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THE ARONSSON EQUATION FOR ABSOLUTE MINIMIZERS OF
SUPREMAL FUNCTIONALS IN CARNOT-CARATHÉODORY SPACES

ANDREA PINAMONTI, SIMONE VERZELLESI, AND CHANGYOU WANG

Abstract. Given a C2 family of vector fields X1, . . . , Xm which induces a continuous Carnot-
Carathéodory distance, we show that any absolute minimizer of a supremal functional defined by
a C2 quasiconvex Hamiltonian f(x, z, p), allowing z-variable dependence, is a viscosity solution
to the Aronsson equation

2〈X(f(x, u(x), Xu(x))), Dpf(x, u(x), Xu(x))〉 = 0.

1. Introduction

The study of variational problems in L> is very often a good starting point to set up problems
coming both from theoretic issues and from real applications. The earliest works in this direction
are due to Aronsson ([A1, A2]). In these seminal papers, the author studied the connection
between Lipschitz extension problems and PDEs, introducing the notion of absolute minimizing
Lipschitz extension (AMLE) and showing that a C2 function is an AMLE if and only if it satisfies
the infinity Laplace equation

2
n

∑

i,j=1

"u

"xi

"u

"xj

"2u

"xi"xj
= 0. (1.1)

Anyway, as Aronsson observed ([A3]), there are examples of AMLE which are not C2, and
thus solving equation (1.1) only in a formal sense. The problem was solved by Jensen. In the
celebrated paper [J], the author exploited the machinery of viscosity solutions introduced by
Crandall and Lions in [CL] (cf. also [CIL] for an exaustive account on the topic), and showed
that being an AMLE is equivalent to being a viscosity solution to (1.1). Moreover, he showed
that viscosity solutions to problem (1.1) are unique, provided a Dirichlet boundary datum is
assigned.
One step further was made by Barron, Jensen and Wang ([BJW]), who started the study of
L> variational functionals F which are usually known as supremal functionals, that is

F (u, V ) := ‖f(x, u(x), Du(x))‖L∞(V ) u * W 1,>(U), V * A.

where throughout the paper U is an open and connected subset of Rn, A is the class of all
open subsets of U and f is a suitable continuous non-negative function. In particular, they
generalized the notion of AMLE to the one of absolute minimizer of the functional F , that is
a function u * W 1,>(U) such that

F (u, V ) f F (v, V )

for any V ò U and for any v * W 1,>(V ) with v|"V = u|"V . The authors of [BJW] showed
that any absolute minimizer of F is a solution, in the viscosity sense, of the so-called Aronsson
equation

2
n

∑

i=1

"

"xi

(f(x, u(x), Du(x)))
"f

"pi

(x, u(x), Du(x)) = 0,

provided that, among the other things, f is C2 and p 7³ f(x, s, p) is strictly quasiconvex, where
we call a function g : Rn 2³ R (strictly) quasiconvex whenever

g(tp1 + (1 2 t)p2) f (<) max{g(p1), g(p2)}
1



2 ANDREA PINAMONTI, SIMONE VERZELLESI, AND CHANGYOU WANG

for any p1, p2 * Rm with p1 6= p2 and t * (0, 1). This result generalizes the previous ones, in the
sense that, in the particular case in which f(p) = |p|2, the notion of absolute minimizer reduces
to the one of AMLE and the Aronsson equation becomes the infinity Laplace equation. Many
improvements of the results in [BJW] have been achieved by Crandall ([Cr]), both weakening
some assumptions and exploiting a concise and elegant proof, and by Crandall, Wang and Yu
([CYW]), dealing with the more natural assumption of C1 Hamiltonians.
More recently, Bieske and Capogna ([B, BC]) studied the derivation of the Aronsson equation,
and the question of uniqueness of absolute minimizers, in the setting of Carnot groups and
for the case f(p) = |p|2. Later, Wang ([W]) moved the focus on the possibility to extend the
previous results to more general frameworks, and started the study of supremal functionals
defined in the setting of Carnot-Carathéodory spaces. We stress that this point of view is pretty
general and encompasses, among other things, the Euclidean setting and many interesting sub-
Riemannian manifolds. On the other hand its rich analytical structure allows to study many
interesting problems in great generality (see for example [EPV, MSC, MPSC, MPSC2] and
references therein).

In order to better introduce this issue we recall some terminology and some well known facts.
Given a family X = (X1 . . . , Xm) of locally Lipschitz vector fields defined on U , we say that an
absolutely continuous curve ³ : [0, ·] 2³ U is horizontal when there are measurable functions
a1(t), . . . , am(t) with

³̇(t) =
m

∑

j=1

aj(t)Xj(³(t)) for a.e. t * [0, ·],

and we say that it is subunit whenever it is horizontal with
∑m

j=1 a2
j (t) f 1 for a.e. t * [0, ·].

Moreover, we define the Carnot-Carathéodory distance on U as

dX(x, y) := inf
{

∫ 1

0
|³̇(t)|dt : ³ : [0, 1] 2³ U is subunit, ³(0) = x and ³(1) = y

}

.

If dX is a (finite) distance on U , we say that (U, dX) is a Carnot-Carathéodory space. Moreover,
we denote by C(x) the m × n matrix defined as

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

,

where for each j = 1 . . . , m we have Xj :=
∑n

i=1 cj,i
"

"xi
. If u * L1

loc(U), we define the distribu-

tional X-gradient (or horizontal gradient) of u as

〈Xu, ×〉 := 2
∫

U
u div(× · C(x))dx for any × * C>

c (U,Rm).

