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1. Introduction

In this paper, we aim to develop a novel weak Galerkin (WG) finite element method for the
biharmonic equation that is applicable to non-convex polytopal meshes and eliminates the need for
traditional stabilizers. To this aim, we consider the biharmonic equation with Dirichlet and Neumann
boundary conditions. The goal is to find an unknown function u satisfying

A*u =f, in Q,

u =&, on 0Q, (1.1)
0

“ =V, on 0Q,

o
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where Q € R? is an open bounded domain with a Lipschitz continuous boundary dQ2. The domain
considered in this paper can be of any dimension d > 2. For the sake of clarity in presentation, we
will focus on the case where d = 2 throughout this paper. However, the analysis presented here can be
readily extended to higher dimensions (d > 3) without significant modifications.

The variational formulation of the model problem (1.1) is as follows: Find an unknown function
u € H*(Q) satisfying ulyo = &€ and g—ﬁlm = v, and the following equation

2
> @ diy) = (v, Mve HYQ), (1.2)

ij=1

where afj denotes the second order partial derivative with respect to x; and x;, and Hy(Q) = {v €
H*(Q) : vlsa = 0, Vvlsa = O}.

The WG finite element method offers an innovative framework for the numerical solution of
partial differential equations (PDEs). This approach approximates differential operators within a
structure inspired by the theory of distributions, particularly for piecewise polynomial functions.
Unlike traditional methods, WG reduces the regularity requirements on approximating functions
through the use of carefully designed stabilizers. Extensive studies have highlighted the versatility
and effectiveness of WG methods across a wide range of model PDEs, as demonstrated by numerous
references [1-6] for an incomplete list, establishing WG as a powerful tool in scientific computing.
The defining feature of WG methods lies in their innovative use of weak derivatives and weak
continuities to construct numerical schemes based on the weak forms of the underlying PDEs. This
unique structure provides WG methods with exceptional flexibility, enabling them to address a wide
variety of PDEs while ensuring both stability and accuracy in their numerical solutions.

This paper presents a simplified formulation of the WG finite element method, capable of handling
both convex and non-convex elements in finite element partitions. A key innovation of our method
is the elimination of stabilizers through the use of higher-degree polynomials for computing weak
second-order partial derivatives. This design preserves the size and global sparsity of the stiffness
matrix while substantially reducing the programming complexity associated with traditional stabilizer-
dependent methods. The method leverages bubble functions as a critical analytical tool, representing
a significant improvement over existing stabilizer-free WG methods [7], which are limited to convex
polytopal meshes. Our approach is versatile, accommodating arbitrary dimensions and polynomial
degrees in the discretization process. In contrast, prior stabilizer-free WG methods [7] often require
specific polynomial degree combinations and are restricted to 2D or 3D settings. Theoretical analysis
establishes optimal error estimates for the WG approximations in both the discrete H> norm and an
L? norm.

This paper is organized as follows. Section 2 provides a brief review of the definition of the weak-
second order partial derivative and its discrete counterpart. In Section 3, we introduce an efficient
WG scheme that eliminates the need for stabilization terms. Section 4 establishes the existence and
uniqueness of the solution. The error equation for the proposed WG scheme is derived in Section 5.
Section 6 focuses on obtaining the error estimate for the numerical approximation in the discrete H>
norm, while Section 7 extends the analysis to derive the error estimate in the L* norm.

Throughout this paper, we adopt standard notations. Let D be any open, bounded domain with a
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Lipschitz continuous boundary in R?. The inner product, semi-norm, and norm in the Sobolev space
H’(D) for any integer s > 0 are denoted by (-, -);p, | - |s.p and || - ||s.p respectively. For simplicity, when
the domain D is Q, the subscript D is omitted from these notations. In the case s = 0, the notations
(*s)o.ps | * lo.p and || - ||o.p are further simplified as (-, -)p, | - |p and || - || p, respectively.

2. Discrete weak second order partial derivatives

This section provides a brief review of the definition of weak weak-second partial derivatives and
their discrete counterparts, as introduced in [5].

