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Abstract
Modern GPU-based lossy compressors face significant chal-
lenges due to the imbalance in development between com-
pression throughput and compression ratio. Most compres-
sors tend to prioritize one metric while neglecting the other,
leading to either redundant compressed files or inefficient
kernel designs that hinder end-to-end throughput. This work
introduces Aatrox, a generic single-kernel error-bounded
lossy compressor specifically designed for GPUs, targeting
applications that demand high performance and high com-
pression ratio at the same time, such as large-scale quantum
circuit simulations and large language model training. In par-
ticular, Aatrox features a novel hierarchical data blocking
strategy, large-block delta encoding, and dual-level delta de-
coding, achieving substantial end-to-end throughput and an
optimized compression ratio. Experiments on NVIDIA A100
GPU using nine real-world scientific datasets show that Aa-
trox achieves higher compression ratios while preserving
high data quality, with an average throughput of 388.3 GB/s
for compression and 718.0 GB/s for decompression. These
results represent approximately 1.2× speedup compared to
the throughput of existing pure-GPU compressors and 250×
that of CPU-GPU hybrid compressors.

CCS Concepts
• Theory of computation → Massively parallel algo-
rithms; Data compression.
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1 Introduction
The scale of scientific applications has grown larger than
ever, creating a significant big data challenge for High-
Performance Computing (HPC) systems. The large volume
of data drives domain scientists to adopt efficient data re-
duction techniques. Lossy compression stands out due to its
higher compression ratio compared to lossless compression.
Error-bounded lossy compression enables users to customize
the level of error, making it a popular solution in scientific
applications such as climate simulation [8], materiel simula-
tion [10], and cosmology simulation [27].

1.1 Motivation for High-Ratio,
High-Throughput Compressor

Large-scale scientific applications running on HPC systems
generate vast amounts of data for analysis, such as quan-
tum circuit simulation. During the Noisy Intermediate-Scale
Quantum (NISQ) era [45], quantum simulation remains criti-
cal for developing quantum algorithms and validating quan-
tum computer results. However, the memory requirements
for quantum circuit simulation [51, 55] grow exponentially
with the number of qubits. Simulating a 48-qubit circuit
would fully occupy the entire memory of Frontier [4] (4.6
petabytes of DDR4 memory), the second most advanced HPC
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system currently available [13]. Meanwhile, real-world quan-
tum computers require validation for systems with more
than 100 qubits [17]. Moreover, quantum simulation faces
significant time overhead, including communication and
computation overheads[31], highlighting the need for com-
pressors with higher compression ratios and throughput. An-
other example is the benefit of lossy compression in Large
Language Model (LLM) training. While quantization acceler-
ation has been developed to reduce communication overhead
and improve training performance, it faces limitations in the
number of quantization bits. Recent work has utilized 4-bit
quantization [25]. Further reducing the number of bits in
quantization is highly challenging, making lossy compres-
sion a promising alternative [16]. However, quantization still
holds an advantage in terms of low time overhead. To outper-
form quantization methods, lossy compression must achieve
both high throughput and high compression ratios. These
practical challenges continue to drive researchers to push
the boundaries of lossy compression techniques.

1.2 Limitations of Existing Approaches
GPU-based lossy compression has developed rapidly over
the past decade. These compressors generally achieve sig-
nificantly higher compression throughput than CPU-based
compressors, making them the preferred choice for HPC
simulations [21, 55]. However, GPU-based lossy compres-
sors face various challenges. For instance, while cuSZ [50],
cuSZx [54], cuSZ-i [40], and MGARD-GPU [36] achieve im-
pressive GPU kernel throughput, they rely on a CPU-GPU
hybrid design. This approach requires the CPU to participate
in tasks such as global synchronization or building a Huff-
man tree, which limits their end-to-end throughput. More-
over, cuSZ-i leverages GPU interpolation and Bitcomp from
NVIDIA’s nvcomp [42] library to improve compression ra-
tios. However, its multi-kernel design limits kernel through-
put. Pure GPU designs, such as cuZFP [39], FZ-GPU [57],
cuSZp [22], and cuSZp2 [21], avoid these issues but suffer
from other limitations, including low throughput or low com-
pression ratios, which hinder their ability to provide signifi-
cant overall speedups for practical applications. For example,
while cuZFP achieves a high compression throughput, its
fixed-rate error control scheme restricts the maximum at-
tainable compression ratio. cuSZp2 employs a single-kernel
design to significantly increase throughput, but the linear
recurrence in its 1D Lorenzo prediction causes a reduction
in compression ratio.

1.3 Our Solution: Aatrox
In this work, we proposeAatrox, a single-kernel GPU-based
lossy compressor that supports user-customized error con-
trol schemes. It further advances the state-of-the-art in GPU-
based lossy compression by improving both compression

ratio and throughput. We introduce three key optimizations
to achieve high compression ratios and high throughput: 1
Hierarchical Data Blocking, 2 Large-Block Delta Encoding,
and 3 Dual-Level Delta Decoding.
The main contributions of our work are summarized as

follows.
• A novel hierarchical data blocking strategy with three
levels (thread, iteration, and warp layer) that solves
the extra memory overhead caused by small or large
block sizes.

• Large-block delta encoding, which leverages circular
shift and tail rotation to solve the inefficient commu-
nication problem in the delta encoding process.

• A dual-level delta decoding design that addresses the
linear recurrence in delta encoding using a dual-level
prefix-sum and leverages tail element accumulation to
reduce warp divergence, thereby increasing through-
put.

• Evaluation on nine real-world scientific datasets
demonstrates that Aatrox achieves a compression
and decompression throughput of 388.3 GB/s and 718.0
GB/s on average across the datasets, which is approx-
imately 1.2× faster compared to the best baseline. It
also achieves the highest compression ratio among the
baselines.

Aatrox will be maintained on GitHub.1

2 Understanding Limitations and
Challenges in Existing GPU Lossy
Compression Designs

In this section, we introduce the background of GPU-based
lossy compression and the limitations of state-of-the-art
(SOTA) works.

2.1 GPU Lossy Compression
The development of GPU-based compression techniques of-
fers significantly higher compression throughput (exceeding
200 GB/s in state-of-the-art implementations [21]) compared
to CPU-based methods, which achieve only 300 MB/s ∼ 1
GB/s in state-of-the-art works [37]. Consequently, an in-
creasing number of lossy compression schemes are being
adapted to align with GPU implementations. To leverage the
massive parallelism of GPU computing resources, modern
GPU-based lossy compressors commonly adopt a data block-
ing strategy. This approach removes the linear recurrence
in the input data stream, enabling each data block to be pro-
cessed independently. However, this data blocking strategy
has certain disadvantages, such as disrupting the data pat-
terns in the original stream, which may lead to a reduction
in the compression ratio. A straightforward solution is to
1Repository: https://github.com/szcompressor/cuSZp
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increase the data block size; however, the low-latency mem-
ory space available for each GPU thread is limited, which
consequently restricts the block size.

2.2 Delta Encoding
Delta encoding is a fundamental component in many SOTA
lossy compressors. The key idea is to replace the original
data with the differences between consecutive data points.
By doing so, the entropy of the data is reduced, resulting
in a higher compression ratio. For instance, as illustrated in
Figure 1 (a), the bit-plane representation of the data block
becomes sparse after the delta encoding process, enhancing
the data’s compressibility. More specifically, each data point
is replaced by the difference between its predecessor and
its own value. If the predecessor’s value perfectly matches
the current data point, the resulting value, known as the
delta code, is zero. In cases of imperfect matches, the delta
codes are values within a small range around zero. This
low-entropy distribution of delta codes typically results in a
higher compression ratio.
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(a) Why Delta Encoding Makes 
Data More Compressible

(b) Parallel Delta Encoding

(c) Parallel Delta Decoding
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Predecessor to Finish.

Encode

Concurrent Execution
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Figure 1: An illustration of delta encoding and the chal-
lenges in the parallel implementation of encoding and
decoding.