Finally, if p * [1, +>], we define the horizontal Sobolev spaces as

W 1,p
X (U) := {u * Lp(U) : Xu * Lp(U,Rm)}

and

W 1,p
X,loc(U) := {u * Lp

loc(U) : u|V * W 1,p
X (V ), " V ò U}.

In [W] the author adapted in the obvious way the notion of absolute minimizer to this frame-
work, and showed, under mild assumptions on the generating family of vector fields, that any
absolute minimizer of the supremal functional defined by

F (u, V ) := ‖f(x, Xu(x))‖L∞(V )

is a viscosity solution of the equation

2
m

∑

i=1

Xi(f(x, Xu(x)))
"f

"pi
(x, Xu(x)) = 0,
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provided that p 7³ f(x, p) is quasiconvex, that f is homogeneous of degree ³ g 1 and that
Dpf(0, 0) = 0. Finally, Wang and Yu ([WY]) improved the previous result by requiring only
C1 regularity for f and dropping the assumption that Dpf(0, 0) = 0 (see also [DMV] for some
more specific results for the case f(p) = |p|2). However, neither [W] nor [WY] studied the
problem for Hamiltonian functions f that allow z-variable dependence.

In the present paper we generalize the results in [Cr] and [W], showing that any absolute
minimizer of the functional

F (u, V ) := ‖f(x, u(x), Xu(x))‖L∞(V )

is a viscosity solution to the Aronsson equation

2
m

∑

i=1

Xi(f(x, u(x), Xu(x)))
"f

"pi
(x, u(x), Xu(x)) = 0,

provided that the following conditions hold.

(X1) dX is a distance on U , and it is continuous with respect to the Euclidean topology.
(X2) Xi * C2(U,Rn) for any i = 1, . . . , m.
(f1) f * C2(Ω × R × Rm, [0, >)).
(f2) p 7³ f(x, s, p) is quasiconvex for any x * Ω and for any s * R.

The strategy of our proof, strongly inspired by [Cr], is divided into five steps.

Step 1. Arguing by contradiction, we assume that there is an absolute minimizer which fails
to be a viscosity subsolution to the Aronsson equation. Therefore, without loss of
generality, we assume that there exists a function Ç * C2(U), which touches u from
above in 0, such that

2
m

∑

i=1

Xi(f(0, Ç(0), XÇ(0)))
"f

"pi

(0, Ç(0), XÇ(0)) > 0.

Step 2. Exploiting ideas from [Cr, W], we build a family (Ψ·)· of classical solutions to the
Hamilton-Jacobi equation

f(x, Ψ·(x), XΨ·(x)) = f(0, Ç(0) 2 ·, XÇ(0))

for which we have some continuity properties.
Step 3. We find and open set N· which allows to consider Ψ· as a competitor in the definition

of absolute minimizer.
Step 4. By an appropriate change of variables we reduce to the case in which s 7³ f(x, s, p) is

non-decreasing in a neighborhood of (0, Ç(0), XÇ(0)).
Step 5. We show the solvability of a suitable system of ODEs to get a family of C1 curves

(³·)·, and we show that there is a choice among such curves which allows to reach a
contradiction.

In particular, the last step involves some preliminary results about differentiability in Carnot-
Carathéodory spaces which we tackled, inspired again by [Cr], by suitably adapting the notion
of subdifferential introduced in [Cl].
From one hand, our result generalizes [Cr] to the more general setting of Carnot-Carathéodory
spaces. Moreover, differently from [W], we allow also the function dependence of the hamil-
tonian and we drop the requirement Dpf(0, 0) = 0. Finally, the results in [WY], apart from
not allowing the function dependence of the hamiltonian, are achieved under the Hörmander
condition, which is known to be stronger than (X1). On the other hand our techniques strongly
relies on the C2 regularity of the hamiltonian, which is on the contrary weakened in [WY].
The paper is organized as follows. In Section 2 we recall some preliminaries about Carnot
Carathéodory spaces, viscosity solutions, absolute minimizers and quasiconvex functions, we
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introduce the aforementioned notion of subdifferential and we shows some useful properties of
differentiability along horizontal curves. In Section 3 we state and prove the main result of this
paper.

2. Preliminaries

2.1. Notation. Unless otherwise specified, we let m, n * N \ {0} with m f n, we denote by
U an open and connected subset of Rn and by A the class of all open subsets of U . Given two
open sets A and B, we write A ò B whenever A ¦ B. If E ¦ Rn, we set coE to be the closure
of

coE :=
⋂

{C : C is convex and E ¦ C}.

It is easy to see that coE is convex and that coE is closed and convex. Moreover we set
Λn := {(»1, . . . , »n) : 0 f »j f 1,

∑n
j=1 »j = 1}. For any u, v * Rn, we denote by 〈u, v〉 the

Euclidean scalar product, and by |v| the induced norm. We let Sm be the class of all m × m
symmetric matrices with real coefficients. Moreover, if A is a p × q matrix and B is a q × r
matrix, we let A · B be the usual matrix product. We denote by Ln the restriction to U of
the n-th dimensional Lebesgue measure, and for any set E ¦ U we write |E| := Ln(E). Given
x * Rn and R > 0 we let BR(x) := {y * Rn : |x 2 y| < R}. If we have a function g * L1

loc(U)
and x * U is a Lebesgue point of g, when we write g(x) we always mean that

g(x) = lim
r³0+

∫

Br(0)
g(y)dy.

