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Abstract

Liquid crystal droplets are of great interest from physics and applications. Rigor-

ous mathematical analysis is challenging as the problem involves harmonic maps

(or Oseen-Frank energy minimizers in general), free interfaces and topological

defects which could be either inside the droplet or on its surface along with some

intriguing boundary anchoring conditions for the orientation configurations. In

this paper, through a study of the phase transition between the isotropic and ne-

matic states of liquid crystal based on the Ericksen model, we can show, when the

size of droplet is much larger in comparison with the ratio of the Frank constants

to the surface tension, a Γ-convergence theorem for minimizers. This Γ-limit

is in fact the sharp interface limit for the phase transition between the isotropic

and nematic regions when the small parameter ε , corresponding to the transition

layer width, goes to zero. This limiting process not only provides a geometric de-

scription of the shape of the droplet as one would expect, and surprisingly it also

gives the anchoring conditions for the orientations of liquid crystals on the sur-

face of the droplet depending on material constants. In particular, homeotropic,

tangential, and even free boundary conditions as assumed in earlier phenomeno-

logical modelings arise naturally, provided the surface tension, Frank-Ericksen

constants are in suitable ranges.
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1 Introduction and statement of results

1.1 Isotropic and nematic phase transitions

Liquid crystal is a state of matter between liquid and solid, where the molecules

tend to align locally in a common direction and form an anisotropic structure. This

orientational order produces an anisotropic complex fluid with remarkable optical

features, which have profound applications in optical and display devices. There

are many phases in liquid crystals including isotropic, nematic, and smectic phases.

Perhaps the most common one is the nematic phase, where the molecules exhibit

an orientational order in the absence of translational order. Under the influences

of either external electric-magnetic fields, or thermal changes, or compositional

changes, liquid crystals often undergo phase transitions. In the process of phase

transitions, there form regions of different phases and thin fast transitional layers

around sharp surfaces, across which the nematic order parameter becomes discon-

tinuous.

For simple fluids, the phase transitions between two mixed fluids are usually

driven by the interface tensions so that the geometric shape of a sharp free interface

takes the form of either an area minimizing surface or surface of constant mean

curvature that minimizes areas with volume constraint of enclosed regions. This

phase transition problem has been extensively studied by many authors, including

Modica-Mortola [43], Modica [42], Sternberg [49], Kohn-Sternberg [39], through

the technique of De Giorgi’s Gamma-convergence in the framework of (scalar-

valued) Allen-Cahn energy functional with double-well potentials. Fonseca-Tartar

[14], Sternberg [50], and Andre-Shafrir [4] studied the gradient theory of phase

transitions involving Allen-Cahn type energy functionals with potential wells of

points or curves in R
2. More recently, partly motivated by the celebrated Keller-

Rubinstein-Sternberg problem [30], Lin-Pan-Wang [34] have made a systematic

study of the vectorial singular perturbation problem of general high dimensional

wells, see also [35].

In contrast with simple fluids, the anisotropic structure of liquid crystals implies

that both elastic constants of liquid crystal materials in the nematic region and an-

choring angles of nematic liquid crystal director fields on the transitional interface

will play important roles in determining the shape, possible defect structures and

the stability of the interfaces. These are mathematically very challenging problems.

There have been numerous works in the literature, including modeling and exper-

iments, modular simulations and numerics, on phase transitions in liquid crystals

by physicists and engineers, see [45, 46]. The study of the isotropic-nematic in-

terface based on the Ginzburg-Landau-de Gennes (LGdG) theory was initiated in

a paper by de Gennes [6], where the structure of the infinite, flat isotropic-nematic

interface in a uniform uniaxial ansatz solution was analyzed. In general, nematic

ordering is strongly influenced by confining surfaces, which can impose and favour

a particular anchoring condition (e.g. homeotropic, planar, or oblique anchoring)
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on the nematic state. It turns out that the relative sizes of different elastic co-

efficients also play important roles on anchoring conditions on the interface, see

Kamil-Bhattacharjee-Adhikari-Menon [27, 28]. There are proposed forms of the

surface energy by Chanderashka [5], Ericksen [11] based on a phenomenological

theory. Besides some earlier works by Virga [51] and Lin-Poon [37], there is an

obvious lack of mathematical understanding of these problems. In [7], Dio and

Kuzuu studied the structure of the interface between the coexisting isotropic and

nematic phases of a lyotropic liquid crystal, and found an explicit formula of the

interfacial tensions in terms of anchoring angles and the length and diameter of the

liquid crystal molecule, which favour the planar anchoring. It is known that the

nematic structure in the interfacial region can differ substantially from the nematic

structure in the bulk. For example, it was shown by Popa-Nita-Sluckin-Wheeler

[47] a region proximate to the interface can exhibit biaxiality within the LGdG

theory, even if the stable nematic phase is purely uniaxial, provided planar anchor-

ing is enforced on the interface. Such a biaxiality is absent if the anchoring is

homeotropic [6], see also [27, 28].