2.3 Challenges
Although delta encoding is widely employed in existing GPU
solutions, it is not without inherent limitations. 1 Initial
Value Overhead: The delta decoding process relies on the
initial value of a data block to reconstruct all other data
points within the block. Consequently, this initial value must
be stored in the compressed data to facilitate the decoding
phase. However, delta encoding implementations in SOTA
solutions often use extremely small block sizes to maximize
parallelism and, consequently, increase throughput. This ap-
proach, however, results in a reduction in compression ratio.
The conflicting objectives of achieving a high compression

ratio and maximizing throughput make the selection of an
optimal block size particularly challenging. 2 Irregular
Communication in Delta Encoding: As illustrated in Fig-
ure 1 (b), the basic operation in the delta encoding process
does not involve recurrence, allowing it to be executed inde-
pendently for each data point. In practical implementations,
due to the limited number of low-latency registers available
in GPU resources, a fixed number of data points is assigned
to each thread. Each thread, however, must communicate
with previous thread during the delta encoding of its head
element, as the predecessor of each head element is stored in
the register of the previous thread. This design introduces ir-
regular communication, as the predecessor of thread 0 cannot
be accessed in this pattern. The resulting warp divergence in
this design degrades throughput. 3 Linear Recurrences
in Delta Decoding: As illustrated in Figure 1 (c), during
the decoding phase, each data point must add the difference
value to reconstruct the original data. However, this process
is inherently sequential, as each data point depends on the
completion of its predecessor. This recurrence leads to se-
quential execution, which significantly reduces the through-
put of the decompression kernel. A plain solution used in
SOTA work is to decrease the size of the data block and store
the initial value. However, as discussed earlier, this approach
negatively impacts the compression ratio. A novel scheme
for delta decoding is required.
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Figure 2: An overview of the workflow, illustrating the
main components and their interactions.

3 Aatrox: High-level Workflow
We propose Aatrox, an error-bounded, single-kernel lossy
compressor that employs a hierarchy blocking strategy to
enhance memory access efficiency and improve the com-
pression ratio. Furthermore, it integrates an optimized delta
encoding and decoding mechanism to eliminate inherent lin-
ear recurrence. This section provides a high-level overview
of the workflow, as shown in Figure 2. We also use a single
data block as an example to illustrate the data processing
methodology in Aatrox, as depicted in Figure 3.

3.1 Compression Phase
WorkflowOverview.We use Figure 2 to illustrate the work-
flow of Aatrox compression. Given the original input data,
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Figure 3: A practical example demonstrating the compression and decompression process for a single data block.

Aatrox partitions it into multiple levels of data blocks to
enable parallelized processing at the warp and thread lev-
els, as detailed in Section 4.1. The data compression process
consists of five steps. First, we leverage 1 Quantization to
introduce user-controllable error into the input data, reduc-
ing entropy and thereby enhancing compressibility. Second,
we apply 2 Delta Encoding, where the delta codes replace
the original quantized codes to exploit spatial redundancy,
thereby enhancing compression ratio. Third, we employ 3
Bit Packing to determine the minimum number of bits re-
quired to represent each value after delta encoding within
the data block. Fourth, we calculate the memory offsets in
the compressed output for each data block using 4 Global
Prefix-Sum with a decoupled look-back scheme, ensuring
high throughput. Finally, using the offset information and
compressed data blocks, we perform the 5 Block Concate-
nation step to write back compressed data. This process
involves our proposed bit-transpose technique, which trans-
poses the data at the bit level to enable byte-level consecutive
memorywrites, thereby further improving throughput. Upon
completion, the original data is stored as compressed data.

Practical Example.We use a practical example, as shown
in Figure 3 (a), to demonstrate the compression process for a
single data block and further illustrate our design. For any
given input data, it is evenly partitioned into data blocks,
which serve as the fundamental units of data processing. The
input data consists of floating-point values, and a quantiza-
tion process is employed to transform these floating points
into integers. In this example, we use an error bound of 1e−2.
The quantization codes are calculated as 𝑞 = round (𝑥/2𝑒𝑏),
where𝑞 represents the quantization code, 𝑥 denotes the input
floating-point data, and 𝑒𝑏 represents the error bound. The
quantization code is then subtracted from its predecessor
to calculate the delta code. The initial quantization code is
stored separately within the compressed data for use dur-
ing the decompression process. A separate bit-sign array is

utilized to store the sign of each delta code, while only the
absolute values of the delta codes are stored. Additionally, a
register is maintained to track the maximum absolute delta
code within the data block. This information is used to de-
termine the minimum number of bits required to represent
each absolute value in the data block, which is calculated
using a ceiling logarithmic transformation ⌈log2 (𝑎𝑏𝑠 (𝑑))⌉,
where 𝑑 denotes for the Delta code. Leveraging this infor-
mation, only the necessary bits for each integer in the data
block are stored to optimize memory usage. We refer to this
design as bit packing. If the maximum absolute delta code
in a data block is zero, indicating that the block is pure zero,
the block is skipped. Since the bit rates are initialized to zero,
no additional operations are required. Finally, a global prefix
sum is performed to compute the memory offsets for each
compressed data block, after which the compressed data is
stored in GPU global memory.

3.2 Decompression Phase
Workflow Overview. In the decompression phase, our de-
sign is intentionally asymmetric to the compression phase.
An overview is provided in Figure 2. To enhance throughput
and achieve a higher compression ratio, we only store the
number of bits required for each data block (bit rate array)
and omit additional information such as the memory offset
for each block. Given the compressed data, we first apply 1
Global Prefix-Sum to bit rate array to calculate the memory
offset for each data block. This design leverages the computa-
tional power of GPUs to eliminate the need for saving extra
information like memory offsets. Using the calculated offsets,
we proceed with 2 Compressed Data Retrieval to extract
the packed bits and initial value for current processing data
block. Subsequently, we utilize the bit-transpose technique
to recover the data. This step, referred to as 3 Bit Unpack-
ing, restores the original bit structure. Next, we employ 4
Delta Decoding to reconstruct the quantization codes from
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the delta codes. Finally, we multiply the quantization codes
by twice the error bound to reconstruct the floating-point
values (𝑞×2 𝑒𝑏, where 𝑞 represents the quantization code and
𝑒𝑏 represents the error bound), a process referred to as 5
De-quantization. Upon completion, the compressed data is
reconstructed into floating-point values. The difference does
not exceed the error bound when compared to the original
data.
Practical Example.We also use a practical example, as

shown in Figure 3 (b), to demonstrate the decompression
design. As mentioned in workflow overview, the memory
offset for each data block is not stored explicitly; instead, a bit
rate array is saved. During the decompression phase, a global
prefix sum is first performed to calculate the memory offsets
for each compressed data block. Using these offsets, the cor-
responding compressed data can be retrieved. Subsequently,
a bit unpacking operation is conducted to recover the delta
codes based on the bit rate reading from a dedicated location
in compressed data, restoring the original integers. The delta
decoding operation then reconstructs the quantization codes
from delta codes. It is worth noting that the initial value is
also required during the delta decoding process, and it is
retrieved from a dedicated global memory location, just like
the bit rate. Finally, the quantization codes are multiplied by
2𝑒𝑏, where 𝑒𝑏 is the error bound, to reconstruct the original
floating-point data.

4 Key Optimizations in Aatrox
We present the key components of Aatrox designed to ad-
dress the challenges in Section 2.3: Hierarchical Data Block-
ing to address Challenge 1 , Large-Block Delta Encoding
to address Challenge 2 , and Dual-Level Delta Decoding to
address Challenge 3 .

4.1 Hierarchical Data Blocking
Motivation for Multi-Level Blocking. Data blocking is a
common strategy in GPU-based compression works [22, 57].
The primary goal is to eliminate recurrence in the compres-
sion workflow, enabling each data block to be processed as
an independent input and thus leveraging the massive paral-
lelism offered by GPU computing resources. Traditionally,
the data blocking strategy is single-level, as it effectively
breaks the recurrence. However, in the design of Aatrox,
choosing a large block size leads to a significantly reduced
compression ratio in bit packing. This is because the number
of bits required to represent each delta code in the data block
depends on the maximum absolute value of delta code within
the block. Even if the prediction is highly accurate for most
data points, other values still require more bits than neces-
sary for storage. Conversely, choosing a very small block size
mitigates the issue of excess bits for data points. However,

this introduces a new problem: the initial value of each block
must be stored separately for delta decoding in the decom-
pression phase (as mentioned in Section 3.2), resulting in an
overhead of one value for every data block. This overhead
significantly reduces the compression ratio and limits the
maximum achievable compression ratio. These conflicting
goals make selecting an optimal block size challenging.
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Thread Layer
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32

32
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Figure 4: Illustration of hierarchical data blocking.

