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Abstract

We introduce Fish-Visual Trait Analysis (Fish-Vista), the
first organismal image dataset designed for the analysis
of visual traits of aquatic species directly from images us-
ing machine learning and computer vision methods. Fish-
Vista contains 69,269 annotated images spanning 4,316 fish
species, curated and organized to serve three downstream
tasks: species classification, trait identification, and trait
segmentation. Our work makes two key contributions. First,
we provide a fully reproducible data processing pipeline to
process fish images sourced from various museum collec-
tions, contributing to the advancement of AI in biodiver-
sity science. We annotate the images with carefully cu-
rated labels from biological databases and manual anno-
tations to create an AI-ready dataset of visual traits. Sec-
ond, our work offers fertile grounds for researchers to de-
velop novel methods for a variety of problems in computer
vision such as handling long-tailed distributions, out-of-
distribution generalization, learning with weak labels, ex-
plainable AI, and segmenting small objects. Dataset and
code for Fish-Vista are available at https://github.
com/Imageomics/Fish-Vista

1. Introduction

In much the same way as large-scale general-purpose
datasets in computer vision (CV) such as ImageNet [18]
have fueled the rise of deep learning for mainstream CV,
the growing deluge of image datasets in organismal biology
[10, 24, 25, 31, 44, 53, 60] are poised to enable similar revo-
lutions in the field of “AI for biodiversity science” [21, 55].
Images are increasingly being considered as the “currency”
for documenting the vast array of biodiverse organisms on
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Figure 1. Overview of Fish-Vista tasks analyzing visual traits of
fishes while exposing computer vision challenges.

our planet, with repositories containing millions of images
of biological specimens collected by scientists in field mu-
seums or captured by drones, camera traps, or tourists post-
ing photos on social media. This provides opportunities for
CV research in biodiversity applications such as classify-
ing species with fine-grained differences, and segmenting
the entire body of organisms in natural habitat images with
complex backgrounds.

While these applications serve critical use-cases, a sci-
entific problem that has been relatively ignored in previous
works is to discover characteristics of organisms, or traits
(e.g., beak color, stripe pattern, and fin curvature), directly
from images. Traits are the building blocks of knowledge
in biodiversity science that help in discriminating between
species and understanding how organisms evolve and adapt
to their environment [28]. While some traits are behav-
ioral, physiological, or related to the internal anatomy of
organisms, in this work we focus on traits that are exter-
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nally visible in images, termed visual traits. Detecting vi-
sual traits and localizing their presence from large collec-
tions of biodiversity images offers novel opportunities for
CV research to advance our understanding of the impacts
of climate change on morphological features of organisms
[26], and exploring the genetic and evolutionary underpin-
nings of their variations [28].

Current CV datasets in biodiversity science suffer from
two critical gaps that limit their applicability for analyzing
visual traits. First, most biodiversity datasets do not in-
clude trait-level annotations as they only focus on the task
of species classification. Note that identifying and docu-
menting the species of an organism from its image is rel-
atively much easier than annotating all of its visual traits
(either at the image-level or pixel-level), which often re-
quires expert knowledge and labor-intensive manual pro-
cessing. As a result, even though some datasets provide
segmentation annotations of the entire body of organisms
[42, 50, 60] (which are easier to generate using models
such as the Segment Anything Model or SAM [34]), they
do not provide annotations of fine-grained visual traits that
are smaller in size and difficult to delineate. Second, most
biodiversity datasets contain images taken in natural habi-
tats [23, 50] and lack images taken in controlled environ-
ments with uniform backgrounds, necessary for the analysis
of fine-grained visual traits. The challenge in using natural
habitat images for visual trait analysis is that the presence
of complex backgrounds such as dense foliage or under-
water elements in poor-lighting environments can occlude
and obfuscate visual traits that are already hard to detect,
particularly for images of aquatic species taken underwater.
Additionally, models trained on natural habitat images may
learn to predict traits based on background patterns found
in the habitats of certain species, introducing unintentional
biases in the localization of visual traits.