If f(x, s, p) is a regular function defined on U ×R×Rm, we denote by Dxf = (Dx1
f, . . . , Dxnf),

Dsf and Dpf = (Dp1
f, . . . , Dpmf) the partial gradients of f with respect to the variables x, s

and p respectively. In general we mean gradients as row vectors.

2.2. Carnot-Carathéodory spaces. Assume that we have a family X1, . . . , Xm of locally
Lipschitz vector fields defined on U . Given k g 1, we define Ck

X(U) by

Ck
X(U) := {u * C(U) : #Xi1

· · · Xisu * C(U) for any (i1, . . . , is) * {1, . . . , m}s and 1 f s f k}.

Therefore, whenever we have a function u * C2
X(U), we can define its horizontal Hessian

X2u * C(U, Sm) as

X2u(x)ij :=
XiXju(x) + XjXiu(x)

2
for any x * U and i, j = 1, . . . , m. When in addition (U, dX) is a Carnot-Carathéodory space,
we can define the Horizontal Lipschitz space as

LipX(U) :=

{

u : U 2³ R : sup
x 6=y

u(x) 2 u(y)

dX(x, y)
< +>

}

.

It is well known, and we refer to [FSSC], that the equality

W 1,>
X (U) = LipX(U) (2.1)

holds. In this paper, unless otherwise specified, we always assume that

(X1) dX is a distance on U , and it is continuous with respect to the Euclidean topology.

In particular, we point out that, if (X1) holds, then each function u * W 1,>
X,loc(U) admits a

continuous representative, that is

W 1,>
X,loc(U) ¦ C(U). (2.2)

Indeed, if u * W 1,>
X,loc(U) and x, y * U , then, if x, y * K ò Ω and thanks to (2.1), it holds that

|u(x) 2 u(y)| = dX(x, y)
|u(x) 2 u(y)|

dX(x, y)
f dX(x, y) sup

z 6=w*K

u(z) 2 u(w)

dX(z, w)
,
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and the right side goes to zero as x ³ y in virtue of (X1). Therefore, in the following we
identify u * W 1,>

X,loc(U) with its continuous representative.
As it is well known, assumption (X1) is quit mild in this framework, since it includes many rel-
evant situations. Just to mention the most famous instance, we recall that a family X1, . . . , Xm

satisfies the Hörmander condition whenever each Xj is a smooth vector fields and it holds that

span{Lie(X1(x), . . . , Xm(x))} = Rn for any x * U,

where Lie(X1(x), . . . , Xm(x)) denotes the Lie algenra generated by X1(x), . . . , Xm(x). From
[NSW, G] we know the following result.

Proposition 2.1. Assume that X satisfies the Hörmander condition. Then the following prop-
erties hold.

(i) (U, dX) is a Carnot-Carathéodory space.
(i) For any compact set K ¦ U there exists a positive constant CK such that

C21
K |x 2 y| f dX(x, y) f CK |x 2 y| 1

r for any x, y * K,

being r the nilpotency step of Lie(X1, . . . , Xm).

Hence Hörmander vector fields are examples of vector fields satisfying (X1).

2.3. Subgradient in Carnot-Carathéodory spaces. When u * W 1,>
X,loc

(U) and N ¦ U is
any Lebesgue-negligible set which contains all the non-Lebesgue points of Xu, we define the
(X, N)-subgradient of u as

"X,N u(x) := co{ lim
n³>

Xu(yn) : yn ³ x, yn /* N and # lim
n³>

Xu(yn)}

for any x * U . This notion is inspired by the classical subdifferential introduced in [Cl]. Anyway,
since our hypoteses are too general to ensure the validity of a Rademacher-type Theorem for
functions in LipX(U) (cf. [MSC]), these two objects enjoys different properties. Therefore the
Euclidean (X, N)-subgradient, i.e. when X = ("1, . . . , "n), does not coincide in general with
Clarke’s subdifferential.

Proposition 2.2. Let u and N be as above. Then the following facts hold.

(i) "X,N u(x) is a non-empty, convex, closed and bounded subset of Rm for any x * U ;
(ii) for any x * U

"X,N u(x) =
>
⋂

k=1

co{Xu(y) : y * B1/k(x) \ N};

(iii) if u * C1
X(U), then

"X,Nu(x) = {Xu(x)}
for any x * U .