Let T be a polygonal element with boundary 7. A weak function on 7 is represented as v =
{Vo, Vi, Vo), Where vy € L*(T), v, € L*(0T) and v, € [L*(4T))*. The first component, vy, denotes the
value of v within the interior of 7', while the second component, v,, represents the value of v on the
boundary of 7. The third component v, € R* with components v,; (i = 1,2) approximates the gradient
Vv on the boundary 4T . In general, v, and v, are treated as independent of the traces of vy and Vv,
respectively.

The space of all weak functions on 7', denote by W(T), is defined as
W(T) = {v = {vo, i, ¥} : vo € LX(T), v, € L*(T), v, € [L*(OT)]*}.

The weak second order partial derivative, 5,'21,w’ is a linear operator mapping W(T') to the dual space

of H*(T). For any v € W(T), 7, is defined as a bounded linear functional on H*(T), given by:

(0} 100V @)1 = V0, 0501 — (vomi, 00)ar + (Veironyor, Yo € HX(T),

where n, with components n; (i = 1, 2), represents the unit outward normal vector to 07 .

For any non-negative integer r > 0, let P.(T) denote the space of polynomials on 7" with total

degree at most r. A discrete weak second order partial derivative, 61.2jw . 18 a linear operator mapping

W(T) to P.(T). For any v € W(T), 6 v is the unique polynomial in P,(T') satisfying

ijw,r,T
(aizj’w’r,Tva SD)T = (VO, 051¢)T - <Vbni, aj90>3T + <vgi7 gDnj)aT’ VQD € Pr(T) (21)

For a smooth vy € H*(T), applying standard integration by parts to the first term on the right-hand side
of (2.1) yields:

(O rr Vs ©)1 = (070, ©)1 = (Vo — VO)i, 0j0)ar + (Vi — Bivio, o Yar, (2.2)
for any ¢ € P.(T).

3. Weak Galerkin algorithms without stabilization terms

Let 77, be a finite element partition of the domain Q C R? into polygons. Assume that 77, satisfies
the shape regularity condition [8]. Let &, represent the set of all edges in 7, and denote the set of
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interior edges by 82 = &, \ 0Q. For any element T € 7, let hy be its diameter, and define the mesh
size as h = maxyeq, hr.

Let k, p and g be integers such that k > p > g > 1. For any element T € 77, the local weak finite
element space is defined as:

V(k’ P-9q, T) = {{VO, Vb, Vg} Vo € Pk(T)a Vp € Pp(e)$ Ve € [Pq(e)]z’e c a’T}

By combining the local spaces V(k, p,q, T) across all elements 7 € 7, and ensuring continuity of v,
and v, along the interior edges &, we obtain the global weak finite element space:

Vh = {{VO’ Vb, Vg} : {V(), Vb, Vg}|T € V(k’ P-9q, T)’ YT € 7-/1}
The subspace of V), consisting of functions with vanishing boundary values on 6Q2 is defined as:

V) ={v eV, :vlag = 0,V,laq = 0}

For simplicity, the discrete weak second order partial derivative Bl.zj Vs used to denote the operator

0’ 7V defined in (2.1) on each element T € 7, as:

ij,w,r,

@, = 87,7 (VI), VT € T

ijw ijw,r,T

On each element T € 77, let Qy denote the L? projection onto P;(T). On each edge e C 4T, let Q,,
and Q, denote the L? projection operators onto P,(e) and P,(e), respectively. For any w € H*(Q), the
L? projection into the weak finite element space V, is denoted by Q,w, defined as:

(@)l == {QoWlr), Qp(Wlar), Cn(VWlar)}, VT € T

The simplified WG numerical scheme, free from stabilization terms, for solving the biharmonic
equation (1.1) is formulated as follows:

Weak Galerkin Algorithm 3.1. Find u, = {ug,up, u,} € Vj such that u, = Qyé, u, -n = Q,v and
u, -7 = Q,(VE - 1) on 0Q, and satisfy:

(apzvuha 03\;‘)) = (fa VO), VV = {V(), Vb, Vg} € V/?a (31)
where T € R? is the tangential direction along 09, and the terms are defined as:

2
Pt Bv) = > @ 0, )1

TeTyi,j=1

(Fov) = D (Fovor.

