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Abstract. We investigate positivity and probabilistic properties arising from the Young–Fibo-
nacci lattice YF, a 1-differential poset on binary words composed of 1’s and 2’s (known as Fi-
bonacci words). Building on Okada’s theory of clone Schur functions [Oka94], we introduce clone
coherent measures on YF which give rise to random Fibonacci words of increasing length. Unlike
coherent systems associated to classical Schur functions on the Young lattice of integer partitions,
clone coherent measures are generally not extremal on YF.

Our first main result is a complete characterization of Fibonacci positive specializations —
parameter sequences which yield positive clone Schur functions on YF. We connect Fibonacci
positivity with total positivity of tridiagonal matrices, Stieltjes moment sequences, and orthogonal
polynomials in one variable from the (q-)Askey scheme.

Our second family of results concerns the asymptotic behavior of random Fibonacci words
derived from various Fibonacci positive specializations. We analyze several limiting regimes
for specific examples, revealing stick-breaking-like processes (connected to GEM distributions),
dependent stick-breaking processes of a new type, or discrete limits tied to the Martin boundary
of the Young–Fibonacci lattice. Our stick-breaking-like scaling limits significantly extend the
result of Gnedin–Kerov [GK00a] on asymptotics of the Plancherel measure on YF.

We also establish Cauchy-like identities for clone Schur functions (with the right-hand side
given by a quadridiagonal determinant), and construct and analyze models of random permuta-
tions and involutions based on Fibonacci positive specializations and a version of the Robinson–
Schensted correspondence for YF.
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1. Introduction

1.1. Overview. Branching graphs — particularly the Young lattice Y of integer partitions —
have long held a central position at the crossroads of representation theory, combinatorics, and
probability. Indeed, the Young lattice powers the representation theory of symmetric and (to some
extent) general linear groups, giving rise to Schur functions and driving profound connections
to random matrix theory and statistical mechanics. In this landscape, the Plancherel measure
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on Y and its generalization, the Schur measures, have emerged as foundational objects. These
probability measures (in the terminology of statistical mechanics, ensembles of random partitions)
serve as a framework for exploring phenomena such as limit shapes, random tilings, and universal
distributions governing eigenvalues in random matrix ensembles.

Despite the prominence of the Young lattice, kindred combinatorial structures remain relatively
underexplored from a probabilistic perspective. One notable example is the Young–Fibonacci lat-
tice YF [Fom88], [Sta88], [Oka94], [GK00b]. Like the Young lattice, YF possesses a 1-differential
poset structure defined, not on integer partitions, but rather binary words composed of the sym-
bols 1 and 2 (known as Fibonacci words). As a 1-differential poset, YF carries a Plancherel
measure on Fibonacci words. The Young–Fibonacci lattice also mirrors other structures found
in the classical Young lattice, such as versions of the Robinson-Schensted (RS) correspondence,
multiparameter analogues of Schur functions, and a representation-theoretic framework intro-
duced by Okada [Oka94]. At the same time, YF exhibits novel combinatorial and probabilistic
behaviors, which are the main focus of the present work.

Our starting point is the theory of biserial clone Schur functions [Oka94], a family of functions
sw(x⃗ | y⃗ ) indexed by Fibonacci words w ∈ YF and involving two sequences of parameters x⃗ =
(x1, x2, x3, . . .) and y⃗ = (y1, y2, y3, . . .). Clone Schur functions, first introduced by Okada, parallel
the classical Schur functions sλ(z⃗ ), λ ∈ Y, z⃗ = (z1, z2, z3, . . .), in several aspects. Both Schur
and biserial clone Schur functions branch according to a Pieri rule and, more generally, obey
a Littlewood-Richardson rule which reflects the structure of covering relations in the Y and YF

lattices. As a consequence, both Schur and biserial clone Schur functions give rise to harmonic
functions on Y and YF, defined respectively by

λ 7→ sλ(z⃗ )

sn
□
(z⃗ )

, w 7→ sw(x⃗ | y⃗ )
x1 · · ·xn

,

where n is the rank of λ ∈ Y or w ∈ YF. The Plancherel harmonic function (associated with the
Plancherel measure) for each lattice arises from a special choice of parameters in Schur or clone
Schur functions, respectively.

Positive specializations of classical Schur functions (sequences z⃗ for which sλ(z⃗ ) is positive for
all λ ∈ Y) are central in the study of the Young lattice. They are related to total positivity
[AESW51], [ASW52], [Edr52], [Edr53], characters of the infinite symmetric group [Tho64], and
asymptotic theory of characters of symmetric groups of increasing order [VK81].

One important distinction with the YF-lattice is that the harmonic functions on Y associated
with positive specializations of classical Schur functions are extremal (this property is also often
called ergodic, or minimal). Extremality here means that the functions λ 7→ sλ(z⃗ )/s

n
□
(z⃗ ) cannot

be expressed as nontrivial convex combinations of other nonnegative harmonic functions. In
contrast, this extremality property does not generally hold for harmonic functions arising from
Fibonacci positive specializations of biserial clone Schur functions. One of the initial motivations
for our work was to investigate the broad question of how clone harmonic functions on YF

decompose into extremal components. The classification of extremal harmonic functions on YF

was established in [GK00b], and results on the boundary of YF were strengthened in the preprints
[BE20], [Evt20].

Our first goal is to investigate conditions for which a specialization (x⃗, y⃗ ) is Fibonacci positive
— in the sense that the biserial clone Schur functions sw(x⃗ | y⃗ ) are strictly postive for all Fibonacci
words w ∈ YF. Subsequently, we explore probabilistic and combinatorial properties of Fibonacci
positive specializations and related ensembles of random Fibonacci words. The present work
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extends and completes several well-studied classical topics associated with the Young lattice Y

and Schur functions, adapting them to the Young–Fibonacci lattice YF and clone Schur functions.
Our contributions can be summarized as follows:

1. Characterization of Fibonacci positivity. We establish a complete classification of spe-
cializations (x⃗, y⃗ ) for which the clone Schur functions sw(x⃗ | y⃗ ) are positive for all w ∈ YF. The
concept of Fibonacci positivity strengthens the notion of total positivity of tridiagonal ma-
trices whose subdiagonal consist entirely of 1’s. We identify two classes of Fibonacci positive
specializations, of divergent and convergent type.

2. Stieltjes moment sequences and orthogonal polynomials. The connection to tridiago-
nal matrices places the Fibonacci positivity problem into the context of the Stieltjes moment
problem and Jacobi continued fractions. For many examples of Fibonacci positive specializa-
tions, the Borel measure on [0,∞) coming from the corresponding Stieltjes moment problem
is related (via a change of variables) to an orthogonality measure for a family of orthogonal
polynomials in one variable from the (q-)Askey scheme [KS96]. This includes the Charlier,
Type-I Al-Salam–Carlitz, Al-Salam–Chihara, and q-Charlier polynomials. In the latter two
examples, the Fibonacci positivity enforces the atypical condition q > 1, in contrast to the
usual assumption |q| < 1 in the q-Askey scheme.

3. Asymptotics of random Fibonacci words. We investigate the behavior of random Fi-
bonacci words, (originating from various Fibonacci positive specializations) in the limit as the
word length grows. We find examples when the growing random words exhibit one of the
following patterns:
• w = 1r121r22 . . ., where ri scale proportionally to the word length;
• w = 2h112h21 . . ., where hi scale proportionally to the word length;
• w = 1∞v, that is, the word has a single growing prefix of 1’s, followed by a finite (random)
Fibonacci word v ∈ YF.

In the first two cases, the joint scaling limit of either (r1, r2, . . .) or (h1, h2, . . .) displays a
“stick-breaking”-type behavior. In this way, we extend the result of [GK00a] showing that
in a scaling limit, the sequence (h1, h2, . . .) corresponding to the Plancherel measure on YF

converges to the GEM distribution with parameter θ = 1
2 . We observe different stick-breaking

processes, including the ones with dependent stick-breaking steps.
For random Fibonacci words almost surely behaving as w = 1∞v, we determine the prob-

ability law of the random finite word v in the limit in terms of the parameters (x⃗, y⃗ ) of the
Fibonacci positive specialization. This distribution on the v’s is the desired decomposition of
the clone harmonic function w 7→ sw(x⃗ | y⃗ )/(x1 · · ·x|w|) into the extremal components.

4. Clone Cauchy identities and random permutations. We establish clone Cauchy iden-
tities which are summation identities involving clone Schur functions, in parallel to the cele-
brated Cauchy identities for Schur functions. In the Young–Fibonacci setting, the right hand
side of each Cauchy identity is expressed by a quadridiagonal determinant (and not a prod-
uct, like for classical Schur functions). We employ clone Cauchy identities to study models of
random permutations coming from random Fibonacci words and a Robinson–Schensted cor-
respondence for the YF-lattice introduced in [Nze09]. In particular, we compute the moment
generating function for the number of two-cycles in a certain ensemble of random involutions,
and explore its asymptotic behavior under a specific Fibonacci positive specialization. Other
specializations may lead to interesting models of random permutations with pattern avoidance
properties.



RANDOM FIBONACCI WORDS VIA CLONE SCHUR FUNCTIONS 4

In the remainder of the Introduction, we formulate our main results in more detail. Further
discussion of possible extensions and open problems is postponed to the last Section 8.

1.2. Clone Schur functions and Fibonacci positivity. A Fibonacci word w is a binary
word composed of the symbols 1 and 2. Its weight is the sum of the symbols. For example,
|12112| = 7. By YFn we denote the set of Fibonacci words of weight n. The lattice structure on
YF is defined through branching (covering) relations w ↗ w′ on pairs of Fibonacci words, where
|w′| = |w|+1. This relation is recursively defined to hold if and only if either w′ = 1w, or w′ = 2v
with v ↗ w. The base case is given by ∅ ↗ 1. Let dim(w) denote the number of saturated
chains ∅ = w0 ↗ w1 ↗ · · · ↗ wn = w in the Young–Fibonacci lattice starting at ∅ and ending
at w. See Figure 1 for an illustration of the YF up to level n = 5. A function φ on YF is called
harmonic if φ(w) =

∑
w′ : w↗w′

φ(w′) for all w ∈ YF.

Let x⃗ = (x1, x2, x3, . . .) and y⃗ = (y1, y2, y3, . . .) be two sequences of parameters. Define the
ℓ× ℓ tridiagonal determinants by

Aℓ(x⃗ | y⃗ ) := det




x1 y1 0 0 · · ·
1 x2 y2 0
0 1 x3 y3
...

. . .




︸ ︷︷ ︸
ℓ× ℓ tridiagonal matrix

,

Bℓ−1(x⃗+ r | y⃗ + r) := det




yr+1 xr+1yr+2 0 0 · · ·
1 xr+3 yr+3 0
0 1 xr+4 yr+4
...

. . .




︸ ︷︷ ︸
ℓ× ℓ tridiagonal matrix

,

where nonzero elements in all rows in Aℓ and all rows in Bℓ−1 except for the first one follow the
pattern (1, xj , yj). Here and throughout the paper, x⃗ + r and y⃗ + r denote the sequences with
indices shifted by r ∈ Z≥0.

The clone Schur function sw(x⃗ | y⃗ ) is defined by the following recurrence:

sw(x⃗ | y⃗ ) :=
{
Ak(x⃗ | y⃗ ), if w = 1k for some k ≥ 0,

Bk(x⃗+ r | y⃗ + r) · su(x⃗ | y⃗ ), if w = 1k2u for some k ≥ 0 and |u| = r.

The function

φx⃗,y⃗ (w) :=
sw(x⃗ | y⃗ )

x1x2 · · ·x|w|

is harmonic on YF. It is normalized so that φx⃗,y⃗ (∅) = 1.
Our first main result is a complete characterization of the Fibonacci positive sequences (x⃗, y⃗ )

for which the clone Schur functions sw(x⃗ | y⃗ ) are positive for all w ∈ YF:

Theorem 1.1 (Theorem 3.9). All Fibonacci positive sequences (x⃗, y⃗ ) have the form

xk = ck (1 + tk−1), yk = ck ck+1 tk, k ≥ 1,

where c⃗ is an arbitrary positive sequence, and t⃗ = (t1, t2, . . .) (with t0 = 0, for convenience) is a
positive real sequence of one of the two types:
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• (divergent type) The infinite series

1 + t1 + t1t2 + t1t2t3 + . . . (1.1)

diverges, and tm+1 ≥ 1 + tm for all m ≥ 1;
• (convergent type) The series (1.1) converges, and

1 + tm+3 + tm+3tm+4 + tm+3tm+4tm+5 + . . . ≥ tm+1

tm+2(1 + tm − tm+1)
, for all m ≥ 0.

The sequences c⃗ and t⃗ are determined by (x⃗, y⃗ ) uniquely.

The distinguished Plancherel harmonic function

φPL(w) =
dim(w)

n!
, w ∈ YFn,

is obtained from clone Schur functions by setting xk = yk = k, k ≥ 1. Throughout the paper we
are primarily concerned with two deformations of the Plancherel specialization, both of divergent
type: the shifted Plancherel specialization xk = yk = k + σ − 1, σ ∈ [1,∞), and the Charlier
specialization xk = k + ρ − 1, yk = kρ, ρ ∈ (0, 1]. In Section 3.4, we describe other examples of
Fibonacci positive specializations, both of divergent and convergent type.

1.3. Stieltjes moment sequences and orthogonal polynomials. As a corollary of the Fi-
bonacci positivity of a specialization (x⃗, y⃗ ), we see that the infinite tridiagonal matrix with the
diagonals (1, 1, . . .), (x1, x2, . . .), and (y1, y2, . . .) is totally positive, that is, all its minors which
are not identically zero are positive. It is known from [Fla80], [Vie83], [Sok20], [PSZ23] that
totally positive tridiagonal matrices correspond to Stieltjes moment sequences an =

∫
tnν(dt),

n ≥ 0, where ν is a Borel measure on [0,∞). Moreover, the monic polynomials Pn(t), n ≥ 0,
orthogonal with respect to ν can be determined directly in terms of the parameters (x⃗, y⃗ ):

Pn+1(t) = (t− xn+1)Pn(t)− ynPn−1(t), n ≥ 1, P0(t) = 1, P1(t) = t− x1.
We refer to Section 4.1 for a detailed discussion of the connection between total positivity of
tridiagonal matrices and Stieltjes moment sequences.

According to the (q-)Askey nomenclature [KS96], in Section 4.2 we find several Fibonacci
positive specializations whose orthogonal polynomials are (up to a change of variables and pa-
rameters):

• Charlier polynomials;
• Type-I Al-Salam–Carlitz polynomials;
• Al-Salam–Chihara polynomials;
• q-Charlier polynomials.

In these cases, we also explicitly determine the orthogonality measures ν. For example, in the
Charlier case, the orthogonality measure is simply the Poisson distribution with the parameter
ρ. For the Al-Salam–Chihara and q-Charlier polynomials, the Fibonacci positivity enforces the
atypical condition q > 1, in contrast to the usual assumption |q| < 1 in the q-Askey scheme.
Our fifth example, the shifted Plancherel specialization xk = yk = k + σ − 1, corresponds to the
so-called associated Charlier polynomials [ILV88], [Ahb23]. The orthogonality measure ν in this
case is not explicit, but we find its moment generating function (Proposition 4.8).

In each of the five examples, we also list a combinatorial interpretation of the Stieltjes moment
sequence an itself. For example, in the Charlier case, an is known as the Bell (also called Touchard)
polynomial in ρ:

an = Bn(ρ) :=
∑

π∈Π(n)
ρ#blocks(π),
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where the sum is over all set partitions π of [n]. In other examples, an is also expressed as a sum
over set partitions, weighted by other statistics. There is a rich literature on such combinatorial
interpretations [WW91], [Zen95], [Ans05], [KSZ06], [KZ06], [Jos11]. Most of the combinatorial
interpretations in Section 4.2 essentially follow from these references.

While we have a complete description of Fibonacci positive specializations (x⃗, y⃗), explicitly
describing the set of corresponding Borel measures ν within all Borel measures on [0,∞) remains
an open problem.

1.4. Asymptotics of random Fibonacci words. We investigate asymptotic behavior of grow-
ing random Fibonacci words distributed according to clone coherent probability measures Mn

on YFn:

Mn(w) := dim(w)φx⃗,y⃗(w) = dim(w)
sw(x⃗ | y⃗ )

x1x2 · · · xn
, w ∈ YFn.

The measures Mn are called coherent since they are compatible for varying n; see (2.5).
In Sections 5.3 and 5.4, we prove two limit theorems concerning the asymptotic behavior of

random Fibonacci words under the Charlier and the shifted Plancherel specializations. For the
Charlier specialization xk = k+ρ−1, yk = kρ, we decompose the random word as w = 1r121r22 . . ..

Theorem 1.2 (Theorem 5.7). Fix ρ ∈ (0, 1). Let w ∈ YFn be distributed according to the
Charlier clone coherent measure Mn. Then for each fixed k ≥ 1, the joint distribution of runs
(r1(w), . . . , rk(w)) converges to

rj(w)

n−
∑j−1

i=1 ri(w)

d−−−→
n→∞

ηρ;j , j = 1, . . . , k,

where ηρ;1, ηρ;2, . . . are i.i.d. copies of a random variable with the distribution

ρδ0(α) + (1− ρ)ρ(1− α)ρ−1dα, α ∈ [0, 1].

This distribution is a convex combination of the point mass at 0 and the Beta random variable
beta(1, ρ), with weights ρ and 1− ρ.

Equivalently, we have {rj/n}j≥1 → Xj , where X1 = U1 and Xn = (1 − U1) · · · (1 − Un−1)Un

for n ≥ 2, where Uj = ηρ;j are i.i.d. The representation of the vector (X1, X2, . . .) through the
variables Uj is called a stick-breaking process.

Note that if Uj have the distribution beta(1, θ), then the distribution of the vector (X1, X2, . . .)
is called the Griffiths–Engen–McCloskey distribution GEM(θ). We refer to [JKB97, Chapter 41]
for further discussion and applications of GEM distributions.

We see that the runs of 1’s under the Charlier specialization scale to the GEM(ρ) vector with
additional zero entries inserted independently with density 1− ρ.

For the shifted Plancherel specialization xk = yk = k+ σ− 1, we decompose the random word
as w = 2h112h21 . . .. Denote h̃j = 2hj + 1.

Theorem 1.3 (Theorem 5.13). Fix σ ≥ 1. Under the shifted Plancherel clone coherent measure

Mn, we have for the joint distribution (h̃1(w), . . . , h̃k(w)) for each fixed k ≥ 1:

h̃j(w)

n−
∑j−1

i=1 h̃i(w)

d−−−→
n→∞

ξσ;j , j = 1, . . . , k.

The joint distribution of (ξσ;1, ξσ;2, . . .) can be described as follows. Toss a sequence of independent
coins with probabilities of success 1, σ−1, σ−2, . . .. Let N be the (random) number of successes
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until the first failure. Then, sample N independent beta(1, σ/2) random variables. Set ξσ;k,
k = 1, . . . , N , to be these random variables, while ξσ;k = 0 for k > N .

When σ > 1, the random variables ξσ;k are not independent, but ξσ;1, . . . , ξσ;n are conditionally
independent given N = n. Almost surely, the sequence ξσ;1, ξσ;2, . . . contains only finitely many
nonzero terms.

At σ = 1 (Plancherel measure), we have N = ∞ almost surely, so the random variables ξ1;k
are i.i.d. beta(1, σ/2). Thus, we recover the convergence to GEM(1/2) obtained in [GK00a].

Theorems 1.2 and 1.3 follow from product-like formulas for the joint distributions of rj(w)
and hj(w), respectively. The product-like formulas are valid for arbitrary Fibonacci positive
specializations, but they greatly simplify in the Charlier and shifted Plancherel cases.

Consider now specializations of convergent type, with an additional condition that the infinite
product

∏∞
i=1(1 + ti) converges to a finite value.

Theorem 1.4 (Propositions 5.18 and 5.19). With the above assumption on the sequence t⃗ of
convergent type, the random word w ∈ YFn under the corresponding clone coherent measure
behaves in the limit as n→∞ as

• either w→ 1∞,
• or w→ 1∞2v, where v ∈ YF is a finite random Fibonacci word.

The convergence of w is stabilization on the discrete set. The distribution µI of the limiting word
belonging to 1∞YF := {1∞} ∪ {1∞2u : u ∈ YF} is given by

µI (1
∞) =

∞∏

i=1

(1 + ti)
−1, µI (1

∞2u) =

(
|u|−1∏

i=1

(1 + ti)

)
(
|u|+ 1

)
M|u|(u)

B∞(|u|)∏∞
i=1(1 + ti)

,

where u ∈ YF is arbitrary, and B∞(m), m ≥ 0, is an infinite series defined below in (3.6).
Moreover, µI is a probability measure on 1∞YF.

In Corollary 5.20, we obtain the following decomposition of the clone harmonic function φx⃗,y⃗

for specializations of convergent type satisfying
∏∞

i=1(1 + ti) <∞:

φx⃗,y⃗ = µI(1
∞)Φ1∞ +

∑

u∈YF

µI(1
∞2u)Φ1∞2u, Φ1∞2u(w) :=





dim(w, 1k2u)

dim(2u)
, if w ⊴ 1ku, k ≥ 0,

0, otherwise.

Here, ⊴ denotes the partial order on YF (induced from the branching relation). The functions
Φ1∞ and Φ1∞2u for v ∈ YF are called Type-I harmonic functions, and they are extremal.

1.5. Clone Cauchy identities and random permutations. In Section 6, we derive clone
Cauchy identities generalizing the classical Cauchy-type summation formulas for the usual Schur
functions. Two identities are presented in Propositions 6.8 and 6.9, with the second being

∑

|w|=n

sw(p⃗ | q⃗ )sw(x⃗ | y⃗ ) = det




A1 B1 C1 0 · · ·
1 A2 B2 C2

0 1 A3 B3

0 0 1 A4
...

. . .




︸ ︷︷ ︸
n×n quadridiagonalmatrix

, (1.2)

where Ak = pkxk, Bk = qk(xkxk+1 − yk) + yk(pkpk+1 − qk), Ck = pkxkqk+1yk+1.
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The identity in (1.2) can be used to define clone analogues of Schur measures, extending the
framework from harmonic functions on YF. Indeed, when one of the specializations in (1.2) is
Plancherel, pk = qk = k, identity (1.2) reduces to the normalizing identity for the clone harmonic
function φx⃗,y⃗. For the Young lattice, Schur measures were introduced in [Oko01] and generalized
to Schur processes (measures on sequences of partitions) in [OR03]. They found extensive appli-
cations in random matrices, interacting particle systems, random discrete structures like tilings,
geometry, and other areas [OP06], [ORV06], [BF14], [BG16], [BP14], [CH14]. We leave clone
analogues of Schur measures and processes for future work.

In Section 7, we introduce ensembles of random permutations and involutions by utilizing the
Young–Fibonacci RS correspondence [Nze09] and positive harmonic functions on YF. In full
generality, the distribution of a permutation or involution depends, respectively, on a triplet
(π, φ, ψ) or a couple (π, φ) of harmonic functions. We do not treat the general case in the present
work, but focus on the clone harmonic / Plancherel random involutions, that is, corresponding
to setting π = φx⃗,y⃗ and φ = φPL , where (x⃗, y⃗) is a Fibonacci positive specialization. Using clone
Cauchy identities, we find the moment generating function for the number of two-cycles in a
random involution σ ∈ Sn (Proposition 7.5):

E
[
τ#two-cycles(σ)

]
= (x1 · · ·xn)−1 det




x1 (1− τ)y1 −τx1y2 0 · · ·
1 x2 (1− 2τ)y2 −2τx2y3
0 1 x3 (1− 3τ)y3
0 0 1 x4
...

. . .




︸ ︷︷ ︸
n×n quadridiagonalmatrix

,

where τ is an auxiliary parameter.
When (x⃗, y⃗) is the shifted Plancherel specialization (xk = yk = k + σ − 1, σ ∈ [1,∞)), the

Young–Fibonacci shape w ∈ YFn of a random involution σ ∈ Sn under the RS correspondence
has the same distribution as a random Fibonacci word considered in Theorem 1.3 above. In this
way, we can compare the asymptotic behavior of the total number of 2’s in a random Fibonacci
word (which is the same as the number of two-cycles), and the scaling limit of initial long sequences
of 2’s from Theorem 1.3. We establish a law of large numbers (Proposition 7.10) for the total
number of 2’s:

lim
n→∞

#two-cycles(σ)

n
=

1

σ + 1
. (1.3)

For σ > 1, this value exceeds the expectation of the sum of the scaled quantities hj in Theo-
rem 1.3. This discrepancy reveals that additional digits of 2 remain hidden in the growing random
Fibonacci word after long sequences of 1’s. This behavior is unaccounted for in the scaling limit
of Theorem 1.3 but contributes to the law of large numbers (1.3).

Outline of the paper. Section 2 provides the necessary background on the Young–Fibonacci
lattice YF and clone Schur functions, introducing harmonic functions and coherent measures on
the Young–Fibonacci lattice arising from specializations of clone Schur functions. In Sections 3
and 4, we define and characterize Fibonacci positivity and relate it to total positivity, Stieltjes
moment sequences, and orthogonal polynomials. Section 5 examines the asymptotic behavior of
coherent measures derived from various Fibonacci positive specializations. We analyze several
limiting regimes for specific examples, revealing distributions resembling stick-breaking processes
(associated with GEM distributions), dependent stick-breaking processes, or discrete limits tied to
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the Martin boundary of the Young–Fibonacci lattice. Section 6 discusses clone Cauchy identities,
focusing on summation identities involving products of clone Schur functions. In Section 7, we in-
vestigate how clone Schur functions and a variant of the Robinson–Schensted correspondence for
YF can define models of random permutations and involutions. Utilizing clone Cauchy identities,
we compute the moment generating function for the number of two-cycles in a random involu-
tion (under a particular specialization), and explore its asymptotic behavior. Finally, Section 8
outlines several open problems, including combinatorial ergodicity, truncated Young–Fibonacci
lattices, further inquiries into the asymptotics of coherent measures and random permutation
models, and connections to nonsymmetric and quasisymmetric functions.
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2. Background. Young–Fibonacci lattice and clone Schur functions

In this background section we review the Young–Fibonacci lattice YF (which is often referred
to as the Young–Fibonacci branching graph) [Fom88], [Sta88], [GK00b] and clone Schur functions
introduced in [Oka94]. The (biserial) clone Schur functions are harmonic on YF and we use them
to define coherent probability measures on Fibonacci words.