Proof. We start by proving (i). We fix x * U and show that "X,N u(x) 6= '. Let r > 0 be

small enough to have Br(x) ò U . Then u * W 1,>
X (Br(x)). So we set L := ‖Xu‖L∞(Br(x)). Let

(rn)n ¦ (0, r) with rn � 0. Then, for any n * N, take yn * Brn(x) \ N . Then clearly yn tends
to x. Moreover, being yn a Lebesgue point of Xu, it follows that

|Xu(yn)| =

∣

∣

∣

∣

∣

lim
s³0+

∫

Bs(yn)
Xu(z)dz

∣

∣

∣

∣

∣

f lim
s³0+

∫

Bs(yn)
|Xu(z)|dz f L,

and so (Xu(yn))n is bounded in Rm. Therefore, up to a subsequence, we can assume that its
limit exsts, that is "X,Nu(x) is non-empty. From the above proof it is easy to see that "X,Nu(x)
is bounded, while convexity and closure follows directly from its definition. Let us prove (ii).
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We fix x * U and start by proving the left-to-right inclusion. As the right set is convex and
closed, it is sufficient to show that any z of the form

z = lim
n³>

Xu(yn),

with yn ³ x and yn /* N , belongs to

co{Xu(y) : y * B1/k(x) \ N}
for any k * N \ {0}. As yn tends to x we get that yn * B1/k(x) \ N for n sufficiently large.
Therefore, as the conclusion follows for each X(yn) and the right set is closed, we have proved the
desired inclusion. The proof of the converse inclusion follows form the two following Lemmas,
which will be proved at the end of this paper to avoid confusion.

Lemma 2.3. Let

S :=
{

lim
n³>

Xu(yn) : yn ³ x, yn /* N and # lim
n³>

Xu(yn)
}

and, for any k g 1, let

Ak = {Xu(y) : y * B1/k(x) \ N}.

Then it follows that
>
⋂

k=1

Ak ¦ S.

Lemma 2.4. Let (Ak)k be a decreasing sequence of non-empty bounded subsets of Rm, and let
S be a non-empty, bounded subset of Rm. Assume that

>
⋂

k=1

Ak ¦ S.

Then it follows that
>
⋂

k=1

co(Ak) ¦ co(S).

Now we prove (iii). Let x * U and let (yn)n ¦ U \ N converges to x. Then from the
continuity of Xu it follows that limn³> Xu(un) = Xu(x). Since {Xu(x)} is convex and closed,
this implies that "X,N u(x) ¦ {Xu(x)}. Conversely, being N negligible, there exists a sequence
(yn)n ¦ U \ N which converges to x. Again thanks to the continuity of Xu, the converse
inclusion follows. �

With the following proposition we see that the notion of (N, X)-subgradient, in analogy with
the Euclidean setting, is the right tool to deal with differentiability of X-Lipschitz functions
along horizontal curves.

Proposition 2.5. Assume that X satisfies (X1). Let 1 f p f +>, let u * W 1,>
X,loc(U) and let

³ * AC([2³, ³], U) be a horizontal curve with

³̇(t) = C(³(t))T · A(t)

and A * Lp((2³, ³),Rm). Then the curve t 7³ u(³(t)) belongs to W 1,p(2³, ³), and there exists
a function g * L>((2³, ³),Rm) such that

du(³(t))

dt
= g(t) · A(t)

for a.e. t * (2³, ³). Moreover

g(t) * "X,Nu(³(t))

for a.e. t * (2³, ³).
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Proof. Let (;·)· be a sequence of spherically symmetric mollifiers, and let N be any negligible
set which contains all the non-Lebesgue points of Xu. If · is sufficiently small and we define
u· and (Xu)· to be the standard convolutions, we have that these functions are smooth on a
bounded open set, say V , such that V ò U and V contains the support of ³. Moreover, as X
satisfies (X1), from [W] we know that there exists a non-negative and non-decreasing function
w(·) (depending on the chosen function u) defined in a right neighborhood of 0, such that

lim
·³0+

w(·) = 0

and moreover
|X(u·)(x) 2 (Xu)·(x)| f w(·) (2.3)

for any x * V . As u· is C1 and ³ is absolutely continuous, from standard calculus we have that

u·(³(t)) 2 u·(³(0)) =
∫ t

0
D(u·)(³(s)) · ³̇(s)ds

=
∫ t

0
D(u·)(³(s)) · C(³(s))T · A(s)ds

=
∫ t

0
X(u·)(³(s)) · A(s)ds.

(2.4)

Let us consider now the sequence of functions X(u1/n)(³(·)). It is easy to see that it is
bounded in L>((2³, ³),Rm). Therefore (up to a subsequence) there exists a function g *
L>((2³, ³),Rm) such that

X(u1/n)(³(·)) á7 g(·) in L>((2³, ³),Rm) (2.5)

as n goes to infinity, and so in particular

X(u1/n)(³(·)) á g(·) in L2((2³, ³),Rm) (2.6)

as n goes to infinity. Since u is continuous, then by well known results we have that u·

converges uniformly to u on V . Therefore, passing to the limit in (2.4), noticing in particular
that A * L1((2³, ³),Rm) and exploiting (2.5), we obtain that

u(³(t)) 2 u(³(0)) =
∫ t

0
g(s) · A(s)ds.

