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Abstract
We establish an optimal L p-regularity theory for solutions to fourth order elliptic systems
with antisymmetric potentials in all supercritical dimensions n ≥ 5:

�2u = �(D · ∇u) + div(E · ∇u) + (�� + G) · ∇u + f in Bn,

where � ∈ W 1,2(Bn, som) is antisymmetric and f ∈ L p(Bn), and D, E,�, G satisfy the
growth condition (GC-4), under the smallness condition of a critical scale invariant norm of
∇u and ∇2u. This system was brought into lights from the study of regularity of (stationary)
biharmonic maps between manifolds by Lamm–Rivière, Struwe, and Wang. In particular,
our results improve Struwe’s Hölder regularity theorem to any Hölder exponent α ∈ (0, 1)
when f ≡ 0, and have applications to both approximate biharmonic maps and heat flow
of biharmonic maps. As a by-product of our techniques, we also partially extend the L p-
regularity theory of approximate harmonic maps by Moser to Rivière-Struwe’s second order
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elliptic systems with antisymmetric potentials under the growth condition (GC-2) in all
dimensions n ≥ 2 when p > n

2 , which partially confirms an interesting expectation by
Sharp.
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1 Introduction andmain results

1.1 Background andmotivation

In his landmark work [26], Rivière proposed the second order linear elliptic system

− �u = � · ∇u in B2 ⊂ R
2, (1.1)

with � = (�i j ) ∈ L2(B2, som ⊗ �1
R
2) and u ∈ W 1,2(B2,Rm), which models the Euler-

Lagrange equations of critical points of all second order conformally invariant variational
functionals over maps u ∈ W 1,2(B2, N ), where B2 ⊂ R

2 is the unit disk, and N ⊂ R
m

is an arbitrary compact Riemannian manifold. In particular, (1.1) includes the equation of
weakly harmonic maps from B2 to N and the prescribed mean curvature equations. A crucial
observation of [26] is a conservation law induced by the anti-symmetry of�, from which the
continuity of weak solutions to Eq. (1.1) follows. This gave an affirmative answer to the long
standing conjectures of Hildebrandt and Heinz, and an alternate proof of Helein’s celebrated
regularity theorem on weak harmonic maps in dimension two. The technique developed in
[26] has also profound applications beyond conformally invariant problems; see [27, 28] for
a comprehensive overview.

Rivière and Struwe have further considered in [29] the same system as (1.1) in supercritical
dimensions n ≥ 3:

− �u = � · ∇u in Bn ⊂ R
n, (1.2)

where� = (�i j ) ∈ L2(Bn, som ⊗�1
R

n). Although there is no conservation law associated
with (1.2) for n ≥ 3, Rivière and Struwe managed to transform (1.2) into a gauge equivalent
system through Uhlenbeck’s gauge construction associated with�. It was established in [29]
that a local Hölder regularity holds for any weak solution u to (1.2) under the smallness
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condition

sup
x∈Bn

1 ,r>0

(
1

rn−2

∫
Bn

r (x)∩B

(|∇u|2 + |�|2) dx

)1/2

< ε(n, m).

As an application, they reproved the partial regularity theorem on stationary harmonic maps
in dimensions n ≥ 3, due to Evans [8] and Bethuel [3].

The techniques in [26, 29] have been subsequently extended to fourth order elliptic systems
by Lamm and Rivière [18] in dimension n = 4 and Struwe [33] for n ≥ 5 in the course of
study of biharmonic maps. Recall that an extrinsic (or intrinsic resp.) biharmonic map from
Bn into a closed Riemannian manifold N is a critical point of the energy functional∫

Bn
|�u|2 (

or
∫

Bn
|(�u)T |2 resp.

)
for u ∈ W 2,2(Bn, N ),

where (�u)T is the orthogonal projection of �u onto the tangent space Tu N . In [18], the
authors formulated the following system of 4th order linear elliptic equations

�2u = �(V · ∇u) + div(w∇u) + F · ∇u in B4, (1.3)

where V , w belong to certain function spaces and F = ∇ω + W with ω ∈ L2(B4, som)

being antisymmetric. By constructing a corresponding conservation law for system (1.3), an
everywhere continuity for weak solutions of (1.3) was established in [18]. The approach of
[18] was further refined by Guo and Xiang in [11], where a local Hölder continuity for weak
solutions of (1.3) was proven. The result of [18] has been applied to the theory of regularity
for heat flow of biharmonic maps in dimension four. In [33], Struwe revisited biharmonic
maps in supercritical dimensions n ≥ 5 and formulated the following fourth order linear
elliptic system:

�2u = �(D · ∇u) + div(E · ∇u) + (�� + G) · ∇u in Bn, (1.4)

where D, E, G belong to certain function spaces and � is an som-valued function with
entries in R

n . We refer interested readers to [18, 33] for detailed computations of writing
the equation of biharmonic maps in the form of (1.3) or (1.4). By extending the approach
of Rivière and Struwe [29], Struwe established in [33] a partial regularity theory for (1.4),
under the growth condition (GC-4) below, which in turn gave an alternate proof of the Hölder
regularity theorems of Chang, Wang and Yang [5] and Wang [34, 35] for biharmonic maps.
Because of structural similarities, it seems natural to extend the result of Rivière and Struwe
[29] on the system of second order linear equations (1.2) to system of fourth order linear
equations (1.3) and (1.4). Indeed, Struwe raised the following question in [33]:
Struwe’s Question It would be interesting to see if our method can be extended to general
linear systems of fourth order that exhibit a structure similar to the one of equation (1.4), as
is the case for second order systems (1.2), or in the “conformal” case n = 4 considered in
[18].

Struwe’s Question in the “conformal” case n = 4 has recently been solved by Guo and
Xiang in [12]. More precisely, it was proven in [12] that in critical dimensions n = 2k for any
k ≥ 2, a Hölder continuity holds for any weak solution u ∈ W k,2(Bn,Rm) of the 2k-order
linear elliptic system with antisymmetric potentials introduced by de Longueville and Gastel
in [7]. [12] was built upon the ideas by Rivière-Struwe [29] and utilized both Uhlenbeck’s
gauge transformation and the duality of Lorentz spaces L p,1 − L p′,∞, where 1 < p < ∞
and p′ = p/(p − 1). However, when dimensions n ≥ 5, the approach by [12] (see [12,
Section 5]) encountered serious technical difficulties, which left open Struwe’s Question in
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supercritical dimensions n ≥ 5. Another interesting problem, closely related to the regularity
theory on (1.2) and Struwe’s Question on (1.4), is to study the corresponding inhomogeneous
system of (1.4) in dimensions n ≥ 4. These problems lead us to ask

Problem 1.1 Establish a L p-regularity theory for weak solutions of the fourth order inho-
mogeneous elliptic system of Lamm and Rivière [18] or Struwe [33]

�2u = �(D · ∇u) + div(E∇u) + F · ∇u + f in Bn

in dimensions n ≥ 4.

More specifically, Problem 1.1 asks that for f ∈ L p(Bn,Rm) with 1 < p < ∞, if a
W 4,p

loc -regularity holds for weak solutions of the linear systems (1.3) or (1.4), provided certain
smallness conditions are imposed on both the linear coefficient functions and the solution.
In the critical dimension n = 4, Problem 1.1 was solved by Guo, Xiang and Zheng in [13],
where they proved that if f ∈ L p for 1 < p < 4/3, then u ∈ W 3,4p/(4−p)

loc ⊂ C0,4(1−1/p)
loc . In

particular, this implies that when n = 4, every weak solution of the system (1.3) or (1.4) is
locally α-Hölder continuous for all 0 < α < 1. A similar L p-theory for general even order
linear elliptic systems proposed by de Longueville and Gastel [7] was also established by
[14] in critical dimensions. For applications to biharmonic maps, see Laurain-Lin [20] for
energy convexity and Laurain-Rivière [21] and Wang-Zheng [36] for energy quantization.
We also point out that the theory of biharmonic maps has been successfully applied in Cheng-
Zhou’s solution of the Rosenberg-Smith conjecture in their recent work [6]. We would like
to mention that a positive answer to Problem 1.1 would solve Struwe’s Question. However,
Problem 1.1 remains open in supercritical dimensions n ≥ 5. In this paper, we will make
some partial progress towards Problem 1.1.

In the second order case, motivated by the study on approximate harmonic maps and heat
flow of harmonic maps, It is natural to consider the following problem.

For p > 1, develop a W 2,p-regularity theory for the inhomogeneous Rivière’s system

− �u = � · ∇u + f in Bn, (1.5)

where � ∈ L2(Bn, som ⊗ R
n) and f ∈ L p(Bn,Rm).

This problemwasfirst considered bySharp andTopping [32] in dimensionn = 2.Utilizing
the conservation law of Rivière [26], they proved that if f ∈ L p(B2,Rm) for p ∈ (1, 2),
then every weak solution u ∈ W 1,2(B2,Rm) belongs to W 2,p

loc (B2,Rm) ⊂ C0,2(1−1/p)
loc . In

particular, any weak solution of (1.1) is locally α-Hölder continuous for any 0 < α < 1. See
Laurain-Rivière [22] and Lamm–Sharp [19] for some further related results.

For dimensions n ≥ 3, in the course of studying the heat flow of harmonic maps, Moser
[25] considered the L p-regularity of the system of approximate harmonicmaps u : Bn → N :

− �u = A(u)(∇u,∇u) + f , (1.6)

and proved that for any 1 < p < ∞ if f ∈ L p(Bn,Rm), then u ∈ W 2,p
loc (Bn, N ), under

certain smallness conditionon∇u.One crucial idea of [25] is to rewrite the system (1.6) via the
Gauge transformation of Rivière and Struwe [29]. On the other hand, Sharp [31] established

a Morrey-space regularity for the linear system (1.5) for p > n
2 , namely, M

2p
n ,n−2-regularity

for∇2u holds under a smallness condition on ‖�‖M2,n−2 . In view of Moser [25], Sharp made
the following expectation in [31, Remark 1.3]:
Sharp’s expectation One would expect Moser’s L p-regularity on (1.6) remains to hold for
the system (1.5) for any 1 < p < ∞, under the additional condition

�| ≤ C |∇u|. (GC-2)

123



Lp-regularity for fourth order elliptic systems with... Page 5 of 32    31 

We will provide a partial answer to this expectation in Theorem 1.8 below, dealing with the
case p > n/2.

1.2 Main results

Henceforth, we will assume m > 1, n ≥ 5. Let Br = {x ∈ R
n : |x | < r} and u ∈

W 2,2(B2,R
m). Consider the following inhomogeneous 4th order elliptic system

�2u = �(D · ∇u) + div(E∇u) + F · ∇u + f in B2, (1.7)

with F = �� + G, and

D ∈ W 1,2(B2, Mm ⊗ �1
R

n), E ∈ L2(B2, Mm)

� ∈ W 1,2(B2, som), G ∈ L
4
3 ,1(B2, Mm ⊗ �1

R
n). (1.8)

In coordinates, (1.7) reads as

�2ui = �(Di
j · ∇u j ) + div(Ei

j∇u j ) + Fi
j · ∇u j + f i , 1 ≤ i ≤ m,

where the Einstein summation convention is used for repeated indices.
In this paper, we aim to establish an L p-regularity theory for (1.7) under the following

growth condition on D, E, G,�:

|D| + |�| ≤ C |∇u|,
|E | + |∇ D| + |∇�| ≤ C

∣∣∇2u
∣∣ + C |∇u|2,

|G| ≤ C
∣∣∇2u‖∇u

∣∣ + C |∇u|3.
(GC-4)

Although the L p-theory of (1.7) under condition (GC-4) does not answer Problem 1.1, it
provides very interesting insights on attacking this challenging problem. From the analytic
point of view, the nonlinearity under (GC-4) is of critical growth so that for a weak solution
u ∈ W 2,2(Bn,Rm) there merely holds |∇2u|2 ∈ L1(Bn) and the standard L p-regularity
theory is not applicable. Furthermore, the nonlinearity is so strong that it is also impossible
to apply the standard bootstrapping argument, even if some improved regularity, e.g. ∇2u ∈
L2+ε for a sufficiently small ε > 0, is assumed.

