 in 4 bits) and aim to choose t to ensure the sketching entries are neither too small nor maxed
 230 out. Table 2 provides empirical recommendations for t across common input sizes n .

■ **Table 2** Empirical recommendations for parameter t .

n	10^2	10^3	10^4	10^5	10^6	10^7	10^8	10^9
t	2	6	9	12	15	19	22	25

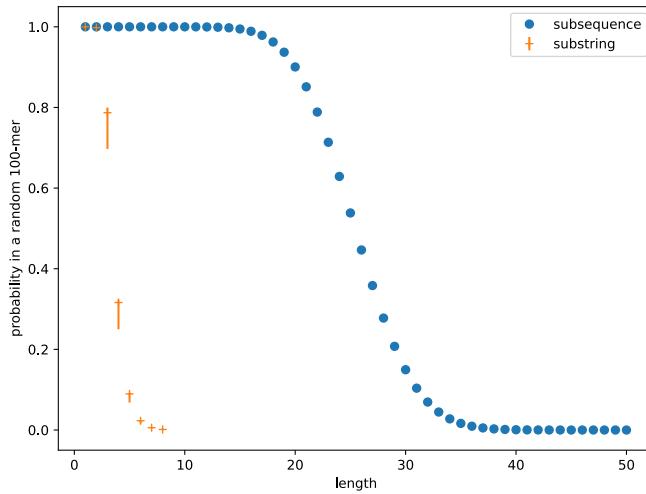


Figure 3 The fraction of length-100 sequences with $|\Sigma| = 4$ that contain a given subsequence (in blue) or substring (in orange) as a function of the length of the subsequence/substring. The blue dots are exact values computed according to the derived formula, they are the same regardless of the choice of the subsequence. The plots for substrings are empirical estimates; note that these can vary significantly across different k -mers, as indicated by the orange error bars for k up to 8.

231 2.5 Sample subsequences from input

232 Using randomly generated testing sequences is the best one can do in a data-oblivious
 233 setting, while better performance can usually be achieved if we can afford to adjust the
 234 sketches according to the input data. One idea to introduce data dependency is to sample
 235 subsequences from the input to form the testing list. This is particularly suitable when the
 236 input comprises a small number of sequences – for example, when estimating phylogenetic
 237 distances among a group of closely related genomes, as shown in Section 3.3. On the other
 238 hand, if the sketches are used to build an index of a large database of sequences to handle
 239 queries, it may not be practical to re-sketch the entire database with a new testing list for
 240 each query. In this situation, we simply use the data-oblivious version with a fixed list of
 241 randomly generated testing sequences and demonstrate in Sections 3.1 and 3.2 that it already
 242 achieves good performance.

243 3 Experiments

244 In this section, we first show a strong correlation between the cosine similarity of SubseqS-
 245 ketches with the edit similarity between simulated pairs of sequences. Then the sketch quality
 246 of SubseqSketch is tested on two sequence comparison tasks, the nearest neighbor search and
 247 phylogeny reconstruction. In each task, we compare SubseqSketch with competing methods
 248 on both simulated sequences and published benchmark datasets. For a fair comparison, each
 249 method is set to produce sketches of (roughly) the same size. A grid search is performed for
 250 each competing method to find the best parameters. Details are reported in each subsection.

251 **3.1 Correlation between sketch similarity and edit similarity**

252 To directly compare the sketch similarity against the desired but much more expensive to
 253 compute edit similarity, we generate 100,000 random DNA sequences of length 1,000. Each
 254 sequence is randomly mutated (an insertion, deletion, or substitution) for a random number
 255 of rounds up to 1,000 to produce a pairing sequence. For each pair, we compute their exact
 256 edit similarity, as well as sketch similarities for SubseqSketch, MinHash (MH), Order Min
 257 Hash (OMH), Tensor Slide Sketch (TSS) and LexicHash (LH). For each sketching method
 258 the Pearson correlation between the exact edit similarity and the sketch similarity over the
 259 100,000 pairs of sequences is reported. MH, OMH, and TSS use the implementation of [11].
 260 LH uses the implementation of [8].

261 Figure 4 shows the scatter plots of all the pairs under different sketching methods. The
 262 horizontal axis marks the normalized edit similarity which is computed as one minus the edit
 263 distance divided by sequence length. The vertical axis shows the sketch similarities which
 264 are normalized to the range [0, 1]. Observe that SubseqSketch achieves the best Pearson
 265 correlation. Both MH and OMH are good estimators for sequences with high edit similarities
 266 but struggle to distinguish dissimilar sequences with edit similarity between 0.5 and 0.8. The
 267 TSS and LH similarities show a visually more linear relationship with the edit similarity and
 268 consequently exhibit higher Pearson correlations than MH and OMH. But they both suffer
 269 from extremely large variance, especially for dissimilar sequences, which makes it difficult to
 270 interpret their estimation in practical applications. SubseqSketch strikes a balance between
 271 the ability to estimate the full range of edit similarity and the estimation variance.