To address these gaps, we introduce Fish-Visual Trait
Analysis (Fish-Vista), the first organismal dataset designed
for the analysis of visual traits of fishes directly from im-
ages. Fish-Vista contains 69,269 annotated images span-
ning 4,316 fish species, curated and organized to serve three
downstream tasks: species classification, trait identification,
and trait segmentation (see Figure 1). Our work makes
two key contributions to the field of CV for biodiversity
science. First, we provide a fully reproducible data pro-
cessing pipeline to process images sourced from various
museum collections including GLIN [4], IDigBio [7], and
MorphBank [1] and create an “AI-ready” dataset of visual
traits, a novel concept in AI for biodiversity science. We an-
notate these images with carefully curated labels obtained
from biological databases as well as manual annotations.
Second, our work offer fertile grounds for novel CV re-
search in a variety of problems such as handling long-tailed
distributions (across all three downstream tasks), out-of-

distribution generalization (for trait identification), learn-
ing with weak labels (for trait identification), explainable
AI (for trait identification), and segmenting small objects
(for trait segmentation). We benchmark the performance
of state-of-the-art (SOTA) baseline methods on Fish-Vista
tasks to expose current gaps and to motivate future research
for answering biological questions relevant for the analysis
of visual traits of organisms from images.

2. Related Works
Table 1 provides an overview of biodiversity image datasets
that have been published in the last two decades covering
diverse categories of organisms such as birds, cats, dogs,
and fishes. While many of these datasets focus on the
tasks of species classification and fine-grained visual cate-
gorization (FGVC) [64] (i.e., differentiating closely related
species based on subtle visual differences), they mostly do
not include annotations of visual traits either at the level
of species or images (referred to as visual trait information
in Table 1). While some datasets such as CUB [60], Oxford
Pets [42], Ulucan et al. [56], and DeepFish [50] contain seg-
mentation annotations of the entire body of organisms (full-
body segmentation), they do not provide pixel-level anno-
tations of individual traits that are fine-grained and smaller
in size (visual trait segmentation). There are also datasets
such as CUB [60], NABirds [57], and FishBase [23] that
contain trait information at the level of images or species,
but do not include trait segmentation annotations.

Another common feature in most biodiversity datasets
is their focus on natural habitat images. For example, sev-
eral image datasets feature fishes in their natural underwa-
ter habitats [22, 23, 50, 58]. While they are important for
monitoring species populations out in the wild, they are not
conducive to the analysis of visual traits of organisms be-
cause of their lack of clarity, and occlusions and obfusca-
tions of visual traits. In contrast, museum collection im-
ages are taken in controlled environments that are easier to
process (e.g., remove background and other imaging arti-
facts) and use for analyzing traits. While some datasets
like QUT Fish [10] and Ulucan et al. [56] feature im-
ages in controlled internal environments, their backgrounds
can still vary (i.e., non-uniform backgrounds). They are
also limited in their number of images and species diver-
sity. FishShapes [45] provides numeric data of the lengths
of various fish parts, but does not provide image-level or
pixel-level traits. Another notable dataset for studying fish
traits is FishBase [23], comprising 64K images spanning
35K species. However, FishBase is limited in the number
of images available per species, which poses a challenge for
training AI models. FishNet [30] combines images from
the iNaturalist fish dataset [58] with functional traits from
FishBase [23] (such as ecological/habitat information of
species). However, functional traits are not localizable in
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Dataset Organism # Species # Images Full-body
Segmentation

Visual Trait
Information

Visual Trait
Segmentation

Background

CUB-200-2011 [60] Birds 200 11,788 ✓ ✓ x Natural Habitat
Birds 525 [44] Birds 525 89,885 x x x Natural Habitat
NABirds [57] Birds 555 48,562 x ✓ x Natural Habitat
Stanford dogs [31] Dogs 120 20,580 x x x Natural Habitat
Oxford Pet [42] Cats, Dogs 37 7,349 ✓ x x Natural Habitat
FathomNet [29] Marine Species 2244 84,454 x x x Natural Habitat

Ulucan et al. [56] Fish 9 9,000 ✓ x x Controlled
QUT Fish [10] Fish 468 3,960 x x x Controlled/Natural Habitat
DeepFish [50] Fish NA 39,766 ✓ x x Natural Habitat
Fish4Knowledge [22] Fish 23 27,370 x x x Natural Habitat
FishBase [23] Fish 35,600 64,000 x ✓ x Natural Habitat
iNaturalist-2021-Fish [58] Fish 183 46,996 x x x Natural Habitat
FishNet [30] Fish 17,357 94,778 x x x Natural Habitat

Fish-Vista (Ours) Fish 4,316 69,269 ✓ ✓ ✓ Controlled + Uniform

Table 1. Summary of commonly used fine-grained biodiversity datasets comprising images of organisms.

images, and hence fall outside our focus on visual traits. In
contrast to all previous works, our proposed dataset, Fish-
Vista, provides high-quality fish images with trait annota-
tions at species, image, and pixel levels, and with controlled
and uniform backgrounds from museum collections, cover-
ing a large number of images across a wide range of species,
as shown in Table 1.