Since (1.7) models biharmonic maps when f ≡ 0 (see Lamm and Rivière [18] and
Struwe [33]), our L p-regularity theory, via the Sobolev embedding theorem, implies that
u ∈ Cα

loc(Bn) for any α ∈ (0, 1), which in turn improves Struwe’s Hölder regularity theorem.
Note that the system for both approximate biharmonic maps and heat flow of biharmonic
maps do satisfy both (1.7) and the growth condition (GC-4), hence the L p-regularity theory
will have direct application to the study of biharmonic maps and heat flow of biharmonic
maps in supercritical dimensions.

We denote by M p,λ(Br ) and M p,λ∗ (Br ) the (p, r)-Morrey space and weak (p, r)-Morrey
space respectively (see Sect. 2 for their definitions). Our first theorem is stated as follows.

Theorem 1.2 Suppose f ∈ M1,n−4+α(B2,R
m) for some α ∈ (0, 1) and u ∈ W 2,2(B2,R

m)

is a solution of system (1.7) satisfying (GC-4). There exist constants ε = ε(m, n, α) and
C = C(m, n, α) > 0 such that if

‖∇2u‖M2,n−4(B1)
+ ‖∇u‖M4,n−4(B1)

≤ ε, (1.9)

then

∇u ∈ M4,n−4+4α∗ (B1/2) and ∇2u ∈ M2,n−4+2α∗ (B1/2).
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Moreover,

‖∇u‖M4,n−4+4α∗ (B1/2)
≤ C

(
‖∇u‖M4,n−4∗ (B1)

+ ‖ f ‖M1,n−4+α(B1)

)
,

‖∇2u‖M2,n−4+2α∗ (B1/2)
≤ C

(
‖∇2u‖M2,n−4∗ (B1)

+ ‖∇u‖M4,n−4∗ (B1)
+ ‖ f ‖M1,n−4+α(B1)

)
.

(1.10)

Theorem 1.2, relaxing the L p-assumption on f to a Morrey assumption on f , seems
to be new even in the critical dimension n = 4. In connection with the Morrey smallness
assumption (1.9), the Morrey assumption on f seems to be more compatible than the L p

assumption on f .
The smallness assumption (1.9) is natural in terms of both translation and dilation invari-

ance. When f ≡ 0, the monotonicity formula for stationary biharmonic maps justifies this
smallness assumption, see e.g. Wang [35], Struwe [33] and Moser [23]. For heat flow of
biharmonic map flow (i.e. f = ut ), a parabolic version of smallness assumptions can
also be verified in some cases, see e.g. Hineman-Huang-Wang [15]. In view of the embed-
ding M4,n−4+4α∗ (B1) ⊂ Mq,n−q+qα(B1) for any 1 ≤ q < 4, the estimate (1.10) can be
viewed as a slight improvement of Struwe [33, Estimate (37)], where it was proved that
∇u ∈ Mq,n−q+qα(B1/2) for some 1 < q < 2.

An immediate consequence of Theorem 1.2 is the following optimal Hölder regularity.

Corollary 1.3 Suppose f ∈ M1,n−4+α(B2,R
m) for some α ∈ (0, 1) and u ∈ W 2,2(B2,R

m)

is a solution of system (1.7) satisfying (GC-4). There exist constants ε = ε(m, n, α) and
C = C(m, n, α) > 0 such that if (1.9) holds, then u ∈ C0,α

loc (B1) with

‖u‖C0,α(B1/2)
≤ C

(
‖∇u‖M4,n−4∗ (B1)

+ ‖ f ‖M1,n−4+α(B1)

)
.

When f ≡ 0, this implies that solutions of (1.4) are locally α-Hölder continuous with
any exponent 0 < α < 1, which improves the main result of Struwe [33]. See Rupflin [30]
and Wang-Zheng [36] for some related results.

Theorem 1.2 provides the key technical tool to prove the following L p-regularity result.

Theorem 1.4 Suppose f ∈ L p(B1) for some n/4 < p < ∞ and u ∈ W 2,2(B1,R
m) is a

solution of system (1.7) satisfying (GC-4).

(i) When p < n, there exists a constant ε = ε(m, n, p) such that if the assumption (1.9)

holds, then u ∈ W
3, np

n−p
loc (B1) and

‖∇3u‖
L

np
n−p (B1/2)

≤ C∗
(‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
.

Here C∗ = c∗(1 + ε + ‖ f ‖L p(B1))
a∗ for constants c∗ and a∗ depending on n, m, p.

(ii) When p ≥ n, for any 1 < q < ∞, there exists a constant ε = ε(m, n, p, q) such that if
the smallness assumption (1.9) holds, then u ∈ W 3,q

loc (B1) and

‖∇3u‖Lq (B1/2) ≤ D∗
(‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
.

Here D∗ = d∗(1 + ε + ‖ f ‖L p(B1))
b∗ for constants d∗ and b∗ depending on n, m, p, q.

Wewould like to remark that in Theorem1.4, the constantC∗ (and D∗) depends not only on
ε, n, m, p (and q) but also on ‖ f ‖L p(B1). The reason for dependence on ‖ f ‖L p(B1) is that our
system is nonlinear and in general one can only expect a priori estimates involving polynomial
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dependency on ‖∇u‖M4,n−4(B1)
, ‖∇2u‖M2,n−4(B1)

and ‖ f ‖L p(B1), under theMorrey smallness
assumption (1.9) on ∇u and ∇2u.

This result provides an affirmative answer to Problem 1.1 under the growth condition
(GC-4). As a simple consequence of this theorem and the Sobolev embedding theorem, we
can infer that the smallness assumption (1.9) implies

u ∈

⎧⎪⎨
⎪⎩

C0,α
loc (B1), if n/4 < p < n/3,

C1,α−1
loc (B1), if n/3 < p < n/2,

C2,α−2
loc (B1), if n/2 < p < n,

where α = 4 − n/p, whenever p < n. As a further application, we have

Corollary 1.5 Suppose f ∈ L p(B1) for some n/4 < p < ∞ and u ∈ W 2,2(B1,R
m) a

solution of system (1.7) satisfying (GC-4). Suppose further that

|∇ D| ≤ C(|∇2u| + |∇u|2),
|∇E | + |∇2�| ≤ C(|∇3u| + |∇2u||∇u| + |∇u|3).

Then there exists a constant ε = ε(m, n, p) such that if the assumption (1.9) holds, then
u ∈ W 4,p

loc (B1) and

‖∇4u‖L p(B1/2) ≤ C
(‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
.

Here C = c(1+ε+‖ f ‖L p(B1))
a for two constants c and a depending on n, m, p. In particular,

any approximate biharmonic map u with drift term f ∈ L p(B1) for some n/4 < p < ∞
belongs to W 4,p

loc (B1), provided the smallness condition (1.9) holds for a sufficiently small ε.

Corollary 1.5 extends the corresponding results byWang-Zheng [36] and Laurain-Rivière
[21] in the critical dimension n = 4. It also leads to the following weak compactness and
energy gap results.

Corollary 1.6 There is a sufficient small constant ε = ε(m, n) > 0 such that
(1) Weak compactness For any sequence uk ∈ W 2,2(B1, N ) of biharmonic maps which

converges weakly to a map u ∈ W 2,2(B1, N ), if

‖∇2uk‖M2,n−4(B1)
+ ‖∇uk‖M4,n−4(B1)

≤ ε, ∀ k ≥ 1,

then up to a subsequence, uk → u strongly in W 2,2
loc (B1, N ). In particular, u is a smooth

biharmonic map; and
(2) Energy gap If u ∈ W 2,2(Rn, N ) is a biharmonic map satisfying

‖∇2u‖M2,n−4(Rn) + ‖∇u‖M4,n−4(Rn) ≤ ε,

then u ≡ p in R
n for a point p ∈ N.

For geometric applications of this type of result, seeWang-Zheng [36] andLaurain-Rivière
[21] on the energy identity of biharmonic maps in dimension n = 4.

The requirement p > n/4 in Theorem 1.4 ensures that f ∈ M1,n−4+α(B1) for some
0 < α < 1. It is natural to ask what happens when 1 < p ≤ n/4. Observe that the heat flow
u of biharmonic maps can be viewed as (1.7) for f = ut ∈ L p , with p = 2 ≤ n/4 when
dimensions n ≥ 8, see e.g. Moser [24]. This motivates us to consider the case f ∈ L p for
1 < p ≤ n/4. We can prove
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Theorem 1.7 Suppose f ∈ L p ∩ M1,n−4+α(B1) for some 1 < p ≤ n/4 and 0 < α < 1 and
u ∈ W 2,2(B1,R

m) is a weak solution to system (1.7) satisfying (GC-4). There exists ε > 0
such that if the smallness condition (1.9) holds, then

∇2u ∈ L pη ∩ Mη,n−η(2−α)∗ (B1/2) and ∇u ∈ L pηχ ∩ Mηχ,n−ηχ(1−α)∗ (B1/2),

where χ = (2 − α)/(1 − α) > 2 and η = (4 − α)/(2 − α) > 2.

We would like to remark that with slight changes of arguments, all results stated as above
remain to hold if the coefficient function F in Eq. (1.7) takes the form F = ∇ω + W of Eq.
(1.3) and (GC-4) is replaced by a corresponding one.

Finally, as aforementioned, as a by-product of our method, we provide a partial answer to
Sharp’s interesting expectation.

Theorem 1.8 Suppose f ∈ L p(B1) for some 1 ≤ n/2 < p < ∞ and u ∈ W 1,2(B1,R
m) is a

weak solution of system (1.5). If, in addition, � ∈ L2(B1, som ⊗ ∧1
R

n) satisfies the growth
condition (GC-2), then there exists ε = ε(m, n, p) > 0 such that

u ∈ W 2,p
loc (B1,R

m),

provided ‖∇u‖M2,n−2(B1,Rm ) < ε.

Theorem 1.8 extends a main theorem of Moser [25, Theorem 1.2] in the range p > n/2
with also a different proof. However, due to the limitation of our method, it remains an
interesting open question that how to confirm Sharp’s expectation for the more difficult case
1 < p ≤ n/2.

1.3 Strategy and novelty of the proof

Roughly speaking, our proofs of main results follow the line of Sharp and Topping [32] in
the large. More precisely, to derive Theorem 1.2, we shall first rewrite the system using the
Gauge transform of Struwe [33], and then apply the Hodge decomposition to simplify the
problem. Morrey type decay estimates then follow from a combination of Riesz potential
theory and a decay property of harmonic functions. However, as there is no conservation
law in our case anymore, and also due to the critical nonlinearity, we will have to overcome
severe difficulties. To this end, some new ideas will be introduced.

