PARTIAL REGULARITY OF THE HEAT FLOW OF HALF-HARMONIC
MAPS AND APPLICATIONS TO HARMONIC MAPS WITH FREE
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ABSTRACT. We introduce a heat flow associated to half-harmonic maps, which have been
introduced by Da Lio and Riviere. Those maps exhibit integrability by compensation in one
space dimension and are related to harmonic maps with free boundary. We consider a new
flow associated to these harmonic maps with free boundary which is actually motivated by
a rather unusual heat flow for half-harmonic maps. We construct then weak solutions and
prove their partial regularity in space and time via a Ginzburg-Landau approximation. The
present paper complements the study initiated by Struwe and Chen-Lin.
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1. INTRODUCTION

In [11, 10], Da Lio and Riviere introduced a new notion of harmonic map by considering
critical points of a Gagliardo-type H* (R?) semi-norm in the conformal case s = % and d = 1.
Those maps have found a geometric application in the works of Fraser and Schoen about extremal
metrics of Steklov eigenvalues (see e.g. [15] and references therein). These maps correspond to
an extrinsinc version of harmonic maps with free boundary as proved by Millot and Sire in [26].
On the other hand, Moser [27] introduced an intrinsic version of those latter maps, and Roberts
[30] investigated regularity of generalized versions of those maps, i.e. considering Gagliardo
functionals for any s € (0,1). Whenever the extrinsic version of those maps is concerned, critical
points of the functional introduced by Da Lio and Riviere satisfy the following equation in the
distributional sense

(=A)su L T,N
whenever u : S' — N. As pointed out in [26], the harmonic extension of those maps into the
unit disk are so-called harmonic maps with free boundary. We now introduce such maps in
a general setup: let (M, g) be an m-dimensional smooth Riemannian manifold with boundary
OM and N be another smooth compact Riemannian manifold without boundary. Suppose X
1
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is a k-dimensional submanifold of N without boundary. Any continuous map ug : M — N
satisfying uo(OM) C X defines a relative homotopy class in maps from (M,9M) to (N,X). A
map u : M — N with u(OM) C X is called homotopic to ug if there exists a continuous homotopy
h:[0,1]x M — N satistying h([0, 1] x OM) C 3, h(0) = up and h(1) = u. An interesting problem
is that whether or not each relative homotopy class of maps has a representation by harmonic
maps, which is equivalent to the following problem:

—Au =T'(u)(Vu, Vu),
(1.1) uw(OM) C %,

ou

o LT
Here v is the unit normal vector of M along the boundary OM, A = A, is the Laplace-Beltrami
operator of (M, g), I is the second fundamental form of N (viewed as a submanifold in R’ via

Nash’s isometric embedding), T, N is the tangent space in R’ of N at p and | means orthogonal
in RY. (1.1) is the Euler-Lagrange equation for critical points of the Dirichlet energy functional

E(u) :/ |Vul? dv,
M
defined over the space of maps
Hya(M,N)={uec H'(M,N) : u(z) C ¥ a.e. z € OM}.

Here H'(M,N) = {u € H'(M,R") : u(z) € N a.e. z € M}. Both the existence and partial
regularity of energy minimizing harmonic maps in H (M, N) have been established (for example,
n [3], [12], [13], [17], [19]). A classical approach to investigate (1.1) is to study the following
parabolic problem

O — Au=T(u)(Vu,Vu) on M x [0,00),

(1.2) u(z,t) €% on OM x [0, 00),
. g—;‘(x,t) 1L Ty@nX on OM x [0, 00)
u(,0) =g on M.

This is the so-called harmonic map flow with free boundary. (1.2) was first studied by Ma [24] in
the case m = dimM = 2, where a global existence and uniqueness result for finite energy weak
solutions was obtained under suitable geometrical hypotheses on N and . Global existence for
weak solutions of (1.2) was established by Struwe in [34] for m > 3. In [18], Hamilton considered
the case when ON = X is totally geodesic and the sectional curvature Ky < 0. He proved the
existence of a unique global smooth solution for (1.2). When N is an Euclidean space, the first
equation in (1.2) is the standard heat equation

(1.3) uy — Au =0 on M X [0,00).

As pointed out in [6] and [34], estimates near the boundary for (1.2) are difficult because of
the highly nonlinear boundary conditions. Struwe in [34] introduced the heat flow for the in-
trinsic version of harmonic maps with free boundary. In particular, he used a Ginzburg-Landau
approximation in the interior, hence keeping the boundary condition highly nonlinear.

In the present paper we revisit the Struwe approximation argument by considering a natural,
though unusual, heat flow associated to the equation derived by Da Lio and Riviere, that we
called half-harmonic maps. Wettstein [36, 35] considered the natural L?—gradient flow of the
H %—energy of half-harmonic map defined distributionally by

(1.4) dyu+ (—A)2u L T,N in R x [0, 00),

where 9; + (—A)% is the so-called Poisson operator whose expression is explicit. Some weak
solutions for this flow have been constructed in [31]. Infinite-time blow up has been considered
in [32].
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As far as the (partial) regularity of the heat flow of harmonic maps is concerned, a way
to construct weak solutions is to have a suitable monotonicity formula for a Ginzburg-Landau
approximation of the system (see the monograph [22] for an up to date account). At the moment
such a monotonicity formula is not available for the latter system (1.4), despite this flow being
the natural one analytically.

Therefore, we replace the previous flow by

{(at ~AuLT,N inR™x (0, +00),

(1.5) .
u(z,t) = uo(z,1t) in R™ X (—o0,0].

Clearly, these two flows admit the same stationary solutions, which are (weak) half-harmonic
maps into N. However, it is known (see [4]) that, suitably formulated, the flow (1.5) does enjoy
a monotonicity formula. This is due to the existence of a suitable (caloric) extension to the

upper-half space (see [29] and [33]). As we will see below, though the operator (0; — A)% defined
as a Fourier-Laplace multiplier seems unnatural, its caloric extension to the upper half-space is
naturally associated to extrinsic harmonic maps with free boundary. Considering a Ginzburg-
Landau approximation at the boundary, which is more in the spirit of the approach by Da Lio
and Riviere and motivated by the Ginzburg-Landau approximation of extrinsic harmonic maps
with free boundary proved in [26], we construct weak solutions which are partially regular.

We will always assume in the following that (M, g) = (R™,dz?). To keep the technicalities
as simple as possible we will present the detailed proof for the case that the target manifold is a
sphere, and provide necessary modifications of proof for general target manifolds N in Appendix
B. Let (S*"!, gean) be the (£ — 1) dimensional unit sphere in R equipped with the standard
metric. Given ug : R™ x (—00,0] — S/~ with ug(-,t) € H*(R™) for t < 0, we introduce the
following evolution: for (X,t) = (v,y,t) € R7 x R,

due(X, 1)

= Axus(X,t) in R % (0, 00),

(1.6) ue(x,0,t) = ug(x, t) in R™ x (—o0,0],
Ous (X, t 1

S, ueéy)) = (1= u)ue i R™ x (0,+00).

The following result is our main theorem.

Theorem 1.1. For any given ug € H2 (R™, N), the following statements hold:

A) There exists a global solution u € L>®(R,, Hz(R™, N)) of the equation of 1-harmonic
map heat flow:

an {(at ~A)2u LT,N inR™ x (0,00),

J— ] m
u|t§0—u0 in R™.

Furthermore, there exists a closed subset & C R™ x (0,00), with locally finite m-
dimensional parabolic Hausdorff measure, such that u € C*°(R™ x (0,00) \ X), and
B) there exists Ty > 0, depending on ||u0||H%(Rm), such that £ N (R™ x [Ty, 0)) = 0 and

C
VU/ ',t oo m S77 thT
IVu(, )| oo @m) i 0
Hence there exists a point p € N such that u(-,t) = p in CZ . (R™) as t — oo, and
C) for any 0 < t < Ty, X = N (R™ x {t}) has finite (m — 1)-dimensional Hausdorff
measure.

At the end of this section, we would like to remark that when % # s € (0,1), while Lemma 3.1
for the energy monotonicity inequality remains true, the arguments presented in Lemma 4.3 (for
the eg-regularity) and in Proposition 5.1 (for uniform boundary C1:*-estimates) do not seem to
be valid because of the degeneracy of coefficient function y'~2° in the extended equation. Thus
Theorem 1.1 remains open for s € (0,1) \ {3}.
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2. EXISTENCE OF WEAK SOLUTIONS
In this section we prove the existence of a weak solution of

(0 — A u LT,St in R™ x (0, 00),
(2.1)
u(x,t) = up(z) in R™ x (—o0,0],

for any s € (0,1), here ug € H*(R™,S‘"1). This equation is a mere generalization of (1.5),
and thanks to [29], [33] fits well in our framework (see also [2] for a similar setup and related
results). It is important to remark that the case s = 1/2 and m = 1 corresponds to a geometric
problem since the image by those maps are minimal surfaces with free boundary. See [26]. We
will then consider only the case s = 1/2 in any dimension in the subsequent sections. However,
we provide here the existence of weak solutions (but not their partial regularity) for the general
system (1.5) for all 0 < s < 1 when the initial datum wg is a function of x only.

Here (0; — A)®u is defined by the Poisson representation formula (found independently by
Nystrom-Sande [29] and by Stinga-Torrea [33]): For any u belonging to a suitable class of
functions (see [29, 33])

(2.2) (0 — A) u(x,t) = /OOO /m (u(z,t) —u(x — z,t — 7)) K4(z,7) dzdr,

where the kernel K is given by

1212
1 e ar

(4m)F [0 (=s)[ 72 HIF

where I' denotes the Gamma function.

Asin [7] and in [8], we relax the constraint « € S‘~! and introduce the Ginzburg-Landau type
approximation. For any ¢ > 0, we consider the problem (c¢; is a normalization constant that will
be defined later)

Ky (z,7) = Yz e R™ >0,

(0 — A u. = 3(1 — ucP)u.  in R™ x (0, +00),
(2.3)
ue(z,t) = up(z) in R™ x (—o0,0].

