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Abstract
We establish an optimal L?-regularity theory for solutions to fourth order elliptic systems
with antisymmetric potentials in all supercritical dimensions n > 5:

A’u=A(D-Vu)+div(E -Vu) + (AQ+G)-Vu+ f  inB",

where Q € W1-2(B", so,,) is antisymmetric and f € L?(B"), and D, E, @, G satisty the
growth condition (GC-4), under the smallness condition of a critical scale invariant norm of
Vu and V2u. This system was brought into lights from the study of regularity of (stationary)
biharmonic maps between manifolds by Lamm-Riviere, Struwe, and Wang. In particular,
our results improve Struwe’s Holder regularity theorem to any Holder exponent o € (0, 1)
when f = 0, and have applications to both approximate biharmonic maps and heat flow
of biharmonic maps. As a by-product of our techniques, we also partially extend the L?-
regularity theory of approximate harmonic maps by Moser to Riviere-Struwe’s second order
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elliptic systems with antisymmetric potentials under the growth condition (GC-2) in all
dimensions n > 2 when p > 7, which partially confirms an interesting expectation by
Sharp.

Mathematics Subject Classification 35J48 - 35G50 - 35B65

Contents

1 Introduction and mainresults . . . . . . . . . ..
1.1 Background and motivation . . . . . . . . ...
1.2 Mainresults . . . . . . . . e
1.3 Strategy and novelty of the proof . . . . . . . . ... L

2 Preliminaries . . . . . . . oo e e e e e

2.1 MOITEY SPACES .« . o v o o v et e e e e e e e e e e e e e e e e

2.2 Rieszpotentials . . . . . . . ..

Morrey estimate and Holder continuity . . . . . . . . ... Lo o

4 LPregularity theory . . . . . . . . . .
4.1 Case l:n/d < p <n/3 . . e
42 Case 2:n/3 < P <00 v i e
43 Case3: 1 < p<nfd . . e
44 Proofsof otherresults . . . . . . . . . . L

Appendix A. Some apriori estimates concerning gauge transform . . . . .. ... ..o 00 0L

References . . . . . . . .

w2

1 Introduction and main results
1.1 Background and motivation

In his landmark work [26], Riviere proposed the second order linear elliptic system
—Au=-Vu inB?>CR? (1.1

with Q = (Q;;) € L*(B?, 50,y ® A'R?) and u € W!2(B2, R™), which models the Euler-
Lagrange equations of critical points of all second order conformally invariant variational
functionals over maps u € W1’2(B2, N), where B% C RZ? is the unit disk, and N C R™
is an arbitrary compact Riemannian manifold. In particular, (1.1) includes the equation of
weakly harmonic maps from B> to N and the prescribed mean curvature equations. A crucial
observation of [26] is a conservation law induced by the anti-symmetry of €2, from which the
continuity of weak solutions to Eq. (1.1) follows. This gave an affirmative answer to the long
standing conjectures of Hildebrandt and Heinz, and an alternate proof of Helein’s celebrated
regularity theorem on weak harmonic maps in dimension two. The technique developed in
[26] has also profound applications beyond conformally invariant problems; see [27, 28] for
a comprehensive overview.
Riviere and Struwe have further considered in [29] the same system as (1.1) in supercritical
dimensions n > 3:
—Au=Q-Vu inB" CR", (1.2)

where Q = () € L3(B", 50, @ A'RM). Although there is no conservation law associated
with (1.2) for n > 3, Riviére and Struwe managed to transform (1.2) into a gauge equivalent
system through Uhlenbeck’s gauge construction associated with 2. It was established in [29]
that a local Holder regularity holds for any weak solution u to (1.2) under the smallness
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condition

12
1 2 2
sup 2 (IVul* 4+ 121%) dx < e(n, m).
xeBi’,r>0 r B (x)NB

As an application, they reproved the partial regularity theorem on stationary harmonic maps
in dimensions n > 3, due to Evans [8] and Bethuel [3].

The techniques in [26, 29] have been subsequently extended to fourth order elliptic systems
by Lamm and Riviere [18] in dimension n = 4 and Struwe [33] for n > 5 in the course of
study of biharmonic maps. Recall that an extrinsic (or intrinsic resp.) biharmonic map from
B™ into a closed Riemannian manifold N is a critical point of the energy functional

/ |Aul? (or/ l(Auw)"|* resp.)  foru e WH3(B", N),
n B’l

where (Au)T is the orthogonal projection of Au onto the tangent space T, N. In [18], the
authors formulated the following system of 4th order linear elliptic equations

A%u = AV - Vu) + div(wVu) + F - Vu in B*, (1.3)

where V, w belong to certain function spaces and F = Vo + W with o € L2(B*, sop)
being antisymmetric. By constructing a corresponding conservation law for system (1.3), an
everywhere continuity for weak solutions of (1.3) was established in [18]. The approach of
[18] was further refined by Guo and Xiang in [11], where a local Holder continuity for weak
solutions of (1.3) was proven. The result of [18] has been applied to the theory of regularity
for heat flow of biharmonic maps in dimension four. In [33], Struwe revisited biharmonic
maps in supercritical dimensions n > 5 and formulated the following fourth order linear
elliptic system:

A%u = A(D-Vu) +div(E - Vu) + (AQ+G) - Vu  in B", (1.4)

where D, E, G belong to certain function spaces and 2 is an so,,-valued function with
entries in R”. We refer interested readers to [18, 33] for detailed computations of writing
the equation of biharmonic maps in the form of (1.3) or (1.4). By extending the approach
of Riviére and Struwe [29], Struwe established in [33] a partial regularity theory for (1.4),
under the growth condition (GC-4) below, which in turn gave an alternate proof of the Holder
regularity theorems of Chang, Wang and Yang [5] and Wang [34, 35] for biharmonic maps.
Because of structural similarities, it seems natural to extend the result of Riviere and Struwe
[29] on the system of second order linear equations (1.2) to system of fourth order linear
equations (1.3) and (1.4). Indeed, Struwe raised the following question in [33]:

Struwe’s Question It would be interesting to see if our method can be extended to general
linear systems of fourth order that exhibit a structure similar to the one of equation (1.4), as
is the case for second order systems (1.2), or in the “conformal” case n = 4 considered in
[18].

Struwe’s Question in the “conformal” case n = 4 has recently been solved by Guo and
Xiang in [12]. More precisely, it was proven in [12] that in critical dimensions n = 2k for any
k > 2, a Holder continuity holds for any weak solution u € W*2(B", R™) of the 2k-order
linear elliptic system with antisymmetric potentials introduced by de Longueville and Gastel
in [7]. [12] was built upon the ideas by Riviere-Struwe [29] and utilized both Uhlenbeck’s
gauge transformation and the duality of Lorentz spaces L”>! — LP"% where 1 < p < 00
and p’ = p/(p — 1). However, when dimensions n > 5, the approach by [12] (see [12,
Section 5]) encountered serious technical difficulties, which left open Struwe’s Question in
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supercritical dimensions n > 5. Another interesting problem, closely related to the regularity
theory on (1.2) and Struwe’s Question on (1.4), is to study the corresponding inhomogeneous
system of (1.4) in dimensions n > 4. These problems lead us to ask

Problem 1.1 Establish a LP-regularity theory for weak solutions of the fourth order inho-
mogeneous elliptic system of Lamm and Riviére [18] or Struwe [33]

A%u=A(D-Vu)+div(EVu) + F-Vu+ f  in B"
in dimensions n > 4.

More specifically, Problem 1.1 asks that for f € LP(B",R") with 1 < p < oo, if a
Wli’cp -regularity holds for weak solutions of the linear systems (1.3) or (1.4), provided certain
smallness conditions are imposed on both the linear coefficient functions and the solution.
In the critical dimension n = 4, Problem 1.1 was solved by Guo, Xiang and Zheng in [13],
where they proved that if f € L? for | < p < 4/3,thenu € WP/ c%40=1/P) 1
particular, this implies that when n = 4, every weak solution of the system (1.3) or (1.4) is
locally «-Holder continuous for all 0 < o < 1. A similar L?-theory for general even order
linear elliptic systems proposed by de Longueville and Gastel [7] was also established by
[14] in critical dimensions. For applications to biharmonic maps, see Laurain-Lin [20] for
energy convexity and Laurain-Riviere [21] and Wang-Zheng [36] for energy quantization.
We also point out that the theory of biharmonic maps has been successfully applied in Cheng-
Zhou'’s solution of the Rosenberg-Smith conjecture in their recent work [6]. We would like
to mention that a positive answer to Problem 1.1 would solve Struwe’s Question. However,
Problem 1.1 remains open in supercritical dimensions n > 5. In this paper, we will make
some partial progress towards Problem 1.1.

In the second order case, motivated by the study on approximate harmonic maps and heat
flow of harmonic maps, It is natural to consider the following problem.

For p > 1, develop a W*P-regularity theory for the inhomogeneous Riviére’s system

—Au=Q-Vu+f inB", (1.5)

where Q € L2(B", so,, @ R") and feLP(B"R™).