To explain our strategy and novelty clearly, we first sketch the proof of Theorem 1.8.

Proof of Theorem 1.8 We first consider the case n
2 < p < n. Sharp [31, Theorem 1.2] has

proved that ∇u ∈ M2,n−2+2α
loc (B1) with α = 2 − n/p ∈ (0, 1). It follows from the growth

condition that � ∈ M2,n−2+2α
loc (B1). Therefore � · ∇u ∈ M1,n−2+2α

loc (B1).
First suppose α < 1/2. Extend �, u and f from B1/2 into R

n with compact support in
Bn
2 in a norm-bounded way. Let u1 = I2(� · ∇u) and u2 = I2( f ) such that h = u − u1 − u2

is a harmonic function in B1/2, where Iα = c|x |α−n is the standard Riesz potential. Since
� ·∇u ∈ M1,n−2+2α ∩ L1(Rn), Adams’ potential theory (see Proposition 2.5 below) implies

|∇u1| ≤ C I1(� · ∇u) ∈ L2χ,∞(Rn),

where

χ = 1

2

(
2 − 2α

1 − 2α

)
> 1.
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By standard elliptic regularity theory, u2 ∈ W 2,p(Rn). Hence ∇u2 ∈ L p∗
(Rn), where

p∗ = np
n−p .

Since h ∈ C∞, if 2χ > p∗, then we find that ∇u ∈ L p∗
loc(B1). If 2χ ≤ p∗, we obtain

∇u ∈ L2χ,∞(B1/2). Since 2χ > 2, we have ∇u ∈ Lq
loc(B1) for some q > 2. Then the

growth condition (GC-2) implies that � ∈ M2,n−2+2α
loc ∩ Lq

loc(B1). It follows that

� · ∇u ∈ M1,n−2+2α
loc (Bn) ∩ Lq/2

loc .

Since q/2 > 1, using Adams’ potential (see Proposition 2.6) again gives ∇u1 ∈ Lχq . If
χq ≤ p∗, we obtain ∇u ∈ Lχq . Thus, we find the iteration:

∇u ∈ Lq ⇒ ∇u ∈ Lχq .

Since χ > 1, we can assume that χkq ≤ p∗ < χk+1q for some k ≥ 1. After finitely many

times iteration, we find that ∇u ∈ L p∗
loc(B1).

In the case α ≥ 1/2, we use embedding M2,n−2+2α(B1) ⊂ M2,n−2+2β(B1) for any
β < 1/2 so as to obtain the same regularity as in the case α < 1/2. As a consequence, we

can always derive ∇u ∈ L p∗
loc(B1). Now the second order regularity u ∈ W 2,p

loc (B1) follows
from the usual elliptic regularity theory.

If p ≥ n, then f ∈ Lq(Bn) for any n/2 < q < n. Running the previous argument we

conclude that ∇u ∈ L
nq

n−q
loc (B1). This implies that u1 ∈ ⋂

1<q<∞ W 1,q
loc (B1) and so finally

u ∈ W 2,p
loc (B1). The proof is complete. ��

Our proof of Theorem 1.4 follows a similar approach, but the analysis becomes much
more involved. In a first step, we derive the weak Morrey decay estimate for solutions of
system (1.7), that is, Theorem 1.2. Unlike the case of linear systems in [13, 14, 31, 32], this
regularity improvement is not strong enough for iteration yet. To fill the gap, two observations
are explored here:

• The weak Morrey regularity of ∇2u automatically implies an improvement of ∇u, i.e,
∇u ∈ L2χ ∩ M2χ,n−2χ(1−α)∗ (B1/4), where χ ≡ (2 − α)/(1 − α) > 2;

• The growth condition implies a corresponding regularity improvement for the Gauge
transformation (see Lemma 4.1 below).

By the first observation, we obtained an improved regularity of ∇u. But this improvement
itself is still not sufficient for the iteration method yet. To proceed, the new idea is to further
track and improve the regularity of Gauge transforms, so as to fully make use of the gauge
transforms. We then turn to construct an associated Gauge transform on smaller balls (half
radius of the previous one) with improved regularity. This is realized by the second observa-
tion. Next, with these improved Gauge transforms at hand, the next new idea is to tracking
both the Lebesgue integrability and Morrey regularity of ∇u and ∇2u simultaneously; an
application of the Riesz potential theory gives a further improvement on integrability of ∇u
and ∇2u. Finally, to obtain the optimal interior regularity, we run an iteration scheme by
repeatedly constructing the gauge transforms on a sequence of shrinking balls and then using
the gauge equivalent equations on shrinking balls. Our strategy works surprisingly well: in
contrast to those infinite iteration on linear systems in [13, 14, 31, 32], our iteration process
stops after finitely many steps, which also thanks to the nonlinear nature of the problems. We
mention that a crucial harmonic analysis theory used in the proof is the boundedness of Riesz
operators between weak Morrey spaces, which is due to Ho [16] (see also Proposition 2.7
below).
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   31 Page 10 of 32 C.-Y. Guo et al.

Our notations are standard. By A � B, we mean there is an absolute constant C > 0 such
that A ≤ C B. The constant C may differ from line to line.

2 Preliminaries

In this section, we introduce some function spaces and the related Riesz potential theory
between these function spaces. They play a central role in later proofs.

2.1 Morrey spaces

Let � ⊂ R
n be a smooth domain. For 1 ≤ p < ∞, let L p(�) be the usual L p space on �

and L p∗ (�) the weak L p space on �.
Let 1 ≤ p < ∞ and 0 ≤ s ≤ n. The Morrey space M p,s(�) consists of functions

f ∈ L p(�) such that

‖ f ‖M p,s (�) ≡ sup
x∈�,0<r<diam(�)

r−s/p‖ f ‖L p(Br (x)∩�) < ∞.

The weak Morrey space M p,s∗ (�) consists of functions f ∈ L p∗ (�) such that

‖ f ‖M p,s∗ (�) ≡ sup
x∈�,0<r<diam(�)

r−s/p‖ f ‖L p∗ (Br (x)∩�) < ∞.

Note that M p,0(�) = L p(�) and M p,n(�) = L∞(�), and M p,0∗ (�) = L p∗ (�). When
� is a bounded domain, it follows from Hölder’s inequality and the simple embedding
L p∗ (�) ⊂ Lq(�) (1 ≤ q < p) that,

L p(�) ⊂ Mq,n(1− q
p )

(�), ∀ 1 ≤ q < p

and

M p,s∗ (�) ⊂ M1,n+ s−n
p (�), ∀ 1 < p < ∞.

We shall need the following well-known Hölder’s inequality for weak L p functions.

Proposition 2.1 Let 1 < p1, p2 < ∞ be such that 1
p = 1

p1
+ 1

p2
≤ 1. Then, f ∈ L p1∗ (�)

and g ∈ L p2∗ (�) implies f g ∈ L p∗ (�). Moreover,

‖ f g‖L p∗ (�) ≤ ‖ f ‖L
p1∗ (�)

‖g‖L
p2∗ (�)

.

The following proposition concerns Hölder’s inequalities in Morrey functions. The proof
is straightforward and thus omitted.

Proposition 2.2 Let 1 ≤ p1, p2 ≤ ∞ and 0 ≤ q1, q2 ≤ n be such that

1

p
= 1

p1
+ 1

p2
≤ 1 and q = p

p1
q1 + p

p2
q2.

Then, there hold
‖ f g‖M p,q (�) ≤ ‖ f ‖M p1,q1 (�)‖g‖M p2,q2 (�). (2.1)

and
‖ f g‖M p,q∗ (�) ≤ ‖ f ‖M

p1,q1∗ (�)
‖g‖M

p2,q2∗ (�)
. (2.2)
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As we are concerned with Hölder regularity theory, we need the following weak type of
Morrey’s Dirichlet growth theorem.

Proposition 2.3 Suppose � is a bounded smooth domain and u ∈ L1
loc(�) such that ∇u ∈

M p,n−p+pα∗ (�) holds for some 1 < p < ∞ and α ∈ (0, 1). Then u ∈ C0,α(�) with

‖u‖C0,α(�) ≤ C‖∇u‖M p,n−p+pα∗ (�)

for some C = C(n, p,�).

Proof By Poincaré’s inequality, for any x ∈ � and 0 < r < diam(�), there holds

−
∫

Br (x)∩�

|u − ur ,x | ≤ Cr −
∫

Br (x)∩�

|∇u|.

Since p > 1, we have

‖∇u‖L1(Br (x)∩�) ≤ Crn(1−1/p)‖∇u‖L p∗ (Br (x)∩�) ≤ C‖∇u‖M p,n−p+pα∗ (�)
rn−1+α.

Thus, for any x ∈ � and 0 < r < diam(�),

−
∫

Br (x)∩�

|u − ur ,x | ≤ C‖∇u‖M p,n−p+pα∗ (�)
rα.

This yields the conclusion by applying Campanato function space theory, see Giaquinta [10,
Chapter III, Theorem 1.2]. ��

Higher order (weak) Morrey spaces will be useful in our later proofs. For any k ∈ N, the
kth order Morrey space M p,n−kp

k (�) consists of f ∈ W k,p(�) such that∇l f ∈ M p,n−lp(�)

for all 0 ≤ l ≤ k, and we can similarly define the kth order weakMorrey space M p,n−kp
k,∗ (�).

It follows from [33, Proposition 3.2] that M p,n−2p
2 (B1) ⊂ M2p,n−2p

1 (B1)with 1 < p < n/2,
and

‖∇u‖2M2p,n−2p(B1)
≤ C‖∇u‖M1,n−1(B1)

(‖∇2u‖M p,n−2p(B1)
+ ‖∇u‖M p,n−p(B1)

)
. (2.3)

In particular, u ∈ M2,n−4
2 (B1) implies that ∇u ∈ M4,n−4(B1). Recall that the basic assump-

tion of Struwe [33] is

Rn−4
∫

BR

(|∇2u|2 + |∇u|4) < ε,

which together with the monotonicity formula implies that u ∈ M2,n−4
2 (BR/2) and

‖∇2u‖M2,n−4(BR/2)
+ ‖∇u‖M4,n−4(BR/2)

< Cε.

Thus, by (2.3), one may naturally assume that u ∈ M2,n−4
2 (B2) satisfies

‖∇2u‖M2,n−4(B2)
+ ‖∇u‖M2,n−2(B2)

< ε.

We shall frequently use (a special case of) the followingMorrey-Sobolev extension1 result
due to Burenkov [4]; see also [9, Theorem 2.5] for a new proof.

1 We would like to thank Prof. Pekka Koskela for pointing out the relevant literatures in this respect.
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Proposition 2.4 For any k ∈ N, 1 ≤ p and 0 ≤ s ≤ n, there exists a bounded linear operator
E : M p,s

k (B1) → M p,s
k (Rn) such that if f ∈ M p,s

k (B1), then E f = f a.e. in B1 and there
exists a constant C = C(k, p, s) > 0 such that for all f ∈ M p,s

k (B1), we have

‖E f ‖M p,s
k (Rn) ≤ C‖ f ‖M p,s

k (B1)
.

Furthermore, for each 0 ≤ l ≤ k, there exists a constant C = C(l, p, s) > 0 such that

‖∇l E f ‖M p,s (Rn) ≤ C‖∇l f ‖M p,s (B1).