3. Fish-Vista Dataset

3.1. Why Fish-Vista?

Fish-Vista fixes a critical gap in current benchmark datasets
available in AI for biodiversity science by bridging high-
quality images cleaned and curated from diverse museum
collections with labels of visual traits obtained through ex-
pert annotations and knowledge-bases. Along with enabling
a range of trait-related questions in the field of biodiversity
science, a primary motivation behind Fish-Vista is to expose
novel problem formulations and research challenges in CV
tasks involving visual traits. For example, while there has
been considerable work in FGVC for species classification,
the connection between the subtle differences in species dis-
covered by AI models and visual traits known to biologists
has still not been established. We hope that by focusing on
visual traits, our work advances the field of CV to focus on
the explainability of fine-grained features that are localized
in images and grounded in knowledge of biological traits.

3.2. Data Sources used in Fish-Vista

We consider museum collections of fish images publicly
available at GLIN [3–6, 8, 9, 16], IDigBio [7], and Mor-
phbank [1] databases. We acquired these images along with
their associated metadata including species names and li-
censing information from the FishAIR repository [2]. In
total, we collected 56,481 images from GLIN, 41,505 from
IDigBio, and 9,000 from MorphBank.

3.3. Data Processing Pipeline

There are two key challenges with FishAIR images that we
need to address: (1) museum images contain several visual
elements such as rulers and tags apart from fish specimens
that need to be cropped, and (2) there are many noisy im-
ages in museum collections including hand-written notes
and radiographic images that need to be dropped. Figure
2 shows a schematic of our processing pipeline to address
these challenges comprising of the following five steps.
1. Removing Duplicates: Since museum collections some-
times contain duplicate images stored under different file-
names, we remove duplicate images with same MD5-
checksum, to avoid data leakage in training and test splits.
2. Quality Metadata-based Filtering: For a subset of the
raw images (≈ 30k), we obtained manually annotated qual-
ity metadata from FishAIR that includes information about
the visibility of all parts of a specimen and the orientation
of the fish (e.g., side-view or top-view). We use this data to
filter images where all visual traits are not visible.
3. Filtering Noisy Species Names: Scientific species names
of FishAIR images sometimes contain inaccuracies like ty-
pographical errors or synonymous names. To mitigate this,
we exclude entries with species names that are not valid
strings, such as “gen. sp.”. We utilize the Open Tree Tax-
onomy (OTT) [40] to correct typographical errors and stan-
dardize synonyms to their canonical forms, ensuring con-
sistent categorization of species names.
4. Detecting and Cropping Fish Bounding Boxes: We use
Grounding DINO [36], a SOTA zero-shot object detection
model, to detect and crop tight bounding boxes around fish
specimens. We discard bounding boxes with dimensions
smaller than 224 pixels to avoid low-resolution images.
5. Removing Background using SAM: The backgrounds of
fish bounding boxes often contain features unique to spe-
cific species or museum collections, introducing biases in
the data that are not useful for analyzing visual traits. To
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Figure 2. An overview of the data processing pipeline used to process raw museum images to obtain images in Fish-Vista.

avoid this, we use the Segment Anything Model (SAM)
[34] to segment the entire body of a fish specimen from its
bounding box and use a uniform white background.

Further details of the processing pipeline along with
quantitative and qualitative validations for Step 4 and Step
5 are provided in Appendix C. Following the data process-
ing, we obtain ≈ 100K images spanning ≈ 10K species
that we further refine and annotate to create datasets for the
three downstream tasks.

3.4. Fish-Vista Tasks
Figure 3 shows an overview of the process followed for cre-
ating data partitions of the three Fish-Vista tasks along with
key statistics. We describe each task along with their asso-
ciated key CV challenges in the following.

