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Elliptic curves and Hilbert’s 10th problem for number
fields

By

Florian E. Ito Sprung∗

Abstract

We establish an analogue of Hilbert’s 10th Problem, which is a conjecture of Denef and
Lipshitz, for some number fields of small degree. We then describe how to use the arithmetic
of elliptic curves to find families of degree 6 number fields satisfying this conjecture. We also
make some conjectures related to these techniques.

§ 1. Hilbert’s 10th Problem and the Denef–Lipshitz Conjecture

The tenth problem in Hilbert’s list of 23 problems posed at the International
Congress of Mathematicians in 1900 asks whether there is an algorithm to determine if
a polynomial f(~x) ∈ Z[x1, x2, · · · , xn] has a solution f(~x) = 0 for some ~x ∈ Zn. 1

Hilbert’s 10th problem was solved in 1970 by Matiyasevič in the negative, i.e. there
is no general algorithm that can decide this [10]. The interested reader may now read
the appendix for a sketch of the ideas underlying the proof.

A natural question is to ask what happens when we replace every instance of Z
above by a ring R.

Hilbert’s 10th Problem for R.
Is there an algorithm that can determine whether for a polynomial f(~x) ∈ R[x1, · · · , xn]

there is a solution ~x ∈ Rn to the equation f(~x) = 0?
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Answer R

No Z (original problem)
Yes C or a finite field
?? Q
No? OF = the ring of integers of a number field F

As indicated in the above table, the answer differs with the choice of R. For R = C
or a finite field, it is yes, while for R = Q, it seems unclear what to conjecture. For
R = OF the ring of integers of a number field F , Denef and Lipshitz made the following
conjecture in 1973:

Conjecture 1.1 (Denef–Lipshitz Conjecture [4]). Let F be a number field. Then
for R = OF , Hilbert’s Problem for R has a negative solution, i.e. there is no algorithm
that can decide whether a polynomial f(~x) ∈ R[x1, · · · , xn] admits a solution f(~x) = 0

with ~x ∈ Rn.

It is customary to refer to the above conjecture as the Denef–Lipshitz Conjecture
for F , although the name “Denef–Lipshitz Conjecture for OF ” would be more correct.
For example, the Denef–Lipshitz Conjecture for Q is Matiyasevič’s theorem.

The Denef–Lipshitz Conjecture (DLC) is known for the following number fields F :

• any totally real number field F , or a quadratic extension thereof, see [4, 5],

• a number field admitting one complex place, [14, 18, 19]. An important example
od such a field is F = Q( 3

√
n),

• any number field F that is not totally real and so that [F : Q] = 4 and there is a
(proper, nontrivial) intermediate field between F and Q [5],

• F is a subfield of one of the extensions mentioned above; see [17]. In particular, it
follows from the Kronecker–Weber Theorem that the DLC is unsolvable when F/Q
is abelian.

• If the conjecture holds for a number field F , then it holds for certain infinite families
of degree `n-extensions L of F . More precisely, once F has been chosen, then for
all but finitely many primes ` and all n ≥ 1, the conjecture holds for infinitely
many cyclic `n-extensions L of F ; see [11, 12]2. See also [16] for a recent result on
cyclotomic Zl-extensions.

• F belongs to an explicit family of number fields of the form Q( 3
√
p,
√
−q);[7]. We

will study this family further.
2We thank Karl Rubin for patiently clarifying this point. The main ingredient for deriving this from
[12, Theorem 1.2] is that the simple abelian variety can be chosen to be a non-CM elliptic curve.
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• In [2], G. Cornelissen, T. Pheidas and K. Zahidi studied the case where F is a
number field satisfying two specific arithmetic conditions.

• In the recent preprint of B. Mazur, K. Rubin and A. Shlapentokh [13], related
questions for a large family of Galois extensions of Q have been studied.

Here are some scenarios for which the DLC is unknown at present:

• number fields F for which [F : Q] = 4 and there is no intermediate field.

An example (for which we solve the DLC in the next section) is F = Q(r) with r a
solution to x4 + 8x + 12 = 0. Note that there is no intermediate field because the
Galois group A4 of the Galois closure of F has no subroups of index two3.