The Landau-Ginzburg-de Gennes model is certainly more flexible and may also

be more consistent from both mathematical and physical point of views. For exam-

ple, it can be derived rigorously from microscopic (molecular/kinetic) models. It

can be used to describe more complex defect structures, both uniaxial and biaxial.

In fact, purely uniaxial solutions are very rare in the Landau-Ginzburg-de Gennes

model though in many situations they are well approximated by uniaxial ones,

see Henno-Majumdar [21] and Majumdar-Zarnescu [29]. The Landau-Ginzburg-

de Gennes model in principle may also lead to anisotropic surface energies. This

would result in different shapes of droplets and defect patterns within them. But

for the analysis of Landau-Ginzburg-de Gennes model, the complexity is formida-

ble. If the energy density functions are quadratic in gradient of Q with coefficients

that are quadratic polynomials in Q, then there are 22 invariants (and 13 surface

terms) along with 4 null-Lagrangians. If one would consider additional chiral ef-

fects one may need 2 to 4 additional terms, see [20] and [22]. On the other hand,

with much simplified energy functionals as considered by various authors recently,

we believe that the analysis in this current paper can be applied without essential

difficulties. There are very few mathematical works on the phase transitions of ne-

matic liquid crystals in high dimensions within the LGdG theory. Let us mention

in this direction the work by Park-Wang-Zhang-Zhang [48] in dimension one, and

Golovaty-Novack-Sternberg-Venkatraman [16, 17] in dimension two.

We can formally derive for these simplified models that in the isotropic-nematic

sharp interface transitions, the biaxial property of solutions and their defects con-

tribute only lower orders to the total energy of the system. Thus it does not affect

too much the shape of droplet, rather the detailed structure of defects that could

be biaxial in nature near defects. This is one of the important reasons that in this

article, we shall adopt the reduced Landau-Ginzburg-de Gennes model, or the so-

called Ericksen’s model for the uniaxial nematic liquid crystals of variable degrees
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of orientations. This model is natural and relatively simple, and mathematically

it is self-contained and consistent. It can accommodate point defects, disinclina-

tions and domain walls in liquid crystals for which rigorous analysis is possible.

Moreover, it can keep the classical Oseen-Frank model, favored by many physi-

cists, intact. Since the surface tension in such highly viscous fluids is quite large,

the ratio between Frank elastic constants and surface tension is often very small

compared to the size of typical droplets. It leads us to the study of the phase tran-

sition problems formulated in a form of singular perturbations for the Ericksen

energy functional and consequently a sharp interface limiting problem. We will

need some Γ-convergence techniques that the authors have developed for vector-

valued variational problems in [34, 35]. Here the coexisting isotropic and nematic

states are separated by an interface in which order parameters rise from zero on

the isotropic side of the interface to saturated, non-zero values on the nematic side.

The nematic regions are what we have referred as droplets, and in this way we treat

nematic droplets (positioned in an isotropic liquid), and their boundaries are the

isotropic-nematic interfaces within the same framework of Ericksen’s model. Nat-

urally, one can also study droplets containing isotropic liquid immersed in a volume

of nematic liquid crystals. Of particular interest is that the anchoring conditions for

nematic liquid crystal configurations at the boundary of droplets are intrinsically

determined by the material constants, and can be derived from this sharp interface

limit instead of that it needs to be assumed in phenomenological models.

1.2 Technical descriptions of main theorems

In the framework of Ericksen’s theory [12] (see also [32, 33]), a nematic liq-

uid crystal configuration is described by a pair of parameters (s,n) : Ω ⊂ R
3 7→

[−1
2
,1]×S

2, where s(x) denotes the degree of orientation and n(x) denotes the av-

erage orientation field at a point x ∈ Ω. In particular, at a point x ∈ Ω molecules

are perfectly aligned in the direction n(x) when s(x) = 1, while molecules are per-

pendicular to n(x) when s(x) =− 1
2
.