(l-s)
228—11"(3) '

The proof of the existence of a solution to the approximate problem (2.3) and of its convergence
to a solution of (2.1) heavily relies on the possibility of reformulating the nonlocal problems (2.1)
and (2.3) as local problems but in an extended variable setting (see [29] and [33]).

First we recall the extension method for the nonlocal operator (9; — A)®, then we prove the
existence of a solution of the Ginzburg-Landau approximation (2.3). Finally, we address the
problem of the convergence when £ — 0.

Here ¢, =

2.1. Extension method. In this subsection we briefly recall the extension method of [29] and
[33]. If u = u(z,t) is a function belonging ! to
(2.4)

D(H?) := {v cS'(R™Y b€ LL (R™M), (£,0) — ((277|§|)2 + 27m'0)8 i(€,0) € LQ(Rvn—i-l)}’

where S'(R™*1) is the space of tempered distributions and @ is the Fourier transform with
respect to (z,t), then we can consider the degenerate parabolic problem in the extended variables

INote that in the papers [29] and [33] it is actually considered a slightly different definition for D(H®) that
prescribes that its elements belong to L2(R™%1). The reason for considering the ”homogeneous” version (2.4)
lies in the fact that we have to deal with maps satisfying the constraint |v| = 1 in the whole R™*1.
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(X,t) == (z,y,t) € R™ x (0, +00) x R:
I—QSaU(X7t)

o =divyx (y1_2stU(X7 t)) n RTJFI x R,

(2.5)
U(z,0,t) = u(z,t), inR™ xR.

Given the boundary datum w in the regularity class D(H?®) above, there exists a smooth solution
U of the parabolic problem above. Moreover, there holds (see [29] and [33])
1 oU(X,t)

2.6 S 1-2s 77\ 7 a_AS .
(2.6) o im oy oy (0 —A)u
The limit in (2.6) is understood in the L?(R™ x R) sense. See also [20].

With this discussion in mind we rewrite the nonlocal and nonlinear system (2.1) as the
following local and degenerate parabolic problem with nonlinear boundary conditions in the
extended variables (X,t) € Rt x R:

1_2878(](8);7 D _ divy (y'2VxUX, ), R xR,
(2.7) U(z,0,t) = up(z), in R™ x (—o0, 0],
lim yl_st 17,8, on R™ x (0, 400),
y—0t 8y

where the limit in the last condition is understood in the L? sense. We note that the previous
system for the case s = 1/2 arises as the harmonic map flow with a free boundary and has been
investigated in [6].

Notice that our solution u to (2.1) is S*~! valued, and therefore it is not in L2(R™). Neverthe-
less, one can interpret distributional solutions of (2.1) directly through traces of weak solutions
of (2.7), which are defined below. In particular, in [29, 33] the domain D(H?®) is designed so
that the R.H.S. of (2.2) makes sense. As previously mentioned, we slightly modify this domain
to take into account the constraint. In any case, we always interpret solutions of (2.1) via its
extension.

Remark 2.1. We also want to point out that this is the flow of harmonic maps with free boundary
from a manifold with edge-singularities into the sphere. Indeed, for a > —1, the operator
y?~4div(y®V) is an edge-operator in the sense of [25]. Therefore, the flow (2.7) is the Ginzburg-
Landau approximation of the heat flow of harmonic maps of a manifold with edge-singularities
into the round sphere. See also [16] for related results. We postpone a deeper investigation of
such flows on singular manifolds to future work.

Remark 2.2. We would like to point out that the approach used in [1] would be an alternative
way to build weak solutions for our system too.

Now we discuss the weak formulation of (2.7). First of all, we introduce some functional
spaces. Given an open set A C RTH, we introduce the Lebesgue and the Sobolev spaces with
weights

(2.8) L2(A;y'%%dX) := {v A — R / [V[*y'~2dX < —|—oo},
A
and
(2.9) H'(4;y' " %dX) = {V:A— R :Vand VxV € L*(A,y' 2dX)},

endowed with the norm

(2.10) VIl (asyr-2eax) = (/A |V|2y1_28dX+/A|VXV|2y1_23dX>

2
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Moreover, we let

(2.11) X*#(A) = {V:A—- R VxV e LAy %dX)},
endowed with the semi-norm

1-2s 2 1/2
(2.12) IV lc2e () = (/Ay IV V| dX) .

Thanks to [28, Theorem 2.8], there exists a unique bounded linear operator (the trace operator)
(2.13) Tr: X2(R7T) — H*(R™),
such that TrV := V|]Rm><{0} for any V € CH(R™T1)

Finally, given a Banach space X with norm ||-|| ., we let LP(a,b; X) (p € [1,+00]) denote the

space of classes of functions which are strongly measurable on [a,b] and with values in X' and
such that

0[] £ (a,p2) < F00,
where
b p o\ P .
(S oty % at) it pel,+o0)

ess SUPye (qp) 10(8) [l if p=-+4oco.

||UHLp(a,b;X) =
Moreover, we let
d
H'(a,b; X) := {v € L*(a,b; X) : 3 € LQ(a,b;X)},

where the derivative is understood in the sense of distributions (see, e.g., [23, Chapter 1])

Definition 2.1. Given a ug € H*(R™,S*"!), a map U : R7F x R — RY, with |U(2,0,t)| = 1
for almost every (z,t) € R™ x R, is weak solution of (2.7) if

(2.14) U € L2(Ry; LA(RYT y1=25d X)),

(2.15) U € L= (Ry; X2 (R7T),

(2.16) U(z,0,t) =up(z) ae. (x,t) € R™ x (—00,0],

and

(2.17) / / ., (00, @) + (VxU, Vx®)) y'=2dXdt =0,
o Jrpt

for any ® € L= (Ry; X2 (R7T)NL® (Ry; L=(RYT)) with @(z, 0,¢) € Ty (s0,0S ™ for almost
every (z,t) € R™ x (0,400).

Note that if U is a weak solution according to the above definition taking ® with ®(x,0,¢) =0
for almost any (x,t) € R™ x (0,400) we get that U verifies
oU(X,t
(2.18) yHS% =divy (y'"*VxU(X,t)), inR7T xR,
Owing to the previous definition, we now define what we mean by a weak solution of the
original system (2.1):

Definition 2.2. Given uy € H*(R", S 1), we say that u : R™ x R — S~! is a weak solution
of (2.1) if the pair (U, ) with u = Tr(U) is a weak solution of the extended equation according
to Definition 2.1.

Remark 2.3. It would be possible of course to have a more straightforward definition of weak
solutions for (2.1) by defining suitable function spaces so that the Fourier-Laplace multiplier
(0y — A)? is well defined. This would actually introduce some additional technicalities which are
unnecessary for our purposes and we do not pursue along this line. We refer the reader to [20]
for a related construction.
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Following [7], [8], [22], in the next Lemma we exploit the symmetry of the constraint S~ to
write (2.17) in an equivalent way that is more suited for the treatment of the nonlinear boundary
condition in the limit procedure. The reformulation of (2.17) makes use of test functions defined
in R x R with values in Ax(R"). Therefore we have to introduce some notation. The exterior
algebra of R is denoted by /\(R?) and the exterior (or wedge) product by A. If e, ..., ey is the
canonical orthonormal basis of R, we let A\x(R?) (k < £) be the space of k-vectors, namely the
subspace of A (R?) spanned by e;, A...Ae;, with (1 <ip <...,ip <£). Welet (-,-) denote the
scalar product in R’. We denote with the same symbol the induced scalar product in A (R?)
(2.19) (V1 Ao Ao, wr AL Awg) = det ((v;, w;))
where v;, w; € Rf fori=1,..., k.

We finally introduce the Hodge star operator

*: Ae(RY) = Aeck(RY) 0<k <,
by
(e N Neg ) i =ej AN Aej,
where j1,...,je— is chosen in such a way that e;,,...,e;,,¢ej,...,¢€,_, isa (positive) basis of
R?. The following hold
*(1) =ep A...N\ey,
*(eg A...Nep) =1,
*xkv = (=1)FERly Yo € A\p(RY),
and
(2.20) uA*v = (u,v)e; A...Aeg, for any u,v € Ax(RY).
or, equivalently,
(2.21) * (u A *v) = (u,v) for any u,v € Ax(R").
In the familiar case in which u, v are vectors in R3, then the relation above with £ =3 and k = 1
gives
*(uAv) =uxuv.
Then, we introduce some new function space. We set
X7 (R Ae—2(RY) o= {V : RPT = Ap(RY) : VxV e L? (RPH,y'2dX) }.
We have the following

Lemma 2.4. U is a weak solution in the sense of Definition 2.1 if and only if U verifies (2.14),
(2.15), (2.16), (2.18) and

(2.22) /oo / {(0:U, % (UANT)) + (VxU,* (UAVx¥)))y*2*dXdt = 0,
o JrpH
for any ¥ € L (Ry; X2 (R7TH Ar—a(R))) N L= (Ry; L= (RTT Ae—2(RY)).

Proof. If U is a weak solution in the sense of Definition 2.1, then we take ® = x (U A ¥) where
U e L™ (R+;X2s (RTH; /\g,g(Re))). Thanks to the properties of the wedge product and of
the Hodge-star operator, it is immediate to check that ® is indeed a vector field. The fact that
S XQS(RTH) for a.e. t is a consequence of the the fact that its components are product
of functions which lie in X2*(R"™") and in L* for almost every t. We have to check that
®(x,0,t) € Ty(z,0,)S !, namely that, denoting with u(-,-) := U(-,0,-) (in the sense of traces),
(u,* (u AT)) =0 a.e. in R™ x R.
This is a consequence of (2.21). In fact,

(2.23) (U, % (U AW)) =% (uA (xx (A ) = (=D Tk ((uA (uAT))) = 0.
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Finally, since the Hodge star operator commutes with the covariant differentiation (here deriva-
tion in R"™") we have that

(VxU,Vx(x(UATD))) = (VxU*(VxUAD))+(VxU,*(UAVxD))
= (VxU*x(UAVx¥)),
where the first addendum is treated as in (2.23). As a result we have that U verifies also (2.22).
On the other hand, let U be a function verifyng (2.14), (2.15), (2.16), (2.17) and (2.18). For
any given vector field ® as in the Definition 2.1 we set
U:=x(UA®D).

