
Orthrus: Accelerating Multi-BFT Consensus
through Concurrent Partial Ordering of Transactions

(Extended Version)

Hanzheng Lyu∗, Shaokang Xie†, Jianyu Niu‡, Ivan Beschastnikh§, Yinqian Zhang‡, Mohammad Sadoghi†, Chen Feng∗
University of British Columbia (∗Okanagan Campus, §Vancouver Campus)

†University of California, Davis, ‡Southern University of Science and Technology
∗{hzlyu@student.ubc.ca, chen.feng@ubc.ca}, †{skxie,msadoghi}@ucdavis.edu

‡niujy@sustech.edu.cn, §bestchai@cs.ubc.ca

Abstract—Multi-Byzantine Fault Tolerant (Multi-BFT) con-
sensus allows multiple consensus instances to run in parallel,
resolving the leader bottleneck problem inherent in classic BFT
consensus. However, the global ordering of Multi-BFT consensus
enforces a strict serialized sequence of transactions, imposing
additional confirmation latency and also limiting concurrency.
In this paper, we introduce Orthrus, a Multi-BFT protocol
that accelerates transaction confirmation through partial order-
ing while reserving global ordering for transactions requiring
stricter sequencing. To this end, Orthrus strategically partitions
transactions to maximize concurrency and ensure consistency.
Additionally, it incorporates an escrow mechanism to manage
interactions between partially and globally ordered transactions.
We evaluated Orthrus through extensive experiments in realistic
settings, deploying 128 replicas in WAN and LAN environments.
Our findings demonstrate latency reductions of up to 87% in
WAN compared to existing Multi-BFT protocols.

Index Terms—Byzantine fault tolerance, Multi-BFT consensus,
Blockchain, Leader bottleneck, Partial ordering.

I. INTRODUCTION

Byzantine Fault Tolerant (BFT) consensus has received
renewed interest due to its adoption in blockchain applica-
tions [1]–[6] ranging from cryptocurrency [7]–[10] to Decen-
tralized Finance (DeFi) [11]. BFT consensus enables a network
of replicas to agree on the same sequence of transactions,
effectively mitigating double-spending attacks [12]—where
a user might attempt to use the same asset in multiple
transactions—even in the presence of Byzantine replicas that
can behave maliciously. Most BFT consensus protocols (e.g.,
PBFT [13]) employ a leader-based scheme, where a designated
leader coordinates with other replicas (referred to as backups)
to reach an agreement on its proposals (e.g., transactions).
However, this leader-based approach faces a significant per-
formance bottleneck [14]–[17]: the leader’s workload scales
linearly with the number of replicas, which in turn impacts
system throughput and latency.

To mitigate this bottleneck, Multi-BFT consensus protocols
enable multiple leader-based consensus instances to run in
parallel [15]–[19]. In these protocols, each replica simultane-
ously acts as the leader for one instance and a backup for
others. Replicas run each instance to agree on a sequence

Clients ①

④

(a) Multi-BFT paradigm (b) Breakdown latency

10 32 54 7 8

Instance 0 0 3

Instance 1 1 4 7

Instance 2 2 5 8

③ 𝑮𝒍𝒐𝒃𝒂𝒍 𝒐𝒓𝒅𝒆𝒓𝒊𝒏𝒈

② 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒄𝒐𝒏𝒔𝒆𝒏𝒔𝒖𝒔 ①+④

③
②

Figure 1: (a) Multi-BFT paradigm. The jth block produced
by instance i is denoted as Bi

j . (b) Breakdown latency with
a straggler. The green bar refers to transaction transmission
delay (① and ④), the orange refers to the delay of a block
being delivered from consensus (②), and the black refers to
the global ordering delay (③).

of blocks, which are then ordered into a global sequence,
as shown in Fig. 1a. By the global ordering, Multi-BFT
consensus appears as a single BFT instance, but distributes
workload among replicas to better utilize bandwidth and
increase throughput. For example, ISS [16], a state-of-the-
art Multi-BFT protocol, demonstrates significant performance
improvements over single-leader protocols, achieving up to
37× and 56× better throughput for PBFT and HotStuff,
respectively, on a network of 128 replicas. RCC [17], another
Multi-BFT protocol, improves upon ISS by optimizing the
recovery mechanism.

Our motivation. The global ordering mechanism in Multi-
BFT consensus, while essential for ensuring consistency, sig-
nificantly limits concurrency and can increase latency. By
enforcing a strict, serialized sequence across all transac-
tions, global ordering prevents replicas from processing non-
conflicting transactions concurrently, even when they target
different records and could be processed in parallel. For
example, consider two independent payment transactions: one
in which Alice transfers funds from her account and another

ar
X

iv
:2

50
1.

14
73

2v
3

 [c
s.D

C
]

2
M

ar
 2

02
5

in which Bob transfers funds from his account. In existing
Multi-BFT consensus protocols [15]–[19], both transactions
would need to wait for a globally agreed-upon order before
execution, blocking them from concurrent processing despite
having no direct conflicts.

Second, global ordering increases the overall system latency,
particularly when there are straggler instances that are much
slower than other instances. As illustrated in Fig. 1a, if In-
stance 0 is a straggler, the missing block (i.e., block 6) creates
a gap in the global log, which then prevents subsequent blocks
(i.e., blocks 7 and 8) from being executed until the missing
block appears. As illustrated in Fig. 1b, the latency breakdown
for ISS [16] with 16 replicas in a WAN setting shows that
global ordering delays can account for up to 92.8% of the
total latency when there is a straggler instance that is 10×
slower than other instances. Specifically, while the consensus
instance delivers a transaction in about 2.5 seconds, the global
ordering process takes significantly longer—an additional 34.5
seconds—highlighting the substantial delay caused by global
ordering. (Further evaluation results are presented in Sec.VII.)

The expensive global ordering significantly affects the per-
formance of Multi-BFT, especially with stragglers. Thus, this
raises a vital question: How to minimize the use of global
ordering in Multi-BFT consensus?

Our approach. We observe that there are two primary classes
of transactions in blockchain-based financial applications:
conflict-free transactions (e.g., payments with different pay-
ers) [20], [21] and general non-commutative transactions (e.g.,
smart contracts modifying the same record). The conflict-free
transactions inherently enable concurrent execution. Notably,
conflict-free transactions account for a significant proportion
of the overall transactions. For instance, more than 46% of
transactions in Ethereum are conflict-free payment transac-
tions. To optimize performance, we present Orthrus, which
accelerates the processing of conflict-free transactions by in-
troducing concurrency, while ensuring support for general non-
commutative transactions, which may require stricter ordering
due to dependencies between operations. Unlike traditional
systems where a transaction can only be executed once it has
received a global order and all preceding blocks in the global
sequence have been executed, our approach allows for a more
relaxed execution condition.

Conflict-free transactions. We often observe that there are
two types of operations in payment transactions: incremental
(e.g., adding funds) and decremental (e.g., withdrawing funds).
Incremental operations are inherently commutative, as they
only increase the balance of the accounts. Decrements in
different accounts are also commutative, as they do not affect
each other’s state. This means that many transactions can be
executed concurrently without using strict ordering.

To accomplish this, Orthrus assigns client transactions to
instances based on the payer, ensuring that transactions from
the same payer are processed within the same instance. This
transaction partition mechanism introduces concurrency and
prevents double spending [12]. However, some transactions

may involve multiple payers. In such cases, the transaction
is assigned to multiple instances, each instance managing the
actions of one payer, allowing the system to handle complex
transactions without sacrificing concurrency. However, this ap-
proach also introduces a challenge in maintaining transaction
atomicity, as some payers might succeed while others fail,
potentially leaving the transaction in an incomplete state.

To ensure atomicity, we draw inspiration from the escrow
transactions [22] to design an escrow mechanism which tem-
porarily reserves the transfer amounts for each payer in an
escrow state. The transaction is only confirmed if all escrow
requests are successfully committed. If any escrow request
fails, the reserved funds for all other escrow requests are
also released, ensuring transactional atomicity and consistency
across instances.

General non-commutative transactions. Beyond conflict-free
transactions, there are also general transactions—such as those
involving smart contracts—that include non-commutative op-
erations. For these, we enable confirmation through global
ordering to ensure safety and consistency. This hybrid design
allows Orthrus to maximize concurrency for commutative
transactions while maintaining the necessary cross-instance
guarantees to support general non-commutative transactions.
To facilitate seamless interaction between contract transactions
(which require strict global ordering) and standard payment
transactions, we implement the previously mentioned escrow
mechanism. This mechanism allows contract-related payments
to be temporarily escrowed within the partial log, prevent-
ing them from delaying payment transaction confirmations.
Consequently, payment transactions can proceed without in-
terruption, while contract transactions maintain the necessary
ordering constraints.

We build an end-to-end prototype of Orthrus in Go [23]
and conduct an extensive evaluation on AWS. We use a real-
world dataset with 200,000 transactions from 18,000 active
users on the Ethereum network. This dataset provides a more
accurate representation of transaction behaviors, which leads
to more valid and reliable results. We compare Orthrus with
the state-of-the-art Multi-BFT consensus, including ISS [16],
Mir-BFT [18], RCC [17], DQBFT [24] and Ladon [19] in
terms of throughput and latency.

Our contributions. To summarize, this paper makes the
following contributions:

• We introduce Orthrus, a Multi-BFT consensus that leverages
partial ordering of transactions to enhance concurrency while
maintaining consistency across instances.
• We propose a novel escrow mechanism to ensure transaction
atomicity and seamless integration of partially ordered and
globally ordered transactions.
• We evaluate Orthrus with extensive experiments over WAN
and LAN with 8-128 replicas distributed across 4 regions.
In the WAN setting, Orthrus achieves at most 87% lower
latency than other protocols on 128 replicas with a straggler.
The LAN setting exhibits a similar trend.