Hierarchical data blocking. To address this, we propose
a hierarchical data blocking scheme that operates at multiple
levels of granularity, effectively solving problems for both
large data block and small data block simultaneously hence
improving overall compression efficiency. More specifically,
we propose a three-level data blocking strategy consisting of
1 the Warp Layer, 2 the Iteration Layer, and 3 the Thread
Layer, arranged from top to bottom. Figure 4 illustrates the
layer structures. For simplicity, we demonstrate the layers
within a single warp (32 threads), as a warp is the minimum
execution unit in our design and in the CUDA architecture.
All warps share the same data blocking strategy.

32x32x32 

warp #0 warp #1 warp #2 warp #n

Initial Val.

32x32x32 

Initial Val.

32x32x32 

Initial Val.

32x32x32 

Initial Val.

…

Figure 5: Each warp layer requires a single element
overhead for storing initial values.

Warp Layer. First, we partition the input data into warp
layer data blocks. As mentioned earlier, it is mandatory to
save the initial value for each data block, as the decoding
process requires the initial value to compute all subsequent
delta codes. To achieve a higher compression ratio, it is criti-
cal to minimize the frequency of saving these initial values.
To address this challenge, we propose the use of warp-layer
data blocks with a large block size (32×32×32 = 32768 in our
design). Each warp layer is mapped to a single GPU warp,
which corresponds to a thread block in our design, for data
processing. Delta encoding and decoding are performed at
the granularity of the warp layer, requiring only one initial
value to be stored for the entire warp layer, as illustrated
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in Figure 5. This design significantly reduces the memory
space required for storing initial values. However, this design
introduces a significant challenge: larger block sizes can neg-
atively impact the bit packing compression ratio, potentially
offsetting the benefits achieved by reducing the overhead of
storing initial values.

Iteration #0
…

Iteration #1
…

Iteration #2
…

Iteration #31
…

Comm. Comm. Comm.

…

…
thread #0

…
thread #1

…
thread #2

Comm.

…

Comm.

…
thread #31

Comm.

Figure 6: Communication is required for delta encod-
ing of the head elements in each iteration layer and
thread layer.

Iteration Layer and Thread Layer. To address the low
compression ratio of bit packing caused by the large warp
layer, a straightforward solution is to introduce smaller data
blocks as a finer-granularity middle layer. However, a single
GPU warp consists of only 32 threads. With a very large
warp layer, each middle layer, which will be mapped to one
thread, is assigned too many elements to process, resulting
in long strides between thread memory accesses. This causes
the uncoalesced memory access problem in GPU memory
operations. Since compression is a memory-bound problem,
inefficient memory access leads to a significant throughput
drop in the compression kernel. To overcome this challenge,
we propose adding two layers beneath the warp layer: the
iteration layer and the thread layer. First, the warp layer is
evenly partitioned into iteration layers. Then, each iteration
layer is further evenly divided into thread layers. The struc-
ture of these two layers is illustrated in Figure 6. This design
reduces the stride between consecutive thread memory ac-
cesses, thereby resolving the uncoalesced memory access
issue. Each iteration layer contains 32 × 32 = 1024 elements
and is mapped to a single iteration in a for loop in GPU ker-
nel. Each thread layer, in turn, contains 32 elements and is
mapped to an individual thread within the iteration layer.

4.2 Large-Block Delta Encoding
Communication Overhead.Although the three-level layer
design addresses the compression ratio reduction issue,
this approach requires additional communication between
threads to complete the delta encoding, as shown in Figure 6.
This is because each thread cannot access the registers of
other threads, preventing each head element from knowing
its predecessor (i.e., the tail element of the previous layer),
which results in the failure of delta encoding. Straightfor-
ward solutions, such as extra global memory access or uti-
lizing GPU shared memory for public access among threads

within a warp, are time-consuming and reduce compression
throughput. To address this challenge, we propose commu-
nication optimizations utilizing warp-level functions and a
minimum warp divergence design to enhance compression
throughput.

Algorithm 1: Delta Encoding
Input: Quantization code𝑄 .
Output: Delta code 𝐷 .

1 Initialize 𝑝𝑟𝑒𝑣𝑄𝑢𝑎𝑛𝑡, 𝑙𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒, 𝑝𝑟𝑒𝑣𝐿𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒 = 0;
2 Initialize 𝑙𝑎𝑛𝑒𝐼𝑑 as the index of thread in warp;
3 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 in range(32) do
4 𝑙𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒 = __shfl_sync (𝑄 [31], (𝑙𝑎𝑛𝑒 + 32 − 1)%32) to

get the last tail element; // Circular shift.
5 if 𝑙𝑎𝑛𝑒𝐼𝑑 == 0 then
6 if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 == 0 then
7 Save the initial value to global memory;
8 Swap 𝑝𝑟𝑒𝑣𝐿𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒 , 𝑙𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒 ; // Tail rotation.
9 𝑝𝑟𝑒𝑣𝑄𝑢𝑎𝑛𝑡 = 𝑙𝑎𝑠𝑡𝑇𝑎𝑖𝑙𝐸𝑙𝑒 ;

10 for 𝑖 in range(32) do
11 𝐷 [𝑖 ] = 𝑄 [𝑖 ] − 𝑝𝑟𝑒𝑣𝑄𝑢𝑎𝑛𝑡 ;
12 𝑝𝑟𝑒𝑣𝑄𝑢𝑎𝑛𝑡 = 𝑄 [𝑖 ]; // Save delta code.

Optimized Delta Encoding.We use Algorithm 1 to illus-
trate the concept underlying the communication optimiza-
tions in theDelta Encoding process. Initially, the quantization
codes are directly stored in registers instead of shared mem-
ory. The warp-level function, such as __shfl_up_sync(),
is then employed to enable direct communication between
threads within a warp. This allows each thread to access the
quantization code of the last tail element in the preceding
thread layer to complete the delta encoding. However, this
design only addresses the delta encoding process within the
thread layer. For communication between iteration layers, an
additional exchange is required between thread 0 in iteration
𝑖 and thread 31 in iteration 𝑖 − 1. This irregular communi-
cation degrades overall performance. To address this issue,
we propose two techniques, named: 1 Circular Shift and 2
Tail Rotation.

Circular Shift.We first detail the design of 1 Circular
Shift optimization, as illustrated in Figure 7. We propose
that, instead of using __shfl_up_sync(), which leaves the
register in thread 0 unchanged, we employ __shfl_sync()
to make the shuffle up operation wrap around the warp. This
ensures that thread 0 receives the tail element from thread
31, and saves it temporarily. In the subsequent iteration,
thread 0 can use this value, stored in a buffer referred to as
lastTailEle, to compute the delta code. The corresponding
implementation is shown on Line 4 in Algorithm 1.
Tail Rotation. However, the plain implementation of

this Circular Shift operation introduces numerous if-else
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Iteration #i
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Circular Shift

Tail Rotation
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1

2

lastTailEle = __shfl_sync(...);

Figure 7: Illustration of two optimization techniques:
circular shift and tail rotation.

branches into the GPU kernel, leading to severe warp di-
vergence and reduced throughput. For instance, a straight-
forward solution requires a separate if-branch for thread 0
to compute the delta code differently from other threads in
the warp. To address this inefficiency, we propose the sec-
ond optimization, 2 Tail Rotation, which minimizes warp
divergence to optimize kernel performance, as illustrated in
Figure 7. Specifically, we maintain a buffer named prevLast-
TailEle initialized as 0. Recall the buffer named lastTailEle,
which is used in Circular Shift for warp-level shuffling to
retrieve the wrap-around last tail element from the previ-
ous thread layer. Subsequently, thread 0 swaps the lastTailEle
buffer with the prevLastTailEle buffer. This mechanismmakes
the tail element of the current iteration layer to be recorded
in prevLastTailEle, while the tail element from the previous
iteration layer is written to lastTailEle. This process is imple-
mented in Line 8 of Algorithm 1. By employing this approach,
the kernel requires only a single if-branch, thereby minimiz-
ing warp divergence and enhancing overall performance.

4.3 Dual-Level Delta Decoding
Asymmetric Design in Delta Decoding. The delta de-
coding process is inherently more complex compared to en-
coding. During encoding, the original values remain visible,
enabling each thread to compute the delta encoding inde-
pendently. In contrast, decoding depends on the completion
of the delta decoding process for predecessor element. To
reconstruct the quantization codes from the delta codes, the
warp layer must be processed sequentially. To address this
linear recurrence, we propose an asymmetric design for delta
decoding. Specifically, we introduce two key optimizations:
1 Two-level Prefix-sum and 2 Tail Element Accumulation.
The following sections provide a detailed explanation of
these optimizations.
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+
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…

1

9

…
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… … …

Delta Code Accum. Value

thread #0 thread #1 thread #2 thread #31

Thread Layer

Figure 8: Illustration of thread-level prefix-sum.