We have that ¥ € L™ (Ry; X2 (R7T; Ar—2(R?))). Moreover for almost any (z,t) € R™ x
(0, +00) there holds

*(UANT)=0.
Thus (2.18) and (2.22) give that U verifies also (2.17) and thus it is a weak solution in the sense
of Definition (2.1). O

According to [33], given a solution U of the above problem, its trace on R™ x {0}
is indeed a (weak) solution of (2.1). Weak solutions to (2.7) are constructed as limits of solution

of the the (local) extension of the Ginzburg Landau approximation (2.3) of (2.1). Therefore, for
any € > 0 we consider the following system

X, t
I*ZSLE(E% ) _ divy (v VxU(X, 1) in R x (0,00),
(2.24) Ue(z,0,t) = uo(x), in R™ x (—o0,0],
. 9, 0U(X, 1) Cs 2 .
1-2s € ’ _ m

2.2. Existence for the approximate problem and a priori estimates. In this subsection
we discuss the existence of the approximate problem (2.24).

First of all, we introduce some notation. For ¢ > 0 and V' € X2*(R7""!), we introduce the
following energy functional

Cs
4e2

1
(2.25) &E(Vyv) = 7/ Yy VXV AX +
RT+1

/ (1— |v*)?dz, for V eV,
2 o

where v = Tr V. We seek for minimizers in the space
Vi {Vex® @) 0= (V) | (o —1)? € I'(R™)}.

We let Uy : RTH x (—00,0] — R be the Caffarelli-Silvestre extension of ug, namely, for any
t € (—00,0],

(226) {—div (y' =2 VU (X, 1)) = 0 i R7HL
Uo(z,0,t) = up(x) on R™,
Thanks to [5] we have that the extension operator
(2.27) E :vw—V, with V the unique solution of (2.26) with boundary datum v,
is an isometry from H*(R™) to X2 (R7) and we have
(2.28) TV e ey = LBCTR(V) g ety < 1V ey

for any V € X2* (RT+1).
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Towards the construction of a solution to (2.24) we observe that, since Uy is constant with
respect to time, the function Uy verifies

12 00X, 1)

= divy (y' *VxUp(X,t)), inRPT x (—o0,0],

(2.29)
Uo(z,0,t) = up(x), in R™ x (—o0,0].
Therefore, we study existence of a solution of the following initial and boundary value problem:

OU.(X,t
yl—%M =divx (y' "> VxU.(X,1)) in R7H % (0, +00),

ot
(230) Uﬁ(w7 yao) = Uo(.’L‘,y), in RT+1 X {0},
. _os OU(X, 1) c 9 )
1-2s £ ) _ s
yli)%l+y T——g (1—|U5| )Ua, in R™ x (0, +00).

As a result, if we let U. be a solution of the above problem, then

(231) ULX.8) = {UE(X, t) for (X,t) € M+1 x (0, 00),

Uo(X, 1) for (X,t) € RTH x (—o0,0],

is a solution of (2.24). As the behavior of ¢ < 0 of U; is ruled by Uy which only depends on the
known “initial” condition ug, with some abuse of notation we will use the same symbol U; to
denote both a solution of (2.24) and a solution of (2.30).

We concentrate on (2.30). Since for the moment we work at fixed ¢, we do not indicate
the dependence on ¢ in the notation. Existence of a solution can be proven, for instance, by
using a time discretization scheme. More precisely, for n € N we set 7 := % and t* := 7k for
k=0,...,n. Weset U’ := Up and we (iteratively) let U* (with k = 1,...,n) be the solution of

Uk o ,7_y7(172s)diV (y172stUk) _ kal, in RTJrl?

(2.32)

. 1,258Uk _ G yrk|? k ; m
yliréhy oy 6—2<1 |U|)U in R™ x {0}.

Equation (2.32) is the Euler-Lagrange equation for the minimizer of the energy (as in (2.25) we
indicate with u the trace of U on R™ x {0})

k—1]|2
F(U,u) = 1/ wy”ﬁdx + &(U, ).
2 Jpmtt T
+
Existence of a minimizer in the space V is a consequence of the Direct method of Calculus
of Variations. Once we have constructed the discrete solutions U* for k = 1,...,n, we can
standardly introduce the piecewise constant and piecewise affine (in time) interpolants of the
discrete solutions and pass to limit when 7 (the time step) tends to 0. This limit procedure
gives (we restore the e-dependence) a solution U, of (2.30). We let uc(-,-) := U.(+,0,-) (in the
sense of traces). The function U, satisfies by construction the following a priori estimate (that

correspond with testing (2.30) with 8{% and integrating on RTH)

(2.33) / y' s
R

2 d

OUe " ax + (U u)(1) = 0.

ot
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Thus, integrating with respect to time in (0,T) for 0 < T < oo, we get (recall that Tr(Uy(+,-,0)) =
ug(- ) and that up € S'=1 a.e. in R™)

[ Lo

/ (17|u5|2)2dx:/ U EIVUL(X 02X < ol e
m ]R"_: 1

dth+/ y' 7 | VxU(X, 1)) dX
RWL+1

Cs
4g2

(2.34)  +

Thus, we obtain

[ foru?™
Cs

22
(2.35) +4€2 /Rm(l — Jue|?)*dz < C,
where the constant C' does not depend on e. Thus, we conclude that 9,U. and U, are uniformly
bounded with respect to € in the spaces
(2.36) LA(Ra; LA(RTH, 51 =20dX)) and L®(Rys X2 (R]),

respectively. Moreover, recalling (2.31) we have indeed constructed a solution (still denoted with
Ue) of (2.30) that satisfies

V(X t)
ot

dth+/ Y 7 | VxU(X, 1)) dX
R

(237) ”UE”Hl(R+;L2(Ri‘+1,y1*25dX)) + ||UE||LOO(]R+;X25(RT+1)) S C.
Note that u. is a solution of (2.3).
2.3. Limit procedure and existence of a weak solution. The energy estimate (2.35) and

weak compactness results guarantee the existence of a map U : RTH x Ry — Rf with

U € L* (Ry; LA(R7 4! 2°dX)) and U € L™ (Ry; X*(RTT))

and of a subsequence of € (not relabeled) such that

(2.38) o U. =% 8,U weakly in L2 (Ry; L2(R7H 41 =22dX))
(2.39) ViU, =% ViU weakly star in L (Ry; LH(R7 T,y =2d X)) .

Moreover, the Aubin-Lions compactness Lemma gives that
(2.40) U. <2% U strongly in L, (Ry; LY (RTH, 41 =2d X)) .

Now, denoting with v and with . the traces of U and of U, on R™ x {0} respectively, we have
that

(2.41) u. =% 4 in L2 (Ry; L2 (R™)),

and thus u. — u almost everywhere in R” x R, up to the extraction of a further subsequence.
The convergence almost everywhere above combined with the fact that, thanks to estimate
(2.35),

. 2y 2

6113(1) - (1= |ue?) dz =0,
allows us to reach that |u(x,t)] = 1 for almost any (z,t) € R™ x Ry. To conclude that U is
a weak solution of (2.7) in the sense of Definition 2.1 we have to prove that U verifies (2.22).
We consider ¥ € L™ (Ry; X2 (R7H Ap—2(RY))) ML (Ry; L (RPH Ar—2(RY))) and we test
(2.30) with x (U: A ¥). For almost any (x,t) € R™ x (0, +00)

<€12 (1 Ju-P?) ug,*(ugmp)> *CQ (1 fuel?) uaA**(ugA\P))
AN (512 (1= Juel®) we A (ue /\\Il)> =0,
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thanks to (2.21) (recall (2.23)). For ¢t < 0, we have that U.(z,0,t) = u.(z,t) = up(z) and
therefore, since |ug| = 1 by hypothesis, we conclude that

1
= (1 - |u5(m,t)|2) ue(z,t) =0, forae x€R™ andt<0.

Thus, after integration by parts in space we conclude that U, verifies
(2.42) / / (0,Uz, % (U AW)) + (Vx Uz, % (U AVx®))) gy —25d X dt = 0.
Ry JRPH

Convergences (2.38)-(2.40) are enough to pass to the limit in equation (2.42) and to obtain that
U verifies (2.22). Thus, thanks to Lemma 2.4 we conclude that U is indeed a weak solution of
(2.7). Therefore, the trace of U on R™ x {0} is a weak solution of (2.1).

3. MONOTONICITY FORMULA FOR THE APPROXIMATE PROBLEM

This section is devoted to the derivation of monotonicity formula for (2.30). For the later
purpose, we will provide both global and local versions of such formulas.
FortOZOand()gRg%o,weset
T (to) == {(X,t) e R xRy 1 tg —4R? <t < to — R*}, Ti =17 (0),
OTTH (to) = {(2,0,t) e R™ x {0} x Ry : tg —4R* <t < to — R*}, 0TIy := 9T} (0).

For X = (29,0) € R™ x {0} and 0 < s < 1, let

1 |X —Xg|?

giovto(X, t) = e~ il |t <t

T(s)(4m)%

be the backward fundamental solution of (2.30). For Xo = 0 and to = 0, we write G® = G%_ .
Note that

t— to‘%-‘rl—s

X
VG (X.t) = *MQS(X, t), G*(RX,R*t) = R™™72%2:G%(X,t), V(X,t) e R x R_, R > 0.