2

II. MOTIVATIONS

We first examine blockchain scenarios where partial or-
dering is sufficient for transactions and then highlight the
necessity of hybrid ordering. Transactions in blockchains
typically fall into two categories: payment (i.e., conflict-free
transactions) and contract transactions (i.e., general transac-
tions). Payment transactions are straightforward exchanges,
by which clients transfer funds. Each payment transaction
involves incremental and decremental operations on payers’
and payees’ accounts. Due to the commutative characteristic
of these operations, partial ordering is sufficient.

In contrast, contract transactions represent more complex
interactions involving various operations beyond simple trans-
fers. Specifically, the operations on state variables can be
accessed by multiple clients. Unlike payment transactions,
contract transactions often include non-commutative opera-
tions where the order in which they are performed affects
the result, such as assignments. This distinction between
payment and contract transactions highlights Orthrus’s dual
approach: maximizing concurrency for payment transactions
while employing global ordering for contract transactions to
maintain system consistency.

A. Why Partial Ordering Works?

In a typical payment transaction, decremental operations
reduce the payers’ account balance, while incremental op-
erations increase the payees’ account balance. By confining
transactions that involve the same payer to a single instance,
transactions across instances can be executed concurrently
without global ordering. To better understand the benefits
of partial ordering, let’s consider three simple single-payer,
single-payee transactions: tx1: Alice → Carol, tx2: Bob →
Carol, and tx3: Alice → Bob, where → denotes the transfer
tokens from the lefter to the righter. Based on the three
transactions, we have the following two observations.
• Observation 1: If two transactions have different payers and
neither transaction affects the balance of the other’s payer,
they can be executed concurrently.

Example (independence): Transactions tx1 and tx2 have
different payers and do not affect each other’s payer
balance. Even though both transactions share Carol as a payee,
they have different payers, Alice and Bob. Since tx1 and tx2

consume tokens from different payer accounts, their execution
order does not impact the outcome; both transactions succeed
regardless of whether tx1 or tx2 executes first.
• Observation 2: If one transaction may affect the balance of
the other transaction’s payer, they may need to be executed
sequentially.

Example (dependency): The payee of tx3 is the payer
of tx2. The transaction tx3 affects Bob’s balance, and tx2

depends on Bob’s balance to succeed. If Bob has sufficient
balance, tx2 and tx3 can be executed concurrently. If Bob does
not have enough balance to support tx2 before tx3 executes,
then tx3 must be executed first to ensure that tx2 can succeed.

Example (confliction): Transactions tx1 and tx3 have the
same payer. Since both transactions share Alice as the payer,
they directly reduce her account balance. If Alice has sufficient
balance, tx1 and tx3 can be executed concurrently. If Alice
has limited funds, the order of tx1 and tx3 becomes crucial:
executing tx1 first may deplete her balance, resulting in a
successful transfer to Bob but causing tx3 to fail. Conversely,
if tx3 is executed first, tx1 may fail due to insufficient funds.

These examples illustrate that we can enforce effective
partial ordering to manage transaction dependencies and pre-
vent conflicts. Transactions involving the same payer are
assigned to the same instance and executed sequentially within
that instance, ensuring consistency. For dependencies across
instances, Orthrus establishes a cross-instance partial order by
generating references between dependent transactions. These
designs guarantee that if one transaction affects the payer’s
balance in a way that impacts another transaction’s execution,
the two transactions are processed in the correct sequence to
preserve consistency.

For transactions involving multiple payers and payees, each
transaction can be split into multiple single-payer, single-payee
sub-transactions, thereby adhering to the above partial ordering
rules. To guarantee atomicity in multi-payer transactions,
Orthrus employs an escrow mechanism discussed in a later
section. This incurs minimal overhead, as each sub-transaction
can be processed concurrently, and the escrow mechanism
adds only a slight processing cost.

B. Why Needs Hybrid Ordering?

While partial ordering suffices for payment transactions,
contract transactions often involve complex, non-commutative
operations (e.g., assignments) that require stricter ordering.
The outcome of these operations depends on execution order,
necessitating global ordering to maintain consistent results.
• Observation 3: Transactions modifying the same record
must be executed sequentially to preserve consistency.

Example: Transactions tx1 and tx2 modify the same
record. Assume that transaction tx1 assigns value1 to record
o, while transaction tx2 assignsvalue2 to record o. Here, the
order between tx1 and tx2 is crucial: executing tx1 first and
then tx2 results in o having value2, while reversing the order
leaves o with value1.

Although transactions modifying distinct records can exe-
cute concurrently without ordering, most contract transactions
involve non-commutative operations that inherently depend on
execution order. Therefore, a global ordering mechanism is
essential to maintain consistency across replicas and ensure
that all contract transactions yield the same result.

The above examples underscore the necessity of hybrid
ordering in Orthrus. For payment transactions, partial ordering
maximizes concurrency, while contract transactions with com-
plex operations rely on global ordering to ensure consistency
across replicas.

3

III. SYSTEM MODEL AND PROPERTIES

A. System Model

We consider a system composed of n = {ri}n−1
i=0 replicas,

denoted as the set N . We assume a subset of up to f replicas
are Byzantine, represented by the set F , where |F| ≤ f and
n ≥ 3f + 1. The remaining replicas, denoted as H = N \ F ,
are honest and strictly follow the protocol. All Byzantine
replicas are assumed to be controlled by a single adversary,
which is computationally bounded and cannot break crypto-
graphic primitives. Each replica ri has a public/private key
pair (pki, ski) established through a public-key infrastructure
(PKI), enabling them to sign and verify messages.

Network model. Honest replicas are connected through au-
thenticated point-to-point channels. We adopt the partial syn-
chrony model introduced by Dwork et al. [25], commonly used
in BFT consensus protocols [13], [26]. This model defines an
unknown Global Stabilization Time (GST), after which the
system behaves synchronously with a known message delivery
bound ∆. Formally, for any two honest replicas ri, rj ∈ H,
and any time t ≥ GST, a message sent from ri to rj at time
t will be delivered by time t+∆.

B. Data Model

Object. We follow the object-centric design [27], [28], in
which objects provide operations that can be called by transac-
tions to examine and modify the object’s state. These objects
are long-lived, like accounts, and are represented as o =
(key, value, op, con, type). Here, key is a cryptographically
unique identifier, and value denotes the object’s current state,
which can be updated as operations op are performed. The
op attribute specifies the operation to be executed on the
object (e.g., increment or decrement). The con attribute sets
a condition that must be satisfied following the execution of
any operation. The type attribute categorizes objects as either
owned or shared.
1) Owned objects. They are associated with a specific owner,
with key corresponding to the owner’s address. Owned ob-
jects support two operations: incremental and decremental.
The decremental operation requires the owner’s authorization
through a digital signature. For example, Alice’s account
object, which holds her balance, is an owned object. If Alice
wishes to transfer tokens, she must authorize the transaction
with her digital signature.
2) Shared objects. They have no specific owner and can be
processed by anyone with authorization in the smart contract.
Shared objects may support additional operations such as
complex state changes or contract-specific actions.

Transaction. Transactions are defined as tx = (O, id, σ),
where O denotes the set of objects o involved in tx, each
specifies an involved object and the specified operation op
to be performed. The id field provides a unique identifier for
each transaction. σ is the signature, included for owned objects
requiring authorization. Each transaction involves at least one

owned object, as every transaction must be initiated by a client,
whose account is classified as an owned object.

Transactions are categorized into two types: payment
and contract transactions. Payment transactions involve only
owned objects, while contract transactions may involve both
objects, allowing for greater flexibility in executing complex
operations under a smart contract framework.

Block. A block is a tuple b = (txs, ins, sn, S, σ), where: txs
represents a batch of transactions and ins indicates the specific
instance to which the block belongs, which helps in identifying
which instance is responsible for processing the transactions
in the block. sn denotes the sequence number of the block,
which maintains the order of blocks within an instance. S
denotes the system state (defined in Sec. III-D) on which
the block depends, which suggests the state under which the
transactions within the block can be executed successfully. σ is
the cryptographic signature on B, which provides authenticity
and integrity to the block.

C. Core Components

Sequenced broadcast (SB). Sequenced broadcast is a critical
variant of Byzantine total order broadcast [29] that ensures
the total ordering of transactions and preserves the consistency
among honest replicas. The SB operates through two funda-
mental primitives: broadcast and deliver. A replica acts as
the leader to broadcast a transaction with a sequence number,
and all replicas collaborate to deliver the transaction with
the sequence number. There is a failure detector that can
detect leader failures. SB guarantees that an honest replica will
eventually deliver a transaction for every sequence number sn
(i.e., termination property) and that all honest replicas will
deliver the same transaction with the same sn (i.e., agreement
property). In this work, we utilize SB protocol as a black
box that inputs client transactions and outputs a sequence of
delivered transactions.

Escrow method. The escrow method is a concurrency control
and data consistency mechanism originally developed to han-
dle high-contention scenarios in database systems, particularly
when aggregate quantities, such as inventory levels, must
be managed under high transactional loads with minimal
locking [22]. In the Escrow method, operations are divided
into incremental and decremental actions, each modifying a
resource quantity without directly conflicting with others. By
assigning each transaction an escrow balance, the system can
accommodate multiple requests on the same resource simulta-
neously, as long as the escrowed quantities suffice for each
transaction’s demand. If a transaction aborts, the escrowed
quantity is simply returned to the available pool. In this
work, we leverage the Escrow method to handle concurrent
transaction execution in replicated state environments.