272 As with other sketching methods, the variance of SubseqSketch can be reduced by using
 273 a larger sketch. For all the experiments, we measure the size of a sketch as the number of
 274 entries in it (sometimes called its dimension), and all methods are configured to produce
 275 the same number of entries (except for TSS, which we follow the suggestion in [11] even
 276 though it produces a larger sketch). However, in real applications, the actual space needed
 277 to store the sketches is a more relevant measure. Recall that each entry of SubseqSketch
 278 can be stored in 4 bits (ref. Section 2.4) which is four times smaller than an entry of MH
 279 (16 bits for $k = 8$), six times smaller than OMH (24 bits for $k = 6$ and $\ell = 2$), and eight
 280 times smaller than TSS and LH (32-bit float/int). Thus, given a fixed amount of disk space,
 281 SubseqSketch can utilize more testing subsequences than the number of k -mers MH or OMH
 282 can select, thereby achieving a similar or better variance. In the experiments, we do not
 283 exploit this practical advantage, opting instead to use the same number of sketch entries
 284 across all methods.

285 **3.2 Nearest neighbor search**

286 The task of nearest neighbor search asks to find the top- T most similar sequences for a query
 287 among a large database. Since computing the exact edit distance between the query and
 288 every sequence in the database is computationally prohibitive, a common approach is to
 289 map database sequences into a well-studied metric space where efficient nearest neighbor
 290 indexing is readily available (for example, the hierarchical navigable small world index [17]).
 291 A query can then be mapped into the same space, and the nearest neighbors according to the
 292 index are reported as approximations of the true nearest neighbors in the original sequence
 293 space. In this experiment, we choose to not include any indexing because the accuracy of
 294 the index may affect the final results. Following the pipeline of CNN-ED [4], a tool that
 295 performs sequence nearest neighbor search using a learned embedding for edit distance, we
 296 compute the sketch distances between a query and all sequences in the database and report

