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ABSTRACT

Developing and managing access control systems is challenging
due to the dynamic nature of users, resources, and environments.
Recent advancements in machine learning (ML) offer promising
solutions for automating the extraction of access control attributes,
policy mining, verification, and decision-making. Despite these
advancements, the application of ML in access control remains frag-
mented, resulting in an incomplete understanding of best practices.
This work aims to systematize the use of ML in access control by
identifying key components where ML can address various access
control challenges. We propose a novel taxonomy of ML appli-
cations within this domain, highlighting current limitations such
as the scarcity of public real-world datasets, the complexities of
administering ML-based systems, and the opacity of ML model
decisions. Additionally, we outline potential future research direc-
tions to guide both new and experienced researchers in effectively
integrating ML into access control practices.
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1 INTRODUCTION

Researchers have shown significant interest in applying machine
learning (ML) to various aspects of access control, such as policy
mining, verification, monitoring, and administration. Although still
in its infancy, ML applications in access control are evolving with
the goal of replacing language-based security policies with trained
ML agents. Figure 1 provides an overview of access control systems
and their pipelines. Traditional systems involve roles, attributes, pol-
icy engineering, verification, and administration, while ML-based
systems replace security policies with trained ML agents, which
involve training, verification, and administration of the agent [79].
Optional components are indicated by dashed boxes in Figure 1.
ML has proven highly successful in solving complex problems
across various domains, outperforming manual human-driven pro-
cesses. In access control, manual solutions often fail to achieve
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Figure 1: Access Control Landscape reflecting both Policy
and Machine learning based enforcement.

optimal performance and may grant unauthorized access. Conse-
quently, there are significant opportunities for improvement in
access control. Researchers have leveraged ML to develop more
efficient solutions, such as providing decisions for unseen access
scenarios [98], automating laborious tasks like attribute extraction
from natural language [3-5, 46, 75], mapping roles and permis-
sions [78, 101], extracting security rules from access logs [30, 60, 73],
and deriving access control policies from user stories [46]. ML has
also been used for access policy verification [47, 49] and monitor-
ing suspicious activities [96]. Additionally, researchers have pro-
posed using ML for access control decision-making, where trained
models determine whether access requests should be granted or
denied [22, 25, 59, 67, 79].

Evidently, the rapid emergence and utilization of ML has shown
a significant potential in improving and reshaping the field of access
control. However, several challenges need to be addressed. A major
obstacle is that researchers tend to apply ML methods on a case-by-
case basis [4, 15, 30, 39, 61, 96], and thereby, there is no common
strategy for using ML in the access control domain. This leads to a
lack of in-depth insights and the absence of a holistic view of the
application of ML in access control. In addition, there is a lack of
research efforts that address the best strategy to determine the most
effective ML technique given a particular access control problem.
Another limitation pertains to the availability of data. There is a
noticeable lack of quality datasets from the real-world organiza-
tion [37, 47]. Even though some public datasets are available, they
are typically anonymized datasets which, in most cases, exclude
relevant information necessary for expressing a complete access
control state of the system [74]. Considering all the aforementioned
limitations, it is essential to have a holistic view of the utilization
of machine learning for access control, which, in turn, will help to


https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’17, July 2017, Washington, DC, USA

shed light on the underdeveloped areas and determine the future
directions in the domain.

In this paper, we perform a detailed review and summarize exist-
ing literature that uses ML to solve different access control problems.
To the best of our knowledge, this is the first comprehensive work
that offers an encyclopedic view towards outlining the application
of machine learning for access control. Our systematization makes
the following contributions.

e We comprehensively review existing access control literature
that uses machine learning and discuss various research
works done in different sub-domains of access control.

e We propose a novel taxonomy of machine learning in access
control, and highlight research at each stage as the domain
has evolved chronologically.

e We summarize the publicly available real-world datasets
used for machine learning based access control research.

o We highlight open challenges and limitations faced by the
research community, as well as provide future research di-
rections to thrive in this critical security domain.

2 ML IN ACCESS CONTROL TAXONOMY AND
SCOPE

This paper dives into the exciting world of machine learning in
the access control pipeline. We’ve crafted an abstract taxonomy to
showecase the intricate relationships among various components
and building blocks of access control research, helping to organize
our work, as illustrated in Figure 2.

We’ve categorized the available work into two major areas: ML
Assisted Access Control’ and ML Based Access Control’. The first
category includes innovative literature that enhances traditional
policy or role-based access control processes, such as attribute en-
gineering, policy mining/extraction, role/permission assignments,
and policy verification. Overall, those methods mostly deal with
processes in ABAC, RBAC, ReBAC. The second category is even
more groundbreaking, featuring articles that replace traditional ac-
cess control policies with an ML model. In this scenario, the model
itself acts as the policy, making access decisions autonomously.

Throughout the paper, we explain each of the branches of this
figure, intending to solve some of the key questions as follows.
These questions are answered in Section 3 and 4 for each work
discussed, as well as summarized per-subdomain in Tables 1-5.

(1) What are the target access control models? In particular, is
the proposed ML approach applicable for the access control
domain as a whole or only suitable for any particular model?

(2) What are the ML methods that the respective approach uses?

(3) Why does the respective approach use ML, and to what
extent ML method contribute?

(4) What are the input and output of the ML model? Can the
trained machine learning model make access control deci-
sions, or does the corresponding method only use ML to
improve or automate access control sub-processes?

(5) What kind of data was used for training the ML algorithm?

We also explore any possible enhancements related to ML in
access control, such as adversarial attack, explainability, bias, etc.

Anon.

2.1 Corpus Collection

This systematization is based on published research from 2006 to
the end of 2024. Before 2006, no ML-based access control solutions
were found. We reviewed papers from various sources, including
Google Scholar, ACM Digital Library, IEEEXplore, Springer, and
preprints from arXiv.

