
Sequence similarity estimation by random1

subsequence sketching2

Ke Chen !3

Department of Computer Science and Engineering, School of Electronic Engineering and Computer4

Science, The Pennsylvania State University, United States5

Vinamratha Pattar !6

Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa7

Vidyapeetham, Bengaluru, India8

Mingfu Shao !9

Department of Computer Science and Engineering, School of Electronic Engineering and Computer10

Science, The Pennsylvania State University, United States11

Huck Institutes of the Life Sciences, The Pennsylvania State University, United States12

Abstract13

Sequence similarity estimation is essential for many bioinformatics tasks, including functional14

annotation, phylogenetic analysis, and overlap graph construction. Alignment-free methods aim to15

solve large-scale sequence similarity estimation by mapping sequences to more easily comparable16

features that can approximate edit distances e!ciently. Substrings or k-mers, as the dominant17

choice of features, face an unavoidable compromise between sensitivity and specificity when selecting18

the proper k-value. Recently, subsequence-based features have shown improved performance, but19

they are computationally demanding, and determining the ideal subsequence length remains an20

intricate art. In this work, we introduce SubseqSketch, a novel alignment-free scheme that maps a21

sequence to an integer vector, where the entries correspond to dynamic, rather than fixed, lengths of22

random subsequences. The cosine similarity between these vectors exhibits a strong correlation with23

the edit similarity between the original sequences. Through experiments on benchmark datasets,24

we demonstrate that SubseqSketch is both e!cient and e"ective across various alignment-free25

tasks, including nearest neighbor search and phylogenetic clustering. A C++ implementation of26

SubseqSketch is openly available at https://github.com/Shao-Group/SubseqSketch.27

2012 ACM Subject Classification Applied computing → Bioinformatics; Applied computing →28

Computational biology29

Keywords and phrases Alignment-free sequence comparison, Phylogenetic clustering, Nearest neigh-30

bor search, Edit distance embedding31

Digital Object Identifier 10.4230/LIPIcs.WABI.2025.32

Supplementary Material Software (Source Code): https://github.com/Shao-Group/SubseqSketch33

Funding This work is supported by the US National Science Foundation (DBI-2019797 to M.S.)34

and the US National Institutes of Health (R01HG011065 to M.S.).35

1 Introduction36

Estimating the similarity between biological sequences is a fundamental task in bioinformatics,37

underpinning a wide range of applications including homology detection, gene annotation, and38

phylogenetic analysis. Traditionally, sequence similarity has been assessed with alignment-39

based methods, which attempt to find an optimal correspondence between characters from40

two or more sequences. While providing the most accurate results, these methods often su!er41

from high computational cost, especially when applied to large and divergent datasets.42

Sketching-based methods have been developed to address this limitation. A sketch43

summarizes a long sequence into a small set of representative fingerprints that can be rapidly44

© Ke Chen, Vinamratha Pattar, and Mingfu Shao;
licensed under Creative Commons License CC-BY 4.0

25th International Workshop on Algorithms in Bioinformatics (WABI 2025).
Editors: Bro!a Brejová and Rob Patro; Article No. ; pp. :1–:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kxc5915@psu.edu
https://orcid.org/0000-0001-5470-6621
mailto:pattar.vinamratha@gmail.com
mailto:mxs2589@psu.edu
https://orcid.org/0000-0001-6112-5139
https://github.com/Shao-Group/SubseqSketch
https://doi.org/10.4230/LIPIcs.WABI.2025.
https://github.com/Shao-Group/SubseqSketch
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Sequence similarity estimation by random subsequence sketching

compared in place of the original sequences for similarity estimation. Together with its45

variants, the most widely used sketching method is MinHash (MH) [1]. In its simplest form,46

MH utilizes a hash function that maps each k-mer of a sequence to a number and only47

keeps the k-mer with the minimum hash value as the representative of that sequence. It48

is easy to see that the probability for two sequences to be represented by the same k-mer49

is proportional to the Jaccard similarity of the two sequences (viewed as sets of k-mers),50

namely, the number of shared k-mers between the sequences normalized by the total number51

of distinct k-mers among them. Hence, by repeatedly choosing min-k-mers with di!erent52

hash functions and keeping track of the number of occurrences that the picked k-mers match53

between the two sequences, the Jaccard similarity can be estimated. In this process, the54

list of all representative k-mers of a sequence is called the MH sketch of this sequence. Two55

MH sketches are compared by the Hamming similarity – number of identical k-mers at the56

same indices. Order Min Hash (OMH) [19] extends this idea by estimating the weighted57

Jaccard similarity. Instead of picking one representative k-mer at a time, each entry of an58

OMH sketch is generated by picking several k-mers and putting them together following the59

original order in the sequence. OMH has been proved to be a locality-sensitive hashing family60

for the edit distance. A more comprehensive review of sketching algorithms for genomic61

data can be found in [21]. Note that both MH and OMH can be considered substring-based62

sketching methods because they pick substrings as the representatives. They therefore face63

the commonly observed di"culty in choosing a proper k: larger k is desirable to eliminate64

spurious matches but there are very few shared long k-mers even between closely related65

sequences.66

To address this fundamental limitation of k-mers, several recent works [14, 11, 13]67

have advocated for the use of unrestricted subsequences instead. Subsequences relax the68

requirement that matching base pairs must be consecutive, allowing them to naturally tolerate69

gaps in the underlying – often unknown and computationally expensive – true alignment70

between sequences. This enables the identification of longer and hence more reliable matches,71

which in turn enhances the accuracy of downstream tasks. To fully leverage the benefits72

of subsequences, one must overcome a key algorithmic challenge: unlike the linear number73

of k-mers in a sequence, the number of subsequences grows exponentially, making MH-like74

strategies that rely on enumerating all candidates impractical. In this work, we seek to75

exploit structural properties of subsequences to overcome this computational barrier. To this76

end, we develop SubseqSketch, an e"cient sketching method that summarizes long sequences77

into compact, subsequence-based features that are highly correlated with edit similarities.78