3.4.1. Fine-grained Species Classification
Species classification involves categorizing images to their
respective species by distinguishing fine-grained visual
traits. One of the key challenges in species classification
with Fish-Vista is the extreme long-tailed nature of image
count distributions across species classes. We adopt sev-
eral steps to prepare data partitions for species classification
while accounting for the long-tailed distribution of species
classes. We first remove species that have less than 4 images
per class, to ensure sufficient number of images for train-
ing, testing, and validation. The remaining species still suf-
fer from a high degree of class imbalance as some species
contain up to 2K images while many others have less than
10 images. To further remove rare species that do not have
representative high-quality images, we manually inspect the
visual quality of a randomly sampled subset of 15% images
for each species. Species with predominantly low-quality
images or those lacking clear visual traits are dropped from

the dataset (see Appendix D for additional details). This re-
sults in the final FV-Classification dataset, which contains
56,360 images spanning 1,758 species.

We construct train, test, and validation splits using strati-
fied sampling across every species with splitting fractions
of 75%, 15%, and 10% respectively. We manually in-
spect every image in the test set to ensure that they are of
high quality. To address the dataset’s highly imbalanced
long-tailed distribution, we subcategorize the 1,758 species
in FV-Classification into four groups based on their train-
ing image counts per species: Majority (500 or more im-
ages), Neutral (100-499 images), Minority (10-99 images),
and Ultra-Rare (fewer than 10 images). Figure 3 provides
statistics on the four subcategories of FV-Classification and
their distributions of training, test, and validation images.
Note that while we only have 20 majority species, we have
1,342 Ultra-rare species, demonstrating the highly imbal-
anced long-tailed nature of FV-Classification. Additional
details about the data splits and manual test set filtering are
provided in Appendix F.1.

Key CV challenges: Given the large number of species
that have varying evolutionary and anatomical similarities,
classification models must differentiate subtle, fine-grained
visual differences among highly similar species, making
this a challenging FGVC task. The dataset’s long-tailed
distribution further adds the challenge of performing highly
imbalanced classification.

3.4.2. Trait Identification
Trait identification is the task of predicting the presence or
absence of visual traits from an image (Figure 1). There
are four key points to consider for this task. First, predict-
ing presence/absence of all possible traits in images is un-
necessary; we only need to predict traits that vary across

24278



Trait Identification

Species Classification

# Species: 20
# Train Img: 19,013
# Test Img: 3,578
# Val Img: 2,536

# Images : 56,360
# Species : 1,758

Species (sorted)

Tr
ai

n 
Im

g.
 

Co
un

ts

Majority Neutral Minority Ultra-Rare
# Train Img./Sp.
𝜖 [500, ∞]

Long-tailed Distribution

# Train Img./Sp.
𝜖 [100, 500)

# Species: 37
# Train Img: 8,127
# Test Img: 1,515
# Val Img: 1,088

# Train Img./Sp.
𝜖 [10, 100)

# Train Img./Sp.
𝜖 [2, 10)

# Species: 359
# Train Img: 8,161
# Test Img: 2,448
# Val Img: 1,363

# Species: 1,342
# Train Img: 4,499
# Test Img: 2,240
# Val Img: 1,792

Adipose Fin
Pelvic Fin
Barbel
Multiple 
Dorsal Fin

6.8 %
99.4 %
10.7 %

7.6 %

Traits (4) Presence in 
Images (%)0

Species 1 0…1

Species Trait 1 … Trait M

Species 2 … 1

Species N …1 0
… … …

Pelvic Fin

Multiple Dorsal Fin

Barbel

Adipose Fin

Training Set
# Images: 38,038
# Species: 628

Validation Set
# Images: 5,238
# Species: 451

Test Set

In-Species Test Set

Leave-out Species Test Set
Manual Annotation Test Set
(with image-level labels)

# Images: 7,771

# Images: 1,935

# Images: 1,281

# Species: 450

# Species: 51

# Species: 1,075

Species-level Labels # Images : 54,263
# Species : 1,754

Trait Segmentation
# Images : 6,132
# Species : 3,338
# Traits : 9

Traits Presence in Images (%)

Adipose Fin 10.70 %

7.58 %

100 %

0.38 %

0.42%

0.72 %

Mean Area (%)

Barbel

100 % 6.98 %

Eye

Head

Training Set
# Images: 4,312
# Species: 2,586

Validation Set
# Images: 316
# Species: 303

Test Set
# Images: 1,504
# Species: 1,224

Dorsal Fin

Caudal Fin

Head

Eye

Pectoral Fin
Pelvic Fin

Anal Fin

Adipose Fin

Barbel

… … …

Figure 3. An overview of the key statistics of Fish-Vista Dataset.