We chose to read individual papers rather than rely on keyword
searches in databases, as this approach ensured no relevant articles
were overlooked. The terminology used to describe ML practices
in access control is highly varied due to the field’s nascent nature.
Consequently, keyword searches might have excluded significant
literature. By manually reading and selecting papers, we compiled
a comprehensive and contextually relevant collection for our study.

We also summarized datasets used in these studies to provide an
overview of available datasets, their applications, and limitations.
All publicly available datasets are summarized in Table 1.

2.2 Timeline

We present the timeline of seminal works using ML for access
control in Figure 3. We sort the timeline according to the published
year and illustrate how the application of ML evolved in the access
control domain. As summarized in Figure 3, ML in access control
is fairly new introducing its concept first in 2006. However, the
application of ML in access control domain is emerging fast, and
researchers published most of the work in recent years.

3 ML ASSISTED ACCESS CONTROL

This section provides an overview of literature that leverages ma-
chine learning to address issues related to traditional access control
models. In these studies, machine learning isn’t used to directly
predict access decisions. Instead, it optimizes various processes
such as policy mining, role mining, and rule mining.

3.1 Policy Mining

High-level access control models like ABAC and ReBAC are fa-
vored for their flexible policies and reduced management burdens,
supporting dynamic and complex security policies. However, tran-
sitioning from lower-level policies like ACLs is challenging. Policy
mining techniques use user and resource attributes, their values,
and the system’s current access control state as input. For ABAC
and ReBAC, algorithms generate rules that grant the same per-
missions [18, 20]. In contrast, RBAC mining algorithms produce
permission-to-role (PA) and user-to-role (UA) assignments [78, 101].
Table 2 reports access control policy mining approaches using ML.

3.1.1 Attribute Based Access Control (ABAC).

Attributes and Policy Extraction from Natural Language. Nat-
ural language policies, being the preferred expression of policy [3],
need to be transformed into a machine-readable form. Several
researchers attempted to process such policies to extract access
control-related information, including identifying policy sentences,
triples of subject-object-action, etc. While manual extraction of
such information is inefficient as the task becomes repetitive, re-
quires more time, and is error-prone, several other approaches have
been proposed to automate the process [75, 76, 87, 88, 97].
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Figure 2: A Taxonomy of Machine Learning in Access Control Domain.

Narouei et al.[75] (2017) present a framework for ABAC that
extracts security policies from natural language documents using
deep recurrent neural networks (RNN). The model identifies ac-
cess control policy content from high-level requirement documents,
achieving a 5.58% improvement over other methods. However, hu-
man involvement is needed to accurately identify ACP sentences.
Alohaly et al.[3] propose a deep learning framework using NLP, RE,
and CNN to automate ABAC attribute extraction from NL policies.
The framework identifies policy elements, extracts attribute val-
ues, and determines their categories, achieving an F1 score of 0.96
for subject attributes and 0.91 for object attributes. The evaluation
uses datasets like iTrust[71], IBM Course Management App [1],
CyberChair [95], and Collected ACP [97]. However, it lacks sup-
port for hierarchical ABAC systems. Alohaly et al.[5] enhance their
previous framework([3] to automatically extract attributes from
NL hierarchical ABAC policies using NLP and ML techniques. The
multi-phase framework achieves an average F1 score of 0.96 for sub-
ject attributes and 0.91 for object attributes, evaluated on datasets
like iTrust [71], IBM Course Management App [1], CyberChair [95],
and Collected ACP [97].

Alohaly et al.[4] propose an automated process for extracting
constraints in ABAC policies using NLP tools. The method uses
BiLSTM models to identify and label conflicting factors in policy
sentences, achieving an F1 score of 0.91 and detecting at least 75%
of each constraint expression. The evaluation dataset includes 801
constraints in 747 NLACP sentences from various departments [4,
12, 13, 51]. Heaps et al.[46] developed a transformers-based deep
learning model to extract access control information from user
stories, including access control classification, named entity recog-
nition, and access type classification[36]. Evaluated on the Dalpiaz
dataset [32, 33], the model outperformed CNN and SVM, though
CNN performed comparably in named entity recognition. The au-
thors recommend a larger dataset for further improvement.

Policy Extraction from Logs. Mining ABAC policies from legacy
systems is inefficient and laborious, making alternative sources
beneficial. Additionally, maintaining these rules is challenging.

A straightforward approach is to mine ABAC rules from access
logs [98], as they reflect the existing access control policy.

Mocanu et al.[73] propose a deep learning approach using Re-
stricted Boltzmann Machines (RBMs) to infer policies from logs,
supporting negative authorization. The two-phase method gener-
ates candidate rules from logs and transforms them for comparison
with Xu-Stoller[98]. Evaluated on a healthcare dataset, the approach
shows promise but requires further implementation and evaluation
for diverse real-world policies. Cotrini et al.[30] propose Rhapsody,
an approach for mining ABAC rules from sparse access logs, ad-
dressing issues like rule size and over-permissiveness. Rhapsody
modifies APRIORI-SD[62] to generate concise rules, evaluated on
Amazon access logs [58, 93] and ETH Zurich lab logs. Using univer-
sal cross-validation, Rhapsody achieves higher F1 scores and better
generalization compared to Classification Tree [14], CN2 [29], and
other ABAC mining algorithms [62, 98].