TeT,
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4. Solution existence and uniqueness

Recall that 7, is a shape-regular finite element partition of the domain Q. Consequently, for any
T € T;, and ¢ € H'(T), the following trace inequality holds [8]:

gll5; < Ch7' Bl + hrllVell7). (4.1)

If ¢ 1s a polynomial on the element T € 7, a simpler form of the trace inequality applies [8]:
lpll5; < Chz'lIgll7- (4.2)
For any v = {vo, v, V,} € V},, define the norm:
Wl = @v. 9,0, 43)

and introduce the discrete H?- semi-norm:

2
Wl = ( 11" dvolly + AlIve = vplly + 7' IVvo = v,l,)" (4.4)

TeT, i,j=1

Lemma 4.1. Forv = {vo, v}, V} € V), there exists a constant C such that for i, j = 1,2,

2 2
10;vollr < ClI0;;,, V-

ijw

Proof. Let T € T}, be a polytopal element with N edges denoted as ey, - - -, ey. Importantly, 7 can be
non-convex. On each edge e;, construct a linear function /;(x) satisfying /;(x) = 0 on e; as:

1 —
li(x) = —AX - n;,
hr

where A is a fixed point on ¢;, X is any point on e;, n; is the normal vector to e;, and A7 is the diameter
of T.

Define the bubble function for 7" as:
Dy = B(x)B(x) -+ - [3(x) € Poy(T).

It is straightforward to verify that ®3 = 0 on d7'. The function ®p can be scaled such that ®z(M) = 1
where M is the barycenter of 7. Additionally, there exists a subdomain 7' c T such that ®5 > p, for
some constant py > 0.

For v = {vo, vy, Vg} € Vj, let r = 2N + k — 2 and choose ¢ = (I)B(')izjvo € P.(T) in (2.2). This yields:

(a?j,WV, cDBa?jVO)T
= (870, @07 v0)r — (v = vo)ni, 0 (D} vo)ar
+ <Vgi — aiVO, (DBa?J-VoI’lj)aT

= (a?jv()’ (DBaizij)Ta

4.5)
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where we applied @5 = 0 on 07T'.

Using the domain inverse inequality [8], there exists a constant C such that

(3,-2jvo, (I)BaizjVO)T >C ((9,-2,-Vo, (9,-2jV0)T‘ (4.6)

By applying the Cauchy-Schwarz inequality to (4.5) and (4.6), we obtain

(8,-2jv0, G?jvo)r < C(a2 v, (I)Ba,'zjVO)T

ijw

2 2 2 2
< Cll9;;, vlIzllPsI;vollr < ClIG3;,Vllr 1107 vollrs

ijw ijw

which implies:
18, vollr < CllOF;, Wiz

ijw
This completes the proof.

Remark 4.1. If the polytopal element T is convex, the bubble function in Lemma 4.1 can be
simplified to:
Qg = L(0)L(x) - -+ Iy(x).

This simplified bubble function satisfies 1) ®g = 0 on 0T, 2) there exists a subdomain T C T such that
O > pg for some constant py > 0. The proof of Lemma 4.1 follows the same approach, using this
simplified bubble function. In this case, we setr = N + k — 2.

By constructing an edge-based bubble function,
@, = iz ,N,i;tkliz(x)»
it can be easily verified that 1) ¢,, = 0 on each edge ¢; for i # k, and 2) there exists a subdomain e; C ¢
such that ¢,, > p; for some constant p; > 0. Let ¢ = (v, — vo)lxp,,. It 1s straightforward to verify the

following properties: 1) ¢ = 0 on each edge ¢; fori = 1,--- , N, 2) Vg = 0 on each edge ¢, for i # k,
and 3) Vo = (vo = vi)(VI)e,, = O(%C) on ¢;, where C is a constant vector.

