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Abstract
Understanding and predicting urban dynamics is crucial for man-
aging transportation systems, optimizing urban planning, and en-
hancing public services. While neural network-based approaches
have achieved success, they often rely on task-speci�c architec-
tures and large volumes of data, limiting their ability to generalize
across diverse urban scenarios. Meanwhile, Large Language Mod-
els (LLMs) o�er strong reasoning and generalization capabilities,
yet their application to spatial-temporal urban dynamics remains
underexplored. Existing LLM-based methods struggle to e�ectively
integrate multifaceted spatial-temporal data and fail to address dis-
tributional shifts between training and testing data, limiting their
predictive reliability in real-world applications. To bridge this gap,
we propose UrbanMind, a novel spatial-temporal LLM framework
for multifaceted urban dynamics prediction that ensures both accu-
rate forecasting and robust generalization. At its core, UrbanMind
introduces Mu�n-MAE, a multifaceted fusion masked autoencoder
with specialized masking strategies that capture intricate spatial-
temporal dependencies and intercorrelations among multifaceted
urban dynamics. Additionally, we design a semantic-aware prompt-
ing and �ne-tuning strategy that encodes spatial-temporal contex-
tual details into prompts, enhancing LLMs’ ability to reason over
spatial-temporal patterns. To further improve generalization, we
introduce a test time adaptation mechanism with a test data re-
constructor, enabling UrbanMind to dynamically adjust to unseen
test data by reconstructing LLM-generated embeddings. Extensive
experiments on real-world urban dynamics datasets from multi-
ple cities demonstrate the e�ectiveness of UrbanMind. The results
consistently show that UrbanMind outperforms state-of-the-art
baselines, achieving superior accuracy and strong generalization,
even in zero-shot scenarios with no prior data.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3737177

CCS Concepts
• Computing methodologies! Learning latent representa-
tions; Temporal reasoning.

Keywords
Urban Dynamics Prediction, Spatial-Temporal Data Mining, Large
Language Models

ACM Reference Format:
Yuhang Liu, Yingxue Zhang, Xin Zhang, Ling Tian, Yanhua Li, and Jun
Luo. 2025. UrbanMind: Urban Dynamics Prediction with Multifaceted
Spatial-Temporal Large Language Models. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25),
August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3711896.3737177

KDD Availability Link:
The source code of this paper has been made publicly available at https:
//doi.org/10.5281/zenodo.15484938.

Figure 1: Illustration of key challenges, including complex
urban dynamics and distributional shifts.

1 Introduction
Urban dynamics prediction in tra�c systems involves predicting
human mobility patterns, such as tra�c speed and travel demand,
using historical spatial-temporal data collected from various IoT
devices mounted on vehicles and public transports. Accurate predic-
tion holds signi�cant potential for optimizing tra�c management,
enhancing urban planning, and improving public service delivery.
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Limitations of NN-based approaches. Various deep neural net-
work (NN)-based approaches have been developed for urban dy-
namics prediction. Graph-based neural networks [11, 45, 59] have
demonstrated exceptional success in modeling spatial-temporal
dependencies. Generative models, including GAN-based methods
[51, 53, 55] and di�usion-based models [10, 27, 34], have gained sig-
ni�cant attention for their ability to model complex urban data dis-
tributions. Meta-learning and transfer-learning-based approaches
[43, 50, 54, 56, 57] have also been explored for their �exibility and
adaptability. Despite these advances, existing methods often rely
heavily on task-speci�c architectures and substantial volumes of
data. These dependencies limit their ability to generalize e�ectively
across diverse urban contexts or adapt to evolving conditions, par-
ticularly in scenarios involving unseen regions or sparse data. This
limitation raises the question: How can we enhance urban dynamics
prediction by simultaneously achieving high accuracy and strong
generalization across dynamic and diverse urban scenarios?
Limitations of LLM-based approaches. Considering the out-
standing generalization ability, we turn attention to Large Language
Models (LLMs) [28]. LLMs have revolutionized natural language
processing with their exceptional reasoning, prediction, and gen-
eralization capabilities, enabling adaptability across diverse appli-
cations with minimal task-speci�c training. Despite their success
in other �elds, the application of LLMs in urban dynamics pre-
diction from spatial-temporal data remains relatively unexplored,
with only a few notable attempts. We term these attempts as LLM-
based approaches. For instance, UrbanGPT [19] integrates a spatial-
temporal dependency encoder with an instruction-tuning paradigm
in LLMs. However, it does not consider the inter-correlations among
di�erent urban dynamics, limiting its predictive performance in
complex, multifaceted urban scenarios. Similarly, methods such as
ST-LLM [23], TPLLM [32], GATGPT [3], and STG-LLM [25] attempt
to adapt LLMs to spatial-temporal data. However, these models lack
the capability to utilize prompts for prediction guidance and fail
to address distributional shifts between training and testing data,
reducing their �exibility and adaptability in diverse urban settings.
Our objectives and challenges. Building on the strengths and
limitations of NN- and LLM-based approaches, this paper proposes a
novel method for adapting LLMs to the spatial-temporal domain for
multifaceted urban dynamics prediction, achieving high accuracy
while demonstrating strong generalization across diverse urban
scenarios, including those with no prior data or unseen conditions.
Achieving this goal requires overcoming below challenges:
Challenge 1: Bridging Spatial-Temporal Data and LLMs: As shown
in Figure 1(a), spatial-temporal urban data are inherently complex,
exhibiting structured dependencies across space, time, and multi-
ple dynamic factors. However, LLMs are not inherently designed
to process such structured, continuous signals, especially time-
series data [39]. This creates a fundamental representation gap: raw
spatial-temporal data must be transformed into discrete, semanti-
cally meaningful token representations to be interpretable by LLMs.
Bridging this gap is crucial for enabling LLMs to reason over urban
dynamics.
Challenge 2: Prompt Design and Fine-Tuning: Spatial and temporal
information inherently contain rich semantic details that enhance
a model’s understanding of spatial-temporal patterns. E�ectively

leveraging these details to design prompts for LLM �ne-tuning is
crucial for enabling LLMs to comprehend spatial-temporal dynam-
ics within speci�c urban contexts, facilitating reasoning over the
data and producing reliable forecasts.
Challenge 3: Distributional Shift: Urban dynamics often exhibit sub-
stantial distributional shifts between training and testing data as
shown in Figure 1(b), particularly in zero-shot scenarios where
the model is tested in unseen settings with no prior data available.
These shifts, often re�ecting signi�cant di�erences in geographical
characteristics, or temporal patterns compared to the training data,
pose a major barrier to generalization and can severely degrade
prediction performance.
Our UrbanMind. To address these challenges, we propose Urban-
Mind, a novel multifaceted spatial-temporal LLM that can achieve
high prediction accuracy and robust generalization in diverse urban
scenarios. UrbanMind integrates a Mask-Empowered Representa-
tion Learning framework through the novelMu�n-MAE, which em-
ploys specialized masking mechanisms to capture complex spatial-
temporal dependencies and intercorrelations among multifaceted
urban dynamics. Additionally, it incorporates a tailored prompt-
ing and �ne-tuning strategy for spatial-temporal data. The prompt
encodes spatial-temporal semantic information, guiding the �ne-
tuning process of the LLM. To generate predictions, a predictor
module is attached to the LLM, transforming the high-dimensional
latent vectors generated by the LLM into spatial-temporal urban
dynamics forecasts. To address distributional shifts, UrbanMind
features a novel test time adaptation strategy with a data reconstruc-
tor that operates parallel to the predictor and shares layers with it.
During testing, this module adapts to test data by reconstructing
the LLM output and �ne-tuning the shared layers. This ensures
improved alignment with the test data distribution, thereby en-
hancing the generalization capability of the predictor. The primary
contributions of this paper can be summarized as follows:
• We propose a novel multifaceted spatial-temporal LLM, Urban-
Mind, which integrates innovative designs to e�ectively enable a
language model to pro�ciently understand and process the intri-
cate relationships and patterns inherent in multifaceted spatial-
temporal data. UrbanMind achieves high prediction accuracy
and robust generalization in diverse urban scenarios, including
zero-shot cases with no prior data available.

