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Abstract: This paper presents a simplified weak Galerkin (WG) finite element method for solving
biharmonic equations avoiding the use of traditional stabilizers. The proposed WG method supports
both convex and non-convex polytopal elements in finite element partitions, utilizing bubble functions
as a critical analytical tool. The simplified WG method is symmetric and positive definite. Optimal-
order error estimates are established for WG approximations in both the discrete H

2 norm and the
L

2 norm.
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1. Introduction

In this paper, we aim to develop a novel weak Galerkin (WG) finite element method for the
biharmonic equation that is applicable to non-convex polytopal meshes and eliminates the need for
traditional stabilizers. To this aim, we consider the biharmonic equation with Dirichlet and Neumann
boundary conditions. The goal is to find an unknown function u satisfying

∆2
u = f , in Ω,

u =ω, on εΩ,

εu

εn
=ϑ, on εΩ,

(1.1)
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where Ω → Rd is an open bounded domain with a Lipschitz continuous boundary εΩ. The domain Ω
considered in this paper can be of any dimension d ↑ 2. For the sake of clarity in presentation, we
will focus on the case where d = 2 throughout this paper. However, the analysis presented here can be
readily extended to higher dimensions (d ↑ 3) without significant modifications.

The variational formulation of the model problem (1.1) is as follows: Find an unknown function
u ↓ H

2(Ω) satisfying u|εΩ = ω and εuεn |εΩ = ϑ, and the following equation

2∑

i, j=1

(ε2
i j

u, ε2
i j

v) = ( f , v), ↔v ↓ H
2
0(Ω), (1.2)

where ε2
i j

denotes the second order partial derivative with respect to xi and x j, and H
2
0(Ω) = {v ↓

H
2(Ω) : v|εΩ = 0,↗v|εΩ = 0}.

The WG finite element method offers an innovative framework for the numerical solution of
partial differential equations (PDEs). This approach approximates differential operators within a
structure inspired by the theory of distributions, particularly for piecewise polynomial functions.
Unlike traditional methods, WG reduces the regularity requirements on approximating functions
through the use of carefully designed stabilizers. Extensive studies have highlighted the versatility
and effectiveness of WG methods across a wide range of model PDEs, as demonstrated by numerous
references [1–6] for an incomplete list, establishing WG as a powerful tool in scientific computing.
The defining feature of WG methods lies in their innovative use of weak derivatives and weak
continuities to construct numerical schemes based on the weak forms of the underlying PDEs. This
unique structure provides WG methods with exceptional flexibility, enabling them to address a wide
variety of PDEs while ensuring both stability and accuracy in their numerical solutions.

This paper presents a simplified formulation of the WG finite element method, capable of handling
both convex and non-convex elements in finite element partitions. A key innovation of our method
is the elimination of stabilizers through the use of higher-degree polynomials for computing weak
second-order partial derivatives. This design preserves the size and global sparsity of the stiffness
matrix while substantially reducing the programming complexity associated with traditional stabilizer-
dependent methods. The method leverages bubble functions as a critical analytical tool, representing
a significant improvement over existing stabilizer-free WG methods [7], which are limited to convex
polytopal meshes. Our approach is versatile, accommodating arbitrary dimensions and polynomial
degrees in the discretization process. In contrast, prior stabilizer-free WG methods [7] often require
specific polynomial degree combinations and are restricted to 2D or 3D settings. Theoretical analysis
establishes optimal error estimates for the WG approximations in both the discrete H

2 norm and an
L

2 norm.

This paper is organized as follows. Section 2 provides a brief review of the definition of the weak-
second order partial derivative and its discrete counterpart. In Section 3, we introduce an efficient
WG scheme that eliminates the need for stabilization terms. Section 4 establishes the existence and
uniqueness of the solution. The error equation for the proposed WG scheme is derived in Section 5.
Section 6 focuses on obtaining the error estimate for the numerical approximation in the discrete H

2

norm, while Section 7 extends the analysis to derive the error estimate in the L
2 norm.

Throughout this paper, we adopt standard notations. Let D be any open, bounded domain with a
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Lipschitz continuous boundary in Rd. The inner product, semi-norm, and norm in the Sobolev space
H

s(D) for any integer s ↑ 0 are denoted by (·, ·)s,D, | · |s,D and ↘ · ↘s,D respectively. For simplicity, when
the domain D is Ω, the subscript D is omitted from these notations. In the case s = 0, the notations
(·, ·)0,D, | · |0,D and ↘ · ↘0,D are further simplified as (·, ·)D, | · |D and ↘ · ↘D, respectively.

2. Discrete weak second order partial derivatives

This section provides a brief review of the definition of weak weak-second partial derivatives and
their discrete counterparts, as introduced in [5].

Let T be a polygonal element with boundary εT . A weak function on T is represented as v =

{v0, vb, vg}, where v0 ↓ L
2(T ), vb ↓ L

2(εT ) and vg ↓ [L2(εT )]2. The first component, v0, denotes the
value of v within the interior of T , while the second component, vb, represents the value of v on the
boundary of T . The third component vg ↓ R2 with components vgi (i = 1, 2) approximates the gradient
↗v on the boundary εT . In general, vb and vg are treated as independent of the traces of v0 and ↗v0,
respectively.

The space of all weak functions on T , denote by W(T ), is defined as

W(T ) = {v = {v0, vb, vg} : v0 ↓ L
2(T ), vb ↓ L

2(εT ), vg ↓ [L2(εT )]2
}.

The weak second order partial derivative, ε2
i j,w, is a linear operator mapping W(T ) to the dual space

of H
2(T ). For any v ↓ W(T ), ε2

i j,wv is defined as a bounded linear functional on H
2(T ), given by:

(ε2
i j,wv,ϖ)T = (v0, ε

2
ji
ϖ)T ≃ ⇐vbni, ε jϖ⇒εT + ⇐vgi,ϖnj⇒εT , ↔ϖ ↓ H

2(T ),

where n, with components ni (i = 1, 2), represents the unit outward normal vector to εT .