species and are considered biologically interesting. Traits
deemed interesting are often “rare” traits – those that are
present or absent in only a few species. For example, the
presence of eyes, which is nearly universal across all fish
species, is neither informative nor biologically significant to
predict, whereas rare traits, such as the presence of an adi-
pose fin (see Figure 3 for definition), offers more scientific
value. Second, manually annotating thousands of images
for trait presence/absence requires biological expertise, is
time-consuming, and difficult to scale. Third, the effective-
ness of trait identification models needs to be evaluated on
out-of-distribution data containing species never seen dur-
ing training. This would ensure that the models learn to
generalize based on the visual appearance of traits, rather
than memorizing species names and predicting traits known
to be associated with every species. Fourth, we should also
evaluate the ability of models to accurately identify or vi-
sually localize the traits within the image while predicting
their presence or absence.

We create the trait identification dataset with the afore-

mentioned key points in mind involving a number of steps
as outlined in Figure 3. First, we select four scientifi-
cally significant traits that vary across species – adipose
fin, pelvic fin, barbel, and multiple dorsal fins. From the
Presence in Images (%) column, we see that while some of
these traits are present over a large percentage of images
(e.g., pelvic fin), there are traits that are rare such as adi-
pose fin and multiple dorsal fin that are present only 6.8%
and 7.6%, respectively. Second, instead of annotating each
image manually, we gather species-level trait labels from
the Phenoscape KnowledgeBase (KB) [38] and FishBase
[23]. Similar to FV-Classification, we discard species con-
taining predominantly low-quality images through manual
observation (Appendix D). This results in the retrieval of
trait information for 682 species that are mapped to their
corresponding images (about 53K). Note that since Fish-
Vista images are manually filtered to include complete fish
specimens with all traits visible, species-level labels provide
a reasonable basis for image-level trait identification. The
use of species-level labels also introduces the challenge of
learning with weak labels, since traits in images are identi-
fied based on coarse-grained labels at the species level.

We split the ≈ 53K images containing trait-level infor-
mation into training, validation, and test sets with the goal
of evaluating out-of-distribution (OOD) generalization (that
is, evaluating on species never encountered during train-
ing). Toward this goal, we create a leave-out-species set by
holding out 51 species (1,935 images) that are only used
for testing. Images from the remaining species are split
into training, validation, and an in-species test set strati-
fied by trait labels. We ensure that every image in the in-
species test set comes from a species that has been seen
during training. Additionally, to further evaluate the gen-
eralization performance of trait identification across unseen
species, we create a manual-annotation test set consisting
of 1,281 manually annotated images across 1,075 species
(that have no overlap with the training set species), labeled
by expert biologists for the presence or absence of the four
target traits. The manual-annotation set differs from the
leave-out-species set in three ways. First, it contains man-
ual annotations of trait labels at the level of individual im-
ages rather than at the species level. Second, it contains a
much larger diversity of species compared to the leave-out-
species set. Third, the manual-annotation set also includes
pixel-level segmentation annotations for every image, en-
abling the evaluation of trait localization within the body
of fish images. Adding the manual-annotation set results
in the complete identification dataset, FV-Id, with a total of
54,263 images across 1,754 species. We manually inspect
all test sets to ensure quality. Key statistics of FV-Id are
summarized in Figure 3 and details are in Appendix F.2.

Key CV Challenges: We need to test the generaliza-
tion performance of models on both species seen during
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training (in-distribution performance), and unseen species
(out-of-distribution performance). The traits are also highly
imbalanced. By training models using species-level labels
and evaluating them on image-level annotations using the
manual-annotation set, FV-Id is enabling the study of learn-
ing with weak labels. Additionally, segmentation annota-
tions in the manual-annotation set enable analysis of model
explainability, i.e., whether models attend to the correct re-
gions on the image when predicting trait presence.