• number fields F of the form F = Q( 5
√
n) or F = Q( 6

√
n),

• number fields of the form F = Q( 3
√
p,
√
−q) for arbitrary primes p and q.

§ 2. The relationship with elliptic curves

A combination of two theorems by Poonen and Shlapentokh connects the conjecture
of Denef and Lipshitz to the arithmetic of elliptic curves. The theorem states the
following:

Theorem 2.1 (Poonen [15] and Shlapentokh [18]). Let F be a number field. If
there is an elliptic curve E defined over Q so that

rankE(F ) = rankE(Q) > 0,

then the Denef–Lipshitz conjecture holds for F .
More generally, given a finite extension F ′ ⊃ F of a number field F for which the

Denef–Lipshitz conjecture holds, the presence of an elliptic curve E/Q for which

rankE(F ′) = rankE(F ) > 0

implies the Denef–Lipshitz Conjecture for F ′.

This theorem suggests the following strategy for proving the DLC:
Given a number field F , find an elliptic curve E/Q so that

rankE(F ) = rankE(Q) > 0.

3See Example 4.15 and Remark 4.16 in Keith Conrad’s write-up ‘Galois groups as permutation
groups’ at https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.pdf that discusses
this field in detail.

https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.pdf
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Proposition 2.2 (García-Fritz and Pasten). The Denef–Lipshitz conjecture holds
for the integer ring of the number field Q( 5

√
2).

Indeed, [7, Section 3.1] employs the elliptic curve of Cremona label 58a1 to prove
this.

We follow this strategy further and prove the DLC for a few new number fields.

Proposition 2.3. The Denef–Lipshitz conjecture holds for the integer rings of
the number fields

1. Q( 5
√
n) with n ≤ 37 , and also with n = 39, 41, 43− 47, 49, 51− 55, 57− 59,

61, 62, 64, 66− 71, 74− 79, 81, 82, 84, 87, 89, 91− 95, 97− 100,

2. Q( 6
√

2), and

3. Q(r), r a root of x4 + 8x+ 12.

Proof.
Let E be the curve with Cremona label 145a1. An equation for this curves is given

by y2 = x3 − 43x + 102. We let F = Q( 5
√

3). For these choices, we run the following
SAGE code:

E = EllipticCurve("145a1")
K.<t> = NumberField(x^5 - 3)
EK = E.base_extend(K)
r = EK.rank()
print(’The Mordell-Weil rank in ’, K, ’is’, r)

This confirms that
rankE(F ) = rankE(Q) = 1

for this particular choice.
Running the same program with the appropriate modifications for any number field

F = Q( 5
√
n) and elliptic curve E as shown in the table establishes the proposition.

E some possible F ’s

145a1: y2 = x3 − 43x+ 102 any F = Q( 5
√
n) for n ∈ {3, 6, 7, 12, 15, 17, 20, 21, 23, 26,

28, 30, 31, 35, 39, 45, 51, 52, 53, 54, 59, 68, 74, 76, 94, 97, 98}
91a1: y2 + y = x3 + x F = Q( 5

√
2)

184b1: y2 = x3 − x2 − 4x+ 5 F = Q( 5
√

5)

102a1: y2 = x3 − 3267x+ 45630 Q( 5
√

10),Q( 5
√

22),Q( 5
√

58),Q( 5
√

62),Q( 5
√

82),Q( 5
√

92)

136a1: y2 = x3 + x2 − 4x Q( 5
√

14),Q( 5
√

58) (also found via 102a1) ,Q( 5
√

70),Q( 5
√

78)

57a1: y2 = x3 − 3024x+ 70416 Q( 5
√

18)

224a1: y2 = x3 + x2 + 2x Q( 5
√

13),Q( 5
√

43)

224a2: y2 = x3 + x2 − 8x− 8 Q( 5
√
n) with n = 11, 29, 33, 57, 79, 89, 93, 95, 99
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E some possible F ’s
238a2: y2 = x3 − 77787x+ 979830 Q( 5