Similar extension results hold for the higher order weak Morrey-Sobolev spaces M p,s
k,∗ (B1)

as well.

We also refer the interested readers to [17] for a different construction of the extension
operator. Note that in [17], the authors only considered the higher order Morrey-Sobolev
spaces M p,s

k (B1). However, the proof works with minor changes (replacing the L p estimates
by corresponding weak L p∗ estimates) for the higher order weak Morrey-Sobolev spaces
M p,s

k,∗ (B1).

2.2 Riesz potentials

Let Iα(x) = cα,n |x |α−n , 0 < α < n, be the standard Riesz potentials in R
n . The following

two propositions are well-known; see Theorem 3.1, Proposition 3.2 and Proposition 3.1 of
Adams [2].

Proposition 2.5 Let 0 < α < n and 0 ≤ λ < n. For 1 ≤ p < (n − λ)/α, set

1

p̃
= 1

p
− α

n − λ
.

Then

(1) For every 1 < p < (n − λ)/α,

Iα : M p,λ(Rn) → M p̃,λ(Rn)

is a bounded linear operator;
(2) For p = 1,

Iα : M1,λ(Rn) → M
n−λ

n−λ−α
,λ

∗ (Rn)

is also a bounded linear operator.

Proposition 2.6 Let 0 < α < β ≤ n and 1 < p < ∞. Then there exists a constant
C = Cα,β,n,p > 0 such that for f ∈ M1,n−β (Rn) ∩ L p (Rn), there holds

‖Iα f ‖ pβ
β−α

,Rn ≤ C‖ f ‖
α
β

M1,n−β (Rn)
‖ f ‖1−

α
β

p,Rn .

In view of the embedding Mq,n−qβ∗ (Rn) ⊂ M1,n−β(Rn) for n/β ≥ q > 1, there holds

‖Iα f ‖ pβ
β−α

,Rn ≤ C‖ f ‖
α
β

Mq,n−qβ∗ (Rn)
‖ f ‖

β−α
β

p,Rn .

Concerning weak Morrey spaces, we will need the following proposition, which is a
special case of Ho [16, Theorem 5.1].
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Proposition 2.7 Let 0 < α, λ < n and 1 < p < (n − λ)/α. Set

1

p̃
= 1

p
− α

n − λ
.

Then

Iα : M p,λ∗ (Rn) → M p̃,λ∗ (Rn)

is a bounded linear operator.

As a corollary of Propositions 2.6 and 2.7, for any ∞ > p > 1 and 0 < α < β < n/p,
we have the following boundedness result:

Iα : M p,n−pβ∗ ∩ L p(Rn) → M p̃,n−pβ∗ ∩ L p̃(Rn) where p̃ = β p

β − α
, (2.4)

and

‖Iα( f )‖L p̃(Rn) + ‖Iα( f )‖
M p̃,n−pβ∗ (Rn)

≤ C
(
‖ f ‖L p(Rn) + ‖ f ‖

M p,n−pβ∗ (Rn)

)
.

When the operator under consideration is a singular integral operator, there holds

Proposition 2.8 (Theorem 8.1, [1]) Let 1 < p < ∞ and 0 < λ < n. The usual Calderon-
Zygmund singular integral operators are bounded on M p,λ(Rn).

3 Morrey estimate and Hölder continuity

This section is devoted to prove Theorem 1.2. For simplicity, denote by Br = Br (0) ⊂ R
n

the open ball centered at origin with radius r . We shall need the following Gauge transform
of Struwe [33, Lemma 3.3]; see also Lamm and Rivière [18, Theorem A.5] for an equivalent
form.

Lemma 3.1 (Lemma 3.3, [33]) There exist ε = ε(n, m) > 0 and C = C(n, m) > 0 with the
following property: For every � ∈ M2,n−4

1 ∩ M4,n−4(B1, som ⊗ ∧1
R

n) with

‖∇�‖M2,n−4(B1)
+ ‖�‖M4,n−4(B1)

≤ ε,

there exist P ∈ M2,n−4
2 (B1, SOm) and ξ ∈ M2,n−4

2 (B1, som ⊗ ∧n−2
R

n) such that

PdP−1 + P�P−1 = ∗dξ in B1, (3.1)

and

d ∗ ξ = 0 in B1, ξ = 0 on ∂ B1.

Moreover,

‖∇ P‖M4,n−4(B1)
+ ‖∇ξ‖M4,n−4(B1)

≤ C‖�‖M4,n−4(B1)
≤ Cε,

‖∇2P‖M2,n−4(B1)
+ ‖∇2ξ‖M2,n−4(B1)

≤ C
(‖∇�‖M2,n−4(B1)

+ ‖�‖M4,n−4(B1)

) ≤ Cε.

The last two estimates on P, ξ are not separated in the original statement of Struwe [33,
Lemma3.3], but they follow from the proofs there. Below let P, ξ be defined as in Lemma3.1.
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It follows from the growth condition (GC-4) on � and (1.9) that

‖∇ P‖M4,n−4(B1)
+ ‖∇ξ‖M4,n−4(B1)

≤ C‖∇u‖M4,n−4(B1)
≤ Cε.

‖∇2P‖M2,n−4(B1)
+ ‖∇2ξ‖M2,n−4(B1)

≤ C
(‖∇2u‖M2,n−4(B1)

+ ‖∇u‖M4,n−4(B1)

) ≤ Cε. (3.2)

By [33, Formula (35)], the equation of P�u on B1 is given by

�(P�u) = div2(DP ⊗ ∇u) + div(EP · ∇u) + G P · ∇u + ∗d�ξ · Pdu + P f , (3.3)

where the coefficient functions satisfy the growth condition

|DP | ≤ C(|∇u| + |∇ P|),
|∇ DP | + |EP | ≤ C

(∣∣∇2u
∣∣ + |∇u|2 + ∣∣∇2P

∣∣ + |∇ P|2) ,

|G P | ≤ C
(∣∣∇2u

∣∣ + ∣∣∇2P
∣∣) (|∇u| + |∇ P|) + C

(|∇u|3 + |∇ P|3) . (3.4)

For details, see the formula (36) of [33].

Proof of Theorem 1.2 First apply the Hodge decomposition to derive

Pdu = dũ1 + d∗ũ2 + h̃ in B1,

where d∗ũ1 = 0, dũ2 = 0 and h̃ is a harmonic 1-form. Note that �2ũ1 = �d∗(Pdu),
−�ũ2 = d P ∧ du and �h̃ = 0 on B1.

Next, we extend all the related functions u, ξ , P and DP , EP and G P from B1 into the
whole space Rn with compact supports in B2 in the same function space in a bounded way.
Set f ≡ 0 on Bc

1 . For simplicity, we keep using the same notations for the extended functions.
Then we define

u11 = I4
(
div2(DP ⊗ ∇u) + div(EP · ∇u) + G P · ∇u + ∗d�ξ · Pdu + �(∇ P∇u)

)
,

(3.5)

u12 = I4(P f ), (3.6)

where I4 is the fundamental solution of �2 in R
n and define

u2 = I2(d P ∧ du), (3.7)

where I2 is the fundamental solution of −� in R
n . It follows that

�2u11 + �2u12 = �2ũ1 and �u2 = �ũ2

on B1. Set h = dũ1 − du11 − du12 + d∗ũ2 − d∗u2 + h̃ so that

�2h = 0 in B1.

We obtain the decomposition

Pdu = du11 + du12 + d∗u2 + h in B1. (3.8)

To obtain the Morrey decay estimates of ∇u and ∇2u, it suffices to estimate that of the
components u11, u12 and u2.

First we estimate ∇u11. From the definition (3.5) of u11, it holds

∇u11 = ∇ I4 ∗ (
div2(DP ⊗ ∇u) + div(EP · ∇u) + G P · ∇u + ∗d�ξ · Pdu + �(∇ P∇u)

)
.
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Let J1 = I4
(
div2(DP ⊗ ∇u) + div(EP · ∇u) + �(∇ P∇u)

)
. Then

∇ J1 ≈ ∇3 I4(DP∇u + ∇ P∇u) + ∇2 I4(EP∇u),

which implies that

|∇ J1| � I1 (|DP ||∇u| + |∇ P||∇u|) + I2 (|EP ||∇u|) . (3.9)

Applying the growth condition (3.4) gives

|DP ||∇u| + |∇ P||∇u| � (|∇u| + |∇ P|) |∇u|,
and

|EP ||∇u| �
(∣∣∇2u

∣∣ + |∇u|2 + ∣∣∇2P
∣∣ + |∇ P|2) |∇u|.

Since ∇ P,∇u ∈ M4,n−4∗ (Rn) and ∇2u,∇2P ∈ M2,n−4∗ (Rn), the Hölder inequality (2.2)
implies that DP∇u ∈ M2,n−4∗ (Rn) and EP∇u ∈ M4/3,n−4∗ (Rn), together with estimates

‖DP∇u‖M2,n−4∗ (Rn)
�

(
‖∇ P‖M4,n−4∗ (Rn)

+ ‖∇u‖M4,n−4∗ (Rn)

)
‖∇u‖M4,n−4∗ (Rn)

� ε‖∇u‖M4,n−4∗ (Rn)
, (3.10)

and

‖EP∇u‖
M4/3,n−4∗ (Rn)

� ε‖∇u‖M4,n−4∗ (Rn)
. (3.11)

Here we used the bounded extension of u, P from M2,n−4
2,∗ (B1) into M2,n−4

2,∗ (Rn) (see Propo-
sition 2.4) and the smallness assumption (1.9). By Proposition 2.7,

I1 : M2,n−4∗ (Rn) → M4,n−4∗ (Rn)

and

I2 : M4/3,n−4∗ (Rn) → M4,n−4∗ (Rn)

are bounded operators. Thus from (3.9) and the above estimates we deduce

‖∇ J1‖M4,n−4∗ (Rn)
� ε‖∇u‖M4,n−4∗ (Rn)

.

Using the bounded extension ‖∇u‖M4,n−4∗ (Rn)
� ‖∇u‖M4,n−4∗ (B1)

, it follows

‖∇ J1‖M4,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

Let J2 = I4(G P ∗∇u). This is themost difficult term to estimate andwe need to exploit the
full nonlinearity of G P . By (2.2) and the inequality (2.1), and the fact |∇u|, |∇ P| ∈ M4,n−4,
|∇2u|, |∇2P| ∈ M2,n−4, we infer that

|G P∇u| �
(∣∣∇2u

∣∣ + ∣∣∇2P
∣∣) (|∇u| + |∇ P|)|∇u| + (|∇u|3 + |∇ P|3) |∇u| ∈ M1,n−4(Rn)

with estimates

‖|G P ||∇u|‖M1,n−4(Rn)

� ‖∇u‖M4,n−4
(‖∇2u‖M2,n−4 + ‖∇2P‖M2,n−4

) (‖∇u‖M4,n−4 + ‖∇ P‖M4,n−4
)

+‖∇u‖M4,n−4
(‖∇u‖3M4,n−4 + ‖∇ P‖3M4,n−4

)
. (3.12)

Combining the estimate (3.2) of ∇ P with (3.12) yields

‖|G P ||∇u|‖M1,n−4(Rn) � (‖∇2u‖M2,n−4 + ‖∇u‖2M4,n−4)‖∇u‖2M4,n−4 � ‖∇u‖2M4,n−4(Rn)
.
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Therefore, applying the bounded operator I3 : M1,n−4(Rn) → M4,n−4∗ (Rn) by Proposi-
tion 2.5, we arrive at

‖∇ J2‖M4,n−4∗ (Rn)
� ‖|G P ||∇u|‖M1,n−4(Rn) � ‖∇u‖2M4,n−4(Rn)

.