3.4.3. Trait Segmentation
Going beyond trait identification at the image level, we in-
troduce the task of trait segmentation, where the goal is
to delineate traits within the fish images (Figure 1). We
focus on segmenting nine visible traits on fish bodies as
shown in Figure 3. It is worth noting that while certain
traits, such as the eye, may be uninformative for image-level
presence/absence prediction in trait identification, their lo-
calization on images is still significant. We create the seg-
mentation dataset, FV-Segmentation, by manually labeling
the 9 traits across 6,132 images. The annotation process is
conducted by expert biologists by utilizing the CVAT tool
[15]. Due to the labor-intensive nature of the annotation
process and the need for biological expertise, the segmenta-
tion dataset is smaller than its classification and identifica-
tion counterparts. To enhance models’ ability to generalize
from a limited number of images, we include images from
a highly diverse set of 3,338 species in FV-Segmentation.
Key statistics of the dataset are provided in Figure 3. We
can see that certain traits, like the adipose fin and barbel, oc-
cupy very small pixel areas on average (0.38 % and 0.42%
respectively), while also being present very rarely (10.7%
and 7.58% respectively), making it a challenging dataset for
segmenting small and rare objects. Additional details in the
creation of FV-Segmentation are provided in Appendix F.3.

Key CV Challenges: The trait segmentation task
presents several unique challenges. First, because of the
relatively smaller size of the dataset, the segmentation mod-
els must be adept at learning to generalize using limited
number of labels. Second, the various fins of the fish can
appear visually similar in shape and texture. This means
models must rely on positional cues alone to distinguish be-
tween these traits, which can cause misclassifications. This
is further complicated by anatomical variations across di-
verse species. For example, the adipose and dorsal fins can
look similar, and also appear in similar positions across var-
ious species. Third, some traits are very small, posing the
well-known challenge of small object segmentation. For ex-
ample, barbels are whisker-like projections near the fish’s
mouth that occupy a small area. Finally, as with identifica-
tion, the presence of certain traits is very rare, creating high
imbalance. For example, adipose fin and barbel, which are
both small traits, are also very rare, combining the chal-
lenges of small object segmentation with data imbalance.

Type Model F1
Major
Acc.

Neutral
Acc.

Minor
Acc.

Ultra-R
Acc.

VGG-19 [51] 49.7 93.5 83.0 74.2 45.9
CNN ResNeXt-50 [63] 44.4 91.4 78.3 69.8 39.1

RegNetY-4G [47] 43.7 89.8 77.4 68.5 38.5

ViT-B16 [19] 48.3 88.7 82.3 73.3 43.4
Swin-B-22k [37] 55.1 92.6 86.2 79.6 50.4

ViT CvT-13 [62] 49.3 92.0 83.3 73.5 44.7
MaxViT-T [54] 57.8 94.4 86.7 81.4 53.9
PVT-v2-b0 [61] 51.0 92.0 83.4 75.7 45.8

BioCLIP-ZS [52] 4.6 1.1 1.4 10.2 5.6

Foundation
Models

CLIP-ZS [46] 0.1 0.0 0.3 0.4 0.2

BioCLIP-LP [52] 38.2 75.5 65.2 61.3 31.1
CLIP-LP [46] 25.4 55.9 49.8 46.7 20.9
DINOv2-LP [41] 53.1 89.9 78.04 76.04 47.02

FGVC INTR [43] 6.1 92.2 73.2 22.6 0.62
TransFG [27] 50.3 94.5 86.6 75.5 45.3

Table 2. Comparison of species classification performance (in
%). Results are color-coded as Best , Second best , Worst ,
Second worst (excluding zero-shot (ZS) methods).
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Figure 4. Comparison of classification performance of different
imbalanced classification methods on MaxViT-T

4. Experiments and Results
We compare results of baseline methods on the three Fish-
Vista tasks in the following. Implementation details of all
methods are provided in Appendix G. A cross-cutting ob-
jective of our experiments is to discover insights and high-
light key challenges that current CV methods encounter
in Fish-Vista, rather than determining the best-performing
method for each task.

4.1. Species Classification
We evaluate a wide range of approaches for species classifi-
cation including CNN-based and vision transformer-based
(ViT) backbones, zero-shot (ZS) and linear probing (LP)
methods on vision foundation models, fine-grained cate-
gorization (FGVC) methods, and techniques for handling
class-imbalance. We report the overall macro-averaged F1-
score and mean accuracy for each species subcategory to
assess performance across the imbalanced distribution of
species. Key results are shown in Table 2, with addi-
tional results in Appendix H.1. As expected, most meth-
ods perform well on Majority species (≈ 90%) and Neutral
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Figure 5. Trait identification performance of different multi-label
classification methods. Details of models are in Appendix G.2.

species (≈ 80%), but the performance drops significantly
on rare categories, with Ultra-rare species reaching only
about 50% accuracy.

