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Abstract

Liquid crystal droplets are of great interest from physics and applications. Rigor-
ous mathematical analysis is challenging as the problem involves harmonic maps
(or Oseen-Frank energy minimizers in general), free interfaces and topological
defects which could be either inside the droplet or on its surface along with some
intriguing boundary anchoring conditions for the orientation configurations. In
this paper, through a study of the phase transition between the isotropic and ne-
matic states of liquid crystal based on the Ericksen model, we can show, when the
size of droplet is much larger in comparison with the ratio of the Frank constants
to the surface tension, a I'-convergence theorem for minimizers. This I'-limit
is in fact the sharp interface limit for the phase transition between the isotropic
and nematic regions when the small parameter €, corresponding to the transition
layer width, goes to zero. This limiting process not only provides a geometric de-
scription of the shape of the droplet as one would expect, and surprisingly it also
gives the anchoring conditions for the orientations of liquid crystals on the sur-
face of the droplet depending on material constants. In particular, homeotropic,
tangential, and even free boundary conditions as assumed in earlier phenomeno-
logical modelings arise naturally, provided the surface tension, Frank-Ericksen
constants are in suitable ranges.
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1 Introduction and statement of results

1.1 Isotropic and nematic phase transitions

Liquid crystal is a state of matter between liquid and solid, where the molecules
tend to align locally in a common direction and form an anisotropic structure. This
orientational order produces an anisotropic complex fluid with remarkable optical
features, which have profound applications in optical and display devices. There
are many phases in liquid crystals including isotropic, nematic, and smectic phases.
Perhaps the most common one is the nematic phase, where the molecules exhibit
an orientational order in the absence of translational order. Under the influences
of either external electric-magnetic fields, or thermal changes, or compositional
changes, liquid crystals often undergo phase transitions. In the process of phase
transitions, there form regions of different phases and thin fast transitional layers
around sharp surfaces, across which the nematic order parameter becomes discon-
tinuous.

For simple fluids, the phase transitions between two mixed fluids are usually
driven by the interface tensions so that the geometric shape of a sharp free interface
takes the form of either an area minimizing surface or surface of constant mean
curvature that minimizes areas with volume constraint of enclosed regions. This
phase transition problem has been extensively studied by many authors, including
Modica-Mortola [43], Modica [42], Sternberg [49], Kohn-Sternberg [39], through
the technique of De Giorgi’s Gamma-convergence in the framework of (scalar-
valued) Allen-Cahn energy functional with double-well potentials. Fonseca-Tartar
[14], Sternberg [50], and Andre-Shafrir [4] studied the gradient theory of phase
transitions involving Allen-Cahn type energy functionals with potential wells of
points or curves in R?. More recently, partly motivated by the celebrated Keller-
Rubinstein-Sternberg problem [30], Lin-Pan-Wang [34] have made a systematic
study of the vectorial singular perturbation problem of general high dimensional
wells, see also [35].

In contrast with simple fluids, the anisotropic structure of liquid crystals implies
that both elastic constants of liquid crystal materials in the nematic region and an-
choring angles of nematic liquid crystal director fields on the transitional interface
will play important roles in determining the shape, possible defect structures and
the stability of the interfaces. These are mathematically very challenging problems.
There have been numerous works in the literature, including modeling and exper-
iments, modular simulations and numerics, on phase transitions in liquid crystals
by physicists and engineers, see [45, 46]. The study of the isotropic-nematic in-
terface based on the Ginzburg-Landau-de Gennes (LGdG) theory was initiated in
a paper by de Gennes [6], where the structure of the infinite, flat isotropic-nematic
interface in a uniform uniaxial ansatz solution was analyzed. In general, nematic
ordering is strongly influenced by confining surfaces, which can impose and favour
a particular anchoring condition (e.g. homeotropic, planar, or oblique anchoring)
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on the nematic state. It turns out that the relative sizes of different elastic co-
efficients also play important roles on anchoring conditions on the interface, see
Kamil-Bhattacharjee-Adhikari-Menon [27, 28]. There are proposed forms of the
surface energy by Chanderashka [5], Ericksen [11] based on a phenomenological
theory. Besides some earlier works by Virga [51] and Lin-Poon [37], there is an
obvious lack of mathematical understanding of these problems. In [7], Dio and
Kuzuu studied the structure of the interface between the coexisting isotropic and
nematic phases of a lyotropic liquid crystal, and found an explicit formula of the
interfacial tensions in terms of anchoring angles and the length and diameter of the
liquid crystal molecule, which favour the planar anchoring. It is known that the
nematic structure in the interfacial region can differ substantially from the nematic
structure in the bulk. For example, it was shown by Popa-Nita-Sluckin-Wheeler
[47] a region proximate to the interface can exhibit biaxiality within the LGdG
theory, even if the stable nematic phase is purely uniaxial, provided planar anchor-
ing is enforced on the interface. Such a biaxiality is absent if the anchoring is
homeotropic [6], see also [27, 28].

The Landau-Ginzburg-de Gennes model is certainly more flexible and may also
be more consistent from both mathematical and physical point of views. For exam-
ple, it can be derived rigorously from microscopic (molecular/kinetic) models. It
can be used to describe more complex defect structures, both uniaxial and biaxial.
In fact, purely uniaxial solutions are very rare in the Landau-Ginzburg-de Gennes
model though in many situations they are well approximated by uniaxial ones,
see Henno-Majumdar [21] and Majumdar-Zarnescu [29]. The Landau-Ginzburg-
de Gennes model in principle may also lead to anisotropic surface energies. This
would result in different shapes of droplets and defect patterns within them. But
for the analysis of Landau-Ginzburg-de Gennes model, the complexity is formida-
ble. If the energy density functions are quadratic in gradient of Q with coefficients
that are quadratic polynomials in Q, then there are 22 invariants (and 13 surface
terms) along with 4 null-Lagrangians. If one would consider additional chiral ef-
fects one may need 2 to 4 additional terms, see [20] and [22]. On the other hand,
with much simplified energy functionals as considered by various authors recently,
we believe that the analysis in this current paper can be applied without essential
difficulties. There are very few mathematical works on the phase transitions of ne-
matic liquid crystals in high dimensions within the LGdG theory. Let us mention
in this direction the work by Park-Wang-Zhang-Zhang [48] in dimension one, and
Golovaty-Novack-Sternberg-Venkatraman [16, 17] in dimension two.

We can formally derive for these simplified models that in the isotropic-nematic
sharp interface transitions, the biaxial property of solutions and their defects con-
tribute only lower orders to the total energy of the system. Thus it does not affect
too much the shape of droplet, rather the detailed structure of defects that could
be biaxial in nature near defects. This is one of the important reasons that in this
article, we shall adopt the reduced Landau-Ginzburg-de Gennes model, or the so-
called Ericksen’s model for the uniaxial nematic liquid crystals of variable degrees
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of orientations. This model is natural and relatively simple, and mathematically
it is self-contained and consistent. It can accommodate point defects, disinclina-
tions and domain walls in liquid crystals for which rigorous analysis is possible.
Moreover, it can keep the classical Oseen-Frank model, favored by many physi-
cists, intact. Since the surface tension in such highly viscous fluids is quite large,
the ratio between Frank elastic constants and surface tension is often very small
compared to the size of typical droplets. It leads us to the study of the phase tran-
sition problems formulated in a form of singular perturbations for the Ericksen
energy functional and consequently a sharp interface limiting problem. We will
need some I'-convergence techniques that the authors have developed for vector-
valued variational problems in [34, 35]. Here the coexisting isotropic and nematic
states are separated by an interface in which order parameters rise from zero on
the isotropic side of the interface to saturated, non-zero values on the nematic side.
The nematic regions are what we have referred as droplets, and in this way we treat
nematic droplets (positioned in an isotropic liquid), and their boundaries are the
isotropic-nematic interfaces within the same framework of Ericksen’s model. Nat-
urally, one can also study droplets containing isotropic liquid immersed in a volume
of nematic liquid crystals. Of particular interest is that the anchoring conditions for
nematic liquid crystal configurations at the boundary of droplets are intrinsically
determined by the material constants, and can be derived from this sharp interface
limit instead of that it needs to be assumed in phenomenological models.

1.2 Technical descriptions of main theorems

In the framework of Ericksen’s theory [12] (see also [32, 33]), a nematic lig-
uid crystal configuration is described by a pair of parameters (s,n) : Q C R3
[—1,1] x S?, where s(x) denotes the degree of orientation and n(x) denotes the av-
erage orientation field at a point x € Q. In particular, at a point x € 2 molecules

are perfectly aligned in the direction n(x) when s(x) = 1, while molecules are per-

pendicular to n(x) when s(x) = —3.

The Ericksen energy density function is assumed to take the form [12]
W (s,n,Vs,Vn) = #s(s,n, Vs, Vn) + #(s),
where
W (s,n,Vs,Vn)
= 5% [ki (divn)? + ka (n - curln)? + k3 |n A curln|?
+ (ko + k) (tr(Vn)? — (divn)?)| + 0| V|
(1.1) +B|Vs|> +Li(Vs-n)*+Ly|Vs An|* + L3(Vs - n)(sdivn) 4+ LysVs - (Vn)n.

Here o, B > 0, k1 > 0,k, > 0,k3 > 0 are Frank elasticity constants, and k4 is another
constant that, throughout this paper, is assumed to satisfy

ky > |ks4| and 2k; > ko + ka,
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and L; > 0,L; > 0, L3, L, are also constants. #4(s) is a Landau type bulk potential
function that dictates isotropic and nematic phases.
It follows from the fact that |n| = 1 and direct calculations that

InAcurln|> = |(Vn)n|?, |Vs|> = (Vs-n)> +|Vs An|>.

Hence, as in Ericksen [12] and Lin-Poon [36, 37], we can reorganize the expression
of #5 into the form

W5 (s,n,Vs,Vn) = s> [ky |diva|? + ky (n - curln)? 4 k3 |n A curln|?
+(k + ks ) (tr(Vn)* — (divn)®)] + as®|Va[* + (B — L)|Vs|?

(1.2) +ks|Vs — (Vs-n)n— vs(Vn)n|* 4 k¢|Vs - n — osdivn|?,
where
ky Zkl—szﬁzkl—ﬁ,
/_€3=k3—V2k5=k3—4(ﬁL7§Lz)7

ks =B +Lo, ke =P +Li.
Based on the physical hypothesis of positivity of the energy density [12], it is
usually assumed

(1.3) ki >0, ky >0, k3 >0, ko > |ka|, ks >0, k¢ >0, B > L;.
Hence #5(s,n, Vs, Vn) enjoys the coercivity in sn and quadratic growth of V(sn):
(1.4) A(|Vs|> +52|Vn|?) < #4(s,n,Vs,Vn) < A(|Vs|)? +5*|Vn|?)

for two positive constants A < A < oo depending only on the coefficients in (1.1).
A sharp interface forms when the size of a liquid crystal droplet is much larger
than the ratio of the Frank constants to the surface tension. In order to study the
sharp interface formation between the isotropic phase, corresponding to {s = 0},
and the nematic phase, corresponding to {s = s} for some s, € (0,1), we will

assume the bulk potential function takes the form:
1
Hols) = 5W(s),
where € > 0 is a small parameter representing the width of the interfacial transition
region, and the potential function W € C*((—1,1)) is assumed to be nonnegative,

and there exists a unique s € (0, 1) such that
W(0)=W(s;)=0, W(s) =W(sy—s) V0 <s<s,,
(1.5) V& > 0,38, > 0 such that |s| > 6 and |s —s4| > & = W(s) > &,
s—1-

s=(=3)*
In particular, W has two minimal wells of depth zero at 0 and s, and

W(s) ~s? for |s| << 1, and W(s)~ (s—sy)* for |s—s,| << 1.
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For s ¢ [—1,1], we can simply let W (s) = 40 so that W is defined for all s € R.
By dlrect calculations we have the identity

div(s*((Vn)n — (diva)n)) = s*(tr(Vn)? — (divn)z)
(1.6) +2sVs((Vn)n— (diva)n).
Also recall the null Lagrangian property of div(s*((Vn)n — (diva)n)) (see Hardt-
Kinderlehrer-Lin [23]), that is,
(1.7) / div(s*((Va)n — (divn)n)) dx, sn€ H'(Q,R?),

depends only on the value of (s,n) on JQ.
It turns out that both (1.6) and (1.7) will play a crucial role in our study of phase
transitions between the isotropic and the nematic phases. From now on, we set

(1.8) We(s,n,Vs,Vn) = #5(s,n,Vs,Vn)+ éW(s).

The problem of sharp interface formations between the isotropic and nematic
phases depends on the relations between the Frank constants L and L,. From
(1.9 |Vs|*> = |Vs-n|> +|VsAn|?,
we see that

B|Vs|> +Li(Vs-n)? 4 Ly|Vs An|?
(B+Ly)|Vs|> + (L1 — L) (Vs-n)?, Ly > Ly,

=< (B+L)|Vs|>+ (L, —Ly)|Vs An|?, Ly <Ly,
(B+L1)|Vs]?, L =L,

Hence we can reduce the case L; > L, into the case (A); the case L; < L, into the
case (B); and the case L; = L, into the case (C). More precisely, we have

(A) ’Ll >0and L, =0 ‘ By adding the null-Lagrangian term

1
- §L4div (sz((Vn)n — (divn)n))
to #¢ and applying (1.6) and (1.7), we can convert #; into
We(s,n,Vs,Vn) = $#5(s,n,Vs,Vn) + B|Vs|> + Ly |Vs-n|*
, 1
+(L3 — L) (Vs -n)(sdiva) + ?W(s),
where

—~ 1
W5 (s,n,Vs,Vn) = #s(s,n,Vs,Vn) — §L4s2 (tr(Vn)? — (divn)?).