Through experiments on typical downstream applications, including nearest neighbor search79

and phylogenetic clustering, we demonstrate that SubseqSketch is both e"cient and e!ective.80

1.1 Related work81

Recently, a sketching method named LexicHash [8] proposes to compare sketches based on82

the length of their common prefixes, rather than relying on fully matched k-mers. This83

has the e!ect of sketching with k-mers for all lengths k up to a predefined maximum value.84

However, LexicHash still su!ers from the common issue of k-mer-based methods, namely,85

a small number of edits can destroy all long k-mer matches between two similar sequences.86

Furthermore, LexicHash is designed for the task of overlap detection, rather than estimating87

the similarity between two sequences. In particular, the authors define the LexicHash88

similarity score between two sequences as the length of the longest matching prefix among89

their sketches. So a score k only indicates that the two sequences share a common k-mer,90

which may be e!ective for detecting overlapping reads, but appears to be insu"cient for edit91

K. Chen, V. Pattar, and M. Shao XX:3

similarity estimation (see Figure 4). In fact, choosing a proper distance function between92

sketches to facilitate a proper similarity estimation requires careful considerations for any93

sketching method, see Section 2.3 for further discussion.94

To the best of our knowledge, the only existing subsequence-based sketching method is95

Tensor Slide Sketch (TSS) [11]. Instead of picking k-mers from the input sequence, TSS aims96

at producing a sketch by counting all subsequences. Since there is an exponential number of97

them, TSS has to group Subsequences in a smart way to facilitate counting. However, to98

make it e"cient, TSS is restricted to count all short subsequences, which limits its capacity99

in distinguishing similar and dissimilar sequences.100

2 SubseqSketch101

The idea of SubseqSketch is to identify long common subsequences between input sequences102

through random sampling. Computing the sketch of a sequence s can be figuratively thought103

of as answering a survey in which each question asks whether s contains a randomly selected104

sequence as a subsequence. By comparing the answers of two sequences, their similarity105

can be estimated. We note that this idea does not work well with substrings (k-mers):106

As the number of k-mers in a sequence is negligible comparing to the number of length-k107

subsequences, the chance of successfully finding a reasonably sized common substring by108

random sampling is low, even between highly similar sequences. For a concrete example,109

according to Figure 3, if length-100 sequences are taking our survey, we can choose a query110

sequence to have length 25 and expect half of the answers to be “yes”. Furthermore, a111

matching “yes” answer for a pair of sequences suggests a (partial) alignment between them112

that involves at least a quarter of their bases. In contrast, if we were to ask whether a113

query 8-mer is a substring, the vast majority of sequences would answer “no”, resulting in114

a very weak, if functional at all, classifier for distinguishing between similar and dissimilar115

sequences.116

While sampling long subsequences is beneficial for similarity estimation, it becomes117

computationally expensive on long inputs. In the following section, we introduce the118

concept of tokenization to e!ectively generalize the above strategy to genome-scale sequences.119

Combined with the idea of an “enhanced survey”, where binary yes/no questions are upgraded120

to integer-scale queries, we present the full-fledged SubseqSketch as an e!ective and e"cient121

sketching method.122

2.1 Tokenized subsequence123

A sequence x of length kt over an alphabet ! can be viewed as a sequence of k “tokens”124

each of which is a string of length t. We say x is a tokenized subsequence of a length-n125

sequence s if there is a list of indices 1 → i1 < i2 < · · · < ik → n ↑ t + 1 such that the length-t126

substring of s starting at ij matches the j-th token of x. Note that when t = 1, a tokenized127

subsequence is a regular subsequence; it is not necessarily the case when t > 1, as the tokens128

are allowed to overlap, see Figure 1 for an example.129

CTACCCGATTCTAGTAAAA

CT CC GA AT AG TA

s:

x:

Figure 1 An example of tokenized subsequence. The bottom sequence x is tokenized with token
size 2. It is a tokenized subsequence of the top sequence s, on which the corresponding tokens are
underlined. Observe that x is not a regular subsequence of s.

WABI 2025

XX:4 Sequence similarity estimation by random subsequence sketching

2.2 Construction of SubseqSketch130

To construct SubseqSketch for input sequences, we first generate a list L of random sequences131

of length kt each, where k and t are predefined parameters. We call L the list of testing132

subsequences. Two SubseqSketches are comparable only if they were generated with the same133

list L; in this sense, L serves as shared randomness in the sketching process, analogous to the134

shared random ordering of k-mers in MH sketches. Given an input sequence s, SubseqSketch135

takes a testing subsequence in L and determines the maximum number of its prefix length-t136

tokens that form a tokenized subsequence of s. The resulting vector consists of |L| integers,137

one for each testing subsequence. This vector is the sketch of s, denoted as SubseqSketch(s).138

See Figure 2 for an illustration.139

CTACCCGATTCTAGTAAAA

CT CC GA AT AG TA

s:

L:

AC AT AA
GG TA TA GC CG

TG AA AC GC CC CG
GA TC CT GT

CC CG TT
CC

CA AA

6 3 1 0 4
SubseqSketch(s)

Figure 2 An illustration of SubseqSketch construction with t = 2, k = 6, and |L| = 5. For each
testing subsequence in L, its maximum prefix tokens that form a tokenized subsequence of s are
colored. Their matching tokens in s are underlined.