Lemma 4.2. [9] For {vy, v, V,} € V, let ¢ = (v, — vo)lie,. The following inequality holds:

lellz < Chy f (vp — vo)?ds. 4.7)
€k

Lemma 4.3. For {vo, vy, Vg} € V), let ¢ = (vgi — 0ivo)@.,. The following inequality holds:
ol < Chr [ (- O 4.8)
ex

Proof. Define the extension of v,, originally defined on the edge ¢, to the entire polytopal element
T as:

Vg(X) = Vg(Projek(X))’
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where X = (xy, x) is any point in 7, Proj, (X) denotes the orthogonal projection of X onto the plane
H C R? containing e;. If Pro Je.(X) 18 not on e, v,(Proj. (X)) is defined as the extension of v, from e,
to H. The extension preserves the polynomial nature of v, as demonstrated in [9].

Let v, denote the trace of v, on ¢,. Define its extension to 7" as:

Vtrace(X) = Vtrace(Projek(X))-

This extension is also polynomial, as demonstrated in [9].

Let ¢ = (vgi — 0ivo)@,,. Then,

lgll7 = f ¢*dT = f ((vei — 0v0) (X)) 2dT
T T

< Chr f ((vgi = 0vo)(Projo, (X))@, )*dT

< ChT f(vg,- - aiV())zdS,

€k

where we used the facts that 1) ¢,, = 0 on each edge ¢; for i # k, 2) there exists a subdomain e; C ¢
such that ¢,, > p; for some constant p; > 0, and applied the properties of the projection.

This completes the proof of the lemma.

Lemma 4.4. There exist two positive constants, Cy and C,, such that for any v = {vo, vy, V,} € V), the
following equivalence holds:
CilVllp < IV < ColIV]l2,5- (4.9)

Proof. Consider the edge-based bubble function defined as
@, = iz ,N,iikliz(x)~

First, extend v, from the edge ¢, to the element 7. Similarly, let v,,,.. denote the trace of v, on the
edge e, and extend vy, to the element 7. For simplicity, we continue to use v, and v, to represent
their respective extensions. Details of these extensions can be found in Lemma 4.3. Substituting
@ = (vp — vo)lrep,, Into (2.2), we obtain

(al-zj,wV, o) = (6,-2ij, O)r = {(vp = vo)ni, 0j@)ar + (Vei — Oivo, on)or

. (4.10)
= (G?ij, @)r + Chy! f Ve = vol*@e,ds,
ek

where we used 1) ¢ = 0 on each edge ¢; fori =1, ---, N, 2) Vo = 0 on each edge e; for i # k, and 3)
Vo = o =)V, = O(%C) on ¢;, where C is a constant vector.
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Recall that 1) ¢,, = 0 on each edge ¢; for i # k, and 2) there exists a subdomain e; C ¢, such that
@, = pi1 for some constant p; > 0. Using Cauchy-Schwarz inequality, the domain inverse
inequality [8], (4.10) and Lemma 4.2, we deduce:

f vy — vol?ds < Cf Ve — vol*@e,dss
ex

< Chr(107,,Vlir + 15 vollr)lIgllr

ijw

< ChT(Ila,JWVIIT + 1167, VO”T)(f vy — vol?ds)?,
which, from Lemma 4.1, leads to:
f Vo = volPds < C(167;, V17 + 107voll) < CNT;, V17 4.11)

Next, extend v, from the edge ¢, to the element T, denoting the extension by the same symbol for
simplicity. Details of this extension are in Lemma 4.3. Substituting ¢ = (v4 — 0;vo)¢,, into (2.2),
we obtain:

= (a,JVO ‘P)T - <(Vb - VO)ni’ j()0>(9T + <vgi - a'VO’ ()Dnj>6T (412)

= (07 o, ©)r — (Vb — vo)ni, djp)or + f Vei — Oivol* @, dss,

where we used ¢,, = 0 on edge ¢; for i # k, and the fact that there exists a sub-domain e; C ¢, such that
@e, = p1 for some constant p; > 0. This, together with Cauchy-Schwarz inequality, the domain inverse
inequality [8], the inverse inequality, the trace inequality (4.2), (4.11) and Lemma 4.3, gives

f |Vgi - 8iV0|2dS
ek

< Cf |Vgi - aiV0|2‘Pede

€k

< C(U67, VIl + 133 vollolgllr + Clivo = villarl1d¢llar
< CR2(I82, Iz + 102 vollr )X f [vei — DrvolPds)? + ChAIG, vllrhy'( f v — divolPds)?.
ex
Applying Lemma 4.1, gives
ijw

f vei = divol’ds < C(107, iz + 185 vollz) < CllGE, VII7- (4.13)