The Ericksen energy density function is assumed to take the form [12]

W (s,n,∇s,∇n) = W2(s,n,∇s,∇n)+W0(s),

where

W2(s,n,∇s,∇n)

= s2
[
k1(divn)2 + k2(n · curln)2 + k3|n∧ curln|2

+(k2 + k4)(tr(∇n)2 − (divn)2)
]
+αs2|∇n|2

+β |∇s|2 +L1(∇s ·n)2 +L2|∇s∧n|2 +L3(∇s ·n)(sdivn)+L4s∇s · (∇n)n.(1.1)

Here α,β > 0, k1 ≥ 0,k2 ≥ 0,k3 ≥ 0 are Frank elasticity constants, and k4 is another

constant that, throughout this paper, is assumed to satisfy

k2 ≥ |k4| and 2k1 ≥ k2 + k4,
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and L1 ≥ 0,L2 ≥ 0,L3,L4 are also constants. W0(s) is a Landau type bulk potential

function that dictates isotropic and nematic phases.

It follows from the fact that |n|= 1 and direct calculations that

|n∧ curln|2 = |(∇n)n|2, |∇s|2 = (∇s ·n)2 + |∇s∧n|2.
Hence, as in Ericksen [12] and Lin-Poon [36, 37], we can reorganize the expression

of W2 into the form

W2(s,n,∇s,∇n) = s2
[
k̄1|divn|2 + k2(n · curln)2 + k̄3|n∧ curln|2

+(k2 + k4)(tr(∇n)2 − (divn)2)
]
+αs2|∇n|2 +(β −L2)|∇s|2

+k5|∇s− (∇s ·n)n−νs(∇n)n|2 + k6|∇s ·n−σsdivn|2,(1.2)

where 



σ =− L3

2(β+L1)
, ν =− L4

2(β+L2)
,

k̄1 = k1 −σ2k6 = k1 − L2
3

4(β+L1)
,

k̄3 = k3 −ν2k5 = k3 − L2
4

4(β+L2)
,

k5 = β +L2, k6 = β +L1.

Based on the physical hypothesis of positivity of the energy density [12], it is

usually assumed

(1.3) k̄1 ≥ 0, k2 ≥ 0, k̄3 ≥ 0, k2 ≥ |k4|, k5 ≥ 0, k6 ≥ 0, β > L2.

Hence W2(s,n,∇s,∇n) enjoys the coercivity in sn and quadratic growth of ∇(sn):

(1.4) λ (|∇s|2 + s2|∇n|2)≤ W2(s,n,∇s,∇n)≤ Λ(|∇s|2 + s2|∇n|2)
for two positive constants λ < Λ < ∞ depending only on the coefficients in (1.1).

A sharp interface forms when the size of a liquid crystal droplet is much larger

than the ratio of the Frank constants to the surface tension. In order to study the

sharp interface formation between the isotropic phase, corresponding to {s = 0},

and the nematic phase, corresponding to {s = s+} for some s+ ∈ (0,1), we will

assume the bulk potential function takes the form:

W0(s) =
1

ε2
W (s),

where ε > 0 is a small parameter representing the width of the interfacial transition

region, and the potential function W ∈C∞((−1
2
,1)) is assumed to be nonnegative,

and there exists a unique s+ ∈ (0,1) such that

(1.5)





W (0) =W (s+) = 0, W (s) =W (s+− s) ∀0 ≤ s ≤ s+,

∀δ1 > 0,∃δ2 > 0 such that |s| ≥ δ1 and |s− s+| ≥ δ1 =⇒W (s)≥ δ2,

lim
s→(− 1

2
)+

W (s) = lim
s→1−

W (s) = +∞,

In particular, W has two minimal wells of depth zero at 0 and s+, and

W (s)≈ s2 for |s|<< 1, and W (s)≈ (s− s+)
2 for |s− s+|<< 1.
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For s 6∈ [− 1
2
,1], we can simply let W (s) = +∞ so that W is defined for all s ∈ R.