Thus we conclude

‖∇ J2‖M4,n−4∗ (B1)
� ‖∇u‖2M4,n−4(B1)

.

Let J3 = I4(∗d�ξ · Pdu). Integrating by parts gives (up to signs)

J3 =
∫

d�ξ ∧ I4Pdu =
∫

�ξ ∧ (d I4P + I4d P) ∧ du.

Thus

|∇ J3| � I2
(|∇2ξ ||∇u|) + I3

(|∇2ξ ||∇u||∇ P|) .

As |∇2ξ ||∇u| ∈ M2,n−4∗ · M4,n−4∗ ⊂ M
4
3 ,n−4
∗ , we infer that I2

(|∇2ξ ||∇u|) ∈ M4,n−4∗ as
that of J1 with estimate∥∥I2

(|∇2ξ ||∇u|)∥∥M4,n−4∗ (Rn)
� ε‖∇u‖M4,n−4∗ (Rn)

.

For the second term, we have |∇2ξ ||∇u||∇ P| ∈ M1,n−4. As that of J2, we obtain∥∥I3
(|∇2ξ ||∇u||∇ P|)∥∥M4,n−4∗ (Rn)

� ‖∇u‖2M4,n−4(Rn)
.

Consequently,

‖∇ J3‖M4,n−4∗ (Rn)
� ε‖∇u‖M4,n−4∗ (Rn)

+ ‖∇u‖2M4,n−4(Rn)
.

Using the bounded extension of u gives

‖∇ J3‖M4,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

+ ‖∇u‖2M4,n−4(B1)
.

Taking the three estimates involving ∇ J1,∇ J2,∇ J3, we derive

‖∇u11‖M4,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

+ ‖∇u‖2M4,n−4(B1)
.

Applying the inequality (2.3) and the smallness assumption (1.9) and the embedding
M4,n−4∗ (B1) ⊂ M1,n−1(B1), we find that

‖∇u‖2M4,n−4(B1)
� ε‖∇u‖M1,n−1(B1)

� ε‖∇u‖M4,n−4∗ (B1)
.

Thus we obtain the estimate of u11 as

‖∇u11‖M4,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

. (3.13)

The estimate of u12 is standard. Since f ∈ M1,n−4+α , |∇u12| ≈ I3(P f ) and standard

potential theory, Proposition 2.5, gives ∇u12 ∈ M
4−α
1−α

,n−4+α

∗ . Notice that for 0 < α < 1,
4−α
1−α

> 4 so we have

‖∇u12‖M4,n−4∗ (Br )
� rα‖∇u12‖

M
4−α
1−α

,n−4+α

∗
� ‖ f ‖M1,n−4+α(B1)

rα (3.14)

for any r > 0. Here we have used the fact that f ≡ 0 on Bc
1 .

Combining the above estimates (3.13) and (3.14), we deduce that, for any 0 < r ≤ 1,

‖∇u11‖M4,n−4∗ (Br )
+ ‖∇u12‖M4,n−4∗ (Br )

� ε‖∇u‖M4,n−4∗ (B1)
+ ‖ f ‖M1,n−4+α(B1)

rα. (3.15)
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It remains to estimate u2 and h. Since u2 = I2(d P ∧du), we have |∇u2| � I1(|∇ P||∇u|).
As that of J1, we obtain

‖∇u2‖M4,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

. (3.16)

Since h is biharmonic, for any x ∈ B1 with B2r (x) ⊂ B1, there holds

max
Br (x)

|∇h| ≤ C −
∫

B2r (x)

|∇h|.

So for any x ∈ B1/2 and 0 < r < 1/2,

‖∇h‖4L4,∞(Br (x))
≤

∫
Br (x)

|∇h|4 � rn max
B1/2

|∇h|4 � rn
(

−
∫

B1

|∇h|
)4

� rn‖∇h‖4
M4,n−4∗ (B1)

.

That is,

r
n−4
4 ‖∇h‖L4,∞(Br (x)) ≤ r‖∇h‖M4,n−4∗ (B1)

.

Hence

‖∇h‖M4,n−4∗ (Br )
= sup

x∈Br ,0<s<2r

(
s

n−4
4 ‖∇h‖L4,∞(Bs (x))

)
� r‖∇h‖M4,n−4∗ (B1)

. (3.17)

Now we can obtain the decay estimate for ∇u. For any 0 < τ < 1/2, combining (3.15),
(3.16) and (3.17) gives

‖∇u‖M4,n−4∗ (Bτ )

� ‖∇h‖M4,n−4∗ (Bτ )
+ ‖∇u11‖M4,n−4∗ (Bτ )

+ ‖∇u12‖M4,n−4∗ (Bτ )
+ ‖∇u2‖M4,n−4∗ (Bτ )

� τ‖∇h‖M4,n−4∗ (B1)
+ ε‖∇u‖M4,n−4∗ (B1)

+ ‖ f ‖M1,n−4+α(B1)
τ α

� τ
(
‖∇u‖M4,n−4∗ (B1)

+ ‖∇u11‖M4,n−4∗ (B1)
+ ‖∇u12‖M4,n−4∗ (B1)

+‖∇u2‖M4,n−4∗ (B1)

)
+ ε‖∇u‖M4,n−4∗ (B1)

+ τα‖ f ‖M1,n−4+α(B1)

≤ C (τ + ε) ‖∇u‖M4,n−4∗ (B1)
+ Cτα‖ f ‖M1,n−4+α(B1)

for some C > 0 independent of τ and ε. Recall that 0 < α < 1. Take β ∈ (α, 1). Then take
τ = r0 small enough such that 2Cr0 < rβ

0 , and then choose ε ≤ r0. We obtain

‖∇u‖M4,n−4∗ (Br0 )
≤ rβ

0 ‖∇u‖M4,n−4∗ (B1)
+ ‖ f ‖M1,n−4+α(B1)

rα
0 .

Finally, using a standard scaling and translation and iteration argument, there holds, for any
x ∈ B1/2 and 0 < r < 1,

‖∇u‖M4,n−4∗ (Br (x))
≤ Crα

(
‖∇u‖M4,n−4∗ (B1)

+ ‖ f ‖M1,n−4+α(B1)

)
.

In particular, this implies that for any x ∈ B1/2 and 0 < r < 1,

‖∇u‖4L4,∞(Br (x))
≤ Crn−4+4α

(
‖∇u‖M4,n−4∗ (B1)

+ ‖ f ‖M1,n−4+α(B1)

)4
.

Hence ∇u ∈ M4,n−4+4α∗ (B1/2) and the desired estimate (1.10) follows.
Next we derive the decay of ∇2u and the proof is similar to the one given above. First

estimate ∇2u11. Using the same notations, we have

∇2 J1 ≈ ∇4 I4(DP∇u) + ∇3 I4(EP∇u).
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Since ∇4 I4 is a singular integral operator, Proposition 2.8 implies that

∇4 I4 : M p,λ(Rn) → M p,λ(Rn)

is a bounded operator. Thus

‖∇4 I4(DP∇u)‖M2,n−4 �
(‖∇ P‖M4,n−4 + ‖∇u‖M4,n−4

) ‖∇u‖M4,n−4 � ‖∇u‖2M4,n−4(Rn)
,

where the second inequality follows from inequality (3.2). Using the embedding M2,n−4 ⊂
M2,n−4∗ , the inequality (2.3) and the smallness assumption (1.9) of u as before, we deduce

‖∇4 I4(DP∇u)‖M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

For the second term, combining (3.11) and the boundedness of

I1 : M4/3,n−4∗ (Rn) → M2,n−4∗ (Rn)

by Proposition 2.7, we infer∥∥∇3 I4(EP∇u)
∥∥

M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

Hence ∥∥∇2 J1
∥∥

M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

For J2, we have

|∇2 J2| � I2(|G P ||∇u|).
Recall that G P∇u ∈ M1,n−4(Rn) and estimate (3.12) holds. Hence ∇2 J2 ∈ M2,n−4∗ (Rn) by
Proposition 2.5 with estimate∥∥∇2 J2

∥∥
M2,n−4∗ � ‖|G P ||∇u|‖M1,n−4 � ‖∇u‖2M4,n−4(Rn)

.

Again, applying inequality (2.3) yields∥∥∇2 J2
∥∥

M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

For J3, we have

|∇2 J3| � I1
(|∇2ξ ||∇u|) + I2

(|∇2ξ ||∇u||∇ P|) .

Similar to J1 and J2, we derive∥∥∇2 J3
∥∥

M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

.

All together we conclude that∥∥∇2u11
∥∥

M2,n−4∗ (B1)
� ε‖∇u‖M4,n−4∗ (B1)

. (3.18)

For u12, since f ∈ M1,n−4+α and |∇2u12| ≈ I2(P f ), Proposition 2.5 gives ∇2u12 ∈
M

4−α
2−α

,n−4+α

∗ . Notice that for 0 < α < 1, 4−α
2−α

> 2. So similar to (3.14), we obtain for any
0 < r < ∞,

‖∇2u12‖M2,n−4∗ (Br )
� ‖ f ‖M1,n−4+α(B1)

rα. (3.19)

For the term u2, we have |∇2u2| � I0(|∇ P||∇u|) ∈ M2,n−4 with

‖∇2u2‖M2,n−4∗ ≤ ‖∇2g‖M2,n−4 � ‖∇u‖2M4,n−4 � ε‖∇u‖M4,n−4∗ (B1)
. (3.20)
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Similarly dispose the biharmonic 1-form h, for any 0 < r < 1, there holds

‖∇2h‖M2,n−4∗ (Br )
� r‖∇2h‖M2,n−4∗ (B1)

. (3.21)

Combining estimates (3.18), (3.19), (3.20) and (3.21) yields, for any 0 < r < 1,

‖∇2u‖M2,n−4∗ (Br )
+ ‖∇u‖M4,n−4∗ (Br )

� (r + ε)
(
‖∇2u‖M2,n−4∗ (B1)

+ ‖∇u‖M4,n−4∗ (B1)

)
+ ‖ f ‖M1,n−4+α(B1)

rα.

Similar iteration, scaling and translation arguments give

‖∇2u‖M2,n−4∗ (Br )
+ ‖∇u‖M4,n−4∗ (Br )

�
(
‖∇2u‖M2,n−4∗ (B1)

+ ‖∇u‖M4,n−4∗ (B1)
+ ‖ f ‖M1,n−4+α(B1)

)
rα.

The proof is complete. ��
Proof of Corollary 1.3 It follows from Theorem 1.2 and Proposition 2.3. ��

4 Lp regularity theory

In this section we prove Theorem 1.4 and Theorem 1.7. We will write

p1 = np

n − p
, p2 = np

n − 2p
, p3 = np

n − 3p
,

whenever these are positive numbers. For p < n, set

α = 4 − n/p. (4.1)

Roughly speaking, Theorems 1.4 and 1.7 follow from theMorrey estimate of the previous
section and an iteration argument. Along the iteration the constant ε should become smaller
and smaller. Fortunately, the iteration stops after finitely many steps. Thus we can always
choose a sufficiently small ε in the very beginning such that the whole iteration proceeds. As
in the previous proofs, the Gauge transform plays a central role.