A straightforward linear scan computes the |L| sketch entries in O(|L||s|) time. This140

worst-case time complexity can be improved by preprocessing the input sequence s to build141

an index that facilitates rapid lookup for the occurrence of the next token of a testing142

subsequence. For example, for token size t = 1, we can build an automaton on s in O(|s||!|)143

time and space. In the automaton, each character si stores |!| pointers. The pointer144

corresponds to c ↓ ! points to the next appearance of c after si (or null if no c exists after145

si). Then for a testing subsequence x, we can simply follow the pointers according to the146

characters of x, until either a null pointer is encountered or x is exhausted. This takes O(|x|)147

time for each testing subsequence so the total sketching time is O(|s||!| + |x||L|).148

For larger token size, a similar idea can be applied: we can preprocess s to build a lookup149

table of size |!|t where each entry records the occurring positions of that token on s, either150

in a sorted array or some other data structures that supports quick search. Each testing151

subsequence can then be processed by following this lookup table until all tokens are used or152

the end of a position array is reached. This allows each integer in the sketch to be computed153

in O(k log |s|) time, instead of a O(|s|) linear search. We provide this preprocessing approach154

as an option in our implementation. However, through experiments we found that the linear155

search std::string::find provided in the standard C++ library is almost always faster. The156

overhead of preprocessing may only be justified for a large number of very long testing157

subsequences with a small token size, which is not a recommended setting for our sketching158

algorithm (see Section 2.4).159

2.3 Choice of similarity function160

The SubseqSketch of a sequence s provides a highly informative representation of s. To build161

intuition, consider two sequences s and t. If both sketches show large numbers at the same162

index, then s and t must share a long tokenized subsequence and hence likely similar in163

K. Chen, V. Pattar, and M. Shao XX:5

terms of the edit distance. Conversely, if one sketch has a large value while the other has a164

small value at the same index, it suggests that the sequences are likely dissimilar.165

As with other sketching methods, a similarity measure over the sketches is required to166

translate the above intuition into a quantitative score that accurately reflects the true simi-167

larity between input sequences. Methods that compare sketches for equality at corresponding168

indices, such as MH and OMH, naturally employ Hamming similarity, which counts the169

number of matching entries between sketches. SubseqSketch, on the other hand, generates170

integer-valued vectors, enabling the use of a wide range of well-established distance/sim-171

ilarity metrics. We empirically evaluate a list of metrics using the data from Section 3.1.172

SubseqSketches are first computed, after which similarities scores are calculated using various173

metrics. The Pearson correlations between these scores and the ground truth edit similarities174

are reported in Table 1.175

Table 1 The Pearson correlations between edit similarities and sketch similarity scores using
various metrics.

Metric Pearson correlation

Canberra 0.920
Bray-Curtis 0.919
Correlation 0.919

Cosine 0.918
Hamming 0.914

Manhattan 0.913
Squared Euclidean 0.901

Jaccard 0.881
Euclidean 0.857
Minkowski 0.809
Chebyshev 0.306

As shown in the table, cosine similarity is among the most e!ective metrics for producing176

estimates that are strongly correlated with the true edit similarity. According to its definition,177

SubseqSketch(a) · SubseqSketch(b)
↔SubseqSketch(a)↔2 ↔SubseqSketch(b)↔2

,178

where · denotes the vector dot product, pairwise cosine similarities between two sketching179

matrices can be computed using a single matrix multiplication (assuming the rows are180

normalized), which is highly optimized in modern hardware and numerical libraries. We181

therefore adopt cosine similarity between SubseqSketches in our implementation for its182

e!ectiveness and computational e"ciency.183

2.4 Choice of parameters184

SubseqSketch has three parameters: the token size t, the number of tokens k in each testing185

subsequence, and the size |L| of the testing list. The parameter |L| controls the size of the186

sketches. In particular, a SubseqSketch takes |L| log k bits space to store. As with other187

sketching methods, increasing the sketch size improves estimation accuracy but comes at the188

cost of greater time and storage requirements. In the experimental sections, we compare the189

sketching methods at the same sketch size.190

WABI 2025

XX:6 Sequence similarity estimation by random subsequence sketching

The parameters t and k are related. In the resulting sketches, each entry is an integer191

between 0 and k. If t is too large (for example, close to the input length n), most entries192

would be 0; on the other hand, if both t and k are small, most entries would max out at k,193

regardless of the input sequence s. Neither case is desirable as the sketches cannot provide a194

strong distinction between similar and dissimilar input sequences. Note that we can always195

choose a large k to ensure that few, if any, sketch entries reach the maximum value. However,196

this increases the sketch file size, as each entry requires log k bits – an ine"cient use of space197

if most entries are significantly smaller than k.198

We now try to derive an optimal choice of k for t = 1. In a recent paper [7], the authors199

motivated their sequence sampling method with an interesting puzzle (paraphrased): is the200

number of DNA 5-mers containing the substring ACGT the same as that for the substring201

AAAA? Astute readers will immediately answer “no” because it is impossible for a 5-mer202

to both start and end with ACGT – taking the union of the two disjoint groups gives the203

correct number – which is not the case for AAAA whose symmetry would cause the same204

strategy to double-count the 5-mer AAAAA.205

As a curious extension, the same question can be asked, replacing substring with sub-206

sequence, namely, we do not require the containment to be consecutive. This seemingly207

more complicated version turns out to have a counterintuitively nicer answer: the number of208

n-mers containing a given k-mer as a subsequence is a function of n and k, independent of209

the choice of the k-mer. Consider a length-k sequence x, we count the number of length-n210

sequences s whose subsequence 1 → i1 < i2 < · · · < ik → n is x. To avoid over-counting,211

we only count s if (i1, . . . , ik) is the first occurrence of x in s. It means the characters in s212

before i1 cannot be x1, leaving them |!| ↑ 1 choices each. The same holds for regions in213

between ij and ij+1, and finally all characters after ik are free to be anything in !. This214

leads to (|!| ↑ 1)ik→k|!|n→ik choices. Note that the expression only depends on ik (i.e., any215

combination of i1, . . . ik→1 yields the same number), so we can group the terms and sum over216

choices of ik to get the answer217

n∑

ik=k

(
ik ↑ 1
k ↑ 1

)
(|!| ↑ 1)ik→k|!|n→ik .218

We emphasize that the calculation is independent of the chosen subsequence. An example is219

shown in Figure 3. We can then use the formula to compute a value of k such that at most a220

small threshold fraction (e.g., 0.01) of the sketch entries reach the maximum value k. In this221

example, k = 36 would su"ce.222

For larger t, the derivation is not as neat. We can view a regular sequence s over the223

alphabet ! as a tokenized sequence over the alphabet !t and apply the above formula. But224

unlike adjacent characters in the original sequence, consecutive tokens with an overlap of225

length t ↑ 1 are not independent, causing the formula to significantly overestimate. Since226

using a small k makes the sketching faster to compute and smaller to store, with an exception227

in Table 3, we fix k = 15 in the following experiments (namely, each entry in the sketch fits228

in 4 bits) and aim to choose t to ensure the sketching entries are neither too small nor maxed229

out. Table 2 provides empirical recommendations for t across common input sizes n.230