By direct calculations we have the identity

div
(
s2((∇n)n− (divn)n)

)
= s2

(
tr(∇n)2 − (divn)2

)

+2s∇s
(
(∇n)n− (divn)n

)
.(1.6)

Also recall the null Lagrangian property of div
(
s2((∇n)n− (divn)n)

)
(see Hardt-

Kinderlehrer-Lin [23]), that is,

(1.7)

∫

Ω

div
(
s2((∇n)n− (divn)n)

)
dx, sn ∈ H1(Ω,R

3),

depends only on the value of (s,n) on ∂Ω.

It turns out that both (1.6) and (1.7) will play a crucial role in our study of phase

transitions between the isotropic and the nematic phases. From now on, we set

(1.8) Wε(s,n,∇s,∇n) = W2(s,n,∇s,∇n)+
1

ε2
W (s).

The problem of sharp interface formations between the isotropic and nematic

phases depends on the relations between the Frank constants L1 and L2. From

(1.9) |∇s|2 = |∇s ·n|2 + |∇s∧n|2,
we see that

β |∇s|2 +L1(∇s ·n)2 +L2|∇s∧n|2

=





(β +L2)|∇s|2 +(L1 −L2)(∇s ·n)2, L1 > L2,

(β +L1)|∇s|2 +(L2 −L1)|∇s∧n|2, L1 < L2,

(β +L1)|∇s|2, L1 = L2.

Hence we can reduce the case L1 > L2 into the case (A); the case L1 < L2 into the

case (B); and the case L1 = L2 into the case (C). More precisely, we have

(A) L1 > 0 and L2 = 0 . By adding the null-Lagrangian term

−1

2
L4div

(
s2((∇n)n− (divn)n)

)

to Wε and applying (1.6) and (1.7), we can convert Wε into

W̃ε(s,n,∇s,∇n) = s2
W̃2(s,n,∇s,∇n)+β |∇s|2 +L1|∇s ·n|2

+(L3 −L4)(∇s ·n)(sdivn)+
1

ε2
W (s),

where

W̃2(s,n,∇s,∇n) = W2(s,n,∇s,∇n)− 1

2
L4s2

(
tr(∇n)2 − (divn)2

)
.

Thus, without loss of generality, we will further assume L4 = 0 .
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(B) L1 = 0 and L2 > 0 . By adding the null-Lagrangian term

1

2
L3div

(
s2((∇n)n− (divn)n)

)

to Wε , we can convert Wε into

W̃ε(s,n,∇s,∇n) = s2
W̃2(s,n,∇s,∇n)+β |∇s|2 +L2|∇s∧n|2

+(L3 +L4)(s∇s)(∇n)n+
1

ε2
W (s),

where

W̃2(s,n,∇s,∇n) = W2(s,n,∇s,∇n)+
1

2
L3s2

(
tr(∇n)2 − (divn)2

)
.

Thus, without loss of generality, we will further assume L3 = 0 .

(C) L1 = L2 = 0 We will only consider the following two subcases:

(C1) L3 = L4 = 0 . Hence W2 can be rewritten as

W̃2(s,n,∇s,∇n) = s2
[
k1(divn)2 + k2(n · curln)2 + k3|n∧ curln|2

+ (k2 + k4)(tr(∇n)2 − (divn)2)
]

+ αs2|∇n|2 +β |∇s|2.(1.10)

(C2) L4 =−L3 . Hence after adding the null Lagrangian term

L3div
(
s2((divn)n− (∇n)n)

)

to W2, we can convert W2 to W̃2

W̃2(s,n,∇s,∇n)

= s2
[
k1(divn)2 + k2(n · curln)2 + k3|n∧ curln|2

+(k2 + k4 +L3)(tr(∇n)2 − (divn)2
]

+αs2|∇n|2 +β |∇s|2.(1.11)

(C1) yields (C2) by replacing (k2 + k4 +L3) by (k2 + k4).