Thus, without loss of generality, we will further assume .
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B) ’ Li=0and L, >0 ‘ By adding the null-Lagrangian term

%L3div(s2((Vn)n — (divn)n))
to #¢, we can convert #; into
%(s,n,Vs,Vn) = sz%(s,n,Vs,Vn) —i—B[Vs\z +L2]Vs/\n]2
+(L3 4 Ls)(sVs)(Vn)n+ éW(s),
where

— 1
W5 (s,n,Vs,Vn) = #s(s,n,Vs,Vn) + §L3s2 (tr(Vn)? — (divn)?).

Thus, without loss of generality, we will further assume .

©) We will only consider the following two subcases:
(CDhH . Hence %5 can be rewritten as

%(s, n,Vs,Vn) = s* L3 (divn)? + ky(n - curln)® 4 k3 |n A curln|?
+ (ko + k) (tr(Vn)* — (divn)?)]
(1.10) + as?|Vn|> + B|Vs|*.

(C2) . Hence after adding the null Lagrangian term
Lidiv (sz((divn)n —(Vn)n))

to #,, we can convert #5 to %

%(s, n,Vs,Vn)
= 5% [k (divn)? + ka(n - curln)? + ks|n A curln|*
+(ka + ks + L3) (tr(Vn)* — (divn)?]
(1.11) +aus?|Vn|? + B|Vs|*.
(C1) yields (C2) by replacing (ky + k4 + L3) by (ko + k4).

We would like to summarize these preliminary discussions of the assumptions

on coefficients L;’s of the Ericksen energy density #5 into the following:

Proposition 1.1. Assume the strong positivity of the Ericksen energy density. Then,
when the Ericksen constants satisfy Ly > Ly, it can be reduced to an equivalent
one with (x) : Ly > Ly = Ly = 0, and L3 < 20L, (strong positivity). If, instead,
Ly < Ly, then the model reduces to an equivalent one with (xx) : Ly > Ly = L3 =0,
and Lﬁ < 4al, (strong positivity). Henceforth, we shall refer to the case (A) if
(x) is valid, and the case (B) if (xx) is satisfied. Finally, If L = L, then we
shall only consider the situation which will be referred to as the case (C), that is,

Li=L=13=Ly4=0.
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Through this paper, we denote by .7 the two dimensional Hausdorff measure
in R?. Define the 1-dimensional minimal connecting energy by

a0 = inf{/_: (Bs(1) + W (s(1)) dt | s € CO1((—o0,00), R),

(1.12) 5(—o0) = 0, s(co) :s+}.
It is well-known that o is attained by an & € C*((—o0,0),R), which satisfies

(1.13) VBE' (1) = VW(E(1) in (—e0,0); E(—e0) =0, §(e) =54,

and
o = 2\/3/(:+ VW) i
= inf{2 [ VBWGIS()dr | 5 € C1(—o,), R),
() =0, 5(=0) = 5., }
—int{2 [* VBWG@)s(0)ldr | s € O ((-a.al R),
(1.14) s(~a) =0, s(a) =5, |
for any a > 0.

Now we state our first theorem. It concerns the I'-convergence of minimizers
of the Ericksen energy functional

& (sg,ne) ::/ %(s,n,Vs,Vn)dx,
Q
~ ~ 1
(1.15) where #;(s,n,Vs,Vn) = #5(s,n,Vs,Vn)+ ?W(s),

either under well prepared Dirichlet boundary values (fg,g¢) when Q C R? is a
bounded smooth domain, or under the volume constraint for nematic region when
Q =R3, as € — 0. Notice that for any fixed & > 0, the existence and regularity of
minimizer (s¢,n¢) to (1.15) have been studied by Lin [32, 33], Lin-Poon [36] and
Ambrosio [2, 3].

For a bounded smooth  C R3, we prescribe (f¢, g¢) : 9Q — R x S? as follows.
Let Z* C 9Q be two disjoint, connected open subset of dQ such that

i) 9X* =X is a smooth, closed curve of dQ, and 9Q =X UX~ UXO.
i) there exists L > 0 such thatz, € H' (89) satisfies

(1.16) [te]] 2z) = 0 and [[te s || pge) =0, as €0,
(1.17) sup (f:‘(IVtant.glzﬂLlW(te))de%”2 <L,
0<e<1J/9Q €
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and there exists a map 1, € H'(Q,S?) such that 77 = g, on dQ, and

{ﬁe Vr|.=0  under the condition (A),

(1.18) ne A VF‘F =0 under the condition (B),

lims/ Vie[2dx =0,
JQ

£—0

where I' C Q is an area minimizing surface such that 9T" = X°.

Theorem 1.2. Assume either the condition (A), or (B), or (C) holds. Then the
following statements hold:

i) IfQ C R? is a bounded smooth domain and (te,ge) : 9Q — R x S? satisfies
(1.16), (1.17) and (1.18), then

lim inf{ / £%(s,n,Vs,Vn)dx | (s,n): Q=R xS?,
Jo

£—0
(1.19) sn € H](Q.,R3), (Sa”)‘ag = (Iags)} = O‘Ot%ﬁz(r)a

where T C Q is an area minimizing surface with T = X0,
ii) If Q =R3, then

lim inf{/38%(s,n,Vs,Vn)dx‘ (s,n) :R* > RxS? sneH (RR?),
R

£—0

(1.20) [{r € R :s5(x) = 50| = [B1| } = 00t (9B),
where By is a ball of radius 1.!

Theorem 1.2 can be proved in the framework of I'-convergence:

1) First, under the conditions on the coefficients L;’s and &, we can show the
energy is bounded below by

/Q (<E‘[3|ng|2 + éW(Sg)) dx,

which becomes a scalar-valued Allen-Cahn functional so the technique in
the BV function space, as in [43], or the isoperimetric inequality in R can
be employed to show it is bounded below by o.7#%(T").

2) Secondly, we construct a comparison map (sg,n¢) by letting n, = ne and

by placing an almost optimal 1-dimensional orbit s¢(x) = §L(drT(x)) in the

transversal direction to I within Le-width (with L >> 1), and away from

this region, s, is made to have very small spatial variations. It turns out that

the contribution of anchoring energy / |Vse -7 |* dx or / |Vse Al |* dx
Ipe

Tpe
can be made arbitrarily small.

!the volume constraint |{x € R?,s(x) > s, }| = |B| can be replaced by [{x € R3,5(x) > s, }| =2
for any A > 0. For convenience, we choose A = |Bj]|.
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It follows from Theorem 1.2 that the leading order term of & (s¢,ne) for mini-

mizers (s¢,n¢) is %%Z(F), so that

E(se,me) = %%%rﬂ@(@

An important question is to ask for the asymptotic behavior of Z(¢), which is
our focus in this work. For this purpose, we will need to assume that the boundary
value (z¢,g¢) provides an almost optimal transition in the fast transition area on dQ
across the interfacial curve X°.

To describe our results, we need to introduce some notations. Set the Oseen-
Frank energy density for n, with |n| = 1, by

Wor (n,Vn) = ky(divn)? + ky(n - curln)? + k3 |n A curln|?
(1.21) +(ka + ka) (tr(Vn)? — (divn)?).
For 0 > 0, define the §-neighborhood of dQ and I by
(0Q)s = {x€Q: d(x,0Q) < &},

and
I's = {x Eﬁ‘ d(x,T) < 5} =U_gca<s(R),
where I'(A) = {x € Q: dr(x) = A}, and dp(x) is the signed distance function of x

toI™
—d(x,I) xeQ,
dr(x) =
r@) {d(x,F) xeQt.

The following notations will be used in the proofs of later sections. Let QF C Q
be the connected components such that IQ* = £* UT". Set
I =IsNQ", Uy =Q"\T5, £5 =2"\TIs, 05 =U; N(9Q)s,
Q5 =Q\ (0Q)5, Q5 =Q;NQF, V5 =05\ T,
and
Wy =Q5NTs, 05 =I5\ (W5 UWy).
It follows from the condition (1.5) and Proposition A.4 of [34] that for any

Y € (3,1), there exist an almost minimal orbit &, € C*([—€”~!,€”"!],R) and
C1,C,,C3 > 0 independent of € such that

(ée,y(—syfl) =0, &eqy(e" 1) =54,
Eey(t) =54 —&ey(—1), Ve € (—e7 1 e 1),

m 2 W —Cier!
+ 2\/W7 ‘ <C 1 ,
(1.22) ‘,‘<ax ’mésy | (Ee.y) BW (Ee.y) [ y| 2e

er!
/ (mgey ’2+W(§£ y))d»; <op+C o—Cre?! ’
‘587 )| < Coe 1, Vt| > Cs.
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We assume that
_ dr(x) + - _ . Y Y
te(x) = Eey( - ),xEZeyUley—{xec')Q.—e <dr(x)<e },

(1.23) < e _S+HL2(2+\r£y) = 0(¢) and HIEHLZ(Z*\FE}:) = 0(e),

lim &7 \Viante|?d#* = 0.
e—0 IQ\[,y

To simplify the technical presentation, we will assume that there exists a map
g € H'(9Q,S?) such that (i) g¢ — g in H'(dQ), and (i)

(1.24) ge =g on dQNTgy, and Hgg_gHLz(BQ\FEy) =o0(1)€.

Recall that a minimal surface S is called strictly stable, if, in addition,
d2

ﬁ ’t:O

where Vg is a unit normal vector field of S.

(1.25) A ({x+19(x)vs(x): x€S}) >0, VO£ ¢ € C5(S),

The main contributions of our paper concern the characterization of the O(1)-
term, Z(¢), in the energy expansion of & (sg,ne). We divide our results into two
separate theorems. The first one deals the case that Q is a bounded domain in R?.

Theorem 1.3. Let Q C R3 be a bounded smooth domain. Assume that T is a

unique, strictly stable, area minimizing surface spanned by X°, and the boundary
values (tg,g¢) satisfy conditions (1.17), (1.22), (1.23), and (1.24). Let (sg,n¢), 0 <

€ < 1, be minimizers of [o #e(s,n,Vs,Vn)dx, subject to the boundary condition
(se,ne) = (te,ge) on dQ. Then we have the following:

A) Under the condition (A),
(1.26) & (se,18) = %%2(r)+%+08(1>.
Here 9y is given by
(1.27) Da :inf{E(n;Q+) =5 /Q+ (Wor (n,Vn) + a|Va|?) dx}

among all maps n € H'(Q*,S?) satisfying the planar anchoring condition
onl:

(1.28) n=gonX"; n-vr=0 on I,

where Vr is the outward unit normal of the nematic region Q" = {x €eQ:

s(x) =s4}.

2 this assumption is technically restrictive, which plays a role in constructing a comparison di-
rector map ne : Q — S? such that its contribution to the Oseen-Frank energy on a part of transition
region ['ey N (dQ)er is of order €7, see (3.6) below.
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B) Under the condition (B),

(1.29) & (se,ne) = %%%rn%ws(w.

Here Dg is given by
(1.30) Dp = inf{E(n;Q+) = si/ (Wor (n,Vn) + Ot\Vn|2) dx}

Qt

among all maps n € H' (Q*,S?) satisfying the homeotropic anchoring con-

dition on I':
(1.31) n=gonZX"; nAvr=0 on I.

C) Under the condition (C),

(132) & (se,me) = %%Z(FH—@CJrog(l).

Here D¢ is given by
(1.33) T = inf{E(n;m) :si/ (WOF(n,Vn)+a|Vn\2)dx}
o+
among all maps n € H'(QF,S?) satisfying the free boundary condition on
" and the strong anchoring condition on ¥ :
(1.34) nf)cS* n=g on X',

We would like to remark that the interior regularity and boundary regularity
near £+ of minimizing harmonic maps n € H'(Q*,S?) achieving Z,, or g, or
¢ has been studied by Hardt-Kinderlehrer-Lin [23]. For the boundary regularity
of n near the interface I" when the isotropic Oseen-Frank energy is considered, we

refer to Hardt-Lin [25] and Duzaar-Steffen [8, 9] for partially constrained or free
boundary conditions, and Day-Zarnescu [ 10] under the planar anchoring condition.

The second one considers the entire space Q = R3.
Theorem 1.4. Let (se,ne) : R — R x S%, 0 < € < 1, be minimizers of
/R3 %(s,n, Vs, Vn)dx,
subject to the constraint:
[{xe R3: 5e > s+}‘ = |By|.

Then the following statements hold:
A1) Under the condition (A),

(1.35) & (se,1e) = %%2(831”%%8(1),

where Dy is given by
(1.36)

Dy = inf{E(l’l;Bl) :Si/ (Wop(n,vn)+a|Vn|2) dx ‘ ne Hl(Bl,SZ)}7
By
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subject to the planar anchoring condition:

(1.37) n(x)-x=0 on JdB.
B1) Under the condition (B),
(1.38) E(serne) = L A IB1) + T+ 0e (1),

where Dp is given by
(1.39) I8 :inf{E(n;Bl) :si/ (Wor (n,Vn) +a|Va|?) dx | n GHI(Bl,S2)},
By

subject to the homeotropic anchoring condition:

(1.40) n(x) Ax=0 on dB;.
C1) Under the condition (C),
(141) E(serne) = L A1) +0e(1).