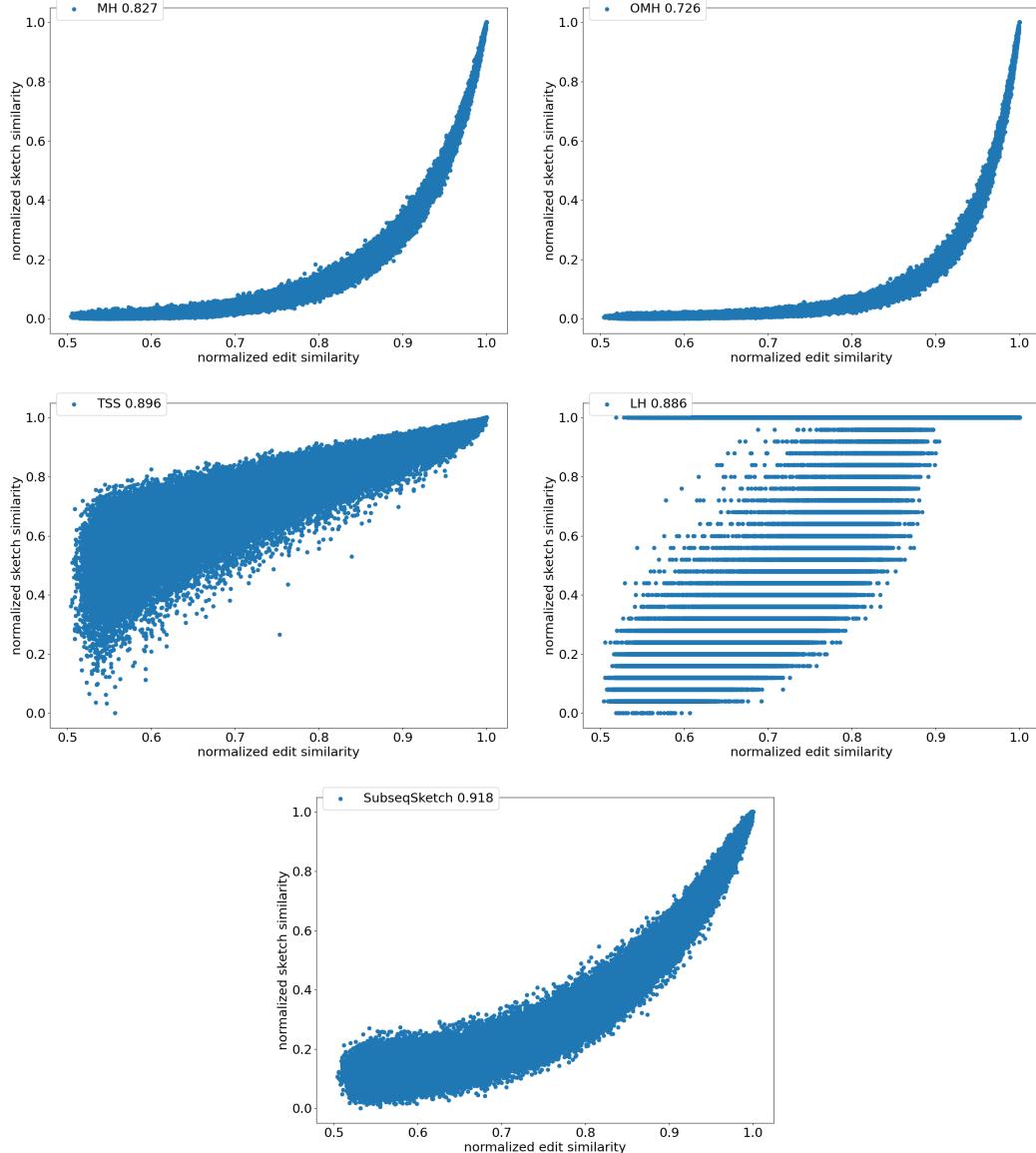


Figure 4 Correlation between normalized sketch similarities and normalized edit similarity on length $n = 1000$ sequences. The legend marks the name of the method and the Pearson correlation. All methods use sketch size 1000. Through parameter grid search, MH is configured to use k -mer size 8; OMH uses k -mer size 6 and $\ell = 2$; TSS uses $t = 2$, dimension 32, window size $0.1n = 100$, stride size $0.01n = 10$, as suggested in [11]. LexicHash uses maximum k 32. SubseqSketch uses token size 6.

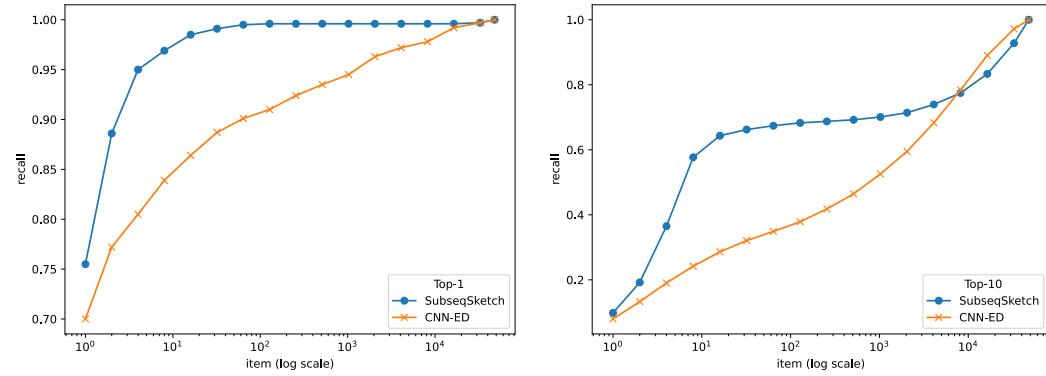
297 the top- T nearest neighbors. It is worth noting that computing sketch distances is much
 298 more scalable than computing edit distances.

299 We show results on two widely used datasets GEN50kS and GEN20kL from [26] which are
 300 also benchmarked in the CNN-ED paper. The GEN50kS dataset contains 50,000 sequences
 301 with an average length 5,000. The GEN20kL dataset contains 20,000 sequences with an
 302 average length 20,000. The CNN-ED pipeline splits each dataset into three disjoint sets: a

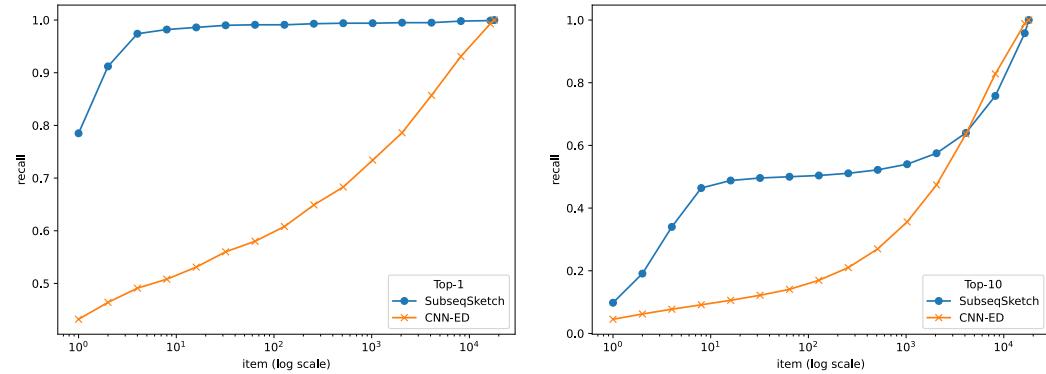
XX:10 Sequence similarity estimation by random subsequence sketching

303 training set with 1,000 sequences, a query set with 1,000 sequences, and a base set containing
 304 the remaining sequences. It then computes the all-vs-all edit distances between the query set
 305 and the base set to form the ground truth for the nearest neighbor search. For the sketching
 306 methods, the training set is not used.