We would like to summarize these preliminary discussions of the assumptions

on coefficients Li’s of the Ericksen energy density W2 into the following:

Proposition 1.1. Assume the strong positivity of the Ericksen energy density. Then,

when the Ericksen constants satisfy L1 > L2, it can be reduced to an equivalent

one with (∗) : L1 > L2 = L4 = 0, and L2
3 < 2αL1 (strong positivity). If, instead,

L1 < L2, then the model reduces to an equivalent one with (∗∗) : L2 > L1 = L3 = 0,

and L2
4 < 4αL2 (strong positivity). Henceforth, we shall refer to the case (A) if

(∗) is valid, and the case (B) if (∗∗) is satisfied. Finally, If L1 = L2, then we

shall only consider the situation which will be referred to as the case (C), that is,

L1 = L2 = L3 = L4 = 0.
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Through this paper, we denote by H 2 the two dimensional Hausdorff measure

in R
3. Define the 1-dimensional minimal connecting energy by

α0 = inf
{∫

∞

−∞

(
β ṡ(t)2 +W (s(t))

)
dt

∣∣ s ∈C0,1((−∞,∞),R),

s(−∞) = 0, s(∞) = s+

}
.(1.12)

It is well-known that α0 is attained by an ξ ∈C∞((−∞,∞),R), which satisfies

(1.13)
√

βξ ′(t) =
√

W (ξ (t)) in (−∞,∞); ξ (−∞) = 0, ξ (∞) = s+,

and

α0 = 2
√

β

∫ s+

0

√
W (t)dt

= inf
{

2

∫
∞

−∞

√
βW (s(t))|ṡ(t)|dt

∣∣ s ∈C0,1((−∞,∞),R),

s(−∞) = 0, s(∞) = s+

}

= inf
{

2

∫ a

−a

√
βW (s(t))|ṡ(t)|dt

∣∣ s ∈C0,1([−a,a],R),

s(−a) = 0, s(a) = s+

}
,(1.14)

for any a > 0.

Now we state our first theorem. It concerns the Γ-convergence of minimizers

of the Ericksen energy functional

E (sε ,nε) :=
∫

Ω

W̃ε(s,n,∇s,∇n)dx,

where W̃ε(s,n,∇s,∇n) = W̃2(s,n,∇s,∇n)+
1

ε2
W (s),(1.15)

either under well prepared Dirichlet boundary values (tε ,gε) when Ω ⊂ R
3 is a

bounded smooth domain, or under the volume constraint for nematic region when

Ω = R
3, as ε → 0. Notice that for any fixed ε > 0, the existence and regularity of

minimizer (sε ,nε) to (1.15) have been studied by Lin [32, 33], Lin-Poon [36] and

Ambrosio [2, 3].

For a bounded smooth Ω ⊂R
3, we prescribe (tε ,gε) : ∂Ω →R×S

2 as follows.

Let Σ
± ⊂ ∂Ω be two disjoint, connected open subset of ∂Ω such that

i) ∂Σ
± = Σ

0 is a smooth, closed curve of ∂Ω, and ∂Ω = Σ
+∪Σ

−∪Σ
0.

ii) there exists L > 0 such that tε ∈ H1
(
∂Ω

)
satisfies

(1.16)
∥∥tε

∥∥
L2(Σ−) → 0 and

∥∥tε − s+
∥∥

L2(Σ+)
→ 0, as ε → 0,

(1.17) sup
0<ε<1

∫

∂Ω

(
ε(|∇tantε |2 +

1

ε
W (tε)

)
dH

2 ≤ L,
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and there exists a map n̂ε ∈ H1(Ω,S2) such that n̂ε = gε on ∂Ω, and
{

n̂ε ·νΓ

∣∣
Γ
= 0 under the condition (A),

n̂ε ∧νΓ

∣∣
Γ
= 0 under the condition (B),

lim
ε→0

ε

∫

Ω

|∇n̂ε |2 dx = 0,

(1.18)

where Γ ⊂ Ω is an area minimizing surface such that ∂Γ = Σ
0.

Theorem 1.2. Assume either the condition (A), or (B), or (C) holds. Then the

following statements hold:

i) If Ω ⊂R
3 is a bounded smooth domain and (tε ,gε) : ∂Ω →R×S

2 satisfies

(1.16), (1.17) and (1.18), then

lim
ε→0

inf
{∫

Ω

εW̃ε(s,n,∇s,∇n)dx
∣∣ (s,n) : Ω → R×S

2
,

sn ∈ H1(Ω,R
3), (s,n)

∣∣
∂Ω

= (tε ,gε)
}
= α0H

2(Γ),(1.19)

where Γ ⊂ Ω is an area minimizing surface with ∂Γ = Σ
0.