4.1 Case 1: n/4 < p < n/3

In this subsection we prove Theorem 1.4 in the case n/4 < p < n/3. Recall that our
initial assumption is that ∇u ∈ M4,n−4(B1),∇2u ∈ M2,n−4(B1) hold with the smallness
assumption (1.9). Thuswe can choose ε sufficiently small such that we have the improvement

∇u ∈ M4,n−4+4α∗ (B1/2) and ∇2u ∈ M2,n−4+2α∗ (B1/2),

where α = 4 − n/p ∈ (0, 1). At this moment, due to the strong nonlinearity, the regularity
of the function

|G P∇u| �
(∣∣∇2u

∣∣ + ∣∣∇2P
∣∣) (|∇u| + |∇ P|)|∇u| + (|∇u|3 + |∇ P|3) |∇u|

will be too weak to iterate.
Fortunately we have the following two observations. The first one is that the second order

weak Morrey regularity implies:

∇u ∈ L2χ ∩ M2χ,n−2χ(1−α)∗ (B1/4) (4.2)
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where
χ ≡ (2 − α)/(1 − α) > 2. (4.3)

To find this, select η ∈ C∞
0 (B1/2) with η ≡ 1 on B1/4. An elementary calculation shows

that ∇(uη) ∈ M4,n−4(1−α)∗ (B1/2) and ∇2(ηu) ∈ M2,n−2(2−α)∗ (B1/2). Set ηu ≡ 0 outside
B1/2. (2.4) implies that

∇(ηu) = ∇ I2(−�(ηu)) ≈ I1(�u) ∈ L2χ ∩ M2χ,n−2χ(1−α)∗ (Rn)

with estimates

‖∇(ηu)‖L2χ + ‖∇(ηu)‖
M2χ,n−2χ(1−α)∗

� ‖�(ηu)‖L2 + ‖�(ηu)‖
M2,n−2(2−α)∗

.

This yields (4.2) for ∇u with

‖∇u‖L2χ (B1/4)
+ ‖∇u‖

M2χ,n−2χ(1−α)∗ (B1/4)
� ‖∇u‖

M4,n−4(1−α)∗ (B1/2)
+ ‖∇2u‖

M2,n−2(2−α)∗ (B1/2)
.

The second observation is:

Lemma 4.1 There exist ε = ε(n, m) > 0 and C = C(n, m) > 0 with the following property:
For every � ∈ M2,n−4

1 ∩ M4,n−4(B1/2, som ⊗ ∧1
R

n) with

‖∇�‖M2,n−4(B1/2)
+ ‖�‖M4,n−4(B1/2)

≤ ε,

there exist P ∈ W 2,2(B1/2, SOm) and ξ ∈ W 2,2(B1/2, som ⊗∧n−2
R

n) such that Lemma 3.1
holds on B1/2.

In addition, if � ∈ M4,n−4+4α∗ (B1/2) and ∇� ∈ M2,n−4+2α∗ (B1/2), then we further have

∇ P,∇ξ ∈ M4,n−4+4α∗ (B1/2), ∇2P,∇2ξ ∈ M2,n−4+2α∗ (B1/2) together with

‖∇ P‖M4,n−4+4α∗ (B1/2)
+ ‖∇ξ‖M4,n−4+4α∗ (B1/2)

≤ C‖�‖M4,n−4+4α∗ (B1/2)
, (4.4)

and

‖∇2P‖M2,n−4+2α∗ (B1/2)
+ ‖∇2ξ‖M2,n−4+2α∗ (B1/2)

≤ C
(
‖∇�‖M2,n−4+2α∗ (B1/2)

+ ‖�‖M4,n−4+4α∗ (B1/2)

)
. (4.5)

Proof The existence of P, ξ follows from the same method as that of Lemma 3.1. For the
proof of estimates (4.4) and (4.5), see Lemma A.3 in the “Appendix”.

Let P, ξ be obtained as in Lemma 4.1. By the first observation, we have

∇ P,∇ξ ∈ L2χ ∩ M2χ,n−2χ(1−α)∗ (B1/4) (4.6)

and

‖∇ P,∇ξ‖
L2χ∩M2χ,n−2χ(1−α)∗ (B1/4)

� ‖∇�‖M2,n−4+2α∗ (B1/2)
+ ‖�‖M4,n−4+4α∗ (B1/2)

.

Thus we deduce from the growth assumption on � that

‖∇ P,∇ξ‖
L2χ∩M2χ,n−2χ(1−α)∗ (B1/4)

� ‖∇2u‖M2,n−4+2α∗ (B1/2)
+ ‖∇u‖M4,n−4+4α∗ (B1/2)

.

We transform the system (1.7) on B1/4 to obtain the gauge equivalent system (3.3). Then
we extend all the functions from B1/4 into R

n with compact supports in B2 in a bounded
way, and define similarly u11, u12, u2 and a biharmonic 1-form h on B1/4 as that of (3.5),
(3.6) and (3.7) such that Pdu = du11 + du12 + d∗u2 + h on B1/4.

Our aim is to improve the regularity of ∇2u through the gauge equivalent system (3.3).
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Claim 4.2 Let p2 = np
n−2p and χ be defined as in (4.3). Then

∇2u ∈
⎧⎨
⎩

Lχ ∩ Mχ,n−χ(2−α)∗
(

B 1
4

)
if χ < p2,

L p2
(

B 1
4

)
if χ ≥ p2,

(4.7)

Proof Hereafter all the norms are taken on the whole space R
n unless specified. We first

deduce the regularity of ∇2u11.
For the first term J1, (4.2), (4.6) and Hölder’s inequality (2.2) imply

(|∇2u| + |∇2P| + |∇u|2 + |∇ P|2) (|∇u| + |∇ P|) ∈ M
2χ

χ+1 ,n−4+2α
∗ ∩ L

2χ
χ+1 .

Since

∇2 J1 ≈ I1
((|∇2u| + |∇2P| + |∇u|2 + |∇ P|2) (|∇u| + |∇ P|)) ,

and by (2.4)

I1 : L
2χ

χ+1 ∩ M
2χ

χ+1 ,n−4+2α
∗ → Lχ ∩ Mχ,n−4+2α∗

is a bounded operator, we obtain ∇2 J1 ∈ Mχ,n−4+2α∗ (Rn) ∩ Lχ (Rn) with∥∥∇2 J1
∥∥

Mχ,n−4+2α∗ ∩Lχ (Rn)
� ‖∇u‖

Lχ∩Mχ,n−χ(2−α)∗ (B1/4)
‖∇2u‖

L2∩M2,n−2(2−α)∗ (B1/4)
.

By the weak Morrey estimate,

‖∇u‖
Lχ∩Mχ,n−χ(2−α)∗ (B1/4)

+ ‖∇2u‖
L2∩M2,n−2(2−α)∗ (B1/4)

� ε + ‖ f ‖L p(B1).

This in turn leads∥∥∇2 J1
∥∥

Mχ,n−4+2α∗ ∩Lχ (Rn)
� (ε + ‖ f ‖L p(B1))‖∇2u‖

L2∩M2,n−2(2−α)∗ (B1/4)
. (4.8)

For the second term, we have |∇2 J2| � I2(|G P ||∇u|) and
|G P | ≤ (∣∣∇2u

∣∣ + ∣∣∇2P
∣∣) (|∇u| + |∇ P|) + (|∇u|3 + |∇ P|3) .

Recall that ∇u,∇ P ∈ M2χ,n−4+2α∗ ∩ L2χ and ∇2u,∇2P ∈ M2,n−4+2α∗ ∩ L2. So

(|∇2u| + |∇2P|) (|∇u| + |∇ P|)2 ∈ M
2χ

χ+2 ,n−4+2α
∗ ∩ L

2χ
χ+2 ,

(|∇u| + |∇ P|)4 = (|∇u| + |∇ P|)2(|∇u| + |∇ P|)2 ∈ M
2χ

χ+2 ,n−4+2α
∗ ∩ L

2χ
χ+2 .

Here the first term can be regarded in the space M4,n−4+2α∗ in view of the embedding
M2χ,n−4+2α∗ (B1/2) ⊂ M4,n−4+2α∗ (B1/2). Thus

G P∇u ∈ M
2χ

χ+2 ,n−4+2α
∗ ∩ L

2χ
χ+2 .

In the case α < 2/3, we may apply (2.4) to deduce the boundedness of

I2 : M
2χ

χ+2 ,n−4+2α
∗ ∩ L

2χ
χ+2 → M

2(2−α)
2−3α ,n−4+2α

∗ ∩ L
2(2−α)
2−3α ,

which implies ∇2 J2 ∈ M
2(2−α)
2−3α ,n−4+2α

∗ ∩ L
2(2−α)
2−3α . Similar to (4.8), we can obtain∥∥∇2 J2

∥∥
M

2(2−α)
2−3α ,n−4+2α

∗ ∩L
2(2−α)
2−3α

� (ε + ‖ f ‖L p(B1))
a‖∇u‖

L4∩M4,n−4(1−α)∗ (B1/4)
. (4.9)
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for some a > 0.
For the third term |∇2 J3| � I1(|∇2ξ ||∇u|)+ I2(|∇2ξ ||∇u|||∇ P|), the same estimates as

that of J1 and J2 imply

I1(|∇2ξ ||∇u|) ∈ Mχ,n−4+2α∗ (Rn) ∩ Lχ (Rn)

and when α < 2/3

I2(|∇2ξ ||∇u|||∇ P|) ∈ M
2(2−α)
2−3α ,n−4+2α

∗ ∩ L
2(2−α)
2−3α .

Note that if α < 2/3, then

2(2 − α)

2 − 3α
= 2 − α

1 − 3
2α

> χ,

and if α > 2
3 , then the regularity of ∇2 Ji , i = 2, 3, become even better. All together, we may

conclude

∇2u11 ∈ Mχ,n−4+2α∗ (B1/4) ∩ Lχ (B1/4).

Since u12 ∈ W 4,p(Rn), ∇2u12 ∈ W 2,p(Rn) ⊂ L p2 . In particular, for any s > 0,∫
Bs (x)

|∇2u12|χ � ‖∇2 J5‖χ

L p2 sn−2χ+χα � ‖ f ‖χ
L p sn−2χ+χα.

That is

∇2u12 ∈ L p2 ∩ Mχ,n−2χ+χα(Rn).

Similar to the estimate of J1, one deduces

∇2u2 ∈ Mχ,n−4+2α∗ (B1/4) ∩ Lχ (B1/4).

Note that the biharmonic 1-form h is always smooth. Hence Claim 4.2 holds if χ ≥ p2. In
the case χ < p2 = np/(n − 2p) = n/(2 − α), observe that n − 4 + 2α = n − 2χ + 2χα.
So, for any w ∈ Mχ,n−2χ+2χα∗ (B1/4) and any 0 < r < 1/2,

‖w‖χ

Lχ,∞(Br (x)) ≤ ‖w‖χ

Mχ,n−2χ+2χα∗ (B1/4)
rn−2χ+2χα ≤ ‖w‖χ

Mχ,n−2χ+2χα∗ (B1/4)
rn−2χ+χα.