We are left to show that g(t) * "X,Nu(³(t)) for a.e. t * (2³, ³). Let us notice that, since for
any x * V we have that

(Xu)·(x) =
∫

B·(x)\N
;·(y 2 x)Xu(y)dy,

it follows that
(Xu)·(x) * co{Xu(y) : y * B·(x) \ N} (2.7)

for any x * V . Indeed, recalling that Xu * L>(B·(x) \ N) for · small enough, setting
m := infB·(x)\N Xu and M := supB·(x)\N Xu, it holds that

m = m
∫

B·(x)\N
Ã·(x 2 y)dy f (Xu)·(x) f M

∫

B·(x)\N
Ã·(x 2 y)dy = M,

and so (Xu)·(x) * [m, M ]. Therefore, noticing that

[m, M ] = co{m, M} ¦ co{Xu(y) : y * B·(x) \ N} ¦ [m, M ],

then (2.7) follows. Thanks to (2.6) and Mazur’s Lemma (cf. e.g. [Br, Corollary 3.9]), for
each m * N there are convex combinations of X(u1/n)(³(·)) converging strongly to g in
L2((2³, ³),Rm), that is

vm(·) :=
Nm
∑

n=Mm

am,nX(u1/n)(³(·)) 2³ g(·) in L2((2³, ³),Rm),
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with Mm < Nm and limm³> Mm = +>. Moreover (again up to a subsequence) we can assume
that the above convergence holds pointwise for a.e. t * (2³, ³). Let us define now

zm(·) :=
Nm
∑

n=Mm

am,n(Xu)1/n(³(·)).

Then, thanks to (2.3) we have that

|zm(t) 2 g(t)| f
Nm
∑

n=Mm

am,n|X(u1/n)(³(t)) 2 (Xu)1/n(³(t))| + |vm(t) 2 g(t)|

f
Nm
∑

n=Mm

am,nw(1/n) + |vm(t) 2 g(t)|

f
Nm
∑

n=Mm

am,nw(1/Mm) + |vm(t) 2 g(t)|

= w(1/Mm) + |vm(t) 2 g(t)|,
which implies that zm converges to g pointwise for a.e. t * (2³, ³) as m ³ >. Moreover,
thanks to (2.7) and the definition of zm it follows easily that

zm(t) * co{Xu(y) : y * B1/Mm(³(t)) \ N} ¦ co{Xu(y) : y * B1/k(³(t)) \ N}
for any t * (2³, ³) and for any k f Mm. Therefore, thanks to the pointwise convergence as
m ³ >, we get that

g(t) *
>
⋂

k=1

co{Xu(y) : y * B1/k(³(t)) \ N}.

for a.e. t * (2³, ³). Finally, thanks to Proposition 2.2, the thesis follows. �

As a corollary of the previous proposition we have the following result.

Proposition 2.6. Assume that X satisfies (X1). Let u * C1
X(U) and let ³ * C1([2³, ³], U)

be a horizontal curve with

³̇(t) = C(³(t))T · A(t)

and A * C([2³, ³],Rm). Then the curve t 7³ u(³(t)) belongs to C1(2³, ³) and

du(³(t))

dt
= Xu(³(t)) · A(t)

for any t * (2³, ³).

We conclude this section with a useful property which links subgradients and quasiconvex
functions.

Lemma 2.7. Let f * C(U × R × Rm) be a non-negative function which satisfies (f2). Let
u * W 1,>

X,loc(U), V * A and K g 0 such that

f(x, u(x), Xu(x)) f K

for a.e. x * V . Let N be a Lebesgue-negligible subset of V containing all the points where the
previous inequality fails and all the non-Lebesgue points of Xu. Then it follows that

f(x, u(x), w) f K

for any x * V and for any w * "X,N u(x).
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Proof. Let x * V be fixed and let w * "X,N u(x). Then there exists a sequence

(wh)h ¦ co
{

lim
n³>

Xu(yn) : yn ³ x, yn /* N and # lim
n³>

Xu(yn)
}

converging to w in Rm. If we are able to prove the claim for each wh, the thesis follows from
the continuity of f in the third argument. Fix then h. Thanks to Carathéodory Theorem (cf.
[D, Theorem 1.2]) there are (»h

1 , . . . , »h
n+1) * Λn+1 and wh

1 , . . . , wh
n+1 such that

wh
j ¦

{

lim
n³>

Xu(yn) : yn ³ x, yn /* N and # lim
n³>

Xu(yn)
}

for any j = 1, . . . , n + 1 and

wh =
n+1
∑

j=1

»h
j wh

j .

Again, if we are able to show the claim for each wh
j , we are done thanks to the convexity of

sublevel sets of f . Let us fix j and take a sequence (ys)s ¦ V \N converging to x and such that
wh

j = lims³> X(ys). As the the map (x, ·) 7³ f(x, u(x), ·) is continuous, and thanks again to
the global continuity of f , we conclude that

f(x, u(x), wh
j ) = lim

s³>
f(x, u(x), Xu(ys)) = lim

s³>
f(ys, u(ys), Xu(ys)) f K.

�

2.4. Supremal functionals, absolute minimizers and Aronsson equation. For sake of
completeness we make explicit the definition of supremal functional and of absolute minimizer
in the framework of Carnot-Carathéodory spaces. Indeed, given a non-negative function f *
C(U ×R×Rm), we define its associated supremal functional F : W 1,>

X (U) × A 2³ [0, +>] as

F (u, V ) := ‖f(x, u, Xu)‖L∞(V )

for any V * A, u * W 1,>
X (V ), and we say that u * W 1,>

X (U) is an absolute minimizer of F if

F (u, V ) f F (v, V )

for any V ò U and for any v * W 1,>
X (V ) with v|"V = u|"V . Moreover, according to [W], we

say that a function A * C(U × R × Rm × Sm) is horizontally elliptic if

A(x, s, p, Z) f A(x, s, p, Y )

whenever x * U , s * R, p * Rm and Z, Y * Sm with Y f Z. If f as above belongs to
C1(U × R × Rm), we can define Af : U × R × Rm × Sm 2³ R as

Af (x, s, p, Z) := 2(Xf(x, s, p) + Dsf(x, s, p)p + Dpf(x, s, p) · Z) · Dpf(x, s, p)T ,

and we say that

Af [Ç](x) := Af (x, Ç(x), XÇ(x), X2Ç(x)) = 0 (2.8)

is the Aronsson equation associated to F . It is easy to check that Af is continuous and hori-
zontally elliptic. Moreover, for any Ç * C2(U) and x * U it holds that

Af [Ç](x) = 2X(f(x, Ç, XÇ)) · Dpf(x, Ç, XÇ)T .