This problem was first considered by Sharp and Topping [32] in dimensionn = 2. Utilizing
the conservation law of Riviere [26], they proved that if f € L? (Bz, R™) for p € (1,2),
then every weak solution u € W12(B2, R™) belongs to W]i‘cp(Bz, R™) C Cl()(;cz(l_l/p). In
particular, any weak solution of (1.1) is locally e-Holder continuous for any 0 < o < 1. See
Laurain-Riviere [22] and Lamm—Sharp [19] for some further related results.

For dimensions n > 3, in the course of studying the heat flow of harmonic maps, Moser
[25] considered the L”-regularity of the system of approximate harmonic mapsu : B" — N:

— Au=Aw)(Vu, Vu) + f, (1.6)

and proved that forany | < p < oo if f € LP(B",R™), then u € Wli’cp(B", N), under
certain smallness condition on Vu. One crucial idea of [25] is to rewrite the system (1.6) viathe
Gauge transformation of Riviere and Struwe [29]. On the other hand, Sharp [31] established

2
a Morrey-space regularity for the linear system (1.5) for p > % namely, M x ’”’Z-regularity

for V2u holds under a smallness condition on || Q|| u2n—2. In view of Moser [25], Sharp made
the following expectation in [31, Remark 1.3]:

Sharp’s expectation One would expect Moser’s LP-regularity on (1.6) remains to hold for
the system (1.5) for any 1 < p < o0, under the additional condition

Q| < C|Vul. (GC-2)
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We will provide a partial answer to this expectation in Theorem 1.8 below, dealing with the
case p > n/2.

1.2 Main results

Henceforth, we will assume m > 1,n > 5. Let B, = {x € R" : |x|] < r}andu €
W22(B,, R™). Consider the following inhomogeneous 4th order elliptic system

A?u = A(D-Vu)+div(EVu) + F - Vu + f in Bs, (1.7)
with F = AQ + G, and
D e W'2(By, M), ® A'R"),  E € L*(B>, M)
Qe W'2(By, som), G e L3 (By, My @ A'R™). (1.8)
In coordinates, (1.7) reads as
A’ = A(DY - Vul) + div(E;Vul) + FL-Val + f1 1 <i<m,

where the Einstein summation convention is used for repeated indices.
In this paper, we aim to establish an L”-regularity theory for (1.7) under the following
growth condition on D, E, G, Q:

ID| 4 [82] = C|Vul,
|E|+ |VD| +|VQ| < C |V?u| + C|Vul?, (GC-4)
|G| < C|V2ul|Vu| + C|Vul.

Although the L”-theory of (1.7) under condition (GC-4) does not answer Problem 1.1, it
provides very interesting insights on attacking this challenging problem. From the analytic
point of view, the nonlinearity under (GC-4) is of critical growth so that for a weak solution
u € W22(B" R™) there merely holds |VZu|> € LY(B") and the standard LP-regularity
theory is not applicable. Furthermore, the nonlinearity is so strong that it is also impossible
to apply the standard bootstrapping argument, even if some improved regularity, e.g. V2u €
Lt fora sufficiently small € > 0, is assumed.

Since (1.7) models biharmonic maps when f = 0 (see Lamm and Riviere [18] and
Struwe [33]), our LP-regularity theory, via the Sobolev embedding theorem, implies that
u e Cy (B") forany a € (0, 1), which in turn improves Struwe’s Holder regularity theorem.
Note that the system for both approximate biharmonic maps and heat flow of biharmonic
maps do satisfy both (1.7) and the growth condition (GC-4), hence the L”-regularity theory
will have direct application to the study of biharmonic maps and heat flow of biharmonic
maps in supercritical dimensions.

We denote by MP**(B,) and MY (B,) the (p, r)-Morrey space and weak (p, r)-Morrey
space respectively (see Sect. 2 for their definitions). Our first theorem is stated as follows.

Theorem 1.2 Suppose f € M'""=4+¢(By R™) for some o € (0, 1) and u € W>2(B,, R™)
is a solution of system (1.7) satisfying (GC-4). There exist constants € = €(m, n, a) and
C = C(m,n,a) > 0 such that if

||V2u||M2,n—4(Bl) =+ ||VM||M4,n—4(Bl) <€, (19)
then

Vu € MP44(By ) and Vu € M"Y (B) ).
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Moreover,
IVitlygpn-sste g, ) = € (”V“”Mi"*“(B]) + ”f”M"”*“*"‘(Bl)) ’

2 2
”V M||M£,n—4+2a(31/2) S C (”V M||M3,n—4(81) + ||VM||Mi,n—4(BI) =+ ||f||Ml,n—4+oz(Bl)) .
(1.10)

Theorem 1.2, relaxing the LP-assumption on f to a Morrey assumption on f, seems
to be new even in the critical dimension n = 4. In connection with the Morrey smallness
assumption (1.9), the Morrey assumption on f seems to be more compatible than the L?
assumption on f.

The smallness assumption (1.9) is natural in terms of both translation and dilation invari-
ance. When f = 0, the monotonicity formula for stationary biharmonic maps justifies this
smallness assumption, see e.g. Wang [35], Struwe [33] and Moser [23]. For heat flow of
biharmonic map flow (i.e. f = u;), a parabolic version of smallness assumptions can
also be verified in some cases, see e.g. Hineman-Huang-Wang [15]. In view of the embed-
ding MF" 44 (B)) ¢ MIn—4+3%(B) for any | < ¢ < 4, the estimate (1.10) can be
viewed as a slight improvement of Struwe [33, Estimate (37)], where it was proved that
Vu € M9"~49+9%(By ) for some 1 < g < 2.

An immediate consequence of Theorem 1.2 is the following optimal Holder regularity.

Corollary 1.3 Suppose f € M'"~4+%(By R™) for some a € (0, 1) and u € W>2(By, R™)
is a solution of system (1.7) satisfying (GC-4). There exist constants € = €(m, n, a) and
C =C(m,n,a) > 0 such that if (1.9) holds, then u € CO’O‘(Bl) with

loc

lull cop, ,) < C (”W||Mj"-4(31> + ||f||M1-"-4+“<Bl)) :

When f = 0, this implies that solutions of (1.4) are locally «-Holder continuous with
any exponent 0 < o < 1, which improves the main result of Struwe [33]. See Rupflin [30]
and Wang-Zheng [36] for some related results.

Theorem 1.2 provides the key technical tool to prove the following L?-regularity result.

Theorem 1.4 Suppose f € LP(By) for some n/4 < p < oo andu € W>2(B;,R™) is a
solution of system (1.7) satisfying (GC-4).

(i) When p < n, there exists a constant € = €(m, n, p) such that if the assumption (1.9)

ﬂ
holds, then u € W, ::"_" (B1) and

O

IV3ull
Ln—r (31/2

=6 (IVullygen-spyy + V20l yza-s gy + I FlLresy) -

Here Cy = c(1 +€ + || fllLr ()™ for constants cy and ay depending on n, m, p.
(i) When p > n, for any 1 < q < 00, there exists a constant € = €(m, n, p, q) such that if
the smallness assumption (1.9) holds, then u € Wli’cq(Bl) and

IVullLasiy) < Ds (1Vutllpgan-scyy + 1V2ullyzn-sgy) + 1 f o) -
Here D, = dy (1 + € + ||f||Lp(Bl))b* for constants dy. and b, depending on n, m, p, q.

We would like to remark that in Theorem 1.4, the constant C,, (and D,) depends not only on
€,n,m, p (and g) butalsoon || f|l.»p,). The reason for dependence on || f || .»(p,) is that our
system is nonlinear and in general one can only expect a priori estimates involving polynomial
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dependency on || V| ypan-a(g,ys | VZu | ps2n-4(p,y and || f1lLr(B,), under the Morrey smallness
assumption (1.9) on Vu and VZu.

This result provides an affirmative answer to Problem 1.1 under the growth condition
(GC-4). As a simple consequence of this theorem and the Sobolev embedding theorem, we
can infer that the smallness assumption (1.9) implies

CU*(By), ifn/d<p<n/3,
we Cpd~(By), ifn/3 < p<n/2,

C22(By), ifn/2<p<n,

loc

where @« = 4 — n/p, whenever p < n. As a further application, we have

Corollary 1.5 Suppose f € LP(By) for some n/4 < p < oo and u € W*2(B|,R") a
solution of system (1.7) satisfying (GC-4). Suppose further that

IVD| < C(IV2ul + |Vul?),
IVE| + |V2Q| < C(|1V3ul| + |V2u||Vu| + |Vul?).

Then there exists a constant € = €(m, n, p) such that if the assumption (1.9) holds, then
4.p
u € W o (B1) and

IV*ullLr (8,0 < C (IVullpgan-spyy + 1V ull 243,y + I f o) -

Here C = c(14€+| fllLr(B,))" fortwo constants c and a depending onn, m, p. In particular,
any approximate biharmonic map u with drift term f € LP(By) for some n/4 < p < o0
belongs to Wli’cp (B1), provided the smallness condition (1.9) holds for a sufficiently small €.