We would like to point out that for a bounded domain Q C R", while the bound-
ary conditions imposed on (7, g¢ ) in Theorems 1.1, 1.2, and 1.3 are physically nat-
ural, mathematically they are rather technical to describe. On the other hand, if we
consider the same type problems on a compact manifold M without boundary or a
torus T”, then the natural condition would be the volume constraint on approximate
nematic regions {s¢ > s }. Hence the problem can be significantly simplified be-
cause we will have the compactness of the space (in contrast with R”) and avoid the
technical issues arising from both the physical boundary and the boundary values.

We would like to remark that the regularity of minimizing harmonic maps in
the case (B1) was studied by [23] and [24, 25]. See [10] for some work related to
the boundary regularity of minimizing harmonic maps in the case (Al).

While the approach to prove Theorem 1.3 and Theorem 1.4 is based on the
technique of I'-convergence, it is very delicate to obtain the exact characterization
of O(1)-term in the expansion of & (s¢, n¢ ) especially when we deal with a bounded
domain Q with physical boundary data.

1) For the construction of a sharp upper bound, we need to place an almost
minimal 1-dimensional orbit 6877(#8()‘)) in the transversal direction of I"
within the width of O(€”), which guarantees the GL energy is of og +
0¢(1)e, while we have to utilize the decay property of &;,(¢) ensuring

/|Vs£‘ng]2dx(or/ |Vse Ang|?dx) is of order og(1).
T,y T,y

2) To achieve a sharp lower bound, we need to extract a sequence of sets
of finite perimeters E¢ = {x € Q : 5¢(x) > &} with uniformly bounded

perimeters such that J#%(9*E¢ | Q) ~ #2(T), / |Vne|[*dx < C, and
E¢

VSg 2 2 VSE 2 2
‘ne| dA Or/ Ang|~di") <C.
/8*E8\_Q ‘ |Vse| 8‘ ( 0*Ee | Q ‘ |Vse| 8‘ )<
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Then we adapt the techniques from [34] and some measure theoretic ar-
guments to show that E; — QT, and n, — n in SBV(Q) for some n €
H'(Q",S?) withn-vr =0 (or n A vr = 0).

3) Utilize the strict stability of I" to show that the leading order coefficients of
é in both lower and upper bound estimates match up to order o, (1)e.

When dealing with the entire space Q = R3, we observe that the approximate
nematic region E constitutes a minimizing sequence of sets that approach opti-
mality in the isoperimetric inequality so that we can apply the quantitative stability
theorem by Fusco-Maggi-Pratelli [15] (see also Maggi [40]) to show, after suitable
translations, E¢ converges to B; in L'

Theorem 1.3 is also related to the optimal shape problem of variational prob-
lems on liquid crystal droplets previously studied by Lin-Poon [37]. More pre-
cisely, Lin and Poon [37] considered the following minimization problem

(1.42) inf{/ Val dx+ p "1 (9Q) | n e H'(Q,8%),n(x) = Vaa, |Q| = |Bi|}.
Q

Among the class of convex domains €, it was shown by [37] that (Q,u) = (By, ‘;‘—‘)
is a unique minimizer of (1.42). Very recently, this result was extended by Li-Wang
[38] to the class of star-shaped mean convex domains in R3.

The paper is organized as follows. In section 2, we will establish both lower
and upper bounds of €&;(sg,ne) and prove Theorem 1.2. In section 3, we will
study the bounded domain case and establish both refined lower and upper bounds
for & (se,ne) for all three cases and then prove Theorem 1.3. In section 4, we will

study the case that Q is the entire space R® and prove Theorem 1.4.

2 Proof of Theorem 1.2

In this section, we will provide a proof of Theorem 1.2. It involves (a) a concrete
construction of comparison map (sg,n¢ ) in which s exhibits a fast transition near I'
with energy order %%ﬂ 2(T"); and (b) obtain the lower bound by typical arguments
of singular perturbations of functions of bounded variation.

2.1 Lower bound estimates

For either a bounded Q C R? or Q = R? itself, we assume that
2.1 A =liminfeé& (s¢,ne) = liminf/ 8%(s£,ng, Ve, Vng)dx < oo.
£—0 e—=0 Jo

It follows from the condition (1.3) that
WOF (ng, Vng) Z 0
Observe that by Cauchy-Schwarz inequality, the following properties hold:

i) If 2L < 4L, a, then
2.2)
|L3(VS8 . I’lg)SgdiVn£| S \/§|L3| |VS£ ‘n£| |S8‘|V}’l£| é Ll (VSS . ng)z + asg’vn£|2’
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where we have used the inequality |divne| < v/2|Vne| (see [31] for a proof).
ii) If L7 <4L,aq, then

|LaseVse(Vng)ng| = |La| ’se (Vss — (Vse -ng)ng) (Vng)ns}

2
< Lz‘VSs — (Vse ~n£)ng| —i—asg](Vng)ng\z
(2.3) < Ly|Vse Ane|? + aus?| Ve |,

where we have used the fact that ng - (Vg )ng) =0, (1.9), and |(Vng)ng| <
|Vhg|.

Since
%(sg,ng,ng, Vne) = ngOF(ng,Vns) + OCs§|Vns\2 + B|Vs£|2 +L;(Vse ~ng)2
. 1
+L;|Vse /\ng|2 + L3(Vse - ng)sedivng + Lyse Vse (Vg )ng + ?W(Sg),

we obtain that

i) Under the condition (A),
%(sfhnea Vs£7 an?)

. 1
> as§|Vng\2 +B ]ng|2 + L (Vse ~n£)2 + L3(Vse - ng)sedivae + ?W(Sg)
1
> BIVsel + o5 W (s0),

ii) Under the condition (B),
%(587’187VS£7V”8)

1
> 052 | Ve |> 4 B|Vse|* + La|Vse Ane|? + Lase Vse (Ve )ne + ?W(Sg)
1
> ﬁIVss\z + ?W(Ss)v
iii) Under the condition (C),

%(Sg,ng,VSg,Vng)

v

1
as?|Vne | 4 B|Vse|* + ?W(Sg)

Vv

1
B|Vse|* + ?W(Sg).
Now we proceed by dividing the discussion into two separate cases:

Q C R3 is a bounded domain
For any 8 > 0, define

Q;_a:{xegz \sg—s+|§5}; Qgsz{xeﬂz |s£|§5},
and
Egvézg\(gjsugz%):{xeg: Is¢| > 8, |s£_S+\>5},
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By the condition (1.5) and Federer’s co-area formula, we have that for any
0<d<,

€8 (se,ne) = /QE%(Se,ng,Vse,Vns)dx
> [ (eBIVsel+ LW (se))
> 2\//§/§2\/W!ngldx
> 2@(/; VW (D) A (00; . NQ)d1

(8
+/ VW00 ) dr)

5 58
2.4) > 2/BCs ( /5 A09; .NQ)dr+ / #0010 Q)dr).
2 S+—

Therefore, by Fubini’s theorem there exists 8, € (g, 0) such that
(2.5) A(0Q, 5 NQ) + A7 (9Q) 5 NQ) <C(B,A,8).
From (1.5), we know that there exists Cgs > 0 such that

1 A
(2.6) |Eeg| < 7/ W(se)dx < 2 50, ase — 0.
’ C5 Q C5

From (2.5), there exist two subsets E¥ C Q with finite perimeters in Q such
that, after passing to a subsequence,

Xoz, — Xg= in BV(RY) and yo: — xp= in L'(R).
This and (2.6) imply that
|Q\(E*UE™)|=|E*NE"|=0
so that Q = ET UE~ (modulo a set of zero Lebesgue measure).
Define an auxiliary function ¢ : (—%, 1) — R by letting

o (1) :2\/3/(:\/W(r)dr, re (—%,1).

Notice that the 1-dimensional minimal connecting energy o = @ (s ). It follows
from (2.4) that

|1V (6(sedr <2V | VWise)Vseld
2.7 < /QS%(sg,ng,ng,Vng)dxSA—!—O(l).

From the boundary condition (1.16), we know that
(2.8)  ¢(se) =0 in L*(Z7) and ¢(se) — ¢(sy) in L*(XT), as € — 0.
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In particular, we may assume that

sup |0 (se)|>ds* < C < oo
0<e<1J/0Q

Hence by the Poincaré inequality we have that
(2.9) /\¢se|dx<c/|v O (se) |+/ 0 (se)|d#?) < C(1+A).

It follows from (2.7) and (2.9) that there exists y € BV (Q) such that after passing
to a subsequence, ¢ (s¢) — W weakly in BV(Q) and strongly in L' (Q) N L' (9Q).
By the lower semicontinuity, we have that

DY|(Q) < liminf/ V((se))|dx < liminf/ (e]VseP + W (se)) dx
(2.10) e—=0 JO e—0 Jo €

< liminf | ¥ (se,ne, Vse, Vng)dx < A.
e—=0 JO

It follows from (2.8) that y =0 on £, and ¥ = ¢(s, ) on L. We claim that

0 xeE™,
11 Vi) = {¢(s+) x€E*.

To see this, observe by Fatou’s lemma that

| twPds= [ 1wPre dx
E- R3

< limi 2.,
<timint [ 10(s0) 2o, d

= liminf |0 (se)|>dx

£—0 Q; 5

< Cllo/][2- 5.5 limint /Q  JsefPdx
€,0x

< Climinf [ W(s¢)dx < CAe — 0,

£—0 Qg 5

where we have used the fact that W (7) ~ 72 for |t| < §,. Thus y =0 a.e. in E~.
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Similarly, by using the fact that W(7) =~ |t — s, |* for |t —s.| < 8,, we can
estimate

Jp v otsoPas= [ w00 Pz
Et R
<timint [ 19000)~ 0061z, d

= liminf |0 (se) — @ (s )|>dx
QF

£—0 Y 5
.. 2
SCH¢'HU°([S+5*,s++3*])11§i>1(1)1f/936 |se — s |"dx

< Climinf W (se)dx < CAge — 0,
£—0

+
QS,(S*

this yields that y = ¢ (s, ) a.e. in ET.
It follows from (2.11) that

(2.12) ={xeQ: y(x)>t}, Vi€ (0,00).

In what follows, for a subset E C R® we denote by [[E]] the corresponding 3-
dimensional current (through integration), and denote by d[[E]] the boundary cur-
rent of [[E]].

Since s¢ € H'(9Q, (—1,1)) satisfies (1.16),
[0l 5 11| Q]] = [[{x € 9Q: se(x) =54 — 8.} = [[°]], as € = 0,
holds as weak convergence of currents, we obtain that
(2.13) I[[QIET Q]] = [[=]).
It follows from (2.12), (2.13), and the area minimality of I" that
(2.14) A {xeQ: y(x) >t} Q) > %), Vi€ [0,00).

Here 0*E denotes the reduced boundary of a set E of finite perimeter. By the
co-area formula for BV functions and (2.14), we then have

A= lim e8(sq.n) > [DY(© /%2 (0 {xeQ: wlx)>1}]Q)dr
2/0 A9 {xeQ: yix) > 1} Q) dr
(2.15) > o (T).

This proves the part “>" of (1.19) in Theorem 1.2, when Q is a bounded domain
in R3.
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Q=R>and [{x e R?: s¢(x) >s;}| =By
First notice that for any 0 < 6 < s,

(2.16) ‘{x ER® :se(x) > 5}‘ > ‘{x ER? :se(x) > s+}‘ > |B)|
As in (2.7) of the previous subsection, we can obtain that for any 0 < § < 5,
A+o(1) > /R3 eﬁ(se,ns,Vse,Vne)dx
>2 [ V/BW(se) Ve dx
> 2/(:+ VBW (1) A2 (0" {x eR®: 5¢(x) > t})d7
By the isoperimetric inequality, we have that for any 0 < 7 < s,

AR 5u() 2 7)) 2 (6| (r€ B selo) 2 7}

> (36m)3|B |3

Hence we obtain that
Ato(1) = ao(36m)* |Bi|* = ap. 7 (9B)).
This proves “>" of Theorem 1.2 for Q = R?. 0

2.2 Upper bound estimates

The upper bound estimates are based on concrete constructions, similar to that
by [34]. We will first discuss the construction for a bounded domain Q C R3.

Q c R? is a bounded domain

We need to introduce some notations. Fix a large constant L > 0, whose value
will be determined later, we may assume for simplicity that Qljfg = (Qi \T Lg) N
(0Q)1e ~ X}, x [0,Le]. We will construct a function § in Q;,, that is a linear

interpolation of of 7, ‘ £ % {0} and 0|2st (Le}® ie.,
Le—t

Le

(2.17) Se(x,t) = te(x), (x,1) € X, x [0,Le].

Similarly, a function ¢ in Q}, is constructed by a linear interpolation of 7, ‘2+ {0}
Le

and s+}ZzSX{L£}, ie.,

Le—t t
te(x)+ —sy, (x,1) €L, x [0,Le].