• UrbanMind incorporates a novel multifaceted fusion masked au-
toencoder (Mu�n-MAE) with advanced masking strategies to
generate embeddings that capture both spatial-temporal depen-
dencies and multifaceted intercorrelations, enabling seamless
integration with LLMs. Additionally, a semantic-rich prompt and
�ne-tuning strategy tailored for spatial-temporal data is designed,
along with an innovative test time adaptation mechanism that
mitigates distributional shifts through a test data reconstructor.

• We conducted extensive experiments on three di�erent urban
dynamics—tra�c speed, in�ow, and travel demand—in three dif-
ferent cities. The results demonstrate the proposed UrbanMind’s
exceptional ability to generalize across diverse spatial-temporal
learning scenarios and deliver accurate predictions under vari-
ous conditions, outperforming state-of-the-art baselines, even in
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unseen regions or scenarios with no prior training data.We have
also made our data and code available to the research community 1.

2 Problem De�nition
De�nition 1 (Grid Cell B8 9 ). To achieve a more granular under-
standing of urban dynamics, a city is partitioned into de�ned grid
cells. For instance, the city can be divided into � ⇥ � grid cells, each
with uniform dimensions (e.g., 1 ⇥ 1, km2). The set of all grid cells
is represented as S = {B8 9 }, where 1  8  � and 1  9  � .
De�nition 2 (Target Region A8 9 ). Each grid cell B8 9 corresponds to
a target region A8 9 . A target region A8 9 is a square geographic area
consisting of ✓⇥✓ grid cells, with the cell B8 9 positioned at its top-left
corner. Formally, a target region is represented as A8 9 = hB8 9 , ✓i. The
set of all regions is denoted as R = {A8 9 }18, 9 � .
De�nition 3 (Urban Dynamics X and X: ). Urban dynamics of a
region A encompass various aspects, such as tra�c speed, vehicle
in�ow and out�ow, and human mobility, among others. We repre-
sent the urban dynamics for a region A as a �ve-dimensional tensor
X 2 R#⇥)⇥⇠⇥✓⇥✓ , where# is the number of days,) represents the
number of time steps per day (e.g., hours), ⇠ denotes the number
of urban dynamic aspects, referred to as the number of channels,
and ✓ ⇥ ✓ speci�es the spatial dimensions of the region. We further
denote the target urban dynamics of interest for a region A as X: ,
where X: 2 R#⇥)⇥1⇥✓⇥✓ , representing a single-channel subset of
X corresponding to the speci�c dynamic being analyzed.
Problem De�nition. Given the historical, multifaceted urban dy-
namics data Xtr for training regions denoted as Rtr = {A tr8 9 }, the
goal is to train a generalizable function 5 ⇤ that is able to adapt to
testing regions Rts = {A ts8 9 }. Speci�cally, the function 5 ⇤ is able to
predict the urban dynamics for the next< hours in testing regions
Rts = {A ts8 9 }, using ⌘ hours of prior observations Xts

start from these
testing regions. Formally, the task is expressed as:

X̂ts = 5 ⇤
⇣
Xts
start

⌘
,where 5 ⇤ = argmin

5
L(5 ,Xtr),

where X̂ts denotes the predicted urban dynamics for the following
< hours, and L is the loss function while training the 5 function.
Note: In the standard spatial-temporal prediction scenario, Rts ✓
Rtr. In the zero-shot prediction scenario, the testing regions Rts

must be unseen during the training process and completely distinct
from Rtr, i.e., Rts \ Rtr = ;.

3 Methodology
In this section, we introduce UrbanMind, a novel spatial-temporal
LLM designed to advance multifaceted urban dynamics prediction
performance and enhance adaptability and generalization. It com-
prises three components, each addressing the challenges outlined in
Section 1: (1)Mask-Empowered Representation Learning. UrbanMind
includes a novel Mu�n-MAE with speci�cally designed masking
mechanisms to project urban dynamics into a latent space, e�ec-
tively capturing complex spatial-temporal dependencies and inter-
dependencies among multifaceted urban dynamics (see Section 3.1).
(2) Semantic-Aware Prompting and Fine-Tuning. UrbanMind designs

1UrbanMind code: https://doi.org/10.5281/zenodo.15484938.

Figure 2: Masking strategies.

semantic-aware prompts that encode detailed spatial-temporal con-
texts. These prompts guide the �ne-tuning of the LLM, enabling it
to reason over the spatial-temporal embeddings (see Section 3.2). (3)
Test time adaptation. UrbanMind incorporates a data reconstructor
that quickly adapts to test data by reconstructing the LLM’s output.
This enables the model to better align with the test data distribution,
enhancing its generalization capability (see Section 3.3).

3.1 Mask-Empowered Representation Learning
Mask-Empowered Representation Learning is a critical component
of UrbanMind. While LLMs are inherently designed to process
natural language data, such as text in the form of tokens, they are
not equipped to directly handle spatial-temporal data. To leverage
LLMs for urban dynamics prediction, it is crucial to transform
spatial-temporal urban dynamics into latent representations that
LLMs can e�ectively process and understand, while preserving
both the spatial-temporal dependencies and the intercorrelations
among multifaceted urban dynamics.
Multifaceted Fusion MAE (Mu�n-MAE). To achieve this, we
propose a multifaceted fusion masked autoencoder (Mu�n-MAE),
a framework with speci�cally designed masking mechanisms. The
Mu�n-MAE architecture, illustrated in Figure 3, consists of two
masked autoencoders. The �rst, comprising an encoder ⇢1 and
a decoder ⇡1, generates multifaceted embeddings by processing
multifaceted urban dynamics, e�ectively capturing their interde-
pendencies. The second, with a separate encoder ⇢2 and decoder
⇡2, generates target embeddings for individual urban dynamics,
preserving the spatial-temporal dependencies of the target dynamic.