D. System Goals

We consider a Multi-BFT system composed of m SB
instances, indexed from 0 to m − 1, which take clients’

4

0 1 2

0 1 2

Clients

Concurrent execution
(payment transactions)

0 1 2

00 10 11 22 2

0 1 2

0 1 2

0 1 2

Bucket

Bucket

Bucket

𝑮𝒍𝒐𝒃𝒂𝒍 𝒍𝒐𝒈

𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝒍𝒐𝒈

00 10 11 22 2

Sequential execution
(contract transactions)

Partition module Ordering module Execution module

①

②

③

④

⑤

Clients

⑥

⑥

Figure 2: An overview of Orthrus. Transactions are parti-
tioned into distinct buckets, ordered according to their types,
and finally executed.

transactions as input. Each instance has a leader who broad-
casts transactions with sequence numbers and coordinates all
replicas to deliver a sequence of transactions. Transactions are
executed after being partially ordered within an SB instance or
globally ordered across instances. A transaction is confirmed
once it is executed, either successfully or unsuccessfully. The
system’s state S can be represented as a tuple, where each
element corresponds to the maximum sequence number sn of
an SB instance. Specifically, the state of the Multi-BFT system
is given as S = (sn0, sn1, . . . , snm−1), where sni denotes the
maximum sequence number for the instance indexed by i. The
state of the system in the view of replica ri is denoted as Sri .
The system must ensure the following properties:
• Safety: If two honest replicas reach the same state S, they
must have consistent values for all objects.
• Liveness: Given a transaction tx from a correct client c, tx
is eventually confirmed by all honest replicas.

IV. ORTHRUS OVERVIEW

A. System Architecture

The architectural overview of Orthrus is provided in Fig. 2,
which consists of three modules: partition module, ordering
module, and executions module.

Partition module. It employs the bucket mechanism first
introduced by Mir-BFT [18] to partition client transactions
into buckets, with each bucket assigned to a unique instance.
Each transaction is assigned to one or more buckets based on
the objects it contains. Specifically, we define an assignment
function assign that maps each owned object to a specific
bucket. For example, assign may compute a bucket index for
an object o as the hash of the key modulo m, where m
is the total number of instances. Furthermore, the function
can also be designed to balance loads across instances and
minimize cross-instance interactions. Transactions containing
decremental operations on owned objects are assigned to the
corresponding buckets of those objects.

Ordering module. It contains multiple SB instances and a
global ordering algorithm. Each instance independently selects
a set of transactions from its corresponding bucket as input and
outputs a sequence, or partial log of transactions, agreed upon
by all replicas within that instance. Transactions in a partial

log are partially ordered, meaning they are ordered within an
instance. Payment transactions can be output in partial logs as
soon as they are partially ordered, while contract transactions
require a global order. The global ordering algorithm merged
the partial logs from all instances into a global log, which
imposes a global order across all transactions in the system.

Execution module. It processes the ordered transactions pro-
duced by the ordering module. Payment transactions from
each partial log can be executed concurrently, leveraging their
partial ordering for parallel processing. In contrast, contract
transactions in the global log are executed sequentially to
maintain consistency across all instances. The execution results
are then sent back to the clients.

B. Transaction Workflow

Each transaction in Orthrus follows a workflow through the
partition, ordering, and execution modules. Below, we outline
the processing flow for a single transaction in Orthrus.

① Upon receiving a transaction, a replica assigns it to one or
more buckets in the partition module, based on the involved
owned objects (Sec. V-A).

② The transaction is then packed into blocks and broadcast
within the SB instances, which eventually deliver it with a
designated sequence number (Sec. V-B).

③ Contract transactions delivered by the instances are merged
into a global log to establish a global order, while payment
transactions can bypass this step (Sec. V-B).

④ Payment transactions from partial logs are executed con-
currently (Sec. V-C).

⑤ Contract transactions in the global log are executed sequen-
tially (Sec. V-C).

⑥ Once successfully executed, the transaction is confirmed,
and a response is sent to the client.

C. Challenges and Solutions

This section discusses two key challenges of the hybrid
ordering design of Orthrus and corresponding solutions.

Challenge-I: Ensuring atomicity of transactions. A payment
transaction involving multiple owned objects with decremental
operations (i.e., multiple payers) may be assigned to multiple
instances according to the partition module. If one payer
executes the payment in their instance successfully while
another payer fails in theirs, the transaction loses atomicity,
leading to inconsistent states across instances. Maintaining
atomicity across multiple instances, therefore, poses a signifi-
cant challenge.

Solution-I: Escrow mechanism for atomicity. We design
an escrow mechanism inspired by the escrow method pro-
posed in [22], but simplify the escrow process by focusing
on the temporary reservation of funds. When a transaction
with multiple payers is assigned to different instances, each
instance performs an escrow operation on its respective payer’s
balance, temporarily deducting the amount from each payer.

5

If all escrow requests within the transaction are successfully
committed, these temporary deductions become permanent.
However, if any escrow request fails, all escrows associ-
ated with this transaction are canceled, and the amounts are
refunded to the respective payers. Once a replica observes
that all payers in a transaction have successfully escrowed
their amounts, it commits all escrow requests. If any escrow
request fails, it aborts all escrowed requests for the transaction,
ensuring atomicity is preserved.

Challenge-II: Avoiding payment transactions blocking.
When a contract transaction and a subsequent payment trans-
action share the same payer, the contract transaction may block
the payment transaction due to the need for global ordering.
Since the contract transaction must be globally ordered for
consistency across all instances, any dependent transactions
involving the same payer are delayed until the contract trans-
action is confirmed. This dependency leads to inefficiencies
and increased latency for the payment transaction.

Solution-II: Escrow mechanism to avoid blocking. To
address this issue, we extend the escrow mechanism to allow
payment transactions to proceed without being blocked by
pending contract transactions. When a replica encounters a
contract transaction involving a payer, it escrows the required
amounts from the payer. This approach allows subsequent
payment transactions involving the same payer to be evaluated
and processed as though the contract transaction’s decremental
operation has been executed, thus avoiding blocking. Once
the contract transaction reaches global order and is con-
firmed, the replica either commits the escrowed amounts if
the transaction executes successfully or refunds the amounts
if it fails. This solution ensures that contract transactions do
not block subsequent payments, improving system efficiency
while maintaining consistency.

V. ORTHRUS ALGORITHM

In this section, we present the core algorithm of Orthrus, as
illustrated in Algorithm 1. Overall, Orthrus operates in epochs,
following the design in [16], [19], with specific sequence
numbers assigned to each instance in each epoch. A replica
ends an epoch only after confirming all sequence numbers
assigned to it within that epoch. In each epoch, Orthrus handles
several key processes: transaction partitioning (Sec. V-A), par-
tial and global ordering (Sec. V-B), and transaction execution
(Sec. V-C). At the end of each epoch, it creates checkpoints
and performs garbage collection (Sec. V-D).

A. Partition Transactions

Upon receiving a transaction tx, replica r adds tx to one
or more buckets based on its involved objects. First, it verifies
the validity of the transaction’s format and checks the owner’s
signature. Once verified, replica r calls the assign(o) function
to determine the appropriate bucket(s) for tx. Specifically, the
replica iterates through each object involved in the transaction.
For each object, if the object is of type owned and the
transaction’s operation on the object is decremental, the replica

Algorithm 1 Orthrus Algorithm for replica r

1: upon initialize system
2: for i ∈ [0,m− 1] ▷ m is the number of instances
3: if isLeader(i, r) then ▷ r is the leader of instancei
4: for sn ∈ {0, 1, 2, ...}
5: b.S ← currentState
6: b.txs← pullValidTx(bucketi, b.S)
7: b.ins← i; b.sn← sn; b.σ ← sign(b, r)
8: trigger⟨sb-broadcast|b⟩
9:

10: upon receive tx ▷ partition transactions
11: if validateTx(tx) then
12: for o ∈ tx.O where

o.type = owned ∧ o.op = decremental
13: i← assign(o)
14: push(tx, bucketi)
15:
16: upon event ⟨sb-deliver|b⟩ ▷ order transactions
17: plog[b.ins][b.sn]← b
18: globalOrder(b, glog)
19:
20: upon firstPending(plog[i]) ̸= ⊥ ▷ execute transactions
21: tx← firstPending(plog[i])
22: for o ∈ tx.O where

assign(o) = i∧o.type = owned∧o.op = decremental
23: escrow(o, tx)
24: if (o, tx) /∈ elog
25: abortEscrow(tx)
26: abort(tx) ▷ remove tx from all logs
27: else if allEscrowed(tx)← true

∧tx.type = payment
28: commitEscrow(tx)
29: for o ∈ tx.O where o.op = incremental
30: o.value← apply(o, tx.o.op)
31:
32: upon firstPending(glog) ̸= ⊥
33: tx← firstPending(glog)
34: if isLastPosition(tx, glog)
35: if exe(tx) = true ∧ allEscrowed(tx) = true
36: commitEscrow(tx)
37: else
38: abortEscrow(tx)
39: abort(tx) ▷ remove tx from glog
40: else
41: remove(tx, glog) ▷ remove this tx from glog

calls assign(o) to determine the appropriate bucket index for
the object. After obtaining the bucket index, tx is pushed into
the corresponding bucket. Each bucket is an append-only list
for backups but allows both push and pull operations for its
leader. If tx is already in a bucket, it will not be added again
to avoid duplication.

6

Algorithm 2 Escrow method

1: function escrow(o, tx)
2: value← apply(o, o.op)
3: if value ≥ o.con
4: o.value← value
5: append((o, tx), elog)
6:
7: function allEscrowed(tx)
8: allEscrowed(tx)← true
9: if ∃ o ∈ tx.O s.t. ((o.type = owned)∧

o.op = decremental) ∧ ((o, tx) /∈ elog)
10: allEscrowed(tx)← false
11:
12: function commitEscrow(tx)
13: for o ∈ tx.O ∧ (o, tx) ∈ elog
14: remove((o, tx), elog)
15:
16: function abortEscrow(tx)
17: for o ∈ tx.O ∧ (o, tx) ∈ elog
18: undo(o, o.op)
19: remove((o, tx), elog)

B. Order Transactions

We employ two types of logs for transaction ordering: the
partial log, denoted as plog, and the global log, denoted as
glog. Each log consists of multiple entries, with each entry
capable of holding a batch of transactions. Each instance
maintains its plog, which is used for the partial ordering of
transactions within that instance. Meanwhile, the system as a
whole maintains a single glog to ensure a global ordering of
transactions across the system.