Dual-Level Prefix-Sum. To address the linear recurrence
of delta decoding, we propose the use of a dual-level prefix-
sum approach to reconstruct the quantization codes hierar-
chically, aligningwith our hierarchical data blocking strategy.
This method enables parallel execution. Specifically, instead
of directly reconstructing the quantization codes from the
delta codes, we utilize prefix-sum to calculate the accumu-
lated values for the entire warp based on the delta codes.
These accumulated values are then combined with the initial
values stored during the compression phase to reconstruct
the quantization codes. First, we perform prefix-sum to calcu-
late the accumulated values at the thread layer, as illustrated
in Figure 8. In each thread layer, since the delta codes are
stored in registers, the accumulation can be performed se-
quentially, a process we term as the thread prefix-sum. Sub-
sequently, we extract the accumulated tail values from each
thread layer to perform another prefix-sum, referred to as
the warp prefix-sum, as shown in Figure 9. At the warp level,
instead of relying on shared memory, which incurs high over-
head, we employ __shfl_up_sync to enhance inter-thread
communication. Specifically, values are passed to threads
with stride ranges from 1 to 16, and these passed values are
summed to compute the inclusive prefix-sum. The exclusive
prefix-sum is obtained by subtracting the accumulated val-
ues. At this stage, the accumulated values for all iterations
at the iteration layer are determined. However, recovering
the quantization codes still requires the initial value for each
iteration layer. While the initial value for the first iteration is
saved, obtaining the initial values for subsequent iterations
remains a challenge.
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Figure 9: Illustration of warp-level prefix-sum.

Tail Element Accumulation. To address the issue of
missing initial values, a straightforward solution is to in-
troduce a third-level prefix-sum across the iteration layers.
However, this approach requires completing all iteration lay-
ers, leading to sequential operations within the GPU kernel,
which degrades overall throughput. Additionally, it incurs ex-
tra computational overhead. To address this issue efficiently,
we propose a design termed Tail Element Accumulation,
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which dynamically calculates the initial value for each it-
eration layer without significant overhead. Specifically, we
maintain a buffer for each thread in the warp, referred to
as accumTail. Initially, this buffer is set to the initial value
of the warp layer. This value is then used to recover the
quantization codes for the first iteration layer. Subsequently,
we employ a warp broadcast operation to broadcast the last
element of the iteration layer to accumTail. This updated
value is then utilized to recover the quantization codes for
the next iteration layer, and the process continues iteratively.
Combining these two optimization designs, we demon-

strate the whole asymmetric delta decoding process in Algo-
rithm 2. For the two-level prefix-sum, thread prefix-sum is
in Line 6-8, the warp prefix-sum is from Line 9-14. And the
accumulated tail element is demonstrated in Line 19.

Algorithm 2: Delta Decoding
Input: Delta code 𝐷 , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒

Output: Quantization code𝑄 .
1 Initialize 𝑡𝑎𝑖𝑙𝐸𝑙𝑒, 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙, 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = 0;
2 Initialize 𝑙𝑎𝑛𝑒𝐼𝑑 as the index of thread in warp;
3 Initialize 𝑤𝑎𝑟𝑝𝐼𝑑 as the index of warp(thread block) in grid;
4 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 in range(32) do
5 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = 0;
6 for 𝑖 in range(32) do
7 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟+ = 𝐷 [𝑖 ]; // Thread prefix-sum.
8 𝑄 [𝑖 ] = 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 ;
9 𝑡𝑎𝑖𝑙𝐸𝑙𝑒 = 𝑄 [31]; // Warp prefix-sum.

10 for 𝑖 in 1,2,4,8,16 do
11 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 = __shfl_up_sync(𝑡𝑎𝑖𝑙𝐸𝑙𝑒, 𝑖 ) ;
12 if 𝑙𝑎𝑛𝑒𝐼𝑑 >= 𝑖 then
13 𝑡𝑎𝑖𝑙𝐸𝑙𝑒+ = 𝑡𝑚𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟 ;
14 𝑡𝑎𝑖𝑙𝐸𝑙𝑒− = 𝑄 [31]; // Exclusive prefix-sum.
15 if 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑑 == 0 then
16 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒 [𝑤𝑎𝑟𝑝𝐼𝑑 ]; // Read init.
17 for 𝑖 in range(32) do
18 𝑄 [𝑖 ]+ = 𝑡𝑎𝑖𝑙𝐸𝑙𝑒 + 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 ;
19 𝑎𝑐𝑐𝑢𝑚𝑇𝑎𝑖𝑙 =__shfl_sync(𝑄 [31], 31) ; // Tail ele. accum.

5 Evaluation
In this section, we evaluate Aatrox against four SOTA GPU-
based lossy compressors across various metrics, including
compression ratio and throughput, using nine real-world
scientific datasets. Our results demonstrate that Aatrox
outperforms the baselines in each individual metric and,
overall, delivers significant end-to-end acceleration when
applied to real-world applications.

5.1 Experimental Setup
Platforms. We evaluate our approach on two platforms:
1 One node from an HPC cluster equipped with two 64-
core AMD EPYC 7742 CPUs operating at 2.25GHz and four
NVIDIA Ampere A100 GPUs (108 SMs, 40GB), running Cen-
tOS 7.4 and CUDA 11.4.120. 2 An in-house workstation

equipped with one 28-core Intel Xeon Gold 6238R CPUs
operating at 2.20GHz and two NVIDIA GTX A4000 GPUs
(40 SMs, 16GB), running Ubuntu 20.04.5 and CUDA 11.7.99.
While we use a single GPU for evaluation, multi-GPU pro-
cessing is considered embarrassingly parallel with respect to
single-GPU processing. This is because we partition data in
a coarse-grained manner to fit into a single GPU, with each
data chunk being independent of the others. Due to this lack
of data dependency, multi-GPU comparisons would involve
only varying numbers of data chunks.

Table 1: Real-world datasets used in the evaluation.
field size dataset size

datasets dimensions #fields

Climate simulation 673.9 MB 20.71 GB
CESM-ATM [8] 3600×1800×26 33 in total
Cosmology: particle simulation 4.3 GB 23.99 GB
HACC [19] 1,073,726,487 6 in total
petroleum exploration 1.4 GB 3.99 GB
RTM [5, 23] 1008×1008×352 3 in total
Climate simulation 564.5 MB 6.31 GB
SCALE [38] 1200×1200×98 12 in total
Quantum Monte Carlo 630.7 MB 1.17 GB
QMCPack [46] 69×69×33120 2 in total
cosmology simulation 536.9 MB 3 GB
NYX [43] 512×512×512 6 in total
numerical simulation 6.7 GB 6.23 GB
JetIn [18] 1408×1080×1100 1 in total
Rayleigh-Taylor instability 4.3 GB 4.00 GB
Miranda [9] 1024×1024×1024 1 in total
octet truss 6.9 GB 6.42 GB
SynTruss [29] 1200×1200×1200 1 in total

Datasets. Our evaluation and comparative analysis are
conducted on nine distinct datasets derived from real-world
compression tasks. These datasets encompass a wide range
of domains, showcasing the adaptability and versatility of
our system. The datasets are sourced from the Scientific Data
Reduction Benchmarks (SDRBench) [59] and the Open Sci-
entific Visualization Datasets (Open-SciVis) [28]. Detailed
descriptions and characteristics of these datasets are system-
atically presented in Table 1.
Baselines. We compare Aatrox with four state-of-the-

art GPU-based lossy compressors: FZ-GPU [57], cuSZp [22],
cuSZp2 [21], and cuZFP [39]. We evaluate performance using
three typical relative error bounds (relative to the value range
of the data field): 1e−2, 1e−3, and 1e−4. Note that cuZFP does
not support the error-bound mode; it only supports the fixed-
rate mode.

5.2 Evaluation Metrics
Our evaluation metrics include 1 compression ratio, 2 com-
pression throughput, and 3 data quality, which are detailed
as follows.