Corollary 1.5 extends the corresponding results by Wang-Zheng [36] and Laurain-Riviere
[21] in the critical dimension n = 4. It also leads to the following weak compactness and
energy gap results.

Corollary 1.6 There is a sufficient small constant € = € (m, n) > 0 such that
(1) Weak compactness For any sequence uy € W>2(By, N) of biharmonic maps which
converges weakly to a map u € W>2(By, N), if

||V2Mk“M2,n—4(Bl) + ||letk||M4,n—4(Bl) <e€, v k > 1,

then up to a subsequence, uy — u strongly in Wli’cz(Bl, N). In particular, u is a smooth
biharmonic map; and
(2) Energy gap Ifu € W>2(R", N) is a biharmonic map satisfying

V2 p2n-s @y + IVl pgan-s@ny < €,

then u = p in R" for a point p € N.

For geometric applications of this type of result, see Wang-Zheng [36] and Laurain-Riviére
[21] on the energy identity of biharmonic maps in dimension n = 4.

The requirement p > n/4 in Theorem 1.4 ensures that f € M Ln=4+e(B)) for some
0 < o < 1. It is natural to ask what happens when 1 < p < n/4. Observe that the heat flow
u of biharmonic maps can be viewed as (1.7) for f = u; € L?, with p = 2 < n/4 when
dimensions n > 8, see e.g. Moser [24]. This motivates us to consider the case f € L? for
1 < p < n/4. We can prove
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Theorem 1.7 Suppose f € LP N M“"4+t%(B)) for some 1 < p <n/4and0 < a < 1 and
u € W22(By, R™) is a weak solution to system (1.7) satisfying (GC-4). There exists € > 0
such that if the smallness condition (1.9) holds, then

V2 e LP O M"Y (Byjn) and Vue LP A MO0 (B ),
where x = 2 —-a)/(l —a) >2andn=4—-a)/2 —a) > 2.

We would like to remark that with slight changes of arguments, all results stated as above
remain to hold if the coefficient function F' in Eq. (1.7) takes the form F = Vw + W of Eq.
(1.3) and (GC-4) is replaced by a corresponding one.

Finally, as aforementioned, as a by-product of our method, we provide a partial answer to
Sharp’s interesting expectation.

Theorem 1.8 Suppose f € LP(By) forsomel <n/2 < p < ooandu € W"-2(B;,R™) isa
weak solution of system (1.5). If, in addition, 2 € L*(B1, 50, ® AR") satisfies the growth
condition (GC-2), then there exists € = e(m, n, p) > 0 such that

u e Wil (B, R™),

loc

provided ||Vul| pp2.n-2(p, mmy < €.

Theorem 1.8 extends a main theorem of Moser [25, Theorem 1.2] in the range p > n/2
with also a different proof. However, due to the limitation of our method, it remains an
interesting open question that how to confirm Sharp’s expectation for the more difficult case
1 <p<n/2

1.3 Strategy and novelty of the proof

Roughly speaking, our proofs of main results follow the line of Sharp and Topping [32] in
the large. More precisely, to derive Theorem 1.2, we shall first rewrite the system using the
Gauge transform of Struwe [33], and then apply the Hodge decomposition to simplify the
problem. Morrey type decay estimates then follow from a combination of Riesz potential
theory and a decay property of harmonic functions. However, as there is no conservation
law in our case anymore, and also due to the critical nonlinearity, we will have to overcome
severe difficulties. To this end, some new ideas will be introduced.
To explain our strategy and novelty clearly, we first sketch the proof of Theorem 1.8.

Proof of Theorem 1.8 We first consider the case 5 < p < n. Sharp [31, Theorem 1.2] has
proved that Vi € M2"">"2*(B)) witha = 2 — n/p € (0, 1). It follows from the growth

loc

condition that € Mlzo’ffzﬂa (By). Therefore Q - Vu € MIIO’C'“HZO‘ (By).

First suppose o < 1/2. Extend €2, u and f from By, into R" with compact support in
Bj in a norm-bounded way. Let uy = I>(2- Vu) and up = I(f) suchthath = u —u; —up
is a harmonic function in By, where I, = c|x|*™" is the standard Riesz potential. Since

Q-Vu € M'"=2+22n L1(R"), Adams’ potential theory (see Proposition 2.5 below) implies
|Vui| < CL(Q - Vu) € LP®(R"),

where
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By standard elliptic regularity theory, u» € WZ2P(R"). Hence Vu, € LP (R"), where

x __ _np

n—p°

Since h € C®, if 2x > p*, then we find that Vu € Lloc(Bl)- If 2x < p*, we obtain
Vu € L "*°(By2). Since 2y > 2, we have Vu € Lloc(Bl) for some ¢ > 2. Then the
growth condition (GC-2) implies that Q € M 20" 220~ 19 (By). It follows that

loc

Q- Vu e M2 gnyn 42,

loc loc

Since ¢/2 > 1, using Adams’ potential (see Proposition 2.6) again gives Vu; € LX9. If
xq < p*, we obtain Vu € LX9. Thus, we find the iteration:

Vu e LY = Vu € LX9.

Since x > 1, we can assume that qu < p* < x**tlg for some k > 1. After finitely many
times iteration, we find that Vu € Lloc(Bl)-

In the case @ > 1/2, we use embedding M>"~2t2%(B;) ¢ M>"~2+28(B)) for any
B < 1/2 so as to obtain the same regularity as in the case @ < 1/2. As a consequence we
can always derive Vu € Lloc(B]) Now the second order regularity u € WlOC (B) follows
from the usual elliptic regularity theory.

If p > n,then f € L‘1 (B") for any n/2 < g < n. Running the previous argument we

conclude that Vu € Llocq (B1). This implies that u; € ml<q<oo W10C (B1) and so finally
u e W]OC (B1). The proof is complete. O

Our proof of Theorem 1.4 follows a similar approach, but the analysis becomes much
more involved. In a first step, we derive the weak Morrey decay estimate for solutions of
system (1.7), that is, Theorem 1.2. Unlike the case of linear systems in [13, 14, 31, 32], this
regularity improvement is not strong enough for iteration yet. To fill the gap, two observations
are explored here:

e The weak Morrey regularity of V2y automatically implies an improvement of Vu, i.e,
Vu e L2 0 MO0 (By 4y, where x = 2 — ) /(1 —a) > 2;

e The growth condition implies a corresponding regularity improvement for the Gauge
transformation (see Lemma 4.1 below).

By the first observation, we obtained an improved regularity of Vu. But this improvement
itself is still not sufficient for the iteration method yet. To proceed, the new idea is to further
track and improve the regularity of Gauge transforms, so as to fully make use of the gauge
transforms. We then turn to construct an associated Gauge transform on smaller balls (half
radius of the previous one) with improved regularity. This is realized by the second observa-
tion. Next, with these improved Gauge transforms at hand, the next new idea is to tracking
both the Lebesgue integrability and Morrey regularity of Vu and V2u simultaneously; an
application of the Riesz potential theory gives a further improvement on integrability of Vu
and V2y. Finally, to obtain the optimal interior regularity, we run an iteration scheme by
repeatedly constructing the gauge transforms on a sequence of shrinking balls and then using
the gauge equivalent equations on shrinking balls. Our strategy works surprisingly well: in
contrast to those infinite iteration on linear systems in [13, 14, 31, 32], our iteration process
stops after finitely many steps, which also thanks to the nonlinear nature of the problems. We
mention that a crucial harmonic analysis theory used in the proof is the boundedness of Riesz
operators between weak Morrey spaces, which is due to Ho [16] (see also Proposition 2.7
below).
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Our notations are standard. By A < B, we mean there is an absolute constant C > 0 such
that A < CB. The constant C may differ from line to line.

2 Preliminaries

In this section, we introduce some function spaces and the related Riesz potential theory
between these function spaces. They play a central role in later proofs.

2.1 Morrey spaces

Let @ C R” be a smooth domain. For 1 < p < oo, let L?(£2) be the usual L? space on Q2
and L? () the weak LP space on €.

Letl < p < o0and 0 < s < n. The Morrey space M?-¥($2) consists of functions
f € LP(L2) such that

I £ 1l prs ) = sup P f e s, (ong) < 00
xeQ,0<r<diam(2)

The weak Morrey space MY (Q) consists of functions f € L% () such that

||f||Mj:*“'(Q) = sup r_s/p”f”Lf(Br(x)mQ) < oQ.
x€Q,0<r<diam(2)

Note that MP-0(Q) = LP(R) and MP"(Q) = L(R), and M"*(Q) = L?(Q). When
Q2 is a bounded domain, it follows from Holder’s inequality and the simple embedding
LY(Q) C L9(Q) (1 < g < p) that,

q

LP(Q) c MT"70 (@), Vi<g<p
and
M@ c MY (@), Y1<p<o.
We shall need the following well-known Holder’s inequality for weak L? functions.