We treat the SB as a black box, interacting with it through
two defined events: ⟨sb-broadcast|b⟩ and ⟨sb-deliver|b⟩. Here,
⟨sb-broadcast|b⟩ represents the event where a block b is
broadcasted into the SB, while ⟨sb-deliver|b⟩ signifies the event
when the SB delivers the block b after ordering.

Broadcast transactions. Upon initializing Orthrus, for each
instance, if replica r is the leader of instancei, it enters a loop
in which it creates a block b for each sequence number sn in
the current epoch and then broadcasts b in the SB instance.
In each iteration, the leader creates a block b and references
the current system state S, which consists of the sequence
number of the last block on each instance. Using this state S,
the leader pulls a specified number of the oldest transactions
from the instance’s bucket. These transactions are valid under
S, meaning that S provides a consistent baseline against which
each transaction’s prerequisites are satisfied. Backup replicas
can check the validation of transactions based on this state.
If there are insufficient transactions to meet this number, the
leader waits for a timeout and then pulls available transactions
from the bucket. The leader then sets the instance index and
sequence number for the block, signs it, and broadcasts it in
the SB instance, where all replicas participate in ordering and
delivering the block. If r is not the leader, it participates in

the SB instances as a backup.

Deliver transactions. Upon delivering a block b from an
SB instance with a sequence number, the replica orders the
block by appending it to the partial log plog at the instance
index b.ins and sequence number b.sn as well as invokes the
globalOrder function to append it to the global log glog. Each
replica locally computes the global index of a block based on
its parameters, which determine its position in the global order.
To achieve this, Orthrus adopts the dynamic global ordering
algorithm from Ladon [19], which is detailed in Appendix A.

Failure detector. In Orthrus, a failure detection module (also
called the view-change mechanism) is integrated into the SB
protocol. This module enables replicas to change the faulty
leader for an SB instance and has been widely used in prior
work [26], [30]–[32]. For instance, in PBFT, replicas begin a
view change to replace the leader when suspecting the leader
of Byzantine behavior. When li, the leader of instancei fails
at sequence number sn, the recovery process involves three
steps: 1) All honest replicas detect the failure of li. 2) All
honest replicas agree on the state of instancei and the new
leader l

′

i. 3) All honest replicas restart instancei from sn.
The failure detector is used to deal with censorship attacks

and spoofing attacks, In a censorship attack, Byzantine lead-
ers can selectively ignore or censor certain transactions. To
address this, we require that a client broadcast the transaction
tx to at least f+1 replicas, where f is the maximum number of
faulty replicas. This ensures that at least one honest replica will
receive and push tx to the corresponding bucket. If the leader
fails to propose tx within a reasonable period, other replicas
can detect this failure and request a leader replacement. In a
spoofing attack, a Byzantine leader might broadcast a block
referencing an incorrect state S. If a replica finds that a
transaction within the block is invalid based on the specified
state S, it detects the leader’s failure. The replica can also
request the blocks it missed in the state S from the leader.
Should the leader be unable to provide these blocks, it detects
the leader’s failure as well. Additionally, we limit the number
of messages that one replica can send to another within a given
period to prevent Denial of Service (DoS) attacks.

C. Execute Transaction

To introduce the transaction execution process, we first
provide an overview of the escrow mechanism, a foundational
component of Orthrus ’s execution phase.

Escrow mechanism. Each replica maintains an escrow log
elog to manage the escrow of objects and transactions. The
Escrow mechanism in Orthrus is shown in Algorithm 2.
• The escrow function attempts to perform an escrow oper-
ation on a single object o within the transaction tx. It first
calculates the value by applying the operation o.op on o’s
current state. If the resulting value satisfies the condition
o.con, the function updates o.value and appends this escrow
request to the elog.
• The allEscrowed function is used to check whether owned
objects in tx with the decremental operation have been

7

successfully escrowed. It initializes allEscrowed(tx) as
true, then iterates over each object o in tx. If an object
with a decremental operation and owned type has not been
escrowed, allEscrowed(tx) is set to false, and the function
breaks out of the loop early.
• The commitEscrow function is called to remove all the
escrow requests of tx from the elog.
• The abortEscrow is called to undo and remove all the
escrow requests of tx in the elog.
The replica monitors the plogs and glog to identify the next

transaction ready for execution, referred to as the first pending
transaction in the log. The first pending transaction is defined
as the transaction for which all preceding transactions in the
log, with smaller indexes, have been confirmed.

Execute transactions in plog. Upon identifying the first
pending transaction tx in plog[i], for each object o in tx, if o
is an owned object belongs to block b in the current instance
with a decremental operation, the replica attempts to perform
an escrow on o for tx. The escrow is performed on the system
state b.S referred to by the transaction or any subsequent state
derived from it through valid updates. If the escrow operation
on o fails, all escrows in tx are aborted. Then the transaction
tx is aborted, which means tx is removed from all the partial
logs plog and the global log glog. If all required escrows for
tx are successful and tx is a payment transaction, the system
commits all escrows in tx, and proceeds to other objects in
tx with incremental operations by applying the incremental
operation to update o.value accordingly.

Execute transactions in glog. When a replica identifies the
first pending transaction tx in glog, it first checks if this
is the last occurrence of tx in glog, as a transaction may
appear in multiple positions within glog. If it is not the last
occurrence, tx is simply removed from the current position
in glog. If it is the last occurrence, the replica proceeds to
execute tx and verify whether all escrow requests within the
transaction are successful. If both the execution and escrow
checks are successful, the replica commits all escrow requests
associated with tx. If any escrow request fails, all escrows in
tx are aborted, and tx is removed from glog in all its occur-
rences. Notably, executing tx in the global log (glog) must
strictly align with the global state at its designated position
in glog.This ensures that tx is processed consistently across
all replicas under the same system state, thereby maintaining
overall consistency.

D. Checkpoint and Garbage Collection

Orthrus runs a simple checkpoint protocol at the end of
each epoch. Upon epoch completion, each replica broadcasts
a checkpoint message to all other replicas, containing a signed
digest summarizing the blocks it processed during that epoch.
When a replica receives a sufficient quorum of matching
checkpoint messages (i.e., from at least 2f + 1 replicas), it
creates a stable checkpoint, which serves as a verified snapshot
of the epoch’s blocks. This stable checkpoint enables the
replica to securely discard the data from the completed epoch,

allowing for efficient garbage collection. Additionally, unexe-
cuted transactions can be discarded, preventing the retention
of transactions that will never be executed.

VI. CORRECTNESS ANALYSIS

In this section, we prove the safety and liveness properties
of Orthrus. For safety, we show that replicas in the same
state execute an identical set of transactions, with payment
transactions yielding consistent object values across replicas
due to their commutative nature, and contract transactions
producing consistent results by being executed sequentially
under a global ordering. For liveness, we demonstrate that
any transaction received by an honest replica will eventually
be proposed and delivered by its corresponding SB instances,
with all instances achieving consistent execution outcomes
(success or failure). As a result, each transaction will even-
tually be confirmed by all honest replicas.

Lemma 1. If two honest replicas reach the same state S, they
must successfully execute the same set of transactions.

Proof. Let r1 and r2 be two honest replicas in the same
state S = (sn0, sn1, . . . , snm−1), where sni represents the
maximum sequence number of transactions delivered by SB
instance i. By the agreement property of the SB protocol, both
replicas r1 and r2 must have delivered the same sequence
of transactions for each SB instance up to sni. For contract
transactions, which are globally ordered, both replicas execute
them in the same sequence and under the same state, ensuring
that the outcome is identical. For a payment transaction in a
block b, which refers to the state b.S agreed upon by all the
honest replicas, the execution is guaranteed to succeed as long
as both replicas execute them under b.S or any subsequent
state derived from it through valid updates.

Lemma 2. If two honest replicas successfully execute the same
set of transactions T , they must have consistent final values
for all owned objects involved in T .

Proof. If two honest replicas r1 and r2 successfully execute
the same set of transactions T . Let O = {o1, o2, . . . , on} be
the set of all owned objects involved in T , each transaction
txi ∈ T has the form:

txi = {(oi1 , oj1 ,∆1), (oi2 , oj2 ,∆2), . . . , (oik , ojk ,∆k)},

where each tuple (oip , ojp ,∆p) denotes a decremental opera-
tion on object oip and an incremental operation on object ojp
by the same amount ∆p. The final value of any object o ∈ O
after applying all transactions in T is:

value(o) = value0(o) +
∑

txi∈T,
(o,oj ,∆)∈txi

∆

︸ ︷︷ ︸
o is payee

−
∑

txi∈T,
(oi,o,∆)∈txi

∆

︸ ︷︷ ︸
o is payer

.

Here value0(o) is the initial value of o, the first sum accumu-
lates all increments to o, and the second sum accumulates all
decrements from o. Therefore, for any permutation L of T that

8

ensures the successful execution of all transactions, executing
in the order specified by L will result in the same final values
for all objects in O.

Lemma 3. If two honest replicas successfully execute the same
set of transactions T , they must have consistent final values
for all shared objects involved in T .

Proof. Since the execution order of contract transactions in T
is the same for both replicas, we can consider the sequence
tx1, tx2, . . . , txn representing this fixed order. For each trans-
action txi in the sequence, all replicas apply txi at the same
step in the execution. Let the value of any shared object o be
valuei(o) after transaction txi is executed on it. Because txi

is deterministic and is executed at the same step on all replicas,
any change to valuei(o) will be identical across replicas. Thus,
the final values for all shared objects involved in T will be
consistent across replicas r1 and r2, provided they started with
consistent initial values.

Theorem 1 (Safety). If two honest replicas reach the same
state S, they must have consistent values for all objects.

Proof. Given that r1 and r2 are in the same state S (Sr1 =
Sr2), Lemma 1 ensures that both replicas successfully execute
the same set of transactions. By Lemma 2 and Lemma 3, if the
replicas have consistent initial values for all objects (owned
and shared) involved in T , they must have consistent final
values for those objects after execution. Thus, for all objects
o, valuer1(o) = valuer2(o).