Using Lemma 4.1, Eqs (4.11), (4.13), (4.3) and (4.4), we deduce:
CiVllzn < VI
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Finally, using the Cauchy-Schwarz inequality, inverse inequalities, and the trace inequality (4.2)
in (2.2), we derive:

2 2
‘(aij,wv, QO)T‘ < ldipvollrllellr + (v = vo)ndlarlidjellar + |Ivei — divollarlien;llar

3 1
5 _3 1
<l9;vollzligllr + hp*llve = vollarliellr + hy*[Ive: — divollarliellr,
which gives:

2 2 2 2 -3 2 -1 2
”aij,WV”T < C(llaijVO”T + hT vy — VOllaT + hT ”Vgi - 0iVO||aT)a

and further gives
IVl < Cafvllo -

This completes the proof.

Theorem 4.5. The WG scheme 3.1 admits a unique solution.

)

Proof. Assume that u,” € V) and uf) € V,, are two distinct solutions of the WG scheme 3.1. Define
(1

= u\” — ul? € V0. Then, i, satisfies

(a'zj,wnh’ a?j,wv) = O’ VV € Vf(l)

1

Choosing v = n;, yields ||, = 0. From the equivalence of norms in (4.9), it follows that ||n,|,, = O,
which yields afjno =0fori,j=1,2oneach T, ny =, and Vo = 1, on each 9T. Consequently, 1 is
a linear function on each element 7 and Vi = C on each T'.

Since Vo = n, on each d7, it follows that Vr, is continuous across the entire domain Q. Thus,
Vno = C throughout Q. Furthermore, the condition 17, = 0 on dQ implies Vo = 0 in Q and 57, = 0 on
each 0T . Therefore, 1 is a constant on each element 7.

Since iy = 17, on 0T, the continuity of 1y over Q implies 7, is globally constant. From 7, = 0 on
0Q), we conclude ny = 0 throughout Q. Consequently, 17, = o = 0 on each 0T, which implies 7, = 0
in Q. Thus, ”S) = uf), proving the uniqueness of the solution.

5. Error equations

Let Q, denote the L? projection operator onto the finite element space of piecewise polynomials of
degree at most r.

Lemma 5.1. The following property holds:
07 = 0,07,  Yue HXT). (5.1)
Proof. For any u € H*(T), using (2.2), we have
(aizj,wu, o)t
= (@5u, ©)r = (Wlar — ulr)ni, 8;@0)ar + ((Vular)i = 0ilulr), onar
= O5u, @)1 = (Q(0;u), )1,
for all ¢ € P,(T). This completes the proof.
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Let u be the exact solution of the biharmonic equation (1.1), and u, € V), its numerical
approximation obtained from the WG scheme 3.1. The error function, denoted by e, is defined as

e, = Uu— Uy (5.2)
Lemma 5.2. The error function e), defined in (5.2) satisfies the following error equation:
(Den, 02v) = L(u,v), Vv e vy, (5.3)

where

2
Ca vy = >0 > =0 = vy, 0,(Qr = DI0)ar + (v = divo, (Qy = DI, ar.

TeT) irj=1

Proof. Using (5.1), standard integration by parts, and substituting ¢ = Q,@fju into (2.2), we obtain