Jabal et al.[56] introduce Polisma, a framework for learning
ABAC policies using data mining, statistical, and ML techniques.
Polisma generates, generalizes, and augments rules with restric-
tion rules, then applies Random Forest (RF) and KNN classifiers to
handle uncovered requests. Evaluated on real-world[93] and syn-
thetic datasets, Polisma effectively develops accurate ABAC policies.
Karimi et al.[60] propose an ABAC policy extraction method us-
ing access logs, building on their previous unsupervised learning
approach[61]. The method uses K-modes clustering [21] to generate
rules with positive and negative filters, followed by rule pruning
and refinement. Evaluated on real-world and synthetic datasets, the
approach effectively handles incomplete logs and noise but requires
careful tuning of parameters for optimal performance.

Policy Optimization. Benkaouz et al. [10] propose using KNN
algorithms for clustering and classifying ABAC policies, enhancing
flexibility and reducing dimensionality in high-scale systems. The
granularity of ABAC policies is adjusted by the parameter k, with
smaller values for fine-grained models and larger values for coarse-
grained models. This approach is still under development, with open
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Time-constraint access control model (TCAC) [25] TCAC SVM

Identifying discrepancies between policy specification and its functionalities [69] Com-
mon Prisom

2006 —

2008 Approximating the user- permission assignments [39] RBAC Gibbs Sampler

, Automating Role-based Provisioning [78] RBAC SVM, RF & DT
. Inferring access control policies from logs [73] ABAC SVM, RF, DT,

ABAC policies clustering and classification [10] ABAC KNN

Extracting security policies from natural language documents [75] ABAC RNN
Extracting attributes from flat ABAC [3] ABAC CNN

Rhapsody: mining ABAC rules from sparse access logs [30] ABAC APRIORI-SD

Modifying access policies at run-time to prevent threats [7] ABAC K-means & RF

Automating access control in SCADA [101] ABAC SVM

2015 A

2016 Extracting attributes from hierarchical ABAC [5] ABAC CNN
Automated constraints extraction [4] ABAC BiLSTM

21 Inferring ABAC policies from access logs [22] ABAC DT, RF, SVC & MLP

2018 1 ReBAC Policy Mining Algorithm [15] ReBAC Neural Network

2019 1 P-DIFF: Monitoring Access Control Policy Changes [96] ABAC TCDT

2020 Polisma: learning ABAC Policies from Data [56] ABAC RF, KNN

2021 ReBAC Policy Mining from Existing Lower-level Policy [16] ReBAC DT

2022 ReBAC Miner with Unknown Values and Negation [17] ReBAC DT

2023 Adaptive Access Control Policy Framework for IoT [2] ABAC RF, LSTM
Risk Adaptive Access Control (RAJAC) [90] ABAC RF & Neural Network

R Extracting Access Control Information from User Stories [46] ABAC deep learning

2025 q EPDE-ML: Improving the PDP of ABAC [67] ABAC RE

Verification of Access Control Policy [49] ABAC RF

Automating ABAC policy extraction based on access logs [60] ABAC K-modes
Adaptive ABAC Policy Learning [59] ABAC RL

Toward Deep Learning Based Access Control [79] DLBAC ResNet

DLBAC Administration [80] DLBAC RF & ResNet

Adversarial Attack in DLBAC [81] DLBAC ResNet

e N 1|/

Policy Conflict Resolution [8] ABAC RF & K-Means
Environment Aware DLBAC [28] DLBAC ResNet

Enhancing Trustworthiness of MLBAC Systems [68] MLBAC Machine Unlearning

Figure 3: A Timeline of Seminal Works Towards ML in Access Control. In each work, the first grey highlight indicates the
access control model (‘Common’ implies the method is applicable for any access control model), and the second highlight
denotes ML algorithms applied in the corresponding method.
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questions about the default value of k, the best KNN algorithms for
clustering, and its applicability to various applications.

El Hadj et al.[37] propose ABAC-PC, a method for clustering
ABAC policy rules based on decision effects and similarity scores,
producing minimal representative rules. Extending Benkaouz et
al.[10], the approach can reduce policy rules by up to 10% for poli-
cies with over 9000 rules and can be integrated with other tools to
detect and resolve anomalies in XACML policies.

3.1.2  Role Based Access Control (RBAC).

Role Mining. Frank et al. [39] focus on bottom-up RBAC role
mining to approximate user-permission assignments by finding
minimal sets of roles, user-role, and role-permission assignments.
They propose a probabilistic framework to address errors and non-
meaningful roles in combinatorial algorithms, generalizing obser-
vations from existing user-permission assignments.

In another work, the authors use Gibbs sampler [77] for their Dis-
joint Decomposition Model, evaluated on synthetic and real-world
datasets. The synthetic dataset includes 200 users, 200 permissions,
ten business roles, and five technical roles, while the real-world
dataset has 5000 users and 1323 permissions. The approach cre-
ates meaningful roles and identifies erroneous user-permission
assignments, though it uniformly introduces errors in the synthetic
dataset, unlike the unknown error count in real-world scenarios.

Role/Permission Assignments. Role-based provisioning is a stan-
dard in Identity Management products, but struggles in dynamic
enterprises where frequent application reconfiguration and new
service deployment are common. Adjusting role mappings to new
privileges is challenging and costly, highlighting the need to reduce
role maintenance efforts.

Ni et al. [78] propose a machine learning-based automated role
maintenance system to provision existing roles with entitlements
from new applications and new users with existing roles. The tech-
nique involves four phases: collecting role-entitlement mappings,
filtering essential attributes, pre-processing data, and training classi-
fiers. Evaluated on real-world and synthetic data, SVM was chosen
as the final classifier, achieving FP rates between 0-5% and FN
rates between 0-30%, with 70% of assignments automated and 30%
needing assistance. Lu Zhou et al.[101] propose two ML-based ap-
proaches for automating role assignment in SCADA systems. They
first apply SVM using static and dynamic attributes of users and
devices for role assignments, but do not provide detailed evaluation
results. They then experiment with the Adaboost algorithm us-
ing the same inputs, comparing real and discrete-valued Adaboost
algorithms on a SCADA intrusion detection dataset[92].