Lemma 4. For any transaction tx sent by a correct client c,
tx is eventually broadcast in all SB instances it belongs to.

Proof. For any transaction tx sent by a correct client c, the
transaction is sent to at least f + 1 replicas, ensuring that at
least one honest replica receives it and adds it to the relevant
buckets. For each instance it belongs to, if the leader is honest,
it will broadcast tx. If the leader is Byzantine, it will be
detected and a new honest leader will be selected eventually.
This new leader will broadcast tx from the bucket, ensuring
that tx is eventually broadcast.

Lemma 5 (Atomicity). For a payment transaction tx, either
all its sub-transactions are executed successfully, or aborted.

Proof. By the Lemma 4 and the termination property of the
SB protocol, all sub-transactions of tx will eventually be
delivered. Each sub-transaction is then processed using the
escrow mechanism. According to this mechanism, if any sub-
transaction fails during the escrow phase, all associated escrow
requests of tx are aborted, meaning that all sub-transactions
will be aborted. Conversely, if all escrow requests are success-
fully committed, all sub-transactions are executed successfully.
Thus, the atomicity of the transaction is preserved.

Lemma 6. For any transaction tx broadcast by an honest
replica, tx is eventually confirmed by all the honest replicas.

Proof. By the termination property of the SB protocol, a
transaction broadcast by an honest replica will eventually be

delivered by all honest replicas. For a payment transaction,
all the sub-transactions will be executed or aborted after
being delivered by the SB instances (Lemma 5). Thus, the
payment transaction will be confirmed. Contract transactions
are processed by the global ordering algorithm after being
delivered by the SB instances. This algorithm traverses all
delivered transactions to ensure they are globally ordered and
confirmed. Consequently, all honest replicas will eventually
confirm all delivered contract transactions.

Theorem 2 (Liveness). Given a transaction tx from a correct
client c, tx is eventually confirmed by all honest replicas.

Proof. Assuming the transaction tx is sent by a correct client,
by Lemma 4, tx will be broadcast in all SB instances it belongs
to. Following this, according to Lemma 6, tx will be confirmed
by all honest replicas.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Orthrus
in different scenarios and compare Orthrus against ISS [16],
RCC [17], Mir-BFT [18], DQBFT [24], and Ladon [19], the
state-of-the-art Multi-BFT protocols. We implemented Orthrus
in Golang [23]. The evaluation results are illustrated using
ChiPlot1. We use PBFT [30] consensus protocol to implement
SB instances. With our experiments, we answer the following
questions:
• Q1: How does Orthrus perform as compared with ISS,
RCC, Mir-BFT, DQBFT, and Ladon with a varying number
of replicas? (Sec. VII-B)
• Q2:How does Orthrus perform with different proportions of
payment transactions? (Sec. VII-C)
• Q3: What is the latency breakdown of Orthrus as compared
to ISS? (Sec. VII-D)
• Q4: How does Orthrus perform under faults? (Sec. VII-E)

A. Implementation and Experimental Setup

Implementation. Orthrus2 is implemented in Golang and
built on top of the ISS3 [16] platform. Golang was chosen
for its concurrency features and performance, and the ISS
platform provides a solid foundation for its infrastructure.
Our implementation is fully integrated with the ISS platform,
ensuring compatibility and allowing for direct comparisons
with other protocols developed on the same foundation.

Experimental setup. We deploy our protocols on AWS EC2
instances (c5a.2xlarge), with each instance representing a
replica in our distributed system. Each instance is equipped
with 8vCPUs, 16GB of RAM, and runs Ubuntu Linux 22.04.
The experiments are conducted in both LAN and WAN
environments. In the LAN setup, machines communicate over
private network interfaces with a bandwidth of 1Gbps. For

1https://www.chiplot.online/
2The source code is available at https://github.com/Hanzheng2021/Orthrus/.
3The source code for ISS is available at https://github.com/hyperledger-labs/

mirbft/tree/research-iss.

9

https://github.com/Hanzheng2021/Orthrus/
https://github.com/hyperledger-labs/mirbft/tree/research-iss
https://github.com/hyperledger-labs/mirbft/tree/research-iss

8 16 32 64 128
Number of replicas

0

20

40

60
Th

ro
ug

hp
ut

 (k
tp

s)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(a) #Stragglers = 0, WAN

8 16 32 64 128
Number of replicas

0

5

10

15

20

25

La
te

nc
y

(s
)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(b) #Stragglers = 0, WAN

8 16 32 64 128
Number of replicas

0

20

40

60

Th
ro

ug
hp

ut
 (k

tp
s)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(c) #Straggler = 1, WAN

8 16 32 64 128
Number of replicas

0

40

80

120

160
La

te
nc

y
(s

) Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(d) #Straggler = 1, WAN

Figure 3: Throughput and latency of Orthrus, ISS, RCC,
Mir, DQBFT, and Ladon in WAN.

the WAN setup, instances are distributed across four Amazon
cloud data centers located in France, the United States, Aus-
tralia, and Tokyo, with network interfaces limited to 1Gbps.
We utilize NTP for clock synchronization.

The dataset for our experiments is derived from the
Ethereum blockchain, consisting of approximately 200,000
transactions extracted from blocks with heights ranging from
17,198,000 to 17,202,000. These transactions are drawn from a
pool of 18,000 active accounts and include both payment and
contract transactions, with payment transactions comprising
46% of the transactions. This distribution is preserved in our
experimental setup, using real transaction data as input. Once
these transactions are processed, we reset the account states by
introducing specific transactions and then re-execute the same
set of 200,000 transactions to evaluate system performance
under repeated workloads.

Each replica can function both as a leader for one instance
and as a backup for others, i.e., m = n. To maximize
throughput, we allow a large batch size of 4096 transactions,
each carrying a payload of 500 bytes. We evaluate system
performance under two different network conditions: with and
without stragglers. In the straggler scenario, one instance oper-
ates at 10 times slower speed than the others. All experiments
are repeated five times and the average results are reported.

B. Throughput and Latency

We evaluate the performance of Orthrus, ISS, RCC, Mir,
DQBFT, and Ladon without stragglers and with one straggler
in both We evaluate two performance metrics: 1) throughput:
the number of transactions responded to clients per second,
and 2) latency: the average end-to-end delay from the moment
clients submit transactions until they receive f +1 responses.

8 16 32 64 128
Number of replicas

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (k

tp
s)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(a) #Stragglers = 0, LAN

8 16 32 64 128
Number of replicas

0

4

8

12

La
te

nc
y

(s
)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(b) #Stragglers = 0, LAN

8 16 32 64 128
Number of replicas

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (k

tp
s)

Orthrus
ISS
RCC
Mir
DQBFT
Ladon

(c) #Straggler = 1, LAN

8 16 32 64 128
Number of replicas

0

40

80

120

160

La
te

nc
y

(s
) Orthrus

ISS
RCC
Mir
DQBFT
Ladon

(d) #Straggler = 1, LAN

Figure 4: Throughput and latency of Orthrus, ISS, RCC,
Mir, DQBFT, and Ladon in LAN.

We measure the peak throughput in kilo-transactions per sec-
ond (ktps) before reaching saturation, along with the associated
latency in seconds (s).
1) Performance in WAN. Fig. 3a and Fig. 3c demonstrate that
Orthrus consistently maintains throughput within the top tier.
Without stragglers, Orthrus shows very similar throughput
with ISS and RCC. With one straggler, Orthrus achieves
comparable or superior throughput compared to dynamic
global ordering Multi-BFT protocols. Additionally, Orthrus
significantly surpasses pre-determined Multi-BFT protocols
(e.g., ISS, RCC, Mir), delivering 9.5× higher throughput
under the same conditions. Comparing Fig. 3a and Fig. 3c, we
observe that a straggler significantly impacts pre-determined
Multi-BFT protocols, causing a drop of 89.9% in throughput
compared to those without stragglers on 128 replicas. Orthrus
and Ladon were less affected by stragglers, experiencing only
a 6.5% and 9.2% drop in throughput, respectively, compared
to their performance without stragglers on 128 replicas.

Fig. 3b and Fig. 3d illustrate that Orthrus consistently
achieves the lowest latency compared to other protocols.
Without stragglers, Orthrus reduces the latency of 18.6% of
ISS and RCC with 64 replicas, 18.9% of Ladon, 54.5% and
64.3% of DQBFT and Mir, on 128 replicas, respectively. With
a straggler, the effect becomes more pronounced. On 128
replicas, Orthrus reduces the latency of 68.6% of ISS and
RCC, 16.7% of Ladon, 50.0%, and 87.0% of DQBFT and Mir,
respectively. By comparing Fig. 3b and Fig. 3d, we observe a
similar impact of stragglers on latency, consistent with their
effect on the throughput across different protocols.
2) Performance in LAN. Fig. 4 shows that Protocols show
similar trends in LAN with WAN, with higher throughput
and lower latency. Without stragglers and with a straggler,

10

0 20 40 60 80 100
Payment transactions proportion(%)

70

65

60

55

50

45

40

35

Th
ro

ug
hp

ut
 (k

tp
s)

#Straggler=0
#Straggler=1

(a) Throughput

0 20 40 60 80 100
Payment transactions proportion(%)

14

12

10

8

6

4

2

0

La
te

nc
y(

s)

#Straggler=0
#Straggler=1

(b) Latency

Figure 5: Throughput and latency of Orthrus under dif-
ferent payment transactions proportions in WAN.

Orthrus always shows high throughput and low latency among
all protocols. With one straggler, Orthrus demonstrates approx-
imately 8× higher throughput than ISS, RCC, and Mir, and
37.1% and 7.9% higher than DQBFT and Ladon, respectively,
on 128 replicas. The latency is reduced by 16.7%, and 50.0%
compared to Ladon and DQBFT, respectively, on 128 replicas.