L4 L <1 Then, f € LI (Q)

Proposition 2.1 Let 1 < py, po < o0 be such that % =t

and g € LP*(Q) implies fg € LY (). Moreover,
||fg||Lf(Q) = ”f”Lfl (Q) ”g”sz(Q)'

The following proposition concerns Holder’s inequalities in Morrey functions. The proof
is straightforward and thus omitted.

Proposition 2.2 Let 1 < py, p» < o0 and0 < q1, g2 < n be such that

l=L+i§1 and q:£q1+£q2.
P P1 P2 P1 p2
Then, there hold
I fgllmrac) < I fllmrra@)ligllmra ). 2.1)
and
178 lyragy < 1 ygrar g 18l . 22)

@ Springer



LP-regularity for fourth order elliptic systems with... Page110f32 31

As we are concerned with Holder regularity theory, we need the following weak type of
Morrey’s Dirichlet growth theorem.

Proposition 2.3 Suppose Q2 is a bounded smooth domain and u € LIIOC(Q) such that Vu €

MP"PEPY(QY holds for some 1 < p < oo and o € (0, 1). Then u € CO*(Q) with
||M||C0<a(§) < C”VM”Mf,n—p+pa(Q)

for some C = C(n, p, Q).

Proof By Poincaré’s inequality, for any x € € and 0 < r < diam(£2), there holds

f [ —uy x| fcr][ [Vul.
By (x)NS2 B, (x)NQ

Since p > 1, we have
1-1 -1
IVulli s, cone) < Cr" " VPIVUll L2 g ongy < CHVEIypn-pipe g "1

Thus, for any x € Q and 0 < r < diam(€2),

f |u — llr,x| < C”vu”Mp.nprrpo((Q)ra.
B, (x)NQ *

This yields the conclusion by applying Campanato function space theory, see Giaquinta [10,
Chapter III, Theorem 1.2]. O

Higher order (weak) Morrey spaces will be useful in our later proofs. For any k € N, the
kth order Morrey space M,f’"ikp () consists of f € W5P () such that V! f € MP"IP(Q)
forall0 < < k, and we can similarly define the kth order weak Morrey space M kp fﬁk" ().

Tt follows from [33, Proposition 3.2] that MY 7 (By) ¢ M{""*"(By) with 1 < p < n/2,
and

||VM||/21/121,,",2,,(BI) S C”VM”Ml.n—l(B]) (”Vzu”Mp,n—Zp(B]) + ”VM”Mp,nfp(Bl)) . (23)

In particular, u € Mzz’”_4(131) implies that Vu € M*"=4(B)). Recall that the basic assump-

tion of Struwe [33] is

R [ (V?ul® +|Vul*) <e,
Bgr

which together with the monotonicity formula implies that u € Mzz’"_4(BR 12) and
IVt pg2n-4(5g ) + 1 Vutllppan—s gy < Ce.
Thus, by (2.3), one may naturally assume that u € M22 ’"74(32) satisfies
||V2M||M2vn—4(32) + [IVullp2n-2(p,y) < €.

We shall frequently use (a special case of) the following Morrey-Sobolev extension' result
due to Burenkov [4]; see also [9, Theorem 2.5] for a new proof.

' We would like to thank Prof. Pekka Koskela for pointing out the relevant literatures in this respect.
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Proposition 2.4 Foranyk € N, 1 < pand0 < s < n, there exists a bounded linear operator
E: M (By) — M (R") such that if f € M}"*(B)), then Ef = f a.e. in By and there
exists a constant C = C(k, p, s) > 0 such that for all f € M,f’s(Bl), we have

”Ef”MIf‘S(]R") = C”f”M,f’s(Bl)'
Furthermore, for each 0 <1 < k, there exists a constant C = C(l, p, s) > 0 such that
IV Efllars @y < CIV fllagrs 8-

Similar extension results hold for the higher order weak Morrey-Sobolev spaces M, kp ’:(Bl)
as well.

We also refer the interested readers to [17] for a different construction of the extension
operator. Note that in [17], the authors only considered the higher order Morrey-Sobolev
spaces M ,f **(B1). However, the proof works with minor changes (replacing the L? estimates
by corresponding weak L estimates) for the higher order weak Morrey-Sobolev spaces
Ml (By).

2.2 Riesz potentials

Let Iy (x) = ca.nlx|*™", 0 < a < n, be the standard Riesz potentials in R". The following
two propositions are well-known; see Theorem 3.1, Proposition 3.2 and Proposition 3.1 of
Adams [2].

Proposition2.5 Let0 <o <nand0 <A <n. For1 < p < (n —A)/a, set

o

1
p n—Ai

1
p
Then
(1) Foreveryl < p <(n—21)/a,
Iy: MPH(R"Y) — MPHR")
is a bounded linear operator;
2) Forp =1,

n—»h

L
Io: MM (R — M7 (RY)
is also a bounded linear operator.

Proposition2.6 Let 0 < « < B < nand 1 < p < oo. Then there exists a constant
C = Cypn,p > 0such that for f € MU= (R"y N LP (R"), there holds

a 1—2
B B
”IOtf” Blfx’]Rn =< C”f”Ml,n—ﬁ(Rn)”f”p’]Rn-

In view of the embedding M~ %P (R") ¢ M'"—B(R") forn/B > q > 1, there holds

o p—a
B B
||1af||ﬁ!fa’Rn < CllfllMg.nfq,s(Rn)||f||p,Rn~

Concerning weak Morrey spaces, we will need the following proposition, which is a
special case of Ho [16, Theorem 5.1].
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Proposition 2.7 Let0 < a, A <nand1 < p < (n —X)/a. Set

Then
Pk mon Pk mon
Iy - M7 (RY) — My""(RY)
is a bounded linear operator.

As a corollary of Propositions 2.6 and 2.7, foranyoo > p > land 0 < o < 8 < n/p,
we have the following boundedness result:

Io: MP" PP LP@®Y) — MP"PP A LP(RY)  where p = rﬂp . Qe

and
Vo zpny + MG ygpamso gy < € (I 1oy + 1F Dyypost gy ) -
When the operator under consideration is a singular integral operator, there holds

Proposition 2.8 (Theorem 8.1, [1]) Let 1| < p < 0o and 0 < A < n. The usual Calderon-
Zygmund singular integral operators are bounded on MP*(R").

3 Morrey estimate and Holder continuity

This section is devoted to prove Theorem 1.2. For simplicity, denote by B, = B,(0) C R”"
the open ball centered at origin with radius r. We shall need the following Gauge transform
of Struwe [33, Lemma 3.3]; see also Lamm and Riviere [18, Theorem A.5] for an equivalent
form.

Lemma 3.1 (Lemma 3.3, [33]) There exist e = e(n,m) > 0 and C = C(n, m) > 0 with the
Sfollowing property: For every Q € Mlz’"_4 N M*"=4(By, som @ AR™) with

IVl p2n-4cp,y + 120 pan-4¢p,) = €,
there exist P € M22’"74(B1, SO,) and & € Mzz’"74(B1, S0m @ A" 2R") such that
PdP~' + PQP ' = xd¢ in B, (3.1)
and
dx«&=0 inB;, £§€=0 ondB.
Moreover,

||VP||M4,11—4(BI) + ||VS||M4J:—4(B]) < C”Q”M“*”*“(B]) < CE,
||V2P||M2,n—4(3|) + ||V2§||Mz,n—4(31) S C (||VQ||M2,)1—4(BI) + ||Q||M4,n—4(31)) S CE.

The last two estimates on P, & are not separated in the original statement of Struwe [33,
Lemma 3.3], but they follow from the proofs there. Below let P, & be defined as in Lemma 3.1.
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It follows from the growth condition (GC-4) on 2 and (1.9) that
IV Pllppan-scpyy + IVE N pan-apyy = ClIVullppan-sp)) < Ce.
IV2 Pllygza-scayy + V€l yza-my)
< C(IVullpzn-4(g,) + I Vitllypan-sp,)) < Ce. (3.2)
By [33, Formula (35)], the equation of P Au on By is given by
A(PAu) = din(DP ®Vu)+div(Ep - Vu) + Gp - Vu + xdA& - Pdu+ Pf, (3.3)
where the coefficient functions satisfy the growth condition
|IDp| = C(IVul| + |V P,
IVDp|+|Ep| < C(|V?u| +|Vul> + [V*P| +|VPP),
IGpl < C(|V?u| +|V2P|) ((Vul + [VP) + C (1Vul® + [VP]P). (34)
For details, see the formula (36) of [33].
Proof of Theorem 1.2 First apply the Hodge decomposition to derive
Pdu = diiy +d*ii +h in By,

where d*ii; = 0, dii» = 0 and & is a harmonic 1-form. Note that A%ii; = Ad*(Pdu),
—Adiy =dP Aduand Ah = 0 on Bj.