3.1.3 Relationship Based Access Control (ReBAC). Like ABAC pol-
icy mining approaches, ReBAC policy mining algorithms can also
potentially reduce the effort to obtain a high-level policy from
lower-level access control data.

Bui et al.[15] propose an efficient ReBAC policy mining algo-
rithm, enhancing their previous evolutionary algorithm[20] with a
neural network-based feature selection phase. This reduces search
space and improves authorization mapping. Evaluated on real-
world [34, 35] and synthetic policies, the enhanced algorithm is
faster and more effective. Bui et al.[16] propose DTRM and DTRM ™,
decision tree-based algorithms for mining ReBAC policies. DTRM
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mines ORAL policies, while DTRM™ supports negative conditions
and constraints. Evaluated on real-world[34, 35] and synthetic
datasets [20], they produce smaller, faster policies than state-of-the-
art methods [15, 55].

In most real-world data, information about permissions can be
incomplete, or some attribute values can be missing (or unknown).
Authors in [19, 30, 54, 65] solved different variants of the ABAC
and ReBAC policy mining problem considering incomplete permis-
sions information. However, all these works assume the attribute
(and relationship in the case of ReBAC) information is complete
(or known). The authors in [17] introduced DTRMU~ and DTRMU
algorithms for mining ABAC and ReBAC policies from ACLs, ad-
dressing incomplete information using Kleene’s three-valued logic.
This approach assigns a third truth value, ‘U, to unknown con-
ditions, alongside true (T) and false (F) values. They developed a
multi-way decision tree algorithm to classify authorization requests
and generate ReBAC rules from labeled feature vectors [15, 16]. Ex-
periments were conducted with sample policies from Bui et al.[20]
and case studies from Decat et al.[34, 35], comparing the perfor-
mance of mined rules to simplified original rules.

3.2 Policy Verification and Testing

Traditional policy verification methods are error-prone and time-
consuming, lacking specificity in roles or permissions. They strug-
gle with code-policy relations and new mappings. XACML-based
policies also require rigorous verification to ensure accuracy and
compliance.

Martin et al. [69] showed that ML algorithms can summarize
policy properties and identify bug-exposing requests, revealing dis-
crepancies between policy specifications and functionalities. Access
requests are generated and applied to the system, with observations
structured as request-response pairs. These pairs are used by an
ML algorithm to infer policy properties and identify potential bugs.
The authors integrated Sun’s XACML implementation [83] and
Weka [52] into their tool, which handles request generation, evalu-
ation, and policy property inference. Using the Prism classification
algorithm [23], the tool was tested on a university’s grades reposi-
tory policy [38]. Results showed that inferred properties effectively
summarize the policy and identify bug-exposing requests.

Heaps et al.[47] propose leveraging deep learning to develop
a more robust and efficient system. They suggest training a deep
learning model based on links between code and policy elements.
Since code elements lack numerical meaning, they use the Skip-
gram Word2Vec algorithm([72] to embed code elements into a high-
dimensional space. Experiments with JDK8 and Apache Shiro showed
that this technique produces high-quality word embeddings and
delivers state-of-the-art performance.

Access control policies are verified using model proof, data struc-
ture, system simulation, and test oracles. Comprehensive test case
generation is challenging, so the NIST report [49] proposed a ma-
chine learning technique for efficient verification. This method
trains a model based on policy rule attributes to generate a classifi-
cation model, predicting access permissions and detecting incon-
sistencies. The authors used random forest (RF) as the ML method,
encoding policy rules in a data table where each column represents
an attribute, action, or permission, and each row represents a policy
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Table 1: Publicly Available Real-world Datasets Used in Access Control Researches. The names presented in the ‘Name’ column

are chosen randomly.

SL. Name Publish Reference Type Description Application
Year
1.1 IBM-CM 2004 IBM [1] Access Policies Natural language access control [3], [5]
policy
1.2 UniversityData 2005 Fisler et al. [38] Access Policy Central grades repository system [69]
for a university
1.3 Wikipedia 2009 Urdaneta et al. [94] Access Logs Access request traces from [96]
Wikipedia
1.4 AmazonUCI 2011 UCI Repository [93] Access Logs Access data of Amazon employees  [22], [30], [56],
[60], [79]
1.5 iTrust 2012 Meneely et al. [71] Access Policies Natural language access control [3], [5]
policy
1.6 CyberChair 2012 Stadt et al. [95] Access Policies Natural language access control [3], [5]
policy
1.7 CollectedACP 2012 Xiao et al. [97] Access Policies Natural language access control (3], [5]
policy collected from multiple
sources
1.8 AmazonKaggle 2013 Kaggle [58] Access Logs Two years historical access data of  [22], [30], [59],
Amazon employees (12000 users [60], [67], [79],
and 7000 resources) (8], [68]
1.9 eDocument 2014 Decat et al. [34] Access Policy e-document case study [16], [17], [15]
1.10 Workforce 2014 Decat et al. [35] Access Policy =~ Workforce management case study  [16], [17], [15]
1.11 SCADA- 2015 Turnipseed et al. [92] SCADA Data SCADA dataset for intrusion [101]
Intrusion detection system
1.12 Dalpiaz- 2018 Dalpiaz et al. [32, 33] User Stories Over 1600 user stories from 21 web [46]
UserStories applications
1.13 Incident 2018 Amaral et al. [6] Event Logs Event log from an incident [22]

management process

rule. Rules with multiple actions or object attributes are split into
sub-rules. The RF model is evaluated to detect permission conflicts
and ensure it recognizes policy rule semantics, including condition,
separation of duty, and exclusion properties. The accuracy func-
tion analysis indicates the semantic correctness of the policy. Less
than 100% correctness suggests conflict rules may exist. Overall, the
algorithm efficiently verifies policies and detects inconsistencies.