2.1. Young–Fibonacci lattice and harmonic functions. A Fibonacci word w = w1 . . . wℓ is
any binary word with letters wj ∈ {1, 2}. The integer |w| := w1 + . . . + wℓ = n is called the
weight of the word w. The total number of Fibonacci words of weight n is equal to the n-th
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Fibonacci number,1 hence the name. Denote the set of all Fibonacci words of weight n by YFn,
where n ≥ 0.

Definition 2.1. The Young–Fibonacci lattice YF is the union of all sets YFn, n ≥ 0. In this
lattice, w ∈ YFn is connected to w′ ∈ YFn+1 if and only if w′ can be obtained from w by one of
the following three operations:

F1. w′ = 1w.
F2. w′ = 2k+1v if w = 2k1v for some k ≥ 0 and an arbitrary Fibonacci word v.
F3. w′ = 2ℓ12k−ℓv if w = 2kv for some k ≥ 1 and an arbitrary Fibonacci word v. While F1 and

F2 each generate at most one edge, this rule generates k edges indexed by ℓ = 1, . . . , k.

We denote this relation by w ↗ w′ (equivalently, w′ ↘ w). An example of the Young–Fibonacci
lattice up to level n = 5 is given in Figure 1.

∅

1

11 2

111 21 12

1111 211 121 22 112

11111 2111 1211 221 1121 122 212 1112

Figure 1. The Young–Fibonacci lattice up to level n = 5.

Definition 2.2. A function φ on YF is called harmonic if it satisfies

φ(w) =
∑

w′ : w′↘w

φ(w′) for all w ∈ YF.

A harmonic function is called normalized if φ(∅) = 1.

For w ∈ YF, denote by dim(w) the number of oriented paths (also known as saturated chains)
from ∅ to w in the Young–Fibonacci lattice. Let I2(w) be the sequence of all positions of the
letter 2 in w, reading from left to right. Then

dim(w) =
∏

i∈I2(w)

di(w), where di(w) = |v|+ 1 if w = u2v is the splitting of w at position i.

(2.1)

1With the convention that F0 = F1 = 1.
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Equivalently, dim(w) obeys the following recursion:

dim(w) =





1, if w = ∅;

dim(v), if w = 1v for a Fibonacci word v;

(|v|+ 1) dim(v), if w = 2v for a Fibonacci word v.

(2.2)

For example, if w = 22121, then I2(w) = (1, 2, 4), and dimw = 70. Since YF is a 1-differential
poset, we have [Sta88, Corollary 3.9], (see also [Fom94]):

∑

w∈YFn

dim2(w) = n! . (2.3)

With any nonnegative normalized harmonic function we can associate a family of probability
measures Mn on YFn as follows:

Mn(w) := dim(w) · φ(w), w ∈ YFn. (2.4)

The fact that
∑

w∈YFn
Mn(w) = 1 follows from the normalization of φ, and the harmonicity of φ

translates into the coherence property of the measures Mn:

Mn(w) =
∑

w′ : w′↘w

Mn+1(w
′)
dim(w)

dim(w′)
, w ∈ YFn. (2.5)

The set of all nonnegative normalized harmonic functions on YF forms a simplex Υ(YF). The
set of extreme points of this simplex (the ones not expressible as a nontrivial convex combination
of other points) is denoted by Υext(YF). In general, Υext(YF) is a subset of the Martin boundary,
denoted by ΥMartin(YF). The latter consists of harmonic functions which can be obtained by
finite rank approximation. The Martin boundary of the Young–Fibonacci lattice is described
in [GK00b]. Recently, it was shown in the preprints [BE20], [Evt20] that the Martin boundary
coincides with the set of extreme points Υext(YF).

For any coherent family of measures Mn on YFn, n = 0, 1, 2, . . ., there exists a unique proba-
bility measure µ on Υext(YF) such that

Mn(w) =

∫

Υext(YF)
dim(w)φω(w)µ(dω), w ∈ YFn. (2.6)

Here φω is the extremal harmonic function corresponding to ω ∈ Υext(YF).

2.2. Plancherel measure and its scaling limit. An important example of a harmonic function
on YF is the Plancherel function defined as

φPL(w) :=
dim(w)

n!
, w ∈ YFn. (2.7)

In [GK00a] it is shown that φPL belongs to Υext(YF). Moreover, for the Plancherel measure
Mn(w) = dim2(w)/n! corresponding to φPL as in (2.4), [GK00a] establishes a n → +∞ scaling
limit theorem for the positions of the 1’s in the random Fibonacci word w which we now describe.

Represent w ∈ YF as a sequence of contiguous blocks of letters 2 separated by 1’s. For example,
w = 122112 = (1)(221)(1)(2). Each block except possibly the rightmost one contains exactly one

1, which is its terminating letter. Denote by h̃1, h̃2, . . . the sequence of weights of the blocks,
reading from left to right. For the example above, h̃1 = 1, h̃2 = 5, h̃3 = 1, h̃4 = 2, and h̃j = 0 for

j ≥ 5. We have h̃1 + h̃2 + . . . = n. We use the notation h̃k for consistency with the computations
in Section 5.2 below.



RANDOM FIBONACCI WORDS VIA CLONE SCHUR FUNCTIONS 12

Definition 2.3. The GEM (Griffiths–Engen–McCloskey) distribution with parameter θ > 0
(denoted GEM(θ)) is a probability measure on the infinite-dimensional simplex

∆ :=
{
(x1, x2, . . .) : xj ≥ 0,

∞∑

j=1

xj ≤ 1
}

(2.8)

obtained from the residual allocation model (also called the stick-breaking construction) as fol-
lows. By definition, a random point X = (X1, X2, . . .) ∈ ∆ under GEM(θ) is distributed as

X1 = U1, Xn = (1− U1)(1− U2) · · · (1− Un−1)Un, n = 2, 3, . . . ,

where U1, U2, . . . are independent beta(1, θ) random variables (i.e., with density θ(1 − u)θ−1 on
the unit segment [0, 1]). We refer to [JKB97, Chapter 41] for further discussion and applications
of GEM distributions.

Theorem 5.1 in [GK00a] establishes the convergence in distribution as n→ +∞:

( h̃1(w)
n

,
h̃2(w)

n
, . . .

)
−→ X = (X1, X2, . . .), X ∼ GEM(1/2), (2.9)

where h̃j(w) are the block sizes (described above) of the random Fibonacci word w distributed
according to the Plancherel measure on YFn.

2.3. Harmonic functions from clone Schur functions. A rich family of non-extremal har-
monic functions on YF comes from clone Schur functions [Oka94] which we now describe. Let
x⃗ = (x1, x2, . . .) and y⃗ = (y1, y2, . . .) be two families of indeterminates. Define two sequences of
tridiagonal determinants as follows:

Aℓ(x⃗ | y⃗ ) := det




x1 y1 0 · · ·
1 x2 y2
0 1 x3
...

. . .




︸ ︷︷ ︸
ℓ× ℓ tridiagonal matrix

, Bℓ−1(x⃗ | y⃗ ) := det




y1 x1y2 0 · · ·
1 x3 y3
0 1 x4
...

. . .




︸ ︷︷ ︸
ℓ× ℓ tridiagonal matrix

. (2.10)

Here ℓ ≥ 0. For a sequence u⃗ = (u1, u2, . . .), denote its shift by u⃗ + ℓ = (u1+ℓ , u2+ℓ , . . .), where
ℓ ∈ Z≥0.

Remark 2.4. When there is no risk of ambiguity, we’ll abbreviate Aℓ(x⃗ | y⃗ ) and Bℓ(x⃗ | y⃗ ) as Aℓ

and Bℓ, respectively. Moreover, we will use the shorthand notation Aℓ(m) := Aℓ(x⃗ +m | y⃗ +m)
and Bℓ−1(m) := Bℓ−1(x⃗+m | y⃗ +m) for the shifted determinants.

Definition 2.5. For any Fibonacci word w, define the (biserial) clone Schur function sw(x⃗ | y⃗ )
through the following recurrence:

sw(x⃗ | y⃗ ) :=
{
Ak(x⃗ | y⃗ ), if w = 1k for some k ≥ 0,

Bk

(
x⃗+ |u| | y⃗ + |u|

)
· su(x⃗ | y⃗ ), if w = 1k2u for some k ≥ 0.

(2.11)

Note that these functions are not symmetric in the variables, and the order in the sequences
(x1, x2, . . .) and (y1, y2, . . .) is important. The clone Schur functions satisfy a YF-version of the
Littlewood–Richardson identity, whose simplest form is the following clone Pieri rule established
in [Oka94]:

x|w|+1 · sw(x⃗ | y⃗ ) =
∑

w′ : w′↘w

sw′(x⃗ | y⃗ ) (2.12)
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Let us briefly mention the background (developed in [Oka94]) behind the clone Schur func-
tions. The biserial clone Schur functions sw(x⃗ | y⃗ ) arise as evaluations (depending on x⃗ and y⃗ ) of
Okada’s clone Schur functions sw(x |y) which are noncommutative polynomials in the free alge-
bra generated by two symbols x and y. Both the clone and biserial clone Schur functions play
a vital role vis-à-vie the representation theory of the Okada algebra(s): the multiplicative struc-
ture of the noncommutative clone Schur functions models the induction product for irreducible
representations of Okada algebras, while the biserial clone Schur functions are matrix entries for
the action of the generators in these representations. This amplifies the parallel with usual Schur
functions where the Littlewood–Richardson rule for multiplying Schur functions describes the
induction product of representations of the symmetric group.

To summarize, the usual Young lattice Y (or partitions ordered by inclusion) is simultaneously
responsible for the branching of the representations of the symmetric groups Sn, and for the Pieri
rule for Schur functions (the simplest of the Littlewood–Richardson rules). Similarly, the Young–
Fibonacci lattice YF is simultaneously the branching lattice for Okada algebra representations,
and is responsible for the clone Pieri rule (2.12) for the biserial clone Schur functions.

Let us proceed with a number of straightforward properties of the biserial clone Schur functions.
For a complex-valued sequence γ⃗ = (γ1, γ2, γ3, . . . ) one readily sees from Definition 2.5 that

sw
(
γ⃗ · x⃗

∣∣ γ⃗ · (γ⃗ + 1) · y⃗
)
= (γ1 · · · γ |w|

)
sw(x⃗ | y⃗ ), (2.13)

where γ⃗ · x⃗ = (γ1x1, γ2x2, γ3x3, . . . ) and γ⃗ +1 = (γ2, γ3, γ4, . . . ). In particular, the biserial clone
Schur functions with the variables (x⃗, y⃗ ) scale as follows:

sw(γ x⃗ | γ2 y⃗ ) = γ|w|sw(x⃗ | y⃗ ), (2.14)

where γ x⃗ means that we multiplied all the variables xi by γ ∈ C, and similarly for γ2 y⃗.
Assume that xi ̸= 0 for all i, and define the following normalization:

φx⃗,y⃗ (w) :=
sw(x⃗ | y⃗ )
x1 · · ·x|w|

, w ∈ YF. (2.15)

The formula 2.12 implies that these normalized clone Schur functions define a harmonic function
on YF (see Definition 2.2):

Proposition 2.6 ([Oka94]). Let the variables x⃗ and y⃗ be such that xi ̸= 0 for all i. Then

φx⃗,y⃗ (w) =
∑

w′ : w′↘w

φx⃗,y⃗ (w
′) for all w ∈ YF. (2.16)

We call φx⃗,y⃗ the clone harmonic function, and the corresponding coherent probability measures
(2.4) the clone measures. At this point, we treat the measures as formal and do not require them
to be nonnegative (just need their individual “probability” weights to sum to 1). We will discuss
positivity of the weights in Section 3 below.

Example 2.7. For the particular choice xk = yk = k, k ≥ 1, the clone harmonic function φx⃗,y⃗

turns into the Plancherel harmonic function φPL (2.7). Indeed, this follows from

Aℓ(x⃗ | y⃗ ) = 1, Bℓ−1(x⃗+ r | y⃗ + r) = r + 1, (2.17)

and so with these parameters we have sw(x⃗ | y⃗ ) = dim(w), see (2.1). Denote this choice of
parameters by Π = (x⃗ | y⃗ ) and call it the Plancherel specialization.

As Example 2.7 shows, clone harmonic functions can be nonnegative. In Section 3 below we
characterize specializations (x⃗, y⃗ ) for which the corresponding clone harmonic function is positive
on the whole YF. We also present many new examples of positive clone harmonic functions.
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3. Fibonacci positivity and examples of coherent measures

In this section, we characterize the specializations (x⃗, y⃗ ) under which the clone Schur functions
sw(x⃗ | y⃗ ) are positive for all w ∈ YF (referred to as Fibonacci positive specializations). This proves
Theorem 1.1 from the Introduction. Additionally, we develop many new examples of Fibonacci
positive specializations.

3.1. Reduction to a single sequence parametrization.

Definition 3.1. A specialization (x⃗, y⃗ ), where x⃗ = (x1, x2, . . .), y⃗ = (y1, y2, . . .), and xi, yj ∈ C,
is called Fibonacci nonnegative if the clone Schur functions sw(x⃗ | y⃗ ) are nonnegative for all
Fibonacci words w ∈ YF. If sw(x⃗ | y⃗ ) > 0 for all w ∈ YF, we say that (x⃗, y⃗ ) is Fibonacci positive.

One readily sees that Fibonacci positivity is equivalent to the positivity of the determinants
Aℓ(x⃗ | y⃗ ) and Bℓ(x⃗+ r | y⃗+ r) for all ℓ, r ∈ Z≥0. This, in turn, is equivalent to the total positivity
of the following family of semi-infinite tridiagonal matrices,2 where r ≥ 0:

A
(
x⃗
∣∣ y⃗
)
:=




x1 y1 0 · · ·
1 x2 y2
0 1 x3
...

. . .


 , Br

(
x⃗
∣∣ y⃗
)
:=




yr+1 xr+1yr+2 0 · · ·
1 xr+3 yr+3

0 1 xr+4
...

. . .


 . (3.1)

Indeed, it is known (for example, see [FZ99]) that the total positivity of a tridiagonal matrix is
equivalent to the positivity of its leading principal minors, namely those formed by several initial
and consecutive rows and columns. The list of additional references on total positivity is vast,
and we mention only a few sources here: [Edr53], [Kar68], [Sch88], [FZ00].

Since total positivity of A(x⃗
∣∣ y⃗ ) (3.1) is a necessary condition for a specialization (x⃗, y⃗ ) to be

Fibonacci positive, we may restrict our attention to pairs of sequences (x⃗, y⃗ ) for which A(x⃗
∣∣ y⃗ ) is

totally positive. Using a general factorizaton ansatz introduced in [FZ99] for elements in double
Bruhat cells, we know that the matrixA(x⃗

∣∣ y⃗ ) is totally positive if and only if there exist auxiliary
real parameters ck, dk > 0, k ≥ 1, such that

xk = ck + dk−1 and yk = ck dk for all k ≥ 1, (3.2)

with the condition that x1 = c1. Moreover, {ck}, {dk} are uniquely determined by (x⃗, y⃗).
Notice that formula (2.13) implies that for (x⃗, y⃗ ) depending on ck, dk as above, we have

sw(x⃗
∣∣ y⃗ ) =

(
c1 · · · cn

)
sw(u⃗

∣∣ v⃗ ) for all w ∈ YF, |w| = n, (3.3)

where uk = 1+dk−1/ck and vk = dk/ck+1 for k ≥ 1, with the agreement that u1 = 1. Clearly, the
positivity of the left- and right-hand sides of (3.3) for all w ∈ YF are equivalent to each other,
and so the problem of characterizing Fibonacci positive specializations (x⃗, y⃗ ) can be reduced to
the problem of identifying necessary and sufficient conditions under which the sequence

tk := vk =
dk
ck+1

, k ≥ 1, (3.4)

2We use the convention that a tridiagonal matrix is called totally positive provided that all its minors are strictly
positive except those forced to vanish by the tridiagonal structure. In the literature, the phrase (strictly) totally
positive is sometimes used for matrices all of whose minors are positive. See, e.g., the first footnote in [FJS17] for
a comparison of terminology in references. In the present paper, however, we need to adapt the terminology to
the tridiagonal structure of the matrix, and require that all minors which are not identically vanishing are strictly
positive.
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(with t0 = 0 and tk > 0 for all k ≥ 1) makes the tridiagonal matrices A(u⃗
∣∣ v⃗ ) and Br(u⃗

∣∣ v⃗ )
totally positive (for all r ≥ 1). In the next Section 3.2, we will classify such sequences t⃗, which
leads to a complete characterization of Fibonacci positivity.

In other words, note that the t⃗-sequences (where tk > 0 for k ≥ 1 and t0 = 0) parametrize a
fundamental domain

D = {(u⃗, v⃗) : uk = 1 + tk−1, vk = tk}
within the overall set of totally positive (not necessarily Fibonacci positive) tridiagonal matrices.
The fundamental domain is understood with respect to the action of the multiplicative group
R
∞
>0 which rescales by the c⃗-parameters as in (3.2)–(3.3). Our goal in characterizing Fibonacci

positive specializations is to identify the subset D
Fib ⊂ D which is also a fundamental domain

for the set of all Fibonacci positive specializations under the action of R∞
>0.

3.2. Characterization of Fibonacci positivity. From the discussion in Section 3.1 above,
to address the question of Fibonacci positivity (Definition 3.1), it suffices to consider only the
sequences (u⃗, v⃗ ) depending on a positive real sequence t⃗ = (t1, t2, t3, . . .) as

uk = 1 + tk−1, vk = tk, k ≥ 1, (3.5)

with the agreement that t0 = 0. Let us define for all m ≥ 0:

A∞(m) := 1+

∞∑

r=1

tmtm+1 · · · tm+r−1, B∞(m) := tm+1+(tm+1−tm−1)tm+2A∞(m+3). (3.6)

Note that A∞(m) and B∞(m) are the respective expansions of detA
(
u⃗ + m

∣∣ v⃗ + m
)
and

detBm

(
u⃗
∣∣ v⃗
)
in the parameters tk for k ≥ 1 when treated as formal variables. Be aware that

A∞(0) = 1.

Lemma 3.2. The sum A∞(m) (3.6) is convergent (resp., divergent) for some m ≥ 1 if and only
if it is convergent (resp., divergent) for all m ≥ 1.

Proof. We have

t−1
m

K∑

r=1

tmtm+1 · · · tm+r−1 = 1 − tm+1 · · · tm+K +

K∑

r=1

tm+1tm+2 · · · tm+r.

If the product tm+1 · · · tm+K does not go to zero, then A∞(m) diverges for all m ≥ 1. Otherwise,
we see that the partial sums of A∞(m) and A∞(m+ 1) diverge or converge simultaneously. □

Definition 3.3. We introduce two types of positive real sequences t⃗ based on the convergence
of the A∞(m)’s:

1. A sequence t⃗ has convergent type if the series A∞(m) is convergent and B∞(m) ≥ 0 for all
m ≥ 0 (with the agreement that t0 = 0).

2. A sequence t⃗ has divergent type if tm+1 ≥ 1 + tm for all m ≥ 0.
Note that for a sequence of divergent type, we have tm ≥ m, and so the series A∞(m) diverge
for all m.

We will also refer to the corresponding specialization (u⃗, v⃗ ) given by (3.5) as having convergent
or divergent type.

We now present two general criteria for the Fibonacci positivity of the specialization (u⃗, v⃗ )
(determined by t⃗), based on the convergence or divergence of the series A∞(m) (3.6).
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Proposition 3.4. Assume that the A∞(m)’s are convergent for some (all) m ≥ 1. The special-
ization (u⃗, v⃗ ) (3.5) is Fibonacci positive if and only if t⃗ is a sequence of convergent type.

Proof. Throughout the proof, we will use the notation of Remark 2.4. First, let t⃗ be a sequence
of convergent type. One readily sees that Aℓ(m) = 1 + tmAℓ−1(m+ 1) for all ℓ ≥ 2, so

Aℓ(m) = 1 +

ℓ∑

r=1

tmtm+1 · · · tm+r−1 > 0, m ≥ 1. (3.7)

Note that the right-hand side of (3.7) is a partial sum of A∞(m).
Next, let us consider the determinants Bℓ(m). We have

B0(m) = tm+1 > 0,

B1(m) = tm+1 − (1 + tm − tm+1)tm+2

for all m ≥ 0. If 1 + tm − tm+1 ≤ 0, then this is already positive. Otherwise, we have

B1(m) > B∞(m) = tm+1 − (1 + tm − tm+1)tm+2A∞(m+ 3) ≥ 0,

where the last inequality holds thanks to the convergent type assumption. The first strict in-
equality holds because the partial sums of A∞(m + 3) monotically increase to the infinite sum.
Thus, B1(m) > 0.

For larger determinants with ℓ ≥ 3, we have

Bℓ−1(m) = vmAℓ−1(m+ 2)− umvm+1Aℓ−2(m+ 3)

= vm (1 + tm+2Aℓ−2(m+ 3))− umvm+1Aℓ−2(m+ 3)

= tm+1 − (1 + tm − tm+1)tm+2Aℓ−2(m+ 3).

(3.8)

Similarly, if 1 + tm − tm+1 ≤ 0, then this is already positive. Otherwise, we have Bℓ−1(m) >
B∞(m) ≥ 0, since Aℓ−2(m + 2) < A∞(m + 3). The last nonnegativity again follows from the
convergent type assumption. This implies that for a sequence t⃗ of convergent type, all clone Schur
functions sw(u⃗ | v⃗ ) are positive.

Let us now consider the converse statement and assume that the specialization (3.5) is Fibonacci
positive. The positivity of the tk’s implies that Aℓ(m) is positive for all ℓ ≥ 1, m ≥ 0, see (3.7).
Assume that t⃗ is not of convergent type, that is, tm0+1 < (1 + tm0 − tm0+1)tm0+2A∞(m0 +3) for
some m0 ≥ 0 (this automatically implies that 1 + tm0 − tm0+1 > 0). Since

A∞(m0 + 3) = lim
ℓ→∞

Aℓ−2(m0 + 2),

there exists ℓ0 ≫ 1 (depending on m0) such that tm0+1 < (1 + tm0 − tm0+1)tm0+2Aℓ0−2(m0 + 2).
By (3.8), this shows that Bℓ0−1(m0) < 0, which violates the Fibonacci positivity. □

Proposition 3.5. Assume that A∞(m) is divergent for some (all) m ≥ 1. The specialization
(u⃗, v⃗ ) (3.5) is Fibonacci positive if and only if t⃗ is a sequence of divergent type.

Proof. Here we use the notation of Remark 2.4. Assume that t⃗ is a sequence of divergent type.
Similarly to the proof of Proposition 3.4, we see that Aℓ(m) > 0 for all ℓ ≥ 1, m ≥ 0. We have

B0(m) = tm+1 > 0, B1(m) = tm+1 + (tm+1 − tm − 1)tm+2,

and tm+1 − tm − 1 ≥ 0 for all m ≥ 0 by the assumption. Thus, B1(m) > 0 for all m ≥ 0. Next,
using (3.8), we similarly see that Bℓ−1(m) > 0 for all ℓ ≥ 3 and m ≥ 0.
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Let us now consider the converse statement and assume that the specialization (3.5) is Fibonacci
positive. We still have Aℓ(m) > 0 for all ℓ ≥ 0, m ≥ 0. Assume that t⃗ is not of divergent type,
that is, there exists m0 ≥ 0 such that tm0+1 < 1 + tm0 . We have

Bℓ−1(m0) = tm0+1 + (tm0+1 − tm0 − 1︸ ︷︷ ︸
<0

)tm0+2Aℓ−2(m0 + 3).

Since Aℓ−2(m0 + 3) is positive and unbounded as ℓ → ∞, we see that Bℓ0−1(m0) < 0 for some
ℓ0 ≫ 1 (depending on m0). This violates the Fibonacci positivity, and completes the proof. □

Sequences of divergent type can be treated formally. Introduce variables ϵk for k ≥ 1, and let
ϵ i := ϵi11 · · · ϵ

ik
k be the monomial corresponding to an integer composition i = (i1, . . . , ik) ∈ Z

k
≥0.

Define

tk := k + ϵ1 + · · ·+ ϵk, (3.9)

and let u⃗, v⃗ depend on t⃗ as in (3.5).

Corollary 3.6. Let t⃗ be given by (3.9). Then, the semi-infinite, tridiagonal matrices A
(
u⃗
∣∣ v⃗
)

and Br

(
u⃗
∣∣ v⃗
)
(3.1) for r ≥ 0 are coefficientwise totally positive: Each minor (which does not iden-

tically vanish on the space of all semi-infinite, tridiagonal matrices) is a polynomial in Z[ϵ1, ϵ2, . . . ]
with nonnegative coefficients, at least one of which is positive.

Consequently, the clone Schur function sw(u⃗ | v⃗ ) expands as a polynomial in R[ϵ1, ϵ2, . . . ] with
nonnegative integer coefficients.

Proof. The statements readily follow from the expansions (3.7)–(3.8) and the recursion for the
clone Schur functions (2.11). □

Problem 3.7. How to combinatorially interpret the coefficients of the monomials in the expansion
of a clone Schur function sw(u⃗ | v⃗ ) in terms of the ϵ-variables?