√
66)

312b1: y2 = x3 − 4320x− 50112 Q( 5
√

75),Q( 5
√

87)

312f1: y2 = x3 + 6048x+ 578880 Q( 5
√

91)

504e1: y2 = x3 − 6x+ 5 Q( 5
√

19),Q( 5
√

37),Q( 5
√

47)

336e1: y2 = x3 + 20304x+ 245376 Q( 5
√

44),Q( 5
√

61)

342e1: y2 = x3 − 4131x+ 10206 Q( 5
√

34),Q( 5
√

46)

534a2: y2 = x3 + 33669x+ 4495446 Q( 5
√

77)

545a3: y2 = x3 − 1184787x− 396834066 Q( 5
√

69),Q( 5
√

71)

384d1: y2 = x3 − 4320x+ 89856 Q( 5
√

67)

256a1: y2 = x3 − 4320x+ 96768 Q( 5
√

84)

400a1: y2 = x3 Q( 5
√

55),Q( 5
√

87)

426b1: y2 = x3 Q( 5
√

41)

We note that all the fields of the form Q( 5
√
n) in the statement of the proposition

appear in the table, e.g. Q( 5
√

24) = Q( 5
√

18).
As for the non-quintic fields in the proposition, we use the following:

E F

58a1: y2 = x3 − 19x+ 46 Q( 6
√

2)

88a1: y2 = x3 − 4x+ 4 Q(r), r a root of x4 + 8x+ 12
QED

The moral of the proposition is that a judiciously chosen elliptic curve, such as
that with Cremona label 145a1 (which by the way also reproves the DLC for Q( 5

√
2)

and Q( 5
√

18) via Theorem 2.1!) can furnish us with many instances of the DLC. Un-
fortunately, there is no known method for finding an appropriate E given an F – one
can find E in the above example by simply looking through elliptic curves of small con-
ductor. What is desired is a more systematic approach. The following is a proposition
using quadratic twists, and appeared first in a paper by García–Fritz and Pasten [7,
Proposition 3.3]:

Proposition 2.4. Suppose the DLC holds for a number field F . If there is an
elliptic curve E so that

1. rankE(F ) = 0, and

2. rankE
(
Q(
√
d)
)
> 0,

then DLC holds for F
(√

d
)
.

Proof. The idea is to apply the theorem of Poonen and Shlapentokh to the dth
quadratic twist E(d) of the elliptic curve E.
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The two conditions in the proposition imply that F
(√

d
)
6= F . But the second

condition implies that 0 < rankE
(
F
(√

d
))

. Now,

rankE
(
F
(√

d
))

= rankE(d)(F
(√

d
)

) = rankE(F ) + rankE(d)(F ).

By the first condition, we have that rankE(F ) + rankE(d)(F ) = rankE(d)(F ), so
putting it all together yields

rankE(d)
(
F
(√

d
))

= rankE(d)(F ) > 0.

QED

§ 3. Results

Proposition 2.4 is amenable to families of elliptic curves satisfying the conclusions
of the theorem of Poonen and Shlapentokh. García–Fritz and Pasten made use of it to
addressed families of DLC as follows:

Theorem 3.1 (García–Fritz and Pasten [7]). There are explicit sets P and Q
of primes so that DLC holds for

F = Q( 3
√
p,
√
−q) for every p ∈ P, q ∈ Q.

Further, the densities of the sets P and Q are given by δ(P) = 5
16 and δ(Q) = 1

12 .

Here, the density δ is defined by the Čebotarev density theorem as follows. The
sets P and Q turn out to be both Čebotarev sets, i.e. sets S of primes so that there
is a Galois extension K/Q and a conjugacy-stable set C ⊆ Gal(K/Q) so that S agrees
with the set {p : Frobp ∈ S} up to finitely many exceptions. Because of the Čebotarev
density theorem, the following limit exists and is equal to #C

[K:Q] :

lim
x→∞

#S ∩ [1, x]

π(x)
,

where π(x) is the prime counting function. We denote this limit by δ(S), and call
it simply the density of S. Note that by construction, this density is always a rational
number.