Table 2 Empirical recommendations for parameter t .

n 102 103 104 105 106 107 108 109

t 2 6 9 12 15 19 22 25

K. Chen, V. Pattar, and M. Shao XX:7

Figure 3 The fraction of length-100 sequences with |!| = 4 that contain a given subsequence (in
blue) or substring (in orange) as a function of the length of the subsequence/substring. The blue
dots are exact values computed according to the derived formula, they are the same regardless of
the choice of the subsequence. The plots for substrings are empirical estimates; note that these can
vary significantly across di"erent k-mers, as indicated by the orange error bars for k up to 8.

2.5 Sample subsequences from input231

Using randomly generated testing sequences is the best one can do in a data-oblivious232

setting, while better performance can usually be achieved if we can a!ord to adjust the233

sketches according to the input data. One idea to introduce data dependency is to sample234

subsequences from the input to form the testing list. This is particularly suitable when the235

input comprises a small number of sequences – for example, when estimating phylogenetic236

distances among a group of closely related genomes, as shown in Section 3.3. On the other237

hand, if the sketches are used to build an index of a large database of sequences to handle238

queries, it may not be practical to re-sketch the entire database with a new testing list for239

each query. In this situation, we simply use the data-oblivious version with a fixed list of240

randomly generated testing sequences and demonstrate in Sections 3.1 and 3.2 that it already241

achieves good performance.242

3 Experiments243

In this section, we first show a strong correlation between the cosine similarity of SubseqS-244

ketches with the edit similarity between simulated pairs of sequences. Then the sketch quality245

of SubseqSketch is tested on two sequence comparison tasks, the nearest neighbor search and246

phylogeny reconstruction. In each task, we compare SubseqSketch with competing methods247

on both simulated sequences and published benchmark datasets. For a fair comparison, each248

method is set to produce sketches of (roughly) the same size. A grid search is performed for249

each competing method to find the best parameters. Details are reported in each subsection.250

WABI 2025

XX:8 Sequence similarity estimation by random subsequence sketching

3.1 Correlation between sketch similarity and edit similarity251

To directly compare the sketch similarity against the desired but much more expensive to252

compute edit similarity, we generate 100, 000 random DNA sequences of length 1, 000. Each253

sequence is randomly mutated (an insertion, deletion, or substitution) for a random number254

of rounds up to 1, 000 to produce a pairing sequence. For each pair, we compute their exact255

edit similarity, as well as sketch similarities for SubseqSketch, MinHash (MH), Order Min256

Hash (OMH), Tensor Slide Sketch (TSS) and LexicHash (LH). For each sketching method257

the Pearson correlation between the exact edit similarity and the sketch similarity over the258

100,000 pairs of sequences is reported. MH, OMH, and TSS use the implementation of [11].259

LH uses the implementation of [8].260

Figure 4 shows the scatter plots of all the pairs under di!erent sketching methods. The261

horizontal axis marks the normalized edit similarity which is computed as one minus the edit262

distance divided by sequence length. The vertical axis shows the sketch similarities which263

are normalized to the range [0, 1]. Observe that SubseqSketch achieves the best Pearson264

correlation. Both MH and OMH are good estimators for sequences with high edit similarities265

but struggle to distinguish dissimilar sequences with edit similarity between 0.5 and 0.8. The266

TSS and LH similarities show a visually more linear relationship with the edit similarity and267

consequently exhibit higher Pearson correlations than MH and OMH. But they both su!er268

from extremely large variance, especially for dissimilar sequences, which makes it di"cult to269

interpret their estimation in practical applications. SubseqSketch strikes a balance between270

the ability to estimate the full range of edit similarity and the estimation variance.271

As with other sketching methods, the variance of SubseqSketch can be reduced by using272

a larger sketch. For all the experiments, we measure the size of a sketch as the number of273

entries in it (sometimes called its dimension), and all methods are configured to produce274

the same number of entries (except for TSS, which we follow the suggestion in [11] even275

though it produces a larger sketch). However, in real applications, the actual space needed276

to store the sketches is a more relevant measure. Recall that each entry of SubseqSketch277

can be stored in 4 bits (ref. Section 2.4) which is four times smaller than an entry of MH278

(16 bits for k = 8), six times smaller than OMH (24 bits for k = 6 and ω = 2), and eight279

times smaller than TSS and LH (32-bit float/int). Thus, given a fixed amount of disk space,280

SubseqSketch can utilize more testing subsequences than the number of k-mers MH or OMH281

can select, thereby achieving a similar or better variance. In the experiments, we do not282

exploit this practical advantage, opting instead to use the same number of sketch entries283

across all methods.284

3.2 Nearest neighbor search285

The task of nearest neighbor search asks to find the top-T most similar sequences for a query286

among a large database. Since computing the exact edit distance between the query and287

every sequence in the database is computationally prohibitive, a common approach is to288

map database sequences into a well-studied metric space where e"cient nearest neighbor289

indexing is readily available (for example, the hierarchical navigable small world index [17]).290

A query can then be mapped into the same space, and the nearest neighbors according to the291

index are reported as approximations of the true nearest neighbors in the original sequence292

space. In this experiment, we choose to not include any indexing because the accuracy of293

the index may a!ect the final results. Following the pipeline of CNN-ED [4], a tool that294

performs sequence nearest neighbor search using a learned embedding for edit distance, we295

compute the sketch distances between a query and all sequences in the database and report296