Both encoders and decoders consist of multiple convolutional
layers, enabling e�ective processing across spatial and temporal
dimensions. The encoder ⇢1 takes as input a sequence of multi-
faceted masked urban dynamics data, Xmasked = {^masked

C })C=1,
where specialized masking mechanisms selectively mask portions
of the data. It outputs a sequence of multifaceted latent embeddings,
i.e., V = ⇢1

⇣
Xmasked

⌘
, where V = {vC })C=1 with one embedding

generated per time slot. These embeddings are then passed to the
decoder ⇡1, which reconstructs the original multifaceted urban
dynamics data, X̂ = ⇡1 (V) = { ˆ̂ C })C=1. The objective follows:

LMu�n-MAE =
1
)

)’
C=1

⇣
ˆ̂ C � ^C

⌘2
. (1)

https://doi.org/10.5281/zenodo.15484938
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Figure 3: UrbanMind Framework.
Once ⇢1 and ⇡1 are trained on multifaceted urban dynamics,

as shown in Figure 3, ⇢2 and ⇡2 operate similarly but process
sequences of individual target urban dynamics,X: 2 R#⇥)⇥1⇥✓⇥✓ ,
where the number of channels is set to 1, re�ecting the separation
of dynamics.

Unlike the masking mechanisms in standard MAE [9], which
primarily rely on space-only or time-only random sampling broad-
casted across dimensions, our Mu�n-MAE introduces specialized
masking strategies designed to capture both spatial and tempo-
ral dependencies across di�erent urban dynamics, as illustrated in
Figure 2 and detailed below.
• Channel-Sensitive Spatial Masking: For a sequence of urban
dynamics X = {^A ,C })C=1 at a region A with ^A ,C 2 R⇠⇥;⇥; , a
channel 2 2 {1, . . . ,⇠} is randomly selected for each time step C .
Within the selected channel ^2

A ,C 2 R;⇥; , ?B of the ✓ ⇥ ✓ dynamics
features are randomly masked with ?B 2 (0, 1). Let Mspatial
denote the set of masked feature indices, and |Mspatial | = ?B · ;2.
The masked tensor is given by:

^2,masked
A ,C (8, 9) =

(
0, if (8, 9) 2 Mspatial,

^2
A ,C (8, 9), otherwise.

This mechanism ensures that di�erent grid cells of a region are
masked across channels, enabling the Mu�n-MAE to e�ectively
capture spatial dependencies.

• Channel-Sensitive Temporal Masking: For the sequence X =
{^A ,C })C=1, ?C of time steps are randomly sampled from ) with
?C 2 (0, 1). For each sampled time step Cm, a channel 2 2 {1, . . . ,⇠}
is randomly selected, and all information corresponding this chan-
nel at this region is masked. The masking process for the selected
channel is:

^2,masked
A ,Cm (8, 9) = 0, 8(8, 9) 2 {1, . . . , ;} ⇥ {1, . . . , ;}.

This approach allows the Mu�n-MAE to �exibly mask di�er-
ent time steps in di�erent channels, facilitating the capture of
temporal dependencies among multi-faceted urban dynamics.

• Global Masking: For the sequence X = {^A ,C })C=1, ?C of time
steps are randomly sampled. For each sampled time step C sp, ?B of
grid cells across all channels are randomly masked. Let Mglobal

denote the set of masked grid cell indices, where |Mglobal | =
?B ·⇠ · ;2. The masked data is given by:

^masked
A ,C (2, 8, 9) =

(
0, if (2, 8, 9) 2 Mglobal,

^A ,C (2, 8, 9), otherwise.

Global masking mechanism enhances Mu�n-MAE to capture
both spatial and temporal dependencies across urban dynamics.

Multifaceted and Target Embeddings. To obtain the multifac-
eted embeddings from the multifaceted urban dynamicsX, we train
the encoder ⇢1 and decoder⇡1 in Mu�n-MAE using all three mask-
ing mechanisms. Upon completion of training, the encoder gener-
ates embeddings V , e�ectively preserving the inter-correlations
among the related multi-faceted urban dynamics. To derive target
embeddings V: = {v:A ,C })C=1 for a sequence of target urban dynam-
icsX: , we train the encoder ⇢2 and the decoder ⇡2 using the target
urban dynamics. During this training process, all three masking
mechanisms are again applied to the target urban dynamics, with
the channel number set to 1.
Spatial-Temporal Token Generation. To form the �nal tokens
for a sequence of urban dynamics, we combine the multifaceted
embeddings V = {vA ,C })C=1 with the target embeddings V: =
{v:A ,C })C=1. This combination is achieved by concatenating the em-
beddings along the feature dimension for each time step as U =
{uA ,C })C=1, where uA ,C = concat(vA ,C , v:A ,C ). Here, uA ,C represents the
�nal token for time step C , encapsulating both the inter-correlations
among the related multifacet dynamics and the spatial-temporal de-
pendencies of the target urban dynamics. These tokens, structured
as uA ,C 2 R3E+3: , are well-suited for processing by LLMs.

3.2 Semantic-Aware Prompting and
Fine-Tuning

Semantic-Aware Prompting Design. In spatial-temporal predic-
tion tasks, both temporal and spatial information carry essential
semantic details that contribute to the model’s understanding of
complex patterns within speci�c contexts. To leverage these in-
sights, we represent temporal and spatial information as prompt
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instruction text, enabling large language models to process this data
e�ectively through their advanced text comprehension capabilities.

In the UrbanMind framework, we incorporate time, regional,
and task-speci�c information into the instruction input for the
large language model. Temporal information includes data from the
previous hours of a day and the target hours whose urban dynamics
need to be predicted. Regional information speci�es the city, the
coordinates of the top-left grid cell B8 9 within the target region, and
the region’s side length ✓ . Additionally, the task name de�nes the
speci�c urban dynamics to be predicted. By encapsulating these
elements in a structured prompt, UrbanMind e�ectively identi�es
and assimilates spatial-temporal patterns across diverse regions,
time frames, and urban dynamics as is illustrated in Figure 3.
LLMFine-Tuning Strategy. To adapt the LLM for spatial-temporal
urban dynamics prediction, we employ the Partially Frozen Atten-
tion (PFA) mechanism [23]. Consider an LLM (we use LLaMA3.2 [8]
in this paper) with ! transformer layers, where each transformer
layer TFM8 (8 = 1, . . . , !) undergoes the following transformation:

e (8 ) = LayerNorm(e (8�1) + SA(e (8�1) )),

where e (8 ) represents the hidden state produced by the 8-th layer
of the LLM, and SA(·) denotes the self-attention operation.

To e�ciently �ne-tune the model, we divide the transformer lay-
ers into two groups: frozen layers TFMfr = {TFM(1) , . . . ,TFM(; ) }
and trainable layers TFMtr = {TFM(;+1) , . . . ,TFM(!) }. The param-
eters of the frozen layers TFMfr remain �xed during �ne-tuning,
preserving the pretrained knowledge of the LLM. The trainable
layers TFMtr process the output from the frozen layers, where only
the query matricesW@ in the self-attention mechanism are updated
to learn task-speci�c spatial-temporal dependencies. In contrast,
the key and value matrices W: and WE remain frozen to retain
the pretrained relationships encoded in the model. This two-stage
�ne-tuning process leverages the generalization capabilities of the
frozen layers while allowing the trainable layers to e�ectively adapt
to the spatial-temporal characteristics of urban dynamics.
Spatial-Temporal Predictor Module. The LLM’s output—a high-
dimensional sequence of latent embeddings—must be transformed
into numerical values representing predicted urban dynamics. To
realize this goal, we attach a spatial-temporal predictor module %
to the LLM. This module consists of self-attention layers and fully
connected layers (in Figure 3), enabling the transformation of LLM-
generated embeddings into structured urban dynamics predictions.