Table 3 summarizes access control policy verification tools and
methods using machine learning.

3.3 Policy Administration

Adapting access control policies to tackle cyber attacks is challeng-
ing due to their static nature. Regular maintenance is required to
keep policies up-to-date, which, if not automated, is laborious and
error-prone [7]. Erroneous policies can make the system vulnerable
to adversaries or misuse by internal users. Therefore, reinforcing
the access control system to identify misconfigurations and adjust
policies accordingly is crucial.

Manual access control policy updates are laborious and error-
prone [7], making systems vulnerable to cyber attacks. Authors
in [7] present ML-AC, an ML-based approach that updates policies
automatically at run-time to prevent such threats. ML-AC moni-
tors user access behavioral features (e.g., frequency, data amount,

location) and adjusts access control rules based on contextual knowl-
edge. This method includes a Contextual Behaviour Learning com-
ponent in the Policy Administration Point (PAP) to build user pro-
files and adjust policies. ML-AC uses RF to classify access control
behavior as normal or anomalous and refines policies by encod-
ing ML-rules with learned contextual knowledge. It also monitors
user behavior evolution using Olindda [89] to detect new clusters.
Experiments with a synthetic dataset demonstrated ML-AC’s effec-
tiveness. Comparisons with BBNAC [40] and ML-AC,, ;. (without
contextual knowledge) showed ML-AC’s superior performance.
Alkhresheh et al. [2] proposed an adaptive access control pol-
icy framework for IoT, refining policies based on device behaviors.
They suggest a policy management module for adaptation, includ-
ing behavior classification and policy refinement, alongside the
traditional ABAC server. Both servers include a context monitor.
Using RF and LSTM [48] on three years of access data from a uni-
versity’s door locking system, they found LSTM outperformed RF
with larger datasets due to its ability to learn from longer sequences.
The study concluded that LSTM scales better in IoT environments.
Gumma et al. [44] proposed PAMMELA, an ML-based ABAC
policy administration method that creates new rules and extends
existing policies. It operates in two phases: training an ML classifier
on ABAC policy rules and generating rules based on access requests.
The authors experimented with three datasets containing various
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Table 2: Summarizing Machine Learning Based Policy Mining. The dataset type ‘RW’, ‘RWA’, and ‘Syn’ indicates Real-World,
Real-World Augmented, and Synthetic dataset, respectively. We link Dataset Type column to ‘SL’ column of Table 1 if the
respective dataset is public. We follow the same convention in Table 3, 4, and 5.

Reference Application Problem Considered Access ML Approach Dataset Type
Control
Model
Frank et al. 2008 [39] Not Probabilistic bottom-up RBAC Gibbs sampler & Syn & RW
specified approaches for RBAC role Disjoint
mining Decomposition
Ni et al. 2009 [78] Not Adjusts roles and permission RBAC SVM (and others Syn & RW
specified mapping including DT, RF)
Mocanu et al. 2015 [73] ~ Healthcare Policy inference from logs ABAC Restricted Boltzmann Syn
Machines
Benkaouz et al. 2016 [10] Not Classification and clustering of ABAC K-Nearest Neighbors Not Used
specified policies
Narouei et al. 2017 [75] Not Policy extraction from natural ABAC Recurrent Neural Syn
specified language documents Network
El Hadj et al. 2017 [37] Not Classification and clustering of ABAC K-Nearest Neighbors Syn
specified policies
Alohaly et al. 2018 [3] Not ABAC attribute extraction ABAC CNN RWA (SL: 1.1, 1.5, 1.6,
specified from natural language 1.7)
Karimi et al. 2018 [61] Healthcare, Policy extraction ABAC K-modes Syn
education
Cotrini et al. 2018 [30] Not Policy mining ABAC APRIORI-SD [62] Syn & RW (SL: 1.4, 1.8)
specified
Alohaly et al. 2019 [5] Not Attribute extraction from Hierarchical CNN RWA (SL: 1.1, 1.5, 1.6,
specified natural language for ABAC ABAC 1.7)
Alohaly et al. 2019 [4] Not ABAC constraints extraction ABAC BiLSTM RWA
specified  from natural language policies
Zhou et al. 2019 [101] SCADA Role and permission RBAC SVM & Adaboost RWA (SL: 1.11)
assignments
Bui et al. 2019 [15] Not Policy mining ReBAC Neural Network Syn & RW (SL: 1.9,
specified 1.10)
Bui et al. 2020 [16] Not Policy mining ReBAC Decision Tree Syn & RW (SL: 1.9,
specified 1.10)
Bui et al. 2020 [17] Not Policy mining ABAC, ReBAC Decision Tree Syn & RW (SL: 1.9,
specified 1.10)
Jabal et al. 2020 [56] Not Learns ABAC policies from ABAC RF, KNN Syn & RW (SL: 1.4)
specified logs
Karimi et al. 2021 [60] Not Automating ABAC policy ABAC K-modes Syn & RW (SL: 1.4, 1.8)
specified  extraction based on access logs
Heaps et al. 2021 [46] Not Extracting access control RBAC and Transformers, CNN, RW (SL: 1.12)
specified policy from user stories ABAC SVM

Table 3: Summarizing Machine Learning Based Policy Verification. ‘Common’: any access control model.

Reference Application Problem Considered Access Control ML Approach Dataset Type
Model
Martin et al. 2006 [69]  Not Specified Inferring policy and identifying Common Prism [23] RW (SL: 1.2)
bug-exposing requests
Heaps et al. 2019 [47]  Not Specified Policy verification automation RBAC Neural Network Syn
Vincent C. Hu 2021 [49] Not Specified Verifying access control policy Common RF Syn

Gradient Boosting (XGB) [26]. The study provided insights into
managing ABAC policies using PAMMELA.