The problem of identifying matrices (with polynomial entries) that are coefficientwise to-
tally positive has been the subject of recent activity. We refer the reader to [Sok14], [PSZ23],
[CDD+21], and [DS23]. The formal specialization given in (3.9) is universal in the following sense:

Corollary 3.8. Any Fibonacci positive sequence t⃗ of divergent type can be obtained by specializing
the ϵ-variables in (3.9) to arbitrary positive real numbers. Moreover, the values of the ϵj’s are

uniquely determined by t⃗.

Summarizing Section 3.1 and the results of Propositions 3.4 and 3.5, we have:

Theorem 3.9 (Characterization of Fibonacci positive specializations). All Fibonacci positive
specializations (x⃗, y⃗ ) have the form

xk = ck (1 + tk−1), yk = ck ck+1 tk, k ≥ 1

(with t0 = 0 by agreement), where t⃗ is a sequence of convergent or divergent type as in Defini-
tion 3.3, and c⃗ is an arbitrary positive real sequence. The sequences c⃗ and t⃗ are determined by
(x⃗, y⃗ ) uniquely.

3.3. Properties of Fibonacci positive specializations. Here we formulate a number of nec-
essary conditions on sequences t⃗ corresponding to Fibonacci positive specializations, and also
present operations that preserve Fibonacci positivity. These observations mainly follow from
Definition 3.3.
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Proposition 3.10. For any m ≥ 1, none of the inequalities tm ≥ tm+1 ≤ tm+2 hold whenever t⃗
is a Fibonacci positive specialization.

Proof. It is sufficient to examine the determinants

B1(m) = tm+1 − (1 + tm − tm+1) tm+2, m ≥ 1,

and verify for each m ≥ 0 that any of the inequalities listed above are inconsistent with the
positivity of B1(m). □

Proposition 3.10 implies that a Fibonacci positive sequence t⃗ can exhibit one of three behaviors
(bearing in mind our convention t0 = 0):

• The sequence t⃗ strictly increases, i.e., tk > tk−1 for all k ≥ 1.
• There exists an ℓ ≥ 1 such that tk > tk−1 for 1 ≤ k ≤ ℓ, and thereafter tk < tk−1 for k ≥ ℓ+ 1.
• There exists an ℓ ≥ 1 such that tk > tk−1 for 0 ≤ k ≤ ℓ, the sequence forms a plateau with
tℓ = tℓ+1, and subsequently tk < tk−1 for all k ≥ ℓ+ 2.

In particular, a Fibonacci positive sequence t⃗ must eventually either strictly increase or strictly
decrease.

Lemma 3.11. If t⃗ is a sequence of convergent type, then

A∞(1) ≥ A∞(2) > A∞(3) > . . . .

Furthermore, A∞(1) = A∞(2) if and only if t1 ∈ (0, 1) and A∞(2) = (1− t1)−1.

Proof. For m ≥ 0, observe that

B∞(m) = A∞(m+ 1)−A∞(m+ 2)− tm tm+2A∞(m+ 3).

Consequently, B∞(m) ≥ 0 if and only if

A∞(m+ 1) ≥ A∞(m+ 2) + tm tm+2A∞(m+ 3) ≥ A∞(m+ 2),

the latter inequality being strict whenever m ≥ 1. Note that A∞(1) = 1 + t1A∞(2), so A∞(1) =
A∞(2) holds if and only if t1 ∈ (0, 1) and A∞(2) = (1− t1)−1. This completes the proof. □

Proposition 3.12. If t⃗ is a sequence of convergent type, then it cannot eventually weakly increase.
In other words, there is no m0 ≥ 1 such that tm ≤ tm+1 for all m ≥ m0.

Proof. If such anm0 exists, then for allm ≥ m0, we have A∞(m) ≤ A∞(m+1), which contradicts
the conclusion of Lemma 3.11. This completes the proof. □

Proposition 3.12 shows that the sequence t⃗ of convergent type must have a limit. In fact, this
limit is always zero:

Proposition 3.13. Let t⃗ be a sequence of convergent type. Then limm→∞ tm = 0.

Proof. Denote γ := limm→∞ tm, which exists since the sequence eventually weakly decreases.
Using the fact that A∞(m + 3) ≤ (1 − tm+3)

−1 for m ≥ m0, we see that γ must be between 0
and 1. By Definition 3.3, we can write for all m ≥ m0:

tm+1 ≥ (1 + tm − tm+1)tm+2A∞(m+ 3) ≥ (1 + tm − tm+1)tm+2 (1− γ)−1.

Taking the limit as m→∞, we get the inequality γ ≥ γ(1− γ)−1, which implies that γ = 0. □

Proposition 3.14. Let t⃗ be a sequence of convergent type. Then lim supm→∞mtm ∈ [0, 1], and
similarly lim infm→∞mtm ∈ [0, 1].
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Proof. Harmonicity (Definition 2.2) implies that

1 =
∑

|w|=m+1

dim(w)φu⃗,v⃗(w)

=
∑

|w|=m

dim(1w)φu⃗,v⃗(1w) +
∑

|w|=m−1

dim(2w)φu⃗,v⃗(2w)

=
∑

|w|=m

dim(w)φu⃗,v⃗(1w) +
∑

|w|=m−1

mtm
(1 + tm−1)(1 + tm)

dim(w)φu⃗,v⃗(w)

=
∑

|w|=m

dim(w)φu⃗,v⃗(1w) +
mtm

(1 + tm−1)(1 + tm)
.

Both
∑

|w|=m dim(w)φu⃗,v⃗(1w) and mtm(1 + tm−1)
−1(1 + tm)−1 are nonzero. Thus, we may con-

clude that mtm(1 + tm−1)
−1(1 + tm)−1 ∈ (0, 1) for all m ≥ 1. By Proposition 3.13, tm → 0 as

m→∞, and consequently,

1 ≥ lim sup
m→∞

mtm
(1 + tm−1)(1 + tm)

= lim sup
m→∞

mtm ≥ 0.

Similarly, lim infm→∞mtm ∈ [0, 1]. This completes the proof. □

Remark 3.15 (Non-example of convergent type specializations). Let 0 < α < 1. By Proposi-
tion 3.14, the sequence tk = κk−α, k ≥ 1, is never of convergent type for any value κ > 0, despite
the fact that tm → 0 as m→∞.

Remark 3.16. The sequence mtm might not converge to a limit under the assumptions that tm
is eventually decreasing to zero, that mtm are bounded by, say, 1. Indeed, denote fn = ntn, then
tn ≥ tn+1 implies that fn − fn+1 ≥ −1/n. Thus, fn may make steps in the interval [0, 1] of size
at most 1/n in any direction. Since the series

∑
1/n diverges, we can organize the steps in such

a way that fn has at least two subsequential limits.
This observation shows that we cannot easily strengthen Proposition 3.14 to the full con-

vergence of mtm. However, less evident properties following from the fact that t⃗ is a Fibonacci
positive specialization of convergent type might imply the convergence ofmtm. We do not further
investigate this question here.

Let us now describe a number of operations which preserve Fibonacci positivity. The first is
straightforward:

Proposition 3.17. For any integer r ≥ 0, (x⃗ + r, y⃗ + r) = (x1+r, x2+r, . . . , y1+r, y2+r, . . .) is a
Fibonacci positive specialization whenever (x⃗, y⃗ ) is Fibonacci positive.

Fibonacci positivity can be seen as a “snake” that eats its own tail because Br( x⃗ | y⃗ ) pro-
vides a new Fibonacci positive specialization for each r ≥ 0, whenever the pair (x⃗, y⃗ ) satisfies
Fibonacci positivity. The following result introduces a form of plethystic substitution for clone
Schur functions that preserves Fibonacci positivity:

Proposition 3.18 (Ouroboric Shift). Let (x⃗, y⃗ ) be a Fibonacci positive specialization. Then, for

any r ≥ 0, the specialization (X⃗, Y⃗ ) is also Fibonacci positive, where

Xk :=

{
yr+1, if k = 1,

xk+r+1, if k ≥ 2,
Yk :=

{
xr+1yr+2, if k = 1,

yk+r+1, if k ≥ 2.
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Proof. We need only to prove that the semi-infinite matrix

B0

(
X⃗
∣∣ Y⃗
)
=




Y1 X1Y2 0 · · ·
1 X3 Y3
0 1 X4
...

. . .


 =




xr+1yr+2 yr+1yr+3 0 · · ·
1 xr+4 yr+4

0 1 xr+5
...

. . .


 (3.10)

is totally positive for all r ≥ 0. Let us show that the corresponding determinants satisfy

Bℓ

(
X⃗
∣∣ Y⃗
)
> 0 for all ℓ ≥ 0. There is no issue when ℓ = 0, since B0

(
X⃗
∣∣ Y⃗
)
= xr+1yr+1 > 0.

We can assume that ℓ ≥ 1. We have

Bℓ(X⃗ | Y⃗ ) = xr+1yr+2s1ℓ(x⃗+ r + 3 | y⃗ + r + 3)− yr+1yr+3s1ℓ−1(x⃗+ r + 4 | y⃗ + r + 4)

= s1ℓ(x⃗+ r + 3 | y⃗ + r + 3)s21(x⃗+ r | y⃗ + r )

− s1ℓ−1(x⃗+ r + 4 | y⃗ + r + 4)s22(x⃗+ r | y⃗ + r).

(3.11)

By Proposition 3.17, it will be sufficient to restrict our analysis of formula (3.11) to the case
where r = 0, since the four clone Schur functions that occur are each shifted by r ≥ 0. We have

s1ℓ(x⃗+ 3 | y⃗ + 3)s21(x⃗ | y⃗ )− s1ℓ−1(x⃗+ 4 | y⃗ + 4)s22(x⃗ | y⃗ )
= s1ℓ21(x⃗ | y⃗ ) + s1ℓ−1(x⃗+ 4 | y⃗ + 4)s211(x⃗ | y⃗ ).

(3.12)

for all ℓ ≥ 1. Formula (3.12) follows as a direct consequence of the clone Littlewood-Richardson
identity [Oka94]. Alternatively, it can be verified directly by induction. The base case, ℓ = 1,
reduces to a restatement of the clone Pieri rule for s21(x⃗ | y⃗ ):

s1(x⃗+ 3 | y⃗ + 3)s21(x⃗ | y⃗ )− s22(x⃗ | y⃗ ) = s211(x⃗ | y⃗ ) + s121(x⃗ | y⃗ ).
As a result, we conclude that (3.12) is positive, as its right-hand side involves only sums and
products of clone Schur functions. These functions, by definition, are positive since (x⃗, y⃗ ) is a
Fibonacci positive specialization. This completes the proof. □

Proposition 3.19. Let t⃗ be a divergent type sequence. Let σ⃗ = (σ0, σ1, σ2, . . . ) be any positive
real sequence such that σk ≤ σk+1 for all k ≥ 0. Then the specialization (x⃗, y⃗ ) defined by
xk = 1 + tk−1 + σk−1 and yk = tk + σk is Fibonacci positive. In particular, the specialization
xk = 1 + tk−1 + σ and yk = tk + σ is Fibonacci positive for any σ ≥ 0.

Proposition 3.20. Let t⃗ be a divergent type sequence. Let α⃗ be a positive real sequence such that

αktk − αk+1tk−1 ≥ αkαk+1, k ≥ 1. (3.13)

Then the specialization (x⃗, y⃗ ) defined by xk = αk + tk−1 and yk = αktk is Fibonacci positive.

A particular case is when αk = ρ ∈ (0, 1] for all k. Then (3.13) clearly holds, and for a
sequence t⃗ of divergent type, the specialization xk = ρ+ tk−1 and yk = ρtk is Fibonacci positive.

Proof of Proposition 3.20. Denote rk := tk/αk, k ≥ 1 (with r0 = 0). For all Fibonacci words
w, we have sw(x⃗ | y⃗ ) = (α1 · · ·α|w|)sw(x⃗

′ | y⃗ ′), where x′k = 1 + rk−1 and y′k = rk. Note that
(3.13) implies that rk ≥ 1 + rk−1 for all k ≥ 1. Thus, s⃗ is of divergent type, and the positivity
follows. □

Proposition 3.21. Let t⃗ = (t1, t2, t3, . . . ) be a strictly decreasing sequence of convergent type.
Then the sequence γ t⃗ := (γt1, γt2, γt3, . . . ) is of convergent type whenever 0 < γ ≤ 1.
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Proof. For m ≥ 0, let

A∞(m, γ) := 1 + γtm + γ2tmtm+1 + γ3tmtm+1tm+2 + . . . ,

B∞(m, γ) := γtm+1 − (1 + γtm − γtm+1) γtm+2A∞(m+ 3, γ),

ϕ0(γ) := t1 − (1− γt1) t2A∞(3, γ).

Clearly, A∞(m, γ) is convergent for any γ ≥ 0, so we only have to address the nonnegativity of
B∞(m, γ) whenever 0 < γ ≤ 1 and m ≥ 0.

Consider two cases, t1 ≤ 1 and t1 > 1. If t1 ≤ 1, we have

ϕ0(γ) ≥ R(γ) for all γ ≥ 0, where R(γ) := t1 −
(1− γt1)t2
1− γt3

.

Furthermore, R(0) = t1 − t2 > 0, and R(γ) only vanishes at

γ0 =
t1 − t2

t1(t3 − t1)
< 0.

It follows that R(γ) > 0 for all γ > 0, which forces

ϕ0(γ) > 0 and B∞(0, γ) > 0 for all γ > 0.

If t1 > 1, then ϕ0(γ) ≥ 0 whenever 1
t1
≤ γ ≤ 1. For γ within the range 0 ≤ γ < 1

t1
, the

inequality ϕ0(γ) ≥ R(γ) is valid, and we may again conclude that ϕ0(γ) > 0 whenever 0 ≤ γ < 1
t1
.

The nonnegativity of B∞(m, γ) for m ≥ 1 follows from

tm+1 ≥ (1 + tm − tm+1) tm+2A∞(m+ 3),

together with A∞(m) > A∞(m, γ) and tm − tm+1 ≥ γtm − γtm+1 whenever 0 ≤ γ ≤ 1. This
completes the proof. □

3.4. Examples of Fibonacci positive specializations. Here we present several Fibonacci
positive specializations. For some of them, we consider scaling limits of the corresponding random
Fibonacci words in Section 5 below. In what follows, we use the standard q-integer notation
[k]q = (1− qk)/(1− q).
Definition 3.22 (Examples of divergent type). We introduce a list of Fibonacci positive special-
izations (x⃗, y⃗ ) related to sequences of divergent type. The naming of some of the specializations is
motivated by connections with Stieltjes moment sequences and the Askey scheme, see Section 4.2
below. We consider the following specializations:

• Shifted Plancherel. xk = yk = k + σ − 1 for σ ∈ [1,∞). It reduces to the Plancherel
specialization for σ = 1.
• Charlier (deformed Plancherel). xk = k + ρ − 1, yk = kρ for ρ ∈ (0, 1]. It reduces to the
Plancherel specialization for ρ = 1.
• Shifted Charlier. xk = k + ρ+ σ − 2, yk = (k + σ − 1)ρ for σ ∈ [1,∞), ρ ∈ (0, 1]. This is a
mixture of the previous two, and reduces to them for ρ = 1 or σ = 1.
• Cigler–Zeng. xk = qk−1, yk = qk − 1 for q ∈ [32 ,∞). This specialization can also be deformed

to xk = qk−1 + ρ− 1, yk = ρ(qk − 1) with ρ ∈ (0, 1]. The name comes from the version of the
q-Hermite polynomials introduced in [CZ11].
• Type-I Al-Salam–Carlitz. xk = ρqk−1+[k−1]q, yk = ρqk−1 [k]q for ρ ∈ (0, 1] and q ∈ (0, 1).
• Al-Salam–Chihara. xk = ρ+ [k − 1]q, yk = ρ[k]q for ρ ∈ (0, 1] and q ∈ [1,∞).

• q-Charlier. xk = ρq2k−2 + [k − 1]q
(
1 + ρ(q − 1)qk−2

)
, yk = ρq2k−2[k]q

(
1 + ρ(q − 1)qk−1

)
for

ρ, q ∈ (0, 1].
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Proposition 3.23. The specializations in Definition 3.22 are Fibonacci positive.

Proof. Let us check the Fibonacci positivity case by case using the representation (3.5) and the
modifications to the specializations in Theorem 3.9 or Proposition 3.20, if required.

For the shifted Plancherel, we have tk = k+σ−1 > 0, k ≥ 1, and t0 = 0. Clearly, the A∞(m)’s
diverge. Moreover, tk+1 − tk = 1 ≥ 1 for all k ≥ 1, and so t⃗ is of divergent type. The Charlier
case follows from Proposition 3.20 with αk = ρ and tk = k. The shifted Charlier is obtained from
the shifted Plancherel by applying Proposition 3.20 with αk = ρ.

For the Cigler–Zeng case, we have tk = qk−1, so the A∞(m)’s clearly diverge. Then tk+1−tk =
qk+1(q − 1), which is ≥ 1 for q ≥ 3/2. In fact, the precise threshold for q is the real root of the
cubic equation q3 = q2 + 1 which is ≈ 1.47, but we take 3/2 for simplicity.

For the Type-I Al-Salam–Carlitz case, take tk = (ρqk)−1[k]q, so the A∞(m)’s clearly diverge.

We have tk+1 − tk = (ρqk+1)−1 ≥ 1, so t⃗ is of divergent type. To get the desired specialization,
we use Theorem 3.9 with ck = ρqk−1.

For the Al-Salam–Chihara case, take tk = [k]q, so the A∞(m)’s clearly diverge. We have

tk+1 − tk = qk ≥ 1, so t⃗ is of divergent type. To get the specialization, apply Proposition 3.20
with αk = ρ for all k.

Finally, for the q-Charlier case, take tk = [k]q (1 + ρ(q − 1)qk−1)/(ρq2k) and ck = ρq2k−2 in
Theorem 3.9. The series A∞(m) diverges for all m. Moreover,

tk+1 − tk = ρ−1q−2k−2
(
(ρ− 1)qk+1 − ρqk + q + 1

)
.

One can check that this expression is ≥ 1 for 0 < ρ ≤ 1, 0 < q ≤ 1. Thus, t⃗ is of divergent type.
This completes the proof. □

Let us now turn to examples of Fibonacci positive specializations of convergent type. We
consider two examples of the form

tk =
κ

kα
, α = 1, 2, k ≥ 1, (3.14)

where κ is a positive real parameter. We call these the power specializations. Note that we must
have α ≥ 1, see Remark 3.15.

Proposition 3.24. There exist upper bounds κ
(α)
1 , α = 1, 2, with κ

(1)
1 ≈ 0.844637 and κ

(2)
1 ≈

1.41056, such that for all 0 < κ < κ
(α)
1 , the specialization (3.14) is Fibonacci positive and of

convergent type.

In the proof and throughout the rest of the paper, we use the standard notation for the
hypergeometric functions and Pochhammer symbols:

rFs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣z
)

=
∞∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
, (a)k = a(a+ 1) · · · (a+ k − 1). (3.15)

Proof of Proposition 3.24. We have for integer α:

A∞(m) = 1 +
κ

mα
+

κ
2

mα(m+ 1)α
+

κ
3

mα(m+ 1)α(m+ 2)α
+ · · ·

=
∞∑

r=0

(
Γ(m)

Γ(m+ r)

)
α

κ
r = 1Fα

(
1 ; m, . . . ,m︸ ︷︷ ︸

α times

; κ
)
.
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The desired inequality

B∞(m) = tm+1 −
(
1 + tm − tm+1

)
tm+2A∞(m+ 3) ≥ 0

can be rewritten as

κ

(m+ 1)α
−
(
1 +

κ

mα
1m>0 −

κ

(m+ 1)α

)
κ

(m+ 2)α
1Fα

(
1 ; m+ 3, . . . ,m+ 3︸ ︷︷ ︸

α times

; κ
)
≥ 0.

As a function of κ, one can check that B∞(m) vanishes only at κ = 0 and at a value κ
(α)
m ∈

(0,∞) for each m ≥ 0. Furthermore, the sequence {κ(α)
m : m ≥ 0} is strictly increasing, and

consequently, the t⃗-sequence will be of convergent type if and only if 0 < κ ≤ κ
(α)
1 . The bounds

are numerically found to be κ
(1)
1 ≈ 0.844637 and κ

(2)
1 ≈ 1.41056. □

4. Positive specializations and Stieltjes moment sequences

4.1. Stieltjes moment sequences and related objects. In this section we examine Fibonacci
positivity in light of the well-known correspondence (due to [Fla80], [Vie83], [Sok20], [PSZ23])
between semi-infinite, totally positive, tridiagonal matrices and Stieltjes moment sequences. In
this subsection, we recall the general setup related to Stieltjes moment sequences, continued
fractions, tridiagonal matrices, orthogonal polynomials, Motzkin polynomials, and Toda flow.
We specialize it to a number of examples coming from Fibonacci positive sequences in Section 4.2
below.

Recall that a sequence a⃗ = (a0, a1, a2, . . . ) of real numbers is called a strong Stieltjes moment
sequence if there exists a nonnegative Borel measure ν(dt) on [0,∞) with infinite support such
that an =

∫∞
0 tnν(dt) for each n ≥ 0. The following result may be found, e.g., in [Sok20]:

Theorem 4.1. A sequence of real numbers a⃗ = (a0, a1, a2, . . . ) is a strong Stieltjes moment
sequence if and only if there exist two real number sequences, x⃗ and y⃗, such that the matrix
A
(
x⃗ | y⃗

)
defined in (3.1) is totally positive, and the (normalized) ordinary moment generating

function of a⃗,

M(z) =
∑

n≥0

an
a0
zn, (4.1)

is expressed by the Jacobi continued fraction depending on ( x⃗ | y⃗ ) as

M(z) = J x⃗,y⃗ (z) :=
1

1− x1z − y1z
2

1− x2z −
y2z

2

1− x3z −
y3z

2

. . .

(4.2)

Moreover, the equality between the generating function M(z) (4.1) and the continued fraction
J x⃗,y⃗ (z) (4.2) is witnessed by the recursion

Pn+1(t) = (t− xn+1)Pn(t)− ynPn−1(t), n ≥ 1, P0(t) = 1, P1(t) = t− x1.

responsible for generating the polynomials Pn(t) which are orthogonal with respect to the nonneg-
ative Borel measure ν(dt) on [0,∞) whose moment sequence is a⃗.
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A putative or ”formal” moment sequence a⃗ can always be combinatorially determined from
any pair of sequences x⃗ and y⃗ by calculating the associated Motzkin polynomials. Specifically,
the ratio an/a0 can be expressed as the generating function of all length-n Motzkin paths, where
each up-step↗ at height k is weighted by yk, and each horizontal step→ at height k is weighted
by xk+1. Figure 2 illustrates an example of a weighted Motzkin path of length seven.

y1

x2
y2 1

x2

1
x1

Figure 2. An example of a Motzkin path of weight x1x
2
2y1y2.

Below we list the first four (normalized) formal moments which are the Motzkin polynomials:

a1/a0 = x1,

a2/a0 = x21 + y1,

a3/a0 = x31 + 2x1y1 + x2y1,

a4/a0 = x41 + 3x21y1 + y21 + 2x1x2y1 + x22y1 + y1y2.

(4.3)

By Theorem 4.1, the fact that the sequence a⃗, as in (4.3), is realized by an infinitely supported,
nonnegative Borel measure is equivalent to the total positivity of A

(
x⃗ | y⃗

)
. Conversely, sequences

x⃗ and y⃗ can be constructed from a Borel measure ν(dt) using the Toda flow [GS97,NZ04], which
we now recall.

Having ν(dt), consider its exponential reweighting eϱtν(dt). The moments of the reweighted
measure satisfy

an(ϱ) =
dn

dϱn
a0(ϱ), where a0(ϱ) =

∫ ∞

−∞
eϱtν(dt) =

∑

n≥0

an
n!
ϱn.

The sum on the far right is the exponential moment generating function of ν(dt). As functions
of ϱ, the associated tridiagonal parameters xn(ϱ) and yn(ϱ) for n ≥ 1 must obey the Toda chain
equations, namely,

d

dϱ
xn(ϱ) = yn(ϱ)− yn−1(ϱ);

d

dϱ
yn(ϱ) = yn(ϱ)

(
xn+1(ϱ)− xn(ϱ)

)
.

(4.4)

Their solutions are given by

xn(ϱ) =
d

dϱ
log

(
∆n(ϱ)

∆n−1(ϱ)

)

= Tr
(
H−1

n (ϱ)H(1)
n (ϱ)

)
− Tr

(
H−1

n−1(ϱ)H
(1)
n−1(ϱ)

)
,

yn(ϱ) =
∆n−1(ϱ)∆n+1(ϱ)

∆n(ϱ)2
.

(4.5)
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Here, ∆n(ϱ) = detHn(ϱ), and Hn(ϱ) and H
(1)
n (ϱ) are the Hankel matrices

Hn(ϱ) :=




a0(ϱ) a1(ϱ) a2(ϱ) · · ·
a1(ϱ) a2(ϱ) a3(ϱ) · · ·
a2(ϱ) a3(ϱ) a4(ϱ) · · ·
...

...
...

. . .




︸ ︷︷ ︸
n× n Hankel matrix

, H(1)
n (ϱ) :=

d

dϱ
Hn(ϱ) =




a1(ϱ) a2(ϱ) a3(ϱ) · · ·
a2(ϱ) a3(ϱ) a4(ϱ) · · ·
a3(ϱ) a4(ϱ) a5(ϱ) · · ·
...

...
...

. . .




︸ ︷︷ ︸
n× n Hankel matrix

.