According to [CIL, W] we can now recall the notion of viscosity solution to the Aronsson
equation. Therefore, we say that a function u * C(U) is a viscosity subsolution to the Aronsson
equation if

Af [Ç](x0) f 0

for any x0 * U and for any Ç * C2(U) such that

0 = Ç(x0) 2 u(x0) f Ç(x) 2 u(x) (2.9)
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for any x in a neighbourhood of x0. Moreover we say that u is a viscosity supersolution if 2u is
a viscosity subsolution, and finally we say that u is a viscosity solution if it is both a subsolution
and a supersolution.
We end this section with a straightforward property satisfied by quasiconvex function.

Proposition 2.8. Let g * C1(Rm) be a quasiconvex function. Then it holds that

g(p) g g(q) =ó Dpg(p) · (q 2 p) f 0

for any p, q * Rm.

3. The Main Theorem

We are ready to state and prove the main theorem of this paper.

Theorem 3.1. Assume that (X1), (X2), (f1), (f2) hold. Then any absolute minimizer of F is
a viscosity solution to the Aronsson equation.

Proof. We divide the proof into several steps:

Step 1. Let u be an absolute minimizer for F . It suffices to show that u is a viscosity
subsolution to (2.8), being the other half of the proof completely analogous. Without loss of
generality, we assume that 0 * U . Arguing by contradiction, we assume that u fails to be a
subsolution, that is there exists x0 * U , R1 > 0 and Ç * C2(U) such that (2.9) holds for any
x * BR1

(x0) and

Af [Ç](x0) > 0. (3.1)

Again, without loss of generality we assume that x0 = 0.

Step 2. We combine ideas form [Cr] and [W] to achieve the following

Lemma 3.2. There exist 0 < R2 < R1, ë1 > 0, µ > 0 and a continuous function Ψ : [0, ë1] ×
BR2

(0) 2³ R such that, if we denote Ψ(ë, x) by Ψë(x), it holds that x ³ Ψë(x) * C2(BR2
(0))

for any ë * [0, ë1] and

DΨë is continuous in (x, ë) = (0, 0). (3.2)

Moreover, it holds that

Ψë(0) = Ç(0) 2 ë DΨë(0) = DÇ(0) D2Ψë(0) 2 D2Ç(0) > 2µIn

f(x, Ψë(x), XΨë(x)) = f(0, Ç(0) 2 ë, XÇ(0))
(3.3)

for any x * BR2
(0).

Proof of Lemma 3.2. Lat us define a new function f on U × R × Rn as

f(x, s, ¿) := f(x, s, C(x) · ¿) (3.4)

for any x * U , s * R and ¿ * Rn. Then, since f and X are C2, it follows that f * C2(U ×R×
Rn). Moreover, trivial computations shows that

D¿f(x, u, ¿) = Dpf(x, u, C(x) · ¿) · C(x), (3.5)

and that

f(x, ×(x), X×(x)) = f(x, ×(x), D×(x)) (3.6)

for any x * U and any × * C2(U). Finally, if we let Af * C(U ×R×Rn ×Sn) be the Euclidean

Aronsson operator associated to f , i.e.

Af(x, s, ¿, Z) := 2(Dxf(x, s, ¿) + Dsf(x, s, ¿)¿ + D¿f(x, s, ¿) · Z) · D¿f(x, s, ¿)T ,



THE ARONSSON EQUATION FOR ABSOLUTE MINIMIZERS OF SUPREMAL FUNCTIONALS 11

it follows from (3.5) and (3.6) that

Af [×](x) = Dx(f(x, ×(x), D×(x))) · D¿f(x, s, D×)T

= Dx(f(x, ×(x), X×(x))) · (Dpf(x, ×(x), X×(x)) · C(x))T

= Dx(f(x, ×(x), X×(x))) · C(x)T · Dpf(x, ×(x), X×(x))T

= X(f(x, ×(x), X×(x))) · Dpf(x, ×(x), X×(x))T = Af [×](x),

whence Af [×](0) > 0. The claim then follows as in [Cr, Theorem 1] and thanks to (3.6). �

Step 3. Now we want to exploit Ψë as a test function in the definition of absolute minimizer
on a suitable neighbourhood of 0. For doing this let us notice that, thanks to (3.3),

Ψë(x) = Ψë(0) + DΨë(0) · x + xT · D2Ψë(0) · x + o(|x|2)
= Ç(0) 2 ë + DÇ(0) · x + xT · D2Ψë(0) · x + o(|x|2)
> Ç(0) 2 ë + DÇ(0) · x + xT · D2Ç(0) · x + 2µ|x|2 + o(|x|2)
= Ç(x) 2 ë + 2µ|x|2 + o(|x|2)

as x goes to zero. Therefore we have that

Ψë(x) > Ç(x) 2 ë + µ|x|2 (3.7)

for any x * BR3
(0) \ {0}, for any ë * [0, ë1] and for some R3 < R2 sufficiently small. Let now