2.18 S, t) =
(2.18) $e(x.1) Le Le
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Let e € H'(Q,S?) be given by (1.18). Then, by direct calculations and applying
(1.16) and (1.5), we have that

1 1
/7 (B|Vse|* + ?W(s})) dx < e/y: (|Vte|* + ?W(tg)) A"

Le

1
(2.19) +f/ \te|>d A,
E Jy-

and

1 1
J BIVSeP+ GWE) Se [ (Viel+ W () dr”

Le

1
(2.20) +7/ |te — sy |2 dA°.
€ Jx+

By Fubini’s theorem, there exists L; € [L,2L] such that
(2.21)

1
Lle/ (ﬁ|V§£|2+—2W(§£))djf2,§/
Iy N € e

1
L Vie|*+ W (s djf2</
e[ (BIVSP+ W) s [

Lie Le

. |,
(ﬁ |Vs{.;|2 + ?W(ss)) dx,
. |,
(ﬁ |Vs,g|2 + ?W(ss)) dx.
It follows from the regularity theorem of area minimizing surfaces (see [13] and

[26]) that " € C*(Q). Let & € C*([—Ly,Ly]) be an almost minimal 1-dimensional
connecting orbit, i.e., E(—L;) =0, E(Ly) = sy, and

Ly .
2.22) / (BE2+W(&))dt = an+ox(1), Jim or(1) =0,
—L oo
Define §¢ : Qe NI'z,e — R by letting
. dr(x
(2.23) Se(x) :5( ré )), x€QreNIpe.

By the co-area formula and the fact that |[Vdr(x)| = 1 for x € Qe NI ¢, we can
estimate

1
Ve + —=W(Se)) dx
/QLeﬂer (B’ 8’ 82 ( 8))

_ ! dr(x)
e QNI e €
— 1/_2 (BE2+W(E)) ()2 ({x € Que: dr(x) =et})dt

&€
1

(BE2+W(E))(

<

2 b e
(I +oet) [ (BE+W(E)dn

= o]

(224) < () +0e(1)) (a0 +o0r(1)),
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where we have the fact that the surface {x €Q: dr(x) = 'C} converges to I' in
C2?-norm, as T — 0. Hence it holds that

A ({x € Qe dr(x) =e1}) < HXT) +0e(1), —Li < T <Ly,

where limg_,00¢(1) = 0. It is not hard to check that

R | I C
(225) / (BIVianse 2 + =W (5e)) dt? < < (o +or(1)).
aQLeﬂrLls &€ E
In the regions QLig \I'z,¢, we simply define
(2.26) $e=0in Q; \Tpe; Se =54 in Q \TLe,
so that
1
2.27 / Viel* + 5 W(Se)) dx = 0.
( ) Qfg\FLls (ﬁ| 8‘ 82 ( 8))

It remains to construct § in the region (dQ)e NIz, ¢, which can be shown to be bi-
Lipschitz equivalent to a ball of radius L; € centered at x,. € , with Lipshitz norms
independent of €. Hence we can do a homogeneous of degree zero extension of
Se with respect to the center x,, i.e.,

(2.28) Se(x) = 8 (Lle%), x€ (9Q)1e NTLe.
 Ax
Hence by (2.21), (2.25), (2.19), and (2.20), we have that

1
Vsel? + =W () d
t@@ﬂmﬂm|&| W (5e)) dx

1
<Le/ VinSe|> + =W (8e)) do#>
> 3[(99)1,@1115] (ﬁ‘ tanSe| &2 (Se))

— Le{ / + / + /
0QeMlL e JOQNTLe  JITy NQ

1
+/ } Viubel? + —=W(8:)) d s>
I}, oNQ (BIVianSe| g2 (8))

< cr(a+o(1)+{ [

1
Vse|? + =W () d
o Y g

1
CLe [ (BIVunte P+ 5 W(te)) dot
Mz e
<CL+CL Vil + W (te)) d A
=~ + € BQ(ﬁ| tant£| +? (ts))
+C</ \tgyzd%2+/ \tg—s+\2d%2)
€ \Jg- Py

(229 <C+ Ogil) :

where we have used the conditions (1.16) and (1.17) in the last step.
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Finally, by putting together (2.17), (2.18), (2.23), (2.26), and (2.28), we find an
extension map S : Q — R. Furthermore, by the estimates (2.19), (2.20), (2.24),
(2.27), (2.29), we see that §; satisfies the estimate:

[ (BIVS + 5w (s0) e < (D) +0c(1)) (@0 +0(1)

1
(2.30) fC+ 082 .

~—

It follows from (1.18) that

R ~ R 1
(2.31) /Qs%(wop(ﬁg,vnewra|vn8|2)dxgcsi/Q|Vng|2dx§ Osé )

To estimate the contributions from the terms involving the interactive energies be-
tween V3§, and 7., we proceed as follows:

i) Under the condition (A), we can estimate
| /Q (L1 (VSe - ie)? + L (Ve - ie) (Sedivite ) ) ]

gc(/ |V§g~ﬁg|2dx+/ |V§£|2dx+/ Ve P d).
QreNly e Q\Qre Q
Notice that (2.19), (2.20), and (2.29) imply

/ IVse[2dx < CLe/ Vie[2do?
Q\Qe 20

+ce! (/Ei |t£|2dff2+/E+ e — s Pd?)

Since |E(1)| < Cpint € [~L,L] and 7t - v = 0 on T, we can estimate

N 1 - dr(x -
[ WenPar= [ (T i) )2 ax
QreNlp e €% JQunT Le €

<Ce™? /QL Ny (Vdr(x) - 7ig (x)) dx
=Ce? /QL o, (V) e ) = Velr (e (x)) 71 (TIr (x))) dx
<ce? /QL (Ve - Var (I (x))|? + [ (x) — e (Tr (x)) ) dx

<C (IV2dr(x)|* + |Vie(x)|?) dx
QreMly e

1
(2.32) < Ce + oi ).
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where Il : I';, ¢ — I is the (smooth) nearest point projection. Hence we
have that

1
(2.33)‘/9(LI(VS}-ﬁ8)2+L3(V§8-ﬁg)(s}divﬁg))dx‘ §C(1+e)+0££ ).
Adding (2.30), (2.31), and (2.33) together, we arrive at
(2.34)
S/KZW(fg,ﬁg,Vfg,Vﬁg)dx < (%+0L(1))(%2(F) +0g(1))+Ce+0g(1).

After first sending € — 0 and then L — o, and using the minimality of
(s¢,ne) we have that

lim sup £7f/v(s5, ne,Vse, Vng)dx
e—=0 JQ

(2.35) <limsup | € (S¢,7e, Ve, Vite) dx < g% (T).
e—0 JQ
ii) Under the condition (B), we can bound
gc(/ \vs;mg\de/ \V§g\2dx+/ (Vi [2dx)
QLSQFLI e Q\.QLS Q

1 .
o) | ¢ Ve Afie |2 dox.
€ QLsmrLls

<C(l+e)+

Since ne A vr = 0 on T, the last term in the right hand side can be estimated
as follows.
1

DN 29 dr(x N
/ |V§e At |>dx = 2/ & ( il ))|Vdr(x)/\ng(x)|2dx
QLsﬁl—‘Ll.‘: € QLSQFLIE €

<Ce? /Q Ve Ao d

—Ce? /Q Lm:g IVdr(x) Afig (x) — Vdr (T (x)) A e (TTr (x)) 2 dx
<ce? /Q o, (Ve = V(T (x)) 2 + [7ie (x) — 7ie (Mr (x))2) dx
<cC (IV2dr(x) +| Vit (x)|*) dx

QLs mr‘Lle

<Ce+ 085:1)

)

which yields that

~ N ~ og(1
(2.36) \/Q(L2|V§8Ang|2+L4s£vs£.(vng)ng)dxy <C(l1+¢€)+ 85: ).
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Adding (2.30), (2.31), and (2.36) together yields (2.34). This, combined
with the minimality of (sg,n¢), implies

(2.37) limsup | €# (se,ne,Vse, Vng)dx < 02 (T).
e—0 JQ

iii) Under the condition (C), it is readily seen that (2.37) follows directly from
(2.30) and (2.31).

Therefore the “<” part of Theorem 1.2 is proven, when Q is a bounded domain in
R3. g

Q=R and [{x e R’ : s¢(x) >s:}| =B
The construction for the upper bound estimates for Q = R is rather simple.
Here we sketch it as follows.

For a sufficiently large L > 0, let &, € C* ([—L,L]) be an almost 1-dimensional
minimal connecting orbit, i.e., & (—L) = s, §(L) =0, and

L .
(238) [ (B&+W(&)dr = ao+ou(1),
Define §; : R® — R, by letting
S+ ’X’ < 17
Se(x) = & (BEUHE)) 1 < |y < 142Le,
0 x| > 1+2Le.

Notice that
{xe R3 : §e(x) > 5.} =Bi.
Direct calculations imply that

(2.39) /R} (|VSel* + éw(s})) dx < é(%z(r) +Ce) (0t + 0g(1)).

Next, we will construct a map 7, € H'(By,S?) as follows:

i) Under the condition (A), it is well-known that there exists a map 7 :
Biiare — S? such that g (x) -x =0 on dBy, and

/ |Vie|2dx < C(L).
Biiore
Hence

(2.40) / 3 5z (Wor (11, Vitg) + a| Vit|*) dx < C(L)s?..
R
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While
!/RS (L1 (V3¢ - 1ie)* + L3(V5e - i) (Sedivitg ) ) dx|

SC( ‘st'ﬁe|2dx—|-/ |Vﬁ8|2dx)
B

Biio1¢\B1 142Le

<C(L)+Ce? /

~ ~ X {12
ne(x) —ne(—)| dx
B11a1e\Bi ‘ 8( ) 8(|x|)}

<c(L)+C |Vie|* dx < C(L).
Biiore\Bi

Therefore we arrive at

limsup | €# (se,ne, Vse, Vg )dx < limsup | ¥ (S, 7, Ve, Vite) dx
e—0 JR3 e—0 JR3
(2.41) < o*(0By).

ii) Under the condition (B), we simply let
X
ne(x) =1, X€ Bj2Le-
&
Then it is straightforward to check that
(2.42) /R . 5z (Wor (7, Vitg) + a| Vit|*) dx < Cs? L.
While

| /R (Lol Ve AP+ LaseVie - (Vie)ie) daf

(2.43) < Ce2 / LA Pdx=o.
Biiore\Bi |x| ’x‘

Hence (2.41) holds.
iii) Under the condition (C), we simply set 77 = (0,0, 1) € S?. In this case, it
is easy to see that

—~ 1
/ W (Se,Tie, Ve, Vite) dx :/ (€]VSe 2+ ~W(5)) dx
R3 Biyare\B1 €
< o( A% (dB)) +Ce).
Hence (2.41) holds.

The “<” part of Theorem 1.2 is proven, when Q = R3. Combining these two
subsections, we prove Theorem 1.2. U
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3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 for the case that Q is a
bounded smooth domain in R?. It involves refined estimates of both upper bounds
and lower bounds of the total energy & (s¢,ne) for minimizers (s¢,n¢), in which the
strict stability of I" plays a crucial role in a perfect matching of the coefficients of
leading order term or O(%) term in the expansion of & (s¢,n¢).

3.1 Refined energy upper bounds

In this subsection, we will prove a sharp upper bound for the energy & (s¢,ne)
of minimizers (sg,n¢). This is done by utilizing the additional assumption on the
boundary value (¢, g¢) to construct a comparison map such that s, is approximately
a minimal connecting orbit in the transition region of I" of width of O(&?), and n,
is approximately a minimizing harmonic map in the corresponding configuration
spaces in Q.

We divide the estimates of refined upper bounds for the cases (A), (B), and (C)
into three separate Lemmas.

Lemma 3.1. Assume I and the boundary values (t¢,g¢) satisfy the same assump-
tions as in Theorem 1.3. Under the condition (A), it holds that

inf{/ We(s,n,Vs,Vn)dx | (s¢,ne) = (fe,ge) on 89}
Q

1 S
(3.1) < | VIBWE@AAT (L (@) dr+ Ta+ou),
where Dy is given by (1.27) and (1.28) of Theorem 1.3.

Proof. We first construct an extension of s¢ from dQ to Q as follows. For y €
(0,1), let & 5 € C=([—€7~1,€771],R) be given by (1.22) and 7, : 9Q — R satisfy
(1.23). Define s; in the fast transition region ['¢y by letting

se(x) = és,y(dréx)), Vx € Igr.

In the off-transition region Q" \ I'ey, we perform a linear interpolation between s
and s in a €”-neighborhood of £*. More precisely, decompose

QF\Tyr = ((Qi \Ter)N{x € Q:d(x,I5) < 37})

u((gi \Ler)\ {x € Q:d(x, =) < ey})
= ELUFS.

+
S+, -xngYv

se(x) =< .. . .
{hnear interpolation of s ‘Z Ay and s+| (€@ \[yd(xzH)=er) ¥ € E;}
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Similarly, define

(x) 0, X € Fyy,
%= ) linear interpolation of s ‘2,\F _and 0‘{x6§2*\1" vdez-y—ery X € Egr
€ ens » -

Then by the co-area formula and direct calculations (see Maggi [41]) we can esti-
mate

1
/Q(ﬁ|Vs8|2—|—?W(s£))dx

- {/r +/E£y+/E:y}(ﬁ|VSe|2+;W(sg))dx

Y
7—1

= i/_ey (BIELy (1) +W (e (1)) A (T er) ) dt

+Ce” / \Viante |2 d
JdQ\I'gy

€

+Ce*Y(/ |te — s, | d.A? +/ lte|*d A7)
EH\Ley £ \Ley

1
+C/E§UE57 ?W(sg)dx
er-1

62 <y [ (BIE 0P+ W (Eey(e)) (T (er)) di+Ce o).

Here we have applied (1.5) and (1.23) in the last step, which ensures

1 ¥ te =5 o el
et = ?W(Sg)dx < Ce ( AT Td% + - ?d% )
evYley &Y \Lgy
< Cev.