In H
(1)
n (ϱ), we used the fact that d

dϱak(ϱ) = ak+1(ϱ). For example, the solutions for xk(ϱ) and

yk(ϱ) for k = 1, 2 are

x1(ϱ) =
a1(ϱ)

a0(ϱ)
, x2(ϱ) =

a31(ϱ)− 2a0(ϱ)a1(ϱ)a2(ϱ) + a20(ϱ)a3(ϱ)

a0
(
a0(ϱ)a2(ϱ)− a21(ϱ)

) ,

y1(ϱ) =
a0(ϱ)a2(ϱ)− a21(ϱ)

a20(ϱ)
,

y2(ϱ) =
a0(ϱ)

(
a0(ϱ)a2(ϱ)a4(ϱ) + 2a1(ϱ)a2(ϱ)a3(ϱ)− a21(ϱ)a4(ϱ)− a0(ϱ)a23(ϱ)− a32(ϱ)

)
(
a0(ϱ)a2(ϱ)− a21(ϱ)

)2 .

The sequences x⃗ and y⃗ for the original measure ν(dt) can be obtained by setting ϱ = 0 in (4.5).
We emphasize that the Toda flow preserves total positivity: Given two initial sequences x⃗ and y⃗
for which the matrix A(x⃗ | y⃗ ) is totally positive, the matrix A(x⃗(ϱ) | y⃗(ϱ)) remains totally positive
for any ϱ ≤ 0. Here, x⃗(ϱ) = (x1(ϱ), x2(ϱ), . . . ) and y⃗(ϱ) = (y1(ϱ), y2(ϱ), . . . ) are solutions of the
Toda chain equations given by (4.5).

Example 4.2. Consider the Poisson distribution

ν
(ρ)
Pois(dt) := e−ρ

∑

k≥0

ρk

k!
δk(dt), (4.6)

where δk is the Dirac delta mass at k. This distribution is obtained by applying the Toda flow,
with “time” ϱ = log(ρ), to the Poisson distribution ν

(1)
Pois(dt), and then renormalizing by e1−ρ.

Indeed, the associated tridiagonal parameters have the form

xn(ϱ) = n+ ρ− 1 = n+ eϱ − 1 and yn(ϱ) = ρn = eϱ n.

and satisfy the Toda chain equations (4.4). Note that for all ρ ∈ (0, 1] these tridiagonal param-
eters are Fibonacci positive; equivalently, (x⃗(ϱ), y⃗(ϱ)) is Fibonacci positive when the Toda flow
parameter satisfies ϱ ∈ (−∞, 0].
4.2. Fibonacci positivity and Stieltjes moment sequences. Fibonacci positivity is stronger
than total positivity. This presents two natural questions:

Problem 4.3. What are the properties of moment sequences and nonnegative Borel measures
νx⃗,y⃗ (dt) associated with Fibonacci positive specializations (x⃗, y⃗ ) by Theorem 4.1? Can these
moment sequences and measures be characterized in a meaningful way?

Problem 4.4. Does the Toda flow preserve the space of Fibonacci positive specializations (x⃗, y⃗ )
for values of the deformation parameter ϱ within some interval (−R, 0] with R > 0?

We do not address these problems in full generality here. In this subsection, for a number of
Fibonacci positive examples considered in Section 3.4, we identify:
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• Systems of orthogonal polynomials Pn(t);
• Nonnegative Borel measures νx⃗,y⃗ (dt) on [0,∞) under which these polynomials are orthogonal;
• Combinatorial interpretations of the moment sequences an for these Borel measures.

The orthogonal polynomials we obtain come from the Askey scheme [KS96], which lends the
names to our Fibonacci positive specializations.

Remark 4.5 (Toda flow). Along with the Poisson measure (Example 4.2), the shifted Charlier
specialization xk = ρ+σ+k− 2, yk = ρ(σ+k− 1), k ≥ 1, also satisfies the Toda chain equations
(4.4), after the same change of variables ρ = eϱ. Thus, in the shifted Charlier case, the Toda flow
preserves the Fibonacci positivity when ϱ ∈ (−∞, 0].

In contrast, the Type-I Al-Salam–Carlitz, Al-Salam–Chihara, and q-Charlier specializations
we consider below in this subsection do not satisfy the Toda chain equations with the natural
change of variables ρ = exp(ϱ). This is not evidence against a positive answer to Problem 4.4, but
indicates that the associated Toda flow may require a different, more intricate parametrization.

4.2.1. Charlier specialization. For ρ ∈ (0, 1], set xk = ρ+ k− 1 and yk = ρk for all k ≥ 1. In this
case, the orthogonal polynomials satisfy the three-term recurrence

Pn+1(t) =
(
t− ρ− n

)
Pn(t)− ρnPn−1(t).

These are readily recognized as the classical Charlier polynomials. The associated orthogonality
measure is the Poisson distribution ν

(ρ)
Pois (4.6) with the parameter ρ. This measure is supported

on Z≥0. For more details on Charlier polynomials we refer to [KS96, Chapter 1.12].

The moments an of ν(ρ)
Pois are the Bell polynomials (sometimes called Touchard polynomials),

which have the combinatorial interpretation

an = Bn(ρ) :=
∑

π∈Π(n)
ρ#blocks(π). (4.7)

Here, Π(n) are the set partitions of {1, . . . , n}, and #blocks(π) counts the number of blocks
in π. The moment generating function M(z) (4.1) is the confluent hypergeometric function

1F1

(
1; 1− 1

z ;−ρ
)
(see (3.15) for the notation).

4.2.2. Type-I Al-Salam–Carlitz specialization. For ρ, q ∈ (0, 1], define xk = ρ qk−1 + [k − 1]q and

yk = ρ qk−1[k]q, where k ≥ 1. The corresponding orthogonal polynomials

Pn+1(t) =
(
t− ρqn − [n]q

)
Pn(t)− ρqn−1[n]qPn−1(t)

are known from [dMSW95], where they are denoted as Pn(t) = C
(ρ)
n (t; q). These polynomials can

be identified as Type-I Al-Salam–Carlitz polynomials U
(a)
n (x; q) = Un(x, a; q) through a change

of variables and parameters. Namely,

Pn(t) = C(ρ)
n (t; q) = ρn Un

(
t

ρ
− 1

ρ(1− q) ,
−1

ρ(1− q) ; q
)
.

See [KS96, Chapter 3.24] for more details on the Al-Salam–Carlitz polynomials Un(x, a; q). In
particular, their orthogonality measure is given by

eq(a) eq(q) eq
(
a−1q

)

(1− q)

∞∑

k=0

qk e−1
q

(
qk
) (

e−1
q

(
a−1qk+1

)
δqk(dx) − a e−1

q

(
aqk+1

)
δaqk(dx)

)
,
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where eq(x) is the (little) discrete exponential function

eq(x) :=
∑

k≥0

xk

[k]q!
=

1

(x(1− q); q)∞
. (4.8)

Here, q ∈ (0, 1), and the parameter a must be negative. This is consistent with the change of
variables used in [dMSW95], and with our range of values ρ, q ∈ (0, 1]. In terms of the variable t,
the nonnegative Borel measure corresponding to the Type-I Al-Salam–Carlitz Fibonacci positive
specialization is supported by the discrete subset

{
[k]q , ρq

k + 1
1−q

}
k≥0
⊂ R≥0.

The n-th moment an of the orthogonality measure for Pn(t) is given by a q-variant of the Bell
polynomial, and can also be expressed as a generating function for set partitions:

an = Bq,n(ρ) :=
∑

π∈Π(n)
ρ#blocks(π)qinv(π),

which incorporates an additional q-statistic inv(π) counting inversions in the set partition π. We
refer to [WW91] and [Zen95] for details.

4.2.3. Al-Salam–Chihara specialization. Take ρ ∈ (0, 1] and q ∈ [1,∞), and let xk = ρ + [k − 1]q
and yk = ρ [k]q for k ≥ 1. In this case, the orthogonal polynomials satisfy the three-term
recurrence

Pn+1(t) =
(
t− ρ− [n]q

)
Pn(t)− ρ[n]qPn−1(t).

They appeared in [Ans05] and [KSZ06] under the notation Cn(t, ρ; q). In the latter reference,
Pn(t) = Cn(t, ρ; q) were identified with the the Al-Salam–Chihara polynomials Qn(x; a, b | q),
after rescaling and incorporating a change of variables as follows:

Pn(t) = Cn(t, ρ; q) =

(
ρ

1− q

)n/2

Qn

(
1

2

√
1− q
ρ

(
t− ρ− 1

1− q

)
;

−1√
ρ(1− q)

, 0

∣∣∣∣∣ q
)
.

See [KS96, Chapter 3.8] for more details on the Al-Salam–Chihara orthogonal polynomials Qn.
Note that our our parameter q is greater than one, while in [KS96] it is classically assumed that
|q| < 1. Because of this, we cannot identify the nonnegative Borel measure ν(dt) (which exists by
Theorem 4.1 and serves as the orthogonality measure for the Pn(t)’s) with the one coming from
the Al-Salam–Chihara polynomials in [KS96].

The existence of different orthogonality measures for different ranges of parameters is a known
phenomenon, see, e.g., [Ask89] or [Chr04]. In particular, for q > 1, the Al-Salam–Chihara
polynomials admit a different orthogonality measure [Koo04]. Let us recall the necessary notation.
Denote

Q̃n(x; a, b | q) := i−nQn(ix; ia, ib | q), i =
√
−1, n ≥ 0.

For q > 1 we have, taking b→ 0 in [Koo04, (16)]:

∞∑

k=0

1 + q−2ka−2

1 + a−2

(−a2; q)k
(q; q)k

a−4kq
3
2
k(1−k)

× Q̃n

(
1
2(aq

k − a−1q−k); a, 0 | q
)
Q̃m

(
1
2(aq

k − a−1q−k); a, 0 | q
)

= (−q−1a−2; q−1)∞ (−1)n(q; q)n1m=n.

(4.9)

Here (z; q)k := (1 − z)(1 − zq) · · · (1 − zqk−1) is the q-Pochhammer symbol. One can readily

verify that the weights in (4.9) are nonnegative when a = −1/
√
ρ(1− q) and q > 1. Moreover,
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matching the variables in the polynomials, we see that the measure ν(dt) is supported on the
following discrete set:

{
[k]q + (1− q−k)ρ

}
k≥0
⊂ R≥0.

The moment sequence an of ν(dt) can be derived from the continued fraction M(z) = J x⃗,y⃗ (z)
(4.1)–(4.2). Moreover, in [KSZ06], the combinatorial interpretation of the an’s was shown to be

an = Brc
q,n(ρ) :=

∑
π ∈Π(n)

ρ#blocks(π)qrc(π),

which includes a certain q-statistic counting the number of restricted crossings in the set parti-
tion π. We refer to [KSZ06] for the definition of rc(π).

4.2.4. q-Charlier specialization. For ρ, q ∈ (0, 1], let

xk = ρq2k−2 + [k − 1]q
(
1 + ρ(q − 1)qk−2

)
and yk = ρq2k−2[k]q

(
1 + ρ(q − 1)qk−1

)
, k ≥ 1.

The corresponding orthogonal polynomials satisfy the three-term recurrence

Pn+1(t) =
(
t− ρq2n − [n]q

(
1 + ρ(q − 1)qn−1

))
Pn(t)− ρq2n−2[n]q

(
1 + ρ(q − 1)qn−1

)
Pn−1(t).

They appear in [Zen95] under the notation V
(ρ)
n (t ; q). Moreover, it follows from [Zen95] that

these polynomials are related to the
After rescaling and a change of variables, these are exactly the q-Charlier polynomials from

the Askey scheme [KS96, Chapter 3.23]. Namely, we have (using the notation Cn(x; a, q) instead
of Cn(q

−x; a, q) as in [KS96]):

Pn(t) = V (ρ)
n (t; q) = (−ρ)nqn(n−1)Cn

(
(q − 1)t+ 1; ρ(1− q−1), q−1

)
. (4.10)

Like in the previous Al-Salam–Chihara case, here the q-Charlier polynomials contain the pa-
rameter q−1 > 1. Therefore, the classical orthogonality measure [KS96, Chapter 3.23] does not
correspond to our nonnegative Borel measure ν(dt). Instead, we have the following orthogonality
for q−1-Charlier polynomials:

∞∑

k=0

(−q)kak
(q; q)k

Cn(q
k; a, q−1)Cm(qk; a, q−1) =

qn (q−1; q−1)n (−a−1q−1; q−1)n
(−aq; q)∞

1m=n.

The q-Pochhammer symbol (−aq; q)∞ in the denominator (as opposed to (−a; q)∞ in the numer-
ator for 0 < q < 1, see [KS96, (3.23.2)]) comes from normalizing the orthogonality measure to be
a probability distribution.

In terms of our parameters, we have a = ρ(1− q−1) < 0, which ensures that the orthogonality
measure ν(dt) for the polynomials Pn(t) is nonnegative. The support of ν(dt) in R≥0 consists of
all q-integers [k]q, where k ∈ Z≥0, as it should be due to Theorem 4.1.

The moments an of ν(dt) can be derived from the continued fraction (4.1)–(4.2), and their
combinatorial interpretation is yet another q-variant of the Bell polynomials:

an = B̃q,n(ρ) :=
∑

π∈Π(n)
ρ#blocks(π) q ĩnv(π).

Here the statistic ĩnv(π) is the number of so-called dual inversions of a set partition π ∈ Π(n).
We refer to [WW91] and [Zen95] for details.
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4.2.5. Shifted Charlier specialization. Finally, consider the shifted Charlier specialization given
by xk = ρ+ σ + k − 2 and yk = (σ + k − 1)ρ, where k ≥ 1 and ρ ∈ (0, 1], σ ∈ [1,∞). The shifted
Plancherel and Charlier specializations are obtained from this one by setting ρ = 1 and σ = 1,
respectively. See Definition 3.22. The three-term recurrence for the orthogonal polynomials has
the form

Pn+1(t) = (t− ρ− σ − n+ 1)Pn(t)− ρ(σ + n− 1)Pn−1(t). (4.11)

A similar recurrence is satisfied by the so-called associated Charlier polynomials [ILV88], [Ahb23]:

aCn+1(x; a, γ) = (n+ γ + a− x)Cn(x; a, γ)− (n+ γ)Cn−1(x; a, γ).

Namely, we have the following identification:

Pn(t) = (−ρ)nCn(t; ρ, σ − 1). (4.12)

The polynomials Pn (4.11) can be expressed through the hypergeometric function 3F2 (see (3.15)
for the notation). This follows from (4.12) and [Ahb23, (3.6)]:

Pn(t) =
n∑

k=0

(−ρ)n−k (−n)k(σ − 1− t)k
k!

3F2

(
−k, σ − 1, k − n
−n, σ − 1− t

∣∣∣∣1
)
.

Let us now discuss the moment generating function M(z) = J x⃗,y⃗ (z) (4.1)–(4.2) for the shifted
Charlier specialization. Define the fractional linear action of 2×2 matrices on power series f(z) by

(
a b
c d

)
· f(z) :=

af(z) + b

cf(z) + d
.

Lemma 4.6. The moment generating function M(z) = M(z; ρ, σ) satisfies the following func-
tional equation:

M(z; ρ, σ + 1) =

(
1− (σ + ρ− 1)z −1

σρz2 0

)
·M(z; ρ, σ). (4.13)

In terms of the series coefficients an = an(ρ, σ), this yields the quadratic recurrence

an+1(ρ, σ) = (σ + ρ− 1)an(ρ, σ) + ρσ
n−1∑

k=0

ak(ρ, σ)an−k−1(ρ, σ + 1), (4.14)

with the initial condition a0(ρ, σ) ≡ 1.

In particular, when σ = 1, we know that M(z; ρ, 1) is the moment generating function for the
Poisson distribution (4.6), and thus M(z; ρ, 1) = 1F1(1; 1− 1/z;−ρ). We thus have

M(z; ρ, k) =

(
1− (k − 1)z −1
(k − 1)z2 0

)
· · ·
(
1− z −1
z2 0

)
· 1F1(1; 1− 1/z;−ρ). (4.15)

We are grateful to Michael Somos and Qiaochu Yuan for helpful observations [Som22] leading to
Lemma 4.6.

Proof of Lemma 4.6. The continued fraction for the shifted Charlier parameters has the form

M(z; ρ, σ) =
1

1− (σ + ρ− 1)z − σρz2M(z; ρ, σ + 1)
, (4.16)

since the shifted sequences (x⃗+1, y⃗+1) correspond to the specialization under the shift σ 7→ σ+1.
Identity (4.16) is equivalent to the desired functional equation (4.13).

The recurrence (4.14) follows by writing the equation (4.16) as

M(z; ρ, σ) (1− (σ + ρ− 1)z) = 1 + σρz2M(z; ρ, σ + 1)M(z; ρ, σ),
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and comparing the coefficients by zn+1. □

Remark 4.7. For integer values σ = k ∈ Z≥1, the generating function M(z; ρ, k) is derived
by applying a sequence of fractional linear transformations (4.15) to the meromorphic function
M(z; ρ, 1) = 1F1(1; 1− 1/z;−ρ). Thus, M(z; ρ, k) is a meromorphic function of z. Consequently,
the support of the measure ν(dt) is discrete, similarly to all the other specializations considered
in this subsection. It is likely that for non-integer σ > 1, the measures ν(dt) remain atomic.

The existence of Fibonacci positive sequences x⃗, y⃗ such that their associated measures νx⃗,y⃗(dt)
are non-atomic remains unclear, and we do not address this question here.

We can solve the functional equation (4.13) for M(z; ρ, σ) in terms of the confluent hypergeo-
metric function 1F1 (see (3.15) for the notation):

Proposition 4.8. The moment generating function M(z) = M(z; ρ, σ) of the shifted Charlier
specialization is given by

M
(
z; ρ, σ

)
=

1F1

(
σ; σ − 1

z ; −ρ
)

1F1

(
σ − 1; σ − 1

z ; −ρ
)
− z(σ − 1) 1F1

(
σ; σ − 1

z ; −ρ
) . (4.17)

Proof. The equation (4.13), rewritten as the recurrence (4.14) for the coefficients of the generating
function in z has a unique solution. Therefore, we need to verify that the right-hand side of
(4.17) is regular at z = 0 (and hence is expanded as a power series in z), and that it satisfies the
functional equation (4.13). See also Remark 4.9 below for examples of other solutions to (4.13)
which are not regular at z = 0.

We have

1F1

(
σ; σ − 1

z ; −ρ
)
= 1 +

∞∑

r=1

σ(σ + 1) · · · (σ + r − 1)

(1− σz) · · · (1− (σ + r − 1)z)

ρr

r!
zr,

and similarly, 1F1

(
σ − 1;σ − 1

z ;−ρ
)
− z(σ − 1)1F1

(
σ;σ − 1

z ;−ρ
)
is a power series in z with

constant coefficient 1. Therefore, the right-hand side of (4.17) is a power series in z.
After substituting the right-hand side of (4.17) into the functional equation (4.13) and cross-

multiplying, we obtain

(1− ρz)1F1

(
σ;σ − 1

z ;−ρ
)
1F1

(
σ;σ + 1− 1

z ;−ρ
)

− zσ1F1

(
σ;σ − 1

z ;−ρ
)
1F1

(
σ + 1;σ + 1− 1

z ;−ρ
)

− 1F1

(
σ − 1;σ − 1

z ;−ρ
)
1F1

(
σ;σ + 1− 1

z ;−ρ
)

+ zσ1F1

(
σ − 1;σ − 1

z ;−ρ
)
1F1

(
σ + 1;σ + 1− 1

z ;−ρ
)





?
= 0.

This identity can be readily verified by applying two contiguous relations:

zσ1F1(σ + 1;σ + 1− 1
z ;−ρ) = 1F1(σ;σ + 1− 1

z ;−ρ) + (zσ − 1)1F1(σ;σ − 1
z ;−ρ),

ρz 1F1(σ;σ + 1− 1
z ;−ρ) = (zσ − 1)1F1(σ − 1;σ − 1

z ;−ρ)− (zσ − 1)1F1(σ;σ − 1
z ;−ρ).

This completes the proof. □

Remark 4.9. Curiosly, the functional equation (4.13) has at least two solutions expressible as
power series in z−1 with vanishing constant coefficient. If M(z; ρ, σ) =

∑
n≥1mn(ρ, σ)z

−n is a
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solution, then the recurrence relations for the coefficients take a different form:

(1− ρ− σ)m1(ρ, σ) − 1 = ρσm1(ρ, σ)m1(ρ, σ + 1),

mn−1(ρ, σ) − (ρ+ σ − 1)mn(ρ, σ) = ρσ
n−1∑

k=0

mk+1(ρ, σ)mn−k(ρ, σ + 1), n ≥ 2.
(4.18)

Two choices of valid initial conditions for (4.18) are

m1(ρ, σ) = (1− σ)−1

and

m1(ρ, σ) =
U
(
σ, σ, −ρ

)

(1− ρ)U
(
σ, σ − 1, −ρ

)
− ρσU

(
σ + 1, σ, −ρ

) ,

where

U
(
α, β, ξ

)
=

1

Γ(α)

∫ ∞

0
e−ξt tα−1 (1 + t)β−α−1 dt

is the Tricomi function.
The Tricomi initial condition yields the solution

M(z; ρ, σ) =
U
(
σ, σ − 1/z, −ρ

)

(1 + z − zρ)U
(
σ, σ − 1− 1/z, −ρ

)
− zρσU

(
σ + 1, σ − 1/z, −ρ

) . (4.19)

The fact that (4.19) yields a solution to (4.13) can be checked using contiguous relations similarly
to the proof of Proposition 4.8.

Solution (4.19) also arises by first decoupling equation (4.13) through the Ansatz

P(z; ρ, σ + 1) =
(
1− (σ + ρ− 1)z

)
P(z; ρ, σ) − Q(z; ρ, σ),

Q(z; ρ, σ + 1) = ρσz2P(z; ρ, σ),
(4.20)

assuming that M(z; ρ, σ) = P(z; ρ, σ)/Q(z; ρ, σ). We then apply the Fourier transform to (4.20),
solve the resulting 2 × 2 system of ordinary differential equations, and finally apply the inverse
Fourier transform to return to the original function.

It remains unclear whether other solutions to (4.13) exist, or how they might be classified.

Let us now describe a combinatorial interpretation of the moments an(ρ, σ) for the shifted
Charlier specialization. Recall that π ∈ Π(n) denotes an arbitrary set partition of {1, . . . , n}. It
is always presented in canonical form, i.e.,

π = B1

∣∣B2

∣∣ · · ·
∣∣Br,

where the blocks B1, . . . , Br are ordered such that minB1 < · · · < minBr. The non-maximal
elements of a block are called openers; the set of all openers is denoted by O(π). The non-
minimal elements of a block are called closers (C(π)). Elements that are simultaneously openers
and closers are called transients (T(π)). Elements that are neither openers nor closers are called
singletons (S(π)).

If i ∈ C(π), let Γi(π) denote the set of openers a < i such that i ≤ b, where b is the closer
succeeding a in π. Let γi(π) be the position of the opener in Γi(π) corresponding to i, where
we list the elements Γi(π) = {a1 < · · · < aℓ} in increasing order. Kasraoui and Zeng [KZ06]
showed that a set partition π ∈ Π(n) is uniquely determined by the tuple (O,C,S,T) together
with the integers γi(π) for i ∈ C. We need one more definition (not present in [KZ06]) for our
interpretation of the moments an(ρ, σ):
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Definition 4.10 (Non-transient closers). Let #ntc(π) count the number of non-transient closers
i ∈ C(π) such that γi(π) = 1.

As an example, consider the set partition π = 135
∣∣29
∣∣4
∣∣678 of n = 9. In this case

O(π) = {1, 2, 3, 6, 7} Γ3(π) = {1, 2} γ3(π) = 1
C(π) = {3, 5, 7, 8, 9} Γ5(π) = {2, 3} γ5(π) = 2
S(π) = {4} Γ7(π) = {2, 6} γ7(π) = 2
T(π) = {3, 7} Γ8(π) = {2, 7} γ8(π) = 2

Γ9(π) = {2} γ9(π) = 1

and we see that ntc(π) = 1.
Along with #ntc(π), we introduce the following statistics. Let #blocks⋆(π) denote the number

of non-singleton blocks in π (#blocks⋆(π) = 3 in the example above), and #S(π) be the number
of singletons in π (#S(π) = 1 in the example above).

Proposition 4.11. The n-th moment an(ρ, σ) of the shifted Charlier specialization is given by
the following variant of the Bell polynomial:

an(ρ, σ) = B ntc
σ,n (ρ) :=

∑

π ∈Π(n)

ρ#blocks⋆(π) σ#ntc(π)
(
ρ+ σ − 1

)#S(π)
.

Proof. Our proof is an adaptation of the methods and results found in [Jos11] and [KZ06], and
uses a well-known bijection between set partitions π ∈ Π(n) and Charlier histoires.3 A length-n
Charlier histoire is a ”colored” Motzkin path of length n, where each → step at height k is
assigned a nonnegative integer color c ∈ {0, . . . , k}, while each ↘ step at height k is assigned a
color c ∈ {1, . . . , k − 1}. Let Hn denote the set of length-n Charlier histoires.

We can now define the bijection Π(n) → Hn. Under this bijection, a Charlier histoire hπ is
constructed from left to right by converting, in order, each element i ∈ {1, . . . , n} of a set partition
π ∈ Π(n) into a (colored) step of type {↗,→,↘} according to the following rules:

1. Each non-transient opener is converted into an ↗ step
2. Each singleton is converted into a → step with color c = 0
3. Each transient element is converted into a → step with color γi(π).
4. Each non-transient closer is converted into a ↘ step with color γi(π).

As an example, the Charlier histoire hπ corresponding to the set partition π = 135
∣∣29
∣∣4
∣∣678 under

the bijection is depicted in Figure 3.