Recently, Ayedh et al. [8] introduced an enhanced and distributed
access control decision-making model that utilizes a random forest

ABAC rules, subject and object attributes, and access requests. They
evaluated PAMMELA using neural networks, decision trees, RF,
Extra Trees (ET)[42], Gradient Boosting (GB)[41], and Extreme
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Table 4: Summarizing Machine Learning Based Policy Administration, Monitoring, and Auditing. ‘Common’: any access control

model.
Reference Application Problem Considered Access Control ML Approach Dataset Type
Model
Argento et al. 2018 [7] Not Specified Improving ABAC policy ABAC & RF and K-means Syn
administration point (PAP) Common Clustering
Xiang et al. 2019 [96] Not Specified Continuous access control Common Time-Changing RW (SL: 1.3)
validation and forensics Decision Tree
(TCDT)
Ashraf et al. 2020 [2] IoT Refining access policies ABAC RF and RNN RW
Gumma et al. 2021 [44] Not Specified ABAC policy administration ABAC Neural Network, Syn
DT, RF, etc.
Ayedh et al. 2023 [8]  BYOD environments Policy conflict resolution ABAC RF and K-Means RW (SL: 1.8)

algorithm to effectively resolve policy conflicts in BYOD environ-
ments. By dynamically adapting to diverse device profiles and net-
work conditions, the proposed model achieves accurate and efficient
access decisions while minimizing administrative overhead.

Table 4 outlines related methods proposed for the access control
administration using machine learning.

3.4 Policy Monitoring and Auditing

Regular access control policy updates are challenging and error-
prone [96], risking severe security incidents. Xiang et al. [96] de-
veloped P-DIFF to help system admins monitor policy changes and
investigate malicious access by backtracking related changes. They
proposed a Time-Changing Decision Tree (TCDT) to handle time-
series information, modeling access control behavior over time.
P-DIFF uses access logs to generate a TCDT, aiding policy change
validation and forensics analysis. Experiments with datasets from
five real-world systems, including Wikipedia [94], showed P-DIFF
detects 86 to 100% of policy changes with 89% precision and 85 to
98% efficacy in forensic analysis. Table 4 further outlines this work.

4 ML-BASED ACCESS CONTROL (MLBAC)

Recent research highlights the benefits of using ML models for
accurate access control decision-making [22, 25, 59, 67, 79, 90].
These systems use trained ML models instead of language-based
policies to decide access (grant or deny) based on user and resource
metadata and attributes. Metadata and attributes are features that
the ML model learns for subsequent access decisions. Besides, it
is required to administer those trained ML models such that any
changes in access policy can be accommodated [80], while securing
them from external attack [81]. We briefly discuss these approaches
below and summarize them in Table 5.

4.1 Access Decision

Access control policies sometimes need to be restricted by access
hours. For example, a user may be denied access outside office hours.
Chang et al.[25] proposed a time-constraint access control system
using SVM, divided into three phases: input pattern transforming,
training SVMs, and authority decision. They implemented SVMs
using LIBSVM[24], training on users’ login times and passwords to
classify users and grant access based on these factors. The system
uses trained SVMs for access decisions instead of traditional policies.

Performance evaluation with training data showed the system can
authenticate users’ access rights, demonstrating its practicality.

Centralized access control architectures with static policies are
limited in IoT due to devices’ computational constraints. Outsourc-
ing access control management introduces security and privacy
concerns. IoT needs a framework suitable for its distributed nature,
allowing user privacy control and centralized handling. Outchak-
oucht et al. [82] proposed a blockchain and ML-based access control
approach for IoT. The approach uses blockchain for distributed pol-
icy management and ML, specifically Reinforcement Learning, to
dynamically adjust access control policies as resources are accessed
and security policies executed.

Cappelletti et al.[22] explored symbolic (DT, RF) and non-symbolic
(SVC, MLP) ML techniques for inferring ABAC policies from ac-
cess logs. They used two Amazon datasets[58, 93] and the Incident
dataset [6], noting the sparsity and imbalance of Amazon datasets
versus the balanced Incident dataset. PCA and t-SNE [99] revealed
well-separated clusters in the Incident log but not in the Amazon
dataset. Amazon datasets showed around 50% accuracy due to spar-
sity, while Incident logs had high accuracy. MLP excelled with
sparse data, capturing complex relationships. Symbolic techniques
offered better decision understanding, highlighting concerns about
black-box ML techniques’ explainability and verifiability.

Khilar et al. [63] proposed a trust-based cloud resource access
approach using user access history and behavior, considering bogus,
unauthorized, and forbidden requests. They tested ML techniques
like KNN, decision tree, logistic regression, naive Bayes, neural
networks, and ensemble algorithms. The ensemble model of random
forest (RF) and K-nearest neighbor performed best, with neural
networks achieving the highest performance.

Srivastava et al. [90] proposed RAdAC, a framework assessing re-
quester genuineness, calculating risk, and acting accordingly, using
attributes like access time, location, request frequency, and resource
sensitivity. They developed a Hospital Management System proto-
type and tested a neural network and RF algorithm. RF performed
best with both input data and engineered parameters, highlighting
the need for domain expertise to determine optimal values.