307 To evaluate the performance of different methods, we plot the commonly used recall-item
 308 curves in Figure 5 and Figure 6. For a figure labeled top- T , the T nearest neighbors of a
 309 query in the base set according to the edit distances are considered true neighbors. The
 310 horizontal axis represents the number of neighbors (items) each method is allowed to report
 311 (according to their respective sketch/embedding distances) and the vertical axis marks the
 312 fraction of true neighbors being reported (recall). The CNN-ED pipeline presents full-range
 313 results – from reporting a single item to reporting all items – which, while not practical for
 314 typical use cases (where only the top- T neighbors are retrieved), allows for plotting complete
 315 performance curves.



■ **Figure 5** Recall-item curves of different methods on the GEN50kS dataset. All methods output vectors of dimension 200. SubseqSketch uses token size 6. Left: ground truth is the top-1 nearest neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit distance.



■ **Figure 6** Recall-item curves of different methods on the GEN20kL dataset. All methods output vectors of dimension 128. SubseqSketch uses token size 7. Left: ground truth is the top-1 nearest neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit distance.

316 In this experiment we restrict our comparison to CNN-ED, which was shown to outperform

317 other non-machine learning methods such as the CGK embedding [3]. The CNN-ED results
 318 are obtained by the implementation of [4]. It is a deep convolutional neural network model
 319 which we trained for 50 epochs following the reported hyperparameters in the original paper.
 320 For a fair comparison, SubseqSketch is configured to produce vectors of the same length as
 321 the embedding dimensions of CNN-ED. Observe that SubseqSketch consistently outperforms
 322 CNN-ED by a large margin. This is a surprising result. It is commonly believed (which is
 323 often, though not always, justified) that machine learning models can outperform traditional
 324 algorithmic methods because the models can learn data-dependent features that the data-
 325 oblivious algorithms cannot take advantage of. In [4], the CGK embedding [3] was shown
 326 to produce a worse result than CNN-ED on this task, even though it is an edit distance
 327 embedding with theoretical guarantees. Our result here demonstrates that there is a gap
 328 between theoretical bounds and practical performance which warrants further investigation.
 329 In particular, we conjecture that SubseqSketch can also provide some guarantees on the
 330 distortion as a randomized embedding function for the edit distance, though a theoretical
 331 proof seems difficult.

332 3.3 Phylogeny reconstruction

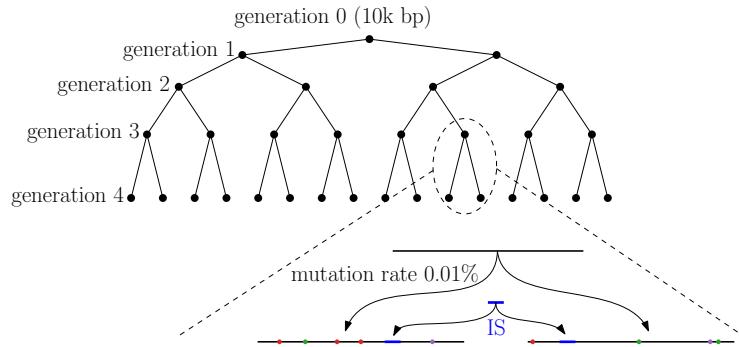
333 Phylogeny reconstruction is another common task that can be used to evaluate the per-
 334 formance of alignment-free methods. Given a set of biologically related genomes, the goal
 335 is to build a phylogeny on them based on pairwise similarities/distances estimated by the
 336 sketches. The result can then be compared with a ground truth tree constructed from some
 337 biological model or multiple sequence alignment. We test on two datasets for this task: one
 338 is a simulation of a simple mutation model similar to that used in [19]; the other is a set of
 339 29 assembled *E. coli* genome sequences collected in [25].

340 For both datasets, an all-vs-all distance matrix is computed for each method. For the
 341 simulated dataset, the matrices are used to build the phylogenies with the neighbor-joining
 342 algorithm implemented in the biotite package [12]. The normalized Robinson-Foulds (nRF)
 343 distances between the constructed trees and the ground truth tree are then calculated with
 344 the ETE toolkit [9]. The nRF distance measures the dissimilarity of branching patterns
 345 between two trees and ignores branch lengths. A value of 0 means the two phylogenies
 346 have the identical tree topology, whereas a value of 1 indicates the two trees are maximally
 347 dissimilar. For the real *E. coli* genome sequences, the AFproject [27] (a benchmark project
 348 for alignment-free sequence analysis tools) provides a web interface where the phylogenies
 349 can be computed from the uploaded distance matrices. The nRF distances are then reported
 350 by comparing the resulting trees against a ground truth tree built from multiple sequence
 351 alignment. It also provides the normalized Quartet Distance (nQD) as an additional measure
 352 for topological disagreement. On the website, many alignment-free phylogeny reconstruction
 353 tools are ranked based on the nRF distances achieved.