Lemma 3.1. For every Zy = (Xo,to) with Xo € 8RT+1 and to > 0, if U. solves (2.30) then
the following two renormalized energies

1
D(U., Zo, R) := R2(7 Gy oo (X, )y 28| VU, 2dX
2 R7 ! x{to—R2}

Cs

bs s th 1— 62 2d )
i TR 00

and
1
E(U., Zy,R) := 3 / Gxoto (X, )y > | VU P d X dt
T (Zo)

Cs

+ S (X, )(1 = |ue|?)?dadt
155 )y B (K001 = )

are monotone nondecreasing with respect to R. Namely,

51) {D(UE,Zo,r) <D(U.,Z,R), 0<r < R <,

E(Ue, Zo,r) < E(Ue, Zo, R), 0<r<R<3/h
Proof. Here we just sketch a proof for £(Ue, Zy, R). Let us set
Ue r(X,t) := U-(RX 4 Xo, R*t +t0), ue,r(x,t) := uc(Rx + 0, R*t + to)

for X € RTH and t > —R~2ty. Then Ue,r satisfies
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Yy 20U r(X,t) = divx (Y1 2V Us r(X, 1)), in R7H x (=R™%tg, 00),
Ue r(2,0,t) = uc g(z,1), in R™ x (—R~2tg, 00),
(3:2) U. p(x,0,t) = uo(Rz + Xo), in R™ x (—o0, —R~2ty),
lim y =20, U. g(X,t) = —R* (1 — Jue g[)uc,p, in R™ x (—R~2tg, ).
y—0t S

By the change of variables X — RX + Xg, t — R?t + to, we get

Cg
R *(1 = fue g [2)2dadt.
L R R

1
g(UEaZO7R) = 5 /Jr gsyl—Qs'v){Uv7
Tl

Therefore, integrating by parts we obtain

s, 1—2s
2dR/ Goy' 7|V x U, g|?dX dt

= / QSyPQSVXUE,R . VXaRU&Rdth
Ty

—/ diVX[gSy172SVXU5,R] . 8RU57Rdth—/ lim [QS 1= 256 Uesr- OrU, R]dxdt
T,

6+T+ y—0t

X
= +gs 1= 28[ -VxU. g+ 0Uc g] - OrU: rdXdt
T

st c2 / 4 g°(1- |UE,R|2)UE,R - OpUe, pdzdt.
o+ T;

Here we have used the fact 2% = and that OrU. r(z,0,t) = Orue r(x,t) for t > —R™21,

which is a consequence of

lim, yO,U.(RX, R*t) = lim y**[y'~2*9,U.(RX, R*t)] =0
y—r

2Itl

y—0t
While
4] RQS/ G*(1 — [ue pl?)2dadt
dR | 4e2" Jyirpy <f
sc
:JR2871/ gs 1— 22d dt
922 T ( |ue,r|") dz
R2S B} / gs(l — |UE,R|2)UE,R . aRuEVRd:Z?dt.
e” Jotrt
Since .
8RUE,R = E(X . VxU&R + 2t(9tU5,R),
we obtain
ig(UE Zo,R) = ! ¢ Y X VU r(X, 1) + 2t0,U. (X, t)|* dX dt
dR T 2R T |t\
(3.3) SCS SR 1/ G*(1 — |ue.p|?)dwdt
o+t
> 0.

This yields the monotonicity of £(Ug, Zy, R) with respect to R > 0 and hence completes the
proof. O

We will also need the following local energy inequality. Here we denote

P (Zy) = B (Xo) x [to — R%, to + R?], 0" P}t (Zo) = Pt (Zo) N (ORTT! x (0, 00))
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for R >0 and Zy = (Xo,t0) € R7™' x R.
Lemma 3.2. If U, solves (2.30) then for any n € C§°(R™*1) it holds that

d 1 2 2 3 212, 2 1 2 2
it {/Rm“ §‘VU€| n +./]Rm 422 (1= Jue|)*n +§ —_— |0:Ue|*n
+ +

(3.4) < 4/ VUL 2|2,
R$+1

In particular, for any Zo = (Xo,t0) € RTT! x (0,00) and 0 < R < Vi we have that

T2
c1
(3.5) / |0 U.|> < CR™2 / VU, |? +/ = (1= |uc?)? | .
P (Zo) P} (Zo) o+ Py (20) 4€

Proof. Multiplying the first equation of (2.30) by 8;U.n? and integrating the resulting equation
over RTH, and applying the third equation of (2.30) in integration by parts, we obtain

d 1 2 2 / €4 2\2. 2 / 2 2
Ly 2 (1 - Ju U.
dt{/RTHQ Vel + | gz =l +Ri‘“|at "

1
= —2/ (noyU., VU.Vn) < 7/ |8tU5\2n2+2/ VU, |*|Vn|?.
RTJA 2 RTH RT+1

This yields (3.4). To see (3.5), let n € C§°(R™T1) be a cut-off function of Br(Xy),i.e. 0 <n <1,
n=1in Br(Xy), n = 0 outside Bar(Xp), and |Vn| < 4R~!. By Fubini’s theorem, there exists
te € (to — 4R% to — R?) such that

1 9 = 2\ ?
/ §|VU€| +/ ﬁ(l_lusl )
Bp(Xo)x{t.} (B2r(Xo)NORT ) x {t,} 4€

16 1 c1 2
(3.6) <ml[ ~ gwupsf Z-mP) )
Py (Zo) 2 o+ P (2o) 4€

Now if we integrate (3.4) for t, <t <ty + R? and apply (3.6), we obtain that

1 C1 2
[ wavps | SV [ L (- fuP?)
P (Zo) B (Xo)x{t.} 2 (Bar(Xo)noR™ 1) x {t,} 4€

+ C’R‘Q/ VU, |?
P;R(ZO)

C1 2
< CR™? / |VU5|2+/ - (1 — \u5|2) .
P (Zo) Ot Pl (Zo) de

2R
This implies (3.5) and completes the proof. O

4. e—~REGULARITY RESULT

From now on, we will always assume s = % Therefore, according to
I'(1—s)
Cs 1= ",
s 223—1F( S)
we have that ¢;/, = 1.
As previously mentioned, we now focus only on the system (2.30). We will derive a priori

estimates of its solutions U, under a smallness condition on the renormalized energy.
For Xo = (z¢,0), to > 0 and 0 < R < \/tg, we set

P (Xo,t0) = {(X,t) €RTT x (0,00) : | X — Xo| < R, tg — R*> <t < tg +R2}.
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Lemma 4.1. Assume U, is a bounded, smooth solution of (2.30). Then |U.| < 1 in R x
(0, 00).

Proof. We argue by contradiction. Suppose the conclusion were false. Then by the maximum
principle there exists Zy = (z0,0,t9) € 8RT+1 x (0, 00) such that

(U =1)(Z) = _max  (JU*=1)(2) > 0.

Z€RT+1 % [0,00)
Set ®. = |U.|?> — 1. Then it satisfies
9P, — AP, = —2|VU.|2 <0 in R7T x [0, 00),

P 2¢,
lim 0 “(X,t) = i<I>5(x,(),t)\uE\Z(x,t) on ORT x [0,00).

y—0+ Oy g2

It follows from the Hopf boundary Lemma that

00, . 00,
Zy) = lim —— tg) < 0.
8y ( 0) yif(r]lJr ay (any; O)
On the other hand, the boundary condition of ®. yields that
0d, 2¢,

oy Z0) = 2 0=(Z0))lucl*(Zo) > 0.

We get the desired contradiction. O

The next Lemma is a clearing-out result, which plays a crucial role in the small-energy regu-
larity result.

Lemma 4.2. There exists eg > 0 such that if U, is a smooth solution of (2.30) with |Us| <1,
that satisfies

E<UE7 (XO7 tO)a 1) S 80
for some Xy € 8R3r”+1 and ty > 4, then
1
|U5| Z 5 on P;(X(),to)
for some § > 0 independent of U, Xy and tg.

Proof. We divide the proof into two cases:
Case 1: ¢ > % Set

y
Vilept) = [ Untastyds. g >0,
0
Then
8y(at - A)V;(il?,y,t) = 07
that is, (9; — A)V. is independent of y € (0,00). In particular, we get

C1
(8t - A)%(l‘7y’t) = (8t - A)VYE(an7t> = _ayUE(an,t) = E%(l - |U€|2)’U/€, Yy > O

Note that

CL
5—;|1 — Juc|?|Jue] < 4cy in R % (0,00), and V. = 0 for y = 0.

Hence, by the standard parabolic theory [21, Theorem 2.13] we conclude that V. is bounded in
C?*Y(Pf(Xo,t0)). In other words, U. is bounded in C'*!(Py (X, o)), which gives
2 2

(4.1)  |U(X,t) = U(X,D)| < CL(|1X — X|+ |t —1|2) for (X,t) and (X,f) € P{(Xo, o),
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for some C; > 0. Now we choose ¢; € (0, ) such that ;4 < <. By the monotonicity inequality
(3.1) we get that

=1 / ey
2 1—|u dxdt
4e? AR NBs, (Xo) Jto—463 :

(m-‘rl 1 B )
= C(s 462 /aRm+1/t gXO to X t)(]' ‘uel ) dxdt

0—46%
< Céf(erl 8(U5751,X0,t0)
< 067 "V EWU, 1, Xo, t)
< C(;;(erl)E

Therefore, by choosing g9 > 0 sufficiently small we obtain that
4
|u€|25 for |X—X0|§51,XE@RTH,tO—ZM%StStO—é%.
From the choice of §; > 0 we conclude that |U.| > 5 on P} (Xo, o), thanks to (4.1).