A consequence of the Denef–Lipshitz Conjecture would be the following:

Conjecture 3.2. There are sets primes P and Q, each of density 1, so that the
Denef–Lipshitz Conjecture holds for number fields of the form

F = Q( 3
√
p,
√
−q) for every p ∈ P, q ∈ Q.
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In joint work with D. Kundu and A. Lei, we made some progress towards this
conjecture by enlarging the sets of primes to ones with higher densities:

Theorem 3.3 (Kundu, Lei, and the author [9]). There are sets P ′ ⊃ P and
Q′ ⊃ Q so that the conclusions of Theorem 3.1 hold with P replaced by P ′ and Q
replaced by Q′, and so that

δ(P ′) =
9

16
, δ(Q′) =

7

48

One may try to optimize the density of one set of primes at the expense of the
other. In this direction, we obtained the following result:

Theorem 3.4 (Kundu, Lei, and the author [9]). There are explicit sets of primes
P” and Q” so that the Denef–Lipshitz conjecture holds for number fields of the form

F = Q( 3
√
p,
√

7× q) for every p ∈ P”, q ∈ Q”.

These sets have densities
δ(P ′) =

103

128
, δ(Q′) =

1

36

§ 4. Discussion of the proof and open questions

To make the points in the key proposition, Proposition 2.4, work, we need to find
an elliptic curve E so that

1. rankE(Q( 3
√
p)) = 0, and

2. rankE
(
Q(
√
d)
)
> 0, for appropriately chosen d (i.e. d = −q rec. d = 7q.)

We then count how many times this can be done. It turns out that elliptic curves
that satisfy conditions (1) and (2) often enough are the curves given in Weierstraß form
and Cremona label by

y2 + y = x3 − x2 − 268x+ 1781 (E557b1),

and
y2 = x3 − x2 − 11x− 11 (E704d1).

§ 4.1. Ingredients for the proof

Let E be any of the two elliptic curves just discussed. We want to show that
condition (1) from Proposition 2.4 holds often, i.e. we want to find families of:

(4.1) cubic fields F = Q( 3
√
p) satisfying rankE(F ) = 0, and



8 Florian Ito Sprung

(4.2) quadratic fields K = Q(
√
d) satisfying rankE(K) = 1

We use results going back to the work of Brau [1] to find the cubic family for 4.1,
and results of Kriz and Li to find the quadratic family in 4.2. Proposition 2.4 can then
be applied to prove DLC for the composita Q( 3

√
p,
√
d).

For 4.1, the result based on that of Brau roughly says the following. Denote by ζ3
a primitive third root of unity.

Lemma 4.1. ([9, Theorem 3.5], building on [1, Proposition 5.2])
If a list of conditions concerning the behavior of the prime 3 relative to E is satisfied,

of which the most important one is that rankE(Q(ζ3)) = 0, then

rankE(Q( 3
√
p, ζ3)) = rankE(Q( 3

√
p)) = 0

for every p ∈ P(E), where

P(E) = {good reduction primes p : ap(E) 6≡ 2 (mod 3),∀p|p in Q(ζ3)}.

The densities 9
16 in Theorem 3.3 and 103

128 in Theorem 3.4 come about as follows.
Estimating the density of the primes in P(E) with the indicated (mod 3) condition is
the same as estimating the corresponding Frobenius element Frobp ∈ Gal(Q(E[3])/Q).
The improvement from the estimate 5

16 in Theorem 3.1 to 9
16 in Theorem 3.3 reflects

several relaxations on the conditions concerning the prime 3 – in [7], the analogue of
the above lemma was slightly weaker, relying on some Iwasawa-theoretic tools. To
obtain the much higher density of 103

128 in Theorem 3.4, we count primes that satisfy the
conditions of the lemma for any of the two elliptic curves mentioned before: We have
rankE(Q( 3

√
p)) = 0 for any

p ∈ P(E557b1) ∪ P(E704d1).