Compression Ratio. The compression ratio is one of the
most commonly used metrics in compression research. It is
defined as the ratio of the original data size to the compressed



Pushing the Limits of GPU Lossy Compression: A Hierarchical Delta Approach ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

data size. A higher compression ratio indicates more efficient
information aggregation relative to the original data.
Compression Throughput. Compression throughput

refers to the amount of data a compressor can process within
a unit of time. It is a key advantage of using GPU-based lossy
compressors over CPU-based ones. Notably, we evaluate the
end-to-end throughput for both the compression and de-
compression processes, which includes memory allocation,
memory transfers (host-to-device and device-to-host), mem-
ory deallocation, and other related operations. This approach
provides a more practical measure of throughput, accurately
reflecting the performance of compression in real-world sci-
entific applications.
Data Quality. Data quality evaluation is critical for as-

sessing the performance of lossy compression in terms of
data reconstruction accuracy. In this work, we primarily use
the Peak Signal-to-Noise Ratio (PSNR) to quantify distortion.
Additionally, we employ the Structural Similarity Index Mea-
sure (SSIM) to evaluate the quality of the reconstructed data.
SSIM is a widely used metric for measuring the similarity
between two images. The calculations of PSNR and SSIM are
detailed in [20]. Moreover, we include visualizations of the
reconstructed data alongside the original data to illustrate
the impact of errors introduced by lossy compression.

5.3 Evaluation of Compression Ratio
First, we evaluate the compression ratio of four compres-
sors in error-bounded mode: Aatrox, cuSZp2, FZ-GPU, and
cuSZp, with range-based error bounds of 1e−2, 1e−3, and
1e−4. We exclude cuZFP because it does not support the
error-bounded mode. Its fixed-rate mode locks the compres-
sion ratio, making it unnecessary for this evaluation. The
results are presented in Table 2. We calculate the average
compression ratio for each dataset by averaging the com-
pression ratios across all fields. Additionally, we report the
minimum and maximum compression ratios for each dataset
and use a bar to visually represent the average compres-
sion ratio. For FZ-GPU, missing bars indicate that it failed
to execute on some datasets due to bugs in launching the
3D-Lorenzo predictor.

According to the results, Aatrox achieves the highest com-
pression ratio in nearly all datasets across all error bounds,
outperforming the baselines in 23 out of 27 cases. In the three
cases where Aatrox does not outperform others, two occur
in the JetIn dataset, where Aatrox achieves compression
ratios only 0.02% and 0.04% lower than cuSZp2, differences
that are negligible in real-world applications. Compared to
cuSZp2, Aatrox provides 1.37× and 2.33× higher compres-
sion ratios on the CESM-ATM and HACC datasets, respec-
tively, with an error bound of 1e−2. This improvement is
attributed to the large block design, which reduces overhead

by avoiding the need to store initial values.Compared to FZ-
GPU, Aatrox achieves approximately 1.5× and 2× higher
compression ratios on the CESM-ATM and RTM datasets,
respectively. Compared to cuSZp, Aatrox achieves nearly
3× higher compression ratio on the Miranda dataset with an
error bound of 1e−2.
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a unit of time. It is a key advantage of using GPU-based lossy
compressors over CPU-based ones. Notably, we evaluate the
end-to-end throughput for both the compression and de-
compression processes, which includes memory allocation,
memory transfers (host-to-device and device-to-host), mem-
ory deallocation, and other related operations. This approach
provides a more practical measure of throughput, accurately
reflecting the performance of compression in real-world sci-
entific applications.
Data Quality. Data quality evaluation is critical for as-

sessing the performance of lossy compression in terms of
data reconstruction accuracy. In this work, we primarily use
the Peak Signal-to-Noise Ratio (PSNR) to quantify distortion.
Additionally, we employ the Structural Similarity Index Mea-
sure (SSIM) to evaluate the quality of the reconstructed data.
SSIM is a widely used metric for measuring the similarity
between two images. The calculations of PSNR and SSIM are
detailed in [20]. Moreover, we include visualizations of the
reconstructed data alongside the original data to illustrate
the impact of errors introduced by lossy compression.

5.3 Evaluation of Compression Ratio
First, we evaluate the compression ratio of four compres-
sors in error-bounded mode: Aatrox, cuSZp2, FZ-GPU, and
cuSZp, with range-based error bounds of 1e−2, 1e−3, and
1e−4. We exclude cuZFP because it does not support the
error-bounded mode. Its fixed-rate mode locks the compres-
sion ratio, making it unnecessary for this evaluation. The
results are presented in Table 2. We calculate the average
compression ratio for each dataset by averaging the com-
pression ratios across all fields. Additionally, we report the
minimum and maximum compression ratios for each dataset
and use a bar to visually represent the average compres-
sion ratio. For FZ-GPU, missing bars indicate that it failed
to execute on some datasets due to bugs in launching the
3D-Lorenzo predictor.

According to the results, Aatrox achieves the highest com-
pression ratio in nearly all datasets across all error bounds,
outperforming the baselines in 23 out of 27 cases. In the three
cases where Aatrox does not outperform others, two occur
in the JetIn dataset, where Aatrox achieves compression
ratios only 0.02% and 0.04% lower than cuSZp2, differences
that are negligible in real-world applications. Compared to
cuSZp2, Aatrox provides 1.37× and 2.33× higher compres-
sion ratios on the CESM-ATM and HACC datasets, respec-
tively, with an error bound of 1e−2. This improvement is
attributed to the large block design, which reduces overhead
by avoiding the need to store initial values.Compared to FZ-
GPU, Aatrox achieves approximately 1.5× and 2× higher
compression ratios on the CESM-ATM and RTM datasets,
respectively. Compared to cuSZp, Aatrox achieves nearly

3× higher compression ratio on the Miranda dataset with an
error bound of 1e−2.

Highlight I: Aatrox achieves the highest compres-
sion ratio compared to other baselines in 23 out of 27
cases. The evaluation demonstrates that Aatrox de-
livers up to 2.33× higher compression ratio at the
same error bound compared to the best baseline,
cuSZp2.

5.4 Evaluation of Throughput
Next, we evaluate the throughput of five compressors. The
results are presented in Figure 10 and Figure 11 for compres-
sion and decompression, respectively. Regarding the missing
bars for FZ-GPU, it fails to execute on some datasets due to
bugs in 3D-Lorenzo launching. It is worth noting that in this
evaluation, we measure end-to-end throughput instead of
GPU kernel throughput. This is because end-to-end through-
put is more practical and closely reflects the performance in
real-world scientific applications. We vary the range-based
relative error bounds to 1e−2, 1e−3, and 1e−4. Additionally,
we compute the average compression and decompression
throughput across all datasets to provide a more general as-
sessment of the compressors. Note that we use fixed bit-rate
at 4, 8, and 16 for cuZFP.
The results demonstrate that Aatrox achieves the high-

est compression throughput compared to all baselines and the
highest decompression throughput in 23 out of 27 cases. On
average, Aatrox achieves 388.3 GB/s compression through-
put and 718.0 GB/s decompression throughput, the highest
average throughput among all evaluated compressors.

Compared to cuSZp2, Aatrox achieves a 1.2× speedup
in compression throughput and a 1.6× speedup in decom-
pression throughput. This performance gain is attributed to
cuSZp2’s strategy of handling outliers for each small data
block separately, which reduces throughput. Another impor-
tant observation is that compressors with higher compres-
sion ratios also tend to benefit throughput. This is because
compressed data must be written to global memory, which
can become a bottleneck in the workflow. A higher com-
pression ratio reduces the amount of data written, thereby
increasing compression throughput.
Compared to cuZFP, FZ-GPU, and cuSZp, Aatrox

achieves 3.6×, 2.3×, and 2.7× compression speedups, respec-
tively. It is worth noting that the throughput of Aatrox is
exceptionally high in certain cases. This is because inspired
by cuSZp2 [21], we adopt a skipping design for pure-zero
blocks. This strategy significantly enhances the performance
of Aatrox on sparse datasets. For instance, the decompres-
sion throughput of Aatrox exceeds 1,200 GB/s on the JetIn
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The results demonstrate that Aatrox achieves the high-

est compression throughput compared to all baselines and the
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average, Aatrox achieves 388.3 GB/s compression through-
put and 718.0 GB/s decompression throughput, the highest
average throughput among all evaluated compressors.

Compared to cuSZp2, Aatrox achieves a 1.2× speedup
in compression throughput and a 1.6× speedup in decom-
pression throughput. This performance gain is attributed to
cuSZp2’s strategy of handling outliers for each small data
block separately, which reduces throughput. Another impor-
tant observation is that compressors with higher compres-
sion ratios also tend to benefit throughput. This is because
compressed data must be written to global memory, which
can become a bottleneck in the workflow. A higher com-
pression ratio reduces the amount of data written, thereby
increasing compression throughput.
Compared to cuZFP, FZ-GPU, and cuSZp, Aatrox

achieves 3.6×, 2.3×, and 2.7× compression speedups, respec-
tively. It is worth noting that the throughput of Aatrox is
exceptionally high in certain cases. This is because inspired



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Boyuan Zhang, Yafan Huang, Sheng Di, Fengguang Song, Guanpeng Li, and Franck Cappello

Table 2: Compression ratios of four GPU-based error-bounded lossy compressors. The minimum and maximum
compression ratios for each dataset are noted. The bar at the bottom of each data point represents the average
compression ratio.