1 0

2

2

2

1

Figure 3. The Charlier histoire hπ corresponding to π = 135
∣∣29
∣∣4
∣∣678. The weight of

both π and hπ is ρ2σ (ρ+ σ − 1).

3We are grateful to Dennis Stanton for explaining this relationship to us.
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We define the weight ω(h) of a Charlier histoire h ∈ Hn as the product of the weights of its
(colored) steps, where the weights are given as follows:

• ↗ step: ρ;
• → step: ρ+ σ − 1 if c = 0, or 1 if c > 0;
• ↘ step: σ if c = 1, or 1 if c > 1.

Let Mn denote the set of all Motzkin paths of length n and let prn : Hn →Mn be the projection
map from Charlier histoires to Motzkin paths which simply ”forgets” the histoire colors. Since
yk = ρ(σ+k− 1) factors into ρ and (σ+k− 1), we can modify the weighting scheme for Motzkin
paths m ∈Mn given in Section 4.1, and assign weights to steps as follows:

• each ↗ step at height k is weighted ρ;
• each ↘ step at height k and is weighted σ + k − 1;
• each → step at height k is weighted ρ+ σ + k − 1.

We define the weight wt(m) of a Motzkin path m ∈Mn to be the product of the weights of its
steps. Note that wt(m) coincides with the weight of m as prescribed in Section 4.1. In particular,
our shifted Charlier moments have the form an(ρ, σ) =

∑
m∈Mn

wt(m).
The technique of [KZ06] aligns the weights of Charlier histoires with the weights of their

associated Motzkin paths under the projection map. That is,

wt(m) =
∑

prn(h)=m

ω(h).

This ensures that the total weight of all Motzkin paths of length n matches the total weight
of all Charlier histoires of the same length. This total weight is an(ρ, σ), which completes the
proof. □

Remark 4.12 (Permutation statistics and Jacobi continued fractions). Jacobi continued fractions
and their associated moments are connected not only to set partitions, but also to permutation
statistics. One of the most recent examples of these connections is the work [BS21], which
connects a 14-parameter Jacobi continued fraction with permutation enumeration.

It would be very interesting to combine random permutations (arising from this 14-parameter
enumeration) with the Young–Fibonacci RS correspondence which we describe in Section 7 below.
The resulting measures on Fibonacci words may coincide with some of the clone Schur measures.
We do not develop this direction further in the present work.

5. Asymptotic behavior of clone coherent measures

5.1. Outline. In this section, we examine scaling limits and other types of asymptotic behavior of
clone coherent measures on Fibonacci words arising from various Fibonacci positive specializations
(x⃗, y⃗ ) introduced in Section 3.4. This section is organized as follows.

In the preliminary Section 5.2, we obtain general identities for the joint distribution of sequences
of 1’s or 2’s in the beginning of a random Fibonacci word distributed according to an arbitrary
clone coherent measure.

In Sections 5.3 and 5.4, we examine coherent measures for two particular specializations of
divergent type, where either sequences of 1’s (respectively, 2’s) become long in the corresponding
random Fibonacci words. For the first model, the joint scaling limit of runs leads to a resid-
ual allocation (stick-breaking) type distribution. The limiting distribution we get differ from
GEM(1/2) (see Definition 2.3), which appears in the Plancherel case [GK00a], not only in the
value of the GEM parameter θ (which may not be 1/2), but also due to the random insertion
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of additional zeroes into the sequence X = (X1, X2, . . .) ∈ ∆ (2.8). In the model with growing
hikes of 2’s, their joint scaling limit is a dependent stick-breaking process described in detail in
Definition 5.10 and Remarks 5.12 and 5.14.

In Section 5.5, we consider specializations of the convergent type. We show that for them,
the coherent measure is asymptotically supported on Fibonacci words of the form 1∞v, with v
being a finite Fibonacci word (i.e., words with a growing prefix of 1’s). This asymptotic behavior
contrasts sharply with the residual allocation type distributions arising in Sections 5.3 and 5.4.
Finally, in Section 5.6, we consider examples of how clone coherent measures (of both divergent
and convergent type) interact with words of the form 1∞v.

5.2. Initial runs and hikes under a general clone measure. We begin by computing certain
probabilities (“correlations”) under general clone coherent measures on the Young–Fibonacci
lattice. Observe that a Fibonacci word w can be parsed in two different ways. Looking at
consecutive strings of 2’s, define (h1, h2, . . .) and (h̃1, h̃2, . . .) by

w = 2h112h21 · · · 12hm , hj ∈ Z≥0; h̃k :=

{
2hk + 1, k ≤ m− 1,

2hm, k = m.
(5.1)

The quantities h̃k appeared in Section 2.2 above. Alternatively, we can look at consecutive strings
of 1’s, and define (r1, r2, . . .) and (r̃1, r̃2, . . .) by

w = 1r121r22 · · · 21rp , rj ∈ Z≥0; r̃k :=

{
rk + 2, k ≤ p− 1,

rp, k = p.
(5.2)

In (5.1) and (5.2), the sequences (h1, h2, . . .) and (r1, r2, . . .) are called the hikes and runs of
the word w, respectively. We will use the shorthand notation r[i,j] := ri + ri+1 + . . . + rj , and

similarly for r̃[i,j], h[i,j], and h̃[i,j], and also for open and half-open intervals. In (5.1) and (5.2),

the quantities m and p depend on w, and we have h̃[1,m] = r̃[1,p] = |w|.
Our goal is to obtain joint distributions for several initial runs or hikes rj or hj under a clone

coherent measure

Mn(w) := dim(w) · φx⃗,y⃗ (w) = dim(w) · sw(x⃗ | y⃗ )
x1 · · ·xn

, w ∈ YFn. (5.3)

As always, we assume that xi ̸= 0 for all i. We start with runs:

Proposition 5.1. Fix k ∈ Z≥1 and r1, . . . , rk ∈ Z≥0. Then for all n ≥ r̃[1,k] we have

Mn (w : r1(w) = r1, . . . , rk(w) = rk) =

k∏

j=1

(nj − rj − 1)Brj

(
nj − rj − 2

)

xnjxnj−1 · · ·xnj−rj−1
, (5.4)

where we denoted nj := n− r̃[1,j), and used the shorthand notation from Remark 2.4.

Remark 5.2. The sum over r1, . . . , rk of the quantities (5.4) is strictly less than 1. Indeed, for
example, if k = 1, then the word w must be of the form 1r12u, where the Fibonacci word u is
possibly empty. This excludes the possibility that w = 1n. See also Lemma 5.8 below for an
explicit example.

Proof of Proposition 5.1. We have Mn(w) = dim(w)sw(x⃗ | y⃗ )/(x1 · · ·xn). Let w = 1r12 · · · 1rk2u,
where u is a generic Fibonacci word with fixed weight |u| = n − r̃[1,k] ≥ 0. In particular, the
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event we consider in (5.4) requires the word w to have at least k letters 2, and r̃j = rj + 2 for all
j = 1, . . . , k. Using the recurrent definition (2.11) of the clone Schur functions, we can write

sw(x⃗ | y⃗ )
x1 · · ·xn

=
su(x⃗ | y⃗ )
x1 · · ·x|u|

k∏

j=1

Brj

(
n− r̃[1,j]

)

xn−r̃[1,j) · · · xn−r̃[1,j]+1
.

Applying this relation to the Plancherel specialization and using (2.17), we get

dim(w) = dim(u) ·
k∏

j=1

(
n− r̃[1,j] + 1

)
.

Summing Mn(w) over all words u eliminates the dependence on u thanks to the probability
normalization, and we obtain the desired product. Note that in the product in (5.4), we changed
the notation n− r̃[1,j] = nj − rj − 2. □

Let us turn to hikes. Their joint distributions do not admit a simple product form like (5.4) due

to runs of 1’s arising for zero values of the hikes. Let us denote dj := n− h̃[1,j) (with d0 = d1 = n),
and recursively define for j = 1, 2, . . . ,m:

cj :=





0, if j = 1;

cj−1 + 1, if dj = dj−1 − 1;

1, otherwise.

(5.5)

The condition dj = dj−1 − 1 is equivalent to hj−1 = 0. For example, if h = (2, 0, 0, 0, 0, 2, 0, 1),
then the word w and the sequences d and c have the following form:

w = 221111122112, d = (17, 12, 11, 10, 9, 8, 3, 2), c = (0, 1, 2, 3, 4, 5, 1, 2). (5.6)

Lemma 5.3. Let a Fibonacci word w = 2h11 · · · 2hm be decomposed as in (5.1). Let 1 ≤ k ≤ m
be such that hk > 0. Then with the above notation dj , cj, we have

sw(x⃗ | y⃗ ) = su(x⃗ | y⃗ ) ·
( k−1∏

i=1

hi∏

j=2

ydi−2j+1

) k∏

j=1

Bcj

(
dj − 2

)

1dj ̸=dj−1−1 +Bcj−1

(
dj − 1

)
1dj=dj−1−1

, (5.7)

where u = 2hk−112hk+11 · · · 12hm, and we used the shorthand notation from Remark 2.4.

For example, for the word in (5.6) and k = 6, the last product in (5.7) telescopes as

B0(15)B1(10)
B2(9)

B1(10)

B3(8)

B2(9)

B4(7)

B3(8)

B5(6)

B4(7)
= B0(15)B5(6).

Proof of Lemma 5.3. This is established similarly to the proof of Proposition 5.1. The first prod-
uct of the yj ’s in (5.7) comes from the determinants B0. The second product is telescoping to
account for the recurrence involved in defining the clone Schur functions for words of the form
1k2v. Indeed, the entries of the sequence c are increasing by 1 when there is a run of 1’s in the
word w (see the example in (5.6)). This corresponds to the cases when dj = dj−1 − 1 in the
denominator. Once the run of 1’s ends, the next element of the sequence c resets to 1. Then
dj ̸= dj−1 − 1, the denominator is equal to 1, and the index of the remaining determinant Bcj is
precisely the length of the run of 1’s in the word w. This completes the proof. □
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Proposition 5.4. Fix k ∈ Z≥1 and h1, . . . , hk ∈ Z≥0. Then for all n ≥ h̃[1,k] + 2 we have

Mn (w : h1(w) = h1, . . . , hk(w) = hk, hk+1(w) > 0)

=

( h̃[1,k]+1∏

i=0

x−1
n−i

)( k∏

i=1

hi∏

j=2

(di − 2j + 1)ydi−2j+1

) k+1∏

j=1

(dj − 1)Bcj

(
dj − 2

)

1dj ̸=dj−1−1 + djBcj−1

(
dj − 1

)
1dj=dj−1−1

,

(5.8)

where we use the notation dj , cj introduced before Lemma 5.3.

Proof. Let w = 2h11 · · · 12hk12v, where v = 2hk+1−11 · · · 12hm . Here v is a generic Fibonacci word
with fixed weight |v| = n− h̃[1,k] − 2 ≥ 0. In particular, the event we consider in (5.8) requires w
to have at least k letters 1, and the number of hikes m in (5.1) satisfies m ≥ k + 1.

Applying Lemma 5.3 twice — once for sw(x⃗ | y⃗ )/(x1 · · ·xn), and once for sw(Π) = dim(w), we
obtain the desired product times dim(v) · sv(x⃗ | y⃗ )/(x1 · · ·x|v|). Summing over the generic word v
eliminates the dependence on v thanks to the probability normalization, and we obtain (5.8). □

Unlike for the runs in Proposition 5.1, the result of Proposition 5.4 does not uniquely determine
the joint distribution of the hikes h1, . . . , hk. Let us obtain an expression for the probability of
the event h1 = 0, which will be useful for the scaling limit in Section 5.4 below.

Lemma 5.5. For an arbitrary clone Schur measure Mn, we have

Mn(w : h1(w) = 0) = 1 − (n− 1)yn−1

xn−1xn
.

Proof. From the recurrent definition (2.11) of the clone Schur functions, we get for any v ∈ YFn−2:

Mn(w = 2v) =
(n− 1)yn−1

xn−1xn
Mn−2(v).

Summing over all v gives the probability that h1(w) > 0, and the result follows. □

5.3. Charlier (deformed Plancherel) specialization. Consider the Charlier specialization
(Definition 3.22)

xk = k + ρ− 1 and yk = kρ, ρ ∈ (0, 1]. (5.9)

Definition 5.6. For any 0 < ρ < 1, let ηρ be a random variable on [0, 1] with the distribution

ρδ0(α) + (1− ρ)ρ(1− α)ρ−1dα, α ∈ [0, 1]. (5.10)

In words, ηρ is the convex combination of the point mass at 0 and the Beta random variable
beta(1, ρ), with weights ρ and 1− ρ.

Recall the run statistics rk(w) (5.2), where w is a Fibonacci word.

Theorem 5.7. Let w ∈ YFn be a random Fibonacci word distributed according to the deformed
Plancherel measure Mn (5.3), (5.9) with 0 < ρ < 1. For any fixed k ≥ 1, the joint distribution of
the runs (r1(w), . . . , rk(w)) has the scaling limit

rj(w)

n−
∑j−1

i=1 ri(w)

d−−−→
n→∞

ηρ;j , j = 1, . . . , k,

where ηρ;j are independent copies of ηρ.
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Before proving Theorem 5.7, observe that we can reformulate this statement in terms of the
residual allocation (stick-breaking) process, as in Definition 2.3:

(r1(w)
n

,
r2(w)

n
, . . .

)
d−→ X = (X1, X2, . . .),

where X1 = U1, Xk = (1 − U1) · · · (1 − Uk−1)Uk for k ≥ 2, and Uk are independent copies of ηρ
(see Definition 5.6). Unlike in the classical GEM distribution family, here the variables Uk can be
equal to zero with positive probability ρ. Thus, the random Fibonacci word under the Charlier
(deformed Plancherel) measure asymptotically develops hikes of 2’s of bounded length (namely,
these lengths are geometrically distributed with parameter ρ). On the other hand, if we remove
all zero entries from the sequence X = (X1, X2, . . .), then the resulting sequence is distributed
simply as GEM(ρ).

Note also that for ρ = 1, we have Uk = 1 almost surely. This corresponds to the fact that
the deformed Plancherel measure reduces to the usual Plancherel measure. By [GK00a] (see
Section 2.2), random Fibonacci words under the usual Plancherel measure have only a few 1’s.
Thus, for ρ = 1, the scaling limit of the runs of 1’s is trivial, and instead one must consider the
scaling limit of the hikes of 2’s. This is the subject of the next Section 5.4.

In the rest of this subsection, we prove Theorem 5.7. First, by Proposition 5.1, we can express
the joint distribution of finitely many initial runs of 1’s in a random Fibonacci word in terms of

a discrete distribution η
(m)
ρ on {0, 1, . . . ,m− 1}:

P(η(m)
ρ = r) =





(m− r − 1)Br

(
m− r − 2

)
Γ(m+ ρ− r − 2)

Γ(m+ ρ)
, r = 0, 1, . . . ,m− 2,

ρmΓ(ρ)

Γ(m+ ρ)
, r = m− 1.

(5.11)

Here Br(m) are the determinants (2.10) with shifts (we use the notation of Remark 2.4). By
Lemma 5.8 which we establish below, we have

m−2∑

r=0

(m− r − 1)Br

(
m− r − 2

)
Γ(m+ ρ− r − 2)

Γ(m+ ρ)
= 1− ρmΓ(ρ)

Γ(m+ ρ)
, (5.12)

so (5.11) indeed defines a probability distribution.
Proposition 5.1 states that the joint distribution of a finite number of initial runs of 1’s under

the deformed Plancherel measure has the product form

Mn (w : r1(w) = r1, . . . , rk(w) = rk) =
k∏

j=1

P(η
(nj)
ρ = rj), (5.13)

where nj = n− r̃[1,j) = n− (2j − 2)− r1− . . .− rj−1, and 0 ≤ rj ≤ nj − 2 for all j = 1, . . . , k. By
(5.12), we know that the sum of the probabilities (5.13) over all rj with 0 ≤ rj ≤ nj−2 is strictly
less than 1 (see also Remark 5.2 and the proof of Lemma 5.8 below). To get honest probability
distributions, we have artificially assigned the remaining probability weights ρnjΓ(ρ)/Γ(nj + ρ)
to rj = nj − 1. Since

ρnj
Γ(ρ)

Γ(nj + ρ)
=

ρnj

ρ(ρ+ 1) · · · (ρ+ nj − 1)

rapidly decays to 0 as nj →∞, these additional probability weights can be ignored in the scaling

limit. More precisely, by Lemma 5.9 which we establish below, each random variable η
(nj)
ρ , scaled

by n−1
j , converges in distribution to ηρ. Thanks to the product form of (5.13), the scaled random
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variables rj(w)/nj become independent in the limit, and each of them converges in distribution to
ηρ. This completes the proof of Theorem 5.7 modulo Lemmas 5.8 and 5.9 which we now establish.

Lemma 5.8. Let Br(m) be the determinants (2.10) with shifts (Remark 2.4), and consider the
deformed Plancherel specialization (5.9) of the variables xi, yi. Then for any m ≥ 2, we have

m−2∑

r=0

(m− r − 1)Br

(
m− r − 2

)
Γ(m+ ρ− r − 2)

Γ(m+ ρ)
= 1− ρmΓ(ρ)

Γ(m+ ρ)
. (5.14)

Proof. Consider the random word w ∈ YFm under the deformed Plancherel measure Mn. From
Proposition 5.1, we know that the r-th summand in the left-hand side of (5.14) is the probability
that this word has the form 1r2u, for a (possibly empty) Fibonacci word u. Summing all these
probabilities over r = 0, 1, . . . ,m− 2, we obtain 1−Mn(w = 1m). We have

Mn(w = 1m) =
s1m(Π)s1m(x⃗ | y⃗ )

ρ(ρ+ 1) · · · (ρ+m− 1)
=

Am(Π)Am(x⃗ | y⃗ )
ρ(ρ+ 1) · · · (ρ+m− 1)

=
1 · ρm

ρ(ρ+ 1) · · · (ρ+m− 1)
.

This completes the proof. □

Lemma 5.9. Let 0 < ρ < 1. Recall the distribution η
(m)
ρ (5.11). We have

η
(m)
ρ

m

d−→ ηρ, m→∞,

where ηρ is described in Definition 5.6.

Proof. Since P(η
(m)
ρ = m− 1) rapidly decays to zero as m→∞, we can ignore this probability it

in the limit. For an arbitrary specialization (x⃗, y⃗ ), the determinants Bk(m) satisfy the three-term
recurrence:

Bk(m) = xm+k+2Bk−1(m)− ym+k+1Bk−2(m), k ≥ 2, (5.15)

with initial conditions B0(m) = ym+1 and B1(m) = xm+3ym+1 − xm+1ym+2. Substituting (5.9),
we obtain

Bk(m) = (k +m+ ρ+ 1)Bk−1(m)− ρ(k +m+ 1)Bk−2(m),

B0(m) = ρ(m+ 1), B1(m) = ρ(m+ 2− ρ). (5.16)

This recurrence has a unique solution which has the form

Bk(m) = ρk+1(m+ 1)− ρk+1(1− ρ)(m+ 2)e−ρEm+3(−ρ)

+ ρ(1− ρ)(m+ k + 2)!

(m+ 1)!
e−ρEm+k+3(−ρ),

(5.17)

where Er(z) is the exponential integral

Er(z) =

∫ ∞

1
t−re−ztdt, r ≥ 0, Re(z) > 0. (5.18)

Since our z = −ρ < 0, formula (5.18) needs to be analytically continued [NIS24, (8.19.8)]:

Er(z) =
(−z)r−1

(r − 1)!
(ψ(r)− ln z)−

∞∑

k=0
k ̸=r−1

(−z)k
k!(1− r + k)

, r = 1, 2, 3, . . . . (5.19)

Here ψ(r) = Γ′(r)/Γ(r) is the digamma function. The logarithm ln z = ln(−ρ) = iπ + ln ρ has a
branch cut, but all the summands in the remaining series are entire functions of z. Thus, formula
(5.19) produces the desired analytic continuation of Er(−ρ).
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Now, using the series representation (5.19) for the exponential integral, we can show that

lim
r→+∞

Er(−ρ) = 0, lim
r→+∞

rEr+1(−ρ) = eρ. (5.20)

Indeed, ψ(r) grows logarithmically with r, so the first summand is negligible as r → +∞ (even
after multiplication by r − 1). The series in (5.19) converges uniformly in z, so we can take the
limit of the individual terms and conclude that Er(−ρ) → 0 as r → +∞. The second limit in
(5.20) follows from the recurrence rEr+1(z) + zEr(z) = e−z [NIS24, (8.9.12)].

Assume that r = ⌊αm⌋, where α ∈ (0, 1). By the standard Stirling asymptotics, the ratio
Γ(m+ ρ− r− 2)/Γ(m+ ρ) in (5.11) decays to zero as e−αm lnm. Using (5.17), (5.20), we see that

(m− r − 1)Br(m− r − 2) ∼ (m− r − 1)2ρr+1 − (m− r − 1)ρr+1(1− ρ) + ρ(1− ρ) (m− 1)!

(m− r − 2)!
.

The first two summands decay exponentially and are thus negligible since ρ < 1. We have for the
third summand:

(m− 1)!

(m− r − 2)!

Γ(m+ ρ− r − 2)

Γ(m+ ρ)
ρ(1− ρ) ∼ m−1ρ(1− ρ)(1− α)ρ−1.

The prefactor m−1 corresponds to the scaling of our random variable m−1η
(m)
ρ . Note that

∫ 1

0
ρ(1− ρ)(1− α)ρ−1dα = 1− ρ,

and the remaining mass is concentrated at 0 in the limit:

P(η(m)
ρ = 0) =

(m− 1)2ρ

(m+ ρ− 2)(m+ ρ− 1)
→ ρ, m→∞.

This completes the proof of Lemma 5.9, and finalizes the proof of Theorem 5.7. □

5.4. Shifted Plancherel measure. In this subsection, we consider the shifted Plancherel spe-
cialization (Definition 3.22)

xk = yk = k + σ − 1, σ ∈ [1,∞). (5.21)

Definition 5.10. Let

G(α) := 1− (1− α)σ2 , g(α) :=
σ

2
(1− α)σ2−1, α ∈ [0, 1], (5.22)

be the cumulative and density functions of the Beta distribution beta(1, σ/2). For any σ ≥ 1, let
ξσ;1, ξσ;2, . . . be the sequence of random variables with the following joint cumulative distribution
function (cdf):

P (ξσ;1 ≤ α1, . . . , ξσ;n ≤ αn) := σ−n+1G(α1) · · ·G(αn) + (σ − 1)

n−1∑

j=1

σ−n+jG(α1) · · ·G(αn−j).

(5.23)

Denote the right-hand side of (5.23) by F
(σ)
n (α1, . . . , αn).

Lemma 5.11. The joint cdfs F
(σ)
n for all n ≥ 1 are consistent, and uniquely define the distribution

of ξσ;1, ξσ;2, . . .. The marginal distribution of each ξσ;k is

(1− σ−k+1)δ0(α) + σ−k+1g(α)dα.
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In particular, ξσ;1 is absolutely continuous and has the Beta distribution beta(1, σ/2), while ξσ;k
for each k ≥ 0 has an atom at 0 of mass 1 − σ−k+1, and the remaining mass is distributed
according to beta(1, σ/2).

When σ = 1, the random variables ξσ;k reduce to a collection of independent identically
distributed beta(1, 1/2) random variables.

Proof of Lemma 5.11. Each F
(σ)
n is a cdf, that is, it is continuous, increasing in each argument,

satisfies the boundary conditions F
(σ)
n (0, . . . , 0) = 0 and F

(σ)
n (1, . . . , 1) = 1. The consistency

F (σ)
n (α1, . . . , αn−1, 1) = F

(σ)
n−1(α1, . . . , αn−1)

is straightforward.

Let us check the nonnegativity of the rectangle probabilities under F
(σ)
n . If a rectangle is

n-dimensional, then we can use the fact that

∂α1,...,αnF
(σ)
n (α1, . . . , αn) = σ−n+1g(α1) · · · g(αn), (5.24)

which produces nonnegative rectangle probabilities under F
(σ)
n by integration of (5.24). If the

rectangle [a1, b1]×· · ·×[an, bn] is of lower dimension, then it must contain zero values am = bm = 0

for each non-full axis, since under F
(σ)
n , there are no other lower-dimensional coordinate subspaces

of positive mass. Observe that Fn(α1, . . . , αm, 0, αm+2, . . . , αn) does not depend on αm+2, . . . , αn.
Thus, it suffices to check the nonnegativity for each m-dimensional rectangle of the form

[a1, b1]× · · · × [am, bm]× {0} × · · · × {0}.
We have

∂α1,...,αmF
(σ)
n (α1, . . . , αm, 0, . . . , 0) = (σ − 1)σ−mg(α1) · · · g(αm),

which implies the nonnegativity.

We have shown that F
(σ)
n , n ≥ 1, is a consistent family of cdfs, so by the Kolmogorov extension

theorem, they uniquely determine the distribution of the family of random variables ξσ;1, ξσ;2, . . ..

The marginal distribution of each ξσ;k readily follows from its cdf F
(σ)
k (1, . . . , 1, xk), and so we

are done. □

Remark 5.12. Alternatively, the random variables ξσ;k can be constructed iteratively as follows.
Toss a sequence of independent coins with probabilities of success 1, σ−1, σ−2, . . .. Let N be the
(random) number of successes until the first failure. We have

P(N = n) = σ−(
n
2) (1− σ−n), n ≥ 1. (5.25)

Then, sample N independent beta(1, σ/2) random variables. Set ξσ;k, k = 1, . . . , N , to be these
random variables, while ξσ;k = 0 for k > N . It is worth noting that the random variables ξσ;k are
not independent, but ξσ;1, . . . , ξσ;n are conditionally independent given N = n.