Notice that the condition (1.22) implies that

—1

fls/y (BIELy () +W (e (1)) #*(Ter) ) dt

= ::/_;1 2BW(§577(t))|§e/,y(t)|%2(r(8t))dt+C28Y*2€7C|87*1

33) < % /0 2BW(O A (T (8 (1)) T+ 0c(1).

Next we want to construct an extension map n, : Q — S? from g, : 9Q — S2.
To doit, let n € H'(Q*,S?) achieve %4, i.e.,n=gon X" and n-vr =0onT, and

E(I’I;Q+) = -@A-
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Recall that there exists a map 7, in the region Q7 \ (Fzgv U ij) that is a linear

interpolation between g, |2 A\ and n} 905\ [y’ ie.,
€ 4 €
N r e’ —r y
ng(r,e):gge(e)—i— o n(e’,0),

where
X = (}"7 9) € (2+ \Fzgy) X [O,SY] ~ Q+\ (FngUQ;Ly).

Since 77 may not map into S?, we need to apply Hardt-Lin’s extension Lemma to
find a point a € R, with |a| < 1, such that the map ¥, = (I’Ia‘Sz)_1 oIl,, with
I,(y) = & :ZI 1IR3 — S?, satisfies

sg\V(wa(ﬁe))}zdxgc/ 2| Vi | d.

A+\(FZEYUQZY) QH\(DerUQY )

Now we define ne : Q1 — S? as follows. We refer the readers to page 8 above for
definitions of various notations, e.g. Q5i and I's, that will be used below. First, we
define

(x) = n(x) x € (QTNTe)UQL,
PV TN Wa(Ae(x)) xeQF\ Dy UQY).

It is not hard to see that (Q"\ Q) N (I'2er \ Tev) is bi-Lipschitz equivalent to
Ber(x,) (ball of radius €7 and centered at a point x.), with Lipschitz norms in-
dependent of €. Thus we can define ng : (Q\ Q) N (Taer \Ter) — S? as the
homogeneous degree zero extension, with respect to x,, of the value of ne on
0 ((Q+ \ Q:y) N (Fzgy \ ng)).

Then we can calculate

/(Q+ﬂl" Qs (S%WOF (”8, Vns) + Ots§|Vn£|2) dx

34) < (1+og(1))s2+/m(W0F(n,vn)+a|vn|2)dxg (14 0¢(1))Za,
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and
2 2 2
seWor (ng,Vng) + asg|Vne|”) dx
/§2+\(r257ugzy)( Wor (ne ) el Ve )
<C 52|Vne|* dx
QF\(Tper Q)
SCS%_SY(/ |Viange|* dA* + |Vtann|2d%2)
T+ 2Q,nQt
Csi
—t 0) —n(e”,0)|>dn#>
o ORI
C
<Ce"+C |vn\2+—/ |ge — g|>d.A>
Qn\ef, €Y Je\Iy
+C [ 1s(6)~n(e?.0)Pdr?
(3.5) <Ce"+o.(1)+C Vi[> < Ce¥ 4 0¢(1).

Qn\e;,
where we have used (1.24) and the absolute continuity of / ]Vn\zdx, and the in-
equality

18(0) —n(e”,0)2d.? geY/ Vn2dx < Ce”.
T+ on\Qf,

While

2 2 2
seWor (ne, Vg ) + otsg|Vng|”) dx
/<sz+\sz:y>m(r2€y\rsy>( eWor (e, Vine) + e Vel )

SCsi/ |Vne|* dx
(Q+ \Q:Y)m(r2£7\r£}')

< Ce? / Ve d
9 ((@N\Qf)N(Myer\Te))

< Cey{ / + / + /
Iy ar‘syﬂ(QJr\Q:},) agzyﬂ(rzﬂ\rsy)
n / }]Vtanng|2d<%”2
Iy N(QH\Q)

gc(eY/ |vg8\2d%ﬂ2+/ Vn|? dx
T+ Qn\Q;,

Y

+/ |Vng\2dx—|—/ |Vn|2dx>
QN\(DyerUQy) N\

(3.6) < C(eY+og(1>+/m\Q+ Valdx) < C(e + o0 (1),

2eY
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where we have used (3.6) in the last step, and we have applied Fubini’s theorem
which guarantees the following inequalities:

87/ \Viannte|? d#* < C |Va|>dx = 0c(1),
Joryn@n\afy) on\af,
87/ \Vtanng\zd,%”zgc/ Vie[2dx < C(e7 +0e(1)),
. arzgyﬁ(9+\§2:7) QJr\(eryUQ:y)
and
8”/ Ve 2d % < C Vn2dx = 0p(1).
aQ:yﬁ(FZEy\rsy) Q*\Q;rgy
Hence

/Q+ (sﬁWOF (ne,Vne) + (Xs§|Vng\2) dx

(3.7 < (1+0e(1)Za+C (€7 +0e(1)).
The most difficult term to estimate is the interactive energy between Vs, and ng.

To do it, we proceed as follows.

/Q+ (L1 |Vse -ng]2 +L3(Vse 'ng)(SgdiVng)) dx
< {/ +/ }(Ll |Vse ‘I'lg’z +L3(Vse 'ng)(SgdiVng) dx
Q+ﬂrgy QJr\(Q:},UFEy)

1
SC(/ |VSgne‘2+(/ |V58n8‘2)2)
QN QF NIy

1
+C(/ |Vse|* dx + (/ |Vse|* dx) 2) =1+1I.
Ef E}
87 57
From the estimate (3.2), we can see that
/+ |Vse|?dx < C(e¥ +0¢(1))
E
so that ,
II <C(e2+0g(1)).

To estimate /, let Il : I'ey — I' be the smooth nearest point projection map. Since
Vdr(x) = vr(x) for x € T', we have that Vdr(x) - n(x) = 0 for x € I". Hence

/ergy |Vse - ng|*dx < 812/erey(ée,#)z(dréw)Wdl"(x) ()2 dx
< i o (PO 90 n0) — Ve (1) T () P

1 ;2 dr(x)
- ?{ /mmrLg +/Q+m(rsy\ng) }(58’7)2( Fe )

(|Vdr(x) = Vdr(Tr(x))|* + [n(x) — n(TIr(x))[*) dx

=1I+1V.
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111 can be estimated similarly to (2.32) so that

111 < Ce+oc(1).
While we can utilize the decay property of |&’| to estimate IV as follows.
C -
v < 7/ ¢~ £ 0) (|Vdr(x) — Var (TTr (x)) 2 + |n(x) — n(TTr(x))|?) dx
€7 JQ+N(Tey\Ie)

2 Y -2 —Sdr(x) _ 2
< C|[VPdr| g &7+ Ce /Q o € T n() (I (2)) P
Notice that by identifying Q" Ny with T x [0, €7], we can bound
Lo e S n) —n(r ()P d
Q+ﬁrgy
34 ’
< c// e % 1n(t,0) —n(0,0)|> did A

<c// te i’/ (¢, 0)d) did A
SC(/ te*?tdt)/ \Vn|*dx
0 QtNlyy

gc&(/ te*C’dt)/ |Vn|? dx
0 QFNly

§C£2/ \Vn|? dx.
QtNlgy

Therefore we obtain that

IV <Ce"+C |Vn|?dx < Ce¥ 4 0¢(1).
Q+ﬂ1—‘£y

From the estimates of /11 and IV, we obtain that
(3.8) / (L1 |Vse -ng\z + L3(Vse -ng)(sgdivng)) dx < C(E% + 08(1)).
ot
Next we want to construct a map ne : Q= — S? such that it enjoys an upper

bound estimate similar to that in Q. First let 77, : Q= — R3 be such that
Ane =0 in Q,
ﬁE = 8¢ on 2_7
e =n on I.

Then it is well-known that
2, 2 2 2
/ |Vig | x<CHngHH2 ooy S C(/27|Vgg| At —i—/Q+|Vn| dx)

< C(1+/27|Vg|2djf2+/g+|Vn|2dx).
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Moreover, since ge¢ — g in H'(X7), there exists 7 € H' (Q ) such that
(3.9) e — 1 in H'(Q7).

Applying Hardt-Lin’s extension Lemma again, there exists a € R® with |a| < l
such that for ne = W, (7e ), where ¥, = (M|q) ' oI, with IT,(y) = 2=% : R? —
S?, satisfies

Iy a\

/ |Vn£|2dx§C/ \Vﬁ£|2dx§C(1+/ |Vg|2dji”2+/ IVl ),
Q- Q- - o+
and
(3.10) ne — W, () in H'(Q).
With the help of (3.10), we can estimate
/ (s%WOF(nE,Vne)+as§\Vng\2) deC/ sg\Vnglzdx
Q- Q-
SC(/ sg|Vng|2dx—|—/ s§|Vn£|2dx)
Ml e E_y
gc(/ |Vng|2dx+/ Vg |* dx)
“MCyy E
<c/ IV (e — )|2dx+c(/

B.11) =o0e(1).

]Vﬁ|2dx+/ Vi dx)
eV E;Y

While
/Qi (L1 |Vse -n£|2 +L3(Vse -ng)(sgdivng)) dx
< {/ —1—/ }(L1|Vs8 -ng|2 + L3(Vse 'ng)(sgdivne)) dx
Q_ﬁrgy Q_\(Q;},Urgy)

1
SC(/ |VS8'I’I8’2+(/ |VSg'ng‘2)§)
~Nley Q-Nly

&€

(3.12) +C</Ei |Vs£|2dx+(/Ei |vs£|2dx)%) =V+VI
e¥ ¥

Again from the estimate (3.2), we see that

VI<C(e! +0(1)).
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VI can be estimated similarly to that of /. In fact,

/ |Vse - ne|?
Q~Nlyy

_ dr(x
< Ce (2| V2dr | oy, + /Q m|<s’rz<ﬁ§ >)!"(x)—"(nr(x))|2dx)
<Celtor(ce™ [ () —n(lIr(o)Pax
eV \LLe

< Ce’+o0g(1).

Hence
VI<Ce? +0g(1).
Substituting the estimates of /11 and 1V into (3.12), we obtain

(3.13) /Q (Li|Vse - ne[? + La(Vse - ne) (sedivn)) dx < C (3 +0g(1)).

Combining (3.2), (3.7), (3.8), (3.11), with (3.13) and (3.3), we obtain the upper
bound (3.1). Il

Lemma 3.2. Assume I and the boundary value (t¢, g¢) satisfies the same assump-
tions as in Theorem 1.3. Under the condition (B), it holds that

inf{/ We(s,n,Vs,Vn)dx: (sg,ng) = (te,8¢) on 89}
Q

1 S
(3.14) < E/0 " V2BW (D) A T(eES (1)) dT+ D+ 0 (1),
where Dp is given by (1.30) and (1.31) of Theorem 1.3.

Proof. The proof of (3.14) can be done almost exactly as in Lemma 3.1. In fact,
the construction of s is exactly same as in Lemma 3.1. While the construction
ne also follows the same procedure, except that we replace the map n, that is a
minimizer of %4 in Lemma 3.1, by a map » that minimizes %g. Namely, n €
H'(Q*,S?) satisfiesn=gon X, nAvr=0onT, and

E(n;Q+) = -@B-

Since every other term in the integral / sﬁ(sg,ng,ng,Vng)dx can be esti-
Q

mated in the same way as in Lemma 3.1, it suffices to sketch the estimate of the
term

/ (L2|Vse A ne\z + LyseVse - (Vng)ns) dx.
QtNlyy
Recall from the condition n A vr = 0 on I" that

Vdr (I (x)) An(TIp(x)) = 0, ¥x € QT Ner.



34 F. LIN, C. WANG

From the construction of (sg,n¢), we know that

/§2+mrsy Lo|Vse Anel*dx < Ce ™ /Kﬁﬂl“ey ‘éé,y‘z(dFS(X))‘VdF(x) An(x)|? dx
< Csfz/ ‘§é7y‘2(dl“(x))|Vdr(x) An(x) — Vdr(Ip(x)) /\”(HF(X))‘de
QN €

<ce [ PO (Ve - e )

+n(x) = n(Mr(x))[*) dx
< Ce?+0g(1).

This implies that

| / LaseVse - (Vng)ng dx|
Q+ﬁr8y

< C(/ |Vse Angl|* dx) (/ |Vn|2)% =o0¢(1).
QN QFNly

Thus the estimate (3.14) holds. [l

D=

Lemma 3.3. Assume I and the boundary values (s¢,ne) satisfy the same assump-
tions as in Theorem 1.3. Under the condition (C), it holds that

inf{/ We(s,n,Vs,Vn)dx: (sg,ng) = (tg,g¢) On 89}
Q

1 S
(3.15) < E/o " V2BW (D) AT (eELN (D)) dT+ T +o0e(1),
where YD is given by (1.33) and (1.34) of Theorem 1.3.

Proof. The proof of (3.15) can be done almost exactly as in Lemma 3.1. In fact,
the construction and estimate of s, is exactly same as in that in Lemma 3.1. While
in the construction of ng, we simply replace the minimizer n of %4 in Lemma 3.1
by a map n that minimizes %¢c. Namely, n € H'(Q",S?) satisfies n = g on £,

on __
W—Oonl“,and

E(H;Q+) = .@(j.
Since L1 = L2 :L3 = L4 = 0,

/%(sg,ng,ng,Vng)dx

Q

— 2 2 2 2, I

= Q(sgwop(ns,Vng)+as8\Vng\ + B|Vse| —i—ng(sg))dx

can be estimated as in (3.2), (3.7), and (3.11) of Lemma 3.1. [l
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3.2 Refined energy lower bounds for the case (A)

In this subsection, we will establish an improved lower bound of energy that
matches the refined upper bound of energy, which ensures the planar anchoring
condition for the limiting director field on the sharp interface I'.