> Z(afjwu o)1

TEThlj 1

-, Z(Qrﬁz B V7

TeTy i,j=1

2
= > > @vo, QR 0)r = (v = vo)ni, 0,(Q,u))ar + (vei — Bivo, Qudun or

TeTy i,j=1
: 2 2 2 2 (5.4)
= > > @ o, Fyr = (v = vl QD u)ar + (v — Do, Q0 oy
TeTy i, j—l
=) Z«a V2, vo)r + (D, Oivo - 1 ar — (9D ) - mi, voYar
TeTyi,j=1
— (v = vo)ni, O Q0710)Yar + (vei — Do, Qr0;un ar
2
=(f,vo) + —~(vp = vo)i» 0;((Qr — DO u)ar + (vgi — Bivo, (Qr — DI un)ar
J J
TeTy i,j=1
where we used (1.1), ijvo € Po(T) and r = 2N + k - 2 > k - 2,
2iTeT, lej 1(612!u Vei * Rj)or = DireT, Z” 1(8 U, Vi - Nj)gg = 0 since vy, = 0 on 0Q, and

Srer, 2t je1$0HOFuw) - niy viYor = Trer, it =1 (Bi(07u) - niy viYaq = 0 since v, = 0 on HQ.
Subtracting (3.1) from (5.4) yields

Z Z(alzjweh’ 3V

TeTy i,j=1

2
= >0 > =0 = v, 8,(Q, = D)t + (v = Aivo, (Q, = DI ar-

TeTy i,j=1

This concludes the proof.
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6. Error estimates in the #2 norm

Lemma 6.1. [5] Let T, be a finite element partition of the domain Q satisfying the shape regularity
assumption specified in [8]. For any 0 < s <2 and 1 < m < k, the following estimates hold:

2
SN BN QR < CRO DN, 6.1)
TeTh i,j=1
> Bl Qo < CR™ Ol 6.2)

TeTy

Lemma 6.2. If u € H**'(Q), then there exists a constant C such that
lu — Quul < CH[lullisr.- (6.3)

Proof. Utilizing (2.2), the trace inequalities (4.1) and (4.2), the inverse inequality, and the estimate (6.2)
form = kand s = 0, 1, 2, we analyze the following summation for any ¢ € P.(T):

2
D D@ = 0w @)

TeT i,j=1

2
= > D@ = Qo). ) — (Qott = Qyu)ni, & @)or

TeT), i,j=1

+ ((Oiu — Qn(0u)) — 0i(u — Qou), pn Yot

2 1 1
<( D) D 13— 0uwl) (D llglly)’

TeTy i,j=1 TeTh
2 2
(3 ot = Guomiy) (XS oeliy)’
TeT) i=1 TeT; j=1
2 2
H( S 10000 - 0u@l) (X e, iR,)
TeTy i=1 TeT, j=1
2
SN e o)’ ( > lol2)’
TeT) i,j=1 TeTy,
1 1
(] Hr1Qou = ullr + hrllQou = ulft 1) ( > hllglly)’
TeT, TeTy
2 1 1
(D D h 101 Qo) = duully + Al Qou) — il 1) ( D kel )’
TeT), i=1 TeTy
< CH Ml ( D llgll3)’
TeT)
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Letting ¢ = 8%_(u — Quu) gives

ijw

> Z(af,ww — Q). 8%, = Q) < CHlullsr e — Q.

TeTh i,j=1

This completes the proof.

Theorem 6.3. Suppose the exact solution u of the biharmonic equation (1.1) satisfies u € H*'(Q).
Then, the error estimate satisfies:

e = und < CHlullgss. (6.4)

Proof. Note that r > 1. For the first term on the right-hand side of the error equation (5.3), using
Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 1,2,
and (4.9), we have

2
| Z Z —((vp —vo)n;, 9;((Q; — I)é%u))aT‘

TeTh, ij—l
<C(y; ZhT 1 = voImillp)? - () Z WH9,((Q, = D))
TET) i=1 TeT) i,j=1 (6.5)

< Clvllos( ) | Z HH0,((Qx = DT + Kl (Qr = DI} )7

TETh i ] 1
k—1
< Ch™ [l 1 V-

For the second term on the right-hand side of the error equation (5.3), using the Cauchy-Schwarz
inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 0, 1, and (4.9), we have

2
<Vgi - 0vo, (O, — I)@%un])ar
122 i

TeTy i,j=1
2 2
<CO Y B g = avoll3) (" > hell(Q, = Dun;i)?
TeT), i=1 TeTy i,j=1 (6.6)

2
< CIMbaC ) > 1@ = Dun;if + HI(Q, = Dafunjf )2

TeT i,j=1
k-1
< Cllloph™ a1

k-1
< CH el 1 IVI-

Substituting (6.5) and (6.6) into (5.3) gives
(83 wen 07, ) < CH st IVI- (6.7)

ijw ijw
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Using Cauchy-Schwarz inequality, letting v = Q,u — uy, in (6.7), the error estimate (6.3) gives
lu — ul?