0 < ë2 < ë1 small enough such that
√

ë
µ

< R3 for any ë * [0, ë2] and define Në as the connected

component of
{x * BR3

(0) : Ψë(x) < u(x)}
containing zero (note that Ψë(0) = u(0) 2 ë < u(0) if ë > 0). Therefore Në is an open and
connected neighborhood of 0 for any ë * (0, ë2]. Moreover, since (3.7) implies that

Ψë(x) > Ç(x) g u(x) on "B:
ë
µ
(0),

it follows that
Në ¦ B:

ë
µ
(0) $ BR3

(0), (3.8)

which implies that
u|"Në = Ψë|"Në.

Being u an absolute minimizer, and recalling (3.3), we conclude that

f(x, u(x), Xu(x)) f F (u, Në) f F (Ψë, Në) = f(0, Ç(0) 2 ë, XÇ(0)) = f(x, Ψë(x), XΨë(x))
(3.9)

for a.e. x * Në and for any ë * [0, ë2].

Step 4. Got to this point we wish to achive the situation in which s 7³ f(x, s, p) is non-
decreasing locally in a neighborhood of (0, Ç(0), XÇ(0)). Therefore we follow the strategy of
[Cr] and we show that, via a suitable change of variables, this assumption is possible. Let us
define then a new function g as

g(x, s, p) := f(x, u(0) + q · x + G(s), q · C(0)T + G2(s)p)

for any (x, s, p) in a suitable neighborhood of (0, Ç(0), XÇ(0)), where q * Rn has to be de-
termined and G * C>(2·, ·) is a local increasing diffeomorphism such that G(0) = 0 and
G2(0) > 0. Let us notice that g is C2 and quasiconvex in the third argument. Moreover, if we
define u and Ç in a neighborhood of 0 by requiring that

u(x) = u(0) + q · x + G(u(x)),

Ç(x) = Ç(0) + q · x + G(Ç(x)), (3.10)
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it is easy to see that (2.9) holds for u and Ç and that Ç(0) = u(0) = 0. If H is the supremal
functional associated to g it is easy to see that u is an absolute minimizer for H (we stress that
we are working in a suitable neighborhood of 0). Easy computations show that

Dxg = Dxf + Dsfq, Dsg = G2(s)Dsf + G22(s)Dpf · pT , Dpg = G2(s)Dpf.

Therefore, noticing that

g(x, Ç(x), XÇ(x)) = f(x, Ç(x), XÇ(x))

for any x in the usual neighborhood of 0, we have that

Ag[Ç](x) = 2X(g(x, Ç(x), XÇ(x))) · Dpg(x, Ç(x), XÇ(x))

= 2X(f(x, Ç(x), XÇ(x))) · Dpg(x, Ç(x), XÇ(x))

= 2X(f(x, Ç(x), XÇ(x))) · (G2(Ç(x))Dpf(x, Ç(x), XÇ(x)) = G2(Ç(x))Af [Ç](x),

and so Ag[Ç](0) = G2(0)Af [Ç](0) > 0. Moreover, (3.10) implies that

XÇ(0) =
XÇ(0) 2 q · C(0)T

G2(0)
.

Therefore we have that

Dsg(0, Ç(0), XÇ(0)) = G2(0)Dsf(0, Ç(0), XÇ(0))+
G22(0)

G2(0)
(XÇ(0)2q·C(0)T )·Dpf(0, Ç(0), XÇ(0))T .

Hence, if we choose G as G(s) = s + ³
2
s2, where ³ > 0, and we choose q as

q := DÇ(0) + Dxf(0, Ç(0), XÇ(0)) + Dsf(0, Ç(0), XÇ(0))DÇ(0) + Dpf(0, Ç(0), XÇ(0)) · B,

where B is the m × n matrix defined as

Bij :=
"

"xj
XiÇ(x)

∣

∣

∣

∣

∣

x=0

for any i = 1, . . . , m and j = 1, . . . , n, and noticing that

p · B · C(0)T · pT = p · X2Ç(0) · pT

for any p * Rm, thanks to (3.1) we conclude that

Dsg(0, Ç(0), XÇ(0)) = Dsf(0, Ç(0), XÇ(0)) + ³Af [Ç](0) > 0,

provided we choose ³ sufficiently big. Therefore, up to work in this new setting, we can assume
that s 7³ f(x, s, p) is increasing in a neighborhood of (0, Ç(0), XÇ(0)). This fact and (3.9) allow
to find 0 < ë3 < ë2 such that

f(x, u(x), Xu(x)) f f(x, u(x), XΨë(x)) (3.11)

for any ë * (0, ë3] and for a.e. x * Në.
Step 5. We are going to exploit (3.11), together with Proposition 2.8, in a suitable way. For
doing this let us consider the first-order system of ODEs

ù

ú

û

³̇(t) = 2C(³(t))T · Dpf(³(t), u(³(t), XΨë(³(t)))T

³(0) = 0
(3.12)

and, for any ë * [0, ë3] and a suitable R4 < R3, we define gë : BR4
(0) 2³ Rn as

gë(x) := 2C(x)T · Dpf(x, u(x), XΨë(x))T .