Recall the hike statistics hk(w) and h̃k(w) (5.1), where w is a Fibonacci word.

Theorem 5.13. Let w ∈ YFn be a random Fibonacci word with distributed according to the shifted
Plancherel measure Mn (5.3), (5.21) with σ ≥ 1. For any fixed k ≥ 1, the joint distribution of

the hikes (h̃1(w), . . . , h̃k(w)) has the scaling limit

h̃j(w)

n−
∑j−1

i=1 h̃i(w)

d−−−→
n→∞

ξσ;j , j = 1, . . . , k,

where ξσ;j are given by Definition 5.10.
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Remark 5.14. In terms of the stick-breaking process, Theorem 5.13 states that

( h̃1(w)
n

,
h̃2(w)

n
, . . .

)
d−→ X = (X1, X2, . . .),

where X1 = U1, Xk = (1− U1) · · · (1− Uk−1)Uk for k ≥ 2, and Uk = ξσ;k are dependent random
variables if σ > 1. Due to the dependence structure of the ξσ;k’s (see Remark 5.12), a single zero
in the sequence {Xj}≥1 makes all subsequent Xj ’s zero. Thus, a growing random Fibonacci word
under the shifted Plancherel measure has a growing number of 2’s in (almost surely) finitely many
initial hikes of lengths proportional to n. These initial hikes are then followed by a growing tail
of 1’s. We refer to the end of Section 7.5 for another approach to the asymptotics of the shifted
Plancherel measure, and a detailed discussion of the limiting behavior of the total number of 2’s.

When σ = 1, the ξσ;k’s do not have the point mass at 0, and are independent and identically
distributed as beta(1, 1/2). The sequence X almost surely has no zeroes, and is distributed simply
as GEM(1/2). In this special case, our Theorem 5.13 reduces to the result of [GK00a] recalled in
Section 2.2.

Proof of Theorem 5.13. Step 1. We use Proposition 5.4 which expresses the joint distribution of
initial hikes hj(w) (where j = 1, . . . , k) as a product (5.8). This product involves the determinants
Bk(m) which for the shifted Plancherel specialization take the same simple form for all sizes:

Bk(m) = m+ σ, k ≥ 0. (5.26)

Indeed, one can deduce this from the three-term recurrence (5.15). Formula (5.26) implies that
the factors in the product (5.8) are equal to

h̃[1,k]+1∏

i=0

x−1
n−i =

Γ(n+ σ − h̃[1,k] − 2)

Γ(n+ σ)
=

k∏

i=1

Γ(σ + di+1 − 2 · 1i=k)

Γ(σ + di)
,

k∏

i=1

hi∏

j=2

(di − 2j + 1)ydi−2j+1 =

k∏

i=1

22hi−2Γ(di2 − 1
2)Γ(

di
2 + σ

2 − 1)

Γ(di2 − hi + 1
2)Γ(

di
2 − hi + σ

2 )
,

(5.27)

and the last product involving the determinants Bcj is equal to

k+1∏

i=1

(di − 1)(di + σ − 2)

1hi−1>0 or i=1 + di (di + σ − 1)1hi−1=01i>1
. (5.28)

Here and in (5.27), we used the notation di = n−h̃[1,i), and the fact that the condition di = di−1−1
in (5.8) is equivalent to hi−1 = 0 (for i = 1, we have d1 ̸= d0 − 1, so 1h0>0 = 1). Note that for
the shifted Plancherel specialization, the dependence on the quantities cj (5.5) disappeared.

Step 2. Let us now consider the asymptotic behavior of (5.27), (5.28) as the dj ’s grow to infinity.
We examine two cases depending on whether the hike is zero or is also growing. We have for the
factors in (5.28) for i > 1:

(di − 1)(di + σ − 2)

1hi−1>0 + di (di + σ − 1)1hi−1=0
∼
{
d2i , hi−1 > 0,

1, hi−1 = 0.
(5.29)

For the two products in (5.27), we have

Γ(σ + di+1 − 2 · 1i=k)

Γ(σ + di)

22hi−2Γ(di2 − 1
2)Γ(

di
2 + σ

2 − 1)

Γ(di2 − hi + 1
2)Γ(

di
2 − hi + σ

2 )
∼ d−3−2·1i=k

i (1− αi)
σ
2
−1−2·1i=k , (5.30)
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where hi = ⌊αidi/2⌋, 0 ≤ αi < 1. Note that we inserted the factor 1/2 since hikes count the 2’s,

so h̃i ∼ αidi.

Step 3. Consider first the situation when all α1, . . . , αk are strictly positive. Then the product
of the quantities (5.29), (5.30) over all i (which is asymptotically equivalent to (5.8)) has the
following behavior as n→ +∞:

Mn

(
w : h1(w) =

⌊α1d1
2

⌋
, . . . , hk(w) =

⌊αkdk
2

⌋
, hk+1(w) > 0

)
∼ σ−k

k∏

i=1

(di/2)
−1 · σ

2
(1−αi)

σ
2
−1.

(5.31)
Here we used the fact that dk+1 = dk − 2hk − 1, so d2k+1d

−2
k (1 − αk)

−2 ∼ 1. Since the density
σ
2 (1− u)

σ
2
−1 of beta(1, σ/2) integrates to 1 over (0, 1), we see that there is an asymptotic deficit

of the probability mass equal to 1− σ−k. This deficit mass is supported by the event

k+1⋃

i=1

{w : hi(w) = 0}.

By Lemma 5.5, we have

Mn(w : h1(w) = 0) = 1− n− 1

n+ σ − 1
→ 0, n→∞.

In particular, Mn(w : h1(w) > 0)→ 1, and the event {h1 = 0} is asymptotically negligible.
Now consider the case when some of the αi’s are zero in the left-hand side of (5.31). Then,

due to (5.29), there is an extra factor of d−2
j for each j ≥ 2 with αj−1 = 0. This means that the

probability that at least one of the hj(w)’s is zero (for some 1 ≤ j ≤ k) while hk+1(w) > 0 is
negligible in the limit. Therefore, we conclude that

lim
n→∞

Mn(w : hk+1(w) > 0) = lim
n→∞

Mn(w : h1(w) > 0, . . . , hk(w) > 0, hk+1(w) > 0) = σ−k

for all k ≥ 0. This implies that for all k ≥ 0, all the deficit probability mass 1 − σ−k from the
left-hand side of (5.31) is supported on the event {hk+1 = 0}.
Step 4. Define for each k ≥ 1 the joint cdf

Fk(α1, . . . , αk) := lim
n→∞

Mn (w : h1(w) ≤ ⌊α1d1/2⌋, . . . , hk(w) ≤ ⌊αkdk/2⌋)

of the scaled hikes (h̃1(w)/d1, . . . , h̃k(w)/dk). The observations in Step 3 imply that

Fk−1(α1, . . . , αk−1)− Fk(α1, . . . , αk−1, 0) = σ−k+1G(α1) · · ·G(αk−1), (5.32)

where G(·) is the cdf of the beta(1, σ/2) random variable given by (5.22). Note that G(0) = 0.
We see that it remains to find the functions Fk(α1, . . . , αk−1, 0) for all k ≥ 1. Iterating (5.32), we
see that these functions are consistent as long as there is at least one zero, that is,

Fk(α1, . . . , αk−2, 0, 0) = Fk−1(α1, . . . , αk−2, 0),

and so on.
Differentiate (5.32) in α1, . . . , αk−1. Then, because of the probability mass deficit at level k−1,

we have
∂α1,...,αk−1

Fk−1(α1, . . . , αk−1) = σ−k+2g(α1) · · · g(αk−1),

where g(α) is the density of the beta(1, σ/2) random variable (5.22). Therefore,

∂α1,...,αk−1
Fk(α1, . . . , αk−1, 0) = (σ − 1)σ−k+1g(α1) · · · g(αk−1). (5.33)
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Using (5.33), we can now compute Fk(α1, . . . , αk−1, 0) by induction on k and iterative integra-
tion. We have F1(0) = 0, then

∂α1F2(α1, 0) = (σ − 1)σ−1g(α1) ⇒ F2(α1, 0) = (σ − 1)σ−1G(α1) + F2(0, 0),

but by consistency, F2(0, 0) = F1(0) = 0. For general k, the first integration in αk−1 yields

∂α1,...,αk−2
Fk(α1, . . . , αk−1, 0) = (σ − 1)σ−k+1g(α1) · · · g(αk−2)G(αk−1) + Fk−1(α1, . . . , αk−2, 0).

This procedure of iterative integration yields the unique solution for Fk(α1, . . . , αk−1, 0), and this

leads to the formula for the joint cdf Fk(α1, . . . , αk) = F
(σ)
k (α1, . . . , αk) (5.23) of the limit of the

scaled hikes. This completes the proof of Theorem 5.13. □

5.5. Specializations of convergent type and Type-I components. Here we analyze the
asymptotic behavior of random Fibonacci words under general convergent or divergent Fibonacci
positive specializations (see Definition 3.3 and Theorem 3.9). We focus on words which have a
growing prefix of 1’s. Let us begin with a definition which follows [GK00b]:

Definition 5.15. A Type-I Fibonacci word4 is an infinite Fibonacci word formed by appending a
prefix consisting of infinitely many digits 1 to a Fibonacci word. A Type-I Fibonacci word can be
uniquely expressed as either 1∞ or 1∞2w, where w is a finite suffix in YF. Denote the (countable)
set of all Type-I words by 1∞YF, and the subset of all Type-I words of the form 1∞2w, w ∈ YF,
by 1∞2YF ⊂ 1∞YF.

A Type-I word 1∞w can be viewed as the equivalence class of infinite saturated chains v0 ↗
v1 ↗ v2 ↗ · · · , starting at v0 = ∅, with vn = 1n−mw for all n ≥ m, where |w| = m. We call
infinite saturated chains of this kind lonely paths.

Definition 5.16. If φ : YF→ R≥0 is a nonnegative, normalized harmonic function and 1∞w is a
Type-I word, we define:

µI(1
∞w) := lim

n→∞
Mm+n(1

nw),

where w ∈ YFm, and Mk denotes the coherent measure on YFk associated to φ by (2.4). We call
the (in general, sub-probability) measure µI(·) on 1∞YF the Type-I component of the harmonic
function φ.

Note that 0 ≤ Mn+m(1nw) ≤ 1. Moreover, the sequence {Mn+m(1nw)}n≥0 is weakly decreas-
ing, and so the limit µI(1

∞w) ∈ [0, 1] exists.

Let (x⃗, y⃗ ) be a Fibonacci positive specialization

xk = ck (1 + tk−1), yk = ck ck+1 tk, k ≥ 1,

which is guaranteed by Theorem 3.9. Here t⃗ is a sequence of either convergent or divergent type
(Definition 3.3), and and c⃗ is any sequence of positive real numbers. Let φx⃗,y⃗ be the corresponding
clone harmonic function, and let µI be the associated Type-I component on 1∞YF.

Lemma 5.17. We have

µI(1
∞) =

∞∏

i=0

(1 + ti)
−1. (5.34)

Moreover, if t⃗ is of divergent type, then µI(1
∞) vanishes.

4Not to be confused with Type-I Al-Salam–Carlitz polynomials or similar specializations, as these objects are
unrelated. The term “Type-I” in Fibonacci words comes from connections to Type-I factor representations of
AF-algebras associated to the branching graph [GK00b, Section 4].
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Proof. We have dim(1n) = 1 and s1n(x⃗ | y⃗ ) = c1 · · · cn for all n. Using (2.15), we see that the
coherent measures have the form

Mn(w) =
sw
(
x⃗ | y⃗

)

x1 · · ·xn
dimw =

n−1∏

i=1

1

1 + ti
,

which converges to the desired infinite product (5.34).
For a divergent type sequence t⃗, we have (using the notation (3.6))

∞ = A∞(1) = 1 + t1 + t1t2 + t1t2t3 + . . . ≤
∞∏

i=1

(1 + ti),

where we used the fact that the ti’s are nonnegative. As the reciprocal of the product in (5.34)
goes to infinity, we have µI(1

∞) = 0. □

For a convergent type sequence t⃗, we either have µI(1
∞) = 0 or 0 < µI(1

∞) < 1. The next
statement discusses the latter case.

Proposition 5.18. Let t⃗ be of convergent type, and let µI(1
∞) > 0. Then

∑

w∈YFm

µI(1
∞2w) = (m+ 1)B∞(m)

∞∏

i=m

(1 + ti)
−1, m ≥ 0, (5.35)

where B∞(m) is defined in (3.6). Moreover, µI(1
∞2w) > 0 for all w ∈ YF.

Proof. For any w ∈ YFm, we have by (2.11):

s1n2w(x⃗ | y⃗ ) = Bn−1(m)sw(x⃗ | y⃗ ).

Therefore, by (2.2), we can write

Mm+n+2(1
n2w) =

( m∏

i=1

xi

)(
m+ 1

)
Mm(w)Bn−1(m)

m+n+2∏

i=1

x−1
i . (5.36)

The factor Bn−1(m) converges as n→∞ to B∞(m) (3.6). Thus, the limit as n→∞ of (5.36) is

µI(1
∞2w) = lim

n→∞
Mm+n+2(1

n2w) =

(
m−1∏

i=1

(1 + ti)

)
(
m+ 1

)
Mm(w)

B∞(m)∏∞
i=1(1 + ti)

, (5.37)

which is positive. This means that µI(1
∞2w) > 0 for all w ∈ YF. Summing (5.37) over all

w ∈ YFm (which is a finite sum), we get the desired claim (5.35). □

Proposition 5.19. Under the conditions of Proposition 5.18, we also have µI(1
∞
YF) = 1.

Proof. We rely on a result from Section 6 below, which is proven independently of the content of
the present section. Multiply the identity (6.6) from Remark 6.5 by

∏n
k=0(1 + tk)

−1 (recall that
t0 = 0):

n−1∏

k=0

(1 + tk)
−1 +

n−2∑

m=0

(m+ 1)Bn−m−2(m)

n−1∏

k=m

(1 + tk)
−1 = 1. (5.38)
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We aim to take the limit as n → ∞ inside the sum in the left-hand side of (5.38). This would
yield

1 =
∞∏

k=0

(1 + tk)
−1 +

∞∑

m=0

(m+ 1)B∞(m)
∞∏

k=m

(1 + tk)
−1

=
∞∏

k=0

(1 + tk)
−1 +

∑

m≥0

∑

|w|=m

(m+ 1)Mm(w)B∞(m)
∞∏

k=m

(1 + tk)
−1

= µI(1
∞) +

∑

w∈YF

µI(1
∞2w),

(5.39)

which is the desired result.
However, in order to justify the passage from (5.38) to (5.39) (the interchange of the limit and

the summation), we need the convergence

(m+ 1)Bn−m−2(m)
n−1∏

k=m

(1 + tk)
−1 → (m+ 1)B∞(m)

∞∏

k=m

(1 + tk)
−1, n→∞,

to be uniform in m (and then apply the dominated convergence theorem for series). Note that
in (5.38), we have n ≥ m+2. That is, we can already turn the sum over 0 ≤ m ≤ n− 2 in (5.38)
into an infinite sum, by adding the zero terms for m > n− 2.

For the products, we have
∣∣∣∣∣

n−1∏

k=m

(1 + tk)
−1 −

∞∏

k=m

(1 + tk)
−1

∣∣∣∣∣ =
∣∣∣∣∣

n−1∏

k=1

(1 + tk)
−1 −

∞∏

k=1

(1 + tk)
−1

∣∣∣∣∣

m−1∏

k=1

(1 + tk), (5.40)

where
∏m−1

k=1 (1 + tk) is bounded in m, so (5.40) converges to zero uniformly in m.
It remains to establish the uniform convergence in m of (recall that n ≥ m+ 2)

(m+ 1)Bn−m−2(m) =





0, n < m+ 2;

(m+ 1)tm+1, n = m+ 2;

(m+ 1) (tm+1 − (1 + tm − tm+1)tm+2An−m−3(m+ 3)) , n > m+ 2,

as n → ∞. Observe that mtm → 0 as m → +∞. Indeed, this follows from the convergence of
the infinite product

∏∞
k=1(1 + tk), which is equivalent to the convergence of the series

∑∞
k=1 tk

(since the tk’s are nonnegative). Moreover, since the tm’s eventually weakly decrease to zero
(Propositions 3.12 and 3.13), we can use Cauchy condensation test to conclude that mtm → 0.

The convergence mtm → 0 implies that we can discard finitely many terms with n−K − 3 <
m ≤ n− 2 from the sum in (5.38), as they converge to zero. Let us fix some K > 5 once and for
all. For the remaining terms, we can write∣∣(m+ 1)Bn−m−2(m)− (m+ 1) (tm+1 − (1 + tm − tm+1)tm+2A∞(m+ 3))

∣∣
= (m+ 1)(1 + tm − tm+1)tm+2 (tm+3 · · · tn + tm+3 · · · tntn+1 + . . .) .

The factor (m + 3)tm+2 is bounded. Let the sequence tm eventually decrease starting from
m = m0. Pick ε > 0, and find N ≥ m0 +K such that tN−K ≤ ε. Then for all n ≥ N + 3 and
m ≥ m0 (with the condition m ≤ n−K − 3):

tm+3 · · · tn + tm+3 · · · tntn+1 + . . . ≤ tN−K · · · tN+3 + tN−K · · · tN+3tN+4 + . . . ≤ ε

1− ε,

which is small. This completes the proof. □
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Let us restate the results of Lemma 5.17 and Proposition 5.18 in terms of the boundary of
the Young–Fibonacci lattice [GK00b], [BE20], [Evt20]. Recall from Section 2.1 that the extremal
(Martin) boundary Υext(YF) is the set of all nonnegative, normalized, extremal harmonic func-
tions on YF. An arbitrary nonnegative, normalized harmonic function φ on YF can be represented
as a Choquet integral (2.6) with respect to a probability measure µ on Υext(YF). The measure
µ is uniquely determined by φ.

The set 1∞YF of all Type-I words (Definition 5.15) constitutes a part of the boundary Υext(YF).
Indeed, the extremal Type-I harmonic functions corresponding to Type-I words of the form 1∞2w
are given by [GK00b, Proposition 4.2]:

Φ1∞2w(v) :=





dim(v, 1k2w)

dim(2w)
, if v ⊴ 1kw for some k ≥ 0,

0, otherwise.

Here w ∈ YF is fixed, ⊴ denotes the partial order on YF, and dim(u, v) is the number of saturated
chains in the Young–Fibonacci lattice beginning at u and ending at v. Likewise, Φ1∞(v) takes
the values 1 if v = 1k for some k ≥ 0, and 0 otherwise.

Corollary 5.20. Let (x⃗, y⃗ ) be a Fibonacci positive specialization of convergent type such that
µI(1

∞) ̸= 0. Then the measure µ on the boundary Υext(YF) coincides with its Type-I compo-
nent µI. Consequently, the Choquet integral representation of the clone harmonic function φx⃗,y⃗

involves only Type-I harmonic functions, and has the form:

φx⃗,y⃗ = µI(1
∞)Φ1∞ +

∑

w∈YF

µI(1
∞2w)Φ1∞2w.

Proof. This result follows from the fact that µI(1
∞
YF) = 1 (Proposition 5.18), the Choquet inte-

gral representation (2.6), and the ergodicity of the Martin boundary established in the preprints
[BE20], [Evt20]. □

5.6. Type-I components in examples. Here we consider the Al-Salam–Chihara specialization
(which is of divergent type, see Definition 3.22), and the power specializations tk = κ/kα, α = 1, 2
(given in (3.14)), which are of convergent type.

5.6.1. Al-Salam–Chihara specialization. Consider how the clone coherent measure Mn corre-
sponding to the Al-Salam–Chihara specialization interacts with Type-I words. Recall that the
parameters are (Definition 3.22): Recall that it is given by xk = ρ + [k − 1]q, yk = ρ[k]q, k ≥ 1,
where 0 < ρ ≤ 1 and q ≥ 1. Note that as q → 1, we recover the Charlier specialization, and the
asymptotic behavior of the corresponding clone coherent measures was considered in Section 5.3.

By Lemma 5.5, we have

Mn(w : h1(w) = 0) = 1− (n− 1)(q − 1)q2ρ (qn − q)
(qn + ρq2 − (ρ+ 1)q) (qn + ρq3 − (ρ+ 1)q2)

.

One readily checks that this expression converges to 1 as n → +∞ exponentially fast. This
means that with probability exponentially close to 1, the growing random word w ∈ YFn under
the Al-Salam–Chihara clone coherent measure does not start with a 2.

For simplicity, let us only consider the case ρ = 1/q.

Proposition 5.21. For the Al-Salam–Chihara specialization with ρ = 1/q, we have

µI(1
∞) = 0 and µI(1

∞2YF) = 1.
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This means that in the growing random word there will be finitely many (but at least one) occur-
rences of the digit 2.

Proof. Recall from the proof of Proposition 3.23 and Proposition 3.20 that we can take the t⃗-
parameters to be tk = [k]q/ρ = q [k]q, and then we must modify xk = 1+tk−1 = [k]q and yk = [k]q.
By Lemma 5.17, we have µI(1

∞) =
∏∞

k=1(1+q[k]q)
−1, which clearly diverges to zero. This proves

the first claim.
Let us find the limiting distribution of r1(w), the initial run of 1’s. By Proposition 5.1, we

have

Mn+m+2(1
n2YFm) =Mn+m+2(w : r1(w) = n) = (m+ 1)Bn(m)

n+m+2∏

k=m+1

x−1
k .

Using (3.8), we have

Mn+m+2(1
n2YFm) = (m+ 1) (tm+1 − (1 + tm − tm+1)tm+2An−1(m+ 3))

n+m+2∏

k=m+1

x−1
k

= (m+ 1)[m+ 1]q

(
q + q(q − 1)[m+ 2]q

(
1 +

n−1∑

i=1

qi[m+ 3]q · · · [m+ 2 + i]q

)) n+m+2∏

k=m+1

[k]−1
q .

The product over k from m + 1 to n +m + 2 diverges to zero as n → ∞. Therefore, the only
possible nonzero contribution must include the sum over i:

(m+ 1)q(q − 1)[m+ 1]q[m+ 2]q

(
n+m+2∏

k=m+1

[k]−1
q

)
n−1∑

i=1

qi[m+ 3]q · · · [m+ 2 + i]q. (5.41)

We aim to show that

lim
n→∞

(
n+m+2∏

k=m+1

[k]−1
q

)
n−1∑

i=1

qi[m+ 1]q[m+ 2]q · · · [m+ 2 + i]q = (q − 1)q−m−3 (5.42)

for all m ≥ 0. Indeed, after cancelling out, the sum in (5.42) becomes

n−1∑

i=1

qi
n∏

j= i+1

1

[m+ 2 + j]q
=

n−1∑

i=1

qn−i
n∏

j=n−i+1

1

[m+ 2 + j]q

All terms in the latter sum except the first one decay to zero exponentially fast as n→ +∞. This
is because for i ≥ 2, there are at least two factors of the form [n+const]q in the denominator, which
cannot be compensated by qn−i in the numerator. Therefore, we can exchange the summation
and the limit, and immediately obtain the desired outcome (5.42).

Combined with (5.41), observe that the limiting quantities sum to 1 over m

∞∑

m=0

(m+ 1)q (q − 1)2 q−m−3 = 1.

This implies that µI(1
∞2YF) = 1, as desired. □
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5.6.2. Power specializations. Throughout the current Section 5.6.2, we assume that α = 1 or 2.

Set tk = κ/kα, where 0 < κ ≤ κ
(α)
1 (see Proposition 3.24), and xk = 1 + tk−1, yk = tk.

For α = 1, we have by Lemma 5.17:

µI(1
∞) =

∞∏

k=1

(
1 +

κ

k

)−1
,

which diverges to zero for all κ, 0 < κ ≤ κ
(1)
1 ≈ 0.844637. Note that in Proposition 5.18 and

Corollary 5.20 we assumed µI(1
∞) to be positive, and this example shows that this assumption

is not always satisfied for convergent type specializations. In particular µI is identically zero, and
there is no Type-I support.

Remark 5.22. One expects, for the power specialization with α = 1, that the run statistics rk
(5.2) admit a scaling limit, similarly to the Charlier specialization considered in Section 5.3. This
is suggested by the characteristic quantity

yk
xkxk+1

=
(k − 1)κ(

k + κ − 1
)(
k + κ

) ,

which has a very similar form to the corresponding quantity in the Charlier case:

yk
xkxk+1

=
kρ(

k + ρ− 1
)(
k + ρ

) .

The difference is only in the shift of the index k, and the renaming of ρ to κ.

Turning to the case α = 2, we have by Lemma 5.17:

µI(1
∞) =

∞∏

k=1

(
1 +

κ

k2

)−1
=

π
√
κ

sinh(π
√
κ)

> 0,

which means that Proposition 5.18 applies for α = 2, and µI(1
∞
YF) = 1. Let us make the latter

summation identity explicit. We have by (3.6):

A∞(m) = 1 +
∞∑

r=1

κ
r

m2(m+ 1)2 · · · (m+ r − 1)2
=

∞∑

r=0

r!

(m)r(m)rr!
κ
r = 1F2(1;m,m;κ).

Thus,

B∞(0) = κ − κ(1− κ)

4
1F2(1; 3, 3;κ) =

1

κ
+

κ − 1

κ
I0(2
√
κ)

(where I0 is the modified Bessel function of the first kind), and B∞(m) for m ≥ 1 is similarly
defined by (3.6). We see that the general identity µI(1

∞
YF) = 1 (equivalent to (5.39)) takes the

form
∞∑

m=1

[
κ

(m+ 1)

(
1− m2(m+ 1)2 + (2m+ 1)κ

m2(m+ 2)2
1F2(1;m+ 3,m+ 3;κ)

)m−1∏

k=1

(
1 +

κ

k2

)

+
(κ − 1)κm−2

(m− 1)!2

]
=

sinh(π
√
κ)

π
√
κ

− κ + 1

κ
,

(5.43)

where we used the standard series representation for the Bessel function. Let us emphasize that
(5.43) follows from Proposition 5.18. It is not clear how to prove this identity directly, without
referring to the parameters t⃗ of the Fibonacci positive specialization.
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6. Clone Cauchy identities

Here we discuss summation identities involving the clone Schur functions. These identities the
classical summation identities for the usual symmetric functions, including the celebrated Cauchy
identity.