354 Following the experiment in [19], we simulate a family of sequences using a simple
 355 mutation model that includes both point mutations and mobile genomic elements, commonly
 356 found in bacterial genome rearrangements, known as insertion sequences (IS). The simulated
 357 sequences form a perfect binary tree. The root of the tree is a random sequence of length
 358 10,000; it is considered as the 0-th generation genome. To obtain the i -th generation, each
 359 sequence in the $(i-1)$ -th generation produces two children genomes by independent and
 360 random point mutations with mutation rate 0.01%. Then a random IS of length 500 is
 361 inserted at a random position for each newly generated i -th generation genomes. Note that
 362 the IS is shared among all sequences in the same generation, but the inserting positions can
 363 be different. See Figure 7 for an illustration. Although simple and somewhat unrealistic, this

XX:12 Sequence similarity estimation by random subsequence sketching

364 model produces a solid ground truth phylogeny and allows us to investigate the effectiveness
 365 of different sketching methods to recover the mixed history of point mutations and large
 366 insertion events.



■ **Figure 7** An illustration of the simulated phylogeny. In the zoomed-in view at the bottom, the top segment represents a sequence from the 3-rd generation. Its two children in the 4-th generation are obtained by random point mutations represented by colored dots. The blue segment represents the common IS inserted into each sequence in the 4-th generation.

367 Figure 8 shows the nRF distances achieved by each method on progressively larger inputs
 368 from the simulated dataset. The horizontal label i means all the 2^i sequences from the i -th
 369 generation are used as input sequences. Not surprisingly, pairwise edit distance (ED) most
 370 accurately captures the mutation history, at the cost of significantly longer computation time
 371 (see Figure 9). Among the sketching methods, SubseqSketch constructs the best phylogeny
 372 for generation 6 and larger inputs. Furthermore, the nRF distances obtained by SubseqSketch
 373 exhibits a strong correlation with those achieved by the exact edit distances, indicating it can
 374 be used as a faithful approximation of the expensive edit calculation. In contrast, although
 375 MH and OMH produce trees with smaller nRF distances for the smaller input sets, they
 376 both show some inverse relation with the nRF using edit distances (from generation 3 to 4,
 377 the nRF distances of trees constructed by edit distance increased, but the nRF distances
 378 for MH decreased; similarly from generation 4 to 5 for OMH). LH is omitted from this
 379 experiment because its implementation choice for boundary handling tends to assign the
 380 maximum similarity score to pairs sharing a short matching suffix (see the line at normalized
 381 similarity score 1 in Figure 4). While this may be appropriate for the overlap detection task
 382 that LH is designed for, it hinders accurate phylogeny reconstruction on our datasets.

383 We also plot the running time of each sketching method in Figure 9 to demonstrate the
 384 efficiency of SubseqSketch. As expected, all the sketching methods are much faster than
 385 computing the all-vs-all exact edit distances. Among them, SubseqSketch is consistently
 386 the fastest, regardless of the number of input sequences. More specifically, SubseqSketch
 387 achieves a $6\times$ speedup compared to the second fastest method (MH).

388 Results for the real *E. coli* dataset are summarized in Table 3. On the AFproject website,
 389 nearly 100 tools (include different configurations for the same tool) are ranked based on the
 390 nRF distance. SubseqSketch is ranked 7th and there are 12 tools that achieve smaller nRF
 391 distances due to ties. It is worth pointing out that the higher ranked ones are tools designed
 392 specifically for the task of phylogeny reconstruction, which are often based on some sketching
 393 method but also apply biological and algorithmic heuristics to adjust the sketch distance
 394 matrix. Since SubseqSketch is a sketching method rather than a complete tool for phylogeny,
 395 here we aim to evaluate the sketch quality without those adjustments. By using the raw
 396 distance matrices, SubseqSketch constructs the best phylogeny (closest to the ground truth)

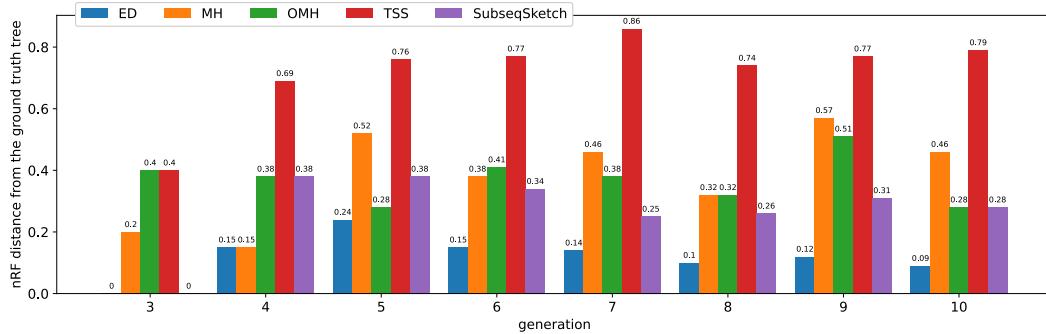


Figure 8 Normalized RF distances achieved by each method on the simulated dataset. A lower nRF distance indicates the constructed phylogeny is more similar to the ground truth tree. All methods use sketch size 256. Through parameter grid search, MH is configured to use k -mer size 8; OMH uses k -mer size 6 and $\ell = 2$; TSS uses $t = 4$, dimension 16, window size 1,000, and stride size 100. SubseqSketch uses token size 5.

