20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Sequence similarity estimation by random
subsequence sketching
Ke Chen &

Department of Computer Science and Engineering, School of Electronic Engineering and Computer
Science, The Pennsylvania State University, United States

Vinamratha Pattar =
Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa
Vidyapeetham, Bengaluru, India

Mingfu Shao &

Department of Computer Science and Engineering, School of Electronic Engineering and Computer
Science, The Pennsylvania State University, United States

Huck Institutes of the Life Sciences, The Pennsylvania State University, United States

—— Abstract

Sequence similarity estimation is essential for many bioinformatics tasks, including functional

annotation, phylogenetic analysis, and overlap graph construction. Alignment-free methods aim to
solve large-scale sequence similarity estimation by mapping sequences to more easily comparable
features that can approximate edit distances efficiently. Substrings or k-mers, as the dominant
choice of features, face an unavoidable compromise between sensitivity and specificity when selecting
the proper k-value. Recently, subsequence-based features have shown improved performance, but
they are computationally demanding, and determining the ideal subsequence length remains an
intricate art. In this work, we introduce SubseqSketch, a novel alignment-free scheme that maps a
sequence to an integer vector, where the entries correspond to dynamic, rather than fixed, lengths of
random subsequences. The cosine similarity between these vectors exhibits a strong correlation with
the edit similarity between the original sequences. Through experiments on benchmark datasets,
we demonstrate that SubseqSketch is both efficient and effective across various alignment-free
tasks, including nearest neighbor search and phylogenetic clustering. A C++ implementation of
SubseqSketch is openly available at https://github.com/Shao-Group/SubseqSketch.

2012 ACM Subject Classification Applied computing — Bioinformatics; Applied computing —
Computational biology

Keywords and phrases Alignment-free sequence comparison, Phylogenetic clustering, Nearest neigh-
bor search, Edit distance embedding

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.
Supplementary Material Software (Source Code): https://github.com/Shao-Group/SubseqSketch

Funding This work is supported by the US National Science Foundation (DBI-2019797 to M.S.)
and the US National Institutes of Health (ROIHGO011065 to M.S.).

1 Introduction

Estimating the similarity between biological sequences is a fundamental task in bioinformatics,
underpinning a wide range of applications including homology detection, gene annotation, and
phylogenetic analysis. Traditionally, sequence similarity has been assessed with alignment-
based methods, which attempt to find an optimal correspondence between characters from
two or more sequences. While providing the most accurate results, these methods often suffer
from high computational cost, especially when applied to large and divergent datasets.
Sketching-based methods have been developed to address this limitation. A sketch
summarizes a long sequence into a small set of representative fingerprints that can be rapidly

© Ke Chen, Vinamratha Pattar, and Mingfu Shao;

licensed under Creative Commons License CC-BY 4.0
25th International Workshop on Algorithms in Bioinformatics (WABI 2025).
Editors: Brona Brejova and Rob Patro; Article No.; pp.:1-:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kxc5915@psu.edu
https://orcid.org/0000-0001-5470-6621
mailto:pattar.vinamratha@gmail.com
mailto:mxs2589@psu.edu
https://orcid.org/0000-0001-6112-5139
https://github.com/Shao-Group/SubseqSketch
https://doi.org/10.4230/LIPIcs.WABI.2025.
https://github.com/Shao-Group/SubseqSketch
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

Sequence similarity estimation by random subsequence sketching

compared in place of the original sequences for similarity estimation. Together with its
variants, the most widely used sketching method is MinHash (MH) [1]. In its simplest form,
MH utilizes a hash function that maps each k-mer of a sequence to a number and only
keeps the k-mer with the minimum hash value as the representative of that sequence. It
is easy to see that the probability for two sequences to be represented by the same k-mer
is proportional to the Jaccard similarity of the two sequences (viewed as sets of k-mers),
namely, the number of shared k-mers between the sequences normalized by the total number
of distinct k-mers among them. Hence, by repeatedly choosing min-k-mers with different
hash functions and keeping track of the number of occurrences that the picked k-mers match
between the two sequences, the Jaccard similarity can be estimated. In this process, the
list of all representative k-mers of a sequence is called the MH sketch of this sequence. Two
MH sketches are compared by the Hamming similarity — number of identical k-mers at the
same indices. Order Min Hash (OMH) [19] extends this idea by estimating the weighted
Jaccard similarity. Instead of picking one representative k-mer at a time, each entry of an
OMH sketch is generated by picking several k-mers and putting them together following the
original order in the sequence. OMH has been proved to be a locality-sensitive hashing family
for the edit distance. A more comprehensive review of sketching algorithms for genomic
data can be found in [21]. Note that both MH and OMH can be considered substring-based
sketching methods because they pick substrings as the representatives. They therefore face
the commonly observed difficulty in choosing a proper k: larger k is desirable to eliminate
spurious matches but there are very few shared long k-mers even between closely related
sequences.

To address this fundamental limitation of k-mers, several recent works [14, 11, 13]
have advocated for the use of unrestricted subsequences instead. Subsequences relax the
requirement that matching base pairs must be consecutive, allowing them to naturally tolerate
gaps in the underlying — often unknown and computationally expensive — true alignment
between sequences. This enables the identification of longer and hence more reliable matches,
which in turn enhances the accuracy of downstream tasks. To fully leverage the benefits
of subsequences, one must overcome a key algorithmic challenge: unlike the linear number
of k-mers in a sequence, the number of subsequences grows exponentially, making MH-like
strategies that rely on enumerating all candidates impractical. In this work, we seek to
exploit structural properties of subsequences to overcome this computational barrier. To this
end, we develop SubseqSketch, an efficient sketching method that summarizes long sequences
into compact, subsequence-based features that are highly correlated with edit similarities.
Through experiments on typical downstream applications, including nearest neighbor search
and phylogenetic clustering, we demonstrate that SubseqSketch is both efficient and effective.