It is easy to see (recall (2.2)) that gë * C(BR4
(0),Rn). If we define

C := max
i,j

{ sup
BR4

(0)
|cij|},
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it follows from our assumptions that 0 < C < +>. Moreover, thanks to (2.2) and (3.2), there
exist 0 < ë4 < ë3 and 0 < R5 < R4 such that

|DΨë(x) 2 DÇ(0)| f 1

|u(x) 2 u(0)| f 1

for any x * BR5
(0) and ë * [0, ë4]. Therefore, if we let Më := max{gë(x) : x * BR5

(0)}, it
follows that

‖gë(x)‖L∞(BR5
(0)) f C‖Dpf(x, u(x), XΨë(x))‖L∞(BR5

(0))

f C‖Dpf(x, s, p)‖L∞(BR5
(0)×B1(u(0))×BC (DÇ(0)) := M

for any ë * [0, ë4]. Since (3.1) implies that Më > 0, we conclude that 0 < Më < M for any
ë * [0, ë4]. Therefore, if we let

ë5 := min
{

ë4,
R5

M

}

,

Peano’s Theorem (cf. e.g. [T, Theorem 2.19]) guarantees the existence, for any ë * [0, ë5], of
a curve ³ë * C1((2ë5, ë5),Rn) which solves (3.12). Moreover, from the first line of (3.12) it
follows that ³ë is an horizontal curve. Then, Propositions 2.8 and 2.5, together with Lemma
2.7 and (3.11), imply that

d

dt
(Ψë(³ë(t)) 2 u(³ë(t))

∣

∣

∣

∣

∣

∣

t=t0

= Dpf(³ë(t0), u(³ë(t0)), XΨë(³(t0))) · (g(t0) 2 XΨë(³(t0))) f 0

for a.e. t0 * (2ë5, ë5) and for any ë * [0, ë5), and where g(t0) is as in Proposition 2.5. Therefore,
if we fix t0 * (0, ë5), the previous inequality implies that

Ψë(³ë(t0)) = Ψë(0) +
∫ t0

0

dΨë(³ë(t))

dt
dt

f u(0) 2 ë +
∫ t0

0

du(³ë(t))

dt
dt

= u(³ë(t0)) 2 ë < u(³ë(t0)),

hence we conclude that ³ë(t0) * Në, which implies, together with (3.8), that

³ë(t0) * B:
ë
µ
(0) (3.13)

for any t0 * [0, ë5) and any ë * (0, ë5). On the other hand, the classical Taylor’s formula applied
to ³ë implies that

³ë(t) = 2C(0)T · (Dpf(0, Ç(0), XÇ(0))T t + o(t) (3.14)

as t tends to zero and for any ë * (0, ë5). If we let 2K := |C(0)T · (Dpf(0, Ç(0), XÇ(0))T |, (3.1)
says that 2K > 0. Therefore, thanks to (3.14), we know that there exists 0 < ë6 < ë5 such that

|³ë(t)| g Kt (3.15)

for any for any t, ë * (0, ë6). Let us choose ë * (0, ë6) such that

t0 :=
2

K

√

ë

µ
< ë6.

Then (3.15) yelds that |³ë(t0)| g 2
√

ë
µ
, which is a clear contradiction with (3.13).

�
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4. Appendix

Proof of Lemma 2.3. Let z * Ak for any k g 1. Then for any k g 1 there exists a sequence
(zk

h)h ¦ Ak converging to z as h goes to infinity. Therefore we can select a subsequence
(zk)k ¦ (zk

h)k
h which converges to z as k goes to infinity and such that zk * Ak for any k g 1.

SInce zk * Ak, then there exist yk * B1/k(x) \ N such that Xu(yk) = zk. It follows that yk

converges to x as k goes to infinity, yk /* N and

z = lim
k³>

zk = lim
k³>

Xu(yk).

We conclude that z * S. �

Proof of Lemma 2.4. Let z * co(Ak) for any k g 1. Then for any k g 1 there exists a sequence
(zk

h)h ¦ co(Ak) converging to z as h goes to infinity. As in the previous proof, let (zk)k ¦ (zk
h)k

h

be a sequence which converges to z as k goes to infinity and such that zk * co(Ak) for any
k g 1. Therefore, for each k g 1, there exist (»k

1 . . . , »k
m+1) * Λm+1 and yk

1 , . . . , yk
m+1 belonging

to Ak such that

zk =
m+1
∑

j=1

»k
j yk

j .

Up to passing to subsequences, we assume that

»k
j ³ »j as k ³ >

and
yk

j ³ yj as k ³ >
for any j = 1, . . . , m + 1. It is easy to see that (»1, . . . , »m+1) * Λm+1 and that yj belongs to
Ak for any k g 1. Therefore, thanks to our hypotheses, we have that yh

j * S. If we set

x :=
m+1
∑

j=1

»jyj,

then x * co(S). Moreover, it holds that

x =
m+1
∑

j=1

»jyj =
m+1
∑

j=1

lim
k³>

»k
j yk

j = lim
k³>

m+1
∑

j=1

»k
j yk

j = lim
k³>

zk = z,

which implies that z * co(S). �
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