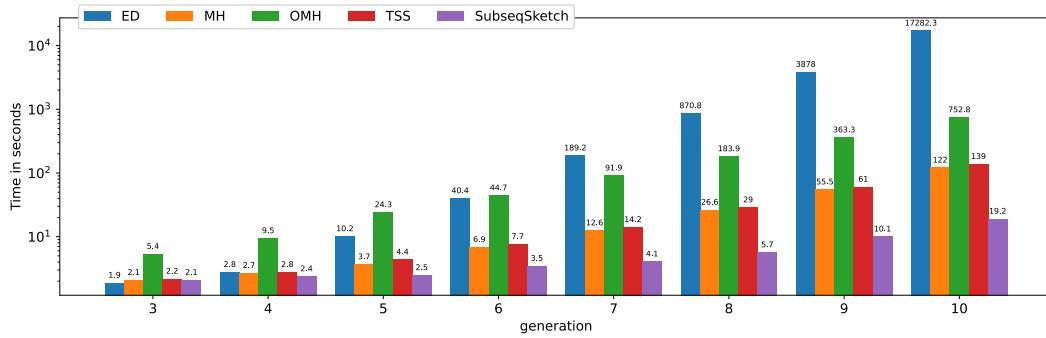


Figure 9 Time spent by each method in seconds (log scale). All experiments run on a server with an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. Edit distance is computed with the Python package Levenshtein. MH, OMH, and TSS are computed using the implementation of [11].

397 among MH, OMH, and TSS.

398 In this task, since there are only 29 genomes, we can afford to sample the testing
 399 subsequences from the input to further improve the quality of SubseqSketch. Because the
 400 inputs are all closely related, this sampling strategy also enables us to use a much larger
 401 token size $t = 40$ to achieve an even better result than the recommended $t = 15$. From
 402 Table 3, it is evident that setting $t = 40$ significantly improves accuracy.

4 Discussion

404 We presented SubseqSketch, a subsequence-based sketching method that is both effective
 405 and efficient at sequence similarity estimation. Comparing to the widely used MH, OMH,
 406 TSS, and LH sketches, SubseqSketch requires smaller space, is faster to compute, and
 407 achieves a stronger correlation with the edit similarity. It delivers strong performance in two
 408 alignment-free tasks: nearest neighbor search and phylogeny reconstruction. In particular,
 409 it outperforms a machine learning edit distance embedding model by a large margin which
 410 suggests our method indeed captures critical features of the sequences being sketched.

411 A large body of work that we intentionally excluded from our experiments consists of

Table 3 Phylogeny reconstruction results on 29 *E. coli* genomes. The RF, nRF, and nQD distances all measure topological disagreement between the reconstructed tree and the ground truth tree. A lower value indicates a more accurate reconstruction of the phylogeny. The Rank is based on the nRF distances among many tools tested by the AFproject. All methods use sketch size 10,000. Through parameter grid search, MH is configured to use k-mer size 10 (in fact, multiple values of k between 10 and 30 all yield the same nRF distance, but $k = 10$ is slightly better on nQD); OMH uses k-mer size 22 and $\ell = 3$; TSS uses $t = 5$, dimension 100, window size 500,000, stride size 100,000. The parameters used by SubseqSketch are marked in parentheses.

Method	RF	nRF	nQD	Rank
MH	30	0.58	0.3307	13
OMH	30	0.58	0.3645	13
TSS	40	0.77	0.4806	17
SubseqSketch ($t = 15, k = 128$)	22	0.42	0.1377	9
SubseqSketch ($t = 40, k = 32$)	18	0.35	0.1679	7

412 seeding-based methods. The simplest seeds are k -mers, representing fixed-length consecutive
 413 exact matches in the sequences. More advanced k -mer selection schemes exist, such as
 414 minimizer [24, 18], syncmer [5] and k -min-mer [6]. Seeds sampled from subsequences,
 415 either with limited patterns such as spaced seed [2, 15] and strobemer [22, 16, 23], or fully
 416 unrestricted such as SubseqHash [14, 13], have been shown to deliver better performance
 417 but are usually more expensive to compute. While both sketching and seeding utilize some
 418 common techniques, for example, the minimizer seeds are obtained by applying MH [1] on
 419 each window, they differ significantly in their goals, representations and usage. Seeding
 420 methods aim to identify local regions of similarity between sequences, providing fine-grained
 421 information about where and how sequences resemble each other. This often comes at
 422 the cost of increased memory footprint and computational overhead. Specifically, seeding
 423 methods typically extract seeds from a relatively small sliding window over a longer input
 424 sequence. By generating one or more seeds from each overlapping window¹, the number of
 425 seeds for a sequence of length n is usually $\Theta(n)$. In contrast, sketching methods prioritize
 426 efficiency by transforming sequences into compact, low-dimensional representations that
 427 enable fast, global similarity estimation. For example, an *E. coli* genome with several million
 428 base pairs is condensed to a length 10,000 vector by each sketching method in the above
 429 experiment. Unlike seeds, which are often used temporarily during computation and then
 430 discarded, sketches are typically stored and reused, serving as compact indices in databases
 431 containing vast numbers of sequences.