Case 2: ¢ < % Let X1 = (x1,y1) € Bs(Xo) with y; > 0 and t; € (t9 — 62,9 + 6%) being fixed.
Set X; = (21,0), and

U.(X,t) = Uc(Xy +€2X, ty +e't).
Then U, satisfies

,U.(X,t) = AU.(X,t) in RTH! x R,
Ua(x,O,t) = Ue(x,1) in R™ x (—e~41,00),
(4.2) U.(z,0,t) = dig(, t) in R™ x (—oo, —e~ 4],
oU,
lim == (X, 1) = —c1 (1 = [@e[)ae  in R™ x (=&, 00).

By the monotonicity inequality (3.1), we obtain

(0., (0,0),1) = £(U-, (X1,11),¢2) < E(U-, (X1, 1), ;)gC(go—i—al),

where the last inequality follows from Lemma 4.4. Now one can proceed as in Case 1 to show
that

|U:| >

for some d; > 0 independent of € > 0. In particular, we obtain

for (X,t) € P{(0,0),

l\.’J\l—\

(4.3) U(X,t)| > = for (X,t) € P (Xo,t0), 0 <y < b6,

l\D\H

Next we find a small §3 > 0 such that |U.(X,t)| > 1 on Pg(XO,tO), provided g9 > 0 is
sufficiently small. Note that it suffices to consider points (X,t) € PgZ(XO,tO), X = (z,y) for
which €26; < y < 9, and € > 0 satisfies €2 < g—f. To this end we fix an arbitrary point
(X1,t1) € P;(Xo,to) with X7 = (z1,91), y1 > 0, and set R := iyl, X, = (21,0).

We claim that for § > 0 small (depending on &) it holds that

(4.4) / / |VU.|?dXdt < C(eg +e1)R™ T,
t1—10R2? J B] . (X1)

IOR

and

1
(4.5) e / / (1= Jue|2)2dadt < C(eo + 1) R™L.
t1—10R2 J|z—z1|<10R
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To prove the above claims, let us first choose § > 0 small so that we can apply Lemma 4.4 with
€1 = €09, X1 = X; and t; = t; +4R?. Then by the monotonicity inequality (3.1) and Lemma
4.4,

- . 1
E(Ue, (X1,t1 +4R?),2R) < E(Ue, (X1, 11 + 4R?), 3) = Cleo+e).
Since
G, tyqare (X 1) ~ R7O"D for |X — X3 <10R and t; — 10R* <t < ty,

(4.4) and (4.5) follow immediately.
As Bigp(X1) C Biyp(X1), and VxU. satisfies the heat equation on R7™ x (0,00), by (4.4)
we obtain (see [14, page 61])

Cy/
16 VU(X, 1) < SV TEL o X — Xy <4R and t, —9R2 <t <1,
R
and consequently, by the standard parabolic estimates,
47 aU.(X. 1) < VOl X X< 3R and t — SR <t <t
R2
Setting

Ud(t) := ]L U.(X,t)dX,
BR(Xl)
we see that
(4.8) |U(X,t) —U.(t1)] < Cvleg + &1 for |[X —X;| <R and t; —8R* <t <ty

thanks to (4.6)-(4.7).
For ¢ € RY we set d(¢) = |1 — [€]|. Then d is 1-Lipschitz. Since

d(Us(t1)) < d(Us(X, 1)) +|U=(X, 1) = Us(t1)], ¥X € Br(X1), 1 —R* <t <t,
taking an average integral one gets

d(Ue(t1))
t1 t1
< ][ ][ d(U.(X,t))dX dt +][ ][ |U.(X,t) — Ud(ty)|dX dt
t1 —R2 BR(X1) t,—R? BR(XI)
t1
< ][ ][ d(U(X,t))dXdt + Cv/ep + €1,
t1—R2 BR(Xl)

thanks to (4.8). By Jensen’s inequality, and using that Br(X;) C B;R(Xl), we get
t1 2
][ ][ d(U-(X, 1))dX dt
t1—R? JBRr(X1)
C h
<weit [ dwxnraxa
Rm t1 —R2 B;R(Xl)
C &
< 7“][ R / d(ue (x, ) 2dz + R2 / IVd(U.(X, £)2dX | dt
Rm t1—R? le—x1|<5R B, (X1)

c " / 212 c " 2
< —— (1 = |ue|?)*dedt + 7/ / VU |*dX dt
R™*2 Jo g2 Jjp—ay|<5R R )y re ) (%)

52
< C(go +€1) (R+1) .

The second inequality above follows from the Poincare inequality, and we have used that d is
1-Lipschitz in the third inequality, and the last inequality follows from the estimates (4.4)-(4.5).
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As we have mentioned before, we only need to consider 4R = y; > §1e2 and €2 < %. Thus
we obtain

L

d(U:(t1)) < CVeg +e1(l + N

Hence, if £y > 0 is sufficiently small, from (4.8) we have
1
|U: (X1, t1)] 2 5.

Consequently, corresponding to this €y we obtain § = d > 0 as determined by Lemma 4.4 for
the choice of €1 = &g. O

Next we show that under a smallness condition on the renormalized energy, U, enjoys a
gradient estimate. More precisely, we have

Lemma 4.3. There exists g > 0, depending only on m, such that if U, is a smooth solution of
(2.30), with |U.| < 1, which satisfies, for Zo = (Xo,to) € ORTH x (0, 00) and some 0 < R < @,

(49) 5(U€a Z()7 R) < 6%3

then

(4.10) sup R2|VU.|? < 06,72, sup  RYO,U.? < Coy %,
P 1 (Zo) P 1 (Zo)

where 0 < g < 1 and C > 0 are independent of €.

Proof. By scaling, we may assume that tg > 4 and R = 1. Let 6 > 0 be as determined by
Lemma 4.2. Since U, is smooth in RT‘H x (0, 00), there exists 0. € (0,9) such that

2 2 _ 2 2
(6 — o) IPax)(|VU5| + |0,U.|) 01;13%(5 o) max (IVU.* + |0.U.]).

oo (Zo > (Zo
Let Z§ = (X§,t]) € P (Zo) be such that
max (|VU5|2 + \@UED = (|VU5|2 + |8tU5|)(Z1€) = eg.

P (Z0)

Set p. = %((5 — o). Since P/j; (Z5) c P

- +0.(Z0), we have that

max (|VU.|> + |0,U.|)
P (25)
(4.11) < max (|[VU* +|0,Ue]) < 4e?.

~ pt
By to.(Z0)

Write X§ = (25,y7) € RT™! with 5 € R™ and y§ > 0. Set X§ = (25,0) € ORT™ and define

. - X t
U.(X,t) = U (X§ + e—,ti + ?2)’ (X,t) € PE(YT,0),
€

€

where 7. = p.e. and Y¥ = (0,y5e.) € RTH. Setting

C1
P 2
82 g2¢.’
one gets
(8, — A)U. =0 in P (Yf,0),
(4.12) 9,U. = 5 (1 — |a.|?)a. on P (YF,0) N (OR} ! x R),
' (IVUI* + 10:U:)) (X, 1) < 4 in P (YF,0),
(IVU:? + [0:U:]) (Y1, 0)] = 1
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Note that if r. < 2, then from the definition of 0. we obtain

52
T sup (|VU5|2 +0:U:|) < (6 — 05)2 sup (|VUE\2 + |0 U:|) = 4p§e§ = 47"? < 16.
P{(Z) P} (Zo)
2

This yields (4.10). Thus we may assume 7. > 2 and proceed as follows. In case that yfe. > %,
one can use the interior regularity of heat equations to conclude that
1= (IVU.|* + |0,U:)) (Y1, 0)
< C(HVUEH%?(P%(YIE,O)) + ||atUe||L1(P% (v.,0)))
(4.13) < C((9e.)~(m+Y / VU2 + (18¢.)~(m+D /

PH(X5,t5) P (X585)

Dez T8ez

|8tUE|)'

Next we need
Claim. For 0 < r,o < 6 with 2r + o < 4, it holds

T\ 2—(m+1) 2, . —(m+1) 1 2 3 212
(3) |0 Ue|” + 7 SIVU” + 2(1 — |uel?)
2 P (Z)) P (1) 2 o+ P(zy) 4€
2

(4.14) < C(e +e1Ey), VZ1 € P (Zy).

Here Ey :/ (VU2
R+

Assume (4.14) for the moment. Since ;= < 8? < o, it follows from (4.14) and (4.13) that

9e.

1 < C(ek + e1Ep) + Cy/et + e1Ey,

which is impossible if we choose a sufficiently small 9. Therefore we must have yje. < é and

r. > 2. In this case, we see that U, satisfies (5.1), (5.2) and (5.3) with ¢ = & Hence, by
Proposition 5.1, we have that for any 0 < o < 1,

||[7€||Cl+0(P;(Yf,O)) < Cl(a).
In particular, for any 0 < r < % it holds that
(VU + |0.0]) (X, 1) = (IVU|* + 0,0 ) (Y5, 0)| < Cri, V(X t) € PF(YF,0).
Since (|VU.[> 4 [0,U.|)(Y,0) = 1, it follows that
(IVOP + [0,0)(X,1) > 1= Cr¥, ¥(X,1) € PF(YT,0).

Thus we can find a 0 < rg < %, independent of €, such that

. - 1
(VU + |00 (X, 8) > 5, V(X,1) € (YT, 0).

This, combined with (4.14), yields that

o [ (VOP+ )
P (YF,0)
.
= O(2p,) =m0 / (VU + |0:U.])
Py

+ ze
42(1/)5( 1)

< C(e3 +e1Ep) + C/e3 + &1 Ey.