The excellent performance of Orthrus is mainly due to its
fast confirmation mechanism for simple payment transactions,
which allows some transactions to avoid global ordering and
thus reduces latency. In the absence of stragglers, the delay
introduced by global ordering is minimal, so Orthrus shows
only a slight advantage. However, in the presence of stragglers,
the delay caused by global ordering is significant, giving
Orthrus a substantial advantage over pre-determined systems.

C. Varying Payment Transactions Proportions

Fig. 5 illustrates the performance of Orthrus with varying
proportions of payment transactions. The experiments are
conducted on 16 replicas in WAN with/without a straggler.
As depicted in Fig. 5, the throughput increases and the la-
tency decreases as the proportion of payment transactions
rises. Specifically, without stragglers, when the proportion
of payment transactions increases from 0% to 100%, the
throughput increases by up to 2.1% and the latency decreases
by 32.7%. However, with stragglers, the throughput sees a
substantial increase of up to 17.3%, while latency drops by
53.8%. This pronounced change in the presence of stragglers is
due to the higher proportion of payment transactions, allowing
more transactions to be quickly confirmed, thereby greatly
enhancing the overall processing efficiency.

D. Latency Breakdown

We present a detailed latency breakdown of Orthrus and
ISS to understand the average spent time of different stages.
We divide the process into five distinct stages: 1) Sending
transactions: This stage spans the period from when the client
sends the transaction until the replica receives it; 2) Pre-
processing: This stage spans from receiving the transaction to
broadcasting the transaction at the replica; 3) Partial Ordering:
This stage extends from when the replica broadcasts a trans-
action to the delivery of the transaction; 4) Global Ordering:
This begins with the delivery of the transaction and ends with
the confirmation of the transaction; and 5) Reply: This final

0 5 10 15 20 25 30 35
Latency (s)

Orthrus

ISS

ReplyGlobal orderingPartial orderingPreprocessingSend

Figure 6: Breakdown of latency in ISS versus Orthrus.

stage covers when f + 1 replicas confirm the transaction to
when the client receives f + 1 replies.

The experiment was conducted in WAN with 16 replicas
and one straggler. For each stage, the average time across
all transactions is measured. The results are illustrated in
Fig. 6. For the transaction sending and reply stages, the
latency of Orthrus and ISS are comparable, indicating similar
communication infrastructure efficiencies. A similar trend is
observed in the preprocessing and partial ordering stages. One
notable difference between the two protocols is evident in
the global ordering stage, which exhibits a substantial delay
in ISS, taking 34.5 seconds when a straggler is present and
accounting for a remarkable 92.8% of the total latency.

This detailed breakdown demonstrates that the global order-
ing stage in ISS introduces a significant delay when stragglers
are involved, becoming a bottleneck and exacerbating latency
issues. In contrast, Orthrus achieves significantly lower latency
in the presence of stragglers, taking only 7.4 seconds for the
global ordering. This lower latency is attributed to Orthrus’s
efficient handling of transactions through its fast path mech-
anism, which minimizes the impact of slow global ordering.
Additionally, the cost of global ordering can be further reduced
as the proportion of payment transactions increases.

E. Performance Under Faults

In this section, we study the performance of Orthrus under
faults in a WAN of 16 replicas, allowing up to 5 faulty replicas.
Our analysis covers both detectable faults and undetectable
faults. We evaluate scenarios with 0, 1, and 5 faulty replicas.
The PBFT view change timeout is set at 10 seconds.

Detectable faults. We analyze how detectable faults impact
the throughput and latency of Orthrus. Fig. 7 shows the
throughput and latency average over time. In Fig. 7a, the short
drops to 0 in throughput correspond to the epoch change.
During the first epoch (0-9 seconds), no faults occur, and the
system operates at its expected performance level.

At the start of the second epoch (9 seconds), faults are
introduced, causing a significant drop in throughput by more
than 50%. Specifically, when there is one faulty replica, the
throughput drops by approximately 50%, whereas, with 5
faulty replicas, the decrease is slightly more pronounced. This
behavior is influenced by the transaction composition: 54% of
the transactions are contract-based and require global ordering,
making them unconfirmed regardless of the number of faults.
In contrast, partially ordered payment transactions are only
affected in instances led by faulty replicas, meaning their

11

0 5 10 15 20 25 30 35
Time (s)

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (k

tp
s) f=0

f=1
f=5

(a) Throughput average (over 0.5s intervals) over time.

0 5 10 15 20 25 30 35
Time (s)

0

5

10

15

20

La
te

nc
y (

s)

f=0
f=1
f=5

(b) Latency average (over 0.5s intervals) over time.

Figure 7: Throughput and latency average of Orthrus over
time with 0, 1, 5 faults. The faults occur at 9 seconds.

0 1 2 3 4 5
Number of faulty replicas

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (k

tp
s)

(a) Throughput

0 1 2 3 4 5
Number of faulty replicas

8
7
6
5
4
3
2
1
0

La
te

nc
y

(s
)

(b) Latency

Figure 8: Throughput and latency of Orthrus under dif-
ferent number of undetectable faulty replicas in WAN.

impact scales with the number of faults. During the decline in
throughput, latency remains nearly unchanged. This is because
transactions confirmed in this phase are from instances led by
honest replicas, which are less affected by faulty replicas.

Upon fault detection, the system initiates the view change
process to recover, completing at 19 seconds. Following this,
throughput rises sharply due to the confirmation of transactions
in the global log. In Fig. 7b, latency exhibits a similar trend,
as these confirmed transactions have been blocked for a
significant duration, resulting in a high average latency. The
brief interruption in the latency curve before 19 seconds
corresponds to the period where throughput drops to zero in
Fig. 7a, indicating that no transactions were confirmed during
this time.

By the beginning of the third epoch (22 seconds), through-
put recovers as the system stabilizes, and latency gradually
stabilizes as well, demonstrating Orthrus ’s resilience to de-
tectable faults.

Undetectable faults. In this section, we evaluate undetectable
Byzantine behaviors, where a replica avoids participating in
other instances while continuing to propose blocks in the
instance it leads, thereby preventing a leader timeout. This
behavior does not trigger a view change. Fig. 8 presents the
throughput and latency of Orthrus under different numbers of

faulty replicas in a 16-replica WAN setting. As the number
of faulty replicas increases, throughput declines moderately,
while latency is impacted more significantly. This is because
when faults reach the maximum threshold, system latency is
primarily limited by the slowest honest replica.

VIII. RELATED WORK

In this section, we introduce prior works of single-leader
BFT consensus protocols and Multi-BFT consensus protocols.
Due to space constraints, we refer readers to Appendix C for
works about the partial ordering of payment systems and other
scaling approaches of BFT consensus.

Single BFT consensus. Castro and Liskov propose PBFT [13],
the first practical BFT protocol that inspires many subse-
quent protocols [26], [31]–[39] Notable examples include
Zyzzyva [33], Tendermint [34], and HotStuff [26]. These
protocols adopt a leader-based scheme, which simplifies the
procedure of reaching consensus on proposals, however, leads
to a leader bottleneck limiting system scalability [40]–[42].

Multi-BFT consensus. Multi-BFT consensus allows replicas
to operate multiple consensus instances in parallel, effec-
tively addressing the leader bottleneck of single BFT con-
sensus [16]–[19]. Mir-BFT [18] is among the first Multi-
BFT protocols, which runs in epochs to globally order blocks
delivered from instances by some pre-determined indices. An
epoch change is triggered if any leader is faulty, making it
vulnerable to Byzantine leaders. Later, ISS [16] improved on
Mir-BFT by permitting replicas to deliver no-op messages
to prevent frequent epoch changes. RCC [17] also adopts
a pre-defined global ordering for delivered blocks. Thus, a
straggler instance could delay the start of the next epoch for
other replicas, leading to a slowdown of the entire system.
DQBFT [24] uses a unique BFT instance to globally order
output transactions from other instances to promote efficiency.
However, the reliance on a single ordering BFT instance can
be susceptible to targeted attacks [43]. Ladon [19] proposes
monotonic ranks to dynamically order blocks across instances,
mitigating the impact of slow replicas. These approaches
reduce the latency caused by slow instances, but the global
ordering phase still accounts for a significant proportion (al-
most half) of the system latency.

Unlike the above-mentioned protocols, TELL [44] optimizes
the execution layer rather than consensus layer. TELL employs
a State Hash Table (SHT) to track read/write sets, enabling
concurrent execution of transactions across instances and
within blocks. TELL resolves conflicts through re-execution
and merges instances at the epoch level, which reduces exe-
cution waiting latency but limits its overall improvement in
end-to-end client latency. In contrast, Orthrus tries to avoid
cross-instance conflicts through a tailored transaction assign-
ment strategy, eliminating the need for re-executing payment
transactions to improve end-to-end latency.

IX. CONCLUSION

In this paper, we introduced Orthrus, a novel approach to
enhance the performance of Multi-BFT protocols by sidestep-

12

ping the limitations typically introduced by global ordering.
Leveraging a hybrid design, Orthrus integrates partial ordering
for conflict-free transactions and global ordering for general
non-commutative transactions. We also introduce a customized
escrow mechanism to ensure transaction atomicity and seam-
less interaction between partial and global logs. Our experi-
ments show that in WAN of 128 replicas, Orthrus decreases
latency by at least 68% as compared to pre-determined global
ordering Multi-BFT protocols with one straggler.

REFERENCES

[1] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr
El Abbadi, Boon Thau Loo, and Mohammad Sadoghi. The Bedrock
of Byzantine Fault Tolerance: A Unified Platform for BFT Protocols
Analysis, Implementation, and Experimentation. In NSDI, 2024.

[2] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
Caper: a Cross-Application Permissioned Blockchain. In PVLDB, 2019.

[3] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad
Sadoghi. ResilientDB: Global Scale Resilient Blockchain Fabric. In
PVLDB, 2020.

[4] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad
Sadoghi. Proof-of-Execution: Reaching Consensus Through Fault-
Tolerant Speculation. In EDBT, 2021.