1.1 Related work

Recently, a sketching method named LexicHash [8] proposes to compare sketches based on
the length of their common prefixes, rather than relying on fully matched k-mers. This
has the effect of sketching with k-mers for all lengths k up to a predefined maximum value.
However, LexicHash still suffers from the common issue of k-mer-based methods, namely,
a small number of edits can destroy all long k-mer matches between two similar sequences.
Furthermore, LexicHash is designed for the task of overlap detection, rather than estimating
the similarity between two sequences. In particular, the authors define the LexicHash
similarity score between two sequences as the length of the longest matching prefix among
their sketches. So a score k only indicates that the two sequences share a common k-mer,
which may be effective for detecting overlapping reads, but appears to be insufficient for edit

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

K. Chen, V. Pattar, and M. Shao

similarity estimation (see Figure 4). In fact, choosing a proper distance function between
sketches to facilitate a proper similarity estimation requires careful considerations for any
sketching method, see Section 2.3 for further discussion.

To the best of our knowledge, the only existing subsequence-based sketching method is
Tensor Slide Sketch (T'SS) [11]. Instead of picking k-mers from the input sequence, TSS aims
at producing a sketch by counting all subsequences. Since there is an exponential number of
them, TSS has to group Subsequences in a smart way to facilitate counting. However, to
make it efficient, TSS is restricted to count all short subsequences, which limits its capacity
in distinguishing similar and dissimilar sequences.

2 SubseqSketch

The idea of SubseqSketch is to identify long common subsequences between input sequences
through random sampling. Computing the sketch of a sequence s can be figuratively thought
of as answering a survey in which each question asks whether s contains a randomly selected
sequence as a subsequence. By comparing the answers of two sequences, their similarity
can be estimated. We note that this idea does not work well with substrings (k-mers):
As the number of k-mers in a sequence is negligible comparing to the number of length-k
subsequences, the chance of successfully finding a reasonably sized common substring by
random sampling is low, even between highly similar sequences. For a concrete example,
according to Figure 3, if length-100 sequences are taking our survey, we can choose a query
sequence to have length 25 and expect half of the answers to be “yes”. Furthermore, a
matching “yes” answer for a pair of sequences suggests a (partial) alignment between them
that involves at least a quarter of their bases. In contrast, if we were to ask whether a
query 8-mer is a substring, the vast majority of sequences would answer “no”, resulting in
a very weak, if functional at all, classifier for distinguishing between similar and dissimilar
sequences.

While sampling long subsequences is beneficial for similarity estimation, it becomes
computationally expensive on long inputs. In the following section, we introduce the
concept of tokenization to effectively generalize the above strategy to genome-scale sequences.
Combined with the idea of an “enhanced survey”, where binary yes/no questions are upgraded
to integer-scale queries, we present the full-fledged SubseqSketch as an effective and efficient
sketching method.

2.1 Tokenized subsequence

A sequence z of length kt over an alphabet 3 can be viewed as a sequence of k “tokens”

each of which is a string of length t. We say z is a tokenized subsequence of a length-n
sequence s if there is a list of indices 1 < i < iy < -+ < i <n—t+1 such that the length-¢
substring of s starting at 7; matches the j-th token of x. Note that when ¢ = 1, a tokenized
subsequence is a regular subsequence; it is not necessarily the case when t > 1, as the tokens
are allowed to overlap, see Figure 1 for an example.

s: CTACCCGATTCTAGTAAAA
z: CT CC GA AT AG TA

Figure 1 An example of tokenized subsequence. The bottom sequence x is tokenized with token
size 2. It is a tokenized subsequence of the top sequence s, on which the corresponding tokens are
underlined. Observe that x is not a regular subsequence of s.

XX:3

WABI 2025

XX:4

130

131
132
133
134
135
136
137
138

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159

160

161
162

163

Sequence similarity estimation by random subsequence sketching

2.2 Construction of SubseqSketch

To construct SubseqSketch for input sequences, we first generate a list L of random sequences
of length kt each, where k and t are predefined parameters. We call L the list of testing
subsequences. Two SubseqSketches are comparable only if they were generated with the same
list L; in this sense, L serves as shared randomness in the sketching process, analogous to the
shared random ordering of k-mers in MH sketches. Given an input sequence s, SubseqSketch
takes a testing subsequence in L and determines the maximum number of its prefix length-¢
tokens that form a tokenized subsequence of s. The resulting vector consists of |L| integers,
one for each testing subsequence. This vector is the sketch of s, denoted as SubseqSketch(s).
See Figure 2 for an illustration.

st CTACCCGATTCTAGTAAAA
—_— SubseqSketch(s)
L:CTCCGAATAGTA —— 6 1 (') 4
CCCGTT
CC GG TA TA GC CG
TG AA AC GC CC CG
GA TC CT GTCA AA

Figure 2 An illustration of SubseqSketch construction with ¢ = 2, k = 6, and |L| = 5. For each
testing subsequence in L, its maximum prefix tokens that form a tokenized subsequence of s are
colored. Their matching tokens in s are underlined.

A straightforward linear scan computes the |L| sketch entries in O(|L||s|) time. This
worst-case time complexity can be improved by preprocessing the input sequence s to build
an index that facilitates rapid lookup for the occurrence of the next token of a testing
subsequence. For example, for token size ¢t = 1, we can build an automaton on s in O(]s||X])
time and space. In the automaton, each character s; stores |X| pointers. The pointer
corresponds to ¢ € ¥ points to the next appearance of ¢ after s; (or null if no ¢ exists after
s;). Then for a testing subsequence x, we can simply follow the pointers according to the
characters of x, until either a null pointer is encountered or x is exhausted. This takes O(|z|)
time for each testing subsequence so the total sketching time is O(|s||Z| + |z||L]).

For larger token size, a similar idea can be applied: we can preprocess s to build a lookup
table of size |L|* where each entry records the occurring positions of that token on s, either
in a sorted array or some other data structures that supports quick search. Each testing
subsequence can then be processed by following this lookup table until all tokens are used or
the end of a position array is reached. This allows each integer in the sketch to be computed
in O(klog|s|) time, instead of a O(|s|) linear search. We provide this preprocessing approach
as an option in our implementation. However, through experiments we found that the linear
search std::string::find provided in the standard C++ library is almost always faster. The
overhead of preprocessing may only be justified for a large number of very long testing
subsequences with a small token size, which is not a recommended setting for our sketching
algorithm (see Section 2.4).