The spatial-temporal predictionmodule % processes the sequence
of embeddings E = {e} generated by the LLM based on the prompt
using⌘ hours of prior observations and predicts the urban dynamics
X̂: = { ˆ̂ :A ,C }⌘+<C=⌘+1 for the subsequent< hours, where X̂: = % (E).
To optimize the prediction, we minimize the Mean Squared Error
(MSE) loss for daily sequential urban dynamics data:

Lpred =
1
<

⌘+<’
C=⌘+1

��� ˜̂ :A ,C � ^:
A ,C

���2 , (2)

where ˆ̂ :
A ,C represents the predicted urban dynamics, and ^:

A ,C de-
notes the corresponding ground truth values.

3.3 Test Time Adaptation
Although LLMs exhibit strong generalizability, they are primarily
designed for natural language tasks and generalization across text-
related domains. In the spatial-temporal domain, testing data often
presents distinct patterns from training data, especially in zero-shot
scenarios where unseen regions and varying tra�c dynamics intro-
duce signi�cant distributional shifts. To address this, we propose
a test time adaptation strategy to enhance the generalization and
adaptability of LLMs during testing. At its core is a novel test data
reconstructor ⌧ , which works in parallel with the predictor while
sharing several self-attention layers as is shown in Figure 3.

During testing, the LLM processes the prompt describing the
test region (potentially unseen) and generates a latent embedding
sequence E = {e} as input to the predictor. Before directly passing
E to the predictor, we randomly mask ? of the elements (with
? 2 (0, 1) as the masking ratio) in E to introduce stochasticity
and encourage robustness. The reconstructor⌧ then recovers the
masked elements through a quick adaptation process, performing
a few epochs of updates. The masking process works as follows: A
binary mask vectorm8 2 {0, 1}3 is generated for each e8 2 R3 . The
indices to be masked, M ✓ {1, . . . ,3}, are randomly sampled with
a uniform distribution such that |M| = ? · 3 .], i.e.,

emasked
8 = e8 � m8 , (3)

where � denotes element-wise multiplication. The sequence of
masked embeddings is then represented as Emasked = {emasked

8 }.
The reconstructor ⌧ reconstructs the entire sequence of latent
embeddings E = {e} from the masked sequence Emasked with loss:

Lrecon =
1
=

=’
8=1

���⌧ (emasked
8 ) � e8

���2 , (4)

where = is the number of embeddings, e8 is the original embedding,
and ⌧ (emasked

8 ) is the reconstructed embedding produced by the
reconstructor ⌧ . This reconstruction process allows ⌧ to quickly
adapt to new data and regional conditions, �ne-tuning the shared
layers to better align with the test data. Once adaptation is com-
plete, the updated shared layers enable the predictor to generate
more accurate results for testing scenarios. This approach e�ec-
tively mitigates distributional shifts, enhancing both generalization
and adaptability in diverse spatial-temporal contexts[37, 38]. The
detailed algorithm for UrbanMind can be found in Algorithm 1.

4 Experiment
In experiments, we aim to measure the e�ectiveness of our Urban-
Mind across di�erent datasets and in di�erent urban scenarios. We
will answer the following questions with extensive experiments:
(1) Can our UrbanMind outperform in zero-shot spatial-temporal
prediction tasks for di�erent urban dynamics? (2) Can our Urban-
Mind outperform in standard spatial-temporal prediction tasks for
di�erent urban dynamics? (3) Is each component in UrbanMind
e�ective when performing spatial-temporal predictions? (4) How
do di�erent hyperparameters a�ect performance?

4.1 Dataset and Experiment Descriptions
Data description. In our experiments, we use three distinct urban
dynamics datasets—travel demand, tra�c speed, and in�ow—from
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City Dynamics Metrics Models

DY�usion TGC-LSTM GCRN GAGCN GATGPT GCNGPT ST-LLM TPLLM LLaMA3 STG-LLM UrbanGPT UrbanMind

Shenzhen

Speed MAE 0.131 0.196 0.196 0.361 0.139 0.159 0.194 0.166 0.256 0.194 0.132 0.131
RMSE 0.211 0.263 0.265 0.485 0.205 0.225 0.290 0.229 0.443 0.274 0.201 0.194

In�ow MAE 0.128 0.235 0.324 0.371 0.128 0.137 0.153 0.165 0.269 0.217 0.137 0.127
RMSE 0.251 0.364 0.489 0.542 0.250 0.254 0.265 0.255 0.460 0.382 0.249 0.249

Demand MAE 0.149 0.228 0.324 0.464 0.141 0.153 0.207 0.178 0.223 0.202 0.144 0.138
RMSE 0.339 0.378 0.504 0.644 0.270 0.275 0.301 0.278 0.381 0.377 0.271 0.269

Xi’an

Speed MAE 0.216 0.201 0.230 0.481 0.268 0.138 0.220 0.198 0.294 0.208 0.139 0.137
RMSE 0.253 0.227 0.263 0.314 0.296 0.183 0.323 0.265 0.417 0.228 0.192 0.162

In�ow MAE 0.386 0.263 0.419 0.360 0.300 0.142 0.231 0.330 0.356 0.334 0.170 0.114
RMSE 0.552 0.392 0.452 0.422 0.341 0.194 0.340 0.460 0.530 0.414 0.237 0.173

Demand MAE 0.330 0.291 0.291 0.303 0.337 0.210 0.195 0.333 0.279 0.263 0.185 0.160
RMSE 0.314 0.430 0.358 0.416 0.384 0.341 0.290 0.441 0.435 0.285 0.284 0.273

Chengdu

Speed MAE 0.201 0.157 0.202 0.460 0.253 0.135 0.302 0.185 0.289 0.175 0.133 0.120
RMSE 0.240 0.204 0.251 0.501 0.282 0.190 0.349 0.238 0.463 0.194 0.191 0.166

In�ow MAE 0.309 0.328 0.550 0.247 0.334 0.191 0.217 0.348 0.349 0.308 0.203 0.187
RMSE 0.520 0.454 0.646 0.361 0.379 0.243 0.324 0.469 0.480 0.389 0.262 0.240

Demand MAE 0.376 0.284 0.452 0.297 0.259 0.171 0.169 0.290 0.264 0.356 0.160 0.125
RMSE 0.406 0.405 0.486 0.416 0.301 0.230 0.233 0.388 0.481 0.381 0.216 0.202

Table 1: Zero-shot Prediction: Average performance for speed, in�ow, and demand predictions across 3 cities. In this zero-shot
case, all testing regions are unseen during training.