That is,

Mχ,n−4+2α∗ (B1/4) ⊂ Mχ,n−2χ+χα(B1/4).

Therefore,

∇2u11,∇2u2 ∈ Lχ ∩ Mχ,n−2χ+χα∗ (B1/4).

The proof of Claim 4.2 is complete. ��
Next we use iteration to derive the optimal regularity of ∇u and ∇2u.

Claim 4.3 (Iteration lemma) Let χ = λ1 ≤ λn < p2 and set

λn+1 = χ

2
λn .

If

∇u ∈ L2λn ∩ M2λn ,n−2λn(1−α)∗ (B1) and ∇2u ∈ Lλn ∩ Mλn ,n−λn(2−α)∗ (B1)
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with sufficiently small norms and if

λn+1 < χ,

then

∇u ∈ L2λn+1 ∩ M2λn+1,n−2λn+1(1−α)
∗ (B1/2) and ∇2u ∈ Lλn+1 ∩ Mλn+1,n−λn+1(2−α)

∗ (B1/2).

Proof The improvement of ∇u on B1/2 follows as before. We also have the same regularity
of P, ξ as that of u by the same arguments as above. So we only need to deduce the regularity
of ∇2u and the arguments will be similar as in the previous step.

For the first term, we have

∇2 J1 ≈ I1
((|∇2u| + |∇2P|) |∇u| + (|∇u| + |∇ P|)|∇2u|) .

Hölder’s inequality gives

(|∇2u| + |∇2P|) |∇u| + (|∇u| + |∇ P|)|∇2u| ∈ L
χ

χ+1 λn
⋂

M
χ

χ+1 λn ,n− χ
χ+1 λn(3−2α)

∗

and (2.4) gives the boundedness of

I1 : L
χ

χ+1 λn
⋂

M
χ

χ+1 λn ,n− χ
χ+1 λn(3−2α)

∗ → L
3−2α
2−2α

χ
χ+1 λn ∩ M

3−2α
2−2α

χ
χ+1 λn ,n− χ

χ+1 λn(3−2α)

∗ .

Note that

3 − 2α

2 − 2α

χ

χ + 1
λn = χ

2
λn = λn+1.

Hence

∇2 J1 ∈ Lλn+1 ∩ Mλn+1,n−λn+1(2−2α)
∗ .

For the second term, we have |∇2 J2| � I2(|G P ||∇u|) and
|G P∇u| ≤ (∣∣∇2u

∣∣ + ∣∣∇2P
∣∣) (|∇u| + |∇ P|)2 + (|∇u| + |∇ P|)4 .

Note that 2λn+1 = χλn and so

(|∇2u| + |∇2P|) (|∇u| + |∇ P|)2 ∈ L
χ

χ+2 λn
⋂

M
χ

χ+2 λn ,n− χ
χ+2 λn(4−3α)

∗ ,

(|∇u| + |∇ P|)4 ∈ L
χ
4 λn

⋂
M

χ
4 λn ,n−χλn(1−α)

∗ .

The second term has better regularity than the first one. In the case α < 2/3, applying (2.4)
gives boundedness of

I2 : L
χ

χ+2 λn
⋂

M
χ

χ+2 λn ,n− χ
χ+2 λn(4−3α)

∗ → L
4−3α
2−3α

χ
χ+2 λn

⋂
M

4−3α
2−3α

χ
χ+2 λn ,n− χ

χ+2 λn(4−3α)

∗ .

So

∇2 J2 ∈ L
4−3α
2−3α

χ
χ+2 λn

⋂
M

4−3α
2−3α

χ
χ+2 λn ,n− χ

χ+2 λn(4−3α)

∗ .

The third term can be splited into a sum of two terms with the same regularity as that of
J1 and J2. Since χ + 2 = (4 − 3α)/(1 − α), we have

λ̃n+1 ≡ 4 − 3α

2 − 3α

χ

χ + 2
λn = 2 − α

2 − 3α
λn = 2(1 − α)

2 − 3α
λn+1.
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Hence λ̃n+1 > λn+1 and

n − λ̃n+1(2 − 3α) = n − λn+1(2 − 2α) > n − λn+1(2 − α).

This implies

L λ̃n+1 ∩ M λ̃n+1,n−λ̃n+1(2−3α)
∗ (B1/2) ⊂ Lλn+1 ∩ Mλn+1,n−λn+1(2−α)

∗ (B1/2).

Consequently, we obtain

∇2u11 ∈ Lλn+1 ∩ Mλn+1,n−λn+1(2−α)
∗ (B1/2).

Note also that ∇2u12 ∈ L p2 . Thus if λn+1 < p2, then

∇2u12 ∈ Lλn+1 ∩ Mλn+1,n−λn+1(2−α)(B1/2).

Similarly,we can deduce the result for u2 and the biharmonic part h. The proof ofClaim4.3
is complete. ��

Since χ > 2, Claims 4.2 and 4.3 imply that after finitely many steps, this iteration will
stop, whence ∇2u ∈ L p2

loc(B1). This in return implies that ∇u ∈ L p3
loc(B1) by the Sobolev

embedding theorem.
Now we can deduce the third order regularity of u. Rewrite the system (1.7) as

�2u = div (I ) + I I , (4.10)

where

I = D∇2u + ∇ D · ∇u + E · ∇u + ∇� · ∇u,

I I = −∇� · �u + G · ∇u + f .

By the growth assumption (GC-4), we know

|I | ≤ C(|∇2u| + |∇u|2)|∇u|,
|I I | ≤ C

(|∇2u|2 + |∇u|2|∇2u| + |∇u|4) + f . (4.11)

Since we have proved that u ∈ W 2, np
n−2p and n ≤ 4p, it follows that 2p ≤ p2 ≤ p3/2. Hence

I ∈ L
np

2n−5p
loc ⊂ L

np
n−p
loc and I I ∈ L p

loc. Here the least regular term of I and I I are ∇2u∇u and
f , respectively.
Set �2u1 = div(I ) and �2u2 = I I in B1. Standard elliptic regularity theory implies

u1 ∈ W
3, np

n−p
loc and u2 ∈ W 4,p

loc ⊂ W 3, np
n−p . As u − u1 − u2 is a biharmonic function, we infer

that

u ∈ W
3, np

n−p
loc (B1).

Next we derive the apriori estimate of u. By the Hodge decomposition, we have the
biharmonic 1-form h satisfying

h = Pdu − du11 − du12 − d∗u2 in B1.

By the Morrey estimates (Theorem 1.2), we have

‖h‖M4,n−4+4α∗ (B3/4)
� ε + ‖ f ‖L p(B1).
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In particular, this implies that ‖h‖L1(B3/4)
� ε + ‖ f ‖L p(B1). Since h is biharmonic, we infer

that

‖h‖L p3 (B1/2) � ‖h‖L1(B3/4)
� ε + ‖ f ‖L p(B1).

Returning to the Hodge decomposition, we have

‖∇u‖L p3 (B1/2) � ‖h‖L p3 (B1/2) + ‖∇u11‖L p3 (B1/2) + ‖∇u12‖L p3 (B1/2) + ‖∇u2‖L p3 (B1/2).

Using the potential theory, we can similarly estimate ‖∇u11‖L p3 (B1/2), ‖∇u12‖L p3 (B1/2) and‖∇u2‖L p3 (B1/2) as that of (4.8) and (4.9). Hence

‖du‖L p3 (B1/2)

≤ c
(
ε + ‖ f ‖L p(B1)

)a
(
‖∇u‖

M4,n−4(1−α)∗ (B1)
+ ‖∇2u‖

M2,n−2(2−α)∗ (B1)
+ ‖ f ‖L p(B1)

)
for some a > 0. Similarly, we obtain

‖∇2u‖L p2 (B1/2) ≤ c
(
ε + ‖ f ‖L p(B1)

)a
(
‖∇u‖

M4,n−4(1−α)∗ (B1)

+‖∇2u‖
M2,n−2(2−α)∗ (B1)

+ ‖ f ‖L p(B1)

)
for some a > 0. Here c and a are two constants that depend on n, m, p.

Now we derive the a priori estimate for ∇3u. Applying the elliptic regularity theory to the
Eq. (4.10), we obtain

‖∇3u‖L p1 (B1/2) � ‖I‖L p1 (B3/4) + ‖I I‖L p(B3/4) + ‖∇u‖L4(B3/4)
.

By the growth property (4.11), we have

‖I‖L p1 (B3/4) �
(

‖∇2u‖
L

n
2 (B3/4)

+ ‖∇u‖2Ln(B3/4)

)
‖∇u‖L p3 (B3/4)

� (ε + ‖ f ‖L p(B1))
a‖∇u‖L p3 (B3/4).

Thus we obtain

‖I‖L p1 (B1/2) � (ε + ‖ f ‖L p(B1))
a (‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
.

Similarly, we obtain

‖I I‖L p(B1/2) � (ε + ‖ f ‖L p(B1))
a (‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
.

In conclusion, we deduce

‖∇3u‖L p1 (B1/2) � (ε + ‖ f ‖L p(B1))
a
(
‖∇u‖M4,n−4(B1)

+ ‖∇2u‖M2,n−4(B1)
+ ‖ f ‖L p(B1)

)
+‖∇u‖L4(B1)

.

This finishes the proof of Theorem 1.4 in the case n/4 < p < n/3.

4.2 Case 2: n/3 ≤ p < ∞

In the remaining case n/3 ≤ p < ∞, the result follows by an induction argument and a
trivial iteration.
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Since n/3 ≤ p, it follows that f ∈ Lq(B1) for any q < n/3. Choose ε = εq sufficiently

small such that we can apply the previous result to obtain u ∈ W 3,q
loc , which then implies that

∇u ∈ Ls
loc,∇2u ∈ Ln−δ

loc ∀ s < ∞, 0 < δ � 1.

Write the equation as

�2u = div (I ) + I I + f .

As a result, I ∈ Ln−δ
loc and I I ∈ Ln/2−δ

loc for any δ > 0 small. Let

�2u1 = divI , �2u2 = I I , �2u3 = f .

We find that u1 ∈ W 3,n−δ
loc , u2 ∈ W

4, n
2 −δ

loc and u3 ∈ W 4,p
loc .

Case 2.1. If n/3 ≤ p < n/2, then for δ > 0 sufficiently small W 3,n−δ ⊂ W 3, np
n−p . Hence

in this case u1 + u2 + u3 ∈ W
3, np

n−p
loc . So

n/3 ≤ p < n/2 ⇒ u ∈ W
3, np

n−p
loc .

Case 2.2. If p ≥ n/2, then f ∈ Lq(B1) for any q < n/2. Apply the above result gives
u ∈ W 3,n−δ

loc ,which in turn implies that ∇u ∈ L∞ and ∇2u ∈ Ls
loc for any s < ∞. Hence

I , I I ∈ Ls
loc for any s < ∞. This then gives u1 ∈ W 3,s

loc , u2 ∈ W 4,s
loc for any s < ∞. However,

recall that u3 ∈ W 4,p
loc . So we can conclude that

{
u ∈ W

3, np
n−p

loc if n/2 ≤ p < n,

u ∈ W 3,s
loc for any s < ∞ if p ≥ n.

The a priori estimates in this case can be derived similarly and thus omitted. The proof of
Theorem 1.4 is complete.