K. Chen, V. Pattar, and M. Shao XX:9

Figure 4 Correlation between normalized sketch similarities and normalized edit similarity on
length n = 1000 sequences. The legend marks the name of the method and the Pearson correlation.
All methods use sketch size 1000. Through parameter grid search, MH is configured to use k-mer
size 8; OMH uses k-mer size 6 and ω = 2; TSS uses t = 2, dimension 32, window size 0.1n = 100,
stride size 0.01n = 10, as suggested in [11]. LexicHash uses maximum k 32. SubseqSketch uses token
size 6.

the top-T nearest neighbors. It is worth noting that computing sketch distances is much297

more scalable than computing edit distances.298

We show results on two widely used datasets GEN50kS and GEN20kL from [26] which are299

also benchmarked in the CNN-ED paper. The GEN50kS dataset contains 50, 000 sequences300

with an average length 5, 000. The GEN20kL dataset contains 20, 000 sequences with an301

average length 20, 000. The CNN-ED pipeline splits each dataset into three disjoint sets: a302

WABI 2025

XX:10 Sequence similarity estimation by random subsequence sketching

training set with 1, 000 sequences, a query set with 1, 000 sequences, and a base set containing303

the remaining sequences. It then computes the all-vs-all edit distances between the query set304

and the base set to form the ground truth for the nearest neighbor search. For the sketching305

methods, the training set is not used.306

To evaluate the performance of di!erent methods, we plot the commonly used recall-item307

curves in Figure 5 and Figure 6. For a figure labeled top-T , the T nearest neighbors of a308

query in the base set according to the edit distances are considered true neighbors. The309

horizontal axis represents the number of neighbors (items) each method is allowed to report310

(according to their respective sketch/embedding distances) and the vertical axis marks the311

fraction of true neighbors being reported (recall). The CNN-ED pipeline presents full-range312

results – from reporting a single item to reporting all items – which, while not practical for313

typical use cases (where only the top-T neighbors are retrieved), allows for plotting complete314

performance curves.315

Figure 5 Recall-item curves of di"erent methods on the GEN50kS dataset. All methods output
vectors of dimension 200. SubseqSketch uses token size 6. Left: ground truth is the top-1 nearest
neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

Figure 6 Recall-item curves of di"erent methods on the GEN20kL dataset. All methods output
vectors of dimension 128. SubseqSketch uses token size 7. Left: ground truth is the top-1 nearest
neighbor by edit distance. Right: ground truth contains the top-10 nearest neighbors by edit
distance.

In this experiment we restrict our comparison to CNN-ED, which was shown to outperform316

K. Chen, V. Pattar, and M. Shao XX:11

other non-machine learning methods such as the CGK embedding [3]. The CNN-ED results317

are obtained by the implementation of [4]. It is a deep convolutional neural network model318

which we trained for 50 epochs following the reported hyperparameters in the original paper.319

For a fair comparison, SubseqSketch is configured to produce vectors of the same length as320

the embedding dimensions of CNN-ED. Observe that SubseqSketch consistently outperforms321

CNN-ED by a large margin. This is a surprising result. It is commonly believed (which is322

often, though not always, justified) that machine learning models can outperform traditional323

algorithmic methods because the models can learn data-dependent features that the data-324

oblivious algorithms cannot take advantage of. In [4], the CGK embedding [3] was shown325

to produce a worse result than CNN-ED on this task, even though it is an edit distance326

embedding with theoretical guarantees. Our result here demonstrates that there is a gap327

between theoretical bounds and practical performance which warrants further investigation.328

In particular, we conjecture that SubseqSketch can also provide some guarantees on the329

distortion as a randomized embedding function for the edit distance, though a theoretical330

proof seems di"cult.331

3.3 Phylogeny reconstruction332

Phylogeny reconstruction is another common task that can be used to evaluate the per-333

formance of alignment-free methods. Given a set of biologically related genomes, the goal334

is to build a phylogeny on them based on pairwise similarities/distances estimated by the335

sketches. The result can then be compared with a ground truth tree constructed from some336

biological model or multiple sequence alignment. We test on two datasets for this task: one337

is a simulation of a simple mutation model similar to that used in [19]; the other is a set of338

29 assembled E. coli genome sequences collected in [25].339

For both datasets, an all-vs-all distance matrix is computed for each method. For the340

simulated dataset, the matrices are used to build the phylogenies with the neighbor-joining341

algorithm implemented in the biotite package [12]. The normalized Robinson-Foulds (nRF)342

distances between the constructed trees and the ground truth tree are then calculated with343

the ETE toolkit [9]. The nRF distance measures the dissimilarity of branching patterns344

between two trees and ignores branch lengths. A value of 0 means the two phylogenies345

have the identical tree topology, whereas a value of 1 indicates the two trees are maximally346

dissimilar. For the real E. coli genome sequences, the AFproject [27] (a benchmark project347

for alignment-free sequence analysis tools) provides a web interface where the phylogenies348

can be computed from the uploaded distance matrices. The nRF distances are then reported349

by comparing the resulting trees against a ground truth tree built from multiple sequence350

alignment. It also provides the normalized Quartet Distance (nQD) as an additional measure351

for topological disagreement. On the website, many alignment-free phylogeny reconstruction352

tools are ranked based on the nRF distances achieved.353

Following the experiment in [19], we simulate a family of sequences using a simple354

mutation model that includes both point mutations and mobile genomic elements, commonly355

found in bacterial genome rearrangements, known as insertion sequences (IS). The simulated356

sequences form a perfect binary tree. The root of the tree is a random sequence of length357

10, 000; it is considered as the 0-th generation genome. To obtain the i-th generation, each358

sequence in the (i ↑ 1)-th generation produces two children genomes by independent and359

random point mutations with mutation rate 0.01%. Then a random IS of length 500 is360

inserted at a random position for each newly generated i-th generation genomes. Note that361

the IS is shared among all sequences in the same generation, but the inserting positions can362

be di!erent. See Figure 7 for an illustration. Although simple and somewhat unrealistic, this363

WABI 2025

XX:12 Sequence similarity estimation by random subsequence sketching

model produces a solid ground truth phylogeny and allows us to investigate the e!ectiveness364

of di!erent sketching methods to recover the mixed history of point mutations and large365

insertion events.366

generation 4

generation 3

generation 2

generation 1

generation 0 (10k bp)

IS

mutation rate 0.01%

Figure 7 An illustration of the simulated phylogeny. In the zoomed-in view at the bottom, the
top segment represents a sequence from the 3-rd generation. Its two children in the 4-th generation
are obtained by random point mutations represented by colored dots. The blue segment represents
the common IS inserted into each sequence in the 4-th generation.