For any non-negative integer r ↑ 0, let Pr(T ) denote the space of polynomials on T with total
degree at most r. A discrete weak second order partial derivative, ε2

i j,w,r,T , is a linear operator mapping
W(T ) to Pr(T ). For any v ↓ W(T ), ε2

i j,w,r,T v is the unique polynomial in Pr(T ) satisfying

(ε2
i j,w,r,T v,ϖ)T = (v0, ε

2
ji
ϖ)T ≃ ⇐vbni, ε jϖ⇒εT + ⇐vgi,ϖnj⇒εT , ↔ϖ ↓ Pr(T ). (2.1)

For a smooth v0 ↓ H
2(T ), applying standard integration by parts to the first term on the right-hand side

of (2.1) yields:

(ε2
i j,w,r,T v,ϖ)T = (ε2

i j
v0,ϖ)T ≃ ⇐(vb ≃ v0)ni, ε jϖ⇒εT + ⇐vgi ≃ εiv0,ϖnj⇒εT , (2.2)

for any ϖ ↓ Pr(T ).

3. Weak Galerkin algorithms without stabilization terms

Let Th be a finite element partition of the domain Ω → R2 into polygons. Assume that Th satisfies
the shape regularity condition [8]. Let Eh represent the set of all edges in Th, and denote the set of
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interior edges by E0
h
= Eh \ εΩ. For any element T ↓ Th, let hT be its diameter, and define the mesh

size as h = maxT↓Th
hT .

Let k, p and q be integers such that k ↑ p ↑ q ↑ 1. For any element T ↓ Th, the local weak finite
element space is defined as:

V(k, p, q,T ) = {{v0, vb, vg} : v0 ↓ Pk(T ), vb ↓ Pp(e), vg ↓ [Pq(e)]2, e → εT }.

By combining the local spaces V(k, p, q,T ) across all elements T ↓ Th and ensuring continuity of vb

and vg along the interior edges E0
h
, we obtain the global weak finite element space:

Vh =
{
{v0, vb, vg} : {v0, vb, vg}|T ↓ V(k, p, q,T ),↔T ↓ Th

}
.

The subspace of Vh consisting of functions with vanishing boundary values on εΩ is defined as:

V
0
h
= {v ↓ Vh : vb|εΩ = 0, vg|εΩ = 0}.

For simplicity, the discrete weak second order partial derivative ε2
i j,wv is used to denote the operator

ε2
i j,w,r,T v defined in (2.1) on each element T ↓ Th, as:

(ε2
i j,wv)|T = ε2

i j,w,r,T (v|T ), ↔T ↓ Th.

On each element T ↓ Th, let Q0 denote the L
2 projection onto Pk(T ). On each edge e → εT , let Qb

and Qn denote the L
2 projection operators onto Pp(e) and Pq(e), respectively. For any w ↓ H

2(Ω), the
L

2 projection into the weak finite element space Vh is denoted by Qhw, defined as:

(Qhw)|T := {Q0(w|T ),Qb(w|εT ),Qn(↗w|εT )}, ↔T ↓ Th.

The simplified WG numerical scheme, free from stabilization terms, for solving the biharmonic
equation (1.1) is formulated as follows:

Weak Galerkin Algorithm 3.1. Find uh = {u0, ub,ug} ↓ Vh such that ub = Qbω, ug · n = Qnϑ and

ug · ω = Qn(↗ω · ω) on εΩ, and satisfy:

(ε2
w
uh, ε

2
w
v) = ( f , v0), ↔v = {v0, vb, vg} ↓ V

0
h
, (3.1)

where ω ↓ R2
is the tangential direction along εΩ, and the terms are defined as:

(ε2
w
uh, ε

2
w
v) =

∑

T↓Th

2∑

i, j=1

(ε2
i j,wuh, ε

2
i j,wv)T ,

( f , v0) =
∑

T↓Th

( f , v0)T .
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4. Solution existence and uniqueness

Recall that Th is a shape-regular finite element partition of the domain Ω. Consequently, for any
T ↓ Th and ϱ ↓ H

1(T ), the following trace inequality holds [8]:

↘ϱ↘2εT ⇑ C(h≃1
T
↘ϱ↘2

T
+ hT ↘↗ϱ↘

2
T
). (4.1)

If ϱ is a polynomial on the element T ↓ Th, a simpler form of the trace inequality applies [8]:

↘ϱ↘2εT ⇑ Ch
≃1
T
↘ϱ↘2

T
. (4.2)

For any v = {v0, vb, vg} ↓ Vh, define the norm:

|||v||| = (ε2
w
v, ε2

w
v)

1
2 , (4.3)

and introduce the discrete H
2- semi-norm:

↘v↘2,h =
( ∑

T↓Th

↘

2∑

i, j=1

ε2
i j

v0↘
2
T
+ h

≃3
T
↘v0 ≃ vb↘

2
εT + h

≃1
T
↘↗v0 ≃ vg↘

2
εT

) 1
2
. (4.4)

Lemma 4.1. For v = {v0, vb, vg} ↓ Vh, there exists a constant C such that for i, j = 1, 2,

↘ε2
i j

v0↘T ⇑ C↘ε2
i j,wv↘T .

Proof. Let T ↓ Th be a polytopal element with N edges denoted as e1, · · · , eN . Importantly, T can be
non-convex. On each edge ei, construct a linear function li(x) satisfying li(x) = 0 on ei as:

li(x) =
1
hT

≃≃⇓
AX · ni,

where A is a fixed point on ei, X is any point on ei, ni is the normal vector to ei, and hT is the diameter
of T .

Define the bubble function for T as:

ΦB = l
2
1(x)l2

2(x) · · · l2
N

(x) ↓ P2N(T ).