2.3 Choice of similarity function

The SubseqSketch of a sequence s provides a highly informative representation of s. To build
intuition, consider two sequences s and t. If both sketches show large numbers at the same
index, then s and ¢t must share a long tokenized subsequence and hence likely similar in

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

K. Chen, V. Pattar, and M. Shao

terms of the edit distance. Conversely, if one sketch has a large value while the other has a
small value at the same index, it suggests that the sequences are likely dissimilar.

As with other sketching methods, a similarity measure over the sketches is required to
translate the above intuition into a quantitative score that accurately reflects the true simi-
larity between input sequences. Methods that compare sketches for equality at corresponding
indices, such as MH and OMH, naturally employ Hamming similarity, which counts the
number of matching entries between sketches. SubseqSketch, on the other hand, generates
integer-valued vectors, enabling the use of a wide range of well-established distance/sim-
ilarity metrics. We empirically evaluate a list of metrics using the data from Section 3.1.
SubseqSketches are first computed, after which similarities scores are calculated using various
metrics. The Pearson correlations between these scores and the ground truth edit similarities
are reported in Table 1.

Table 1 The Pearson correlations between edit similarities and sketch similarity scores using
various metrics.

Metric Pearson correlation
Canberra 0.920
Bray-Curtis 0.919
Correlation 0.919
Cosine 0.918
Hamming 0.914
Manhattan 0.913
Squared Euclidean 0.901
Jaccard 0.881
Euclidean 0.857
Minkowski 0.809
Chebyshev 0.306

As shown in the table, cosine similarity is among the most effective metrics for producing
estimates that are strongly correlated with the true edit similarity. According to its definition,

SubseqSketch(a) - SubseqSketch(b)
|SubseqSketch(a)||, ||SubseqSketch(b)]],’

where - denotes the vector dot product, pairwise cosine similarities between two sketching

matrices can be computed using a single matrix multiplication (assuming the rows are
normalized), which is highly optimized in modern hardware and numerical libraries. We
therefore adopt cosine similarity between SubseqSketches in our implementation for its
effectiveness and computational efficiency.

2.4 Choice of parameters

SubseqSketch has three parameters: the token size ¢, the number of tokens k in each testing
subsequence, and the size |L| of the testing list. The parameter |L| controls the size of the
sketches. In particular, a SubseqSketch takes |L|logk bits space to store. As with other
sketching methods, increasing the sketch size improves estimation accuracy but comes at the
cost of greater time and storage requirements. In the experimental sections, we compare the
sketching methods at the same sketch size.

XX:5

WABI 2025

XX:6

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

218

219
220
221
222
223
224
225
226
227
228
229

230

Sequence similarity estimation by random subsequence sketching

The parameters t and k are related. In the resulting sketches, each entry is an integer
between 0 and k. If ¢ is too large (for example, close to the input length n), most entries
would be 0; on the other hand, if both ¢ and & are small, most entries would max out at k,
regardless of the input sequence s. Neither case is desirable as the sketches cannot provide a
strong distinction between similar and dissimilar input sequences. Note that we can always
choose a large k to ensure that few, if any, sketch entries reach the maximum value. However,
this increases the sketch file size, as each entry requires log k bits — an inefficient use of space
if most entries are significantly smaller than k.

We now try to derive an optimal choice of k for t = 1. In a recent paper [7], the authors
motivated their sequence sampling method with an interesting puzzle (paraphrased): is the
number of DNA 5-mers containing the substring ACGT the same as that for the substring
AAAA? Astute readers will immediately answer “no” because it is impossible for a 5-mer
to both start and end with ACGT — taking the union of the two disjoint groups gives the
correct number — which is not the case for AAAA whose symmetry would cause the same
strategy to double-count the 5-mer AAAAA.

As a curious extension, the same question can be asked, replacing substring with sub-
sequence, namely, we do not require the containment to be consecutive. This seemingly
more complicated version turns out to have a counterintuitively nicer answer: the number of
n-mers containing a given k-mer as a subsequence is a function of n and k, independent of
the choice of the k-mer. Consider a length-k sequence x, we count the number of length-n
sequences s whose subsequence 1 < 47 < i9 < --- < 4 < n is x. To avoid over-counting,
we only count s if (i1,...,14) is the first occurrence of = in s. It means the characters in s
before i; cannot be x1, leaving them |X| — 1 choices each. The same holds for regions in
between i; and i;41, and finally all characters after i are free to be anything in ¥. This
leads to (|X| — 1) ~*|%|"~% choices. Note that the expression only depends on iy (i.e., any
combination of i1, ...7_1 yields the same number), so we can group the terms and sum over
choices of i to get the answer

S i —1 ir—k n—ig
N1 TFY k.
> (21)am- vt

ir=Fk

We emphasize that the calculation is independent of the chosen subsequence. An example is
shown in Figure 3. We can then use the formula to compute a value of k£ such that at most a
small threshold fraction (e.g., 0.01) of the sketch entries reach the maximum value k. In this
example, k = 36 would suffice.

For larger ¢, the derivation is not as neat. We can view a regular sequence s over the
alphabet ¥ as a tokenized sequence over the alphabet X! and apply the above formula. But
unlike adjacent characters in the original sequence, consecutive tokens with an overlap of
length ¢t — 1 are not independent, causing the formula to significantly overestimate. Since
using a small & makes the sketching faster to compute and smaller to store, with an exception
in Table 3, we fix k = 15 in the following experiments (namely, each entry in the sketch fits
in 4 bits) and aim to choose ¢ to ensure the sketching entries are neither too small nor maxed
out. Table 2 provides empirical recommendations for ¢ across common input sizes n.