Next, we extend all the related functions u, &, P and Dp, Ep and G p from Bj into the
whole space R" with compact supports in B; in the same function space in a bounded way.
Set f = 0 on By. For simplicity, we keep using the same notations for the extended functions.
Then we define

Uil =1y (din(DP ® Vu) +div(Ep - Vu) + Gp - Vu + xdA& - Pdu + A(VPVM)),

(3.5)
uip = Iy(Pf), (3.6)
where 14 is the fundamental solution of A2 in R” and define
uy = Lh(dP Adu), 3.7
where I is the fundamental solution of —A in R”. It follows that
A%upy + APup = A% and  Aus = Aib
on By. Set h = diiy — duyy — duyz + d*iiy — d*us + h so that
A’h=0 inB.
We obtain the decomposition
Pdu = duyy +dup +d*uy +h in By. (3.8)

To obtain the Morrey decay estimates of Vu and V?u, it suffices to estimate that of the
components 11, 113 and us.
First we estimate Vu ;. From the definition (3.5) of u1, it holds

Vuiy = Vg (divZ(Dp ® Vu) + div(Ep - Vu) + G p - Vu + *dA& - Pdu + AV PVu)).
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Let Ji = I4 (divZ(Dp ® Vu) + div(Ep - Vu) + A(VPVu)). Then
VJi &~ V3 I4(DpVu + VPVu) + V2 IL(EpVu),
which implies that
VNI S I (IDp||Vul + [VP||Vul) + I (|Ep||Vul) . (3.9)
Applying the growth condition (3.4) gives
IDp|IVul + |VPI|Vul < (IVul + [V P]) | Vul,
and
|Ep||Vul < (|V2u| + |Vul* + [V2P| + |VP?) |Vul.

Since VP, Vu € M#""*(R") and V2u, V2P € M>"~*(R"), the Holder inequality (2.2)
4/3,n—4

implies that DpVu € Mf n—4 (R") and EpVu € M, (R™), together with estimates
”DP Vu ”Mf’n_A(R”) 5 (”VP ”Miv"—“(Rn) + ”Vu”Mj”—“(Rn)) ||Vu ||Mj'"_4(R”)

S €llVaull yan-s (3.10)

Ry

and

IEpVu ||M4/3,n—4 < €||Vu [l 04 3.11)

(R™) R

Here we used the bounded extension of u, P from Mzz,’::*4 (By) into Mzz,’;:*4 (R™) (see Propo-

sition 2.4) and the smallness assumption (1.9). By Proposition 2.7,
I M2"4R") — MR
and
L MR R > MR R
are bounded operators. Thus from (3.9) and the above estimates we deduce
IV 1l gty S €NV ytns
Using the bounded extension ||Vu ||Mf,n_4(Rn) < ||Vu ||Mf,n_4(31), it follows

<
IV Itlsggrt sy S €NVl gt )

Let Jo = 14(G pxVu). This is the most difficult term to estimate and we need to exploit the
full nonlinearity of G p. By (2.2) and the inequality (2.1), and the fact |Vu|, |VP| € M=,
|V2ul|, V2P| € M>"~* we infer that

G pVul S (|V2u| + |V2P|) 1Vl + [V PDIVul + (IVul® + [VPP) [Vu| € M 4R")
with estimates
NG plIVulllpgrn-s )
S AVullpgan-s (120 pg2a-s + 1V Pllygzas) (IViell pgan—s + [V Pl pgan-s)
1Vl ygsn—s (IVUlgns + IV P1gancs) - (3.12)
Combining the estimate (3.2) of V P with (3.12) yields

2 2 2 2
NG pIIVulllpra-sgey S UV7ullyzn-s + 1Vl yan-d IVellyan-a S IVllya0-4gn-
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Therefore, applying the bounded operator I3: M'"4(R") — M#"~*(R") by Proposi-
tion 2.5, we arrive at

||VJ2||M:,)1 —4
Thus we conclude

ny S NG IVl yrn-4 gy
(R™) (

2
” Vu ” M‘“’*“(]R")

”VJZ”Mi” 4(3 )~ ”vu”MAn -4(By)"
Let J3 = I4(xdA§ - Pdu). Integrating by parts gives (up to signs)

J3 /dAg AIyPdu = / AE AN (dI4P 4 14dP) A du
Thus

VI3 < L (IVZ]|Vul) + I3 (V€] Vul |V P))
4

As |V2E(|Vu| € M2 pAn— o 3"t

that of J; with estimate

, we infer that I, (|V2£[|Vu]) € M3 a

|12 (V2811 Vul) | s

) 5 €||Vu||Mjn—4(Rn).
For the second term, we have |V2&||Vu||VP| € M=%, As that of J», we obtain

||I'5 (|V2g||vu||vp|)||M;‘"—4(Rn) ~ ||Vu||M4)l 4(R)1)
Consequently,

||VJ3 ” 4” 4 Ry ~ E”VMHM‘”’ 4 (Rm) + ||VM||M4 n—4@Rny
Using the bounded extension of u gives

”V-";”M“” 4(3 )~ €||Vu||M4” 4(3 ) + ||VM||M4,, ~4(By)"
Taking the three estimates involving VJ1, VJ3, V J3, we derive

||VM]]||M4n 4(3 )y~ 6”vu||M4” 4(3 ) + ”vu”M4”_4(B|)
Ap4ply1

ng the inequality (2.3) and the smallness assumption (1.9) and the embedding
(B1) € M'"~1(By), we find that

”Vu||M4n 4(31) 5 6”v"[”Ml-”‘ I(Bl) 5 6”Vu”M4"’4(BI)’
Thus we obtain the estimate of u1; as

||Vu11||M:,n 4By S e||Vu||M4n g,

The estimate of u1; is standard. Since f € M " Ln—dta gy,

4—a

4
potential theory, Proposition 2.5, gives Vujy € M.~
T=¢ > 4sowe have

(3.13)

~ I3(Pf) and standard
n— 4+a

. Notice that for 0 < o < 1
IVl S TNV ace iy S I llpgtomssn g7 (3.14)
for any r > 0. Here we have used the fact that f = 0 on BY.
Combining the above estimates (3.13) and (3.14), we deduce that, forany 0 < r < 1

||Vu11||M4” 4(3 ) + ”VMlZ”va" 4(B )y~ 6||vu||M4" 4(3 ) + ”f”M] n— 4+W(Bl)r
@Springer
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It remains to estimate u, and k. Since uy = Ir(d P Adu), we have |Vus| < 11 (|VP||Vu|).
As that of J;, we obtain

IVuall sy S €NVl yyn-a (3.16)

(B1) ~ (B1)*

Since h is biharmonic, for any x € Bj with By, (x) C By, there holds
max |Vh| SC][ |Vh|.
Br(x) Bay (x)

Soforany x € Bypand 0 <r < 1/2,

4
4 4 < 4 <y < 4
IVl = [ 19 S " VR (,g |Vh|) <PNVRI ey

) (x) 12
That is,
n—4
r 4 ||Vh||L4*°°(Br(x)) =< r”Vh”Mi«”’A(BI)'
Hence
n—4
||Vh||M:"’74(BV) — sup (S 7 ||Vh||L4~°°(BS(X))) 5 r”Vh”M;krtﬂt(Bl). (317)

xeB,,0<s<2r

Now we can obtain the decay estimate for Vu. For any 0 < 7 < 1/2, combining (3.15),
(3.16) and (3.17) gives
IVullpyan=sp,
S ”Vh ”va”*“(Br) + ||VL£]] ”Miv"*“(Br) + ”Vu12 ”Mi«"*“(Br) + ”vuaniv"*“(Br)

< THVhHM;"""‘(BI) + EHVMHM;"”"‘(Bl) + ||f||M1,n74+o((Bl)'L'a
S 2 (IVull s gy + 1781 s g+ V012000

Vi lyms ) ) + €NVl gt ) + 21 lagramsoay
< C (x4 ) IVt sy + CTNf lpgrn—ssaay)

for some C > 0 independent of 7 and €. Recall that 0 < « < 1. Take B € («, 1). Then take
T = ro small enough such that 2Crg < rg , and then choose € < ry. We obtain

IVull s, ) < o NVl s g+ 1F lagtnssaay s

Finally, using a standard scaling and translation and iteration argument, there holds, for any
X €Bjpand0 <r <1,

IVull s g oyy < CT° (||vu||Mf,nf4(Bl) + ||f||M.,,,74+a(B])) .
In particular, this implies that for any x € By and 0 < r < 1,

n—4-+4a (

4
4
IVl 4, o) < CT 190l -t gy + 1 aptmssoay) ) -

Hence Vu € M2~ (p, /2) and the desired estimate (1.10) follows.
Next we derive the decay of V2u and the proof is similar to the one given above. First
estimate V2u 1. Using the same notations, we have

V2J1 &~ VA(DpVu) + V3 IL(EpVu).
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Since V*1y is a singular integral operator, Proposition 2.8 implies that
VA MPARY) > MPHR")
is a bounded operator. Thus
IV 14(Dp Vi lagns S (1Y Pllygsns + [Vatllygaos) 1Vatlpgns S IV puns .
where the second inequality follows from inequality (3.2). Using the embedding M>"~* C
Mf ’"_4, the inequality (2.3) and the smallness assumption (1.9) of u as before, we deduce

||v414(DPW)||M3,n 4y S €N Vulljyans

(By) ~ (By)*

For the second term, combining (3.11) and the boundedness of
L My RY) — METARY)
by Proposition 2.7, we infer

|V Lo Ep Vi) s g,y S €NVl yyins

(B1) ~ (B’

Hence

” VZ Ji || Mf'" 4 <e ||VM||M4 n—4

(B1) ~ (B)”

For J,, we have
V20| < L(Gpl|Vul).