Compressor REL CESM-ATM HACC RTM SCALE QMCPack NYX JetIn Miranda SynTruss

Aatrox
1E-2

26.33∼95.12
(avg: 59.22)

12.24∼69.28
(avg: 36.01)

30.25∼103.96
(avg: 61.41)

23.61∼109.34
(avg: 54.29)

12.09∼24.13
(avg: 18.11)

15.83∼127.30
(avg: 71.13)

125.76∼125.76
(avg: 125.76)

12.03∼12.03
(avg: 12.03)

12.99∼12.99
(avg: 12.99)

1E-3
16.09∼62.59
(avg: 29.66)

5.93∼16.26
(avg: 10.41)

12.18∼85.03
(avg: 40.39)

12.64∼80.46
(avg: 31.84)

5.91∼13.93
(avg: 9.92)

11.27∼125.01
(avg: 43.10)

119.57∼119.57
(avg: 119.57)

6.46∼6.46
(avg: 6.46)

6.49∼6.49
(avg: 6.49)

1E-4
8.82∼41.15
(avg: 16.96)

3.72∼6.92
(avg: 5.16)

6.60∼67.91
(avg: 29.46)

6.87∼51.39
(avg: 18.81)

3.73∼7.49
(avg: 5.61)

5.68∼97.56
(avg: 24.28)

106.15∼106.15
(avg: 106.15)

3.99∼3.99
(avg: 3.99)

4.26∼4.26
(avg: 4.26)

cuSZp2
1E-2

18.44∼82.41
(avg: 42.98)

11.49∼20.09
(avg: 15.50)

30.12∼104.18
(avg: 61.48)

16.80∼109.55
(avg: 46.19)

12.44∼23.57
(avg: 18.01)

14.36∼127.80
(avg: 69.14)

126.28∼126.28
(avg: 126.28)

11.10∼11.10
(avg: 11.10)

12.96∼12.96
(avg: 12.96)

1E-3
12.99∼57.45
(avg: 24.53)

5.85∼12.47
(avg: 8.82)

12.00∼84.96
(avg: 40.24)

11.10∼79.69
(avg: 29.52)

6.07∼13.29
(avg: 9.68)

10.50∼125.56
(avg: 41.75)

120.04∼120.06
(avg: 120.06)

5.98∼5.98
(avg: 5.98)

6.47∼6.47
(avg: 6.47)

1E-4
7.85∼39.01
(avg: 14.97)

3.67∼6.27
(avg: 4.84)

6.51∼67.81
(avg: 29.36)

6.31∼49.95
(avg: 17.92)

3.79∼7.25
(avg: 5.52)

5.43∼98.37
(avg: 24.12)

106.50∼106.50
(avg: 106.50)

3.80∼3.80
(avg: 3.80)

4.25∼4.25
(avg: 4.25)

FZ-GPU
1E-2

17.62∼100.02
(avg: 40.52) N.A.

(due to bugs)

12.25∼70.09
(avg: 34.60)

16.39∼124.25
(avg: 45.21)

7.53∼19.04
(avg: 13.28)

13.38∼222.62
(avg: 86.15) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

1E-3
12.03∼58.03
(avg: 21.57) N.A.

(due to bugs)

6.37∼43.76
(avg: 20.42)

10.89∼69.61
(avg: 25.39)

4.33∼12.08
(avg: 8.20)

9.81∼183.98
(avg: 42.34) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

1E-4
7.10∼36.03
(avg: 12.98) N.A.

(due to bugs)

4.02∼30.70
(avg: 13.92)

7.26∼39.22
(avg: 16.16)

2.99∼8.26
(avg: 5.62)

5.98∼59.98
(avg: 16.15) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

cuSZp
1E-2

3.88∼69.43
(avg: 32.56)

5.28∼10.6
(avg: 7.92)

29.08∼102.73
(avg: 60.10)

3.88∼105.89
(avg: 37.76)

12.44∼22.21
(avg: 17.33)

9.6∼127.8
(avg: 66.73)

126.27∼126.27
(avg: 126.27)

4.46∼4.46
(avg: 4.46)

12.67∼12.67
(avg: 12.67)

1E-3
2.78∼39.01
(avg: 14.53)

3.45∼5.37
(avg: 4.41)

11.06∼81.90
(avg: 38.43)

2.75∼72.60
(avg: 21.11)

6.08∼10.08
(avg: 8.08)

5.09∼125.55
(avg: 38.44)

119.86∼119.86
(avg: 119.86)

3.04∼3.04
(avg: 3.04)

6.37∼6.37
(avg: 6.37)

1E-4
2.11∼24.55
(avg: 8.26)

2.53∼3.47
(avg: 3.00)

6.07∼65.04
(avg: 28.04)

2.14∼42.06
(avg: 12.34)

3.79∼5.56
(avg: 4.68)

3.35∼98.23
(avg: 22.14)

105.59∼105.59
(avg: 105.59)

2.32∼2.32
(avg: 2.32)

4.21∼4.21
(avg: 4.21)

by cuSZp2 [21], we adopt a skipping design for pure-zero
blocks. This strategy significantly enhances the performance
of Aatrox on sparse datasets. For instance, the decompres-
sion throughput of Aatrox exceeds 1,200 GB/s on the JetIn
dataset with an error bound of 1e−2.
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Table 2: Compression ratios of four GPU-based error-bounded lossy compressors. The minimum and maximum
compression ratios for each dataset are noted. The bar at the bottom of each data point represents the average
compression ratio.

Compressor REL CESM-ATM HACC RTM SCALE QMCPack NYX JetIn Miranda SynTruss

Aatrox
1E-2

26.33∼95.12
(avg: 59.22)

12.24∼69.28
(avg: 36.01)

30.25∼103.96
(avg: 61.41)

23.61∼109.34
(avg: 54.29)

12.09∼24.13
(avg: 18.11)

15.83∼127.30
(avg: 71.13)

125.76∼125.76
(avg: 125.76)

12.03∼12.03
(avg: 12.03)

12.99∼12.99
(avg: 12.99)

1E-3
16.09∼62.59
(avg: 29.66)

5.93∼16.26
(avg: 10.41)

12.18∼85.03
(avg: 40.39)

12.64∼80.46
(avg: 31.84)

5.91∼13.93
(avg: 9.92)

11.27∼125.01
(avg: 43.10)

119.57∼119.57
(avg: 119.57)

6.46∼6.46
(avg: 6.46)

6.49∼6.49
(avg: 6.49)

1E-4
8.82∼41.15
(avg: 16.96)

3.72∼6.92
(avg: 5.16)

6.60∼67.91
(avg: 29.46)

6.87∼51.39
(avg: 18.81)

3.73∼7.49
(avg: 5.61)

5.68∼97.56
(avg: 24.28)

106.15∼106.15
(avg: 106.15)

3.99∼3.99
(avg: 3.99)

4.26∼4.26
(avg: 4.26)

cuSZp2
1E-2

18.44∼82.41
(avg: 42.98)

11.49∼20.09
(avg: 15.50)

30.12∼104.18
(avg: 61.48)

16.80∼109.55
(avg: 46.19)

12.44∼23.57
(avg: 18.01)

14.36∼127.80
(avg: 69.14)

126.28∼126.28
(avg: 126.28)

11.10∼11.10
(avg: 11.10)

12.96∼12.96
(avg: 12.96)

1E-3
12.99∼57.45
(avg: 24.53)

5.85∼12.47
(avg: 8.82)

12.00∼84.96
(avg: 40.24)

11.10∼79.69
(avg: 29.52)

6.07∼13.29
(avg: 9.68)

10.50∼125.56
(avg: 41.75)

120.04∼120.06
(avg: 120.06)

5.98∼5.98
(avg: 5.98)

6.47∼6.47
(avg: 6.47)

1E-4
7.85∼39.01
(avg: 14.97)

3.67∼6.27
(avg: 4.84)

6.51∼67.81
(avg: 29.36)

6.31∼49.95
(avg: 17.92)

3.79∼7.25
(avg: 5.52)

5.43∼98.37
(avg: 24.12)

106.50∼106.50
(avg: 106.50)

3.80∼3.80
(avg: 3.80)

4.25∼4.25
(avg: 4.25)

FZ-GPU
1E-2

17.62∼100.02
(avg: 40.52) N.A.