[5] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang,
Gang Chen, Qian Lin, and Beng Chin Ooi. Blockchains vs. Distributed
Databases: Dichotomy and Fusion. In SIGMOD, 2021.

[6] Shlomi Dolev, Bingyong Guo, Jianyu Niu, and Ziyu Wang. SodsBC:
A Post-quantum by Design Asynchronous Blockchain Framework. In
TDSC, 2023.

[7] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-
lai Zeldovich. Algorand: Scaling Byzantine Agreements for Cryptocur-
rencies. In SOSP, 2017.

[8] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-
ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[9] Marko Vukolić. The Quest for Scalable Blockchain Fabric: Proof-of-
Work vs. BFT Replication. In Open Problems in Network Security,
2016.

[10] Dahlia Malkhi. Blockchain in the Lens of BFT. In ATC, 2018.
[11] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Do-

minik Harz, and William Knottenbelt. SoK: Decentralized Finance
(DeFi). In AFT, 2022.

[12] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-
spending Fast Payments in Bitcoin. In CCS, 2012.

[13] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance.
In OSDI, 1999.

[14] Fangyu Gai, Ali Farahbakhsh, Jianyu Niu, Chen Feng, Ivan Beschast-
nikh, and Hao Duan. Dissecting the Performance of Chained-BFT. In
ICDCS, 2021.

[15] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Laurent Vanbever,
Roger Wattenhofer, and Patrick Wintermeyer. FnF-BFT: A BFT Protocol
with Provable Performance under Attack. In SIROCCO, 2023.

[16] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. State
Machine Replication Scalability Made Simple. In EuroSys, 2022.

[17] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. RCC: Resilient
Concurrent Consensus for High-throughput Secure Transaction Process-
ing. In ICDE, 2021.

[18] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-BFT:
Scalable and Robust BFT for Decentralized Networks. JSys, 2022.

[19] Hanzheng Lyu, Shaokang Xie, Jianyu Niu, Chen Feng, Yinqian Zhang,
and Ivan Beschastnikh. Ladon: High-Performance Multi-BFT Consensus
via Dynamic Global Ordering. In EuroSys, 2025.

[20] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
Proof of Work. In FC, 2016.

[21] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov,
Matteo Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, Andrei Tonkikh, and Athanasios Xygkis. Online Payments
by Merely Broadcasting Messages. In DSN, 2020.

[22] Patrick E O’Neil. The Escrow Transactional Method. TODS, 1986.
[23] Golang. https://go.dev/.

[24] Balaji Arun and Binoy Ravindran. Scalable byzantine fault tolerance
via partial decentralization. VLDB, 2022.

[25] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
Presence of Partial Synchrony. JACM, 1988.

[26] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta,
and Ittai Abraham. HotStuff: BFT Consensus with Linearity and
Responsiveness. In PODC, 2019.

[27] William E Weihl. Commutativity-based Concurrency Control for Ab-
stract Data Types. IEEE Trans Comput, 1988.

[28] Same Blackshear, Andrey Chursin, George Danezis, Anastasios
Kichidis, Lefteris Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon,
Todd Nowacki, Alberto Sonnino, et al. Sui Lutris: A Blockchain
Combining Broadcast and Consensus. In CCS, 2024.

[29] Christian Cachin, Rachid Guerraoui, and Luı́s Rodrigues. Introduction
to Reliable and Secure Distributed Programming. In Springer Science
& Business Media, 2011.

[30] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance
and Proactive Recovery. TOCS, 2002.

[31] Yehonatan Buchnik and Roy Friedman. FireLedger: A High Throughput
Blockchain Consensus Protocol. VLDB, 2020.

[32] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,
and Alin Tomescu. SBFT: a scalable and decentralized trust infrastruc-
ture. In DSN, 2019.

[33] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine Fault Tolerance.
SIGOPS, 2007.

[34] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. M.Sc. Thesis, University of Guelph, Canada, 2016.

[35] Jian Liu, Wenting Li, Ghassan O Karame, and Nadarajah Asokan.
Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing.
IEEE Trans. Comput, 2018.

[36] Hanzheng Lyu, Shaokang Xie, Jianyu Niu, and Chen Feng. Byzantine
Protocols with Asymptotically Optimal Communication Complexity. In
SecureComm, 2023.

[37] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. Fast-
Hotstuff: A Fast and Robust BFT Protocol for Blockchains. TDSC,
2023.

[38] Mohammad M Jalalzai, Chen Feng, Costas Busch, Golden G Richard,
and Jianyu Niu. The Hermes BFT for Blockchains. TDSC, 2021.

[39] Jianyu Niu, Runchao Han, Shengqi Liu, Fangyu Gai, Ivan Beschastnikh,
Yinqian Zhang, and Chen Feng. EBFT: Simplifying BFT Consensus
Through Egalitarianism. In arXiv preprint arXiv:2012.01636, 2020.

[40] Salem Alqahtani and Murat Demirbas. Bottlenecks in Blockchain
Consensus Protocols. In COINS, 2021.

[41] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. PigPaxos:
Devouring the Communication Bottlenecks in Distributed Consensus. In
SIGMOD, 2021.

[42] Fangyu Gai, Jianyu Niu, Ivan Beschastnikh, Chen Feng, and Sheng
Wang. Scaling Blockchain Consensus via a Robust Shared Mempool.
In ICDE, 2023.

[43] Ernesto Estrada. Network Robustness to Targeted Attacks. The Interplay
of Expansibility and Degree Distribution. EPJ B, 2006.

[44] Xing Tong, Zheming Ye, Zhao Zhang, Cheqing Jin, and Aoying Zhou.
TELL: Efficient Transaction Execution Protocol Towards Leaderless
Consensus. In ICDE, 2024.

[45] Andrei Tonkikh, Pavel Ponomarev, Petr Kuznetsov, and Yvonne-Anne
Pignolet. Cryptoconcurrency: (Almost) Consensusless Asset Transfer
with Shared Accounts. In CCS, 2023.

[46] Jakub Sliwinski and Roger Wattenhofer. Asynchronous Proof-of-Stake.
In SSS, 2021.

[47] Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-
Performance Byzantine Fault Tolerant Settlement. In AFT, 2020.

[48] Andrew Lewis-Pye, Oded Naor, and Ehud Shapiro. Flash: An Asyn-
chronous Payment System with Good-Case Linear Communication
Complexity. In arXiv preprint arXiv:2305.03567, 2023.

[49] Alex Auvolat, Davide Frey, Michel Raynal, and François Taı̈ani. Money
Transfer Made Simple: a Specification, a Generic Algorithm, and its
Proof. In arXiv preprint arXiv:2006.12276, 2020.

[50] Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei
Tonkikh. Permissionless and Asynchronous Asset Transfer. In Distrib
Comput, 2023.

[51] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All You Need is DAG. In PODC, 2021.

13

https://go.dev/

[52] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. Narwhal and Tusk: a DAG-Based Mempool and
Efficient BFT Consensus. In EuroSys, 2022.

[53] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris
Kokoris-Kogias. Bullshark: DAG BFT Protocols Made Practical. In
CCS, 2022.

[54] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li.
Shoal: Improving DAG-BFT Latency and Robustness. 2024.

[55] Dahlia Malkhi, Chrysoula Stathakopoulou, and Maofan Yin. BBCA-
CHAIN: One-Message, Low Latency BFT Consensus on a DAG. In
FC, 2024.

[56] Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis,
Lefteris Kokoris-Kogias, Arun Koshy, Alberto Sonnino, and Mingwei
Tian. MYSTICETI: Reaching the Latency Limits with Uncertified
DAGs. In NDSS, 2025.

[57] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A Sharded Smart Contracts Platform.
In NDSS, 2018.

[58] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. Towards Scaling Blockchain Systems
via Sharding. In SIGMOD, 2019.

[59] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, Shenyang Zhang, Yue
Lin, Zibin Zheng, and Song Guo. BrokerChain: A Cross-Shard
Blockchain Protocol for Account/Balance-based State Sharding. In
INFOCOM, 2022.

[60] Jelle Hellings and Mohammad Sadoghi. Byshard: Sharding in a
Byzantine Environment. In VLDB, 2021.

[61] Zicong Hong, Song Guo, Enyuan Zhou, Wuhui Chen, Huawei Huang,
and Albert Zomaya. Gridb: Scaling Blockchain Database via Sharding
and Off-Chain Cross-Shard Mechanism. In VLDB, 2024.

[62] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. A Secure Sharding Protocol for Open
Blockchains. In CCS, 2016.

[63] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding. In S&P, 2018.

[64] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain:
Scaling Blockchain via Full Sharding. In CCS, 2018.

[65] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi.
Sharper: Sharding Permissioned Blockchains over Network Clusters. In
SIGMOD, 2021.

[66] Ramakrishna Kotla and Michael Dahlin. High Throughput Byzantine
Fault Tolerance. In DSN, 2004.

[67] Aldenio Burgos, Eduardo Alchieri, and Fernando Dotti. On the Per-
formance of Using Parallel State Machine Replication to Implement
Blockchains. In LADC, 2021.

[68] Krishnasuri Narayanam, Akshar Kaul, Ken Kumar, and Pankaj Dayama.
Partial Order Transactions on Permissioned Blockchains for Enhanced
Scalability. In BRAINS, 2021.

[69] Dakai Kang, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi.
SpotLess: Concurrent Rotational Consensus Made Practical Through
Rapid View Synchronization. In ICDE, 2024.

APPENDIX A
GLOBAL ORDERING ALGORITHM

In this section, we introduce the dynamic global ordering
algorithm in Ladon [19], which is used in this paper. The
dynamic global ordering algorithm requires two parameters
to order blocks: the instance index and the rank. Given a
set of delivered blocks with these parameters, honest replicas
can independently execute the ordering algorithm to produce
a consistent sequence of globally confirmed blocks without
additional communication.