This is again impossible if we choose a sufficiently small 3. Therefore we show that r. = p.e. <2
so that (4.10) holds.
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Now we return to the proof of (4.14). For simplicity, assume Zy = (0,0) and write

gX*,t* (X» t) = g)ﬁ(*’t* (Xv t)'
For any Z; = (X1,t1) € P;7(0,0), the monotonicity formula (3.1) implies

1 C
pm(mF1) / 7|VU5|2dth+/ 2 (1 — |ue|?)dadt
P (21) 2 A

1 c1
<c / ~|VU?Gx, 4, 12r2d X dt +/ 51— [uel®)?Gx, 1ty +2r2dadt
TyF (t1421r2) 2 O+ T (t1+2r2) 4e

1 C1
<c ‘/) ‘ﬂVL@Fthn+madth+:/‘ 2 (1= ucl®)?Gx, py 4or2dadt
T (tr+202) 2 O+TT (1 +2r2) 4€
2 2

1
= c&(U., (X1, t1 +2r?), 5)
(4.15)
< C(E(U.,(0,0),1) + e1Eg) < C(e2 + &1 By),

where we have used (4.16) from Lemma 4.4 below, since (X1,t; +2r?) € P (0,0). Now one can
see that (4.14) follows from (4.15) and (3.5). O

Lemma 4.4. Lete; > 0 be given. Then there exists 6 = 6(e1) > 0 such that for every (Xo,t9) €
IR x (4,00), we have
1

(4.16)  E(Ue, (X1, t1), 5) < C(E(U, (Xo,t0),1) +e1Eq)  for every (X1,t1) € Py (Xo, to),

where C' > 0 is independent of ,0 and €1, and FEy = / |VU0|2.

m+1
RY

Proof. Proof of this Lemma is essentially contained in [8] Lemma 2.4. Here we give a sketch of
it. For (X1,t1) € P (Xo,t0), we see that

t—to]\mpt X —Xo|* X —X,f?
G X, t) < 2 — G X, t
Xl,tl( ) )— (|t—t1|) exp( 4|t—t0| 4‘t—t1‘ ) Xo,to( ’ )
X - Xo]*  |X -X?
<C — G Xt
S Coxp(r T~ 2y Fxen(X)
X — Xol?
SC’eXp(0527| ol )G x, 10 (X, 1)
4t — to ’

CGXO,tU (Xa t)7 |X - X0| < 6t
T | Cexp(—ci~2), |X — Xo| >t

for any (X,t) € Ty (t1), where C, ¢ > 0 are independent of § and e.
2
Therefore, for a given ; > 0 small one can find § > 0 small so that for (X,t) € T3 (t1),
2

GXo,to (Xv t) if |X - X0| < 571,
le,tl(X,t)SC{ €1 if | X — Xo| > 6L

Hence
1
E(Ue, (X1,t1), 5)
ty

t1
< CE(U, (Xo,t0),1) + Cey / |VU.|?dX dt + / (1 — |t |*)?dxdt
t1—1 JRTH t1—1 JORTT!

< C(go + e1Ep),
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thanks to (2.35). O

5. BOUNDARY Cl1tY-ESTIMATE

This section is devoted to establishing an uniform boundary C'*%-estimates for solutions U,
to (2.30), under the smallness condition of the renormalized energy of U..
Notations: for r > 0, set

P, =B, x (-r%,0], P == P.n (R7"" x R),
and
L= {(x,0,t) : 2| <, —r?<t< 0}, T} = {(z,y,t) : lz)> + 92 =12y >0, —r* <t < 0}.
Let {U.}es0 : P — R! be a family of solutions to
(5.1) wU. —AU. =0 in Pj,
subject to the Neumann boundary condition

U, 1
= —(1—|uc|*)uc on Ty.

(52) ov g2

Then we have

Proposition 5.1. Let {U.} be a family of solutions to (5.1)-(5.2). Assume that
1
(5.3) B <|U <1, |0U|+|VU| <4 in P}

Then HUEHCHQ(PT) < C(a) for every 0 < o < 1 and € > 0.
4

Proof. Write U, in the polar form. Namely, U, = p.w., with p. = |U.| and w. = %. Then p.
and w, solve

(5.4) aatpe —Ape = _‘VUJEPPE in PlJr
. P C1
5, — =2 (L= lpel)pe on Ty,
and
Vpe 2 ; +
Orwe — Aw, = f. :=2 - Vwe 4+ |Vwe|“we in Pj
(5.5) P Pe
Ye _ 0 on T
ov 1'
It follows from (5.3) that
1 VU] . n
(5.6) 3 <pe <1, |Vp | <|VU| <8, and |Vwe| <2 A <16, in P,
and hence

|f-| <1000 in P;.
From (5.5), we can apply the regularity theory for parabolic equations to conclude that

(5.7) ||w5||cl+a(},7+) < C(a) for every a € (0,1),
8

uniformly with respect to €.
Next we show that p. is uniformly bounded in C'**(P{"). From (5.4), it suffices to prove
4

C-regularity of 9,p. on I' 1. To this end, we set

he(X,t) =1—p.(X,t), (X,t)€ P
The boundary condition in (5.4), and (5.3) imply that
(5.8) 0<h.<ce* on Ty.
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For any fixed (Y,0) € I‘llﬁ, set
h$ (X, 1) := ho (X +Y,t) — ho(X,t) for (X,t) € Pli%.

By direct calculations, h§ satisfies

(0 — A)h§, = £ in Plj%,
(59) oy by =g r
—d, = on I'z,
ps(l + ps) Y v o8y 16
where
5 (X, 1) = [Vw: (X +Y,t)|2p€(X +Y,t) — |Vw5(X,t)|2ps(X,t),
" (X 4+ Y.0)(1 4+ p(X 4+ Y.0)
pe(X +Y, )1+ pe (X + Y, ¢t )
(X, t)=(1- he(X +Y,1).
g% = (1 2T ey ) e+
From the estimates (5.3), (5.7) and (5.8) we infer
(5.10) Ifs (X, 1) < C|Y|* in PT,
16
and
(5.11) lg5 (X, 1) < C2|[Y|* on Iz
From (5.6) we also have
(5.12) |h$ (X, t)| < ClY|*, in PT.
16
Denote by
my = |6l ot 0 75 = 85 Loty 27 = (05[] -
16 16 16
Now we need
Claim. There exists a function ¢5. € C>°(BY) satisfying
3
h§, < ¢5 <10p5 < C|Y|*  in BY,
(5.13) 4¢? ’
T&,(ﬁ/ + (b; =0 on 831_ N {.’L' € RT+1 T4l = 0}
3

To verify this claim, first choose a + < 79 < & such that BY C B x [0,70]. Next define
3
b3 (r) = Y3 (Tm11) = Bl x [0,70] — R, where 95, € C*°([0,70]) satisfies
Wi (%) = 10py; 1095 < 93 (t) < 20p5, & <t <79,
and
42

(5.14) S WE) () + () =0, 0t <<

Solving (5.14) yields
Y5 (1) = 10e117)ps, 0 <t < e
It is clear that (5.13) holds by restricting ¢5. on BY.
Finally we let H@ : B; — R be the unique solutign of the initial and boundary value problem:
(&= A)hS =mS in P,
B = 05 on BY x {~(4)%},
(5.15) b = o5 on T,
3

462
%3uh§/+h§/:0 onT}.
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For }Ali}, it follows from both the maximum principle and the C°-estimate (see [21]) that

(5.16) 0<h§ < C(m§ + 65| o (51)) < CIY|* in Py
% 3

Furthermore, we have the following uniform gradient estimate, whose proof will be given in the
Appendix A.
(5.17) ||h§,|}CI(P+l) < C(my + ||¢§/|\Lw(34%r)) < OlY|*, for every e > 0.
24

This, combined with the boundary condition on I' 1in (5.15), implies that there exists a constant
C > 0, independent of ¢, such that
(5.18) 0<h§ <CY|* onTy.
Define functions H;ﬁ . and Hy _on P by letting

' ' 3

Hf (X,t) =h§ (X, t) £h5 (X, t) + 05 in P;.

Then it is easy to verify that

(0 — A)HE. >0 in P,
’ 3
Hy. >0 on By x {-(3)*},
(5.19) H}fs >0 on I‘}E,

42 4 4
?(Q)VHY,E + HY’E >0 on I':.
Applying the maximum principle to (5.19) (see [21]), we conclude that
Hy, >0 in Pf,
or, equivalently,
—h5 (X, ) = n§ <h§(X,6) SBG(X,0) +n5, (X,0) € P
Hence we obtain that
h$ (X, 1) < B (X, ) + 15 < C2Y|%, (X t) €Tz,

thanks to (5.10), (5.11) and (5.18). In other words, we have

1 7
(520) ?'pE(X +Y7 t) - pE(X7 t)| < C|Y|a for (Xa t) € F%v |Y‘ < E

For every fixed T' € (—+%,0], set

7 (X, ) = he(X, ¢+ T) = he(X, 1), (X,#) € P
16
Then by an argument similar to that for (5.20) we can show that
1 a 7
(5.21) Sl (X, 4+ T) = po(X,0)] < COIT|E for (X, ) €T 5, —1 <T <0,

Combining (5.20) and (5.21), and applying the boundary condition of p. in equation (5.4), we
conclude that

||8Vp5||CQ(Fl) =C
24
holds uniformly with respect to €.

Now Proposition 5.1 follows immediately from the standard parabolic regularity theory for
equation (5.4) (see [21]). O
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6. PASSING TO THE LIMIT AND PARTIAL REGULARITY

This section is devoted to the proof of our main theorem on the existence of partially smooth
solutions of the heat flow of 1/2-harmonic maps.

Completion of proof of Theorem 1.1:

Proof. For s = £, let {Uc}eso be a family of solutions of (2.30), satisfying the bound (2.34),
and U : RT‘H x [0,00) — R! be the weak limit of U. as ¢ — 0. It it readily seen that
U € C=(RTH x (0,00)) solves

(6.1) U — AU =0 in RTM x (0,00); Ul,_, =Uy on RP"M,

and v :=U | R x( is a weak solution of the equation of 1/2-harmonic map heat flow:

% (0,00)
(0, — A)2u L T,S"" on R™ x x (0, 00) u’t o =Uu on R™

We are left with showing u enjoys the partial regularity as stated in Theorem 1.1. To show this, let
g0 > 0 be the constant determined by Lemma 4.3 and define the singular set ¥ C OR7""! x (0, 00)
by

(6.2) 5= {ZO = (Xo,to) € ORT x (0, 00) : lim inf £(U, Zo, R) > eg}.