6.1. Clone complete homogeneous functions and clone Kostka numbers. In this sub-
section, x⃗ = (x1, x2, . . .) and y⃗ = (y1, y2, . . .) are two families of indeterminates.

Definition 6.1 ([Oka94]). Given a Fibonacci word w ∈ YF, the biserial clone homogeneous
function hw(x⃗ | y⃗ ) is the monomial defined recursively by

hw(x⃗ | y⃗ ) :=
{
x|v|+1 hv(x⃗ | y⃗ ), if w = 1v;

y|v|+1 hv(x⃗ | y⃗ ), if w = 2v,
(6.1)

starting with the base case h∅(x⃗ | y⃗ ) := 1.

The relationship between clone homogeneous and clone Schur functions is explained by the
following statement involving a clone version of Kostka numbers:

Proposition 6.2 ([Oka94, Section 4]). Given a Fibonacci word v ∈ YF, the clone homogeneous
function hv(x⃗ | y⃗ ) has an expansion into clone Schur functions given by

hv(x⃗ | y⃗ ) =
∑

|u|=|v|

Ku,v su(x⃗ | y⃗ ), (6.2)

where Ku,v are nonnegative integers known as the clone Kostka numbers. They can be calculated
using the following four basic recursions:

K2u,2v = Ku,v K2u,1v =
∑

u↗w
Kw,v

K1u,2v = 0 K1u,1v = Ku,v

starting from the initial conditions K∅,∅ = 1 and K1,1 = 1.

We refer to [Oka94] for a combinatorial interpretation of these numbers in terms of chains in
the Young–Fibonacci lattice.

Remark 6.3. The recursions for K2u,1v and K1u,1v imply that Kw,1n = dim(w) for any Fibonacci
word w ∈ YFn. This observation, together with the expansion given in (6.2), allows us to get the
following identity (familiar from the normalization (2.15) of the clone Schur functions):

h1n(x⃗ | y⃗ ) := x1 · · ·xn =
∑

|w|=n

dim(w)sw(x⃗ | y⃗ ). (6.3)

The next corollary allows us to conveniently interpret formula (6.3).

Corollary 6.4. For any n ≥ 0, we have

s1n(x⃗ | y⃗ ) +
n−2∑

m=0

(m+ 1)(x1 · · ·xm)s1n−m−22(x⃗+m | y⃗ +m) = x1 · · ·xn. (6.4)
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Proof. Using the expansion

x1 · · ·xm =
∑

|w|=m

dim(w)sw(x⃗ | y⃗ ),

we can rewrite

LHS(6.4) = s1n(x⃗ | y⃗ ) +
n−2∑

m=0

(m+ 1)s1n−m−22(x⃗+m | y⃗ +m)
∑

|w|=m

dim(w)sw(x⃗ | y⃗ ). (6.5)

By Definition 2.5, we know that

s1n−m−22w(x⃗ | y⃗ ) = s1n−m−22(x⃗+m | y⃗ +m)sw(x⃗ | y⃗ ),
so substituting into (6.5) gives

s1n(x⃗ | y⃗ ) +
n−2∑

m=0

∑

|w|=m

(m+ 1) dim(w)s1n−m−22w(x⃗ | y⃗ )

= s1n(x⃗ | y⃗ ) +
n−2∑

m=0

∑

|w|=m

dim
(
1n−m−22w

)
s1n−m−22w(x⃗ | y⃗ )

=
∑

|w|=n

dim(w)sw(x⃗ | y⃗ )

= x1 · · ·xn,
as desired. □

Remark 6.5. Let us set xk = 1 + tk−1 and yk = tk for all k ≥ 1, where t⃗ = (t1, t2, t3, . . .) is a
sequence of auxiliary indeterminates (with the agreement that t0 = 0). This parametrization is
natural from the point of view of Fibonacci positivity characterized in Section 3 above. Under
this parametrization, (6.4) becomes

1 +
n−2∑

m=0

(m+ 1)Bn−m−2(m)
m−1∏

k=0

(1 + tk) =
n−1∏

k=0

(1 + tk), (6.6)

where the Bℓ(m)’s are the determinants defined in Section 2.3 above. We used identity (6.6) in
the proof of Proposition 5.19 in Section 5.5 above.

Remark 6.6. Continuing from the previous Remark 6.5, if we introduce a regulating parameter
z and take the formal limit as n→∞, we obtain the following identity in the ring C[tk : k ≥ 1][[z]]
of formal power series in z with coefficients which are polynomials in the tk’s:

1 +
∑

m≥0

(m+ 1)B∞(m; z)

m−1∏

k=0

(1 + tkz
k) =

∞∏

k=0

(1 + tkz
k), (6.7)

where

B∞(m; z) := tm+1z
m+1 +

(
tm+1z

m+1 − tmzm − 1
)
tm+2z

m+2A∞(m+ 3; z),

A∞(m; z) := 1 +

∞∑

r=1

tmtm+1 · · · tm+r−1z
rm+(r2).
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Let Kn := (Ku,v)u,v∈YFn denote the matrix of clone Kostka numbers This matrix has the
following block structure coming from the four recursions in Proposition 6.2:

Kn =

(
Kn−2 Dn−1Kn−1

0 Kn−1

)
, (6.8)

where Dk is the YFk−1×YFk matrix of the k-th down operator for the Young–Fibonacci lattice,
defined by

Dδv =
∑

u↗v

δu.

In (6.8), we order the Fibonacci words in YFn lexicographically. For example, the Fibonacci
words for n = 5 are ordered as follows:

w 221 212 2111 122 1211 1121 1112 11111
position 1 2 3 4 5 6 7 8

In Section 7.1 below, we provide the necessary references and discussion around the opera-
tor D (and its adjoint U) in connection with the Robinson–Schensted-like correspondence for
the Young–Fibonacci lattice.

The matrix Kn is invertible, and has an inverse given by the following recursion, which is
straightforward from (6.8):

Lemma 6.7 (Recursion for inverse clone Kostka matrices). The inverse clone Kostka matrices
K−1

n = (Ku,v) satisfy a three-step recursion with initial conditions

K−1
0 = K−1

1 = (1) and K−1
2 =

(
1 −1
0 1

)
,

and

K−1
n =

K−1
n−2

0

−K−1
n−3

−K−1
n−2

0 K−1
n−1

6.2. Clone Cauchy identities. This subsection introduces two fundamental summation formu-
las involving biserial clone symmetric functions. The second formula serves as a clone analogue
of the classical Cauchy identity for the usual Schur symmetric functions. It is worth emphasizing
that these results are biserial specializations of formulas derived from the broader, noncommuta-
tive theory of clone symmetric functions. While our handling of the results of this subsection is
self contained, we note that some important features of the noncommutative theory are lost in
specialization. We plan to investigate noncommutative aspects further in a future work.

We need four families of indeterminates: x⃗ = (x1, x2, . . .) and y⃗ = (y1, y2, . . .) together with
p⃗ = (p1, p2, . . .) and q⃗ = (q1, q2, . . .). Recall the clone homogeneous functions (6.1) and the clone
Schur functions from Definition 2.5.
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Proposition 6.8 (First clone Cauchy identity). We have

Hn

(
x⃗, y⃗ ; p⃗, q⃗

)
:=

∑

|w|=n

hw(p⃗ | q⃗ )sw(x⃗ | y⃗ )

= det




A′
1 B′

1 −C′
1 0 · · ·

1 A′
2 B′

2 −C′
2

0 1 A′
3 B′

3

0 0 1 A′
4

...
. . .




︸ ︷︷ ︸
n×n quadridiagonalmatrix

,
(6.9)

where A′
k = pkxk, B

′
k = yk(pkpk+1 − qk), and C′

k = qkxkyk+1pk+2 for all k ≥ 1.

Proof. For simplicity, let us use the shorthand sw, hw, and h
′
w for sw(x⃗ | y⃗ ), hw(x⃗ | y⃗ ), and hw(p⃗ | q⃗ ),

respectively. Begin by noticing that

H0 = 1,

H1 = p1x1,

H2 = (x1x2 − y1)p1p2 + q1y1.

The expansion sv =
∑

|u|=|v|K
u,v hu, where K

u,v is the u × v entry of the inverse clone Kostka

matrix K−1
n , leads to

Hn =
∑

u,v∈YFn

Ku,v huh
′
v.

The recursive block-matrix decomposition of K−1
n from Lemma 6.7, along with the following

identities:
h1u = xn+1 hu,
h2u = yn+1 hu,
h11u = xn+1xn+2 hu,
h21u = xn+1yn+2 hu,

h′1v = pn+1 h
′
v,

h′2v = qn+1 h
′
v,

h′11v = pn+1pn+2 h
′
v,

h′12v = pn+3qn+1 h
′
v,

(6.10)

with |u| = |v| = n, imply that Hn satisfies the following recursion:

Hn = xnpnHn−1 + yn−1

(
qn−1 − xn−1xn

)
Hn−2 − pnqn−2xn−2yn−1Hn−3, (6.11)

for all n ≥ 3. Equivalently, the n-th kernelHn can be expressed as the quadridiagonal determinant
given by (6.9). This completes the proof. □

Proposition 6.9 (Second clone Cauchy identity). We have

Sn
(
x⃗, y⃗ ; p⃗, q⃗

)
:=

∑

|w|=n

sw(p⃗ | q⃗ )sw(x⃗ | y⃗ )

= det




A1 B1 C1 0 · · ·
1 A2 B2 C2

0 1 A3 B3

0 0 1 A4
...

. . .




︸ ︷︷ ︸
n×n quadridiagonalmatrix

,
(6.12)
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where

Ak = pkxk, Bk = qk(xkxk+1 − yk) + yk(pkpk+1 − qk), Ck = pkxkqk+1yk+1.

Note that Ak,Bk,Ck differ from A′
k,B

′
k,C

′
k in Proposition 6.8, hence we use different notation.

Proof of Proposition 6.9. We apply inverse clone Kostka expansion twice:

Sn
(
x⃗, y⃗ ; p⃗, q⃗

)
=

∑

w∈YFn

sw(x⃗ | y⃗ )sw(p⃗ | q⃗ )

=
∑

w∈YFn

∑

u∈YFn

∑

v ∈YFn

Ku,wKv,w hu(x⃗ | y⃗ )hv(p⃗ | q⃗ )

= hnK
−1
n K−T

n .

Here K−T
n is the inverse transpose of Kn, and hn is the row vector with entries hw(x⃗ | y⃗ )hw(p⃗ | q⃗ )

indexed by Fibonacci words w ∈ YFn, listed in increasing lexicographic order. Define Ln :=
K−1

n K−T
n . Observe that:

L0 = L1 = (1) and L2 =

(
2 −1
−1 1

)
.

For n ≥ 3, we have the following recursive block-matrix decomposition

Ln =

2Ln−2

3Ln−3

0 −Ln−2

0

−Ln−2

Ln−1

It is important to emphasize that the rows and columns of Ln correspond to Fibonacci words
w ∈ YFn which are ordered lexicographically. For example, the hooked-shaped region labeled by
2Ln−2 in the upper left-hand corner corresponds to pairs of Fibonacci words u× v ∈ YFn ×YFn

of the form u = 2u′ and v = 2v′, where u′, v′ ∈ YFn−2 and the prefixes of both u′ and v′ are not
simultaneously equal to 1. Using (6.10) together with the block-decomposition of Ln, we get the
required three-step recurrence:

Sn
(
x⃗, y⃗ ; p⃗, q⃗

)
= An Sn−1

(
x⃗, y⃗ ; p⃗, q⃗

)
+ Bn−1Sn−2

(
x⃗, y⃗ ; p⃗, q⃗

)
+Cn−2 Sn−3

(
x⃗, y⃗ ; p⃗, q⃗

)

for n ≥ 3, where the initial values of Sn are given by:

S0
(
x⃗, y⃗ ; p⃗, q⃗

)
= 1,

S1
(
x⃗, y⃗ ; p⃗, q⃗

)
= p1x1,

S2
(
x⃗, y⃗ ; p⃗, q⃗

)
= (p1p2 − q1)(x1x2 − y1) + q1y1.

The results of the proposition are consequences of this recurrence formula. □
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7. Random permutations from clone Schur measures

In this section, we develop a model of random permutations and involutions based on the
Young–Fibonacci Robinson–Schensted correspondence. This model incorporates transition and
cotransition probabilities determined by clone Schur measures. These probability models exploit
specific features of the Young–Fibonacci lattice that are absent in the Young lattice. Specifically,
we introduce a system of cotransition probabilities defined by an arbitrary positive harmonic
function φ : YF → R>0. This construction is valid on the Young lattice only when φ is the
Plancherel harmonic function.

7.1. The Young–Fibonacci Robinson–Schensted correspondence. Both the Young–Fibo-
nacci lattice YF and the Young lattice Y of integer partitions are examples of 1-differential posets
[Sta88], [Fom94]. That is, they are:

1. Ranked, locally finite posets
(
P,⊴

)
with a unique minimal element ∅ ∈ P.

2. Possess the up and down operators, denoted by U and D, respectively, which satisfy the Weyl
commutation relation

[
D,U

]
= Id. Here U, D act on the vector space C[P] of complex-valued

functions on P as follows:

Uδv :=
∑

w▷v
|w|=|v|+1

δw, Dδv :=
∑

u◁v
|u|=|v|−1

δu,

where δv : P→ C is the indicator function supported at v ∈ P.

An immediate consequence of the Weyl commutation relation is that D
n
U

n δ∅ = n!δ∅. This
is equivalent to the assertion that ∑

|w|=n

dim2
P(w) = n!, (7.1)

where |w| denotes the rank of w ∈ P, and dimP(w) represents the number of saturated chains w0◁

· · ·◁wn in P, beginning at w0 = ∅ and terminating at wn = w. Formula (7.1) suggests a potential
bijection between the set of saturated chains terminating at rank level Pn, and permutations
σ ∈ Sn. In the case of the Young lattice Y, such a bijection exists and is given by the celebrated
Robinson–Schensted (RS) correspondence.

The theory of differential posets provides a framework that extends the RS correspondence
beyond the combinatorics of integer partitions. Fomin [Fom94], [Fom95] demonstrated this gen-
eralization showing that an RS correspondence can be constructed for any differential poset
using his concept of growth processes. Specifically, an explicit RS correspondence for the Young–
Fibonacci lattice YF was developed in [Fom95], and later reformulated into a theory of standard
tableaux by Roby [Rob91]. A subsequent variant was introduced by Nzeutchap in [Nze09], which
circumvents the Fomin growth process. In this subsection, we briefly review Nzeutchap’s version
of the Young–Fibonacci RS correspondence, and employ it to get random permutations and in-
volutions. We remark that other versions of the RS correspondence for YF are equally applicable
for these purposes.

Like a partition, a Fibonacci word w = a1 · · · ak of rank |w| = a1 + . . . + ak = n can be
visualized as an arrangement of boxes called a Young–Fibonacci diagram. This diagram consists
of n boxes arranged from left to right into k adjacent columns, where the i-th column consists of
ai vertically stacked boxes. The following example, where w = 12112211, illustrates this concept
in Figure 4.
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1 2 1 1 2 2 1 1

Figure 4. Young–Fibonacci diagram of w = 12112211.

A standard Young–Fibonacci tableau (SYFT) of shape w ∈ YFn is a labeling of the boxes of
the Young–Fibonacci diagram associated with w using indices from {1, . . . , n} such that: (i) each
index is used exactly once, (ii) box entries are strictly increasing in columns, and (iii) the top
entry of any column has no entry greater than itself to is right. See Figure 5 for an example.

10 6 4

11 8 9 7 5 2 3 1

Figure 5. Example of a standard Young–Fibonacci tableaux of shape w = 12112211.

Remark 7.1. A Fibonacci word w = a1 · · · ak can equivalently be depicted by its rooted tree Tw.
This tree consists of a horizontal spine with k nodes, where the left-most node serves as the root.
Additionally, a vertical leaf-node is attached to the i-th node on the spine whenever ai = 2. Each
edge of the tree is oriented towards the root, thereby inducing a partial order ⊑ on the nodes of
the tree Tw. Specifically, a ⊏ b represents a covering relation if and only if the nodes a, b ∈ Tw

are joined by an edge directed from b to a. For example, the tree associated with w = 12112211
is illustrated in Figure 6.

�� �� ��oo oo oo oo oo oo oo

(7.2)

Figure 6. Rooted tree Tw for w = 12112211

From this perspective, a SYFT T of shape w corresponds to a linear extension of Tw. This
is achieved by superimposing the cells (and entries) of T onto the nodes of Tw, replacing each
entry i with n + 1 − i, and then interchanging the top and bottom entries in each column of
height two. The correspondence between SYFTs T of shape w and the linear extensions of Tw is
bijective. See Figure 7 for an illustration.

4

��

7

��

10

��
1 2oo 3oo 5oo 6oo 8oo 9oo 11oo

(7.3)

Figure 7. A Llinear extension of Tw associated to the SYFT in Figure 5.
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Equation (2.1) for dim(w) is a restatement of the general hook-length formula for counting
linear extensions of a finite, rooted tree, applied to Tw. Consequently, the number of SYFTs of
shape w equals dim(w). This result can also be understood by constructing a bijection between
SYFTs of shape w ∈ YFn and saturated chains w0 ↗ · · · ↗ wn, where w0 = ∅ and wn = n.
Nzeutchap defines such a bijection using an elimination map En. This map sends a SYFT T of
shape w ∈ YFn to a SYFT En[T ] of shape v ∈ YFn−1 such that w ↘ v. See Figure 8 for an
illustration. For details, see [Nze09].

∅ ↗ 1 ↗ 2 ↗ 12 ↗ 22 ↗ 212 ↗ 222 ↗ 2212

∅
E1←− 1

E2←−
2

1
E3←−

2

3 1
E4←−

4 2

3 1
E5←−

5 2

3 4 1
E6←−

6 5 2

3 4 1
E7←−

7 6 2

3 4 5 1

Figure 8. Example of elimination maps.

The RS correspondence for the Young–Fibonacci lattice YF is a bijection that maps a permu-
tation σ ∈ Sn to an ordered pair P(σ)×Q(σ) of SYFTs, both sharing the same shape w ∈ YFn.

Given a permutation σ = (σ1, . . . ,σn) ∈ Sn, the insertion tableau P(σ) and recording tableau
Q(σ) are constructed as follows:

1. Read σ from right to left.
2. For each index σk (proceeding from right to left), match it with the maximal unmatched index

to its left (including itself if no such index exists).
3. To construct P(σ), place the matched indices into columns of height two (or leave single

unmatched indices as columns of height one), in the order of reading σ from right to left.
Place the larger value of each pair at the top of its column. Assemble these columns from left
to right in the tableau.

4. To construct Q(σ), replace each entry σk ∈ P(σ) with its index k. For columns of height two,
swap the entries between the top and bottom positions.

Figure 9 illustrates this process for σ = (2, 7, 1, 5, 6, 4, 3).

2 7 1OO 5EE 6 4OO 3OO 7 6 2

3 4 5 1︸ ︷︷ ︸
P(σ)-tableau

7 6 3

2 5 4 1︸ ︷︷ ︸
Q(σ)-tableau

Figure 9. The Young–Fibonacci RS correspondence for σ = (2, 7, 1, 5, 6, 4, 3).

The Young–Fibonacci RS correspondence enjoys many of the features of the classical RS cor-
respondence together with many novel features. For example, we have [Nze09]:

1. P(σ−1) = Q(σ) and Q(σ−1) = P(σ).
2. P(σ) = Q(σ) if and only if σ is an involution. Furthermore, the cycle decomposition of an

involution σ can be determined from the columns of P(σ) as follows:
a. The number of two-cycles in σ is h(w), the total number of digits 2 in w.
b. The number of fixed points of σ is r(w), the total number of digits 1 in w.
Here, w ∈ YF is the shape of P(σ) = Q(σ).

3. Q(σ′) = En

[
Q(σ)

]
, where σ = (σ1, . . . ,σn), and σ

′ is the standardization of (σ1, . . . ,σn−1)
(that is, the permutation σ

′ ∈ Sn−1 preserves the relative order of the entries of σ).
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4. The lexicographically minimal, reduced factorization sj1↓r1 · · · sjk↓rk of σ can be derived from
the (appropriately defined) inversions in the tableaux P(σ) and Q(σ). Here we use the
notations sj = (j, j + 1) and sj↓r = sj · · · sj−r+1. For further details, see [HS24].

7.2. Transition and cotransition measures for the Young–Fibonacci lattice. We first re-
call the standard construction of cotransition and transition probabilities for the Young–Fibonacci
lattice. These notions are associated with general branching graphs (e.g., see [BO16]).

LetMn on YFn be a coherent family of measures associated with a positive normalized harmonic
function φ by (2.4). The coherence property (2.5) is equivalent to the fact that the Mn’s are
compatible with the (standard) cotransition probabilities

µstd
CT(w, v) :=

dim v

dimw
, v ∈ YFn−1, w ∈ YFn. (7.4)

If w ̸↘ v, we set µstd
CT to zero. Note that µstd

CT do not depend φ.
Using the cotransition probabilities (7.4), we can define the joint distribution on YFn−1×YFn

with marginals Mn−1 and Mn, whose conditional distribution from level n to n − 1 is given by
µstd

CT. The conditional distribution in the other direction is, by definition, given by the transition
probabilities, which now depend on φ:

µφT(v, w) :=
φ(w)

φ(v)
, v ∈ YFn−1, w ∈ YFn (7.5)

(and this is zero if w ̸↘ v).
Using the transition probabilities (7.5), we can define probability distributions on arbitrary

saturated chains from w0 = ∅ to YFn:

µφT
(
w0 ↗ · · · ↗ wn

)
:=

n∏

k=1

µφT
(
wk−1, wk

)
= φ(wn), wn ∈ YFn. (7.6)

Note that the distribution (7.6) is uniform for all chains that end at the same Fibonacci word wn.
This is known as the centrality property in the works of Vershik and Kerov (e.g., see [VK81]).
The transition probabilities associated with a harmonic function φ define an infinite random walk
on the Young–Fibonacci lattice starting from ∅. The probability that the random walk passes
through a given Fibonacci word w ∈ YFn is equal to Mn(w) = dimw · φ(w).

Let us now define a new family of cotransition probabilities which are associated to a given
positive normalized harmonic function φ. We emphasize that this construction is specific to the
“reflective” nature of the Young–Fibonacci lattice; namely, that v ↘ u if and only if 2u↘ v.

Definition 7.2 (Cotransition probabilities for an arbitrary harmonic function). For w ∈ YFn

and v ∈ YFn−1, let us define the (generalized) cotransition probabilities

µφCT(w, v) :=





1, if w = 1v,
φ(v)

φ(u)
, if w = 2u,

0, if w ̸↘ v.

(7.7)

One can readily check that in the Plancherel case φ = φPL (2.7), the cotransition probabilities
(7.7) become the standard ones from (7.4).
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Proposition 7.3. Expression (7.7) indeed defines probabilities, that is,
∑

v∈YFn−1

µφCT(w, v) = 1, w ∈ YFn. (7.8)

Proof. If w starts with 1, then there is only one possibility for v corresponding to w = 1v, and
(7.8) is evident. Otherwise, for w = 2u, the edges w ↘ v are in one-to-one correspondence with
the edges u↗ v. The harmonicity of φ implies that

∑

v∈YFn−1

φ(v) = φ(u),

which is equivalent to (7.8). This completes the proof. □

Similarly to µφT (7.6), we can define the cotransition probabilities on all saturated chains that
start at a fixed Fibonacci word wn ∈ YFn and terminate at w0 = ∅:

µφCT(wn ↘ · · · ↘ w1 ↘ w0) :=
n∏

k=1

µφCT(wk, wk−1). (7.9)

The measure (7.9) is uniform on all chains if and only if φ = φPL, the Plancherel harmonic
function. Let us write µφCT(T ) = µφCT(wn ↘ · · · ↘ w1 ↘ w0) whenever T is the SYFT associated
to the saturated chain w0 ↗ · · · ↗ wn as in the example in Figure 4. We refer to [Nze09] for
details, and examples of the generalized cotransition probabilities are given in Figure 10.

We will typically be interested in the case when φ = φx⃗,y⃗ is a clone harmonic function coming
from a Fibonacci positive specialization (x⃗, y⃗ ).

7.3. Building random permutations and involutions. To construct a random permutation
inSn, we observe that the RS correspondence from Section 7.1 uniquely determines a permutation
σ by three components, namely, a random shape w ∈ YFn, and two random saturated chains in
YF, both terminating at w. This construction proceeds as follows:

1. First, select a Fibonacci word w ∈ YFn with probability Mn(w), determined by a positive
harmonic function π.

2. Next, generate two saturated chains terminating at w using the cotransition probabilities µφCT

and µψCT, associated with two (possibly different) positive harmonic functions φ and ψ. The
chains are conditioned to end at the previously chosen Fibonacci word w.

3. From these two chains (viewed as SYFTs), construct a permutation σ using the RS corre-
spondence.

In this way, the triad (π, φ, ψ) of positive harmonic functions determines a random permutation
σ ∈ Sn for every n ≥ 1.

Similarly, to construct a random involution in Sn, we pick w ∈ YFn according to Mn(w)
(determined by π), and generate a single saturated chain terminating at w, sampled according
to the cotransition probabilities µφCT.