Recall that G pVu € M'"=#(R") and estimate (3.12) holds. Hence V2J, € M2"~*(R") by
Proposition 2.5 with estimate

V222 y2ns S NG pIVulllpgns S IVl ga0s g

”M )’

Again, applying inequality (2.3) yields
V2,

214 6||Vu||M4n 4

”M (By) ~ (B1)"

For J3, we have
V2551 < 1 IV Vul) + L (IV?E]|Vul|VP]).
Similar to J; and J,, we derive

V2] S €llVul yan-s

MI"H By S (B

All together we conclude that

[V2uri ] ypns g, S €lVulljyans (3.18)

(Br) ~ (B1)’

For uiy, since f € MUn=4+e gnd |V2u12| ~ I(Pf), Proposition 2.5 gives Viup, €

_4
M2 @ . Notice that for 0 < o < 1, f"‘ > 2. So similar to (3.14), we obtain for any

o
0<r < oo,
2
V2012l s ) S I Nagnmsea g, (3.19)

For the term u», we have |V2u5| < Ih(IVP||Vul) € M>*"=* with

1V2uall 204 < 1928l pg2ns S IVulfgan-a S €llVull s (3.20)

(B1)’
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Similarly dispose the biharmonic 1-form %, for any O < r < 1, there holds

2 2
IVl 2=,y S POV R 24 -

Combining estimates (3.18), (3.19), (3.20) and (3.21) yields, forany 0 < r < 1,

(3.21)

2
1V 2ull s gy ) + V1] g

(By) (Br)
S 040 (IV2ull sy + 1Vl ot ) ) + 1 s gy
Similar iteration, scaling and translation arguments give
”VZMHM%”"‘(Br) + ||V”||Mj-"*4(3,)
= (”VZL‘”M%""‘(BI) FIVullypin-s g, + “f”M"”"”“(Bl)) e

The proof is complete. O

Proof of Corollary 1.3 1t follows from Theorem 1.2 and Proposition 2.3. O

4 LP regularity theory

In this section we prove Theorem 1.4 and Theorem 1.7. We will write

np np np
» P2 = ,» P3= s
n—p n—2p n—3p

pP1=
whenever these are positive numbers. For p < n, set
a=4—n/p. 4.1

Roughly speaking, Theorems 1.4 and 1.7 follow from the Morrey estimate of the previous
section and an iteration argument. Along the iteration the constant € should become smaller
and smaller. Fortunately, the iteration stops after finitely many steps. Thus we can always
choose a sufficiently small € in the very beginning such that the whole iteration proceeds. As
in the previous proofs, the Gauge transform plays a central role.

4.1 Case1:n/4<p<n/3

In this subsection we prove Theorem 1.4 in the case n/4 < p < n/3. Recall that our
initial assumption is that Vu € M*"=%(By), V2u € M*"~*(B;) hold with the smallness
assumption (1.9). Thus we can choose € sufficiently small such that we have the improvement

Vu € MP44 (B ) and VZu € MZ"TH2(By ),

where « =4 —n/p € (0, 1). At this moment, due to the strong nonlinearity, the regularity
of the function

|G pVul < (|V2u| + [V2P|) (IVul + IVPDIVul + (IVul® + |VP|}) |Vul

will be too weak to iterate.
Fortunately we have the following two observations. The first one is that the second order
weak Morrey regularity implies:

Vu e L 0 MO gy ) (4.2)
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where
x=Q2—-a)/(—a) > 2. 4.3)

To find this, select € C(‘)’O(B 172) with n = 1 on Bj/4. An elementary calculation shows
that V(un) € My *17(By2) and V2(qu) € MI" > (By5). Set qu = 0 outside
By /2. (2.4) implies that

V(nu) = VIL(=A(u) ~ I (Au) € L 0 M7 2= R
with estimates
IVl g2x + IV @)l 2xn-2xa-ar S NTAMu) |2 + 1AM 20-20- -
This yields (4.2) for Vu with

< 2
IVull L2x (B, ) + ”Vu||M$x,n—2x(1—oz)(B]/4) S ”Vu”Mi,n—A(l—u)(Bl/Z) + IV u||M3,n—2(2—u>(Bl/2).

The second observation is:

Lemma 4.1 There existe = e(n,m) > 0and C = C(n, m) > 0 with the following property:
For every Q € M%’"_4 N M*"=4(By )2, s0m @ A'R") with

||VQ”M2~"*4(BI/2) + ”Q”M‘L""‘(B]/z) =€

there exist P € W2’2(B1/2, SOp)andé& € Wz’z(Bl/z, SOom ® /\"_ZR”) such that Lemma 3.1
holds on By .

In addition, if Q € Mf’"74+4“(B1/2) and VQ € MF"4r2e (Bi12), then we further have
VP, VE € My H(By ), V2P, V2E € MP" T (By 12) together with

19 Plytosote g )+ 1VE D ygtassia ) < CIRypnsinggy ) (@)
and
2 2
1A% P||M3<nf4+2a(31/2) + IV $||M$,n74+2a(31/2)
< C (19l yzrmsszny, ) + 190 pyamssio s, ) - 4.5)

Proof The existence of P, & follows from the same method as that of Lemma 3.1. For the
proof of estimates (4.4) and (4.5), see Lemma A.3 in the “Appendix”.

Let P, & be obtained as in Lemma 4.1. By the first observation, we have
VP, VE e L N M2 KO gy ) (4.6)
and

s < _ B
”VP, VS"LzXﬁfo"1 2x(1 )(31/4) ~ ||VQ||M§" 4+20‘(B|/2) + ”Q”M:” 4+4a(B]/2)’

Thus we deduce from the growth assumption on €2 that

2
1V P VEl 200015, o) S IVl y2msin g+ IVl s

We transform the system (1.7) on By 4 to obtain the gauge equivalent system (3.3). Then
we extend all the functions from Bj/4 into R" with compact supports in B in a bounded
way, and define similarly w11, u12, u2 and a biharmonic 1-form 2 on By,4 as that of (3.5),
(3.6) and (3.7) such that Pdu = duyy + du1> + d*us + h on By 4.

Our aim is to improve the regularity of VZu through the gauge equivalent system (3.3).
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Claim4.2 Let py = 25

LA ME T (B ) iy < pa,

Vu e 4.7
L (By) ifx = pe.
Proof Hereafter all the norms are taken on the whole space R” unless specified. We first
deduce the regularity of V2u ;.
For the first term Jp, (4.2), (4.6) and Holder’s inequality (2.2) imply

(IV?ul + V2P| + |Vul> + |[VP*) (IVul + |VP)) € Mﬂ%*”*“*z“ ALZT.
Since
Vi~ ((|V2M| + V2P| + |Vul* + |VP|2) (IVu| +|VP)),
and by (2.4)

27)( n—442a — 44D,
Iy: L+ MX“ — LXA ML

is a bounded operator, we obtain V2J € Mf’”_4+2a (R™) N L*(R") with
IV2ull

[ 9271 ppxn-ss2e |Vul|

nerey S IVl pgznre-e g, ,) L20M" 200 By

By the weak Morrey estimate,
[Vl

2
Loz re-a g o T IVl aypn2ea g S €+ 1 fllra)-

This in turn leads
||V2Jl ”M,f’n_4+2aﬂLX(]R”) S (6 + ”f”Lp(Bl))”VZM”LzmMj’l*Z(Z*Ot)(BIM)- (48)
For the second term, we have | V25| < L(IGp||Vu]) and
IGp| < (|V2u| + [V2P|) (IVul + IVP]) + (IVul* + |V P).

Recall that Vi, VP € M2X" 2% 1 12X and V2u, V2P € M2" 424 012, S0

2L n—442 22

(1V2ul + [V2P) (IVul + |V P2 € M7 A Lv,
—442 2
(IVu| + [VPD* = (\Vul + |VPD2(Vu| + [V P])> eM““ ‘AL,

4,n—442a

Here the first term can be regarded in the space M’ in view of the embedding

szn 4+2a(B 2) - M;ln 4+2“(Bl/2).Thus

2L 442 2

GPVMEMX+ N L+,

In the case & < 2/3, we may apply (2.4) to deduce the boundedness of

2 44 2a 2@ 440 22-a)
L M ﬂLx+2—>M23“n +D[ﬁ[,zfﬁ,

20w, 41
which implies V2J, € M, " “ L35 Similar to (4.8), we can obtain

2 < a
[V202] apsasin s S €+ I Nra ) NVl agpgso—soan g,y @9)
:
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for some a > 0.
For the third term |V2J3| < I} (|V2E(|Vul|) + I (]V2E||Vu|||V P|), the same estimates as
that of J; and J, imply

L(VE||Vul) € ML R 0 LX(R")
and when o < 2/3

22—a) _
S5 n—4+2a AL 2&3? .