Table 2 Empirical recommendations for parameter ¢ .

n 102 10® 10* 10° 10° 107 10% 10°
2 6 9 12 15 19 22 25

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

K. Chen, V. Pattar, and M. Shao

1.0 aal...lcool.o.... ® subsequence
°)
° substring
°
)

0.8 °
@
€ °
)
S
- .
£ 0.6 1
o
2 °
e
©
£ hd
2044
= °
Qo
38
© °
s

0.21 °

°
°
°
®e
0.0 ®ec0cocccccncoce
0 10 20 30 40 50

length

Figure 3 The fraction of length-100 sequences with |¥| = 4 that contain a given subsequence (in
blue) or substring (in orange) as a function of the length of the subsequence/substring. The blue
dots are exact values computed according to the derived formula, they are the same regardless of
the choice of the subsequence. The plots for substrings are empirical estimates; note that these can
vary significantly across different k-mers, as indicated by the orange error bars for £ up to 8.

2.5 Sample subsequences from input

Using randomly generated testing sequences is the best one can do in a data-oblivious
setting, while better performance can usually be achieved if we can afford to adjust the
sketches according to the input data. One idea to introduce data dependency is to sample
subsequences from the input to form the testing list. This is particularly suitable when the
input comprises a small number of sequences — for example, when estimating phylogenetic
distances among a group of closely related genomes, as shown in Section 3.3. On the other
hand, if the sketches are used to build an index of a large database of sequences to handle
queries, it may not be practical to re-sketch the entire database with a new testing list for
each query. In this situation, we simply use the data-oblivious version with a fixed list of
randomly generated testing sequences and demonstrate in Sections 3.1 and 3.2 that it already
achieves good performance.

3 Experiments

In this section, we first show a strong correlation between the cosine similarity of SubseqS-
ketches with the edit similarity between simulated pairs of sequences. Then the sketch quality
of SubseqSketch is tested on two sequence comparison tasks, the nearest neighbor search and
phylogeny reconstruction. In each task, we compare SubseqSketch with competing methods
on both simulated sequences and published benchmark datasets. For a fair comparison, each
method is set to produce sketches of (roughly) the same size. A grid search is performed for
each competing method to find the best parameters. Details are reported in each subsection.

XX:7

WABI 2025

XX:8

251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284

285

286
287
288
289
290
291
292
293
294
295

296

Sequence similarity estimation by random subsequence sketching

3.1 Correlation between sketch similarity and edit similarity

To directly compare the sketch similarity against the desired but much more expensive to
compute edit similarity, we generate 100,000 random DNA sequences of length 1,000. Each
sequence is randomly mutated (an insertion, deletion, or substitution) for a random number
of rounds up to 1,000 to produce a pairing sequence. For each pair, we compute their exact
edit similarity, as well as sketch similarities for SubseqSketch, MinHash (MH), Order Min
Hash (OMH), Tensor Slide Sketch (TSS) and LexicHash (LH). For each sketching method
the Pearson correlation between the exact edit similarity and the sketch similarity over the
100,000 pairs of sequences is reported. MH, OMH, and TSS use the implementation of [11].
LH uses the implementation of [8].

Figure 4 shows the scatter plots of all the pairs under different sketching methods. The
horizontal axis marks the normalized edit similarity which is computed as one minus the edit
distance divided by sequence length. The vertical axis shows the sketch similarities which
are normalized to the range [0, 1]. Observe that SubseqSketch achieves the best Pearson
correlation. Both MH and OMH are good estimators for sequences with high edit similarities
but struggle to distinguish dissimilar sequences with edit similarity between 0.5 and 0.8. The
TSS and LH similarities show a visually more linear relationship with the edit similarity and
consequently exhibit higher Pearson correlations than MH and OMH. But they both suffer
from extremely large variance, especially for dissimilar sequences, which makes it difficult to
interpret their estimation in practical applications. SubseqSketch strikes a balance between
the ability to estimate the full range of edit similarity and the estimation variance.

As with other sketching methods, the variance of SubseqSketch can be reduced by using
a larger sketch. For all the experiments, we measure the size of a sketch as the number of
entries in it (sometimes called its dimension), and all methods are configured to produce
the same number of entries (except for TSS, which we follow the suggestion in [11] even
though it produces a larger sketch). However, in real applications, the actual space needed
to store the sketches is a more relevant measure. Recall that each entry of SubseqSketch
can be stored in 4 bits (ref. Section 2.4) which is four times smaller than an entry of MH
(16 bits for k = 8), six times smaller than OMH (24 bits for ¥ = 6 and £ = 2), and eight
times smaller than TSS and LH (32-bit float/int). Thus, given a fixed amount of disk space,
SubseqSketch can utilize more testing subsequences than the number of k-mers MH or OMH
can select, thereby achieving a similar or better variance. In the experiments, we do not
exploit this practical advantage, opting instead to use the same number of sketch entries
across all methods.

3.2 Nearest neighbor search

The task of nearest neighbor search asks to find the top-7T" most similar sequences for a query
among a large database. Since computing the exact edit distance between the query and
every sequence in the database is computationally prohibitive, a common approach is to
map database sequences into a well-studied metric space where efficient nearest neighbor
indexing is readily available (for example, the hierarchical navigable small world index [17]).
A query can then be mapped into the same space, and the nearest neighbors according to the
index are reported as approximations of the true nearest neighbors in the original sequence
space. In this experiment, we choose to not include any indexing because the accuracy of
the index may affect the final results. Following the pipeline of CNN-ED [4], a tool that
performs sequence nearest neighbor search using a learned embedding for edit distance, we
compute the sketch distances between a query and all sequences in the database and report

297

298

299

300

301

302

K. Chen, V. Pattar, and M. Shao

r e MHO0.827 r e+ OMHO0.726
1.0 1.0
.‘?O.B .?0.8
= =
- py
£ £
@ @
- 06 06
B B
o o
2 2
ol ol
T o4 T o4
N N
‘© ‘©
£ £
£ £
=] =]
€02 €02
0.0 0.0
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
normalized edit similarity normalized edit similarity
r e TS50.896 r e+ LHO.886
1.0 1.0 .
o eee
o e
o oo
- =
oo oo cmmcm——
208 208 ——
= =
& & - e
£ £ 6 0 20 e s s
Y 0.6 Y 0.6 . @con
5 5 . = -
= = .
o o
x < oo
- - cme
© 0.4 © 0.4
N N
‘© ‘©
£ £
£ £
o o L
€02 €02
—_—
. — &
0.0 . 0.0 _——mn wcmm o o
0.5 0.6 0.9 1.0 0.5 0.6 0.9 1.0

0.7 0.8 0.7 0.8
normalized edit similarity normalized edit similarity

r ¢ SubseqSketch 0.918
1.0

o o o
S o o]

normalized sketch similarity

o
N

.