Liu et al. [67] proposed EPDE-ML, an Efficient Permission De-
cision Engine scheme based on ML to improve the ABAC model’s
policy decision point (PDP). EPDE-ML uses an RF algorithm trained
on user attributes and prior access control information to permit or



Machine Learning in Access Control: A Taxonomy

Table 5: Summarizing Machine Learning Based Access Control Decision and Administration
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Reference Application Problem Considered Access Control ML Approach Dataset Type
Model
Chang et al. 2006 [25] Not specified A novel access control model Time- SVM Syn
with time constraint constraint
Access Control
Outchakoucht et al. 2017 [82] IoT Blockchain based access Not Applicable =~ Reinforcement No Evaluation
control policy Learning
Cappelletti et al. 2019 [22] Not specified Inferring ABAC policies from ABAC DT, RF, SVM, RW (SL: 1.4, 1.8,
access logs MLP 1.13)
Khilar et al. 2019 [63] Cloud Computing Policy for cloud resources Trust-Based RF, DT, SVM, Not Specified
Access Control  Neural Network,
etc.
Srivastava et al. 2020 [90] Defense, airport, and Novel access control Risk Adaptive ~ Neural Network, Not Specified
healthcare framework Access Control RF
(RAJAC)
Liu et al. 2021 [67] Big Data & IoT Improves the policy decision ABAC RF RW (SL: 1.8)
point (PDP) of the ABAC model
Karimi et al. 2021 [59] IoT Adaptive ABAC policy learning ABAC Reinforcement Syn & RW (SL:
Learning 1.8)
Nobi et al. 2022 [79] Not specified DLBAC DLBAC ResNet Syn & RW (SL:
14, 1.8)
Nobi et al. 2022 [80] Not specified DLBAC administration DLBAC RF & ResNet Syn
Nobi et al. 2022 [81] Not specified Adversarial attack in DLBAC DLBAC ResNet Syn
Chhetri et al. 2024 [28] IoT Environment aware DLBAC DLBAC ResNet Syn
Llamas et al. 2025 [68] Not specified To enhance the trustworthiness MLBAC Machine RW (1.8)
of MLBAC systems Unlearning

deny access requests. The process is split into two phases: Phase 1
uses the trained model for decisions, and Phase 2 updates the model
with current policy information. Experiments on Amazon’s access
control policy set [58] showed EPDE-ML’s superior performance,
with an AUC of 0.975 and 92.6% accuracy. Decision time remained
consistent at around 0.115 seconds, regardless of policy size.

Karimi et al. [59] proposed an adaptive access control approach
using RL to address challenges like limited labeled data and sparse
logs. The goal is to develop an adaptive ABAC policy learning
model for smart home IoT environments, with methods to speed
up learning based on attribute value hierarchy. Experiments on
synthesized and real datasets, including Amazon [58], showed the
effectiveness of the approach. The real dataset included employee
access requests, indicating whether access was permitted, along
with attribute values and resource identifiers.

Traditional access control systems struggle in dynamic, large-
scale environments, making it difficult for human administrators
to maintain accurate access control states. Nobi et al.[79] propose
Deep Learning Based Access Control (DLBAC), which uses user
and resource metadata directly, eliminating the need for attribute
and policy engineering. The DLBAC model, based on ResNet[45],
outputs a trained neural network for access control decisions. The
authors developed a DLBAC prototype, tested it with eight synthetic
datasets and two Amazon datasets [58, 93], and found that DLBAC
makes more accurate and generalized access control decisions than
traditional systems. DLBAC better balances over-provision (unau-
thorized access) and under-provision (denied access) inefficiencies
compared to policy-based systems. However, DLBAC may inherit
biases from training data, potentially leading to adverse decisions.

For example, in the Amazon dataset, where most authorization
tuples involve grant decisions, DLBAC might favor similar deci-
sions. Ensuring fair decisions requires auditing the training data
and evaluating decisions for fairness.

Chbhetri et al. [28] introduce an environment-aware access con-
trol model that leverages deep learning to integrate contextual
environmental data in security decision-making. By analyzing real-
time conditions and adapting policies accordingly, the model en-
hances precision in identifying legitimate access requests while
strengthening overall system resilience in dynamic settings.

4.2 Administration and Security

Nobi et al. [80] investigate the administration challenges of ML-
based access control systems, particularly in capturing changes in
access control states. They compare the performance of symbolic
(RF) and non-symbolic (ResNet) ML methods in a simulated envi-
ronment. The study highlights the advantages and disadvantages
of both approaches, such as insufficient learning of new changes
and forgetting existing access information. Experimental results
indicate that non-symbolic methods outperform symbolic ones in
adapting to incremental changes in access control states. Recently,
Llamas et al. [68] introduced a certified unlearning framework for
ML-based access control, ensuring compliance with evolving poli-
cies by removing specific data without full retraining. This enhances
adaptability, security, and privacy in access control systems.
While deploying an ML model for access decision, it is crucial to
secure the model from unwanted intervene. Nobi et al. [81] exam-
ine the security vulnerabilities of ML-based access control systems,
particularly their susceptibility to adversarial attacks. It highlights
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Figure 4: Trade-off Between Performance and Explainability
in ML-based Systems.

how minor input modifications can lead to incorrect access deci-
sions by ML models. The study focuses on manipulating user and
resource information to gain unauthorized access, using ResNet
models in simulated environments. Results show that adversarial
attacks can be designed for these models, but access control-specific
constraints can mitigate such attacks to some extent.

5 OPEN CHALLENGES AND FUTURE
RESEARCH DIRECTIONS

5.1 Understanding Access Control Decisions

In complex situations where access control systems overlap, non-
symbolic ML models often make better decisions than traditional
policies or symbolic ML models [22]. Neural networks and other
non-symbolic methods can learn subtle differences among users,
resources, and their relationships. However, achieving superior
performance with these models often comes at the cost of explain-
ability—understanding the reasons behind specific access decisions.