It is straightforward to verify that ΦB = 0 on εT . The function ΦB can be scaled such that ΦB(M) = 1
where M is the barycenter of T . Additionally, there exists a subdomain T̂ → T such that ΦB ↑ ς0 for
some constant ς0 > 0.

For v = {v0, vb, vg} ↓ Vh, let r = 2N + k ≃ 2 and choose ϖ = ΦBε2
i j

v0 ↓ Pr(T ) in (2.2). This yields:

(ε2
i j,wv,ΦBε

2
i j

v0)T

= (ε2
i j

v0,ΦBε
2
i j

v0)T ≃ ⇐(vb ≃ v0)ni, ε j(ΦBε
2
i j

v0)⇒εT
+ ⇐vgi ≃ εiv0,ΦBε

2
i j

v0nj⇒εT

= (ε2
i j

v0,ΦBε
2
i j

v0)T ,

(4.5)
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where we applied ΦB = 0 on εT .

Using the domain inverse inequality [8], there exists a constant C such that

(ε2
i j

v0,ΦBε
2
i j

v0)T ↑ C(ε2
i j

v0, ε
2
i j

v0)T . (4.6)

By applying the Cauchy-Schwarz inequality to (4.5) and (4.6), we obtain

(ε2
i j

v0, ε
2
i j

v0)T ⇑ C(ε2
i j,wv,ΦBε

2
i j

v0)T

⇑ C↘ε2
i j,wv↘T ↘ΦBε

2
i j

v0↘T ⇑ C↘ε2
i j,wv↘T ↘ε

2
i j

v0↘T ,

which implies:
↘ε2

i j
v0↘T ⇑ C↘ε2

i j,wv↘T .

This completes the proof.

Remark 4.1. If the polytopal element T is convex, the bubble function in Lemma 4.1 can be

simplified to:

ΦB = l1(x)l2(x) · · · lN(x).

This simplified bubble function satisfies 1) ΦB = 0 on εT, 2) there exists a subdomain T̂ → T such that

ΦB ↑ ς0 for some constant ς0 > 0. The proof of Lemma 4.1 follows the same approach, using this

simplified bubble function. In this case, we set r = N + k ≃ 2.

By constructing an edge-based bubble function,

ϖek
= &i=1,··· ,N,i!kl

2
i
(x),

it can be easily verified that 1) ϖek
= 0 on each edge ei for i ! k, and 2) there exists a subdomain êk → ek

such that ϖek
↑ ς1 for some constant ς1 > 0. Let ϖ = (vb ≃ v0)lkϖek

. It is straightforward to verify the
following properties: 1) ϖ = 0 on each edge ei for i = 1, · · · ,N, 2) ↗ϖ = 0 on each edge ei for i ! k,
and 3) ↗ϖ = (v0 ≃ vb)(↗lk)ϖek

= O( (v0≃vb)ϖek

hT

C) on ek, where C is a constant vector.

Lemma 4.2. [9] For {v0, vb, vg} ↓ Vh, let ϖ = (vb ≃ v0)lkϖek
. The following inequality holds:

↘ϖ↘2
T
⇑ ChT

∫

ek

(vb ≃ v0)2
ds. (4.7)

Lemma 4.3. For {v0, vb, vg} ↓ Vh, let ϖ = (vgi ≃ εiv0)ϖek
. The following inequality holds:

↘ϖ↘2
T
⇑ ChT

∫

ek

(vgi ≃ εiv0)2
ds. (4.8)

Proof. Define the extension of vg, originally defined on the edge ek, to the entire polytopal element
T as:

vg(X) = vg(Pro jek
(X)),
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where X = (x1, x2) is any point in T , Pro jek
(X) denotes the orthogonal projection of X onto the plane

H → R2 containing ek. If Pro jek
(X) is not on ek, vg(Pro jek

(X)) is defined as the extension of vg from ek

to H. The extension preserves the polynomial nature of vg as demonstrated in [9].

Let vtrace denote the trace of v0 on ek. Define its extension to T as:

vtrace(X) = vtrace(Pro jek
(X)).

This extension is also polynomial, as demonstrated in [9].

Let ϖ = (vgi ≃ εiv0)ϖek
. Then,

↘ϖ↘2
T
=

∫

T

ϖ2
dT =

∫

T

((vgi ≃ εiv0)(X)ϖek
)2

dT

⇑ ChT

∫

ek

((vgi ≃ εiv0)(Pro jek
(X))ϖek

)2
dT

⇑ ChT

∫

ek

(vgi ≃ εiv0)2
ds,

where we used the facts that 1) ϖek
= 0 on each edge ei for i ! k, 2) there exists a subdomain êk → ek

such that ϖek
↑ ς1 for some constant ς1 > 0, and applied the properties of the projection.

This completes the proof of the lemma.

Lemma 4.4. There exist two positive constants, C1 and C2, such that for any v = {v0, vb, vg} ↓ Vh, the

following equivalence holds:

C1↘v↘2,h ⇑ |||v||| ⇑ C2↘v↘2,h. (4.9)

Proof. Consider the edge-based bubble function defined as

ϖek
= &i=1,··· ,N,i!kl

2
i
(x).