For 4.2, the result of Kriz and Li says the following

Lemma 4.2. Let E/Q be an elliptic curve so that rankE(Q) = 0 (and E has
trivial 2-torsion). Let K be an imaginary quadratic field. Put

Q(K) := {primes q 6= 2 of good reduction and split in K so that aq ≡ 1 (mod 2).}

Then under an appropriate condition on a Heegner point (and another condition on the
Tamagawa number at 2), we have

• ∆E < 0 implies that rankE(d×dK)(Q) = 1, and

• ∆E > 0 and d < 0 imply that rankE(d)(Q) = 1,
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for every d supported on Q(K), and where ∆E denotes the discriminant of E.

The densities for δ(Q) come about when counting the corresponding Frobenius
elements Frobq ∈ Gal(Q(E[2])/Q) with the desired trace condition. In Theorem 3.1,
the density 1

12 was obtained when applying the above lemma to K = Q(
√
−7). The

density 7
48 in Theorem 3.3 came about when considering multiple auxiliary imaginary

quadratic fields, Q(
√
−7),Q(

√
−79), and Q(

√
−127), resulting in the primes q being

allowed to be in the larger set

Q(Q(
√
−7)) ∪Q(Q(

√
−79)) ∪Q(Q(

√
−127)).

The reason for the much lower density 1
36 in Theorem 3.4 is that we need the

Mordell–Weil ranks of the two elliptic curves to increase under base change simultane-
ously. Translating this into the conditions of the lemma, this is asking for simultaneous
conditions for the traces of Frobenius in both elliptic curves, thus cutting down the
density.

§ 4.2. An open question

We compare the densities in Theorems 3.1,3.3 and 3.4. We call the set of primes
used in constructing the number fields that satisfy DLC simply P and Q uniformly.

We summarize the densities from Theorems 3.1, 3.3, 3.4 in the table below:
Thm 3.1 Thm 3.3 Thm 3.4 “Thm n” limn→∞Thm n

δ(P) 5
16

9
16

103
128

3n+4n

23n+1 1

δ(Q) 1
12

7
48

1
36

1
4 ×

1
3n 0

We were able to improve Theorem 3.1 by considering multiple auxiliary quadratic
fields. The different densities in Theorem 3.3 and Theorem 3.4 came about because we
considered two elliptic curves. If we extended the methods and found n elliptic curves
instead, one should be able to use the methods of Theorem 3.4 to find a “Theorem n,”
where the densities should transform as shown – in the limit, one could thus prove part
of Conjecture 3.2.

Remark 4.3. The density 0 in the last entry is not too helpful. It seems rea-
sonable to expect that the densities δ(Q) could be bounded from below, so that in the
limit, they should have positive density. We would like to make the following conjecture:

Conjecture 4.4. Denote by Q the set of primes that satisfy the conclusion of
Proposition 2.4 simultaneously for n appropriate elliptic curves. Then there is a constant
δ′ > 0 so that δ(Q) > δ′.

In particular, δ′ > 1
4 ×

1
3n for sufficiently large n, so that the lower right entry in

the table should be improved to δ′.
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§ 5. Appendix

We sketch the ideas behind Matiyasevič’s proof, which completes a strategy origi-
nally due to M. Davis. A particularly simple scenario that Hilbert had in mind is the
family of polynomials in two variables given by

x2 + y2 − n.

A well-known theorem by Fermat furnishes us with Hilbert’s desired algorithm
when n is prime. In this case, a possible algorithm may be simply:

“Output YES if n = 2 or n = 4k + 1 for an integer k;
Output NO if n = 4k + 3.”
Fermat began to give a criterion for composite n as well, see e.g. [8, Exercise 5.3],

and one may formulate appropriate algorithms in those cases as well. Using this algo-
rithm, we find that the set of n for which the output would be YES is {0, 1, 2, 4, 5, 8, · · · }.
(For arbitrary quadratic equations in two variables, an algorithm is due to Gauß,
quadratic reciprocity.)

From the wording of Hilbert’s problem, it seems that Hilbert was hoping for a
general algorithm that would vastly generalize these results of Fermat and Gauß.