ii) If Ω = R
3, then

lim
ε→0

inf
{∫

R3
εW̃ε(s,n,∇s,∇n)dx

∣∣ (s,n) : R3 → R×S
2
, sn ∈ H1(R3

,R
3),

∣∣{x ∈ R
3 : s(x)≥ s+}

∣∣= |B1|
}
= α0H

2(∂B1),(1.20)

where B1 is a ball of radius 1.1

Theorem 1.2 can be proved in the framework of Γ-convergence:

1) First, under the conditions on the coefficients Li’s and α , we can show the

energy is bounded below by
∫

Ω

(
εβ |∇sε |2 +

1

ε
W (sε)

)
dx,

which becomes a scalar-valued Allen-Cahn functional so the technique in

the BV function space, as in [43], or the isoperimetric inequality in R
3 can

be employed to show it is bounded below by α0H
2(Γ).

2) Secondly, we construct a comparison map (sε ,nε) by letting nε = n̂ε and

by placing an almost optimal 1-dimensional orbit sε(x) = ξL(
dΓ(x)

ε ) in the

transversal direction to Γ within Lε-width (with L >> 1), and away from

this region, sε is made to have very small spatial variations. It turns out that

the contribution of anchoring energy

∫

ΓLε

|∇sε · n̂ε |2 dx or

∫

ΓLε

|∇sε ∧ n̂ε |2 dx

can be made arbitrarily small.

1 the volume constraint |{x ∈R
3,s(x)> s+}|= |B1| can be replaced by |{x ∈R

3,s(x)> s+}|= λ
for any λ > 0. For convenience, we choose λ = |B1|.
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It follows from Theorem 1.2 that the leading order term of E (sε ,nε) for mini-

mizers (sε ,nε) is
α0

ε
H

2(Γ), so that

E (sε ,nε) =
α0

ε
H

2(Γ)+D(ε).

An important question is to ask for the asymptotic behavior of D(ε), which is

our focus in this work. For this purpose, we will need to assume that the boundary

value (tε ,gε) provides an almost optimal transition in the fast transition area on ∂Ω

across the interfacial curve Σ
0.

To describe our results, we need to introduce some notations. Set the Oseen-

Frank energy density for n, with |n|= 1, by

WOF(n,∇n) = k1(divn)2 + k2(n · curln)2 + k3|n∧ curln|2

+(k2 + k4)
(
tr(∇n)2 − (divn)2

)
.(1.21)

For δ > 0, define the δ -neighborhood of ∂Ω and Γ by

(∂Ω)δ =
{

x ∈ Ω : d(x,∂Ω)< δ
}
,

and

Γδ =
{

x ∈ Ω : d(x,Γ)< δ
}
= ∪−δ<λ<δ Γ(λ ),

where Γ(λ ) =
{

x ∈ Ω : dΓ(x) = λ
}

, and dΓ(x) is the signed distance function of x

to Γ:

dΓ(x) =

{
−d(x,Γ) x ∈ Ω

−,

d(x,Γ) x ∈ Ω
+.

The following notations will be used in the proofs of later sections. Let Ω
± ⊂Ω

be the connected components such that ∂Ω
± = Σ

±∪Γ. Set

Γ
±
δ = Γδ ∩Ω

±
, U±

δ = Ω
± \Γδ , Σ

±
δ = Σ

± \Γδ , Q±
δ =U±

δ ∩ (∂Ω)δ ,

Ωδ = Ω\ (∂Ω)δ , Ω
±
δ = Ωδ ∩Ω

±
, V±

δ = Ω
±
δ \Γδ ,

and

W±
δ = Ω

±
δ ∩Γδ , Oδ = Γδ \ (W+

δ ∪W−
δ ).

It follows from the condition (1.5) and Proposition A.4 of [34] that for any

γ ∈ (1
2
,1), there exist an almost minimal orbit ξε,γ ∈ C∞([−εγ−1,εγ−1],R) and

C1,C2,C3 > 0 independent of ε such that

(1.22)





ξε,γ(−εγ−1) = 0, ξε,γ(ε
γ−1) = s+,

ξε,γ(t) = s+−ξε,γ(−t), ∀t ∈ (−εγ−1,εγ−1),

max
|t|≤εγ−1

∣∣∣β |ξε,γ
′|2 +W (ξε,γ)−2

√
βW (ξε,γ)|ξ ′

ε,γ |
∣∣∣≤C2e−C1εγ−1

,

∫ εγ−1

−εγ−1

(
β |ξε,γ

′|2 +W (ξε,γ)
)

dτ ≤ α0 +C2e−C1εγ−1

,

∣∣ξε,γ
′(t)