432 There are numerous interesting directions that call for further investigations. From the
 433 theoretical perspective, a deeper understanding of SubseqSketch, and subsequence-based
 434 features in general, can be beneficial for better algorithmic designs as well as guiding practical
 435 applications. Many methods compared in the experiments come with theoretical guarantees:
 436 MH is an unbiased estimator for the Jaccard similarity; OMH is a locality-sensitive hashing
 437 (LSH) family for the edit distance; and CGK is an embedding for the edit distance with a
 438 quadratic distortion. Given the superior performance of SubseqSketch against these methods,
 439 it is natural to consider what bounds can be proved on it. More specifically, we are curious
 440 if SubseqSketch is an LSH, and if so, does it offer better hash collision probabilities? Or is

¹ There also exist seeding schemes without a window guarantee, such as syncmer [5].

441 it an embedding with provable small distortion for the edit distance? In that case, study
 442 the relation between its parameters and the achieved distortion can help to make informed
 443 decisions in practical use.

444 On the application side, there are several potential approaches to enhance SubseqSketch.
 445 For example, Mash [20] is a popular tool for genome distance estimation. It is based on MH
 446 whose estimation does not exhibit the strongest correlation with edit distance. However, by
 447 applying a simple Poisson model to adjust the MH score, Mash produces a distance that
 448 closely approximates the mutation rate on real datasets. Since SubseqSketch starts with a
 449 more accurate estimation, it is reasonable to believe that similar techniques can be applied
 450 to further improve its performance.

451 A related question concerns the similarity function used by SubseqSketch. The cosine
 452 similarity was chosen for its effectiveness and simplicity. While it matches our intuition that
 453 sketches of similar sequences should have near identical corresponding entries and therefore
 454 should be roughly pointing to the same direction in the sketch vector space, the cosine
 455 similarity explicitly ignores the magnitude of the vectors. In the extreme case, a sketch full of
 456 1's is considered to have the maximum similarity with another sketch full of 10's. This greatly
 457 diverges from the designed meaning of the SubseqSketch entries – the first sequence barely
 458 contains any testing subsequences whereas the second contains large portions of each testing
 459 subsequence – they must be very different! Exploring different similarity functions that can
 460 better incorporate the expected interpretation of the entries can therefore potentially make
 461 SubseqSketch more accurate.

462 Yet another observation is that SubseqSketch is sensitive for globally well-aligned sequences
 463 but can struggle with ones that only share meaningful local alignments. For example, we
 464 cannot expect a genome comprising millions of base pairs to produce a SubseqSketch similar
 465 to that of a 100-base-pair short read. Other sketching methods such as MH also suffer from
 466 these situations and special variants such as FracMinHash [10] are designed to handle them
 467 differently. As another example, in building overlap graphs for genome assembly, one needs
 468 to identify overlapping pairs of sequences that contain additional unaligned prefixes and
 469 suffixes. Suppose that the tail of sequence a overlaps with the head of sequence b . Since
 470 SubseqSketch tests for subsequences from left to right and stops immediately when the next
 471 token cannot be found, the sketches will be disproportionately skewed: because b does not
 472 have the beginning part of a , testing subsequences fully live inside a can produce 0's for b ,
 473 even if b contains long suffixes of them. We hope to see diverse adaptations of SubseqSketch
 474 designed to address these various challenges.

475 ————— **References** —————

- 476 1 Andrei Z Broder. On the resemblance and containment of documents. In *Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171)*, pages 21–29. IEEE, 1997. doi:10.1109/SEQUEN.1997.666900.
- 477 2 Andrea Califano and Isidore Rigoutsos. FLASH: A fast look-up algorithm for string homology. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'93)*, pages 353–359. IEEE, 1993. doi:10.1109/CVPR.1993.341106.
- 478 3 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for embedding and computing edit distance in the low distance regime. In Daniel Wichs and Yishay Mansour, editors, *Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016*, pages 712–725. ACM, 2016. doi:10.1145/2897518.2897577.
- 479 4 Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, and James Cheng. Convolutional embedding for edit distance. In *Proceedings of the 43rd international ACM SI-*

XX:16 Sequence similarity estimation by random subsequence sketching

489 *GIR conference on Research and Development in information retrieval*, pages 599–608, 2020.
490 doi:10.1145/3397271.3401045.

491 5 Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
492 biological sequences. *PeerJ*, 9:e10805, 2021. doi:10.7717/peerj.10805.

493 6 Barış Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-
494 genome assembly of long reads in minutes on a personal computer. *Cell Systems*, 12(10):958–968,
495 2021. doi:10.1016/j.cels.2021.08.009.