However, Matiyasevič proved that such an algorithm does not exist. How does one
prove such a theorem? Three ideas played a key role, Diophantine sets, two types of sets
coming from algorithms (computable and listable sets), and conjecturing that listable
sets are Diophantine.

§ 5.1. Diophantine Sets

Recall that Hilbert’s 10th Problem asks for a solution (of a certain type) of a
polynomial. The first idea is to turn the problem around, i.e. given a set of integers,
are they a solution set for a polynomial?

A concrete example is the set

{0, 1, 2, 4, 5, 8, · · · } = {n such that x2 + y2 = n has a solution with x, y ∈ Z}

from above. This is an example of a Diophantine set. The polynomial equation
x2 + y2 − n is the associated Diophantine equation.

Definition 5.1. A set S of integers is Diophantine if there is a polynomial P
with coefficients in Z (the associated Diophantine equation) so that

n ∈ S ⇐⇒ P (n, x1, x2, · · · , xm) = 0 has an integral solution (x1, · · · , xm)
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§ 5.2. Computable and listable sets

Roughly speaking, computable sets S of integers are the best to process for a
computer, while listable sets are “second best.”

A set S of integers is computable if there is an algorithm that decides which
integers are in S and which are not.

By contrast, a set S of integers is listable if there is a Turing machine program,
or more informally a (mechanical) method inferior to algorithms, that furnishes us the
following:

n ∈ S ⇐⇒ Output is YES.

Note, however, that the program may run arbitrarily long to arrive at the conclusion
that n ∈ S.

n 6∈ S =⇒ Output is NO, or programn keeps running forever.

The problem is that while the program is running, we don’t know whether n ∈ S.
The set of integers {0, 1, 2, 4, 5, 8, · · · } above is listable. Indeed, we may fix some

enumeration of all 3-tuples of integers. Given any such tuple (x, y, z), compute x2 +

y2 − n. If this is = 0, put n on the list (n may appear multiple times.)
A similar argument shoes that any Diophantine set is listable. It turns out that

the set {0, 1, 2, 4, 5, 8, · · · } is in fact computable, but this is not always true: There is
a listable set K that is not computable.

§ 5.3. Davis’s Dream: Listable sets are Diophantine

In the 1930’s, Martin Davis began to suspect that any listable set L was Diophan-
tine, i.e. had a Diophantine equation PL for which it became a Diophantine set. (In
our recurring example L = {0, 1, 2, 4, 5, 8, · · · }, we would have PL = x2 + y2 − n.)

If this were true, there would be a Diophantine equation PK for the set K from the
last sentence of the previous section, so that

PK = 0 has a solution (x1, · · · , xm) ∈ Zm (for given n ∈ Z) ⇐⇒ n ∈ K.

A consequence would be that given n, there is no algorithm for telling if PK has a
solution in x1, · · · , xm (and n).

The reason for this is that if there were such an algorithm, we could use it to decide
if n ∈ K, i.e. K would be computable – but it is not!

§ 5.4. Realization of Davis’s dream

Davis couldn’t realize their dream. However, Julia Robertson in the 1950’s devel-
oped techniques shedding light on Diophantine sets which increased in an exponential
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fashion. In 1960, Robertson collaborated with Hilary Putnam and Martin Davis to
show if just one Diophantine equation could be found whose solution increased expo-
nentially, this would imply Davis’s dream. An example of a set of numbers that grow
exponentially is the set of Virahanka numbers:

1, 1, 2 = 1 + 1, 3 = 1 + 2, 5 = 2 + 3, 8 = 3 + 5, 13 = 5 + 8, 21 = 8 + 13, · · ·

(Virahanka numbers are also known as Fibonacci numbers.) Matiyasevič found a
Diophantine equation whose solutions were (appropriately related to) Virahanka num-
bers, so that ultimately the following theorem was proved:

Theorem 5.2 (Davis–Putnam–Robinson–Matiyasevič). Every listable set of in-
tegers is Diophantine.

Corollary 5.3. Hilbert’s 10th Problem has a negative solution.

For further reading which this appendix merely summarizes, see [6] and [3].
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