Figure 8 shows the nRF distances achieved by each method on progressively larger inputs367

from the simulated dataset. The horizontal label i means all the 2i sequences from the i-th368

generation are used as input sequences. Not surprisingly, pairwise edit distance (ED) most369

accurately captures the mutation history, at the cost of significantly longer computation time370

(see Figure 9). Among the sketching methods, SubseqSketch constructs the best phylogeny371

for generation 6 and larger inputs. Furthermore, the nRF distances obtained by SubseqSketch372

exhibits a strong correlation with those achieved by the exact edit distances, indicating it can373

be used as a faithful approximation of the expensive edit calculation. In contrast, although374

MH and OMH produce trees with smaller nRF distances for the smaller input sets, they375

both show some inverse relation with the nRF using edit distances (from generation 3 to 4,376

the nRF distances of trees constructed by edit distance increased, but the nRF distances377

for MH decreased; similarly from generation 4 to 5 for OMH). LH is omitted from this378

experiment because its implementation choice for boundary handling tends to assign the379

maximum similarity score to pairs sharing a short matching su"x (see the line at normalized380

similarity score 1 in Figure 4). While this may be appropriate for the overlap detection task381

that LH is designed for, it hinders accurate phylogeny reconstruction on our datasets.382

We also plot the running time of each sketching method in Figure 9 to demonstrate the383

e"ciency of SubseqSketch. As expected, all the sketching methods are much faster than384

computing the all-vs-all exact edit distances. Among them, SubseqSketch is consistently385

the fastest, regardless of the number of input sequences. More specifically, SubseqSketch386

achieves a 6↗ speedup compared to the second fastest method (MH).387

Results for the real E. coli dataset are summarized in Table 3. On the AFproject website,388

nearly 100 tools (include di!erent configurations for the same tool) are ranked based on the389

nRF distance. SubseqSketch is ranked 7th and there are 12 tools that achieve smaller nRF390

distances due to ties. It is worth pointing out that the higher ranked ones are tools designed391

specifically for the task of phylogeny reconstruction, which are often based on some sketching392

method but also apply biological and algorithmic heuristics to adjust the sketch distance393

matrix. Since SubseqSketch is a sketching method rather than a complete tool for phylogeny,394

here we aim to evaluate the sketch quality without those adjustments. By using the raw395

distance matrices, SubseqSketch constructs the best phylogeny (closest to the ground truth)396

K. Chen, V. Pattar, and M. Shao XX:13

Figure 8 Normalized RF distances achieved by each method on the simulated dataset. A lower
nRF distance indicates the constructed phylogeny is more similar to the ground truth tree. All
methods use sketch size 256. Through parameter grid search, MH is configured to use k-mer size 8;
OMH uses k-mer size 6 and ω = 2; TSS uses t = 4, dimension 16, window size 1, 000, and stride size
100. SubseqSketch uses token size 5.

Figure 9 Time spent by each method in seconds (log scale). All experiments run on a server
with an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. Edit distance is computed with the Python
package Levenshtein. MH, OMH, and TSS are computed using the implementation of [11].

among MH, OMH, and TSS.397

In this task, since there are only 29 genomes, we can a!ord to sample the testing398

subsequences from the input to further improve the quality of SubseqSketch. Because the399

inputs are all closely related, this sampling strategy also enables us to use a much larger400

token size t = 40 to achieve an even better result than the recommended t = 15. From401

Table 3, it is evident that setting t = 40 significantly improves accuracy.402

4 Discussion403

We presented SubseqSketch, a subsequence-based sketching method that is both e!ective404

and e"cient at sequence similarity estimation. Comparing to the widely used MH, OMH,405

TSS, and LH sketches, SubseqSketch requires smaller space, is faster to compute, and406

achieves a stronger correlation with the edit similarity. It delivers strong performance in two407

alignment-free tasks: nearest neighbor search and phylogeny reconstruction. In particular,408

it outperforms a machine learning edit distance embedding model by a large margin which409

suggests our method indeed captures critical features of the sequences being sketched.410

A large body of work that we intentionally excluded from our experiments consists of411

WABI 2025

XX:14 Sequence similarity estimation by random subsequence sketching

Table 3 Phylogeny reconstruction results on 29 E. coli genomes. The RF, nRF, and nQD
distances all measure topological disagreement between the reconstructed tree and the ground truth
tree. A lower value indicates a more accurate reconstruction of the phylogeny. The Rank is based on
the nRF distances among many tools tested by the AFproject. All methods use sketch size 10, 000.
Through parameter grid search, MH is configured to use k-mer size 10 (in fact, multiple values
of k between 10 and 30 all yield the same nRF distance, but k = 10 is slightly better on nQD);
OMH uses k-mer size 22 and ω = 3; TSS uses t = 5, dimension 100, window size 500, 000, stride size
100, 000. The parameters used by SubseqSketch are marked in parentheses.