First, extend vb from the edge ek to the element T . Similarly, let vtrace denote the trace of v0 on the
edge ek and extend vtrace to the element T . For simplicity, we continue to use vb and v0 to represent
their respective extensions. Details of these extensions can be found in Lemma 4.3. Substituting
ϖ = (vb ≃ v0)lkϖek

into (2.2), we obtain

(ε2
i j,wv,ϖ)T = (ε2

i j
v0,ϖ)T ≃ ⇐(vb ≃ v0)ni, ε jϖ⇒εT + ⇐vgi ≃ εiv0,ϖnj⇒εT

= (ε2
i j

v0,ϖ)T +Ch
≃1
T

∫

ek

|vb ≃ v0|
2ϖek

ds,
(4.10)

where we used 1) ϖ = 0 on each edge ei for i = 1, · · · , N, 2) ↗ϖ = 0 on each edge ei for i ! k, and 3)
↗ϖ = (v0 ≃ vb)(↗lk)ϖek

= O( (v0≃vb)ϖek

hT

C) on ek, where C is a constant vector.
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Recall that 1) ϖek
= 0 on each edge ei for i ! k, and 2) there exists a subdomain êk → ek such that

ϖek
↑ ς1 for some constant ς1 > 0. Using Cauchy-Schwarz inequality, the domain inverse

inequality [8], (4.10) and Lemma 4.2, we deduce:
∫

ek

|vb ≃ v0|
2
ds ⇑ C

∫

ek

|vb ≃ v0|
2ϖek

ds

⇑ ChT (↘ε2
i j,wv↘T + ↘ε

2
i j

v0↘T )↘ϖ↘T

⇑ Ch

3
2
T
(↘ε2

i j,wv↘T + ↘ε
2
i j

v0↘T )(
∫

ek

|vb ≃ v0|
2
ds)

1
2 ,

which, from Lemma 4.1, leads to:

h
≃3
T

∫

ek

|vb ≃ v0|
2
ds ⇑ C(↘ε2

i j,wv↘
2
T
+ ↘ε2

i j
v0↘

2
T
) ⇑ C↘ε2

i j,wv↘
2
T
. (4.11)

Next, extend vg from the edge ek to the element T , denoting the extension by the same symbol for
simplicity. Details of this extension are in Lemma 4.3. Substituting ϖ = (vgi ≃ εiv0)ϖek

into (2.2),
we obtain:

(ε2
i j,wv,ϖ)T

= (ε2
i j

v0,ϖ)T ≃ ⇐(vb ≃ v0)ni, ε jϖ⇒εT + ⇐vgi ≃ εiv0,ϖnj⇒εT

= (ε2
i j

v0,ϖ)T ≃ ⇐(vb ≃ v0)ni, ε jϖ⇒εT +

∫

ek

|vgi ≃ εiv0|
2ϖek

ds,

(4.12)

where we used ϖek
= 0 on edge ei for i ! k, and the fact that there exists a sub-domain êk → ek such that

ϖek
↑ ς1 for some constant ς1 > 0. This, together with Cauchy-Schwarz inequality, the domain inverse

inequality [8], the inverse inequality, the trace inequality (4.2), (4.11) and Lemma 4.3, gives
∫

ek

|vgi ≃ εiv0|
2
ds

⇑ C

∫

ek

|vgi ≃ εiv0|
2ϖek

ds

⇑ C(↘ε2
i j,wv↘T + ↘ε

2
i j

v0↘T )↘ϖ↘T +C↘v0 ≃ vb↘εT ↘ε jϱ↘εT

⇑ Ch

1
2
T
(↘ε2

i j,wv↘T + ↘ε
2
i j

v0↘T )(
∫

ek

|vgi ≃ εiv0|
2
ds)

1
2 +Ch

3
2
T
↘ε2

i j,wv↘T h
≃1
T

(
∫

ek

|vgi ≃ εiv0|
2
ds)

1
2 .

Applying Lemma 4.1, gives

h
≃1
T

∫

ek

|vgi ≃ εiv0|
2
ds ⇑ C(↘ε2

i j,wv↘
2
T
+ ↘ε2

i j
v0↘

2
T
) ⇑ C↘ε2

i j,wv↘
2
T
. (4.13)

Using Lemma 4.1, Eqs (4.11), (4.13), (4.3) and (4.4), we deduce:

C1↘v↘2,h ⇑ |||v|||.

Electronic Research Archive Volume 33, Issue 3, 1523–1540.



1531

Finally, using the Cauchy-Schwarz inequality, inverse inequalities, and the trace inequality (4.2)
in (2.2), we derive:

∣∣∣∣(ε2
i j,wv,ϖ)T

∣∣∣∣ ⇑ ↘ε2
i j

v0↘T ↘ϖ↘T + ↘(vb ≃ v0)ni↘εT ↘ε jϖ↘εT + ↘vgi ≃ εiv0↘εT ↘ϖnj↘εT

⇑ ↘ε2
i j

v0↘T ↘ϖ↘T + h
≃

3
2

T
↘vb ≃ v0↘εT ↘ϖ↘T + h

≃
1
2

T
↘vgi ≃ εiv0↘εT ↘ϖ↘T ,

which gives:
↘ε2

i j,wv↘
2
T
⇑ C(↘ε2

i j
v0↘

2
T
+ h

≃3
T
↘vb ≃ v0↘

2
εT + h

≃1
T
↘vgi ≃ εiv0↘

2
εT ),

and further gives
|||v||| ⇑ C2↘v↘2,h.

This completes the proof.

Theorem 4.5. The WG scheme 3.1 admits a unique solution.

Proof. Assume that u
(1)
h
↓ Vh and u

(2)
h
↓ Vh are two distinct solutions of the WG scheme 3.1. Define

φh = u
(1)
h
≃ u

(2)
h
↓ V

0
h
. Then, φh satisfies

(ε2
i j,wφh, ε

2
i j,wv) = 0, ↔v ↓ V

0
h
.

Choosing v = φh yields |||φh||| = 0. From the equivalence of norms in (4.9), it follows that ↘φh↘2,h = 0,
which yields ε2

i j
φ0 = 0 for i, j = 1, 2 on each T , φ0 = φb and ↗φ0 = εg

on each εT . Consequently, φ0 is
a linear function on each element T and ↗φ0 = C on each T .

Since ↗φ0 = εg
on each εT , it follows that ↗φ0 is continuous across the entire domain Ω. Thus,

↗φ0 = C throughout Ω. Furthermore, the condition ε
g
= 0 on εΩ implies ↗φ0 = 0 in Ω and ε

g
= 0 on

each εT . Therefore, φ0 is a constant on each element T .