While ML models for access control are still in their early stages,
a lack of explainability could hinder their growth. Written poli-
cies and symbolic ML models offer straightforward explanations
through human-understandable logical rules. For example, symbolic
ML methods allow easy extraction of logical rules from decision
trees. In contrast, non-symbolic ML models, such as DLBAC [79]
or Karimi et al. [59], use ’black box’ functions that are not easily
interpretable, which is crucial for security-sensitive domains.

As shown in Figure 4, moving from written policies to non-
symbolic approaches increases performance but decreases explain-
ability. This limitation affects other domains, including computer
vision, malware analysis, and financial systems. The issue of ex-
plainability is a very active research area in ML [53]. Solutions
are often domain-specific; for example, a method for explaining
computer vision models may not work for access control.

Nobi et al. [79] addressed this issue in access control by proposing
two methods for explaining neural network-based decisions in
human terms. However, these methods do not guarantee 100%
accuracy in understanding decisions. Therefore, there is significant
potential for further research to improve explanations and enhance
intuition in this area.

5.2 Access Control Administration

Maintaining access control systems, whether traditional or ML-
based, is crucial for long-term security. This involves modifying
policy configurations or attributes to accommodate authorization
changes. RBAC tasks include managing permissions, roles, and
hierarchies [11, 84, 86]. ABAC involves adjusting attributes and

Anon.

rules [57, 85], while ReBAC requires managing relationships and
policies [27, 91]. These issues are well-studied in traditional models.

ML-based access control introduces new challenges, such as up-
dating ML models and access information. Nobi et al. [80] defined
administration requirements for ML-based systems and proposed
updating methods. Further investigation is needed to address re-
maining challenges.

5.3 Adversarial Attacks

Adversarial attacks are a common concern for ML-based systems.
An adversary can obtain unwarranted decisions [9] by fooling the
network with adversarial samples indistinguishable from natural
ones [100]. In ML-based access control, adversarial attacks can
force systems to grant unauthorized access. Attackers can trick the
system by providing manipulated user and resource information.
Additionally, attribute-hiding attacks may occur, where attackers
hide or remove portions of their information to secure access. Nobi
et al. [81] explored this issue, demonstrating that access to ML mod-
els creates potential for adversarial attacks. They showed that such
attacks can be mitigated using access control-specific constraints,
but their work is limited to scenarios where attackers cannot access
the deployed ML model. No other methods addressing adversarial
issues in access control were found.

Therefore, it is crucial to investigate adversarial attacks more
thoroughly from an access control perspective and develop solu-
tions to protect systems against these vulnerabilities.

5.4 Lack of ‘Good’ Datasets

Ground truth information is crucial for evaluating access control
applications like role mining and policy mining, especially for ML-
based methods [74]. However, few high-quality datasets are avail-
able, and existing ones are often imbalanced [30, 79] and lack suf-
ficient information [46]. This makes designing effective systems
challenging. Researchers address this by using data preprocess-
ing [67], data augmentation [3, 4, 101], and synthetic datasets [98].
A hybrid approach combining real-world and synthetic datasets is
also common [17, 56, 60, 79].

Despite the rise in ML applications for access control, the lack of
quality datasets from real-world organizations remains a significant
obstacle. Many datasets are anonymous or incomplete and lack the
necessary semantics and granularity [74]. High-quality datasets are
essential for advancing ML-based access control.

5.5 Bias and Fairness

In access control, an ML model is over-provisioned if it is biased to-
ward granting unauthorized access. Conversely, it is under-provisioned
if it denies desired access. Both can be measured quantitatively as
high FPR and low TPR, respectively [79]. These biases often arise
from imbalanced training data or improper ML model design.

For example, the Amazon dataset [58] contains two years of
historical access data, where employees were manually allowed or
denied access to resources. The data is highly imbalanced, with over
90% of requests granted access [30, 79]. This disproportionate train-
ing data biases the model towards granting access [79]. Bias can
also result from poor ML model/algorithm design. Therefore, under-
standing the characteristics of training data and ML algorithms is
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crucial for developing a fair and reliable system [70]. Additionally,
besides evaluating access control decisions, it is important to assess
fairness performance and establish a feedback loop [31, 79].

5.6 Insufficient Tools for Verification

A reliable system design is ensured through rigorous testing and
verification. Testing evaluates a system under various conditions
to observe behavior and detect errors, while verification ensures
the system does not misbehave under general circumstances [43].
In access control, policies are verified and tested similarly to soft-
ware functionality [50]. Ensuring correct access control decisions
is complex and requires significant effort. Failure to verify the sys-
tem’s correctness can lead to serious consequences, such as over-
provision, under-provision, and adversarial attacks. This area is
well-studied for traditional access control systems, with established
verification methods [49, 64].

When ML is applied, performance is measured using unseen data
to test model correctness. However, this method cannot identify
all possible misclassifications, and the impact of misclassification
varies across domains. For example, granting unauthorized access
can be more costly than denying legitimate access in access control.
Therefore, comprehensive verification is crucial before deploying
ML-assisted access control systems. While there are methods to
verify ML models automatically [66], each has its pros and cons.
Further research is needed to design a systematic verification and
testing framework for ML and access control.

6 SUMMARY

This work comprehensively explores the exciting intersection of
access control and machine learning. We propose a taxonomy of
machine learning for access control and discuss each approach
within this framework. Our findings reveal that machine learning is
making significant strides in various areas of access control, includ-
ing attribute engineering, policy mining, and access control policy
verification. We also examine efforts to use trained machine learn-
ing models to make access control decisions, replacing traditional
written policies. These models offer robust and generalized decision-
making, though they often lack transparency in how decisions
are made. Additionally, we outline publicly available real-world
datasets used in machine learning-based access control research.

Finally, we share our observations and vision regarding open
challenges in the domain, providing potential guidelines to over-
come them. This work aims to shed light on the promising future
of machine learning in access control and inspire further research
and innovation.
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