Method RF nRF nQD Rank

MH 30 0.58 0.3307 13
OMH 30 0.58 0.3645 13
TSS 40 0.77 0.4806 17

SubseqSketch (t = 15, k = 128) 22 0.42 0.1377 9
SubseqSketch (t = 40, k = 32) 18 0.35 0.1679 7

seeding-based methods. The simplest seeds are k-mers, representing fixed-length consecutive412

exact matches in the sequences. More advanced k-mer selection schemes exist, such as413

minimizer [24, 18], syncmer [5] and k-min-mer [6]. Seeds sampled from subsequences,414

either with limited patterns such as spaced seed [2, 15] and strobemer [22, 16, 23], or fully415

unrestricted such as SubseqHash [14, 13], have been shown to deliver better performance416

but are usually more expensive to compute. While both sketching and seeding utilize some417

common techniques, for example, the minimizer seeds are obtained by applying MH [1] on418

each window, they di!er significantly in their goals, representations and usage. Seeding419

methods aim to identify local regions of similarity between sequences, providing fine-grained420

information about where and how sequences resemble each other. This often comes at421

the cost of increased memory footprint and computational overhead. Specifically, seeding422

methods typically extract seeds from a relatively small sliding window over a longer input423

sequence. By generating one or more seeds from each overlapping window1, the number of424

seeds for a sequence of length n is usually ”(n). In contrast, sketching methods prioritize425

e"ciency by transforming sequences into compact, low-dimensional representations that426

enable fast, global similarity estimation. For example, an E. coli genome with several million427

base pairs is condensed to a length 10, 000 vector by each sketching method in the above428

experiment. Unlike seeds, which are often used temporarily during computation and then429

discarded, sketches are typically stored and reused, serving as compact indices in databases430

containing vast numbers of sequences.431

There are numerous interesting directions that call for further investigations. From the432

theoretical perspective, a deeper understanding of SubseqSketch, and subsequence-based433

features in general, can be beneficial for better algorithmic designs as well as guiding practical434

applications. Many methods compared in the experiments come with theoretical guarantees:435

MH is an unbiased estimator for the Jaccard similarity; OMH is a locality-sensitive hashing436

(LSH) family for the edit distance; and CGK is an embedding for the edit distance with a437

quadratic distortion. Given the superior performance of SubseqSketch against these methods,438

it is natural to consider what bounds can be proved on it. More specifically, we are curious439

if SubseqSketch is an LSH, and if so, does it o!er better hash collision probabilities? Or is440

1 There also exist seeding schemes without a window guarantee, such as syncmer [5].

K. Chen, V. Pattar, and M. Shao XX:15

it an embedding with provable small distortion for the edit distance? In that case, study441

the relation between its parameters and the achieved distortion can help to make informed442

decisions in practical use.443

On the application side, there are several potential approaches to enhance SubseqSketch.444

For example, Mash [20] is a popular tool for genome distance estimation. It is based on MH445

whose estimation does not exhibit the strongest correlation with edit distance. However, by446

applying a simple Poisson model to adjust the MH score, Mash produces a distance that447

closely approximates the mutation rate on real datasets. Since SubseqSketch starts with a448

more accurate estimation, it is reasonable to believe that similar techniques can be applied449

to further improve its performance.450

A related question concerns the similarity function used by SubseqSketch. The cosine451

similarity was chosen for its e!ectiveness and simplicity. While it matches our intuition that452

sketches of similar sequences should have near identical corresponding entries and therefore453

should be roughly pointing to the same direction in the sketch vector space, the cosine454

similarity explicitly ignores the magnitude of the vectors. In the extreme case, a sketch full of455

1’s is considered to have the maximum similarity with another sketch full of 10’s. This greatly456

diverges from the designed meaning of the SubseqSketch entries – the first sequence barely457

contains any testing subsequences whereas the second contains large portions of each testing458

subsequence – they must be very di!erent! Exploring di!erent similarity functions that can459

better incorporate the expected interpretation of the entries can therefore potentially make460

SubseqSketch more accurate.461

Yet another observation is that SubseqSketch is sensitive for globally well-aligned sequences462

but can struggle with ones that only share meaningful local alignments. For example, we463

cannot expect a genome comprising millions of base pairs to produce a SubseqSketch similar464

to that of a 100-base-pair short read. Other sketching methods such as MH also su!er from465

these situations and special variants such as FracMinHash [10] are designed to handle them466

di!erently. As another example, in building overlap graphs for genome assembly, one needs467

to identify overlapping pairs of sequences that contain additional unaligned prefixes and468

su"xes. Suppose that the tail of sequence a overlaps with the head of sequence b. Since469

SubseqSketch tests for subsequences from left to right and stops immediately when the next470

token cannot be found, the sketches will be disproportionally skewed: because b does not471

have the beginning part of a, testing subsequences fully live inside a can produce 0’s for b,472

even if b contains long su"xes of them. We hope to see diverse adaptations of SubseqSketch473

designed to address these various challenges.474

References475

1 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.476

Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29.477

IEEE, 1997. doi:10.1109/SEQUEN.1997.666900.478

2 Andrea Califano and Isidore Rigoutsos. FLASH: A fast look-up algorithm for string homology.479

In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’93),480

pages 353–359. IEEE, 1993. doi:10.1109/CVPR.1993.341106.481

3 Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouck#. Streaming algorithms for482

embedding and computing edit distance in the low distance regime. In Daniel Wichs and483

Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory484

of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 712–725. ACM,485

2016. doi:10.1145/2897518.2897577.486

4 Xinyan Dai, Xiao Yan, Kaiwen Zhou, Yuxuan Wang, Han Yang, and James Cheng. Con-487

volutional embedding for edit distance. In Proceedings of the 43rd international ACM SI-488

WABI 2025

https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/CVPR.1993.341106
https://doi.org/10.1145/2897518.2897577

XX:16 Sequence similarity estimation by random subsequence sketching

GIR conference on Research and Development in information retrieval, pages 599–608, 2020.489

doi:10.1145/3397271.3401045.490

5 Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in491

biological sequences. PeerJ, 9:e10805, 2021. doi:10.7717/peerj.10805.492

6 Barı$ Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de Bruijn graphs: Whole-493

genome assembly of long reads in minutes on a personal computer. Cell Systems, 12(10):958–968,494

2021. doi:10.1016/j.cels.2021.08.009.495

7 Martin C Frith, Jim Shaw, and John L Spouge. How to optimally sample a sequence for rapid496

analysis. Bioinformatics, 39(2):btad057, 2023. doi:10.1093/bioinformatics/btad057.497