Since φ0 = φb on εT , the continuity of φ0 over Ω implies φ0 is globally constant. From φb = 0 on
εΩ, we conclude φ0 = 0 throughout Ω. Consequently, φb = φ0 = 0 on each εT , which implies φh ⇔ 0
in Ω. Thus, u

(1)
h
⇔ u

(2)
h

, proving the uniqueness of the solution.

5. Error equations

Let Qr denote the L
2 projection operator onto the finite element space of piecewise polynomials of

degree at most r.

Lemma 5.1. The following property holds:

ε2
i j,wu = Qr(ε2

i j
u), ↔u ↓ H

2(T ). (5.1)

Proof. For any u ↓ H
2(T ), using (2.2), we have

(ε2
i j,wu,ϖ)T

= (ε2
i j

u,ϖ)T ≃ ⇐(u|εT ≃ u|T )ni, ε jϖ⇒εT + ⇐(↗u|εT )i ≃ εi(u|T ),ϖnj⇒εT

= (ε2
i j

u,ϖ)T = (Qr(ε2
i j

u),ϖ)T ,

for all ϖ ↓ Pr(T ). This completes the proof.
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Let u be the exact solution of the biharmonic equation (1.1), and uh ↓ Vh its numerical
approximation obtained from the WG scheme 3.1. The error function, denoted by eh, is defined as

eh = u ≃ uh. (5.2)

Lemma 5.2. The error function eh defined in (5.2) satisfies the following error equation:

(ε2
w
eh, ε

2
w
v) = ↼(u, v), ↔v ↓ V

0
h
, (5.3)

where

↼(u, v) =
∑

T↓Th

2∑

i, j=1

≃⇐(vb ≃ v0)ni, ε j((Qr ≃ I)ε2
i j

u)⇒εT + ⇐vgi ≃ εiv0, (Qr ≃ I)ε2
i j

un j⇒εT .

Proof. Using (5.1), standard integration by parts, and substituting ϖ = Qrε2
i j

u into (2.2), we obtain

∑

T↓Th

2∑

i, j=1

(ε2
i j,wu, ε2

i j,wv)T

=
∑

T↓Th

2∑

i, j=1

(Qrε
2
i j

u, ε2
i j,wv)T

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

v0,Qrε
2
i j

u)T ≃ ⇐(vb ≃ v0)ni, ε j(Qrε
2
i j

u)⇒εT + ⇐vgi ≃ εiv0,Qrε
2
i j

un j⇒εT

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

v0, ε
2
i j

u)T ≃ ⇐(vb ≃ v0)ni, ε j(Qrε
2
i j

u)⇒εT + ⇐vgi ≃ εiv0,Qrε
2
i j

un j⇒εT

=
∑

T↓Th

2∑

i, j=1

((ε2
i j

)2
u, v0)T + ⇐ε

2
i j

u, εiv0 · nj⇒εT ≃ ⇐ε j(ε2
i j

u) · ni, v0⇒εT

≃ ⇐(vb ≃ v0)ni, ε j(Qrε
2
i j

u)⇒εT + ⇐vgi ≃ εiv0,Qrε
2
i j

un j⇒εT

= ( f , v0) +
∑

T↓Th

2∑

i, j=1

≃⇐(vb ≃ v0)ni, ε j((Qr ≃ I)ε2
i j

u)⇒εT + ⇐vgi ≃ εiv0, (Qr ≃ I)ε2
i j

un j⇒εT ,

(5.4)

where we used (1.1), ε2
i j

v0 ↓ Pk≃2(T ) and r = 2N + k ≃ 2 ↑ k ≃ 2,
∑

T↓Th

∑2
i, j=1⇐ε

2
i j

u, vgi · nj⇒εT =
∑

T↓Th

∑2
i, j=1⇐ε

2
i j

u, vgi · nj⇒εΩ = 0 since vgi = 0 on εΩ, and
∑

T↓Th

∑2
i, j=1⇐ε j(ε2

i j
u) · ni, vb⇒εT =

∑
T↓Th

∑2
i, j=1⇐ε j(ε2

i j
u) · ni, vb⇒εΩ = 0 since vb = 0 on εΩ.

Subtracting (3.1) from (5.4) yields

∑

T↓Th

2∑

i, j=1

(ε2
i j,weh, ε

2
i j,wv)T

=
∑

T↓Th

2∑

i, j=1

≃⇐(vb ≃ v0)ni, ε j((Qr ≃ I)ε2
i j

u)⇒εT + ⇐vgi ≃ εiv0, (Qr ≃ I)ε2
i j

un j⇒εT .

This concludes the proof.
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6. Error estimates in the H
2 norm

Lemma 6.1. [5] Let Th be a finite element partition of the domain Ω satisfying the shape regularity

assumption specified in [8]. For any 0 ⇑ s ⇑ 2 and 1 ⇑ m ⇑ k, the following estimates hold:

∑

T↓Th

2∑

i, j=1

h
2s

T
↘ε2

i j
u ≃ Qrε

2
i j

u↘
2
s,T ⇑ Ch

2(m≃1)
↘u↘

2
m+1, (6.1)

∑

T↓Th

h
2s

T
↘u ≃ Q0u↘

2
s,T ⇑ Ch

2(m+1)
↘u↘

2
m+1. (6.2)

Lemma 6.2. If u ↓ H
k+1(Ω), then there exists a constant C such that

|||u ≃ Qhu||| ⇑ Ch
k≃1
↘u↘k+1. (6.3)

Proof. Utilizing (2.2), the trace inequalities (4.1) and (4.2), the inverse inequality, and the estimate (6.2)
for m = k and s = 0, 1, 2, we analyze the following summation for any ϖ ↓ Pr(T ):