0.0

0.5 0.6 0.9 1.0

0.7 0.8
normalized edit similarity

Figure 4 Correlation between normalized sketch similarities and normalized edit similarity on

length n = 1000 sequences. The legend marks the name of the method and the Pearson correlation.

All methods use sketch size 1000. Through parameter grid search, MH is configured to use k-mer
size 8; OMH uses k-mer size 6 and ¢ = 2; TSS uses t = 2, dimension 32, window size 0.1n = 100,
stride size 0.01n = 10, as suggested in [11]. LexicHash uses maximum k 32. SubseqSketch uses token
size 6.

the top-T' nearest neighbors. It is worth noting that computing sketch distances is much
more scalable than computing edit distances.

We show results on two widely used datasets GEN50kS and GEN20KL from [26] which are
also benchmarked in the CNN-ED paper. The GEN50kS dataset contains 50,000 sequences
with an average length 5,000. The GEN20kL dataset contains 20,000 sequences with an
average length 20,000. The CNN-ED pipeline splits each dataset into three disjoint sets: a

XX:9

WABI 2025

XX:10

303
304
305
306
307
308
309
310
311
312
313
314

315

316

Sequence similarity estimation by random subsequence sketching

training set with 1,000 sequences, a query set with 1,000 sequences, and a base set containing
the remaining sequences. It then computes the all-vs-all edit distances between the query set
and the base set to form the ground truth for the nearest neighbor search. For the sketching
methods, the training set is not used.

To evaluate the performance of different methods, we plot the commonly used recall-item
curves in Figure 5 and Figure 6. For a figure labeled top-T', the T nearest neighbors of a
query in the base set according to the edit distances are considered true neighbors. The
horizontal axis represents the number of neighbors (items) each method is allowed to report
(according to their respective sketch/embedding distances) and the vertical axis marks the
fraction of true neighbors being reported (recall). The CNN-ED pipeline presents full-range
results — from reporting a single item to reporting all items — which, while not practical for
typical use cases (where only the top-T neighbors are retrieved), allows for plotting complete
performance curves.

1.00 > 1.04
0.951
0.8 1 P

0.90 1

0.6 1

g 0.85 g
0.80 0.41

Top-1 0.2
—8— SubseqSketch
0.70 CNN-ED

Top-10
—8— SubseqSketch
CNN-ED

10° 10t 102 10° 104 10° 10t 10? 10° 104
item (log scale) item (log scale)

Figure 5 Recall-item curves of different methods on the GEN50kS dataset. All methods output

vectors of dimension 200. SubseqSketch uses token size 6. Left: ground truth is the top-1 nearest

neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

1.0 *— 1.0

0.91
0.8

0.6 1

recall

0.4

0.2 4

0.5 Top-1

—8— SubseqSketch
CNN-ED

Top-10
—8— SubseqSketch
CNN-ED

T T T T T 0.0 T T T T T
10° 10! 102 10° 104 10° 10t 102 10° 104
item (log scale) item (log scale)

Figure 6 Recall-item curves of different methods on the GEN20kL dataset. All methods output

vectors of dimension 128. SubseqSketch uses token size 7. Left: ground truth is the top-1 nearest
neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

In this experiment we restrict our comparison to CNN-ED, which was shown to outperform

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

K. Chen, V. Pattar, and M. Shao

other non-machine learning methods such as the CGK embedding [3]. The CNN-ED results
are obtained by the implementation of [4]. It is a deep convolutional neural network model
which we trained for 50 epochs following the reported hyperparameters in the original paper.
For a fair comparison, SubseqSketch is configured to produce vectors of the same length as
the embedding dimensions of CNN-ED. Observe that SubseqSketch consistently outperforms
CNN-ED by a large margin. This is a surprising result. It is commonly believed (which is
often, though not always, justified) that machine learning models can outperform traditional
algorithmic methods because the models can learn data-dependent features that the data-
oblivious algorithms cannot take advantage of. In [4], the CGK embedding [3] was shown
to produce a worse result than CNN-ED on this task, even though it is an edit distance
embedding with theoretical guarantees. Our result here demonstrates that there is a gap
between theoretical bounds and practical performance which warrants further investigation.
In particular, we conjecture that SubseqSketch can also provide some guarantees on the
distortion as a randomized embedding function for the edit distance, though a theoretical
proof seems difficult.

3.3 Phylogeny reconstruction

Phylogeny reconstruction is another common task that can be used to evaluate the per-
formance of alignment-free methods. Given a set of biologically related genomes, the goal
is to build a phylogeny on them based on pairwise similarities/distances estimated by the
sketches. The result can then be compared with a ground truth tree constructed from some
biological model or multiple sequence alignment. We test on two datasets for this task: one
is a simulation of a simple mutation model similar to that used in [19]; the other is a set of
29 assembled E. coli genome sequences collected in [25].

For both datasets, an all-vs-all distance matrix is computed for each method. For the
simulated dataset, the matrices are used to build the phylogenies with the neighbor-joining
algorithm implemented in the biotite package [12]. The normalized Robinson-Foulds (nRF)
distances between the constructed trees and the ground truth tree are then calculated with
the ETE toolkit [9]. The nRF distance measures the dissimilarity of branching patterns
between two trees and ignores branch lengths. A value of 0 means the two phylogenies
have the identical tree topology, whereas a value of 1 indicates the two trees are maximally
dissimilar. For the real E. coli genome sequences, the AFproject [27] (a benchmark project
for alignment-free sequence analysis tools) provides a web interface where the phylogenies
can be computed from the uploaded distance matrices. The nRF distances are then reported
by comparing the resulting trees against a ground truth tree built from multiple sequence
alignment. It also provides the normalized Quartet Distance (nQD) as an additional measure
for topological disagreement. On the website, many alignment-free phylogeny reconstruction
tools are ranked based on the nRF distances achieved.