R>0 =
It is well-known that the monotonicity inequality (3.1) implies that X is a closed set in GRTH X
(0,00). Furthermore, similar to the proof of Lemma 4.3 and Lemma 4.4, we have that for any

Zy = (Xo,to) € X, there exists a 0 < rg < 4/Tp such that for all 0 < r < g,

1
T_m(/ |vU€|2+/ — (1= Jucl?) ) > ce2.
P (Zo) ot Pl (20) €

Now we can apply Vitali’s covering Lemma to show that for any compact set K C RT‘H x (0, 00),
the m-dimensional Hausdorff measure of ¥ N K is finite, i.e.,

PMENK) < C(Ey K) < 0.
It follows from the definition of ¥ that for any Z; = (Xi,t1) € ORT! x (0,00) \ ¥, we can find
aradius 0 < R; < @ so that
liminf £(U., Z1, Ry) < €.
e—0

Hence by Lemma Lemma 4.3 and Lemma 4.4 we can conclude that there exists a d; > 0,
independent of e, such that for any « € (0, 1),

(6.3) < Cleg, ).

O llcrvaes, o iz

Thus U, — U in C"** (P, (Z1)). In particular, U € CEP(RT! % (0,00) \ Z). Applying

loc
higher order boundary regularity theory of (6.1), we conclude that U € CR2 (R x (0,00) \ ).
This yields part A) of Theorem 1.1.

Observe that for any sufﬁciently large to > 0, and Xy € 6Rm+1 if choose R = @, then

g(Us,(Xo,to / /m+1 2|VU| gXo,todth+/ /]R"’"’l

= c
S d - C5 22
C’to /0 (/R"”rl 2|VU| dX+/ R 422 (1 — |ucl?) d.%')dt

<cty 7 /+ 5|Vl 2dxdt = Cto T By < &2,
+

o (1= [ )G, gyt

L?
NE

2
uniformly in €, provided ¢y, > (CEO) . Here we have used (2.34).
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Hence by Lemma 4.3 and Lemma 4.4, we can conclude that ¥ N (8RT+1 X [to,00)) = 0, and

U. — U in C2 (RT! x [tg,00)). Furthermore, it holds that
c
VUX, 1) < -
IVU(X, )| i

for all X € RTH and ¢ sufficiently large. There exists a point p € S'~! such that U(-,t) — p in
C? (ORT!) as t — oco. This yields

loc
part B) of Theorem 1.1.

The proof of part C) can be done in the same way as in Cheng [9]. We sketch it as follows.
First recall that for any § > 0, there exists a sufficiently large K(J) > 0 such that for any ¢ty > 0

and 0 < R < Y2 it holds for tg — 4R? < ¢ < t, — R?,

(RTH) as t — oo. Hence u(-,t) also converges to p in CZ,_

R~(m+1) VX € R
g(XO»tO)(X’ t) < . Jrerl
5Q(X0’t0)+(07R2)(X, t) if Xe R} and | X — Xo| > K(0)R.
Hence
E(Ue, (Xo,t0), R
c1
< RO+ / / |VUE|2+/ —22(1—|u5|2)2) dt
to—4R? NJBY oL (Xo0) Bf; 5y n(Xo)noR7+ 4€

C1
" Lo IVUPG o emny + [ 0= PG )
to—4R2 R+

m—+1 452
oR

On the other hand,

¢
A 2 Ty R NS oS I
to—4R> N JRPH o

m+1 4e2
RY

R2
< 25/ (R® +ty — ) '"D(U., (Xo,to + R?), V/R? + to — t) dt
t

0—4R?

to—R?
< 25(/ (R% + 1ty — )" dt)D(UE, (Xo,to + R%), VRZ+ to)
t

0—4R?

< Cé(to+R?) "E

provided § > 0 is chosen to be sufficiently small. Here we have used the monotonicity inequality
for D(U., (Xo,to + R?),r) in the proof.

Note that ¥, = mo<z?<f2 where

to?

Zﬁ = {Xo € 8RT+1 : hmlnfé’( <, (X07t0) R) > 8(2)}

it holds

C1
Vo + [ 1 el

+ m+1 4e2
B 5)r(X0)NORT €

Thus we obtain that for any X, € ©F

to—
R™ < 2 hm
€5 <=0 4R2

so that by Vitali’s covering Lemma we can show that

to’

K(J)R(XO

H}?(&)IR(Eﬁ) < C(K(9), Eo).

This implies H™~1(%,,) < oo, after sending R — 0.



7. APPENDIX A: UNIFORM ESTIMATE OF HEAT KERNELS

In this section, we will sketch a proof of the gradient estimate (5.17) for the solution ﬁ; of the
auxiliary equation (5.15), which holds uniformly with respect to €. We refer the reader to [21]
Theorem 4.31, in which an estimate similar to (5.17) is established but with a constant possibly
depending on ¢. Here we will provide a proof based on an explicit Green function representation
of the heat equation under an oblique boundary condition.

First recall the heat kernel in R™+! given by

1 |‘IE|2 m—+1
Do t) = § (ampy7 O (7 ) @1 €RMx(0,00)
0, (z,t) € R™HL x (—00,0].

For Yy = (y17"' aymaym-i-l) S RT+17 denote y* = (yla"' 7y’rn7_ym+1)' Define GE($7y7t) :
R7T x RPT xR — R by

(7.1) G (z,y,t) =T(x —y,t) —T'(x —y*,t) — 2/ e_zls%TDmHF(:r —y* +Temy1,t)dr,
0

where D, 11(z,t) = ———(z,t) and e,,, 11 = (0’,1) € R™*L. Then we have

amerl

Lemma 7.1. G¢ is the Green function of the heat equation in RTH with an oblique boundary
condition: for any fized y € RTH,

(0 — A)GE(z,y,t) = 6(z — y)o(t),  (v,t) € RPN x Ry,

(7.2) oGeE 3 . .
axm+1 (l‘,y,t) - @G (l’,y,t) = Oa MRS 8R++1 X [0, OO)

Proof. Since y* € R™"! for y RTH, it follows that =z — y* # 0 and z — y* 4+ Te;p1 # 0 for
any r € RT“ and 7 > 0. Hence we have

(0r — A)G* (2, y,t) = (0 — A)(x — y,t) = 6(x — y)d(¢).

To check the boundary condition, let € OR7""'. Then we have that 2,11 = 0 and |z — y| =
|z — y*| so that I'(x — y,t) = T'(z — y*,t) and D1 l(x — y*,t) = =Dy 1 T(z — y, t). Hence

0G* 3
) 7t - —G* ) )t

pr— (@,,t) = 5 G (2, 9,1)
e 0

= —=2Dp 1Dz —y*,t) — 2/ e_&Ti[Dm_HF(w -y  +Temy1,t)| dr
0 8(Em+1

> —3_r *
+E 0 e i DerlF(w_y +T€m+1,t) dr

<0
= 2D l(x —y*,t) — 2/ P (e_zxs%TDm_HF(x — Y+ Temq1,t)) dr
0

-
=0

holds for x € 8RT+1. O

For any bounded f € C*® (]R:’f'H x [0,00)), it is well-known that the unique smooth solution
of

Oy —A)u=f in RT'H x [0, 00),
au 3 m+1

(7.3) —u =0 on JdR"" x[0,00),

OTmi1  4e?
u=0 on R7T! x {0},
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is given by the Duhamel formula

t
(7.4) e (2, ) :/0 /Rm+1 G (,y,t — 8)f (4, 8) dyds, (z,1) € RTH x [0, 00).

Now we are ready with the proof of the following theorem.

Theorem 7.2. For any f € C®(RT™' x [0,00)) and e > 0, let u® : R7T x [0,00) — R be

given by (7.4). Then for any 0 < a < 1 there exists a constant C' = C(m,«a) > 0 such that

(7.5) ||u€HC2+"(RT+1X[O,oo)) < CHf||C“(RT+1><[O,oo))’ Ve > 0.

Proof. Decompose G* by G° = G + G5, where

Gi(z,y,t) =T(z —y,t) —T(x —y",t); G5=G° —

and write u® = uj + u§, where

t
ui(z,t) = /0 /R’"“ Gi(z,y,t — 3)f(y, s) dyds; u5 =u® — uf.
+

Since G5(,y,t) is the Green function of the heat equation on R7'!

with zero Dirichlet

boundary condition, by the standard Schauder theory (see [21]) we have that u§ € C°°(RTH" x

[0,00)) and
< C(m,a)|f]]

||uﬂ|c2+a (WX[0,00))

To prove a similar estimate for u§ we first note that (7.1) gives

(7.6) G5(z,y,t) = 72/ e_k%TDmHF(x —y* + Temy1,t) dT.
0

By direct computation we have that

-1 1 (Tm+41 + Ymt1 +7)

oo (R7Fx[0,00))”

3 |z —y* + T€m+1|2

Dyil' (x —y* +Temy,t) = > e . exp
(4mt) 2
Moreover, by the very definition of y*

@ = y* + Temr|” = o’

where we recall
/

€ ::(xlv"'axmao) y/:<y17-~-aym70)'
Therefore (7.6) becomes

1
G5(z,y,t) = ———xe

(4mt) 2
We change variables in the integral according to

o merl + ym+1 + T

- Vit

t 4e?