2
= > > @ = ), 8, = Qu)y + (B, = wn), 62, (Qutt = up))r

TeT), ij=1
< u — uplllu — Quull + CH* " ulles1 1Qnu — unl
< lu — upllu — Quull + CH* " Nlullirr (1QA1 — ul + e — upl)
< u — uplllu — Qpull + CH*Nlutllisr B Mludlsr + CHHlaall hue = wsl,

which further gives

k-1 k-1
lu — upll < Ju — Quull + CH ullesr < CH ™ [ulliss -

This completes the proof.
7. L? error estimate

To derive the error estimate in the L* norm, we use the standard duality argument. The error is
expressed as e, = u — u, = {ey,ep, €.}, and we define §j = Quu — u, = {fo,fb,{g} € V,?. Consider
the dual problem associated with the biharmonic equation (1.1), which seeks a function w € Hg(Q)
satisfying:

A*w = &, in Q,

w =0, on 0Q, 7.1
Z—Z =0, on 0Q.

We assume the following regularity condition for the dual problem:
Iwlls < CliZoll- (7.2)

Theorem 7.1. Let u € H*"'(Q) be the exact solution of the biharmonic equation (1.1), and let u, € V),
denote the numerical solution obtained using the weak Galerkin scheme 3.1. Assume that the H*-
regularity condition (7.2) holds. Then, there exists a constant C such that

k+1
lleoll < CA™ lutllgs1-

Proof. Testing the dual problem (7.1) with {, and applying integration by parts, we derive:
120l = (A*w, &o)

2
= > D @w. 8o = . o - nar + (D1 Fw) - i, dodar
TeT), i,j=1 (7.3)

2
= Z Z(a?jW, 83:L0)r — (05w, (0:do — Lgi) - myYor + (D507 w) - nix Lo = LpYors

TE€T), ij=1
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where we used Y rcr, zgj:1<a$jw, Loi *Mor = zﬁj:1<afjw, Lei - Njdaa = 0 due to £, = 0 on 4Q, and

2oTeT, Ziz,j:1<aj(al‘2jw) i, {por = Z[z,j:1<aj(ai2jw) “ 1, {proa = 0 due to &, = 0 on Q2.

Letting u = w and v = £, in (5.4) gives

2
D@ Bl

TeTh i,j=1

2
= > > @w, 00 — (& — LoInis QT War + (L — Bido, QI wn or

TeTy i,j=1

which is equivalent to

2
Z Z(a?jw’ a?j(O)T

TeT) i,j=1

2
= > D @ w8 00r + (& — LoInis Q0 W)ar — (L — Bido, Qrdwn,Yor.

TeT}, i.j=1

Substituting the above equation into (7.3) and using (5.3) gives

2
ol = D" > @, 8 idr + (& = Lo 0,(Qr = D w))or

TeTh i,j=1

- <{gi — 0io, (Q) — I)aizjwnj>6T

2
=Y > @ e + @, w, 8, (Qutt = w)r — Ew, &)

TeT i,j=1

2
= > D @,,00w, 8 et + (3,00 — Quw), 32 en)r (7.4)

TeTy i,j=1

+ (87, . 07, (Qutt — W) — EW, &)

2
= 0, Quw) + ) D (@, (w = Quw), & en)r

TeTh ij=1
+ (aizj,ww, afj,w(Qhu —u))r —tw, &)
=S+ +J3+ Js

We will estimate the four terms J; (i = 1, - - -, 4) on the last line of (7.4) individually.