8 Grant Greenberg, Aditya Narayan Ravi, and Ilan Shomorony. Lexichash: sequence similarity498

estimation via lexicographic comparison of hashes. Bioinformatics, 39(11):btad652, 10 2023.499

doi:10.1093/bioinformatics/btad652.500

9 Jaime Huerta-Cepas, François Serra, and Peer Bork. Ete 3: Reconstruction, analysis, and501

visualization of phylogenomic data. Molecular Biology and Evolution, 33(6):1635–1638,502

02 2016. arXiv:https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.503

pdf, doi:10.1093/molbev/msw046.504

10 Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera,505

David Koslicki, and C Titus Brown. Lightweight compositional analysis of metagenomes506

with fracminhash and minimum metagenome covers. bioRxiv, pages 2022–01, 2022. doi:507

10.1101/2022.01.11.475838.508

11 Amir Joudaki, Gunnar Ratsch, and André Kahles. Fast alignment-free similarity estimation509

by tensor sketching. bioRxiv, 2020. doi:10.1101/2020.11.13.381814.510

12 Patrick Kunzmann, Tom David Müller, Maximilian Greil, Jan Hendrik Krumbach, Ja-511

cob Marcel Anter, Daniel Bauer, Faisal Islam, and Kay Hamacher. Biotite: new tools512

for a versatile python bioinformatics library. BMC bioinformatics, 24(1):236, 2023. doi:513

10.1186/s12859-023-05345-6.514

13 Xiang Li, Ke Chen, and Mingfu Shao. E!cient seeding for error-prone sequences with515

subseqhash2. bioRxiv, pages 2024–05, 2024. doi:10.1101/2024.05.30.596711.516

14 Xiang Li, Qian Shi, Ke Chen, and Mingfu Shao. Seeding with minimized subsequence. Bioin-517

formatics, 39(Supplement_1):i232–i241, 06 2023. doi:10.1093/bioinformatics/btad218.518

15 Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology search.519

Bioinformatics, 18(3):440–445, 2002. doi:10.1093/bioinformatics/18.3.440.520

16 Benjamin Dominik Maier and Kristo"er Sahlin. Entropy predicts sensitivity of pseudorandom521

seeds. Genome Research, 33(7):1162–1174, 2023. doi:10.1101/gr.277645.123.522

17 Yu A Malkov and Dmitry A Yashunin. E!cient and robust approximate nearest neighbor523

search using hierarchical navigable small world graphs. IEEE transactions on pattern analysis524

and machine intelligence, 42(4):824–836, 2018. doi:10.1109/TPAMI.2018.2889473.525

18 Guillaume Marçais, Dan DeBlasio, and Carl Kingsford. Asymptotically optimal minimizers526

schemes. Bioinformatics, 34(13):i13–i22, 2018. doi:10.1093/bioinformatics/bty258.527

19 Guillaume Marçais, Dan DeBlasio, Prashant Pandey, and Carl Kingsford. Locality-sensitive528

hashing for the edit distance. Bioinformatics, 35(14):i127–i135, 2019. doi:10.1093/529

bioinformatics/btz354.530

20 Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman,531

Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation532

using minhash. Genome biology, 17:1–14, 2016. doi:10.1186/s13059-016-0997-x.533

21 Will PM Rowe. When the levee breaks: a practical guide to sketching algorithms for processing534

the flood of genomic data. Genome Biology, 20:1–12, 2019. doi:10.1186/s13059-019-1809-x.535

22 Kristo"er Sahlin. E"ective sequence similarity detection with strobemers. Genome Research,536

31(11):2080–2094, 2021. doi:10.1101/gr.275648.121.537

23 Kristo"er Sahlin. Strobealign: flexible seed size enables ultra-fast and accurate read alignment.538

Genome Biology, 23(1):1–27, 2022. doi:10.1186/s13059-022-02831-7.539

https://doi.org/10.1145/3397271.3401045
https://doi.org/10.7717/peerj.10805
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1093/bioinformatics/btad057
https://doi.org/10.1093/bioinformatics/btad652
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
http://arxiv.org/abs/https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2022.01.11.475838
https://doi.org/10.1101/2020.11.13.381814
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1186/s12859-023-05345-6
https://doi.org/10.1101/2024.05.30.596711
https://doi.org/10.1093/bioinformatics/btad218
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1101/gr.277645.123
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1093/bioinformatics/bty258
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1093/bioinformatics/btz354
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-019-1809-x
https://doi.org/10.1101/gr.275648.121
https://doi.org/10.1186/s13059-022-02831-7

K. Chen, V. Pattar, and M. Shao XX:17

24 Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for540

document fingerprinting. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors,541

Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data542

(SIGMOD/PODS’03), pages 76–85. ACM, 2003. doi:10.1145/872757.872770.543

25 Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic approach for closely544

related organisms. Nucleic Acids Research, 41(7):e75–e75, 01 2013. arXiv:https://academic.545

oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf, doi:10.1093/nar/gkt003.546

26 Haoyu Zhang and Qin Zhang. Embedjoin: E!cient edit similarity joins via embeddings. In547

Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and548

data mining, pages 585–594, 2017. doi:10.1145/3097983.3098003.549

27 Andrzej Zielezinski, Hani Z Girgis, Guillaume Bernard, Chris-Andre Leimeister, Kujin Tang,550

Thomas Dencker, Anna Katharina Lau, Sophie Röhling, Jae Jin Choi, Michael S Waterman,551

et al. Benchmarking of alignment-free sequence comparison methods. Genome biology, 20:1–18,552

2019. doi:10.1186/s13059-019-1755-7.553

WABI 2025

https://doi.org/10.1145/872757.872770
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/41/7/e75/25341913/gkt003.pdf
https://doi.org/10.1093/nar/gkt003
https://doi.org/10.1145/3097983.3098003
https://doi.org/10.1186/s13059-019-1755-7

	1 Introduction
	1.1 Related work

	2 SubseqSketch
	2.1 Tokenized subsequence
	2.2 Construction of SubseqSketch
	2.3 Choice of similarity function
	2.4 Choice of parameters
	2.5 Sample subsequences from input

	3 Experiments
	3.1 Correlation between sketch similarity and edit similarity
	3.2 Nearest neighbor search
	3.3 Phylogeny reconstruction

	4 Discussion