Figure 4: Zero-shot Prediction: RMSE for tra�c speed prediction over 4 hours in Shenzhen, Xi’an, and Chengdu.
multiple cities, including Chengdu, Xi’an, and Shenzhen. For each
city, the entire area is partitioned into equal-sized grid cells with
a region size of 10 ⇥ 10. In Shenzhen, each dataset is processed to
yield dimensions of (162, 12, 63, 10, 10), where 162 represents the
number of days, 12 corresponds to the twelve one-hour time slots
per day, and 63 indicates the number of regions. For Chengdu and
Xi’an, each type of urban dynamics is structured with dimensions
(30, 12, 4, 10, 10), where 30 denotes the number of days, 12 indicates
the time slots per day and 4 represents the number of regions. All
the data and regions in all datasets are divided into training and
testing. More details can be found in the Appendix.
Task Description. To validate the prediction accuracy and gen-
eralizability of UrbanMind, we conduct experiments on two tasks:
(1) Zero-shot Prediction.We evaluate the model’s generalizability by
predicting future spatial-temporal data from unseen regions in three
cities for all three urban dynamics types. (2) Standard Prediction.
We assess the model’s prediction accuracy by predicting future
urban dynamics for the same regions included in the training set.

4.2 Baselines
We compare UrbanMind against state-of-the-art urban dynamics
prediction models, including LLM-based approaches: GATGPT [4],

GCNGPT [4, 24], ST-LLM [24], TPLLM [33], UrbanGPT [20],
and STG-LLM [26]. These models integrate LLMs with CNNs or
GCNs to enhance urban dynamics prediction. Additionally, we
use LLaMA3.2 [8] as UrbanMind’s foundation model, referred to
as LLaMA3. It is also evaluated as a baseline to show the limits
of directly applying LLMs to urban dynamics prediction. Beyond
these, we also benchmark against most recent and e�ective neural
network-based models, including DY�usion [34], TGC-LSTM [6],
GCRN [35], and GAGCN [42]. More details on the baselines and
experimental settings are provided in the Appendix.
Evaluation Metrics: All models are evaluated using MAE and
RMSE to assess urban dynamics prediction performance.

4.3 Experimental Settings
ForMask-Empowered Representation Learning and Semantic-Aware
Prompting and Fine-Tuning stages, we employed the Adam opti-
mizer with a learning rate of 0.00001 for the Shenzhen dataset
and 0.0001 for the Xi’an and Chengdu datasets. In the Test Time
Adaptation stage, the Adam optimizer was applied with a learning
rate of 0.00005 for Shenzhen and 0.0005 for Xi’an and Chengdu.
Additionally, LLaMA3 serves as the foundation for UrbanMind.
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City Dynamics Metrics Models

DY�usion TGC-LSTM GCRN GAGCN GATGPT GCNGPT ST-LLM TPLLM LLaMA3 STG-LLM UrbanGPT UrbanMind

Shenzhen

Speed MAE 0.175 0.187 0.202 0.307 0.155 0.161 0.201 0.225 0.261 0.167 0.147 0.130
RMSE 0.239 0.218 0.235 0.515 0.203 0.230 0.281 0.248 0.454 0.245 0.205 0.200

In�ow MAE 0.272 0.142 0.132 0.182 0.136 0.301 0.286 0.181 0.268 0.240 0.128 0.123
RMSE 0.443 0.207 0.189 0.271 0.235 0.389 0.381 0.211 0.450 0.400 0.190 0.185

Demand MAE 0.285 0.166 0.168 0.338 0.154 0.228 0.223 0.178 0.236 0.371 0.137 0.133
RMSE 0.389 0.257 0.220 0.518 0.275 0.343 0.325 0.222 0.380 0.464 0.210 0.199

Xi’an

Speed MAE 0.210 0.156 0.225 0.421 0.304 0.291 0.425 0.270 0.317 0.183 0.134 0.114
RMSE 0.266 0.201 0.264 0.524 0.358 0.415 0.520 0.348 0.516 0.220 0.190 0.186

In�ow MAE 0.304 0.254 0.430 0.341 0.311 0.298 0.289 0.334 0.363 0.350 0.214 0.124
RMSE 0.533 0.384 0.512 0.546 0.367 0.437 0.368 0.442 0.551 0.383 0.330 0.181

Demand MAE 0.259 0.329 0.378 0.377 0.381 0.401 0.199 0.382 0.327 0.359 0.253 0.159
RMSE 0.439 0.466 0.495 0.501 0.431 0.525 0.281 0.489 0.513 0.401 0.407 0.273

Chengdu

Speed MAE 0.193 0.137 0.216 0.516 0.289 0.292 0.448 0.229 0.293 0.152 0.147 0.119
RMSE 0.244 0.182 0.255 0.627 0.331 0.396 0.528 0.289 0.480 0.184 0.170 0.165

In�ow MAE 0.361 0.287 0.315 0.320 0.234 0.251 0.326 0.285 0.343 0.397 0.267 0.153
RMSE 0.521 0.381 0.451 0.433 0.287 0.338 0.409 0.387 0.490 0.478 0.389 0.191

Demand MAE 0.306 0.271 0.304 0.378 0.251 0.194 0.236 0.257 0.289 0.316 0.229 0.153
RMSE 0.491 0.390 0.402 0.493 0.392 0.236 0.321 0.358 0.479 0.375 0.340 0.187

Table 2: Standard Prediction: Average performance of speed, in�ow, and demand prediction across 3 cities. Historical data for
testing regions were included during training, and future dynamics are predicted.

Figure 5: Impact of Hyperparameters on RMSE Performance for Tra�c Speed Prediction in Xi’an.
4.4 Empirical Results
Results of Question (1) (Zero-shot Performance). To evaluate
UrbanMind’s performance in zero-shot dynamics prediction, we
conducted experiments on three urban dynamics datasets across
Shenzhen, Xi’an, and Chengdu. Tab. 1 presents the average pre-
diction results, while Fig. 4 illustrates the detailed prediction per-
formance over time. UrbanMind consistently outperforms all base-
lines across datasets and metrics, achieving the lowest MAE and
RMSE values, demonstrating outstanding generalization capabil-
ity. In Shenzhen’s speed prediction, while DY�usion achieved a
comparable MAE to UrbanMind, its higher RMSE suggests greater
prediction variance. Similarly, for Shenzhen’s in�ow prediction,
UrbanGPT matched UrbanMind in RMSE but underperformed in
MAE, highlighting UrbanMind’s superior accuracy. UrbanMind’s
strength lies in its ability to generalize across diverse tra�c forecast-
ing scenarios, leveraging LLMs’ generalization capability further
enhanced by the test time adaptation mechanism, ensuring excep-
tional robustness in zero-shot urban tra�c prediction tasks.
Results of Question (2) (Standard Prediction Performance).
To evaluate UrbanMind’s performance in standard spatial-temporal
prediction tasks, we present the results for multiple urban dynamics

across cities in Tab. 2. UrbanMind consistently outperforms base-
lines, achieving the lowest MAE and RMSE across all datasets and
metrics. In Shenzhen’s tra�c speed prediction, UrbanMind demon-
strated superior accuracy and consistency compared to DY�usion,
with lower MAE and RMSE values. Similarly, in Xi’an’s demand pre-
diction, UrbanMind surpassed UrbanGPT, further highlighting its
ability to model complex spatial-temporal relationships and inter-
correlations among dynamics. These results establish UrbanMind as
a robust and e�ective model for urban tra�c dynamics prediction.
Results of Question (3) (Ablation Study). We conducted an ab-
lation study to evaluate the contribution of each component in Ur-
banMind, with results presented in Tab. 3. Removing Mu�n-MAE
leads to a signi�cant drop in performance, with notably higher
MAE and RMSE values across datasets, underscoring its impor-
tance in capturing intercorrelated spatial-temporal dependencies.
Similarly, omitting LLM �ne-tuning or test-time adaptation results
in substantial performance degradation, highlighting their critical
role in improving adaptability and precision, especially in zero-shot
scenarios. Additionally, we examine the e�ects of di�erent masking
mechanisms in Mu�n-MAE (e.g., removing temporal, spatial, or
global masking) and assess the impact of multifaceted and target
embeddings in the �nal spatial-temporal tokens (e.g., removing
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Dataset Metric w/o Mu�n-MAE with di�erent masks Spatial-Temporal Token w/o w/o UrbanMind
Mu�n-MAE w/o Temporal w/o Spatial w/o Global w/o Target w/o Multifaceted Fine-tuning Adaptation