First, it follows from 2L§ < 4L; o that there exists a positive number ¢t > 0 such
that 213 < 4(L; — p)( ot — u) so that by Cauchy-Schwarz inequality we have

|L3(Vse - ng)sedivig| < V2|Ls||Vse - nel|se|| Ve
(3.16) < (Ly — ) (Vse -ne)? + (a0 — p)s2|Vne .

This implies that
—~ 1
We(se,ne,Vse,Vng) = (B|Vse|> + ?W(sg)) + 52Wor (ne, Vne)
—|—(06sg|Vns|2 +Li(Vse -ng)2 +L3(Vse ‘ng)ssdivng)

1
> B|Vsel* + ?W(Se) + sz | Vne P+ | Vse - ne

1
= [(ﬁ + ycos® 0g) | Vse|* + ?W(Se)] +HS§W”S‘2

v

2
E|Vs£|\/W(s£)\/B + pcos? 6, +#S§W”s’2»

where cos 0, = ‘g—ie‘ ‘Ng.
£

Thus by the co-area formula we obtain

/ %(sg,ng,ng, Vne)dx
Q

2
> / (f‘vsg\\/w(sg)\/ﬁ + pcos? B + Wsy| Vne|?) dx

>‘u/s8|Vn£| dx+ — / VW / \/B+ucos29€d%2d1

FIRAC;
_u/s€|Vn£\ dx+ — / VW /ay \/B+ucos298—\/ﬁ)d<%”2d’c
(3.11}5/ VBW (D) A8 F(1)) d
where .7 (T {xEQ Se(x )ZT}.

It follows from the assumption of se on dQ that for any 0 < 7 < s, the enclosed
surface 7 (7) C dQ between d*.7(7) and X is a strip with width at most Ce.
Hence by the area minimality of I', we have

HHT) < A" F()U Te(1)) = H* (9" (7)) + H*(Te(7))
(3.18) < A" Se(T))+Ce, 0< T < 5,.
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This implies that

(3.19) i/(j VBW (1) %(9* Lo (1)) dT > éaojﬁ(r) .

Notice that

2
/7ﬁ+‘LLC08293—\f: U cos” B

VB +1cos?: ++/B
> 1, cos” O,
u
where U, = —F—————F== >
VB+u+B
Hence, by matching the refined upper bound (3.1) with (3.17), we conclude that
(3.20) u/g(sg\vnsyz+|vs£.n£|2)dx§9A+c+og(1),
(3.21) “*/ JW / 05" 0ed AT < Tyt Cotoe(1),
*/S

and

(3.22) i/o VBW D) A2(9" (7)) dr < éao%”Z(F)—i—.@A—i-og(l).

For any fixed § > 0 and for any € € (0, 1), applying Fubini’s theorem to (3.21)
and (3.22) we obtain that there exist C > 0, that is independent of &, and 6. €
(8,298) such that

3.3 / 20,d.4 < C(B.I) %,
629 P yg(u—as)cos ¢ =Cp A)6
(3.24) O Fs(51— &) < A(T) +c§.

Since it is straightforward to get (3.23), we only sketch how to obtain (3.24). From
(3.18), we have

%{ /OS+25+/:_6 }\/m%pz (9°-7(1)) dr

&

> %( /[0,s+26]u[s6,s+] VBW(E)dt) (D) -

so that

inf A0Sl / VBW (1) dt
<s+ 2(‘51<n‘t'<54r T 8 5+—20

/s —28 \/W‘%d(a*yE(f))dT
(g/ \/7(11') +-@A+C+0£(1)
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s4—0
This, combined with the estimate i V BW (7)dt = 0, yields (3.24).
54+—20

If we set
Q. 5= {xe Q: se(x) < 5}, Q;a = {xE Q: se(x) >s+—6},
and
E&S:{xeg: 8 < se(x) §s+—5},
then it follows from (1.5) and (3.20) that

Ce

‘E6,5€| = §7
(3.25) , _ Cla,%n)
< —_— ' 7
/ |Vng| =1 5)2

It follows from the energy upper bound (3.1) that

1 C
/ W(sg)dx < —,
Q £

2
2:58 €

this, combined with (1.5), implies that for a.e. x € Q:f 5 S+~ O < s¢(x) < 1and
s¢(x) — s4 as € — 0. Hence for any 1 < p < oo, it holds that

(3.26) /+ |se(x) —s4|Pdx — 0, as € — 0.
Q

€,0¢

Furthermore, from the Cauchy-Schwarz inequality and (3.19), we also have

LBIvseP+Wesedx > 2 [7VBWER A ()t
> %aoe%”z(F) ~C.
Matching with the refined upper bound (3.1), this also implies that
/Q(s%WOF(ne,Vne)—kasg]Vng]z
+L;(Vse -ns)2 + L3(Vse ~n£)s6divn£) dx
(3.27) < Ia+C+oe(1).

L1
From (3.23) and (3.25), there exist & — 0, §; = &, € (&,2¢), aset Q, C Q
of finite perimeter such that for Q; = Q , it holds that

(@) Yo, — Xe, in BV (Q), and Yo, = xq, in L' (RY).

(b) We also view I'; =dQ;|Q and I', = 3* Q.| Q as oriented boundaries and in-
tegral rectifiable 2-currents, and use the same notations, i.e., I'; = [[dQ;| Q]]
and T, = [[0Q.|Q]]. Then

Fiér*
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weakly converges as oriented boundaries and integral rectifiable 2-currents.
By the lower semicontinuity, we have that
(3.28) HT) < A(L) < lim# (L) = 242D,
1
where the first inequality follows from the area minimality of I, since dT" =
ar, = 2]

Since I is assumed to be a unique area minimizing surface spanned by X°, we
have that I', =TI". Also, since

Q| (R*\ Q) = X
as convergence of currents, we conclude that
Q. |(RP\Q) ="
Therefore Q. = Q1. Next we need to show
Claim 1. For any 1 > 0, it holds
(3.29) lim #2(0Q;N{x € Q:dr(x) >n} =0.

&—0

It follows from (3.28) that
A (9QNQ) — T
as weak convergence of Radon measures. Hence by the lower semicontinuity,
AHD) = A*(TN{xeQ:dr(x) <n})
< hmlnfji” (852 N {x €Q:dr(x) < T[})
< hgin_:gfjfz(aﬁ,- NQ) = ().
This clearly implies (3.29).

Claim 2. There exists a map n € SBV(Q*,S?) 3 such that after passing to a sub-
sequence,

ne o, — nYo+ in BV(Q), and sgxo, — 54 xo+ in L*(Q).
Furthermore, n € H'(Q",S?).

To show Claim 2, we first observe that the absolutely continuous part of the dis-
tributional derivative of v; = ng, Xq, i Vv; = Vng, Xq,, which is uniformly bounded
inl?ie.

/ |Vvi|?dx = / \Vni|*dx < C.
Q Q
The jump part J,, of v; satisfies
Jv,- CcCoQNQ = I,

3 Here SBV(Q) denotes the space of all BV (or bounded variations) functions such that the Cantor
part of the distributional derivatives is zero. See Ambrosio [1] for more discussions.
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so that

HP(J,) < AL <267,
Moreover, we have that

[vill =) < 1.

Thus it follows from [1] that {v;} C SBV(Q) is a weakly compact sequence in
SBV(Q). There exists a n € SBV(Q) such that v; — n in BV(Q) and strongly in
L'(Q). Since |v;| = 1in ©; and |v;| = 0in Q\ Q;, it follows that |z| = 1 in Q* and
In| =0in Q\ QF so that n € SBV(Q*,S?). From the lower semicontinuity, we
have that

(3.30) / \Vn|2dx§hminf/ |Vne,|? dx
O+ §—0 JQ,

Now we want to show its jump set has .#"?>-measure zero. This follows from (3.29)
and the lower semicontinuity:

A (J,n{xeQt: dr(x) >n})
< liminf 7 (J,, N {x € Q" : dr(x) > n})
g—0 !

< limigf%z (0QiN{xe Q" : dr(x) >n})=0.
E—
This, after sending n) — 0, yields 5 (J, Q") = 0. Hence n € H'(Q™).
It follows from (3.30) that Vg, xo, — Vaxq+ in L*(€), and hence
Se, Vg xo, — s+ Vnyo+ in L'(Q).
This, combined with the uniform H' bound (3.25), further implies
(3.31) se Ve xo, — s Vnyq+ in L*(Q).
We claim that
(3.32) Vse ne, — 0 in 2'(QF).
To see this, let ¢ € Ci(QT). Then by integration by parts we have
/ Vse -ngdpdx = — / se, (divig ¢ +ng, V) dx
Q+ Q+
— —/ Sy (divn(}) + nV(])) dx
Qt

= —/ s1div(ng)dx =0, as & — 0.
ot
Since / |Vse, - ng, \2 dx is uniformly bounded, it follows from (3.32) that
Q;

(3.33) Vse, e xo, — 0 in L*(Q).
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It follows from (3.31) and the lower semicontinuity of / sﬁi Wor (ng;, Vng,) dx that
Qt

/Q+siW0F(n,Vn)dx = /QSiWoF(n,VI’L)XQerX

< liminf | s Wor(ne, V) xo, dx
Q

&—0

(3.34) = liminf | s;Wor(ng, Vng,)dx.
Q;

&g—0

Next we claim that
2 v, 2
\%
/Q+ as |Vn|“dx
(3:35) < liminf / (02, Vit [+ L (Vg -1+ L (Vi mg ) ivin,) .
£— Q

For 11 >0, define Q) = {x € Q" : d(x,0Q") >n}. Since Q; — Q™ in Hausdorff
distance, we may assume that for i sufficiently large, Q; C Q; and hence

(3.36) 5, Vg — 54 Vnin L(Q)), Vsg -ne, — 0in L*(Q;).
This and (3.16) imply that

9 = limigf/ (asgi Vg |* + Ly (Vsg, - ng,)* + L3 (Vsg, - ng, )sg,divng, ) dx
E— Q;

> liminf | (o2 |Vng|* +Li(Vsg - ng,)* + La(Vsg, - 1, )sg,divng, ) dx

&g—0 Qﬁ

= liminf | | [a‘Sg[(Vngi —Vn) +5Vn> + Ly (Vs - ng,)?
Q"]

&—0

+L3(Vsg, - ng, ) (sg, (divng, — divn) + sgidivn)} dx

zliminf{/ as2 |V dx
[ohy '

&g—0

+ / . [asé |V(ne, — n)\2 +L;(Vsg -ng,.)2 + L3(Vsg, - ng, ) s¢,div(ng, — n)} dx
Qn

—i—/+ (2(ng,.V(ngl. —n)(seVn) + L3(Vse, -ngi)(sg,.divn)) dx}
Qn
= hmlnf(A, +B; + C,)

&—0

Applying (3.16) with n, replaced by ng, —n, we have that B; > 0. From (3.26) and
(3.36), we see that C; — 0. On the other hand, since s¢,Vn — s, Vn in L2 (Q), we
have
liminfA; > / asiWn]zdx.
Q+

i—
&—0 h
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Therefore we obtain that
9 > / s’ |Vn|* dx.
Q+

n
Sending 7 to zero, this yields the claim (3.35), that is,

(3.37) P> / s’ |Vn|* dx.
Qt
Combining (3.37) with (3.34), we arrive at
(3.38) E(n,Q%) = / s (Wor (n,Vn) + o|Vn|?) dx
Qt

<lim 161f (s2 Wor (ng;, Vig,) + otsz |Vng, |*
£— ' '
+L] (ngi . ngi)z +L3 (VS{.;I. . ngi)SgidiVngi) d.x
From the assumption on g, on X, we see that n = g on £*. Next we want to
show the trace of n on I satisfies the planar anchoring condition:

(3.39) n-vr=0on I.

Sketch of proof of (3.39). We will show the planar anchoring condition of n on I
as follows. For simplicity, write n; = ng,. First it is not hard to show that as i — oo,
Q; — Q7 in Hausdorff distance,

dA*| T — d*|T

as convergence of Radon measures, and
nj—n in H'(Q",S%).
This implies that
div(n;) — div(n) in L*(Q), xo, — xo+ in L*(R%).

Therefore

/nl’l,\/rdjf2 = /" n,\@QLL%?Z /” ‘&~Vagdﬁfﬁ
Y 9QNIQ
= / div(n;) dx — / gi- Voo di?
Q;NIQ
= / div(n;) xq, dx — / gi- Vaqd A
R3 2Q;NIQ
—>/ div(n)xmdx—/ g VaqdiH?
R3 dQ+NIQ
:/ n-Vagﬁde%ﬂz— g'Vanjfz
It

dQTNIQ
(3.40) = / n-vrd s>
I
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It is readily seen that the planar anchoring condition of n on I" follows from
(3.40) and the following lower semicontinuity property: for any nonnegative con-
vex function f : R — R, it holds that

i—oo

(3.41) / f(n-vr)ds* <liminf | f(n;-vr,)ds>.
r I
Indeed, if we choose f(8) = 62, then (3.41) and (3.23) imply that

/ (n-ve)*d” <timind | (n-vi)*d” = limind | cos’ Ged A =0
r

i—oo . i—eo  JT;

This implies that n- v =0 ,%”2 a.e.onl’
Now we want to show (3.41) as follows. Define a family of Radon measures

0,(A) = Z*(TiNA) fori > 1; O(A) = #*(TNA),

A) = /Af(ni-vr,.)d(al

for any measurable set A C R.

and

It is readily seen that there exists a nonnegative Radon measure p such that,
after passing to a subsequence,

®;, — 0 and i — u,

as convergence of Radon measures in R3. By the Radon-Nikodym theorem, we
can decompose

U= (Deu)®+u’, with u* L @.
Then we have

/D@)lid@ < u(A) <liminf;(A),

A i—o0
for any open set A C R?. Hence (3.41) follows, if we can show
(3.42) Ff(vovp)(x) < (Deu)(x), ®—a.e. x € supp(®) =T
From the convexity of f, there exist a;, by € R such that
(3.43) f(6) =sup(ax + by).
k
For x € I', we can find r; — 0 such that for each j, it holds that
(3.44) {1 i Jon, (e i =g 47 = liMises fop, (o - =g 4%,
(0B, (x )) =0.