∑

T↓Th

2∑

i, j=1

(ε2
i j,w(u ≃ Qhu),ϖ)T

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

(u ≃ Q0u),ϖ)T ≃ ⇐(Q0u ≃ Qbu)ni, ε jϖ⇒εT

+ ⇐(εiu ≃ Qn(εiu)) ≃ εi(u ≃ Q0u),ϖnj⇒εT

⇑

( ∑

T↓Th

2∑

i, j=1

↘ε2
i j

(u ≃ Q0u)↘2
T

) 1
2
( ∑

T↓Th

↘ϖ↘2
T

) 1
2

+
( ∑

T↓Th

2∑

i=1

↘(Q0u ≃ Qbu)ni↘
2
εT

) 1
2
( ∑

T↓Th

2∑

j=1

↘ε jϖ↘
2
εT

) 1
2

+
( ∑

T↓Th

2∑

i=1

↘εi(Q0u) ≃ Qn(εiu)↘2εT
) 1

2
( ∑

T↓Th

2∑

j=1

↘ϖnj↘
2
εT

) 1
2

⇑

( ∑

T↓Th

2∑

i, j=1

↘ε2
i j

(u ≃ Q0u)↘2
T

) 1
2
( ∑

T↓Th

↘ϖ↘2
T

) 1
2

+
( ∑

T↓Th

h
≃1
T
↘Q0u ≃ u↘T + hT ↘Q0u ≃ u↘

2
1,T

) 1
2
( ∑

T↓Th

h
≃3
T
↘ϖ↘2

T

) 1
2

+
( ∑

T↓Th

2∑

i=1

h
≃1
T
↘εi(Q0u) ≃ εiu↘

2
T
+ hT ↘εi(Q0u) ≃ εiu↘

2
1,T

) 1
2
( ∑

T↓Th

h
≃1
T
↘ϖ↘2

T

) 1
2

⇑ Ch
k≃1
↘u↘k+1

( ∑

T↓Th

↘ϖ↘2
T

) 1
2
.
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Letting ϖ = ε2
i j,w(u ≃ Qhu) gives

∑

T↓Th

2∑

i, j=1

(ε2
i j,w(u ≃ Qhu), ε2

i j,w(u ≃ Qhu))T ⇑ Ch
k≃1
↘u↘k+1|||u ≃ Qhu|||.

This completes the proof.

Theorem 6.3. Suppose the exact solution u of the biharmonic equation (1.1) satisfies u ↓ H
k+1(Ω).

Then, the error estimate satisfies:

|||u ≃ uh||| ⇑ Ch
k≃1
↘u↘k+1. (6.4)

Proof. Note that r ↑ 1. For the first term on the right-hand side of the error equation (5.3), using
Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 1, 2,
and (4.9), we have

∣∣∣∣
∑

T↓Th

2∑

i, j=1

≃⇐(vb ≃ v0)ni, ε j((Qr ≃ I)ε2
i j

u)⇒εT
∣∣∣∣

⇑ C(
∑

T↓Th

2∑

i=1

h
≃3
T
↘(vb ≃ v0)ni↘

2
εT )

1
2 · (
∑

T↓Th

2∑

i, j=1

h
3
T
↘ε j((Qr ≃ I)ε2

i j
u)↘2εT )

1
2

⇑ C↘v↘2,h(
∑

T↓Th

2∑

i, j=1

h
2
T
↘ε j((Qr ≃ I)ε2

i j
u)↘2

T
+ h

4
T
↘ε j((Qr ≃ I)ε2

i j
u)↘21,T )

1
2

⇑ Ch
k≃1
↘u↘k+1|||v|||.

(6.5)

For the second term on the right-hand side of the error equation (5.3), using the Cauchy-Schwarz
inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 0, 1, and (4.9), we have

∣∣∣∣
∑

T↓Th

2∑

i, j=1

⇐vgi ≃ εiv0, (Qr ≃ I)ε2
i j

un j⇒εT

∣∣∣∣

⇑ C(
∑

T↓Th

2∑

i=1

h
≃1
T
↘vgi ≃ εiv0↘

2
εT )

1
2 (
∑

T↓Th

2∑

i, j=1

hT ↘(Qr ≃ I)ε2
i j

un j↘
2
εT )

1
2

⇑ C↘v↘2,h(
∑

T↓Th

2∑

i, j=1

↘(Qr ≃ I)ε2
i j

un j↘
2
T
+ h

2
T
↘(Qr ≃ I)ε2

i j
un j↘

2
1,T )

1
2

⇑ C↘v↘2,hh
k≃1
↘u↘k+1

⇑ Ch
k≃1
↘u↘k+1|||v|||.

(6.6)

Substituting (6.5) and (6.6) into (5.3) gives

(ε2
i j,weh, ε

2
i j,wv) ⇑ Ch

k≃1
↘u↘k+1|||v|||. (6.7)
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Using Cauchy-Schwarz inequality, letting v = Qhu ≃ uh in (6.7), the error estimate (6.3) gives

|||u ≃ uh|||
2

=
∑

T↓Th

2∑

i, j=1

(ε2
i j,w(u ≃ uh), ε2

i j,w(u ≃ Qhu))T + (ε2
i j,w(u ≃ uh), ε2

i j,w(Qhu ≃ uh))T

⇑ |||u ≃ uh||||||u ≃ Qhu||| +Ch
k≃1
↘u↘k+1|||Qhu ≃ uh|||

⇑ |||u ≃ uh||||||u ≃ Qhu||| +Ch
k≃1
↘u↘k+1(|||Qhu ≃ u||| + |||u ≃ uh|||)

⇑ |||u ≃ uh||||||u ≃ Qhu||| +Ch
k≃1
↘u↘k+1h

k≃1
↘u↘k+1 +Ch

k≃1
↘u↘k+1|||u ≃ uh|||,

which further gives

|||u ≃ uh||| ⇑ |||u ≃ Qhu||| +Ch
k≃1
↘u↘k+1 ⇑ Ch

k≃1
↘u↘k+1.