496 7 Martin C Frith, Jim Shaw, and John L Spouge. How to optimally sample a sequence for rapid
497 analysis. *Bioinformatics*, 39(2):btad057, 2023. doi:10.1093/bioinformatics/btad057.

498 8 Grant Greenberg, Aditya Narayan Ravi, and Ilan Shomorony. Lexichash: sequence similarity
499 estimation via lexicographic comparison of hashes. *Bioinformatics*, 39(11):btad652, 10 2023.
500 doi:10.1093/bioinformatics/btad652.

501 9 Jaime Huerta-Cepas, François Serra, and Peer Bork. Ete 3: Reconstruction, analysis, and
502 visualization of phylogenomic data. *Molecular Biology and Evolution*, 33(6):1635–1638,
503 02 2016. arXiv:https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.
504 pdf, doi:10.1093/molbev/msw046.

505 10 Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera,
506 David Koslicki, and C Titus Brown. Lightweight compositional analysis of metagenomes
507 with fracminhash and minimum metagenome covers. *bioRxiv*, pages 2022–01, 2022. doi:
508 10.1101/2022.01.11.475838.

509 11 Amir Joudaki, Gunnar Ratsch, and André Kahles. Fast alignment-free similarity estimation
510 by tensor sketching. *bioRxiv*, 2020. doi:10.1101/2020.11.13.381814.

511 12 Patrick Kunzmann, Tom David Müller, Maximilian Greil, Jan Hendrik Krumbach, Ja-
512 cob Marcel Anter, Daniel Bauer, Faisal Islam, and Kay Hamacher. Biotite: new tools
513 for a versatile python bioinformatics library. *BMC bioinformatics*, 24(1):236, 2023. doi:
514 10.1186/s12859-023-05345-6.

515 13 Xiang Li, Ke Chen, and Mingfu Shao. Efficient seeding for error-prone sequences with
516 subseqhash2. *bioRxiv*, pages 2024–05, 2024. doi:10.1101/2024.05.30.596711.

517 14 Xiang Li, Qian Shi, Ke Chen, and Mingfu Shao. Seeding with minimized subsequence. *Bioin-
518 formatics*, 39(Supplement_1):i232–i241, 06 2023. doi:10.1093/bioinformatics/btad218.

519 15 Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search.
520 *Bioinformatics*, 18(3):440–445, 2002. doi:10.1093/bioinformatics/18.3.440.

521 16 Benjamin Dominik Maier and Kristoffer Sahlin. Entropy predicts sensitivity of pseudorandom
522 seeds. *Genome Research*, 33(7):1162–1174, 2023. doi:10.1101/gr.277645.123.

523 17 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
524 search using hierarchical navigable small world graphs. *IEEE transactions on pattern analysis
525 and machine intelligence*, 42(4):824–836, 2018. doi:10.1109/TPAMI.2018.2889473.

526 18 Guillaume Marçais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimizers
527 schemes. *Bioinformatics*, 34(13):i13–i22, 2018. doi:10.1093/bioinformatics/bty258.

528 19 Guillaume Marçais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive
529 hashing for the edit distance. *Bioinformatics*, 35(14):i127–i135, 2019. doi:10.1093/
530 bioinformatics/btz354.

531 20 Brian D Ondov, Todd J Treangen, Pál Melsted, Adam B Mallonee, Nicholas H Bergman,
532 Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
533 using minhash. *Genome biology*, 17:1–14, 2016. doi:10.1186/s13059-016-0997-x.

534 21 Will PM Rowe. When the levee breaks: a practical guide to sketching algorithms for processing
535 the flood of genomic data. *Genome Biology*, 20:1–12, 2019. doi:10.1186/s13059-019-1809-x.

536 22 Kristoffer Sahlin. Effective sequence similarity detection with strobemers. *Genome Research*,
537 31(11):2080–2094, 2021. doi:10.1101/gr.275648.121.

538 23 Kristoffer Sahlin. Strobealign: flexible seed size enables ultra-fast and accurate read alignment.
539 *Genome Biology*, 23(1):1–27, 2022. doi:10.1186/s13059-022-02831-7.

540 24 Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
541 document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
542 *Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data*
543 (*SIGMOD/PODS'03*), pages 76–85. ACM, 2003. doi:10.1145/872757.872770.

544 25 Huiuguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for closely
545 related organisms. *Nucleic Acids Research*, 41(7):e75–e75, 01 2013. arXiv:<https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf>, doi:10.1093/nar/gkt003.

546 26 Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins via embeddings. In
547 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and*
548 *data mining*, pages 585–594, 2017. doi:10.1145/3097983.3098003.

549 27 Andrzej Zielezinski, Hani Z Girgis, Guillaume Bernard, Chris-Andre Leimeister, Kujin Tang,
550 Thomas Dencker, Anna Katharina Lau, Sophie Röhling, Jae Jin Choi, Michael S Waterman,
551 et al. Benchmarking of alignment-free sequence comparison methods. *Genome biology*, 20:1–18,
552 2019. doi:10.1186/s13059-019-1755-7.

553