Therefore we have that

(3.45) lim f(ni-vr,)dA* = lim (B, (x)) = (B, (x)).
i=eJB, (x)NL; i—ye ! !
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Similar to (3.40), we have that for each j,

lim ni - Vaoung,. (1) 4"
i=2.J9(QiNBy, (x)) !

= lim divn; dx
1—o0 Q,’ﬁBri (x)

= divandx
Q,‘ﬁBrj (x)

= / n‘va(QerBr‘(x))d%z.
a(Q+ NB;; (x)) /

This, combined with (3.44), implies that for each j it holds that

lim nl--vr,d,%”zz/ n-vrd 2.

i JTiNB,, (x) N8, (x)

Recall that for ® a.e. x € I, it holds that
-
Dot (x) = ]15210 0(B,,()’
and
lim merf'(x)n.vrdC%ﬂz = (n-vr)(x).
e OB, ()
Applying (3.45), we obtain that for any fixed &,

fl",ﬂB,j (o S (ni-vr,) dA?

Det(x) = lim lim

i T e, )
Jriom, (v (@i vr, +by) d A
> lim lim /
i &8, (V)

Jrins (x)”i"’Fid'%p2 0;(B;;(x))
> lim lim i bl
T joeeies [ak @(Brj (x)) k ®(Br,- (x)) ]
- frmB,j(x)"'Vrdffz ,
> lim [ 0B, ) ]

= ar(n-vr)(x) + bx.

Taking supremum over k > 1, we conclude that for ® a.e. x € I,
Del(x) > sup (ak (n-vr)(x)+ bk) = f(n- vr) (x).
k

This yields (3.41).

43
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For0 < 7 < s, let 7 (7) C Q be an area minimizing surface spanned by X(7) =
{x€dQ: dr(x) =1t} =9I(r)

H*(T (1)) = min {%Z(S) : §is an integral 2-current in Q, JS = Z(t)}.

Then by putting all the above estimates together, we obtain the following lower
bound:

£—0

(3.46) > 2 ["VBW@ANT (66} (0)dT+Em Q)

where E(n, Q") is the Oseen-Frank energy given by

E(n,Q") :si/+ (Wor(n, Vi) + at|Vn[?) dx
Q

liminf %(ss,ng,Vss,Vng)dx
Q

Finally, we want to show that n € H' (Q*,S?) is a minimizer of the Oseen-Frank
energy E(-,Q"), subject to the boundary condition: n =g on £+ and n- vpr =0 on
T,ie.,

(3.47) E(n, Q%) = 9.

In order to prove (3.47), we need to show that the leading order term in the lower
bound estimate (3.46) exactly matches that in the refined upper bound estimate
(3.1, ie.,

/os+ VBW (0) A2 (T(e6, (7)) dT
(3.48) S /OS+ \/W%Z(y(gég;(f))dr+C82_

The validity of (3.48) is a consequence of the strict stability of I', which ensures

Claim 3. Under the condition that T is a strictly stable, area minimizing surface,
there exist Mo > 0 and Cy > 0, depending only on 1" and Q, such that

(3.49) HHT(AN)) < AT (L)) +CoA?, YA € [—10,Mo)-

The proof of (3.49) is based on the second variation of surface areas and the strict
stability of I', we refer the reader to [34] page 45-47.
It follows from (3.49) that

/0 CBW(O AT (1) d

< [ VBV (8 )+ Cleti (1)) o

< [ VBRI e i [ B G 0 s
/ VBW (1) AT (€} (T))dT +CE?,
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since there exists C > 0, that is independent of €, such that

| VBV Ec (1) dv < Cau

Hence (3.48) holds. Now it is readily seen that the refined upper bound (3.1), the
refined lower bound (3.46), and (3.48) imply E(n,Q") < Z4. On the other hand,
sincen=gonZX" and n-vr =0 on T, we automatically have E(n,Q,) > Z4. Thus
(3.47) holds, and

(3.50)

/Q%(sg,ng,ng,Vng)dx—z/()s+\/ﬁW(T),%”Z(F(Sf_I(T))dT—i-@A—i—o,g(l).

Finally, we claim that (see also [34] page 46)

ash 2 [ (@) de = LA +o).
In fact, it is not hard to see that
HHIT(X)) = A ) +ar+0(A?), A € (—€7,€7),

where a = ﬁ ‘A:O%Z(F(M)' Thus we have that
2 [ B e (o) e
S JBW ) e Lo

_er-1
—1

€
=§ 8;_1 BW (e (1)) (H%(T) +agt + O(e°1%)) &L, (1) | dt

=20 420 [\ BW e 0)IEk (o) +0e)

- %%Z(F) +0(e),

where we have the fact that \/BW (& y())|E; ,(¢)] is an even function so that

evl
[ BW e (0)E o)l =0,
Thus we arrive at

%)

(3.52) / %(ss,ng,ng,Vng)dx: ?%2(F)+.@A+og(l).
Q

This proves part (A) of Theorem 1.3. U
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3.3 Refined lower bound for the case (B)

The refined lower bound in this case can be done similarly to that of the case
(A). The major difference arises in showing the homeotropic boundary condition
of the limiting map »n on the sharp interface I', on which we will focus.

First, from Li < 4L, we can find a positive number (> 0 such that LZ <
4(Ly — u)(a — ). Hence by Cauchy-Schwarz inequality we have

‘L4S{.;VS8 . (Vng)ng’
- ’L4(VS8 - (VSg . ng)ng) . (ngng)‘
< (Ly — W) |Vse — (Vse -ne)ne|* 4 (o0 — p)s2| Ve |
(3.53) = (Ly — 1)|Vse Ang|* + (o — )52 | Ve .
This implies that
—~ 1
We(se,ne,Vse, Vng) = (ﬁ|vs£|2+gW(s£))+s§W0F(ng,vn£)
+ (as2|Vne* + La|Vse Ang|* + La(s¢Vse) - (Vne)ne )

1
> [3\ng]2+?W(s8)+us§|Vn8|2+,u|ng Anel?
) 1
= [(B +usin® 98)|V56|2+?W(S£)] + psg | Ve |

2 .
> E]ngh/W(sg)\/ B + psin? g + ps2|Vne|?,
Vse

where sin 6, = Vs Nng.
€

Note that we also have
%(sg,ng,ng,Vng) = (B‘VSg’z_._éW(Sg))‘i_ngOF(ng,Vng)
—|—(as§|Vng|2 +L,|Vse /\n£|2 + La(5eVse) - (Vng)ns)
> BIVsel> + W (se) + 52 Vel + Ve Ane
> 2 Ve y/BWse) + 12Vl + [ Vse A el

Hence, by the co-area formula, this implies that

/%(ss,ng,ng,Vne)dx
Q
2
2/Q(E\Vssls/W(ss)\/ﬁ+/.Lsin29£+,usg|Vng\2)dx
zu/ sg\Vng\zdx+%/+\/W(r)/ sin 0, d A% d't
Q € Jo * e (1)
(3.54) —i—i/o+\/BW(T)%2(8*5’8(1:))611:,
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where U, =

u
—— and
JaiB+ VB

/ %(sg,ng,ng,Vng)dx
Q

2 S

(3.5 u/ (s2|Vne? + | Vse Ane ?) dx + E/ T BW (@) A" S (1)) dr.
Q 0

Matching (3.54) and (3.55) with the upper bound (3.14), we conclude that

(3.56) u/g(sgyvng|2+ Ve Anel?) dx < D+ C +0e(1),
(3.57) %/+ \/W(r)/ ( )sinz 8. d?dt < Dp+C+0e(1),
0 * e (T

and
(3.58) z/oh «/ﬁW(r)c%W(a*L%(r))dr < %ao,%”z(l“) + P+ o0e(1).

As in the previous section, for any small § > 0 there exist C > 0, independent of &,
and & € (0,26) such that

(3.59) / sin2 0, d.#2 < CZ.
9* Fe(s4—0)
(3.60) A F(55 — 85)) < AT +c§.
Moreover, from (3.57) we have
(3.61) / (IVng|? +|Vse Anel?) dx < C.
Q+

€,0¢

I
As in the previous section, there exists & — 0 and o; € (g*,2¢*) such that
Q; = Q; 5 converges to QF weakly in BV (R?),
I';= 89, LQ —~T'=0Q" LQ,

as convergence of measures and integral 2-currents. Furthermore, there exists a
map n € H'(Q*,S?) such that

e, X0, — n)o+ in BV(Q), and sgxo, — sixo+ in L*(Q),
and hence
Ve xo, — Vinxar, and s, Ve xo, — s+ Vnygr in L*(Q).
As a consequence of these weak convergences and (3.61), we can deduce
Vse, Ang, — 0 in L*(Q).
Similar to the proof of (3.34) and (3.35), we can obtain

(3.62) /Q 5% Wor (n, Vi) dx < liminf A sz Wor (ng;, Vng,) dx,

&—0
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and
/Q+ as’ |Vn|* dx
3.63) < ligljgf/S)i (as§i|Vn£i’2 + Ly|Vse, /\n&_‘2 + Ly (s, Vse, - (Vng)ng) dx.
Adding (3.62) with (3.63), we arrive at
(3.64) E(n,Q%) = /m s (Wor (n,Vn) + o|Vn|?) dx
< liminf A (S%iWOFO’lg’-, Vne,) + asgi\Vng,. B

&—0

+L,|Vsg, Ang, >+ Lusg Ve, - (Vngl.)ngi) dx.

Now we want to show the homeotropic condition of non T, i.e.,

(3.65) nAvr=0onT.

In order to show (3.65), we first want to prove

(3.66) / nAvrdA* =lim | nAvr,d A
r i—eo JT;

In fact, since
V xn; =V xnin L*(Q"), and yq, — xq+ in L*(R?),
we must have

lim [ Vxn;dx= V x ndx.
i—e JQ, O+

This, combined with the divergence theorem, implies that
/ ni/\VaQid%Z—l—/n,‘/\Vrid%z
89,-089 Fi

= niAanidi%”zz/Q.Vxn,’dx

(0QiNIQ)UT

— Vxndx:/ nAVyg:r dA?
o+ (0Q+NIQ)UT

= n/\Vanr%ﬂz—i-/n/\V[‘d%z.
2Q+TNIQ r

On other hand, it follows from the assumption on g, on JQ that

/ ni AVygq, d* = 8e N Vg, d.t?
2Q;NIQ 20Q;N0Q

— gAVyqdH? = nAVyqd >
Jaa+nag 90+ N9

Thus (3.66) holds.
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From (3.66), we can use a similar argument to show that for any nonnegative
convex function f : R — R, it holds that
(3.67) f nAvr)ds#* < liminf f(n,/\vF ) d A

i—00

In particular, this 1mphes that
(3.68)

/ InAvp|?d#* < liminf/ |ni Avr,|?dA* = liminf | sin? @, d.#7> =0
r i—oo T

i—oo JT;
This yields (3.65).
For the convenience of readers, we will sketch the proof of (3.67) as follows.
Define a family of Radon measures

(A) :/Af(l’ll‘/\\/ri)d®

for any measurable set A C R3.

Without loss of generality, we can assume that there exists a Radon measure
M in R? such that
My — M

as convergence of Radon measures on R?. Again by Radon-Nikodym theorem, we
can decompose

M = (DM )O+ M, M 1L M.
Hence for any open set O C R?, it holds that

/ Do d® < .4(0) < liminf.#,(0).
0]

1—ro0

Now we want to show
(3.69) Do (x) > f(nAvr)(x), ®ae.xel.

First, it is not hard to see that for any x € T, it holds that for L'ae r>0,

lim / n; A\ y= 2= nA dﬁf 2
i J 9B, (x)NQy ly —x| 9B, (x)NQ* ]y x|
This, combined with

/a i ANVo(B,(x)nQi) = / Vxn
(Br(x)N€) B (x)NQ;

— Vxn= / nAVy(B,(x)nQt)>
B, (x)NQ+ d(B,(x)NQT)

yields that
lim n Avr,dA* = / nAvrdi*.
B (x)NI’

[—»oo B,(x)ﬂl",-
It is readily seen that

A (dB(x)) =0
holds for L! a.e. r > 0.
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Therefore, for any given x € I,
AB) | M(B()
O(B(x))  im> O(B(x))
> lim fB )L (akn, AVr, +bk) d?
" O(B,(x))
J8,(0rr, i AV, d A2

=ali b
“ T emw) X
fB_(x)mrn AN V]"d%z
(3.70) =ap— + by
O(B,(x))
holds for any k > 1 and L' a.e. r > 0.
Since
A (B/(x))
D =1i
o (x) = lim 55 ()
and

. fBr(x)ﬂFn Nvrd A
(nAvr)(x) = lim O(B,(x))

hold for ® a.e. x € I, after passing to the limit in (3.70) we obtain that for ® a.e.
xerl,

D@%(X) > ak(n/\ Vr)(x) + by, Yk > 1.