This completes the proof.

7. L
2 error estimate

To derive the error estimate in the L
2 norm, we use the standard duality argument. The error is

expressed as eh = u ≃ uh = {e0, eb, eg}, and we define ↽h = Qhu ≃ uh = {↽0, ↽b, ϑg
} ↓ V

0
h
. Consider

the dual problem associated with the biharmonic equation (1.1), which seeks a function w ↓ H
2
0(Ω)

satisfying:

∆2
w = ↽0, in Ω,
w = 0, on εΩ,
εw

εn
= 0, on εΩ.

(7.1)

We assume the following regularity condition for the dual problem:

↘w↘4 ⇑ C↘↽0↘. (7.2)

Theorem 7.1. Let u ↓ H
k+1(Ω) be the exact solution of the biharmonic equation (1.1), and let uh ↓ Vh

denote the numerical solution obtained using the weak Galerkin scheme 3.1. Assume that the H
4
-

regularity condition (7.2) holds. Then, there exists a constant C such that

↘e0↘ ⇑ Ch
k+1
↘u↘k+1.

Proof. Testing the dual problem (7.1) with ↽0 and applying integration by parts, we derive:

↘↽0↘
2 = (∆2

w, ↽0)

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

w, ε2
i j
↽0)T ≃ ⇐ε

2
i j

w, εi↽0 · nj⇒εT + ⇐ε j(ε2
i j

w) · ni, ↽0⇒εT

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

w, ε2
i j
↽0)T ≃ ⇐ε

2
i j

w, (εi↽0 ≃ ↽gi) · nj⇒εT + ⇐ε j(ε2
i j

w) · ni, ↽0 ≃ ↽b⇒εT ,

(7.3)
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where we used
∑

T↓Th

∑2
i, j=1⇐ε

2
i j

w, ↽gi · nj⇒εT =
∑2

i, j=1⇐ε
2
i j

w, ↽gi · nj⇒εΩ = 0 due to ϑ
g
= 0 on εΩ, and

∑
T↓Th

∑2
i, j=1⇐ε j(ε2

i j
w) · ni, ↽b⇒εT =

∑2
i, j=1⇐ε j(ε2

i j
w) · ni, ↽b⇒εΩ = 0 due to ↽b = 0 on εΩ.

Letting u = w and v = ↽h in (5.4) gives

∑

T↓Th

2∑

i, j=1

(ε2
i j,ww, ε2

i j,w↽h)T

=
∑

T↓Th

2∑

i, j=1

(ε2
i j

w, ε2
i j
↽0)T ≃ ⇐(↽b ≃ ↽0)ni, ε j(Qrε

2
i j

w)⇒εT + ⇐↽gi ≃ εi↽0,Qrε
2
i j

wn j⇒εT ,

which is equivalent to

∑

T↓Th

2∑

i, j=1

(ε2
i j

w, ε2
i j
↽0)T

=
∑

T↓Th

2∑

i, j=1

(ε2
i j,ww, ε2

i j,w↽h)T + ⇐(↽b ≃ ↽0)ni, ε j(Qrε
2
i j

w)⇒εT ≃ ⇐↽gi ≃ εi↽0,Qrε
2
i j

wn j⇒εT .

Substituting the above equation into (7.3) and using (5.3) gives

↘↽0↘
2 =
∑

T↓Th

2∑

i, j=1

(ε2
i j,ww, ε2

i j,w↽h)T + ⇐(↽b ≃ ↽0)ni, ε j((Qr ≃ I)ε2
i j

w)⇒εT

≃ ⇐↽gi ≃ εi↽0, (Qr ≃ I)ε2
i j

wn j⇒εT

=
∑

T↓Th

2∑

i, j=1

(ε2
i j,ww, ε2

i j,weh)T + (ε2
i j,ww, ε2

i j,w(Qhu ≃ u))T ≃ ↼(w, ↽h)

=
∑

T↓Th

2∑

i, j=1

(ε2
i j,wQhw, ε2

i j,weh)T + (ε2
i j,w(w ≃ Qhw), ε2

i j,weh)T

+ (ε2
i j,ww, ε2

i j,w(Qhu ≃ u))T ≃ ↼(w, ↽h)

= ↼(u,Qhw) +
∑

T↓Th

2∑

i, j=1

(ε2
i j,w(w ≃ Qhw), ε2

i j,weh)T

+ (ε2
i j,ww, ε2

i j,w(Qhu ≃ u))T ≃ ↼(w, ↽h)

= J1 + J2 + J3 + J4.

(7.4)

We will estimate the four terms Ji (i = 1, · · · , 4) on the last line of (7.4) individually.

For J1, using the Cauchy-Schwarz inequality, the trace inequality (4.1), the inverse inequality, the
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estimate (6.1) with m = k and s = 0, 1, 2, the estimate (6.2) with m = 3 and s = 0, 1, 2, gives

J1 = ↼(u,Qhw)