Speed MAE 0.165 0.144 0.140 0.141 0.148 0.153 0.145 0.142 0.137
RMSE 0.221 0.168 0.165 0.168 0.190 0.189 0.187 0.166 0.162

In�ow MAE 0.250 0.162 0.175 0.180 0.189 0.220 0.143 0.124 0.114
RMSE 0.343 0.201 0.205 0.224 0.247 0.293 0.209 0.218 0.173

Demand MAE 0.235 0.191 0.219 0.220 0.202 0.245 0.214 0.179 0.160
RMSE 0.389 0.300 0.327 0.328 0.380 0.378 0.345 0.283 0.273

Table 3: Ablation Study: Impacts of UrbanMind components (Mu�n-MAE, LLM �ne-tuning strategy, test time adaptation),
masking mechanisms (temporal, spatial, global masking), and spatial-temporal token (including multifaceted and target
embeddings) on zero-shot prediction accuracy. The analysis is conducted on Xi’an City.
Algorithm 1 Algorithm for UrbanMind

Input: Target urban dynamics X: , related multifaceted dynamics
X, initialized Mu�n-MAE encoders ⇢q1 and ⇢q2 , decoders ⇡k1
and ⇡k2 , predictor %\ , reconstructor⌧g , and pretrained LLM
&l .

Output: Well-trained ⇢q1 , ⇢q2 , ⇡k1 , ⇡k2 , &l , %\ and ⌧g .
1: Step 1: Mask-Empowered Representation Learning:
2: for iteration 8 = 1, 2, 3, · · · do
3: Sample a batch of X and X: .
4: Train ⇢q1 , ⇢q2 , ⇡k1 and ⇡k2 with Eq. (1).
5: end for
6: Get the multifaceted embeddings V with ⇢q1 and the target

embeddings V: with ⇢q2 .
7: Get the �nal tokens byU = concat(V,V: ).
8: Step 2: Semantic-Aware Prompting and Fine-Tuning:
9: for iteration = 1, 2, 3, · · · do
10: Combine U with text descriptions as prompts.
11: Fine-tune &l and update %\ with prompts using Eq.(2).
12: end for
13: Step 3: Test Time Adaptation and Final Prediction:
14: for iteration 8 = 1, 2, 3, · · · do
15: Sample a testing sequence Xts, and produce the a latent

embedding sequence E using &l .
16: Get Emasked with Eq.(3) as the input of ⌧g .
17: Update ⌧g with Eq.(4).
18: end for
19: Produce �nal prediction with %\ (Xts).

either target embeddings or multifaceted embeddings) on predic-
tion accuracy. In both cases, performance degradation is evident in
increased MAE and RMSE, further validating the e�ectiveness of
these components in UrbanMind.
Results of Question (4) (Hyperparameters Evaluation). To
analyze the impact of di�erent hyperparameters on model perfor-
mance, we conducted experiments on tra�c speed prediction in
Xi’an, focusing on four key hyperparameters: the temporal mask-
ing ratio ?C , spatial masking ratio ?B , number of trainable layers
during LLM �ne-tuning, and number of multifaceted dynamics.
The results are presented in Fig. 5. For ?C , as shown in Fig. 5(a),
increasing the ratio to 0.33 achieves the lowest RMSE, while both
lower and higher masking ratios degrade performance. Similarly,
Fig. 5(b) demonstrates that the spatial masking ratio ?B achieves
optimal performance at ?B = 0.25, with performance gradually

worsening as the ratio increases, suggesting that excessive spatial
masking hinders learning. The e�ect of trainable layers during LLM
�ne-tuning, shown in Fig. 5(c), reveals that increasing the number
of �ne-tuned layers generally reduces RMSE, with a slight �uctua-
tion at 4 layers, while overall, more layers help the model capture
complex spatial-temporal relationships more e�ectively. Finally,
Fig. 5(d) illustrates that incorporating more multifaceted dynam-
ics consistently improves RMSE, highlighting the importance of
including multifaceted embeddings in Mu�n-MAE in capturing
intercorrelated spatial-temporal relationships.

5 Related Work
Spatial-temporal urban prediction is essential for e�ective city
management. Recent advancements have leveraged deep learning
techniques to enhance predictive accuracy in diverse urban do-
mains. Models such as graph neural networks [11, 17, 44, 45, 58],
Transformers [12, 13, 16, 22, 36], and generative adversarial net-
works [51, 53, 55], have been introduced to capture spatial-temporal
patterns. Additionally, cutting-edge techniques like contrastive
learning [15, 18, 29], and di�usion models [27, 34, 41, 47] have
further enhanced the prediction performance. Despite these inno-
vations, most existing approaches are constrained by the need to
train separate models for each speci�c dataset, limiting their adapt-
ability and scalability. While some studies have explored transfer
learning and meta-learning across regions [14, 48, 49, 54, 57], these
methods still rely on data from the target region. In contrast, our
proposed model addresses these limitations by integrating spatial-
temporal data with Large Language Models, o�ering a generalized
solution capable of adapting across diverse urban scenarios.
Large Language Models (LLMs) have revolutionized arti�cial in-
telligence, driving breakthroughs in text comprehension, reasoning,
and generalization across diverse domains. Notable models such
as ChatGPT [28], Claude [30], LLaMA [40], Vicuna [5], and Chat-
GLM [7] have gained widespread attention due to their scalability
and adaptability, driving research into their diverse applications.
These models have demonstrated exceptional capabilities in tasks
such as graph-based reasoning [31] and multimodal learning [1],
showcasing their potential to extend beyond traditional text-centric
applications. Furthermore, their integration with advanced strate-
gies like few-shot learning [2] has opened new avenues for address-
ing challenges in data-scarce domains. Despite these advancements,
the application of LLMs to zero-shot and few-shot learning in ur-
ban spatial-temporal prediction remains nascent, constrained by
challenges such as adapting domain-speci�c data and addressing
interdependencies across spatial-temporal scales.
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Spatial-Temporal PretrainingModels have emerged as a promis-
ing approach to enhancing predictive performance in urban scenar-
ios. Models such as UrbanGPT [19] and UniST [46] integrate spatial-
temporal data with LLMs using prompt tuning. Other works, includ-
ing GPT-ST [21], ST-LLM [23], TPLLM [32], GATGPT [3], and STG-
LLM [25], primarily focus on graphs or grid-based worlds, adapting
single spatial-temporal datasets for use with LLMs. However, these
models are either ill-equipped to handle the inter-correlated multi-
faceted dynamics inherent in urban environments or rely solely on
the inherent generalization ability of LLMs to adapt across di�er-
ent scenarios, overlooking the critical issue of distributional shifts
between training and testing data.