Summarizing, we have the following probability measures on permutations and involutions in
Sn denoted by µn and νn, respectively:

µn(σ) = µn(σ |π, φ, ψ) := dim(w)π(w)µφCT

(
P(σ)

)
µψCT

(
Q(σ)

)
,

νn(σ) = νn(σ |π, φ) := dim(w)π(w)µφCT

(
P(σ)

)
.

(7.10)
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∅

1

11

φ(11)

2

φ(2)

111
φ(111)
φ(11)

21
φ(21)
φ(11)

φ(21)
φ(2)

12
φ(12)
φ(2)

1111
φ(1111)
φ(111)

211
φ(211)
φ(111)

φ(211)
φ(21)

121
φ(121)
φ(21)

22

φ(22)
φ(21)

φ(22)
φ(12)

112
φ(112)
φ(12)

11111 2111 1211 221 1121 122 212 1112

3 2 1 :
(
∅ ↗ 1 ↗ 11 ↗ 111

)
: 1

2

3 1 :
(
∅ ↗ 1 ↗ 2 ↗ 12

)
: 1

3

2 1 :
(
∅ ↗ 1 ↗ 11 ↗ 21

)
: φ(11)

3

1 2 :
(
∅ ↗ 1 ↗ 2 ↗ 21

)
: φ(2)

Figure 10. Top: Nonzero cotransition weights (in red with 1’s omitted). Bottom: The
four saturated chains which terminate in YF3, together with their associated SYFTs
and cotransition weights.

For example, the distribution µ3 on S3 has the form (writing permutations in the one-line
notation):

µ3(123) = π(111), µ3(213) = π(12),
µ3(132) = 2π(21)φ(11)ψ(11), µ3(321) = 2π(21)φ(2)ψ(2),
µ3(312) = 2π(21)φ(11)ψ(2), µ3(231) = 2π(21)φ(2)ψ(11).

Remark 7.4 (Plancherel cases). When π = φ = ψ = φPL, µn is simply the uniform measure on
Sn. More generally, when φ = ψ = φPL, each permutation σ ∈ Sn with the RS shape w ∈ YFn

occurs with probability µn(σ) = π(w)/ dim(w).
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For the model of random involutions, when φ = φPL, each involution σ ∈ Sn with the RS
shape w ∈ YFn occurs with probability νn(σ) = π(w) dim(w).

7.4. Observables from clone Cauchy identities. As an illustration of the connection between
random permutations and involutions with clone Schur functions, we calculate the expected
numbers of fixed points and two-cycles of a random involution σ ∈ Sn distributed according to
νn (7.10), where φ = φPL, and π = φx⃗,y⃗ for some Fibonacci positive specialization (x⃗, y⃗ ).

Recall from Section 7.1 that the fixed points and two-cycles of an involution σ ∈ Sn correspond,
respectively, to the digits 1 and 2 (denoted by r(w) and h(w)) in the shape w ∈ YFn associated
with σ under the Young–Fibonacci RS correspondence.

Rather than directly computing the expectations of r(w) and h(w), we introduce an auxiliary

parameter τ and calculate the expectation values of τ r(w) and τh(w). This approach leverages the
first clone Cauchy identity (6.9) from Section 6.2. Since the r(w)+2h(w) = n, it suffices to focus
on two-cycles.

Proposition 7.5. The expected value of τ#two-cycles(σ) for a random involution σ ∈ Sn dis-
tributed according to νn(σ |φx⃗,y⃗, φPL) (7.10) is given by

Eνn

[
τ#two-cycles(σ)

]
= (x1 · · ·xn)−1 det




x1 (1− τ)y1 −τx1y2 0 · · ·
1 x2 (1− 2τ)y2 −2τx2y3
0 1 x3 (1− 3τ)y3
0 0 1 x4
...

. . .




︸ ︷︷ ︸
n×n quadridiagonalmatrix

. (7.11)

Proof. The left-hand side of (7.11) can be rewritten using clone Schur functions as
∑

|w|=n

dim(w)φx⃗,y⃗ (w)τ
h(w) = (x1 · · ·xn)−1

∑

|w|=n

dim(w)sw(x⃗ | y⃗ )τh(w).

Setting pk = x−1
k and qk = kτx−1

k x−1
k+1 in the clone Cauchy identity (6.9) and noticing that

hw(p⃗ | q⃗ ) = (x1 · · ·xn)−1 dim(w)τh(w) under this specialization implies the desired quadridiagonal
determinant. □

Remark 7.6. If we set pk = τx−1
k and qk = kx−1

k x−1
k+1 in the proof of Proposition 7.5, we

would get the expected number of fixed points of a random involution distibuted according to
νn(σ |φx⃗,y⃗, φPL).

The expected number of two-cycles can be computed in a standard way, by differentiating:

Eνn [#two-cycles(σ)] =
∂

∂τ

∣∣∣∣
τ=1

Eνn

[
τ#two-cycles(σ)

]
.

This differentiation of a quadridiagonal determinant (7.11) is not explicit for a general Fibonacci
positive specialization (x⃗, y⃗ ). In the next Section 7.5, we consider the particular case of the shifted
Plancherel specialization xk = yk = k + σ − 1 for σ ∈ [1,∞) (Definition 3.22).

7.5. Number of two-cycles under the shifted Plancherel specialization. Consider

Hn(σ, τ) := Eνn

[
τ#two-cycles(σ)

]
, νn = νn(· |φx⃗,y⃗, φPL), xk = yk = k + σ − 1, (7.12)
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where σ ∈ [1,∞) is the parameter of the shifted Plancherel specialization (not to be confused
with the random involution σ). Denote also

Gn(σ) := Eνn [#two-cycles(σ)] .

We side-step the differentiation of the quadridiagonal determinant, and instead work directly
with the Hn(σ, τ)’s, and their generating function

H(σ, τ ; z) :=
∑

n≥0

Hn(σ, τ)z
n. (7.13)

Lemma 7.7. In the case of the shifted Plancherel specialization, the quantities Hn(σ, τ) (7.12)
satisfy the inhomogeneous, two-step recurrence

(n+ σ − 1)Hn = Hn−1 + τ(n− 1)Hn−2 + (n+ σ − 1)φx⃗,y⃗ (1
n)− φx⃗,y⃗ (1

n−1). (7.14)

Proof. A crucial property of the shifted Plancherel specialization is that

φx⃗,y⃗ (1w) =
φx⃗,y⃗ (w)

xn
, φx⃗,y⃗ (2v) =

φx⃗,y⃗ (v)

xn
, (7.15)

for any Fibonacci word w ∈ YFn−1 which does not consist entirely of 1-digits, and any Fibonacci
word v ∈ YFn−2. Indeed, this is because for the shifted Plancherel specialization, we have for the
second determinant in (2.10):

Bk(m) = m+ σ = xm+1, k ≥ 0.

Moreover, dim(1w) = dim(w). This implies (7.15). Now,

Hn(σ, τ) =
∑

|w|=n

dim(w)φx⃗,y⃗ (w)τ
h(w).

Split the sum into three parts: w = 1n, w = 1u, and w = 2v. Rewriting the second two sums in
terms of Hn−1 and Hn−2, respectively, yields the desired recurrence (7.14). □

Note that for the shifted Plancherel specialization, we have

(n+ σ − 1)φx⃗,y⃗ (1
n)− φx⃗,y⃗ (1

n−1) = σ − 1, n ≥ 1. (7.16)

Lemma 7.8. The generating function H(σ, τ ; z) (7.13) satisfies the first order ODE:

z(1− τz2)∂zH(σ, τ ; z) + (σ − 1− z − τz2)H(σ, τ ; z) =
σ − 1

1− z
Proof. This immediately follows from the recurrence in Lemma 7.7 and the identity (7.16). □

Consider first the case σ = 1 (the usual Plancherel specialization π = φPL). Then the ODE in
Lemma 7.8 admits an explicit solution:

H(1, τ ; z) =
1√

1− τz2

(
1 +
√
τz

1−√τz

) 1
2
√
τ

.

Taking the τ -derivative of the above expression at τ = 1, we see that

∑

n≥0

Gn(1)z
n =

z

2(1− z)2 +
1

4(1− z) log
(
1− z
1 + z

)
, |z| < 1. (7.17)
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The dominating singularity of this function is z = 1. The first summand expands as
∑

n≥0
n
2 z

n,
and one can readily check that the coefficients of the second summand are asymptotically bounded
in n. We conclude that

lim
n→∞

Gn(1)

n
=

1

2
. (7.18)

Remark 7.9. The limit (7.18) aligns with the result of [GK00a], which states that under the
Plancherel measure, the frequency of hikes of 2’s in the random Fibonacci word (the number
of two-cycles in the corresponding random permutation σ ∈ Sn) scales proportionally to n.
Moreover, asymptotically, 1’s (fixed points of σ) do not have a significance presence.

Consider now the general case σ ∈ [1,∞). It is not clear to the authors how to express
solutions to the ODE of Lemma 7.8, even in terms of hypergeometric functions. Nevertheless,
after differentiating the ODE in τ , setting τ = 1, and using the fact H(σ, 1; z) = (1 − z)−1, we
obtain an ODE for

G(σ; z) := ∂τ |τ=1H(σ, τ ; z) =
∑

n≥0

Gn(σ)z
n.

The new ODE has the form:

z(1− z2)∂zG(σ; z) + (σ − 1− z − z2)G(σ; z) = z2

(1− z)2 , (7.19)

whose solution can be expressed through the hypergeometric functions:

G(σ; z) =
z1−σ (1 + z)σ

2σ(1 + σ)(1− z)2 2F1

(
−1 + σ

2
,−σ; 1− σ

2
;
1− z
1 + z

)

− Γ(1 + σ) Γ
(
1
2 − σ

2

)

2σ(1 + σ)Γ
(
1
2 + σ

2

) z1−σ(1− z)−1(1− z2)(σ−1)/2.

(7.20)

The hypergeometric function makes sense unless σ is an odd positive integer. In the latter case,
the singularities in the first and the second summand cancel out, and the whole function G(σ; z)
is well-defined for all σ ∈ [1,∞). We have G(σ; 0) = 0. One can also verify that as σ → 1, the
solution (7.20) reduces to the right-hand side of (7.17). Together with the known differentiation
formula for the hypergeometric function, this implies that (7.20) is indeed a solution to (7.19).

Proposition 7.10. The coefficients at z = 0 of the generating function G(σ; z) (7.20) scale as
follows:

lim
n→∞

Gn(σ)

n
=

1

σ + 1
, σ ∈ [1,∞).

Proof. We need to analyze the singularities of G(σ; z) in z. There are two singularities closest to
the origin, z = 1 and z = −1. At z = 1, the first summand in (7.20) clearly has a pole of order
2 and behaves as (σ + 1)−1(z − 1)−2. To complete the proof, it suffices to show that this is the

dominant behavior. At z = 1, the second summand in (7.20) behaves as const · (z− 1)
σ−3
2 , which

is less singular than (z − 1)−2.
Consider now the singularity at z = −1. The second summand in (7.20) is regular at z = −1.

For the first summand, transform the hypergeometric function as [NIS24, (15.8.1)]

2F1

(
−1 + σ

2
,−σ; 1− σ

2
;
1− z
1 + z

)
=

(
2z

1 + z

)σ+1
2

2F1

(
−1 + σ

2
,
1 + σ

2
;
1− σ
2

;
z − 1

2z

)
.
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8. Additional remarks and open problems

We conclude with a discussion of some possible directions for future work. Before exploring
new open problems, we note that we have already raised two questions earlier in the text —
Problem 4.3 concerning Fibonacci positive specializations and the corresponding Borel measures,
and Problem 4.4 regarding the Toda flow. Beyond these, several other interesting directions
remain to be explored, and we highlight a few of them here.

8.1. Schützenberger promotion and combinatorial ergodicity. As explained in Remark 7.1,
standard Young–Fibonacci tableaux (SYFTs) T of shape w ∈ YF are in bijection with linear ex-
tensions of a binary, rooted tree Tw constructed from w. Like for any finite poset, there is
a Z-action on the set of linear extensions of Tw, which implements Schützenberger promotion
[Sch72, Sta09]. This Z-action can be transported to the set of SYFTs of shape w ∈ YF and, by
extension, to saturated chains w0 ↗ · · · ↗ wn starting at w0 = ∅ and terminating at wn = w. It
would be very interesting to study the interplay between this action and the probability distribu-
tions µφCT and µφCT, associated to a positive harmonic function φ. This study becomes particularly
intriguing when viewed through the lens of J. Propp and T. Roby’s notion of combinatorial er-
godicity ; see [PR15].

A related question concerns promotion and Type-I harmonic functions. Recall that for v ∈ YFk

and w ∈ YFn with k ≤ n, the measure Mk(v) = dim(v)Φ1∞2w(v) represents the probability that
wk = v, where w0 ↗ · · · ↗ wn is a uniformly sampled random saturated chain starting at w0 = ∅

and terminating at wn = w. Now fix a saturated chain u = u0 ↗ · · · ↗ un which terminates
at un = w. For v ∈ YFk with k ≪ n, consider the probability ζu;k(v) that wk = v, where
w0 ↗ · · · ↗ wn is a uniformly sampled random saturated chain from the promotion orbit Ou

of u. The measures ζu;k are not coherent. However, in light of combinatorial ergodicity, one
expects that ζu;k approximates Mk as n→∞.

8.2. Truncations of the Young–Fibonacci lattice. The theory of biserial clone Schur func-
tions, along with the constructions introduced in Sections 6.1 and 7.2, can be adapted to the k-th
truncation YF

(k) of the Young–Fibonacci lattice; see [HS24]. From a representation-theoretic per-

spective, YF(k) is the Young-Fibonacci counterpart of the poset Y(k), which consists of partitions
λ ∈ Y with at most k parts. Without going into detail, YF(k) is an infinite, ranked poset that is
part of an infinite filtration:

YF
(1) ⊂ YF

(2) ⊂ YF
(3) ⊂ · · · ⊂ YF,

where the Hasse diagram of YF(k) sits inside YF
(k+1) as an induced subgraph. The first two

truncations, YF
(1) and YF

(2), are respectively the half-Pascal and Pascal lattices. The next
truncation, YF(3), is illustrated in Figure 12.

None of the truncations are differential posets. Clone harmonic functions φx⃗,y⃗ on the Young–

Fibonacci lattice can be restricted to YF
(k), where they remain harmonic provided that the

specialization (x⃗, y⃗) stabilizes appropriately. Fibonacci positive specializations as well as positive

normalized harmonic functions for YF(k) are defined in a standard way. The space of Fibonacci
positive specializations for YF(k) is finite-dimensional and is expected to have a simple description.

In general, saturated chains in YF
(k) with a fixed endpoint are not known to be in bijection

with linear extensions of any poset. Consequently, there is no Schützenberger promotion at our
disposal. However, there exists a Z-action that implements an adic shift, allowing issues related
to combinatorial ergodicity to be explored in the truncated setting.
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∅

1

11 2

111 21 12

1111 211 121 22 112

11111 2111 221 1121 212 1112

111111 21111 2211 2121 222 11121 2112 11112

Figure 12. The truncated poset YF(3) up to level n = 6 (compare to the full Young–
Fibonacci lattice in Figure 1).

Each truncation YF
(k) supports a restricted version of the Young–Fibonacci RS correspondence,

which involves pattern-avoiding permutations. Accordingly, random pattern-avoiding permuta-
tions can be studied using the framework set up in Section 7.3.

8.3. Martin boundary, Fibonacci positive specializations, and stick-breaking. The re-
lationship between the Martin boundary ΥMartin(YF) of the Young–Fibonacci lattice and the
space of Fibonacci positive specialization is not fully understood. For a Fibonacci positive spe-
cialization (x⃗, y⃗) and its associated Type-I component µI (see Definition 5.16), it seems likely
that µI(1

∞
YF) is equal to 0 or 1. A first step would be to confirm this observation or construct

a counter-example.
Second, do the Fibonacci positive specializations (x⃗, y⃗) for which µI(1

∞
YF) = 0 coincide with

those clone measures whose joint distributions, on either runs or hikes, give rise to continuous
models of random sequences in [0, 1]∞? So far we have only encountered two types of continuous
scaling distributions. One is a stick-breaking scheme (Theorem 5.7), and another one involves a
family of conditionally independent beta random variables (Theorem 5.13).

It is natural to ask whether other continuous models of random sequences in [0, 1]∞ arise from
clone measures in the n → ∞ limit of the joint distributions of runs and/or hikes. Finally, it
remains an open question whether there exist observables, beyond consecutive joint hike and/or
run statistics, which asymptotically exhibit continuous behavior.

8.4. Random permutation models. In [GK00a], Gnedin and Kerov introduced a surjection
called the Fibonacci solitaire which maps permutations in Sn to saturated chains terminating in
YFn. This solitaire is distinct from the surjection σ 7→ P(σ) obtained by simply forgetting the
recording tableaux Q(σ) in Nzeutchap’s RS correspondence. The push-forward of the uniform
measure on Sn under the Fibonacci solitaire was shown in [GK00a] to be the Plancherel measure
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(i.e., νn(σ |π, φ) with π = φ = φPL) on the set of saturated chains terminating within YFn.
Beyond this example, it is not clear which measures on Sn realize νn(σ |π, φ) as push-forward
measures, even when φ = φPL, π = φx⃗,y⃗, and where (x⃗, y⃗ ) is any of the Fibonacci positive
specializations considered in Definition 3.22.

The probability models for random permutations and involutions described in Section 7.3 are
constructed from the Young–Fibonacci side of the RS correspondence. For general Fibonacci
positive specializations, or even specific ones such as the Charlier specialization, it would be
helpful to identify natural multivariate statistics on permutations and involutions which realize
the corresponding probability measures as Gibbs measures (that is, where the probability weight
of a permutation is proportional to the exponent of a certain combination of these statistics).

Another key question is whether the distributions µn(σ |π, φ, ψ) and νn(σ |π, φ) can be un-
derstood in connection with the Stieltjes moment problem. For instance, the Plancherel spe-
cialization corresponds to the uniform distribution on permutations σ ∈ Sn, as this is realized
by µn(σ |π, φ, ψ) when π = φ = ψ = φPL. It is known [Ful24], [AT92] that the distribution of
fixed points of a uniformly sampled random permutation σ ∈ Sn tends to the Poisson distribu-
tion ν

(1)
Pois(dt) on [0,∞) as n → ∞. Notably, ν(1)

Pois(dt) is the Borel measure associated with the
Plancherel Fibonacci positive specialization by Theorem 4.1. It is natural to ask whether this
coincidence generalizes to other Fibonacci positive specializations.

To explore this possible connection, a first step would be to examine the asymptotic behavior
of the number of fixed points in permutations σ ∈ Sn sampled according to µn(σ |π, φ, ψ),
where φ = ψ = φPL, and where π = φx⃗,y⃗ is a general clone harmonic function. Combinatorially,
this requires counting permutations σ ∈ Sn that have exactly k ≥ 0 fixed points and whose
shape under the RS correspondence corresponds to a given Fibonacci word w ∈ YFn. This
counting problem should be tractable, as fixed points of a permutation are straightforward to
identify under the YF-version of the RS correspondence. In particular, when (x⃗, y⃗ ) is the Charlier
specialization, one could test whether the asymptotic distribution of fixed points under µn(σ)
aligns with the Poisson distribution ν

(ρ)
Pois(dt), which is the Borel measure associated with the

Charlier specialization (Section 4.2.1).

8.5. Clone Cauchy identities and Okada’s noncommutative theory. The clone Cauchy
identities from Section 6.2 allow one to define Gibbs measures on the YF-lattice:

probH(w) :=
hw(p⃗ | q⃗ ) · sw(x⃗ | y⃗ )
H
(
x⃗, y⃗ ; p⃗, q⃗

) , probS(w) :=
sw(p⃗ | q⃗ ) · sw(x⃗ | y⃗ )
S
(
x⃗, y⃗ ; p⃗, q⃗

) , w ∈ YF. (8.1)

Here, the normalizing constants H and S are the sums over n of the right-hand sides of the first
and second clone Cauchy identities (Propositions 6.8 and 6.9, respectively), and (x⃗, y⃗ ) and (p⃗, q⃗ )
are two independent Fibonacci positive specializations. The measures (8.1) are two natural clone
analogues of Schur measures on partitions introduced in [Oko01]. The next step in this direction
is to define and investigate clone Schur processes — measures on sequences of Fibonacci words
whose joint distributions are expressed through suitable skew analogues of clone Schur functions.

Furthermore, the relationship between clone measures (8.1) and Okada’s noncommutative the-
ory [Oka94] may illuminate fundamental algebraic and combinatorial properties of the Young–
Fibonacci lattice. Indeed, this noncommutative framework is particularly useful for understanding
the clone Cauchy identities. In this setting, noncommutative clone Schur functions sw(x |y) form
a basis for the free algebra C⟨x,y⟩ generated by two noncommutative variables x,y. To formu-
late the Cauchy identities, we introduce an auxiliary pair of noncommutative variables p,q which
independently commute with both x and y. The noncommutative version of the quadridiagonal
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matrix in formula (6.12) is given by:

Sn(x,y ; p,q) :=




A B C 0 · · ·
1 A B C
0 1 A B
0 0 1 A
...

. . .




︸ ︷︷ ︸
n×n quadridiagonal matrix

,

where the entries are:

A = px, B = q(x2 − y) + (p2 − q)y, C = qpyx.

These entries are valued in the free algebra A⟨x,y⟩ whose coefficient ring is the free algebra
A = C⟨p,q⟩.

We conjecture that all matrix minors (quasi-determinants) of Sn(x,y ; p,q) are coefficient-wise
clone Schur positive. That is, the coefficient of each noncommutative clone Schur function sw(x |y)
in the expansion of any such matrix minor must be a nonnegative integer linear combination of
noncommutative clone Schur functions sv(p |q) in A = C⟨p,q⟩. This property reflects another
manifestation of total positivity, which is not evident under the biserial specialization considered
in Section 3.

8.6. Quasisymmetric versions of clone Schur functions. Quasisymmetric functions emerge
naturally from Nzeutchap’s Robinson–Schensted–Knuth correspondence for the Young–Fibonacci
lattice. This correspondence is an injective map from positive integer sequences N

∞ to pairs
(P,Q) of standard and semi-standard Young–Fibonacci tableaux sharing a common shape in
YF. One can define a naive quasisymmetric analogue Qw of the clone Schur function sw(x |y)
as the generating function of all semi-standard tableaux of a fixed shape w ∈ YF. However,
this analogue loses key properties: its branching rule no longer follows the YF-lattice’s covering
relations, and its expansion into Gessel fundamental quasisymmetric functions deviates from the
expected clone version of [Sta01, Theorem 7.19.7] for Schur functions.

A more speculative approach leverages the graded Hopf algebra duality between noncommuta-
tive symmetric functions (NSym) and quasisymmetric functions (QSym); see [GKL+95], [Ges84],
[MR95]. We identify NSym with the free algebra C⟨Ψ1,Ψ2,Ψ3, . . .⟩, equipped with the multi-
plicative basis of noncommutative monomials Ψα = Ψα1

1 · · ·Ψ
αk
k indexed by integer compositions

α = (α1, . . . , αk) ∈ N
k for k ≥ 0. In the terminology of [GKL+95], these are the Type-I noncom-

mutative power symmetric functions. The Hopf algebra structure is standard for free algebras.
In particular, the generators Ψk are primitive: ∆(Ψk) = 1⊗Ψk +Ψk ⊗ 1 for all k ≥ 1.

The algebra QSym has a basis {ψα} of Type-I quasisymmetric power functions [BDH+20]
indexed by integer compositions, which is dual to Ψα. While non-multiplicative, this basis deter-
mines the commutative product and co-product structures through shuffling and de-concatenation:

ψαψβ =
∑

γ∈α�β

ψγ , ∆(ψγ) =
∑

α·β=γ

ψα ⊗ ψβ .

Moreover, each ψα expands into monomial quasisymmetric functions:

ψα =
∑

β⪰α

Mβ

π(α, β)
,

where the sum ranges over compositions β |= n coarsening α.
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Okada’s clone ring C⟨x,y⟩ embeds naturally into NSym by identifying x,y with Ψ1,Ψ2,
and the Hopf algebra structure on NSym restricts to the standard Hopf algebra structure on
C⟨x,y⟩ viewed as a rank two free algebra. Interpreting Fibonacci words w ∈ YF as compositions
consisting only of 1’s and 2’s yields a multiplicative basis {Ψw : w ∈ YF} for the Okada’s clone
ring. The clone Kostka numbers mediate the expansion into clone Schur functions:

Ψw =
∑

|v|=|w|

Kv,w sv(x |y).

The quasisymmetric counterpart of C⟨x,y⟩ is the subalgebra of QSym generated by ψ1, ψ2, or,
equivalently, the span of ψw for w ∈ YF (viewed as integer compositions consisting only of 1’s and
2’s). The quasisymmetric dual thus inherits a Hopf-algebra structure (closed under shuffling),
and admits functions dual to sw(x |y):

Q(I)
w :=

∑

|v|=|w|

Kv,wψv.

Notably, Q
(I)
w expands into monomial quasisymmetric functions Mβ , but here the compositions β

may contain integers larger than 2. The function Q
(I)
w is a quasisymmetric analogue of the clone

Schur function sw.
Several natural questions arise. A parallel theory of Type-II power functions yields another

quasisymmetric analogue of clone Schur functions, Q
(II)
w , raising questions about the relationship

between Qw, Q
(I)
w , and Q

(II)
w . Understanding these connections may more shed light on the

Young–Fibonacci RSK correspondence, as well as on potential quasisymmetric versions of the
clone Cauchy identities. The Hopf-algebra duality betweenNSym and QSym can also be brought
to bear in order to understand algebraic features, such as the (common) branching structure and

clone Littlewood-Richardson coefficients of Q
(I)
w and Q

(II)
w .
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