Rank. Before broadcasting a block, a leader first collects the
highest ranks from at least 2f +1 replicas. It then increments
the highest observed rank by one and assigns this value to
the proposed block. The leader then broadcasts the block
along with its assigned rank. Once consensus is reached, no

Algorithm 3 The Global Ordering Algorithm

1: function globalOrder(b, glog)
2: append(b,W) //W: blocks waiting to be confirmed
3: P ′ ← getLastBlock(P) //P: delivered blocks
4: b∗ ← findLowestBlock(P ′)
5: bar = (b∗.rank + 1, b∗.index) //compute the bar
6: bcan = findLowestBlock(W) //find candidate block
7: while bcan ≺ bar //bcan has a lower index than bar
8: append(bcan, glog) //globally confirm bcan
9: W ←W \ bcan //update W

10: bcan = findLowestBlock(W) //find next bcan
11: end while
12: end function

//Return block with the lowest ordering index
13: function findLowestBlock(V)
14: b∗ ← first block in V
15: for each b ∈ V do
16: if b ≺ b∗

17: b∗ ← b
18: end if
19: end for
20: return b∗

21: end function

additional procedure is needed to ensure agreement since the
rank is piggybacked with the block.

The rank parameter has two key properties:

• Agreement: All honest replicas have the same rank for a
delivered block.
• Monotonicity: If a block b′ is generated after an intra-
instance (or a delivered inter-instance) block b, then the rank
of b′ is larger than the rank of b.

A detailed description and formal proof can be found in
[19].

Global ordering algorithm. Algorithm 3 shows the global
ordering function running at a replica. The blocks are globally
ordered by increasing ranks and a tie-breaking to favor blocks
with smaller instance indices. For example, given two blocks
b and b′, block b will be globally ordered before b′, when
b.rank < b′.rank or b.rank = b′.rank∧b.index < b′.index.
For convenience, we use b ≺ b′ to denote that block b has a
lower global ordering index than block b′.

When a block b is delivered, the globalOrder function is
triggered to append the block b toW , which is the set of blocks
delivered by SB instances waiting to be globally ordered,
i.e., blocks delivered by SB instances but have not been
globally ordered. The replica then fetches the last delivered
block from the set P of blocks delivered by SB instances,
denoted by the set P ′. It then finds the block b∗ that has
the lowest ordering index among the blocks in P ′, i.e.,
∀b′ ∈ P ′ with b′ ̸= b∗ : b∗ ≺ b′. Thereafter, bar can be

14

0

Instance 0
1 2

0

Instance 1
1 2

Alice

Bob

Replicas𝑡𝑥1

0

Instance 0
1 2

0

Instance 1
1 2

Alice

Bob

Replicas

0
0

𝑇𝑖𝑚𝑒
𝑡1

𝑇𝑖𝑚𝑒
𝑡2

Alice Bob Carol0

0

0
0
1
1 0

0
1

1

0 0 1 1𝑔𝑙𝑜𝑔

𝑬𝒔𝒄𝒓𝒐𝒘𝒆𝒅

𝑬𝒙𝒆𝒄𝒖𝒕𝒆𝒅

1

1

2

2

2

𝑡𝑥1

𝑡𝑥2

𝑡𝑥2

Alice Bob Contract

𝑬𝒔𝒄𝒓𝒐𝒘𝒆𝒅

𝑬𝒔𝒄𝒓𝒐𝒘𝒆𝒅 𝑬𝒔𝒄𝒓𝒐𝒘𝒆𝒅

0

Instance 0
1 2

0

Instance 1
1 2

Alice

Bob

Replicas𝑡𝑥0

0

𝑇𝑖𝑚𝑒
𝑡0

Alice Bob0

𝑬𝒔𝒄𝒓𝒐𝒘𝒆𝒅

Figure 9: Protocol running example with two instances, three
clients, and a contract. txi is a transaction arrived at time ti.

computed as a tuple of (rank, index):

bar := (rank, index) = (b∗.rank + 1, b∗.index).

The threshold bar represents the lowest global ordering index
that can be owned by subsequently generated blocks. The bar
is initialized with (0, 0).

With bar defined, the replica repetitively checks uncon-
firmed blocks and decides which blocks to confirm. Specifi-
cally, the replica finds the block bcan ∈ W that has the lowest
ordering index, which is referred to as the candidate block. If
bcan has a lower ordering index than bar, bcan can be globally
confirmed because all future blocks will have higher indices
than bcan. In particular, bcan will be appended to the glog and
removed from the set W . The process repeats until no such
bcan can be found.

APPENDIX B
PROTOCOL RUNNING EXAMPLE

To give readers a better understanding of how the protocol
operates, we provide a running example of Orthrus, as shown
in Fig. 9. Consider a system with two instances, Instance 0
and Instance 1, and three clients: Alice, Bob, and Carol, with
initial balances of $4, $0, and $0, respectively. Assume Alice
is assigned to Instance 0 and Bob is assigned to Instance 1.
Additionally, there is a smart contract that requires two clients
to invoke it together, incurring a cost of $1 per client.

Example of payment transactions. Consider a payment
transaction tx0 with a single payer, Alice, and a single payee,
Bob, where Alice transfers $2 to Bob. The transaction involves
two owned objects, Alice and Bob, and is assigned to Instance
0, as Alice performs a decremental operation of $2. Assume
tx0 is included in Block 0 of Instance 0. Since there is only
one payer, tx0 is executed immediately, escrowing $2 from
Alice’s account and transferring it directly to Bob’s account.

Now consider another transaction tx1, where both Alice and
Bob each transfer $1 to a single payee, Carol. This transaction
involves three owned objects: Alice, Bob, and Carol. Alice
and Bob perform decremental operations of $1 each, while

Carol performs an incremental operation of $2. As a result,
tx1 is assigned to both Instance 0 (for Alice) and Instance
1 (for Bob). Assume tx1 is included in Block 1 of Instance
0 and Block 0 of Instance 1. Block 0 of Instance 1 must
refer to state S = {0,⊥}, which represents Block 0 of
Instance 0 (containing tx0) and the initial state of Instance
1. This dependency ensures that Bob’s transfer relies on the
completion of tx0, where Bob receives sufficient balance. In
Block 1 of Instance 0, $1 is escrowed from Alice’s account.
Concurrently, in Block 0 of Instance 1, $1 is escrowed from
Bob’s account. These operations can be processed in parallel
because they belong to different instances and do not conflict.
However, the escrow operation in Instance 1 must occur after
tx0, as indicated by the reference to Block 0 of Instance 0.
Once both escrow operations are successfully processed, the
replicas commit them, and $2 is transferred to Carol’s account,
completing the transaction tx1.

Example of contract transactions. Consider a contract trans-
action, tx2, where both Alice and Bob call the contract
together. In this transaction, tx2 involves two owned objects:
Alice and Bob. Alice and Bob each perform a decremental
operation of $1. Since tx2 involves both Alice and Bob, which
are owned objects with a decremental operation, it is assigned
to Instance 0 and Instance 1.

Assume that tx2 is included in Block 2 of Instance 0 and
Block 1 of Instance 1. In Block 2 of Instance 0, $1 is escrowed
from Alice’s account, while in Block 1 of Instance 1, $1 is
escrowed from Bob’s account. These two operations can be
executed concurrently because they are payment operations
(i.e., decremental operations on owned objects).

Once a replica observes that both escrow requests have
been successfully processed in their respective instances, it
can execute other operations in the contract after the previous
4 blocks in the glog and commit both escrow operations. This
ensures consistent execution results across different replicas,
since the contract may contain shared objects that can not be
confined to a certain instance.

APPENDIX C
OTHER RELATED WORKS

Partial ordering of payment systems. CryptoConcur-
rency [45] introduces dynamic detection of overspending
based on the balance of the account, determining whether
concurrent transactions can be satisfied without requiring
consensus. Astro [21] maintains a log separately for each client
to prevent double-spending. ABC [46] enables validators to
parallelize transaction processing without requiring consensus,
increasing system efficiency. FastPay [47] takes advantage of
payment semantics to minimize shared state between accounts,
allowing asynchronous operations to run with greater con-
currency. Flash [48] sidesteps the need for reliable broadcast
by utilizing a partially-ordered, DAG-like structure. A non-
sequential specification for money transfer objects is presented
in [49], which operates on a reliable broadcast abstraction.
Pastro [50] introduces a partially ordered transaction set that

15

defines active participants and stake distribution, offering an
adaptable approach for applications that do not require a global
order. These approaches focus on payments but lack support
for smart contracts.

Other scaling approaches. Similar to Multi-BFT consensus,
DAG and sharding systems also utilize instance parallelism to
enhance system scalability. Notable DAG protocols include
DAG-Rider [51], Narwhal and Tusk [52], Bullshark [53],
Shoal [54], BBCA [55] and Mysticeti [56] require each block
to reference at least 2f +1 predecessor blocks. BFT sharding
protocols [57]–[61] such as Elastico [62], OmniLedger [63],
and RapidChain [64], Sharper [65], Byshard [60], divide
replicas into multiple subcommittees for parallel processing.
Except for the above approaches, some systems also em-
ploy concurrent execution of transactions to improve scala-
bility [66]–[69].

16

	Introduction
	Motivations
	Why Partial Ordering Works?
	Why Needs Hybrid Ordering?

	System Model and Properties
	System Model
	Data Model
	Core Components
	System Goals

	Orthrus Overview
	System Architecture
	Transaction Workflow
	Challenges and Solutions

	Orthrus Algorithm
	Partition Transactions
	Order Transactions
	Execute Transaction
	Checkpoint and Garbage Collection

	Correctness Analysis
	Performance Evaluation
	Implementation and Experimental Setup
	Throughput and Latency
	Varying Payment Transactions Proportions
	Latency Breakdown
	Performance Under Faults

	Related Work
	Conclusion
	References
	Appendix A: Global Ordering Algorithm
	Appendix B: Protocol Running Example
	Appendix C: Other Related Works