We also evaluated the zero-shot performance of CLIP
and BioCLIP, a foundation model for biodiversity images.
Both models performed near random on Fish-Vista, with
BioCLIP outperforming CLIP, particularly on Rare species,
but still with low accuracy. Next, we use pre-trained fea-
tures from CLIP, BioCLIP, and DINOv2 to perform linear
probing by training a single classification layer. BioCLIP
features outperform CLIP, while DINOv2 performs signif-
icantly better than both. However, it still performs worse
than the best-performing backbone models. These results
highlight the limitations of current vision foundation mod-
els – including those trained on biodiversity images like
BioCLIP – in capturing fine-grained species variation, un-
derscoring the need for specialized approaches.

We also experiment using two FGVC methods – INTR
and TransFG, and observe similar patterns. Both models
struggle with the minority and ultra-rare species, with INTR
obtaining the worst accuracies on these categories. This
indicates that FGVC methods may struggle to handle the
long-tailed distribution of our dataset effectively.

Given the dataset’s highly imbalanced nature, we eval-
uate the impact of well-known imbalance-handling tech-
niques – class-balanced re-weighting (CB-RW) [14] and fo-
cal loss [35]. Results using our top-performing backbone,
MaxViT, are shown in Figure 4. We observe that even af-
ter combining both these techniques, the improvement in
performance is only marginal, highlighting the challenge of
long-tailed distribution in our FV-classification dataset.

Summary of Insights: Standard classification tech-
niques, including fine-grained and class-imbalance meth-
ods, may not perform optimally on Fish-Vista – especially
for the rare species that constitute the majority of the species
in the dataset – due to its challenging long-tailed distribu-
tion and fine-grained categorization requirements.

Q2L

Backbone

# Attention

Heads

IoU (×100) mIOU

(×100)Adipose Pelvic Barbel Dorsal

ResNet 1 0.014 1.482 0.0008 1.731 0.81
ResNet 4 0.003 0.963 0.0067 0.908 0.47
SWIN-B 1 0.007 1.447 0.005 1.945 0.85
SWIN-B 4 0.048 1.844 0.002 0.967 0.72

Table 3. IoU of Query2Label attention maps for each trait in the
manual annotation set. IoUs and mIoUs are amplified 100 times.
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Figure 6. Attention maps from the Query2Label-SWIN model cor-
responding to the four traits.

4.2. Trait Identification
We train an extensive range of baseline models using a
multi-label classification objective to predict the presence or
absence of the four traits in the FV-Id dataset. Figure 5 com-
pares the Mean Average Precision (mAP) of top-performing
models across all three test sets. Trait-wise results and addi-
tional metrics for all models are provided in Appendix H.2.

As expected, our best-performing models achieve high
accuracy on the in-species test set, given that these species
were included in training. However, performance drops
substantially on the leave-out-species test set, and this
decline is even more pronounced on the highly diverse
manual-annotated test set. This indicates that existing
methods struggle to generalize to traits on unseen species,
which is a key requirement for the task of trait identification.

A crucial aspect of evaluating trait identification per-
formance is to determine whether models can visually at-
tend to the correct traits, i.e., can we achieve trait local-
ization just using trait presence/absence labels on images?
To assess this, we examine our top-performing identifica-
tion model, Query2Label (Q2L) with SWIN backbone, us-
ing the model’s transformer attention maps for each trait on
the manual annotation dataset. We calculate the Intersection
over Union (IoU) between ground-truth trait segmentations
and the model’s attention maps (Table 3) and visualize the
maps for images where the model correctly predicts traits
(Figure 6). Despite high accuracy, Query2Label demon-
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Trait-wise IoU

Model mIoU BG Head Eye Dorsal Pectoral Pelvic Anal Caudal Adipose Barbel

PSPNet [65] 73.8 94.6 84.3 77.7 85.1 67.1 80.5 83.0 88.7 56.9 20.1
DeepLabV3 [11] 74.9 95.0 85.4 78.1 86.0 71.2 83.0 85.3 88.8 58.1 18.2
DeepLabV3Plus [12] 77.0 95.4 86.0 79.1 88.1 71.0 84.7 86.2 89.9 66.1 23.7
UNet [49] 77.5 95.6 86.2 79.9 88.2 70.6 84.8 86.6 90.8 69.7 22.3
Semantic FPN [33] 77.6 95.5 86.1 79.2 88.2 71.4 85.0 86.4 90.3 67.6 26.3