L(VZ||Vul||[VP)) € M,
Note that if « < 2/3, then

22— ) _ 2—a
2 — 3« o 1—%0{

> X
and if @ > %, then the regularity of VZJ,-, i =2, 3, become even better. All together, we may
conclude

V2uy € Mf’n_4+2a(31/4) N LX(By4).

Since u1, € WP (R"), V2u1, € WP (R") C LP2. In particular, for any s > 0,
2 2 -2 -2
/ IV2upn] S IVAT5 (1 5y s 72XEXS S| FIIF s 20X,
Bs(x)

That is
V2u12 eLPrn MX‘”_ZX"'X“(]R”).

Similar to the estimate of J;, one deduces

X, n—4+2x
*

Viuy e M (B14) N L (By4).

Note that the biharmonic 1-form 4 is always smooth. Hence Claim 4.2 holds if x > p>. In
the case x < pp =np/(n —2p) =n/(2 —«a),observe thatn —4 + 20 =n —2x + 2x«.
So, for any w € Mf'"_2X+2Xa(Bl/4) andany 0 <r < 1/2,

L L e el LUl PP E R
That is,
ME" T By ) € I (B ).
Therefore,
V2u11,V2uy € LX 0 MP" KBy ),
The proof of Claim 4.2 is complete. O

Next we use iteration to derive the optimal regularity of Vu and V2u.

Claim 4.3 (Iteration lemma) Let x = A < Ay < p2 and set

X
}\n+l = E)"m

If
Vu e L A P20 By and V2 € L' 0 M2 (By)
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with sufficiently small norms and if

Antl < X,
then

2hn41,0=2hp 11 (1—a)

Vu e L N M} (Bij) and VZu e L' My " Cr gy oy

Proof The improvement of Vu on By, follows as before. We also have the same regularity
of P, & as that of u by the same arguments as above. So we only need to deduce the regularity
of V2u and the arguments will be similar as in the previous step.

For the first term, we have

V20 & L ((1V2ul 4+ IV2P) [Vul + (|Vu| + [VP)|V2ul).
Holder’s inequality gives
' X, dn (32
(|V2u|—|—|V2P|)|Vu|+(|Vu|+|VP|)|V2u| einlk’lﬂM*X*—l n— X+1 ( o)

and (2.4) gives the boundedness of

I Lﬁ’\" ﬂMﬁ,\nn e (3=200) L2 2 . ﬂMg 3 L hnn— K 3= 2a)
Note that
Hence

V211 c L)»,1+] ) M)Ln+1 M—hpt1(2— 20‘)

For the second term, we have |V2J;| < L(|Gp||Vul) and
|G pVul| < (|V2u| + [V2P|) (IVul + [VP? + (|Vu| + [VP])*.

Note that 21,11 = x X, and so
Ann A (4=3a)
(|V2u| + |v2P|) (|VM| + |VP|) c LX+2}\n mMX+2 )(+2 o !

4 Mnst— n 1—
(IVul + |VP|)4 € LZ)‘H mM*AA n—xhn( Ol).

The second term has better regularity than the first one. In the case & < 2/3, applying (2.4)
gives boundedness of

n— A (4=3a) Ansh Xiz)»,, (4—3a)

X5
I: Lﬁkn m M*x+2 =3 Lz 3 Tz m ]1/[2 3“ 7

So

An,n An(4— 3a)

x+2

V2.12 c L2 30( X+2An ﬂMZ 3a x+2
The third term can be splited into a sum of two terms with the same regularity as that of
Jiand Jp. Since x +2 = (4 —3a)/(1 — ), we have
~ 4 —-3a x 2—«o 2(1 —a)
)‘-n+l = n = n =
2—-3ax+2 2 — 3« 2 —3a

n+1-
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Hence )N\,H_] > Ap41 and
n—Inp12=30) =n —Ayy1(2—200) > n — Ay 1 (2 — ).
This implies

}\n+l n— )L)H»l(z 3a) Ant1:n—Apt1(2—)

L+ M (B1j2) C LM+ N My (By)2).

Consequently, we obtain
V2M11 c L)\.y,Jr] o) Mi\nJr]»n_)wH»l(2_05)(31/2)'
Note also that V25 € LP2. Thus if Ant1 < p2, then
V2u12 e L+ N0 M)»n+1.71—)~n+1(2—06)(31/2)_

Similarly, we can deduce the result for u; and the biharmonic part . The proof of Claim 4.3
is complete. o

Since x > 2, Claims 4.2 and 4.3 imply that after finitely many steps this iteration will
stop, whence Vzu € Lp2 .(B1). This in return implies that Vu € Lloc(Bl) by the Sobolev
embedding theorem.

Now we can deduce the third order regularity of u. Rewrite the system (1.7) as

A’y =div(l)+ 11, (4.10)
where

I =DV?u+VD -Vu+E-Vu+VQ-Vu,
I=-VQ-Au+G -Vu+f.

By the growth assumption (GC-4), we know

11| < C(IVul + |Vul*)|Vul,
[11] < C (IV2ul* + |Vul*|V2ul + |Vul*) + f. @.11)

Since we have proved thatu € W= = andn < 4p,itfollows that2p < p» < p3/2. Hence
_np

leL!™ cL. g and I7 € LY . Here the least regular term of 7 and 77 are V>uVu and

loc loc
f, respectively.
Set A%u; = div(/) and A%uy = II in Bj. Standard elliptic regularity theory implies
2 _np_ . . . . .
Ui € W]OC’1 " and uy € Wltcp C W7, Asu — 11 — uy is a biharmonic function, we infer
that

3,
‘n—p
ue w7 (B).

Next we derive the apriori estimate of u. By the Hodge decomposition, we have the
biharmonic 1-form £ satisfying

h = Pdu —duy —duin — d*us in Bj.
By the Morrey estimates (Theorem 1.2), we have

A0 pgan—s4a s Se+IflLrs)-
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In particular, this implies that ||h||L1(33/4) S e+ 1 fllLr(sy).- Since h is biharmonic, we infer
that

12llLrs B2 S WL By ) S €+ I IILr(ay)-
Returning to the Hodge decomposition, we have
IVullLes ) S WllLes s n) + 1IVuiillLes s, p) + 1IVuillLes s, ) + 1IVuzllLes s, ,)-

Using the potential theory, we can similarly estimate ||Vu L3 (B 2)s VU121 LP3 (B 1) and
IVusz | rrs (Bijy) 88 that of (4.8) and (4.9). Hence

ldullLrs (B, )
2
<c(e+Ifllran) (”V”“Mﬁ”"‘“*”(m) +IVZully2n-20-wp ) + ”f”Ll’(Bl))

for some a > 0. Similarly, we obtain

IV2ull ez (3,0 < ¢ (€ + I f o)) (”V””Mi-”*““*"”(&)
2
IVl )+ 1 o)

for some a > 0. Here ¢ and a are two constants that depend on n, m, p.
Now we derive the a priori estimate for V3u. Applying the elliptic regularity theory to the
Eq. (4.10), we obtain

||V3u||LP|(B|/2) S M LryBsygy + 1Tl Lp(Bsq) + Vil L4s,4)-

By the growth property (4.11), we have

I lLor By S (nvzunﬁ(m) + ||Vu||in(33/4)) IVl Les (85)
S e+ 1 f e ) IVUllLes Bs4)-

Thus we obtain

WL (810 S €+ 1 Iiea)® (1Vullygsn—scsy + 1V2ullyza-acsy + 1 fllLres))) -
Similarly, we obtain

Tl Lrsy S €+ 1 flLra)® (IVullpyan-spyy + 1Vl pp2n-ssy + 1 f lLoesy) -
In conclusion, we deduce

IV ullrays S €+ 1 1ere) (198l ygsrsca + 1V2ullyzimscay + 1 oo

HIVulpap)y-

This finishes the proof of Theorem 1.4 in the case n/4 < p < n/3.

4.2 Case2:n/3 <p<o©

In the remaining case n/3 < p < oo, the result follows by an induction argument and a
trivial iteration.
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Since n/3 < p, it follows that f € L7(By) for any g < n/3. Choose € = ¢, sufficiently
small such that we can apply the previous result to obtain u € le’cq , which then implies that

Vuel; VzueLﬁ;‘S Vs <00,0<68<k1.

loc»

Write the equation as
Alu=div()+ 11+ f.

Asaresult, I € L" % and IT € L"/*7°

loc loc

for any § > 0 small. Let
A%uy =divl, A%up =11, A%uz=f.
3,n—48 4’%*5 4,p
We find thatuy € W0, uz € Wy, and uz € W .