∣∣≤C2e−C1t , ∀|t| ≥C3.
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We assume that

(1.23)





tε(x) = ξε ,γ(
dΓ(x)

ε
), x ∈ Σ

+
εγ ∪Σ

−
εγ =

{
x ∈ ∂Ω : −εγ ≤ dΓ(x)≤ εγ

}
,

∥∥tε − s+
∥∥

L2(Σ+\Γεγ )
= O(ε) and

∥∥tε
∥∥

L2(Σ−\Γεγ )
= O(ε),

lim
ε→0

εγ
∫

∂Ω\Γεγ

|∇tantε |2 dH
2 = 0.

To simplify the technical presentation, we will assume that there exists a map

g ∈ H1(∂Ω,S2) such that (i) gε → g in H1(∂Ω), and (ii)2

(1.24) gε = g on ∂Ω∩Γεγ , and
∥∥gε −g

∥∥
L2(∂Ω\Γεγ )

= oε(1)ε
γ
.

Recall that a minimal surface S is called strictly stable, if, in addition,

(1.25)
d2

dt2

∣∣
t=0

H
2
(
{x+ tφ(x)νS(x) : x ∈ S}

)
> 0, ∀0 6≡ φ ∈C∞

0 (S),

where νS is a unit normal vector field of S.

The main contributions of our paper concern the characterization of the O(1)-
term, D(ε), in the energy expansion of E (sε ,nε). We divide our results into two

separate theorems. The first one deals the case that Ω is a bounded domain in R
3.

Theorem 1.3. Let Ω ⊂ R
3 be a bounded smooth domain. Assume that Γ is a

unique, strictly stable, area minimizing surface spanned by Σ
0, and the boundary

values (tε ,gε) satisfy conditions (1.17), (1.22), (1.23), and (1.24). Let (sε ,nε), 0 <

ε < 1, be minimizers of
∫

Ω
W̃ε(s,n,∇s,∇n)dx, subject to the boundary condition

(sε ,nε) = (tε ,gε) on ∂Ω. Then we have the following:

A) Under the condition (A),

(1.26) E (sε ,nε) =
α0

ε
H

2(Γ)+DA +oε(1).

Here DA is given by

(1.27) DA = inf
{

E(n;Ω
+) = s2

+

∫

Ω+

(
WOF(n,∇n)+α|∇n|2

)
dx
}

among all maps n ∈ H1(Ω+,S2) satisfying the planar anchoring condition

on Γ:

(1.28) n = g on Σ
+; n ·νΓ = 0 on Γ,

where νΓ is the outward unit normal of the nematic region Ω
+ ≡

{
x ∈ Ω :

s(x) = s+
}

.

2 this assumption is technically restrictive, which plays a role in constructing a comparison di-

rector map nε : Ω → S
2 such that its contribution to the Oseen-Frank energy on a part of transition

region Γεγ ∩ (∂Ω)εγ is of order εγ , see (3.6) below.
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B) Under the condition (B),

(1.29) E (sε ,nε) =
α0

ε
H

2(Γ)+DB +oε(1).

Here DB is given by

(1.30) DB = inf
{

E(n;Ω
+) = s2

+

∫

Ω+

(
WOF(n,∇n)+α|∇n|2

)
dx
}

among all maps n∈H1(Ω+,S2) satisfying the homeotropic anchoring con-

dition on Γ:

(1.31) n = g on Σ
+; n∧νΓ = 0 on Γ.

C) Under the condition (C),

(1.32) E (sε ,nε) =
α0

ε
H

2(Γ)+DC +oε(1).

Here DC is given by

(1.33) DC = inf
{

E(n;Ω
+) = s2

+

∫

Ω+

(
WOF(n,∇n)+α|∇n|2

)
dx
}

among all maps n ∈ H1(Ω+,S2) satisfying the free boundary condition on

Γ and the strong anchoring condition on Σ
+:

(1.34) n(Γ)⊂ S
2; n = g on Σ

+
.

We would like to remark that the interior regularity and boundary regularity

near Σ
+ of minimizing harmonic maps n ∈ H1(Ω+,S2) achieving DA, or DB, or

DC has been studied by Hardt-Kinderlehrer-Lin [23]. For the boundary regularity

of n near the interface Γ when the isotropic Oseen-Frank energy is considered, we

refer to Hardt-Lin [25] and Duzaar-Steffen [8, 9] for partially constrained or free

boundary conditions, and Day-Zarnescu [10] under the planar anchoring condition.