4.3 Case 3: 1 < p ≤ n/4

Proof of Theorem 1.7 The proof of this theorem is almost the same as that of Theorem 1.4,
only with minor modifications in the arguments. First note that our Morrey estimate holds as
well. So we can iterate. By the assumption of f , we have

I2( f ) ∈ Lηq ∩ Mη,n−η(2−α)∗ (Rn),

Remark that 2 < η < χ . This term determines how much regularity we can gain in the end.
If ηq ≤ χ , the iteration stops at the first step, and gives

∇2u ∈ Lqη ∩ Mη,n−η(2−α)∗ (B1/2).

In case ηq > χ , using the same iteration method with slightly modification, we can obtain
the same result. As a result, it follows from the potential theory that

∇u ∈ Lqηχ ∩ Mηχ,n−ηχ(1−α)∗ (B1/2).

We leave the details to interested readers. ��
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4.4 Proofs of other results

Proof of Corollary 1.5 The proof is standard and omitted here; see for instance [13, Proposition
6.2]. ��
Proof of Corollary 1.6 It follows easily from a contradiction argument; see for instance [13,
Proof of Corollary 1.5]. ��

Data Availability Data sharing is not applicable to this article as no data sets were generated or analysed.

Appendix A. Some apriori estimates concerning gauge transform

Lemma 4.1 can be proved following the strategy of Rivière [26] and Rivière-Struwe [29].
We sketch the proof for readers’ convenience. Also, for future applications, we will prove a
slightly more general result than that of Lemma 4.1.

Let D ⊂ R
n be a bounded Lipschitz domain, 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 ≤ s ≤ n.

We slightly extend the notion ofMorrey spaces. Say that a function f belongs to the Lorentz–
Morrey space L M p,q,s(D), if f belongs to the Lorentz space L p,q(D), and if

‖ f ‖L M p,q,s (D) ≡ sup
x∈D,0<r<dD

(
r−s/p‖ f ‖L p,q (Br (x)∩D)

)
< ∞,

where dD is the diameter of D. Note that

L M p,p,s(D) = M p,s(D) and L M p,∞,s(D) = M p,s∗ (D).

When s = 0, we get the usual Lorentz space, i.e., L M p,q,0(D) = L p,q(D). When 0 < s ≤ n
and D is a bounded domain, we have the continuous embedding L M p,q,s(D) ⊂ L p,q(D).
Moreover,

‖ f ‖L p,q (D) ≤ ds/p
D ‖ f ‖L M p,q,s (D) (A.1)

Lemma A.1 Let D ⊂ R
n be a bounded Lipschitz domain, 1 < p < ∞, 1 ≤ q ≤ ∞ and

0 ≤ s < n. Then, there exists a constant C > 0 depending only on D, p, q, s such that
whenever u ∈ W 1,p

0 (D) is the solution of the equation

−�u = div f in D,

for some f ∈ L M p,q,s(D,Rn), then ∇u ∈ L M p,q,s(D). Moreover,

‖∇u‖L M p,q,s (D) ≤ C‖ f ‖L M p,q,s (D).

Proof Wen s = 0 and q = p, the result is well known. So the result follows from a standard
interpolation arguments in the case s = 0 and 1 ≤ q ≤ ∞. In the below we suppose
0 < s < n.

Let x0 ∈ D be an arbitrary point in D and r > 0. Denote Dr = D ∩ Br (x0). Let v be
the harmonic function in Dr with Dirichlet boundary value u. Then, the function w = u − v

solves {
−�w = div f in Dr ,

w = 0 on ∂ Dr .

So apply the result for s = 0, we obtain

‖∇w‖L p,q (Dr ) ≤ C‖ f ‖L p,q (Dr ).
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By the assumption, we find

‖∇w‖L p,q (Dr ) ≤ C‖ f ‖L M p,q,s (D)r
s/p.

On the other hand, for any 0 < ρ < r ,

‖∇v‖p
L p,q (Dρ) ≤ C

(ρ

r

)n ‖∇v‖p
L p,q (Dr )

.

Thus, for any 0 < ρ < r , using a simple triangle inequality gives

‖∇u‖p
L p,q (Dρ) ≤ C

(ρ

r

)n ‖∇u‖p
L p,q (Dr )

+ C‖∇w‖L p,q (Dr ),

from which we deduce that

‖∇u‖p
L p,q (Dρ) ≤ C

(ρ

r

)n ‖∇u‖p
L p,q (Dr )

+ C‖ f ‖p
L M p,q,s (D)r

s .

Therefore, using an elementary lemma, we derive, for any 0 < ρ < dD ,

‖∇u‖p
L p,q (Dρ) ≤ Cρs

(
1

ds
D

‖∇u‖p
L p,q (D) + ‖ f ‖p

L M p,q,s (D)

)
.

Since x0 is arbitrary, this is equivalent to

‖∇u‖L M p,q,s (D) ≤ C
(‖∇u‖L p,q (D) + ‖ f ‖L M p,q,s (D)

)
.

Finally, note that by the result for s = 0, we have

‖∇u‖L p,q (D) ≤ C‖ f ‖L p,q (D) ≤ C‖ f ‖L M p,q,s (D).

The second inequality follows from (A.1). Hence, we conclude from the above two estimates
that the desired estimate holds. The proof is finished. ��

Next we consider the following special Poisson equation.

Lemma A.2 Let D ⊂ R
n be a bounded Lipschitz domain, 1 < p < ∞, 1 ≤ q ≤ ∞ and

0 ≤ s < n. Then, there exists a constant C > 0 depending only on D, p, q, s such that
whenever u ∈ W 1,p

0 (D,∧n−2
R

n) is the solution of the equation

−�u = ∗(d P−1 ∧ d P) in D,

for some function P ∈ B M O(D) with d P ∈ L M p,q,s(D), then du ∈ L M p,q,s(D). More-
over,

‖du‖L M p,q,s (D) ≤ C‖P‖B M O(D)‖d P−1‖L M p,q,s (D).

Proof (1) Suppose q = p and s = 0, i.e., P ∈ B M O(D) and d P ∈ L p(D). Let F =
|du|p−2du ∈ L p′

(D,∧n−1
R

n). Hodge decomposition gives ψ ∈ W 1,p′
T (D,∧n−2

R
n), β ∈

W 1,p′
N (D,∧n−2

R
n) and an n − 2 harmonic form h ∈ Hn−2(D,Rn) such that F = dψ +

d∗β + h and

‖dψ‖p′ + ‖h‖p′ ≤ C‖F‖p′ = C‖du‖p−1
p .

Then ∫
D

|du|p =
∫

D
du · (dψ + d∗β + h) =

∫
D

du · dψ.
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Here in last equality we used the boundary condition u = 0 on ∂ D. Therefore, we obtain∫
D

|du|p =
∫

D
d P−1 ∧ d P ∧ ψ =

∫
D

d P−1(P − PD) ∧ dψ,

] where PD = −∫D P . Since d P−1 ∧ dψ belongs to Hardy space, we obtain∫
D

|du|p ≤ C‖P‖B M O(D)‖d P−1‖L p(D)‖dψ‖L p′
(D)

.

This gives

‖du‖p ≤ C‖P‖B M O(D)‖d P−1‖L p(D).

(2) In the case s = 0 and 1 ≤ q ≤ ∞, we use the usual interpolation argument to obtain

‖du‖L p,q (D) ≤ C‖P‖B M O(D)‖d P−1‖L p,q (D).

(3) Now suppose 0 < s < n. Use the same arguments as in the Lemma A.1. For any
x0 ∈ D and r > 0, denote Dr = D ∩ Br (x0). Let v be the harmonic function in Dr with
Dirichlet boundary value u. Then, the function w = u − v solves{

−�w = ∗(d P−1 ∧ d P) in Dr ,

w = 0 on ∂ Dr .

Thus using the result in the second step yields

‖dw‖L p,q (Dr ) ≤ C‖P‖B M O(D)‖d P−1‖L p,q (Dr ).

It follows

r−s/p‖dw‖L p,q (Dr ) ≤ C‖P‖B M O(D)‖d P−1‖L M p,q,s (D).

On the other hand, for any 0 < ρ < r ,

‖dv‖p
L p,q (Dρ) ≤ C

(ρ

r

)n ‖dv‖p
L p,q (Dr )

.

Therefore, a similar argument as in the previous lemma gives, for any x0 ∈ D and
0 < ρ < dD ,

‖du‖L p,q (Dρ) ≤ Cρs/p (‖du‖L p,q (D) + ‖P‖B M O(D)‖d P−1‖L M p,q,s (D)

)
.

Since ‖d P−1‖L p,q (D) ≤ C‖d P−1‖L M p,q,s (D), using the result in the second step together
with the above estimate, we deduce the desired estimate. The proof is complete. ��

Based on the above two lemmata, we can prove Lemma 4.1. We prove a slightly more
general result here.

Lemma A.3 There exist δ > 0 and C > 0 with the following property: Suppose that � ∈
L M p,q,s(B1/2) for some 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < s < n such that there exist
P, ξ ∈ L M p,q,s(B1/2) satisfying the Eq. (3.1) of Lemma 3.1 on B1/2, and

‖d P‖M4,n−4(B1/2)
+ ‖dξ‖M4,n−4(B1/2)

≤ δ,

then there hold

‖d P‖L M p,q,s (B1/2) + ‖dξ‖L M p,q,s (B1/2) ≤ C‖�‖L M p,q,s (B1/2).
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If, in addition, ∇� ∈ M
p
2 ,

n−p+s
2 (B1/2), then ∇2P,∇2ξ ∈ M

p
2 ,

n−p+s
2 (B1/2), and∥∥∇2P

∥∥
M

p
2 ,

n−p+s
2

(
B 1
2

) + ∥∥∇2ξ
∥∥

M
p
2 ,

n−p+s
2

(
B 1
2

)

≤ C

⎛
⎝‖∇�‖

M
p
2 ,

n−p+s
2

(
B 1
2

) + ‖�‖
L M p,q,s

(
B 1
2

)
⎞
⎠ .

In particular, (4.4) and (4.5) holds under the assumption � ∈ M4,n−4+4α∗ (B1/2) and ∇� ∈
M2,n−4+2α∗ (B1/2).

Proof By Eq. (3.1), {
�ξ = ∗d P−1 ∧ d P + ∗d(P−1�P) in B1/2,

ξ = 0 on B1/2.

Let ξ1 be the solution of{
�ξ1 = ∗d P−1 ∧ d P in B1/2,

ξ = 0 on B1/2,
and

{
�ξ2 = ∗d(P−1�P) in B1/2,

ξ = 0 on B1/2.

Applying Lemma A.1 to ξ2 and Lemma A.2 to ξ1, we deduce

‖dξ1‖L M p,q,s (B1/2) ≤ Cδ‖d P‖L M p,q,s (B1/2)

and

‖dξ2‖L M p,q,s (B1/2) ≤ C‖�‖L M p,q,s (B1/2).

Thus

‖dξ‖L M p,q,s (B1/2) ≤ Cδ‖d P‖L M p,q,s (B1/2) + ‖�‖L M p,q,s (B1/2).

Directly from Eq. (3.1), we have

‖d P‖L M p,q,s (B1/2) ≤ C‖dξ‖L M p,q,s (B1/2) + ‖�‖L M p,q,s (B1/2).

Combining the above two estimate together with a suitably chosen δ < 1 small enough, we
obtain the first estimate.

The second estimate can be proved by the same method. We omit the details. The proof
is complete. ��
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