6 Conclusion
In this paper, we present UrbanMind, a novel spatial-temporal LLM
designed to e�ectively process and understand the intricate re-
lationships and patterns within spatial-temporal data for urban
dynamics prediction. UrbanMind demonstrates high prediction
accuracy and robust generalization, including in zero-shot scenar-
ios where no prior data is available. Its key innovations include
a masked-empowered representation learning framework imple-
mented through the novel Mu�n-MAE, which employs advanced
masking strategies to capture complex spatial-temporal dependen-
cies and inter-correlations across multi-faceted urban dynamics.
Additionally, UrbanMind incorporates a semantic-rich prompt de-
sign and �ne-tuning strategy tailored for spatial-temporal data, as
well as a testing-time adaptation mechanism that mitigates distri-
butional shifts through a reconstruction module. Extensive experi-
ments on three urban dynamics—tra�c speed, in�ow, and travel
demand—across three cities validate UrbanMind’s e�ectiveness.
The results highlight its superior generalization and predictive
accuracy across diverse spatial-temporal scenarios, consistently
outperforming state-of-the-art baselines, even in unseen regions or
data-scarce settings.
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A APPENDIX FOR REPRODUCIBILITY
To support the reproducibility of the results in this paper, we publish
our code and data 2. Here, we describe the dataset and baseline
settings in detail.

A.1 Detailed Description of the dataset
As previously mentioned, the dataset consists of three types of data:
(1) tra�c speed, (2) taxi in�ow, and (3) travel demand. These data
are derived from urban records collected in Shenzhen, Xi’an, and
Chengdu, China. The details of the original dataset are presented
in Tab. 4.
Data Preprocessing for Shenzhen: To expand our datasets, we
applied a basic data augmentation technique by segmenting large
city maps into smaller regions. Using Shenzhen as an example, the
city is mapped onto a 40⇥50 grid, which is then subdivided into
smaller regions '8 9 , each consisting of 10⇥10 grid cells. Starting
with region '11, we extract the initial 10⇥10 section. We then shift

2UrbanMind code: https://doi.org/10.5281/zenodo.15484938
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the window 5 grid cells to the right (from B11 to B16) to obtain the
next region,'12. By continuously sliding thewindow in this manner,
we generate multiple overlapping regions '8 9 , all maintaining the
same 10⇥10 size. The �nal dataset for Shenzhen has dimensions
of (162, 12, 63, 10, 10), corresponding to the number of days, time
slots per day, number of regions, and the width and height of each
region.
Data Preprocessing for Xi’an and Chengdu: To process the
datasets for Xi’an and Chengdu, the urban areas are divided into
20⇥20 grid cells, which are further partitioned into four regions '8 9
without augmentation, each consisting of 10⇥10 grid cells. Specif-
ically, the grid is evenly split along both horizontal and vertical
axes, resulting in regions '11, '12, '21, and '22. The �nal dataset
for both Xi’an and Chengdu has a shape of (30, 12, 4, 10, 10), rep-
resenting (number of days, time slots per day, number of regions,
region width, region height). We train on 3 regions and select the
remaining region for testing.
Normalization: To address outliers in the datasets from all three
cities, we implemented tailored strategies for each data type. For
the tra�c speed data, we imposed an upper limit of 140, with any
values above this threshold clipped to 140. In the case of taxi in�ow
and travel demand, we de�ned the upper bounds based on the
90th percentile of their respective data distributions to e�ectively
manage extreme values. Following the outlier treatment, all datasets
underwent min-max normalization, scaling the data to a range
between -1 and 1.

Table 4: Dataset descriptions.

City City size Data Timespan

Shenzhen 40 ⇥ 50
Speed 07/01/16-12/31/16
In�ow 07/01/16-12/31/16
Demand 07/01/16-12/31/16

Chengdu 20 ⇥ 20
Speed 10/01/16-10/31/16
In�ow 10/01/16-10/31/16
Demand 10/01/16-10/31/16

Xi’an 20 ⇥ 20
Speed 10/01/16-10/31/16
In�ow 10/01/16-10/31/16
Demand 10/01/16-10/31/16

Data Description:We evaluate our model using nine real-world
urban dynamics datasets, covering three data types: (1) tra�c speed,
(2) taxi in�ow, and (3) travel demand. Three datasets were collected
in Shenzhen, China, from July 1 to December 31, 2016. The city
is divided into a 40 ⇥ 50 grid, which is further aggregated into 63
regions, each consisting of 10 ⇥ 10 grid cells, covering the entire
city. The other six datasets come from Xi’an and Chengdu, China,
spanning October 1 to October 31, 2016. Both cities are partitioned
into 20⇥20 grids and divided into 4 regions of 10⇥10 grid cells each,
where tra�c speed, taxi in�ow, and travel demand are measured.

Here are the details of the urban dynamics datasets:
• Tra�c Speed. In Shenzhen, the dataset includes tra�c speed
data for 63 regions over 4416 one-hour time slots spanning 6
months. For Xi’an and Chengdu, it covers 4 regions with 360
one-hour time slots over 1 month. Tra�c speed is calculated as
the ratio of travel distance to travel time for each grid cell per
time slot.

• Taxi In�ow. The Shenzhen dataset records taxi in�ow for 63
regions across 4416 one-hour time slots, while the Xi’an and

Chengdu datasets cover 4 regions with 360 time slots each. Taxi
in�ow represents the number of taxi arrivals at each grid cell
within a speci�c hour.

• Travel Demand. This dataset tracks travel demand in 63 regions
of Shenzhen (4416 time slots) and 4 regions of Xi’an and Chengdu
(360 time slots each). Travel demand ismeasured by the number of
taxi pickups and drop-o�s within each grid cell per hour, serving
as a proxy for overall demand based on taxi data, as validated in
prior studies [52–55].
In short, the three datasets from Shenzhen have dimensions of

(162⇥63, 12, 10, 10), where 162 represents the number of valid days,
63 is the number of regions, 12 indicates one-hour time slots per
day, and 10 ⇥ 10 is the region size. Similarly, the six datasets from
Xi’an and Chengdu are sized (30 ⇥ 4, 12, 10, 10), with 30 valid days,
4 regions, 12 one-hour time slots per day, and 10 ⇥ 10 grid cells per
region.

A.2 Baselines Settings
We used the Adam optimizer in both the Mask-Empowered Rep-
resentation Learning and Semantic-Aware Prompting stages, with
a learning rate of 0.00001 for Shenzhen and 0.0001 for Xi’an and
Chengdu. The same optimizer was applied during Test Time Adap-
tation, using learning rates of 0.00005 for Shenzhen and 0.0005 for
the other two cities. UrbanMind is built on the LLaMA3 backbone.
Detailed architectures and settings of the baselines are provided
below.