Moreover, we write

2
—&' —y|" = =z =y + @m1 + Y1)
Then,
1 (2 + 2, 3 + ) Foo
G;(.T,y,t) — —e lz—y™| e(lm+1 Ym+1)"+ 7 (Tmi1+Ym41
(47Tt) 5 mrn,+l\j{'ym/+1

We introduce the function O; : [0,400) — R given by

2
=y |"+ (@mg1 + Ymgr +7)%,

4t

4t

—|x,—y’|2 /JFOO (,ij+1 +y'm+1 +T)exp ( 37 _ ‘me_i_l —|—ym+1 +T‘2
0

+oo 2
0. (A) = e(Fmt1Humi )+ gl (Tmp1tymss) / rexp (_ vt r) dr,
A

4e2

4

o
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and thus G§ is represented as

1 q *
G;((E7y,t) = je_l"”_y ‘265 (xrnﬁ»l"i_ynlﬂ> .
(4mt) 2 Vi
We have that for any € > 0, ©. € C*°([0,00)). Moreover, since
iz 3IAWE A2
9/5()‘) = _e(xm+1+ym+1) +15 (zm+1+ym+1)>\exp (_ o B 4> ’
we get that
o Tm4+1 + Ym+1 | Tmt1l + Ymt1 ,(wm+1+g4—?+1>2+4t

€ T == T e ’

which is bounded, uniformly with respect to € and with respect to ¢t > 0. Therefore, we conclude
thanks to Schauder theory that u§ € C*(R}'*! x [0,00)) and

< C(m,a)]|f|

||u§||cz+ (T-H mmtL .
o (RTFTx[0,00)) oo (R7F1x[0,00))

Combining the estimates for u§ and u§ yields (7.5).
O

Now we will give a proof of (5.17). To do it, let 71 € C§°(BY" x (—(3)2,0)) be such that
3
m =1in B} x (—(55)%0), and 72 € C§°([0,00) be such that 7, = 1 in [0, 1] and 7, = 0 in
24
[2,00). Define n(z,t) = ny (2, t)nz(@m+1) for (z,t) € R x R. Then by direct calculations we
obtain that

he 3 =
(m(hyn) T 12 Y77) (z,t)

=5 (@, Om (@, O (@mn) + (
—0+0=0
holds for any (z,t) € IR x (0,00) N F'gf. Hence by Duhamel’s formula, we conclude that for
any (z,t) € P:%, it holds

o =~ 3 ~
p Hhey - @hsy)(%t)n(%t)

() (z,t) = / G (z,y,t — 5)(0 — A) (b5 n)(y, 5) dyds
R x(0,00)
= m’fw/ G*(z,y,t — s)n(y, s) dyds
R % (0,00)
+ / GE ({E7 Y, t— S)ﬂ§’ (y7 S) (atn - An) (y7 S) dde
R+ % (0,00)

<2 o (TG SV0(y:) + G, = ) 0(y, ) 0 5) dyds
3: 1% (0,00

(7.7) = A%(z,t) + B (x,t) + C%(x,1).
Applying Theorem 7.2, there exists a constant C' > 0 independent of ¢ such that
HAEHC2+Q(RT+1X(O7OO)) S Cm%/ S C|Y|a

For B® and C¢, it is not hard to see that

||VB€||Ca(M+1x(o,oo)) + ||VC€||Ca(Rr+1x(o,oo)) < CHE;HCU(PT) < Cp§y < ClY .
3

Putting these estimates together, we conclude that ﬂ%, satisfies the gradient estimate (5.17).
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8. APPENDIX B: PROOF OF THEOREM 1.1 FOR GENERAL TARGETS

In this section, we will sketch the modifications that are necessary in order to show Theorem
1.1 for any compact Riemannian manifold N < R!.
To do it, first recall that there exists a constant §y > 0 such that both the nearest point
projection map
Iy :Nsy ={yeR': dy,N) <én} > N
and the square of distance function to N, d?(p, N) = |p — IIx(p)|?, are smooth in the dx-
neighborhood of N.

Now let x € C§°([0,00)) be such that
x(t) =t for 0 <t < d%; x(t) =26 for t > (26n).

Then we replace the potential function (1 — |u[*)? by Zx(d*(u,N)). More precisely, we
consider the following approximated system:

(0, — A)U. =0 in R7* % (0, 00),
m+1
(8.1) Uelig = U on R,
1
yli%l+ aTj = ?;X’(dQ(UE,N))DUEdQ(UE,N) on R™ x (0, 00).
As in (2.34), it is readily seen that any solution U. of (8.1) satisfies the following energy

inequality:

t X ) |2

/ / OU(X,r) dde/ VUL (X, 8)[2 dX

0 lRr+1 ot Rr'"l

C1
(8.2) o R /m+1 VxU(X)PAX < ol

R+
As in section 3, we can similarly define the renormalized energies D(Ue, Zy, R) and £(Us, Zy, R)
for U, by simply replacing the term (1 — |u.|?)? by x(d?(ue, N)). For example,

1
S(USaZOvR) = 5 /+ gXo,t[)(X; t)|VU5‘2dth
Ty (Zo)
(3%
+ = gXo,to (X’ t)X(d2(ue,N))d$dt.

e O+TE (Zo)
Then by the same argument as in Lemma 3.1, we have
Lemma 8.1. For Zy = (Xo,to) € OR™ x (0,00), if Us solves (8.1) then it holds that
D(Ue, Zo,7) < D(Ue, Zo, R), Y0 <1 < R < /1y,

t
EU., Zo,r) < E(U., Zo,R), VO <r < R < 9

As in Lemma 3.2, we also have the local energy inequality.

Lemma 8.2. For any n € C°(R™*), if U. solves (8.1) then it holds that

d 1 2 2 €L 2 1 2 2
£{ *|VU€‘ n +/Rm ?X(d (UE)N))T] }+2/RT+1 |(‘3tU5| n

m+1 2
]R+

(8.3) <4 / VUL 2| V]2,
Rm+1

T
In particular, for any Zy = (Xo,t0) € RTH x (0,00) and 0 < R < @, we have that

C1
so [ pwpser2(f o wupe [ D).
Py (Zo) P (Zo) 0+ Pfp(Z0) €

R

We also have the following clearing out result for any solution U, of (8.1).
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Lemma 8.3. There exists eg > 0 such that if U solves (8.1) and satisfies
E(U., (Xo,t0),1) < &3,
for some Xy € ORT and ty > 4, then d(U.,N) < dy and x(d*(U.,N)) = d*(U., N) hold on
P;(Xo,to) for some B > 0 that is independent of U., Xo, and tq.
The next Lemma, analogous to Proposition 5.1, plays a crucial role in the proof.
Lemma 8.4. Let {Uc}eso be a family of solutions to (8.1). Assume that
(8.5) d(U.,N) < dn, |0:U:| + |VU.| <4 in P},
Then HU€||cl+a(Pl+) < C(a) for any a € (0,1) and € > 0.
4

Proof. The proof is similar to that of Proposition 5.1 (see also [6, pages 342-346]). Since
U.(P;") C Ns,, we can decompose

UEZ‘/;+VN(‘/;)pa in P1+

Here V. =y (U.), p. = d(U.,N) = |U. — V.|, and vy (V) € (Ty.N)* is a smooth unit vector
field in the normal space (T, N)+. By direct calculations, we obtain that

0=0,U. — AU,
= (I + peVvvn (V2))(0: Ve — AVL) + v (Ve) (Orpe — Ape)
=2V (un (Vo) Vpe = p Vi v (Vo) (VVe, VVE)
hold in P;". If we multiply the equation above by vy (V) and observe that
(@ + peVvon (Vo)) (Ve — AVL),un(Ve)) = (AV, un (Ve)) = =Viwn (VE)(VVL, VVG),
we can show that V. and p. solve
(I + pVvovn (Vo) (8 Ve — AVL) = p Iy (Vo) (V3 v (Vo) (VVz, VVZ))

s 4 2V (Vo)) Vpe + pe V. (Vo) (Ve Voo (V) in Y
oy =0

in Fl.

and
Orpe — Ape = p6<v25VN(VE)(VV8> VVo),vn(Ve))
(8.7) =peVv.vn (Ve)(VV, V V) in Py,
dp- _ 2¢4
ay - 52 IOE
Here we have used the fact that V,p.(p) = vn(IIn(p)) for p € Ns,, so that the boundary
condition for U, implies that on I'y,

in Fl.

oUu. cL 2 2
0= 9y g—gx’(d (Ue, N))Dy.d*(Ue, N)
V.  dvy(Ve) dp. 2c1
= — QA Pe - —= e V; .
If we multiply this equation by vx(V.) and observe that (88—‘;57 vy (VL)) = (‘9”’;7;‘/5), vn (VL)) =0,

we would obtain the above boundary condition for p.. On the other hand, the boundary condition
for V; follows from the following identity

_ Ve ovn(le)

Oy dy

and the invertibility of the map (I, + p-Vv, vy (V2)) : RN — RL
Note that (8.5) implies that

(10eVel + [VVe]) + (10epe] + [Vpe|) <8 in Py

oV
oy’

0 pe = (i 4 pVv.vn(Ve))
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This implies

and

H(Hl“"pevVEVN(Vs))_HlH < Con,

Lo (P")

p (Vi N (Vo) (VVe, VVo), un (Vo)) = peVvovn (Vo) (VVe, VVZ) <C.

‘Lw(Pf)

Hence by the W2 !-estimate for linear parabolic equations, we obtain that

HVEHc'1+a(P7+) = C(a), Vae (0’ 1)7
8

uniformly with respect to €.
The boundary C'*®-estimate of p. can be done exactly as in Proposition 5.1. This completes

the

proof of Lemma 8.4. O

Finally with Lemma 8.4 at hand, we can show that U. also satisfies the gradient estimate as
in Lemma 4.3. More precisely, we have that

Lemma 8.5. There exists g > 0, depending only on m, such that if U solves (8.1) and satisfies,
for Zy = (Xo,t0) € ORTT! x (0,00) and some 0 < R < @,

(8.8) EU., Zo, R) < 3,
then
(8.9) sup RE|VU.]><C6;2  sup RYMOU.J> < COd;*,
Py 1 (Zo) P o (Zo)
where 0 < g < 1 and C > 0 are independent of €.
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