Case 2.1.1f n/3 < p < n/2, then for § > 0 sufficiently small W34 ¢ WS’%. Hence

np

in this case uj + us +uz € W, . So

np
‘n—p
oc

n/3<p<n/2=uecW,

Case 2.2. If p > n/2, then f € L9(B;) for any ¢ < n/2. Apply the above result gives

u € Wlf)’cn_s,which in turn implies that Vi € L™ and VZu € Ly . forany s < oo. Hence

s . . 3,5 4.5
I,11 € Ly, foranys < oo.Thisthen givesu; € W, ux € W, forany s < oco. However,

recall that u3 € Wlt’cp . So we can conclude that

C

3,2
{u eW, " ifn/2<p<n,

uerf)’c‘Y forany s < oo if p > n.

The a priori estimates in this case can be derived similarly and thus omitted. The proof of
Theorem 1.4 is complete.

4.3 Case3:1<p <n/4

Proof of Theorem 1.7 The proof of this theorem is almost the same as that of Theorem 1.4,
only with minor modifications in the arguments. First note that our Morrey estimate holds as
well. So we can iterate. By the assumption of f, we have

L(f) e L™ N MO RN,

Remark that 2 < n < x. This term determines how much regularity we can gain in the end.
If ng < x, the iteration stops at the first step, and gives

VZu e LN MZ’"_"(z_a)(Bl/2)~

In case ng > x, using the same iteration method with slightly modification, we can obtain
the same result. As a result, it follows from the potential theory that

Vu e LI A M%) gy oy,

We leave the details to interested readers. O
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4.4 Proofs of other results

Proof of Corollary 1.5 The proofis standard and omitted here; see for instance [ 13, Proposition
6.2]. O

Proof of Corollary 1.6 1t follows easily from a contradiction argument; see for instance [13,
Proof of Corollary 1.5]. O

Data Availability Data sharing is not applicable to this article as no data sets were generated or analysed.

Appendix A. Some apriori estimates concerning gauge transform

Lemma 4.1 can be proved following the strategy of Riviére [26] and Riviere-Struwe [29].
We sketch the proof for readers’ convenience. Also, for future applications, we will prove a
slightly more general result than that of Lemma 4.1.

Let D C R” be a bounded Lipschitz domain, | < p < 00,1 < g <ocoand0 <s < n.
We slightly extend the notion of Morrey spaces. Say that a function f belongs to the Lorentz—
Morrey space LMP-9-*(D), if f belongs to the Lorentz space L?-9 (D), and if

I fllemraspy = sup  (r* /Pl fllLracs wnp)) < 0o,
xeD,0<r<dp

where dp is the diameter of D. Note that
LMPP5(D) = MP*(D) and LM?°**(D) = MI"* (D).

When s = 0, we get the usual Lorentz space, i.e., LMP49(D) = LP9(D). When0 < s <n
and D is a bounded domain, we have the continuous embedding LM?-9-5(D) C LP-9(D).
Moreover,

£ lliLraoy < dy” I fllLaraso) (A1)

LemmaA.1 Let D C R" be a bounded Lipschitz domain, 1 < p < oo, 1 < g < 0o and
0 < s < n. Then, there exists a constant C > 0 depending only on D, p, q,s such that
whenever u € W&'p(D) is the solution of the equation

—Au =divf in D,
for some f € LMP95(D,R"), then Vu € LMP?9*(D). Moreover,

IVullpsyraspy < CllfllLyras(py-

Proof Wen s = 0 and g = p, the result is well known. So the result follows from a standard
interpolation arguments in the case s = 0 and 1 < ¢ < oo. In the below we suppose
0<s <n.

Let xo € D be an arbitrary point in D and » > 0. Denote D, = D N B,(xgp). Let v be
the harmonic function in D, with Dirichlet boundary value u. Then, the function w = u — v
solves

—Aw =divf in D,,
w=0 ondD,.

So apply the result for s = 0, we obtain

IVwllrap,y < CllfllLrap,)-
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By the assumption, we find

IVwlLrap,y < CIf lLmpaspyr®!P.

On the other hand, forany 0 < p < r,

P\
1991 a0,y = € (5) 19000

Thus, for any 0 < p < r, using a simple triangle inequality gives

P\
1VulZ s,y = € (5) 1961000, + CIVRILR0D).
from which we deduce that
p n
IVl s p,y = € (5) 1V81E o, + CIFI pgnas oy

Therefore, using an elementary lemma, we derive, for any 0 < p < dp,

IVl ) < Co* (dl;)||Vu||’L’,,‘q(D) - ||f||£M,,J,.A(D)) :
Since x is arbitrary, this is equivalent to
IVullLpraspy < C (IVullpray + I fllLyraspy) -
Finally, note that by the result for s = 0, we have

IVullprapy < Cll fllLrapy < CNfllLmraspy-

The second inequality follows from (A.1). Hence, we conclude from the above two estimates
that the desired estimate holds. The proof is finished. O

Next we consider the following special Poisson equation.

LemmaA.2 Let D C R" be a bounded Lipschitz domain, 1 < p < oo, 1 < g < oo and
0 < s < n. Then, there exists a constant C > 0 depending only on D, p, q,s such that
whenever u € W(}’p(D, AT2RM) is the solution of the equation

—Au=*dP~' AdP) inD,

for some function P € BMO(D) withdP € LMP9%(D), then du € LMP-%*(D). More-
over,

Idullzyraspy < CIPI Moy ldP ™ | Lyrasp).

Proof (1) Suppose ¢ = pands = 0,i.e., P € BMO(D) and dP € LP(D). Let F =
|du|P~2du € LP' (D, A"~'R"). Hodge decomposition gives ¥ € W}”’ (D, A"2RM), B €
W}V*”'(D, A""2R") and an n — 2 harmonic form & € H"~2(D, R") such that F = dy +
d*B + h and

—1
ld¥ll, + Ikl < CIIFlly = Clidully™.
Then

/Idulp:/du-(dl//—i—d*ﬂ—i—h):/du-dl//.
D D D
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Here in last equality we used the boundary condition # = 0 on d D. Therefore, we obtain
/ |du|? =/ dP ' ANdP Ay =/ dP~'(P — Pp) Adv,
D D D
] where Pp = fT) P. Since d P~! A di belongs to Hardy space, we obtain

/D ldul? < CIPlgmomyIdP~ Loy 1dW Il -
This gives
lidull, < ClIPllgpmomyldP iLr(p).
(2) In the case s = 0 and 1 < g < oo, we use the usual interpolation argument to obtain

Idullzrapy < CIIPIBmomyldP ™ | Lrap).

(3) Now suppose 0 < s < n. Use the same arguments as in the Lemma A.1. For any
xo € D and r > 0, denote D, = D N B,(xp). Let v be the harmonic function in D, with
Dirichlet boundary value u. Then, the function w = u — v solves

—Aw =#(dP~"'AdP) in D,,
w=0 on dD,.

Thus using the result in the second step yields
ldwllzrap,) < ClIPIgmomyldP ™ lLrap,)-
It follows
r*Pdwllzran,) < CIIPIsmow)IdP ™ ILyrasp).

On the other hand, for any 0 < p < r,

p n
1AVl o,y < € (7) 14v117p.p,)-

Therefore, a similar argument as in the previous lemma gives, for any xo € D and
0<p<dp,

Idullzrap,) < Co*'? (Idullrapy + I Plsmowyld P~ Laras o)) -

Since ||d P! lLra(py < ClldP~! llzpr.as(py, using the result in the second step together
with the above estimate, we deduce the desired estimate. The proof is complete. O

Based on the above two lemmata, we can prove Lemma 4.1. We prove a slightly more
general result here.

Lemma A.3 There exist 8§ > 0 and C > 0 with the following property: Suppose that Q €
LMP95(By ) for some 1 < p < 00,1 < g <ooand0 < s < n such that there exist
P,& € LMP%%(By ) satisfying the Eq. (3.1) of Lemma 3.1 on By 2, and

d Pl ppan—sp, ) + Nd& | ppsn-acp, p) <6,
then there hold

NdPllLyras ) + IdENLmras By < CNLULMPas(By)-
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pts

If. in addition, V2 € M5-""5" (B) 1), then V2P, V& € M5 "5 (B 5), and

2 B

||V2P” zm(
M 2
2

+ V2] g ape
)1 (o

=clmvel , nfp+s( + ll€2]l
M2 2 Bl> LMPas <BL>
2 2

In particular, (4.4) and (4.5) holds under the assumption Q € My" 44 (Biy2) and VQ €
(B ).

Proof By Eq. (3.1),
A& =xdP~' ANdP +xd(P7'QP) in B,
E=0 on By)s.
Let & be the solution of
A& =*dP~' AdP in By, d A& = xd(P7'QP) in B,
an
E=0 on By, £E=0 on By);.
Applying Lemma A.1 to & and Lemma A.2 to &1, we deduce

Nd&illLmpas(p ) < COIldPLmpass )

and

ld&2llLaaras(py ) < CNQLmras(s -

Thus

ldé N Lmras(py ) < COld P LmpasB ) + 1R Lmras (s -
Directly from Eq. (3.1), we have

ldPllLyrasp ) < CldEllLmrass ) + 1R Lmpas (s, -

Combining the above two estimate together with a suitably chosen § < 1 small enough, we
obtain the first estimate.

The second estimate can be proved by the same method. We omit the details. The proof
is complete. O
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