Following the experiment in [19], we simulate a family of sequences using a simple
mutation model that includes both point mutations and mobile genomic elements, commonly
found in bacterial genome rearrangements, known as insertion sequences (IS). The simulated
sequences form a perfect binary tree. The root of the tree is a random sequence of length
10, 000; it is considered as the 0-th generation genome. To obtain the i-th generation, each
sequence in the (i — 1)-th generation produces two children genomes by independent and
random point mutations with mutation rate 0.01%. Then a random IS of length 500 is
inserted at a random position for each newly generated i-th generation genomes. Note that
the IS is shared among all sequences in the same generation, but the inserting positions can
be different. See Figure 7 for an illustration. Although simple and somewhat unrealistic, this

XX:11

WABI 2025

XX:12

364
365

366

367
368
369

370

372
373
374
375
376
377
378
379

380

382
383
384
385
386
387
388
389
390
391
392
393
394
395

396

Sequence similarity estimation by random subsequence sketching

model produces a solid ground truth phylogeny and allows us to investigate the effectiveness
of different sketching methods to recover the mixed history of point mutations and large
insertion events.

generation 0 (10k bp)

generation 1

generation 2

generation 3

generation 4

//’/I/nutation rate 0.01%; : \
W_JIS\«

Figure 7 An illustration of the simulated phylogeny. In the zoomed-in view at the bottom, the
top segment represents a sequence from the 3-rd generation. Its two children in the 4-th generation

are obtained by random point mutations represented by colored dots. The blue segment represents
the common IS inserted into each sequence in the 4-th generation.

Figure 8 shows the nRF distances achieved by each method on progressively larger inputs
from the simulated dataset. The horizontal label ¢ means all the 2¢ sequences from the 4-th
generation are used as input sequences. Not surprisingly, pairwise edit distance (ED) most
accurately captures the mutation history, at the cost of significantly longer computation time
(see Figure 9). Among the sketching methods, SubseqSketch constructs the best phylogeny
for generation 6 and larger inputs. Furthermore, the nRF distances obtained by SubseqSketch
exhibits a strong correlation with those achieved by the exact edit distances, indicating it can
be used as a faithful approximation of the expensive edit calculation. In contrast, although
MH and OMH produce trees with smaller nRF distances for the smaller input sets, they
both show some inverse relation with the nRF using edit distances (from generation 3 to 4,
the nRF distances of trees constructed by edit distance increased, but the nRF distances
for MH decreased; similarly from generation 4 to 5 for OMH). LH is omitted from this
experiment because its implementation choice for boundary handling tends to assign the
maximum similarity score to pairs sharing a short matching suffix (see the line at normalized
similarity score 1 in Figure 4). While this may be appropriate for the overlap detection task
that LH is designed for, it hinders accurate phylogeny reconstruction on our datasets.

We also plot the running time of each sketching method in Figure 9 to demonstrate the
efficiency of SubseqSketch. As expected, all the sketching methods are much faster than
computing the all-vs-all exact edit distances. Among them, SubseqSketch is consistently
the fastest, regardless of the number of input sequences. More specifically, SubseqSketch
achieves a 6x speedup compared to the second fastest method (MH).

Results for the real FE. coli dataset are summarized in Table 3. On the AFproject website,
nearly 100 tools (include different configurations for the same tool) are ranked based on the
nRF distance. SubseqSketch is ranked 7th and there are 12 tools that achieve smaller nRF
distances due to ties. It is worth pointing out that the higher ranked ones are tools designed
specifically for the task of phylogeny reconstruction, which are often based on some sketching
method but also apply biological and algorithmic heuristics to adjust the sketch distance
matrix. Since SubseqSketch is a sketching method rather than a complete tool for phylogeny,
here we aim to evaluate the sketch quality without those adjustments. By using the raw
distance matrices, SubseqSketch constructs the best phylogeny (closest to the ground truth)

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

K. Chen, V. Pattar, and M. Shao

— I ED s MH s OMH . 7SS I SubseqSketch

0.86

nRF distance from the ground truth tree

generation

Figure 8 Normalized RF distances achieved by each method on the simulated dataset. A lower
nRF distance indicates the constructed phylogeny is more similar to the ground truth tree. All
methods use sketch size 256. Through parameter grid search, MH is configured to use k-mer size 8;
OMH uses k-mer size 6 and ¢ = 2; TSS uses t = 4, dimension 16, window size 1,000, and stride size
100. SubseqSketch uses token size 5.

(— s ED ®em MH EEm OMH HEE TSS W SubseqSketch T

1044

=
o
W

Time in seconds
=
o
2

._.
A

generation

Figure 9 Time spent by each method in seconds (log scale). All experiments run on a server
with an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. Edit distance is computed with the Python
package Levenshtein. MH, OMH, and TSS are computed using the implementation of [11].

among MH, OMH, and TSS.

In this task, since there are only 29 genomes, we can afford to sample the testing
subsequences from the input to further improve the quality of SubseqSketch. Because the
inputs are all closely related, this sampling strategy also enables us to use a much larger
token size ¢ = 40 to achieve an even better result than the recommended ¢ = 15. From
Table 3, it is evident that setting ¢ = 40 significantly improves accuracy.

4 Discussion

We presented SubseqSketch, a subsequence-based sketching method that is both effective
and efficient at sequence similarity estimation. Comparing to the widely used MH, OMH,
TSS, and LH sketches, SubseqSketch requires smaller space, is faster to compute, and
achieves a stronger correlation with the edit similarity. It delivers strong performance in two
alignment-free tasks: nearest neighbor search and phylogeny reconstruction. In particular,
it outperforms a machine learning edit distance embedding model by a large margin which
suggests our method indeed captures critical features of the sequences being sketched.