⇑

∣∣∣∣
∑

T↓Th

2∑

i, j=1

≃⇐(Qbw ≃ Q0w)ni, ε j((Qr ≃ I)ε2
i j

u)⇒εT

+ ⇐Qn(εiw) ≃ εiQ0w, (Qr ≃ I)ε2
i j

un j⇒εT

∣∣∣∣

⇑

( ∑

T↓Th

2∑

i=1

↘(Qbw ≃ Q0w)ni↘
2
εT

) 1
2
( ∑

T↓Th

2∑

i, j=1

↘ε j((Qr ≃ I)ε2
i j

u)↘2εT
) 1

2

+
( ∑

T↓Th

2∑

i=1

↘Qn(εiw) ≃ εiQ0w↘
2
εT

) 1
2
( ∑

T↓Th

2∑

i, j=1

↘(Qr ≃ I)ε2
i j

un j↘
2
εT

) 1
2

⇑

( ∑

T↓Th

h
≃1
T
↘w ≃ Q0w↘

2
T
+ hT ↘w ≃ Q0w↘

2
1,T

) 1
2

·

( ∑

T↓Th

2∑

i, j=1

h
≃1
T
↘ε j((Qr ≃ I)ε2

i j
u)↘2

T
+ hT ↘ε j((Qr ≃ I)ε2

i j
u)↘21,T

) 1
2

+
( ∑

T↓Th

2∑

i=1

h
≃1
T
↘εiw ≃ εiQ0w↘

2
T
+ hT ↘εiw ≃ εiQ0w↘

2
1,T

) 1
2

·

( ∑

T↓Th

2∑

i, j=1

h
≃1
T
↘(Qr ≃ I)ε2

i j
un j↘

2
T
+ hT ↘(Qr ≃ I)ε2

i j
un j↘

2
1,T

) 1
2

⇑ Ch
k+1
↘u↘k+1↘w↘4.

(7.5)

For J2, using Cauchy-Schwarz inequality, (6.3) with k = 3 and (6.4) gives

J2 ⇑ |||w ≃ Qhw||||||eh||| ⇑ Ch
k≃1
↘u↘k+1h

2
↘w↘4 ⇑ Ch

k+1
↘u↘k+1↘w↘4. (7.6)

For J3, denote by Q
1 a L

2 projection onto P1(T ). Using (2.1) gives

(ε2
i j,w(Qhu ≃ u),Q1ε2

i j,ww)T

= (Q0u ≃ u, ε2
ji
(Q1ε2

i j,ww))T ≃ ⇐Qbu ≃ u, ε j(Q1ε2
i j,ww)⇒εT + ⇐Qn(εiu) ≃ εiu,Q

1ε2
i j,wwnj⇒εT

= 0,

(7.7)

where we used ε2
ji
(Q1ε2

i j,ww) = 0, ε j(Q1ε2
i j,ww) = C and the property of the projection operators Qb and

Qn and p ↑ q ↑ 1.
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Using (7.7), Cauchy-Schwarz inequality, (5.1) and (6.3), gives

J3 ⇑ |
∑

T↓Th

2∑

i, j=1

(ε2
i j,ww, ε2

i j,w(Qhu ≃ u))T |

= |
∑

T↓Th

2∑

i, j=1

(ε2
i j,ww ≃ Q

1ε2
i j,ww, ε2

i j,w(Qhu ≃ u))T |

= |
∑

T↓Th

2∑

i, j=1

(Qrε
2
i j

w ≃ Q
1
Qrε

2
i j

w, ε2
i j,w(Qhu ≃ u))T |

⇑

( ∑

T↓Th

2∑

i, j=1

↘Qrε
2
i j

w ≃ Q
1
Q

rε2
i j

w↘
2
T

) 1
2
|||Qhu ≃ u|||

⇑ Ch
k+1
↘u↘k+1↘w↘4.

(7.8)

For J4, using Cauchy-Schwarz inequality, the trace inequality (4.1), Lemma 4.4, the estimate (6.1)
with m = 3 and s = 0, 1, (6.3), (6.4) gives

J4 = ↼(w, ↽h)

⇑

∣∣∣∣
∑

T↓Th

2∑

i, j=1

≃⇐(↽b ≃ ↽0)ni, ε j((Qr ≃ I)ε2
i j

w)⇒εT

+ ⇐↽gi ≃ εi↽0, (Qr ≃ I)ε2
i j

wn j⇒εT

∣∣∣∣

⇑

( ∑

T↓Th

2∑

i=1

↘(↽b ≃ ↽0)ni↘
2
εT

) 1
2
( ∑

T↓Th

2∑

i, j=1

↘ε j((Qr ≃ I)ε2
i j

w)↘2εT
) 1

2

+
( ∑

T↓Th

2∑

i=1

↘↽gi ≃ εi↽0↘
2
εT

) 1
2
( ∑

T↓Th

2∑

i, j=1

↘(Qr ≃ I)ε2
i j

wn j↘
2
εT

) 1
2

⇑

( ∑

T↓Th

2∑

i, j=1

h
2
T
↘ε j((Qr ≃ I)ε2

i j
w)↘2

T
+ h

4
T
↘ε j((Qr ≃ I)ε2

i j
w)↘21,T

) 1
2

·

( ∑

T↓Th

h
≃3
T
↘↽0 ≃ ↽b↘

2
εT

) 1
2

+
( ∑

T↓Th

2∑

i, j=1

↘(Qr ≃ I)ε2
i j

wn j↘
2
T
+ h

2
T
↘(Qr ≃ I)ε2

i j
wn j↘

2
1,T

) 1
2

·

( ∑

T↓Th

2∑

i=1

h
≃1
T
↘↽gi ≃ εi↽0↘

2
εT

) 1
2

⇑ Ch
2
↘w↘4|||↽h|||

⇑ Ch
2
↘w↘4(|||u ≃ uh||| + |||u ≃ Qhu|||)

⇑ Ch
k+1
↘w↘4↘u↘k+1.

(7.9)
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Substituting (7.5), (7.6), (7.8) and (7.9) into (7.4), and using (7.2), gives

↘↽0↘
2
⇑ Ch

k+1
↘w↘4↘u↘k+1 ⇑ Ch

k+1
↘u↘k+1↘↽0↘.

This gives
↘↽0↘ ⇑ Ch

k+1
↘u↘k+1,

which, using the triangle inequality and (6.2) with m = k and s = 0, gives

↘e0↘ ⇑ ↘↽0↘ + ↘u ≃ Q0u↘ ⇑ Ch
k+1
↘u↘k+1.

This completes the proof of the theorem.
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