(due to bugs)

12.25∼70.09
(avg: 34.60)

16.39∼124.25
(avg: 45.21)

7.53∼19.04
(avg: 13.28)

13.38∼222.62
(avg: 86.15) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

1E-3
12.03∼58.03
(avg: 21.57) N.A.

(due to bugs)

6.37∼43.76
(avg: 20.42)

10.89∼69.61
(avg: 25.39)

4.33∼12.08
(avg: 8.20)

9.81∼183.98
(avg: 42.34) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

1E-4
7.10∼36.03
(avg: 12.98) N.A.

(due to bugs)

4.02∼30.70
(avg: 13.92)

7.26∼39.22
(avg: 16.16)

2.99∼8.26
(avg: 5.62)

5.98∼59.98
(avg: 16.15) N.A.

(due to bugs)
N.A.

(due to bugs)
N.A.

(due to bugs)

cuSZp
1E-2

3.88∼69.43
(avg: 32.56)

5.28∼10.6
(avg: 7.92)

29.08∼102.73
(avg: 60.10)

3.88∼105.89
(avg: 37.76)

12.44∼22.21
(avg: 17.33)

9.6∼127.8
(avg: 66.73)

126.27∼126.27
(avg: 126.27)

4.46∼4.46
(avg: 4.46)

12.67∼12.67
(avg: 12.67)

1E-3
2.78∼39.01
(avg: 14.53)

3.45∼5.37
(avg: 4.41)

11.06∼81.90
(avg: 38.43)

2.75∼72.60
(avg: 21.11)

6.08∼10.08
(avg: 8.08)

5.09∼125.55
(avg: 38.44)

119.86∼119.86
(avg: 119.86)

3.04∼3.04
(avg: 3.04)

6.37∼6.37
(avg: 6.37)

1E-4
2.11∼24.55
(avg: 8.26)

2.53∼3.47
(avg: 3.00)

6.07∼65.04
(avg: 28.04)

2.14∼42.06
(avg: 12.34)

3.79∼5.56
(avg: 4.68)

3.35∼98.23
(avg: 22.14)

105.59∼105.59
(avg: 105.59)

2.32∼2.32
(avg: 2.32)

4.21∼4.21
(avg: 4.21)

dataset with an error bound of 1e−2. Note that compression
throughput is generally lower than decompression through-
put due to the additional loop to obtain the lossless encoding
information.

Highlight II: In terms of throughput, Aatrox
achieves 388.3 GB/s compression throughput and
718.0 GB/s decompression throughput, representing
a 1.2× and 1.6× speedup in compression throughput
and decompression throughput compared to cuSZp2,
the best-performing baseline.

5.5 Evaluation of Data Quality
In this section, we evaluate the quality of the reconstructed
data. First, we visualize a slice in the field from the CESM-
ATM dataset, a climate simulation dataset suitable for visu-
alization. The results are shown in Figure 12. From left to
right, the visualizations depict the original data, Aatrox,
and cuZFP. We exclude the results of cuSZp2, FZ-GPU, and
cuSZp because they share the same quantization strategy,
which is the only lossy component in their workflows. Thus,
their visualizations are identical but with lower compression
ratios, as evaluated in Section 5.3. For this field, Aatrox
achieves a compression ratio of 16.4. To provide a fair com-
parison, we set the bitrate of cuZFP to 2 to achieve a simi-
lar compression ratio. It is evident that Aatrox produces a
visualization very similar to the original data, while the re-
constructed visualization from cuZFP alters the value range.
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Figure 10: Compression throughput evaluation on A100 GPU.
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Figure 11: Decompression throughput evaluation on A100 GPU.

a different color distribution compared to the original image.
Moreover, cuZFP introduces noticeable artifacts, as shown in
the 100×100 cropped and zoomed-in image. Overall,Aatrox
achieves better visualization quality, as confirmed by higher
PSNR and SSIM values (higher is better). Similar observations
can be made across other datasets.
Another way to evaluate data quality is through a rate-

distortion map, where the x-axis represents the bitrate (in-
verse of compression ratio) and the y-axis represents the
PSNR or SSIM values. As previously mentioned, Aatrox
shares the same quantization strategy as cuSZp2, FZ-GPU,
and cuSZp, and thus achieves identical PSNR and SSIM val-
ues at the same error bounds. For cuZFP, prior work such
as FZ-GPU [57] has demonstrated that FZ-GPU achieves a
better rate-distortion curve than cuZFP. Combined with the
compression ratio evaluation in Section 5.3, where Aatrox
achieves the best compression ratio in almost all cases, this
illustrates that the rate-distortion performance of Aatrox
outperforms the baselines.
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This is apparent in Figure 12, where the cuZFP result exhibits
a different color distribution compared to the original image.
Moreover, cuZFP introduces noticeable artifacts, as shown in
the 100×100 cropped and zoomed-in image. Overall,Aatrox
achieves better visualization quality, as confirmed by higher
PSNR and SSIM values (higher is better). Similar observations
can be made across other datasets.
Another way to evaluate data quality is through a rate-

distortion map, where the x-axis represents the bitrate (in-
verse of compression ratio) and the y-axis represents the
PSNR or SSIM values. As previously mentioned, Aatrox
shares the same quantization strategy as cuSZp2, FZ-GPU,
and cuSZp, and thus achieves identical PSNR and SSIM val-
ues at the same error bounds. For cuZFP, prior work such
as FZ-GPU [57] has demonstrated that FZ-GPU achieves a
better rate-distortion curve than cuZFP. Combined with the
compression ratio evaluation in Section 5.3, where Aatrox
achieves the best compression ratio in almost all cases, this
illustrates that the rate-distortion performance of Aatrox
outperforms the baselines.

Highlight III: Aatrox effectively preserves data
quality, as demonstrated by visualizations and met-
rics such as PSNR and SSIM. Furthermore, Aatrox
achieves the best rate-distortion curve compared to
baselines.

5.6 Use Case: Reducing Data Transfer
Overhead

Besides compression throughput (𝑇compr), we propose an
additional metric called overall speedup to evaluate the per-
formance of compressors. The overall speedup considers the
improvement a compressor provides for end-to-end appli-
cations, making it more practical for real-world scientific
scenarios. Specifically, the overall speedup is calculated as:

speedup =
1((𝐵𝑊 × CR)−1 +𝑇 −1

compr
) × 𝐵𝑊
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Besides compression throughput (𝑇compr), we propose an
additional metric called overall speedup to evaluate the per-
formance of compressors. The overall speedup considers the
improvement a compressor provides for end-to-end appli-
cations, making it more practical for real-world scientific
scenarios. Specifically, the overall speedup is calculated as:

speedup =
1((𝐵𝑊 × CR)−1 +𝑇 −1

compr
) × 𝐵𝑊

where 𝐵𝑊 represents the memory bandwidth through which
compressed data is transferred, and𝐶𝑅 denotes the compres-
sion ratio.
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Figure 12: Visualization of slice 13 (the middle
slice) from RELHUM_1_26_1800_3600 field in CESM-ATM
dataset.

We use GPU-to-CPU data transfer as a use case for Aa-
trox. Our HPC cluster node is equipped with 4 A100 GPUs
connected to the CPU via a 32-lane PCIe 4.0 interconnect;
each GPU can utilize up to a 16-lane bandwidth (i.e., 32 GB/s).
Based on our benchmarking results using [1], when all 4
GPUs simultaneously read/write data to/from the CPU, the
bandwidth per GPU can drop to as low as 11.4 GB/s (ag-
gregately about 45 GB/s). We measured the overall data-
transfer speedup of various compressors, as shown in Fig-
ure 13. The results illustrate that Aatrox achieves the best
overall speedup across all datasets and at all evaluated rela-
tive error bounds, outperforming the second-best compres-
sor, cuSZp2, by up to 70%.
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Figure 13: Speedup of applying different compressors
for GPU-to-CPU data transfer operations.
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Figure 14: Speedup of applyingAatrox under different
compression ratios and bandwidths.
Using the CESM-ATM dataset as an example, the com-

pression ratio of Aatrox ranges from 26.3 to 95.2, with an

average compression throughput of 372.6 GB/s. Using this
information, we evaluated the speedup of Aatrox under dif-
ferent transfer scenarios with varying bandwidths, as shown
in Figure 14. The results indicate that Aatrox efficiently
accelerates data transfer, particularly in low-bandwidth sce-
narios. Our approach achieves a speedup of over 70×, with
the lowest speedup under the given settings being 10×. This
demonstrates the in-situ characteristics of Aatrox.