For J;, using the Cauchy-Schwarz inequality, the trace inequality (4.1), the inverse inequality, the
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estimate (6.1) withm = k and s = 0, 1, 2, the estimate (6.2) withm =3 and s = 0, 1, 2, gives

Ji = (u, Opw)

2
< | Z Z —((Qpw — Qow)n;, 8,(Q; — DO u))ar

TeTh i,j=1

+(Qu(0w) = 8,00, (O, = Dun )or|

2 | 2 1
<( D] D M@pw = Qowimnillz)*( D D 18,2, = DSwlly)’

TeT), i=1 TeT i,j=1
2 1 2 1
(D] D 10u@w) = 3:00wll ) ( D > 10, = Dun )’
TeTy i=1 TeTy i,j=1
_ ! (7.5)
<( D h7'Iw = Qowliy + hrllw — Qowlft )’
TeTy,
2 1
(D0 D m'10,(Q = DAZWIR: + hrlld,(Qr = DI 1)
TeTy i,j=1
2 1
(0 Dm0 = 8,00wl + hrlldw = 3, Qowi 1)’
TeTy i=1
2 1
(D) D1, = D un I + hell(Q, = D unll 1)’
TeT) i,j=1
< CH ulllIwla.
For J,, using Cauchy-Schwarz inequality, (6.3) with £ = 3 and (6.4) gives
J2 < 1w = Qpwlllenl < CR e A2 Wiy < CHE* s Iwls. (7.6)

For J3, denote by Q' a L? projection onto P;(T). Using (2.1) gives

(02, (Quu — u), Q' %, w1
=(Qou —u g (Qla?j,ww))T —(Qpu — u, 3j(Q13?j,WW)>aT +(Q,(0iu) — Ou, Qla?j,wwnﬁar (7.7)

’ ji
=0,
where we used 9%,(Q'9;, ,w) = 0,0,(Q0'd7;,w) = C and the property of the projection operators 0, and
Q,and p>¢g>1.
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Using (7.7), Cauchy-Schwarz inequality, (5.1) and (6.3), gives

2
J 1) > (@,w,62,(Quu = w)r|

TeTy i,j=1
2
=1 > @ w = Q'3 w, 8%, (Quu — w)r]
TeT i,j=1
2
(7.8)
=1 ) > QT w - Q' 0w, 5,(Quu — w)r|
TeT) i,j=1
2 1
<( > D 10w - Q' QR wIE) 10w - ul
TeT) i,j=1

k+1
< CH ullistlIwlla.

For J4, using Cauchy-Schwarz inequality, the trace inequality (4.1), Lemma 4.4, the estimate (6.1)
withm =3 and s = 0, 1, (6.3), (6.4) gives

Ji =0, 4)
2
<| 31 3T~ = doms 9,00, = DFEWar
TeTh i,j=1
+ {Lei — 0o, (Q) — I)al-sz”DaT'
2 1 2 1
<( D D@ = tomilly) (D) D 18,00, = DRI’

TeT;, i=1 TeT) i,j=1
1

2 1 2 1
(D D M= aiollz) (> DM@ = Dwn i)’

TeT) i=1 TeTy i,j=1

2 1
<( D > BI0,Q, - DAEZWIE + h10,(Q, — DZWIE 1)’ (7.9)

TeT ij=1

(Dm0 - Gl

TeTh

=

1

2
(D) D100, = DdRwnjli} + BHIQ, - Ddwn,Ii )’

TeTy i,j=1

2
(2 2 = i)

TeT), i=1
2

< Ch|wllslll
2

< Choliwlla(lue — will + flu — Qpul)

k+1
< CH [Iwllallullies:

D=
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Substituting (7.5), (7.6), (7.8) and (7.9) into (7.4), and using (7.2), gives

2 K+l k1
1%0l1" < CA™ wllallulless < CA™ s 1oll-

This gives

k1
1%0ll < CH™ lullis,

which, using the triangle inequality and (6.2) with m = k and s = 0, gives

k+1
lleoll < NIoll + llee = Qoull < CA™ lully1-

This completes the proof of the theorem.
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