Taking supremum over k > 1 and using (3.43), this yields (3.69).
From (3.65), we conclude that by

E(I’l, Q+) 2 @Ba

which, combined with (3.55) and (3.64), implies that
/ %(sg,ng,ng,Vns)dx
Q

3.71) > Z/OH\/BW(T)%Z(yg(r))dT+934-08(1).

This, combined with the inequality (3.48) and the upper bound (3.14), further im-
plies that

E(n; Q) = 93,

(372) /Wg Sg,ng,vs(g7vng) 7%2( )+@B+08(1)

The part (B) of Theorem 1.3 is proven. U
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3.4 Refined lower bound for the case (C)

This case is the easiest among the three cases we discuss in this paper. In fact,
by (3.15) and direct calculations, we obtain that
2 H0) + Te+oe(1)
> / %(sg,ng,ng,Vng)dx
Q

1
= [ L(BIVseP+ W (se)) + (53Wor (e, Vne) + a2 Ve )] d

=2 1 VBW @A (et (7)) de

—{—(s+—5)2/+ (Wor (ne, Vne) + a|Vne |*) dx
€,8

> %,%”2(1“) _C

H(ss— 8 /Q ~ (Wor(ne, Vg) + @[ Vne ) dx

€,0

This implies that for any 6 > 0, there exists 0 € (8,28) such that

1
2 N
(3.73) /% (Wor (e, Vne) + o Vel ) dx < (o= (764 C +06(1))
and
(3.74) A Fo(5s — 8)) < AHT) +Co

)

As in the previous two cases, we can argue as follows. For g — 0, there exists
1 1
8, € (g7,2¢?) such that Q; = Q. 5 Q*F weakly in BV(RR?),
yg(s+ - 5&-) — anLQ — F: aQJ’_L

weakly converges as measures and integral currents. Furthermore, there exists
nc H'(Q") with n = g on * such that

se Ve xo, — s Vnxg: in L*(Q).
By the lower semicontinuity, we then have

e < / 52 (Wor (n,Vn) + | Vn|?) dx
Q+

(3.75) < liminf | (s Wor(ng, Vng,) + oisg|Vng|?) dx.
Q

&—0

On the other hand, it follows from the inequality (3.48) that

/ VBW @A (68 (x ))drz%%z(l")—Ca
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Thus we can conclude that

E(n; Q1) = Zc,
and
/Q%(sg,ns,VSg,Vng)dx = 202(0) + T + o (1),
This establishes the conclusion of part (C) in Theorem 1.3. Il

4 Proof of Theorem 1.4

In this section, we will consider the asymptotic expansion of & (s¢,ng) for Q =
R? and prove Theorem 1.4. We will first provide a sharp upper bound estimate for
the cases (A), (B), and (C).

4.1 Refined upper bounds

The constructions are similar to those in the section 2.2.2, except that we need to
use an almost minimal 1-dimensional connecting orbit in the fast transition region
of width O(g?) around dB;.

Let & 5 € C*([—¢€”,€"]) be given by (1.22). Define §¢ : R> — R, by letting

S+ x| <1,
Se(x) = ‘Ss,y(w) 1 <|x| <142¢7,
0 |x| > 1+ 2¢".

Then we have
{x€R3 2 Se(x) > s+} =By,

and
' 1
/R3 (IVSel* + 5 W (5e)) dx
1 et , ) .
- E/;g}’*l (B‘§g7y(t)‘ +W(é87(t)))% (aBl+gY+gt)d[
am et
== BIELOP +W(Ees(r))
[(1 + EV)Z + 28(1 + Sy)t + 82t2] dt
@1 = %%z(&Bl)Jrcng +op(1) = %%2(331)%8(1),
since y > %

Now we divide the discussion into three different cases:

Case (A) Letn € H'(B;,S?) be such that n- Vop, =0 on dBy, and
(4.2) E(n;By) = Yq,
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where %, is given by (1.36) and (1.37). Assume 72 € H!(Bj12¢7,S?) be
such that 7 = »n in By, and

/ Vil dx = 0p(1).
By 12e7\Bl

Then we have
/ $t (Wor (1, Vi) + a| Vil*) dx
]R3

§/B si(WoF(n,Vn)+Oc|Vn\2)dx—|—Csi/B \Vi|? dx
1

14267 \B1

(4.3) = Dy+o0e(1).
While

y /R . (L1 (VSe - 71)* 4+ L3(VSe - 1) (Sedivit) ) dx|

—[ [ (Ve i)+ La(Vie ) (ediv) d
By ,e7\Bi

gc(/ \V§g~ﬁ\2dx+/ Vil d)
By 57 \By By 5e7\Bi

<oemyrce [ g I e )P a

By 12e7\B1

44)  <oe(l)+C |Via|* dx = 0s(1).
Bl+285\Bl

Therefore by putting together (4.1), (4.3), and (4.4), we arrive at

limsup [ # (sg,ne,Vse,Vng)dx < limsup [ W (Se,n1, VS, Vii)dx

e—0 JR3 e—0 JR3

4.5) < %%2(&31) + D
Case (B) Let n € H'(B;,S?) be such that n A Vyp, =0 on dBy, and
4.6) E(n;By) = I,

where Zp is given by (1.39) and (1.40). Assume 71 € H1(31+287,S2) be
such that 7 = n in By, and

/ \Vii|* dx = 0¢(1).
BI+2£7\BI

Then we have
/ 5t (Wor (71, Vit) + a|Vi|?) dx
RS

(4.7)§/ si(WOF(n,vn)+a|vnyz)dx+csi/ Vil2dx = T+ 0e(1).
By

142¢7\B1
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While

\/ﬂ@ (La|VSe A2 + L (3 Ve ) (Vi) x|

:\/B \ (La|VSe A2+ La(3eVSe) (Vi) dx]
1427 \P1

gc(/ |V$e Afi|* dx+ |Vii|* dx)
By 57 \Bl By 27 \Bl

§08(1)+C872/B yéey’ (M)}n(x)— |x| ‘ dx

142¢7 \B1

4.8) <oe(1)+C |Via|* dx = 0s(1).
Bl+2£5\Bl

Therefore by putting together (4.1), (4.7), and (4.8), we arrive at

limsup “//(se,ng,Vss,Vne)dx < limsup “//(sg,n V§e, Vi) dx

£—0 R3 £—0 R3

4.9) < %%2@31) + P
Case (C) Let n=(0,0,1) € S>. Then by (4.1) we see that
/SWN(sg,ng,vsg,Vng)dx < /377(§£,ﬁ,V§E,Vﬁ)dx
R R

. L.
- /}R3 (]nglz—i—?W(sg))dx

(4.10) < 2H9B1) +oe(1).

4.2 Refined lower bounds

In this subsection, we will sketch the proof of a sharp a lower bound estimate
for the cases (A), (B), and (C). The ideas are similar to those presented in the
section 3 for bounded domain cases, except that we will work on the entire space
R® where we only have the weak compactness property of BV(IR?) locally in R>.
We will focus on the case (A), and only sketch the cases (B) and (C).

Case (A) First, as in the discussion of the section 3.2, there exists 1 > 0 such that
/ %(sg,n&ng,Vns)dx

@it 2 [ VBW @A S e p [ (FHVneP o+ (e ne)?) d



4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

4.19)

PHASE TRANSITIONS AND LC DROPLETS 55

and

/3%(sg,ng,ng,Vng)dx
R
zu/ sﬁ]Vnglzdx+%/+\/BW(r)/ cos® 0. d.A#*dt
R3 € Jo * e (1)
2 S
2 [ VBWERA#@" e(w) dv.

where .7 (7) = {x € R?: s¢(x) > 7}, cos 6, = % ‘ng, and

u
= >0.
SRV/ ETRRV/:

Notice that by the isoperimetric inequality (see, e.g., Case (C) below)
we have

% /0 " VBN (1) dr > La(8y).

It follows from (4.11), (4.12), (4.13) and (4.5) that there exists T, € (0,5 )
such that

| (VP + Vs neydx < Clu, )
Te(Te)

/ cos? Ogde%”z < Cs,
(T,

and
%2(8*5@(1&)) < %2(331) +o0¢(1).

By the isoperimetric inequality and the volume constraint condition, we
have that

ERICEAC)
2(0B))

To simplify the presentation, we denote by E¢ = .%%(7¢). Although E;
may not converge in L' (R3) due to the non-compactness of R3, we can
apply the quantitative stability theorem by Fusco-Maggi-Pratelli [15] (see
also [40]) to show that E. does converge in L! (]R3) after suitable transla-
tions. In fact, if we set the isoperimetric deficit and Fraenkel asymmetry

by

By| < | ()| < |Bi( )2 < [Bi|(14+0(1)).

) _ %Z(EE)
3|B1 5 |Ee |
then it follows from [15] that
A(Ee) < CS(Ee)? < 0g(1),

|EeAB,(x)|

—1, and 8(E :inf{
( 5) |E£‘

: 1B, (x)| = |Eel}.
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where we have used (4.16) and (4.17) in the second inequality of (4.19).
From (4.17), there exist xe € R and re = 1+ 0¢(1) such that after passing
to a subsequence,

|E¢AB,, (x¢)| — 0, as € — 0,
or equivalently,
(4.20) Ee = E:\ {x¢} — By in L'(R%).

Since the problem is invariant under translations, for simplicity we may
assume that x; = 0 so that E, = Eg. The rest of argument can be done
almost identically to the case (A) of Theorem 1.3 presented in section 3.2.
For instance, we can show that there exists n € H'(By,S?) such that

se — sy in L*(By), ne —n in H'(By),

and
n(x)-x=0 on JB.

Moreover, by the lower semicontinuity we have that

Dp < E(n:B)) :si/ (Wor (n,Vn) + | Va[?) dx

1

< liminf (ngoF(ne, Vne) + | Vne ’2
e=0 JE,

4Ly (Vse -ne)* + Ly(Vse - ng)SgdiVng) dx

—~ 1
o 2
:llmlnf(/R37/(s£,ng,ng,Vng)dx—/]R3 (|Vse| —I—?W(sg))dx)
< Dy.

Hence
E(n;By) = Dy, /R} ”/,/v(sg,ng,ng,Vng)dx > %%2(881) + Da+o0g(1).
Case (B) First, as in the discussion of the section 3.2, there exists ¢ > 0 such that
/]1{3 %(sg,ng,ng,Vng)dx
> 25* /OS+ \/W/a*ygm sin? 0, d. >

(4.21) +§/OS+ VBW (1) (9* (7)) d7,
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2 and

where U, = and sin” 6, = \% Ang

K
VE+B+VB
/3%(S£7n87vsfyvn£)dx
R
Z,U/ (sﬁ]Vng|2—|—|Vs8 /\ng|2) dx
R3

(4.22) +§/Os+ VBW (1) %(0* e (1)) d.

As in the case (A), we can find 7 € (0,55 ) such that

(4.23) / ( )(sgyvne|2+|vssm£|2)dx§C(u, D),
e(Te
(4.24) / sin’ 0, d. % < Ce,
Fe(Te)
and
(4.25) A" S (Te)) < A (IB)) +0e(1).

As in the discussion of Case (A) above, we can apply the quantitative
stability theorem of [15] to conclude that after passing to a subsequence,

Se(te) — By in L'(R?).

Furthermore, by an argument similar to Case (B) of Theorem 1.3 presented
in the section 3.3, there exists a n € H'(By,S?) such that

se — s, in L*(By), ne —n in H'(B)),
n(x) Ax=0 on 9By,

and by the lower semicontinuity,

P <E(m;B)) = si/B (Wor (n,Vn) + a|Vn|?) dx
1

< liminf / (seWor (ne, Vne)
e=0 JE,
+a’vng|2+L2|VSg /\n8|2+L4SgVSg'(Vng)n8)d.x

—~ 1
:liminf</ W(sg,ng,ng,Vng)dx—/ (]ng]2+—2W(sg))dx)
R3 R3 E

£—0

< lim (S2#2(9B1) + D+ 0e(1) - LA 9B1)) = T,

£—0

Hence

E(n;B)) = T, /3 W (se,ne, Vse, Vig) dx > %%ﬂ(a&) + D+ 06 (1).
R
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Case (C) This case is the simplest, since it reduces to the iso-perimetric inequality:

— 1
/RSW(sg,ng,ng,Vng)de /1R3 (|VS€|2+?W(SS))dx
Zz/ V BW (s¢)|Vse|dx

€ JR3
22 [V BV A0 (R seln) 2 7))

Since
‘{XGR3 :ose(x) > T}‘ > ’{x€R3 : se(x) Zs+}‘ =|Bi|, VO<T <5,
it follows from the isoperimetric inequality in R that for all 0 < 7 < s,

2
3

A xR sp(x) > 1)) > (367)7 | {x € R s5p(x) > 7}

> (36m)3|By |5 = #2(9B)).
Hence we obtain that

(4.26) /3 W (se,ne, Vse, Vng)dx > %%)2(331).
R

Completion of Proof of Theorem 1.4. 1t is readily seen that Theorem 1.4 follows by
combining the arguments from both section 4.1 and section 4.2. U
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