6 Discussion
In this section, we provide additional evaluations that sup-
plement the main results and offer deeper insights.

6.1 Breakdown Performance Analysis
We evaluate the breakdown performance of different com-
ponents in our design. Due to the single-kernel design, we
evaluate each component by disabling other operations in
the kernel that may affect throughput. The results are aver-
aged over the datasets.

Compression Phase. The results show that quantization
(including reading data from global memory) accounts for
10.2% of the compression kernel time, while delta encoding
accounts for 12.3%. This demonstrates that the optimized de-
sign of delta encoding performs well and does not impose sig-
nificant overhead on the compression workflow. Bit-packing
takes negligible time (less than 1%) due to its embarrass-
ingly parallel nature. The global prefix-sum accounts for
32.8% of the time. Despite utilizing the decoupled lookback
strategy [41] for high-performance design, the device-level
operation remains time-consuming, resulting in large over-
head. Finally, block concatenation accounts for 41.5% of the
total time. The irregular lengths of compressed data blocks
cause non-coalesced memory access patterns, leading to a
reduction in the process of writing to global memory, which
becomes a bottleneck.

Decompression Phase. The global prefix-sum in decom-
pression is identical to that in the compression phase. How-
ever, due to the higher decompression throughput, it ac-
counts for 39.8% of the decompression kernel time, which is
longer compared to 32.8% in the compression phase. The com-
pressed data retrieval process takes 10.1% (including reading
data from global memory), as the size of the compressed
data is relatively small. Bit-unpacking remains negligible
(less than 1%) due to its inherently parallel nature, similar
to compression. Delta decoding accounts for 16.5% of the
decompression kernel time, primarily due to the additional
shuffled functions required. Finally, the dequantization pro-
cess takes 54.6% of the decompression kernel time because of
the writing operations to global memory. For sparse datasets,
this process is much faster, as most data points are zero and
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can be skipped. However, for non-sparse datasets, dequanti-
zation becomes the primary bottleneck.
Compared to the data copy time between the CPU and

GPU, the maximum bandwidth of the 16-lane PCIe 4.0 in-
terconnect used in our evaluation platform is 32 GB/s. In
contrast, the average compression throughput of Aatrox is
388 GB/s—over 10× faster than the data movement speed.

6.2 Compatibility with Lower-End GPUs
In addition to evaluating performance on the NVIDIA A100
GPU, we also assess the throughput of Aatrox on a lower-
end GPU, the NVIDIA A4000 (16 GB), in platform 2 . The
results are presented in Figure 15. We use the QMCPack
and NYX datasets, and similar observations can be made
across other datasets. Aatrox achieves an average of 120.7
GB/s compression throughput and 344.3 GB/s decompres-
sion throughput. This demonstrates that our optimizations
maintain high performance across different GPU platforms.
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Figure 15: Throughput of Aatrox on NVIDIA A4000
GPU for the QMCPack and NYX datasets.

6.3 Compression Ratio Gain by
Hierarchical Delta Approach

We also evaluate the compression ratio gain achieved by our
optimized hierarchical delta encoding design. We implement
a prototype that saves the initial value for each thread layer
(small data block), referred to as the plain approach. The gain
is calculated as the compression ratio of our hierarchical delta
approach divided by that of the plain solution. The results
are presented in Table 3.
We observe that our approach achieves an average com-

pression ratio improvement of 1.74×, 1.50×, and 1.39× for
error bounds of 1e−2, 1e−3, and 1e−4, respectively, aver-
aged across all datasets. It is worth noting that our approach
achieves better compression ratios when the data is very
smooth, as exemplified by the HACC dataset. However, when
the data is sparse (with most values being zero), both the

plain solution and the hierarchical design achieve high com-
pression ratios, as observed in the JetIn dataset. Moreover,
with optimized designs such as Circular Shift and Tail Rota-
tion, our method incurs only around 10% overhead compared
to the plain solution.

Table 3: Compression ratio gain by Hierarchical Delta.

CESM HACC RTM SCALE QMCPack

1e-2 1.82× 4.56× 1.03× 1.44× 1.05×
1e-3 2.05× 2.37× 1.05× 1.51× 1.24×
1e-4 2.07× 1.78× 1.05× 1.53× 1.22×

NYX Jetih Miranda SynTruss Average

1e-2 1.07× 1.00× 2.67× 1.03× 1.74×
1e-3 1.13× 1.00× 2.15× 1.03× 1.50×
1e-4 1.10× 1.01× 1.73× 1.01× 1.39×

6.4 Hybrid Compressors
Several GPU-based lossy compressors adopt a CPU-GPU
hybrid design, leveraging GPUs as accelerators while dele-
gating sequential processes to CPUs. For example: cuSZ [50]
utilizes Lorenzo prediction and Huffman lossless encoding to
provide error-bounded lossy compression. Yu et al. proposed
cuSZx [54], an extension of the cuSZ framework, which
achieves high compression throughput through lightweight
bitwise operations. Chen et al. developed MGARD-GPU [7],
which optimizes data refactoring kernels for GPUs, enabling
efficient manipulation of data in multigrid-based hierarchi-
cal forms. Although these compressors achieve impressive
kernel throughput, their end-to-end performance is often
constrained by the overhead of CPU-GPU data movement.

7 Related Work
Compression has become popular in the development of data
reduction techniques [6, 12]. While some lossless compres-
sors provide high compression throughput [30, 42, 58], they
still face challenges in achieving high compression ratios.
In contrast, lossy compression introduces user-customized
error to significantly improve the compression ratio, thereby
benefiting HPC systems [2, 11, 26, 32, 37, 39, 49, 53]. Among
these, two notable lossy compressors are SZ [11, 34, 35, 49]
and ZFP [39]. SZ is a prediction-based compressor composed
of data prediction, linear-scale quantization, variable-length
encoding, and dictionary encoding. On the other hand, ZFP
is a transform-based compressor that operates at block gran-
ularity, employing alignment, orthogonal transforms, and
embedded encoding.
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As the development of GPU-accelerated applications, lossy
compressors have adapted to GPU-based implementations
over the past decade [14, 15, 21, 22, 36, 39, 40, 44, 50, 52, 54,
56]. Lindstrom [39] developed cuZFP, which adapts the fixed-
rate design of ZFP to GPUs, preserving high throughput and
ensuring high visualization quality. Tian et al. [50] intro-
duced cuSZ, the first prediction-based GPU error-bounded
lossy compressor. Zhang et al. [57] proposed a pure-GPU im-
plementation named FZ-GPU and introduced a novel lossless
encoding method that achieves significant overall speedup.
Huang et al. [21, 22] innovatively designed a single-kernel
compression approach named cuSZp and further improved
it to cuSZp2 with an optimized prefix-sum and a novel out-
lier fixed-length encoding method, significantly increasing
throughput. Aatrox advances compressor efficiency by en-
hancing both the compression ratio and throughput com-
pared to SOTA methods. Lossy compressors have also been
adapted for diverse use cases on various platforms, such as
Cerebras [47, 48] and Data Processing Units (DPUs) [33].

8 Conclusion and Future Work
In this paper, we develop a single-kernel error-bounded
lossy compressor for scientific data on GPUs. Specifically, we
propose Aatrox, a high-throughput and high-compression-
ratio compressor that utilizes hierarchical data blocking and
large-block delta encoding/decoding. We evaluate our pro-
posed Aatrox on nine representative scientific datasets,
demonstrating its high compression throughput and ratio.
It achieves an average throughput of 388.3 GB/s for com-
pression and 718.0 GB/s for decompression on an NVIDIA
A100 GPU. Compared to state-of-the-art compressors such
as cuSZp2, cuSZp, cuZFP, and FZ-GPU, Aatrox achieves
approximately 1.2× speedup while delivering the highest
compression ratios. In the future, we plan to adapt Aatrox
to other GPU platforms by leveraging code translation tools
such as HIPFY [3] for AMD GPUs and SYCLomatic [24] for
Intel GPUs. The impact of parameters (e.g., layer size) on the
compression ratio and throughput in Aatrox varies across
datasets. We also plan to explore fine-grained parameter
tuning in future work.
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