A large body of work that we intentionally excluded from our experiments consists of

XX:13

WABI 2025

XX:14

412
413
414
415
416
417
418
419

420

422
423
424
425
426
427
428
429
430
431
432

433

435

436

438
439

440

Sequence similarity estimation by random subsequence sketching

Table 3 Phylogeny reconstruction results on 29 E. coli genomes. The RF, nRF, and nQD
distances all measure topological disagreement between the reconstructed tree and the ground truth
tree. A lower value indicates a more accurate reconstruction of the phylogeny. The Rank is based on
the nRF distances among many tools tested by the AFproject. All methods use sketch size 10, 000.
Through parameter grid search, MH is configured to use k-mer size 10 (in fact, multiple values
of k between 10 and 30 all yield the same nRF distance, but k = 10 is slightly better on nQD);
OMH uses k-mer size 22 and ¢ = 3; TSS uses t = 5, dimension 100, window size 500, 000, stride size
100,000. The parameters used by SubseqSketch are marked in parentheses.

Method RF nRF nQD Rank
MH 30 0.58 0.3307 13
OMH 30 0.58 0.3645 13
TSS 40 0.77 0.4806 17

SubseqSketch (¢ = 15,k = 128) 22 042 0.1377 9
SubseqSketch (¢ = 40, k = 32) 18 0.35 0.1679 7

seeding-based methods. The simplest seeds are k-mers, representing fixed-length consecutive
exact matches in the sequences. More advanced k-mer selection schemes exist, such as
minimizer [24, 18], syncmer [5] and k-min-mer [6]. Seeds sampled from subsequences,
either with limited patterns such as spaced seed [2, 15] and strobemer [22, 16, 23], or fully
unrestricted such as SubseqHash [14, 13], have been shown to deliver better performance
but are usually more expensive to compute. While both sketching and seeding utilize some
common techniques, for example, the minimizer seeds are obtained by applying MH [1] on
each window, they differ significantly in their goals, representations and usage. Seeding
methods aim to identify local regions of similarity between sequences, providing fine-grained
information about where and how sequences resemble each other. This often comes at
the cost of increased memory footprint and computational overhead. Specifically, seeding
methods typically extract seeds from a relatively small sliding window over a longer input
sequence. By generating one or more seeds from each overlapping window', the number of
seeds for a sequence of length n is usually ©(n). In contrast, sketching methods prioritize
efficiency by transforming sequences into compact, low-dimensional representations that
enable fast, global similarity estimation. For example, an FE. coli genome with several million
base pairs is condensed to a length 10,000 vector by each sketching method in the above
experiment. Unlike seeds, which are often used temporarily during computation and then
discarded, sketches are typically stored and reused, serving as compact indices in databases
containing vast numbers of sequences.

There are numerous interesting directions that call for further investigations. From the
theoretical perspective, a deeper understanding of SubseqSketch, and subsequence-based
features in general, can be beneficial for better algorithmic designs as well as guiding practical
applications. Many methods compared in the experiments come with theoretical guarantees:
MH is an unbiased estimator for the Jaccard similarity; OMH is a locality-sensitive hashing
(LSH) family for the edit distance; and CGK is an embedding for the edit distance with a
quadratic distortion. Given the superior performance of SubseqSketch against these methods,
it is natural to consider what bounds can be proved on it. More specifically, we are curious
if SubseqSketch is an LSH, and if so, does it offer better hash collision probabilities? Or is

I There also exist seeding schemes without a window guarantee, such as syncmer [5].

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

K. Chen, V. Pattar, and M. Shao

it an embedding with provable small distortion for the edit distance? In that case, study
the relation between its parameters and the achieved distortion can help to make informed
decisions in practical use.

On the application side, there are several potential approaches to enhance SubseqSketch.
For example, Mash [20] is a popular tool for genome distance estimation. It is based on MH
whose estimation does not exhibit the strongest correlation with edit distance. However, by
applying a simple Poisson model to adjust the MH score, Mash produces a distance that
closely approximates the mutation rate on real datasets. Since SubseqSketch starts with a
more accurate estimation, it is reasonable to believe that similar techniques can be applied
to further improve its performance.

A related question concerns the similarity function used by SubseqSketch. The cosine
similarity was chosen for its effectiveness and simplicity. While it matches our intuition that
sketches of similar sequences should have near identical corresponding entries and therefore
should be roughly pointing to the same direction in the sketch vector space, the cosine
similarity explicitly ignores the magnitude of the vectors. In the extreme case, a sketch full of
1’s is considered to have the maximum similarity with another sketch full of 10’s. This greatly
diverges from the designed meaning of the SubseqSketch entries — the first sequence barely
contains any testing subsequences whereas the second contains large portions of each testing
subsequence — they must be very different! Exploring different similarity functions that can
better incorporate the expected interpretation of the entries can therefore potentially make
SubseqSketch more accurate.

Yet another observation is that SubseqSketch is sensitive for globally well-aligned sequences
but can struggle with ones that only share meaningful local alignments. For example, we
cannot expect a genome comprising millions of base pairs to produce a SubseqSketch similar
to that of a 100-base-pair short read. Other sketching methods such as MH also suffer from
these situations and special variants such as FracMinHash [10] are designed to handle them
differently. As another example, in building overlap graphs for genome assembly, one needs
to identify overlapping pairs of sequences that contain additional unaligned prefixes and
suffixes. Suppose that the tail of sequence a overlaps with the head of sequence b. Since
SubseqSketch tests for subsequences from left to right and stops immediately when the next
token cannot be found, the sketches will be disproportionally skewed: because b does not
have the beginning part of a, testing subsequences fully live inside a can produce 0’s for b,
even if b contains long suffixes of them. We hope to see diverse adaptations of SubseqSketch
designed to address these various challenges.

—— References

1 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21-29.
IEEE, 1997. doi:10.1109/SEQUEN. 1997 .666900.

2 Andrea Califano and Isidore Rigoutsos. FLASH: A fast look-up algorithm for string homology.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’93),
pages 353-359. IEEE, 1993. doi:10.1109/CVPR.1993.341106.

3 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Daniel Wichs and
Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 712-725. ACM,
2016. doi:10.1145/2897518.2897577.

4 Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, and James Cheng. Con-
volutional embedding for edit distance. In Proceedings of the 43rd international ACM SI-

XX:15

WABI 2025

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/CVPR.1993.341106
https://doi.org/10.1145/2897518.2897577

XX:16 Sequence similarity estimation by random subsequence sketching

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

10

11

12

13

14

15

16

17

18

19

20

21

22

23

GIR conference on Research and Development in information retrieval, pages 599-608, 2020.
doi:10.1145/3397271.3401045.

Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
biological sequences. PeerJ, 9:e10805, 2021. doi:10.7717/peerj.10805.

Barig Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-
genome assembly of long reads in minutes on a personal computer. Cell Systems, 12(10):958-968,
2021. doi:10.1016/j.cels.2021.08.009.

Martin C Frith, Jim Shaw, and John L. Spouge. How to optimally sample a sequence for rapid
analysis. Bioinformatics, 39(2):btad057, 2023. doi:10.1093/bioinformatics/btad057.
Grant Greenberg, Aditya Narayan Ravi, and Ilan Shomorony. Lexichash: sequence similarity
estimation via lexicographic comparison of hashes. Bioinformatics, 39(11):btad652, 10 2023.
doi:10.1093/bioinformatics/btad652.

Jaime Huerta-Cepas, Francois Serra, and Peer Bork. Ete 3: Reconstruction, analysis, and
visualization of phylogenomic data. Molecular Biology and FEvolution, 33(6):1635-1638,
02 2016. arXiv:https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.
pdf, doi:10.1093/molbev/msw046.

Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera,
David Koslicki, and C Titus Brown. Lightweight compositional analysis of metagenomes
with fracminhash and minimum metagenome covers. bioRziv, pages 2022-01, 2022. doi:
10.1101/2022.01.11.475838.

Amir Joudaki, Gunnar Ratsch, and André Kahles. Fast alignment-free similarity estimation
by tensor sketching. bioRxiv, 2020. doi:10.1101/2020.11.13.381814.

Patrick Kunzmann, Tom David Miiller, Maximilian Greil, Jan Hendrik Krumbach, Ja-
cob Marcel Anter, Daniel Bauer, Faisal Islam, and Kay Hamacher. Biotite: new tools
for a versatile python bioinformatics library. BMC' bioinformatics, 24(1):236, 2023. doi:
10.1186/s12859-023-05345-6.

Xiang Li, Ke Chen, and Mingfu Shao. Efficient seeding for error-prone sequences with
subseqhash2. bioRziv, pages 2024—05, 2024. doi:10.1101/2024.05.30.596711.

Xiang Li, Qian Shi, Ke Chen, and Mingfu Shao. Seeding with minimized subsequence. Bioin-
formatics, 39(Supplement_ 1):i232-1241, 06 2023. doi:10.1093/bioinformatics/btad218.
Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440-445, 2002. doi:10.1093/bioinformatics/18.3.440.

Benjamin Dominik Maier and Kristoffer Sahlin. Entropy predicts sensitivity of pseudorandom
seeds. Genome Research, 33(7):1162-1174, 2023. doi:10.1101/gr.277645.123.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEFE transactions on pattern analysis
and machine intelligence, 42(4):824-836, 2018. doi:10.1109/TPAMI.2018.2889473.
Guillaume Margais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimizers
schemes. Bioinformatics, 34(13):i13-i22, 2018. doi:10.1093/bioinformatics/bty258.
Guillaume Marcais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive
hashing for the edit distance. Bioinformatics, 35(14):i127-1135, 2019. doi:10.1093/
bioinformatics/btz354.

Brian D Ondov, Todd J Treangen, Pall Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
using minhash. Genome biology, 17:1-14, 2016. doi:10.1186/s13059-016-0997-x.

Will PM Rowe. When the levee breaks: a practical guide to sketching algorithms for processing
the flood of genomic data. Genome Biology, 20:1-12, 2019. doi:10.1186/s13059-019-1809-x.
Kristoffer Sahlin. Effective sequence similarity detection with strobemers. Genome Research,
31(11):2080-2094, 2021. doi:10.1101/gr.275648.121.

Kristoffer Sahlin. Strobealign: flexible seed size enables ultra-fast and accurate read alignment.
Genome Biology, 23(1):1-27, 2022. doi:10.1186/s13059-022-02831-7.

https://doi.org/10.1145/3397271.3401045
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1093/bioinformatics/btad057
https://doi.org/10.1093/bioinformatics/btad652
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2020.11.13.381814
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1101/2024.05.30.596711
https://doi.org/10.1093/bioinformatics/btad218
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1101/gr.277645.123
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-019-1809-x
https://doi.org/10.1101/gr.275648.121
https://doi.org/10.1186/s13059-022-02831-7

540

541

542

543

544

545

546

547

548

549

550

551

552

553

K. Chen, V. Pattar, and M. Shao

24

25

26

27

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(SIGMOD/PODS’03), pages 76-85. ACM, 2003. doi:10.1145/872757.872770.

Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for closely

related organisms. Nucleic Acids Research, 41(7):e75—e75, 01 2013. arXiv:https://academic.

oup.com/nar/article-pdf/41/7/e75/256341913/gkt003.pdf, doi:10.1093/nar/gkt003.
Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins via embeddings. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 585-594, 2017. doi:10.1145/3097983.3098003.

Andrzej Zielezinski, Hani Z Girgis, Guillaume Bernard, Chris-Andre Leimeister, Kujin Tang,
Thomas Dencker, Anna Katharina Lau, Sophie Réhling, Jae Jin Choi, Michael S Waterman,
et al. Benchmarking of alignment-free sequence comparison methods. Genome biology, 20:1-18,
2019. doi:10.1186/s13059-019-1755-7.

XX:17

WABI 2025

https://doi.org/10.1145/872757.872770
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
https://doi.org/10.1093/nar/gkt003
https://doi.org/10.1145/3097983.3098003
https://doi.org/10.1186/s13059-019-1755-7

	1 Introduction
	1.1 Related work

	2 SubseqSketch
	2.1 Tokenized subsequence
	2.2 Construction of SubseqSketch
	2.3 Choice of similarity function
	2.4 Choice of parameters
	2.5 Sample subsequences from input

	3 Experiments
	3.1 Correlation between sketch similarity and edit similarity
	3.2 Nearest neighbor search
	3.3 Phylogeny reconstruction

	4 Discussion