Mask2Former [13] 81.6 95.5 86.4 79.1 87.6 74.2 76.1 84.7 88.8 59.6 0.0
YOLOv8 [59] 83.1 96.8 84.5 83.1 88.0 78.0 77.5 85.6 89.6 66.8 26.7

Molmo+SAM (ZS) [17, 48] 39.1 85.3 37.4 29.8 50.3 29.7 38.5 36.1 83.4 0.4 0.6

Table 4. Performance (in %) of seven mainstream segmentation models on the Segmentation dataset, along with a zero-shot architecture.
Results are color-coded as Best , Second best , Worst & Second worst (excluding zero-shot method Molmo+SAM).

strates extremely low mIoUs and scattered attention maps,
indicating a failure to attend to the correct traits.

Summary of Insights: Existing methods struggle to
generalize traits on unseen species. Additionally, existing
methods may predict presence/absence of traits with de-
cent performance at the image level but may not focus on
relevant image regions, lacking explainability and spatial
awareness necessary for localization.

4.3. Trait Segmentation

We evaluate several baseline methods for image segmenta-
tion for this task, including semantic segmentation architec-
tures, instance segmentation models, and a zero-shot seg-
mentation method. Table 4 presents the overall mIoU and
individual trait-wise IoUs for each method. Traits that have
higher presence and occupy larger areas (e.g., head, dor-
sal fin, and caudal fin) generally achieve high IoUs of over
85%. However, performance drops significantly for smaller
traits like the eye, and rarer traits like the adipose fin and
barbel. Traits that are located over the body, such as the
pectoral fin, are also harder to localize.

All methods struggle particularly with the adipose fin
and barbel. Notably, Mask2Former entirely fails to detect
the barbel. This difficulty is likely due to both traits being
rare (low presence) and occupying minimal area (see Figure
3). Further inspection of the confusion matrix (Appendix
H.3) reveals that the barbel, located beneath the head, is
frequently misclassified as the head, while the adipose fin,
which is small and often near the dorsal fin, is misclassi-
fied as either the background or the dorsal fin. These results
underscore the challenges that current methods face in ac-
curately segmenting small, rare, and fine-grained traits.

Finally, we investigate the zero-shot segmentation capa-
bilities of the Segment Anything Model (SAM-v2) [48],
coupled with a large vision-language model (LVLM),
Molmo [17]. We direct Molmo to identify trait location
points in images through textual prompts. The points gen-

erated by Molmo serve as input prompts to SAM-v2, which
relies on spatial prompts (e.g., points) to generate segmenta-
tion masks of the traits (details in Appendix G.3.1). While
we did not expect high performance, results demonstrate
promising mIoU on traits like the dorsal and caudal fins.

Summary of Insights: Conventional segmentation
methods face significant challenges in localizing small, rare
and fine-grained traits in Fish-Vista. Moreover, large foun-
dational models like LVLMs and SAM have the potential to
localize scientifically relevant visual traits.

5. Limitations of Fish-Vista and Future Work

While the processing of Fish-Vista includes a range of au-
tomated and manual filtering steps, there may still be some
images that are noisy and do not clearly exhibit visual
traits, such as those with deformed fins (see Appendix D).
Additionally, for the FV-Id dataset, while we assume that
species-level labels of the presence or absence of traits are
representative over all images of the species, this may not
be true especially when certain traits in an image are oc-
cluded due to poor data quality. Finally, the segmentation
dataset contains a relatively smaller number of annotated
images compared to the other two tasks, which is due to the
labor-intensive nature of generating pixel-level annotations.

There are several directions of future work with Fish-
Vista. First, Fish-Vista can serve as a valuable resource
to train foundation models for biology, similar to BioCLIP
[52], that can be explored in future research. Second, future
research can explore ways of incorporating structured bio-
logical knowledge (e.g., the tree of life or taxonomic group-
ing of species) in the training of models based on Fish-Vista,
to ground the learning of visual traits in scientifically mean-
ingful concepts. This would scale previous works in the
emerging field of knowledge-guided ML (KGML) for bio-
diversity science [20, 32, 39] over a large and diverse dataset
that enables novel hypothesis generation and discovery of
visual traits directly from images.
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