• GATGPT[4]: GATGPT combines a pre-trained GPT-2 model
with a graph attention layer to model spatial-temporal de-
pendencies in tra�c prediction. The graph attention layer
captures spatial relationships using adaptive weights from
region adjacency, and its output is fed into GPT-2 to learn
temporal patterns. A �nal linear layer maps the outputs to
the target spatial grid.

• GCNGPT[4, 24]: GCNGPT integrates graph convolutional
networks (GCNs) with a pre-trained GPT-2 model to e�ec-
tively capture spatial-temporal dependencies in tra�c data.
The model �rst applies a GCN to extract spatial features from
region-wise adjacency matrices, transforming the input into
a representation that encodes spatial relationships. This out-
put is then reshaped and fed into the GPT-2 model to model
complex temporal dynamics. A linear projection layer maps
the GPT-2 outputs to the target grid for �nal predictions.

• STLLM[24]: ST-LLM uses large language models for traf-
�c prediction by combining spatial-temporal embeddings
with a partially frozen attention strategy to capture global
dependencies. The baseline integrates spatial and temporal
features to enhance tra�c dynamics representation, leverag-
ing LLMs tomodel complex patterns. Key attention layers are
partially frozen to ensure stability while allowing selective
�ne-tuning for tra�c-speci�c tasks. The model processes
inputs with embedded time features, and predictions are
made through a transformer-based architecture optimized
with mean squared error loss.

• TPLLM[33]: TP-LLM integrates temporal and spatial infor-
mation for tra�c prediction using a hybrid approach that
combines sequence embeddings, graph embeddings, and a
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GPT-2 backbone. The model starts by transforming the input
data through a sequence embedding layer using 1D convolu-
tions and a graph embedding layer via linear transformations
to capture temporal patterns and spatial relationships, re-
spectively. These embeddings are then fused and passed
through a GPT-2 model con�gured with six layers and eight
attention heads, enabling the extraction of complex temporal
dependencies. The output from GPT-2 is processed through
a linear layer to map it to the desired prediction dimensions.

• UrbanGPT[20]: UrbanGPT integrates a spatio-temporal de-
pendency encoder with instruction-tuning to enable large
language models (LLMs) to handle complex time-space in-
terdependencies and generalize across diverse urban tasks.
The baseline model employs the spatial-temporal encoder
(ST_Enc) in conjunction with LLaMA2[40] to capture dy-
namic patterns in urban data, e�ectively modeling both spa-
tial relationships and temporal trends. The ST_Enc mod-
ule incorporates dilated inception convolution layers to ex-
tract multi-scale spatiotemporal features, which are then
processed through LLaMA2 to capture global dependencies.
Instruction-tuning enhances the model’s adaptability.

• STG-LLM[26]: STG-LLM integrates a spatial-temporal graph
tokenizer with a lightweight adapter to process complex
spatial-temporal data e�ectively. Themodel begins with a lin-
ear encoder that transforms raw spatial-temporal inputs into
a latent representation. Temporal and weekly patterns are
captured through time-of-day and day-of-week embedding
layers, which provide temporal positional context. These
encoded features are then combined with positional embed-
dings and passed through a Transformer encoder, simulating
an GPT-2 to model long-range dependencies across time and
space. Finally, a linear decoder re�nes the output.

• LLaMA3[8]: LLaMA3 is a foundation model designed for
multilingual understanding and reasoning. Its advanced ca-
pabilities make it ideal for tra�c dynamics prediction. The
baseline model leverages LLaMA3 to capture complex tem-
poral dependencies in spatial-temporal data. The model ar-
chitecture integrates LLaMA3 as a feature extractor, with
its parameters frozen except for select layers to maintain
e�ciency. The extracted features are processed through a
linear layer to predict future tra�c conditions, reshaping
the output to match the spatial grid structure. Speci�cally,
we utilized LLaMA 3.2, a foundational large language model
developed by Meta, as the baseline model for UrbanMind.

• DY�usion[34] DY�usion is a di�usion model designed for
probabilistic spatial-temporal forecasting, aiming to gen-
erate stable and accurate rollout predictions. The baseline
integrates a Unet architecture with a Gaussian Di�usion
process to improve performance. The Unet processes single-
channel inputs through an initial convolutional layer and
uses multiple convolutional layers with scaled dimensions.
The Gaussian Di�usion module re�nes predictions over time
through iterative denoising steps.

• TGC-LSTM[6]: TGC-LSTM addresses spatial-temporal fore-
casting in tra�c networks by modeling time-varying pat-
terns and complex spatial dependencies. It combines tra�c
graph convolution and spectral graph convolution within

an LSTM framework to capture both spatial and temporal
dynamics. The LSTM models temporal dependencies, while
convolutional layers extract spatial features from the tra�c
network. The model �attens spatial dimensions for LSTM
processing and reconstructs outputs to retain spatial struc-
ture. It is trained using mean squared error loss.

• GCRN[35]: GCRN extends classical RNNs to handle arbi-
trary graph-structured data, enabling e�ective modeling of
spatial and temporal dependencies. The baseline model inte-
grates a graph convolutional layerwith a gated recurrent unit
(GRU) to capture both spatial relationships among nodes and
temporal dynamics over time. The graph convolutional layer
processes input features to learn spatial dependencies based
on the adjacency matrix, while the GRU captures temporal
patterns from sequential data. The �nal output is generated
through a fully connected layer that predicts future tra�c
conditions.

• GAGCN[42]: GAGCN uses graph attention networks to
extract and dynamically adjust spatial associations among
nodes over time. The baseline builds on this by integrat-
ing graph attention into a convolutional neural network to
capture spatial-temporal dependencies. Input tra�c data is
processed through stacked convolutional layers to learn lo-
cal spatial features, followed by graph attention layers that
re�ne node relationships based on temporal patterns. Final
predictions are made through fully connected layers, and
the model is optimized with mean squared error loss.

B Appendix B: Additional Experiments
B.1 Computational E�ciency Details
We report the runtime cost of our LLaMA3-based experiments on
the Shenzhen dataset. UrbanMind takes 70.9 seconds per epoch
for training and 16.5 seconds per epoch for test-time adaptation.
In comparison, the baseline UrbanGPT (also based on LLaMA) re-
quires 80.1 seconds per epoch for training. Although UrbanMind
introduces moderate additional cost from Mu�n-MAE and the
adaptation module, it remains practical and suitable for real-time
inference scenarios, especially considering its improved generaliza-
tion capability.

B.2 Cross-City Generalization
To evaluate cross-city generalization, we conduct a zero-shot trans-
fer experiment where models are trained on tra�c speed data from
Shenzhen and directly evaluated in Xi’an without �ne-tuning. We
speci�cally compare UrbanMind against UrbanGPT. UrbanMind
achieves 8.5% lower MAE (0.194 vs. 0.212) and 9.9% lower RMSE
(0.236 vs. 0.262), demonstrating its superior adaptability to unseen
urban environments.

B.3 Additional Baseline
We include STGAIL [27] as a new baseline on tra�c speed predic-
tion in Xi’an. STGAIL achieves an MAE of 0.227 and RMSE of 0.266,
underperforming compared to UrbanMind (0.194 / 0.236). This sug-
gests its limited capacity for handling multimodal spatial-temporal
signals in urban forecasting.
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