The second one considers the entire space Ω = R
3.

Theorem 1.4. Let (sε ,nε) : R3 → R×S
2, 0 < ε < 1, be minimizers of

∫

R3
W̃ε(s,n,∇s,∇n)dx,

subject to the constraint:
∣∣{x ∈ R

3 : sε ≥ s+}
∣∣= |B1|.

Then the following statements hold:

A1) Under the condition (A),

(1.35) E (sε ,nε) =
α0

ε
H

2(∂B1)+DA +oε(1),

where DA is given by

(1.36)

DA = inf
{

E(n;B1) = s2
+

∫

B1

(
WOF(n,∇n)+α|∇n|2

)
dx

∣∣ n ∈ H1
(
B1,S

2
)}

,
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subject to the planar anchoring condition:

(1.37) n(x) · x = 0 on ∂B1.

B1) Under the condition (B),

(1.38) E (sε ,nε) =
α0

ε
H

2(∂B1)+DB +oε(1),

where DB is given by

(1.39) DB = inf
{

E(n;B1) = s2
+

∫

B1

(
WOF(n,∇n)+α|∇n|2

)
dx

∣∣ n∈H1(B1,S
2)
}
,

subject to the homeotropic anchoring condition:

(1.40) n(x)∧ x = 0 on ∂B1.

C1) Under the condition (C),

(1.41) E (sε ,nε) =
α0

ε
H

2(∂B1)+oε(1).

We would like to point out that for a bounded domain Ω⊂R
n, while the bound-

ary conditions imposed on (tε ,gε) in Theorems 1.1, 1.2, and 1.3 are physically nat-

ural, mathematically they are rather technical to describe. On the other hand, if we

consider the same type problems on a compact manifold M without boundary or a

torus Tn, then the natural condition would be the volume constraint on approximate

nematic regions {sε ≥ s+}. Hence the problem can be significantly simplified be-

cause we will have the compactness of the space (in contrast with R
n) and avoid the

technical issues arising from both the physical boundary and the boundary values.

We would like to remark that the regularity of minimizing harmonic maps in

the case (B1) was studied by [23] and [24, 25]. See [10] for some work related to

the boundary regularity of minimizing harmonic maps in the case (A1).

While the approach to prove Theorem 1.3 and Theorem 1.4 is based on the

technique of Γ-convergence, it is very delicate to obtain the exact characterization

of O(1)-term in the expansion of E (sε ,nε) especially when we deal with a bounded

domain Ω with physical boundary data.

1) For the construction of a sharp upper bound, we need to place an almost

minimal 1-dimensional orbit ξε,γ(
dΓ(x)

ε ) in the transversal direction of Γ

within the width of O(εγ), which guarantees the GL energy is of α0 +
oε(1)ε , while we have to utilize the decay property of ξ ′

ε,γ(t) ensuring∫

Γεγ

|∇sε ·nε |2 dx (or

∫

Γεγ

|∇sε ∧nε |2 dx) is of order oε(1).

2) To achieve a sharp lower bound, we need to extract a sequence of sets

of finite perimeters Eε =
{

x ∈ Ω : sε(x) ≥ δε

}
with uniformly bounded

perimeters such that H 2(∂ ∗EεbΩ)≈ H 2(Γ),
∫

Eε

|∇nε |2 dx ≤C, and

∫

∂ ∗EεbΩ

∣∣ ∇sε

|∇sε |
·nε

∣∣2 dH
2 (or

∫

∂ ∗EεbΩ

∣∣ ∇sε

|∇sε |
∧nε

∣∣2 dH
2)≤C.



14 F. LIN, C. WANG

Then we adapt the techniques from [34] and some measure theoretic ar-

guments to show that Eε → Ω
+, and nε → n in SBV(Ω) for some n ∈

H1(Ω+,S2) with n ·νΓ = 0 (or n∧νΓ = 0).

3) Utilize the strict stability of Γ to show that the leading order coefficients of
1
ε in both lower and upper bound estimates match up to order oε(1)ε .

When dealing with the entire space Ω = R
3, we observe that the approximate

nematic region Eε constitutes a minimizing sequence of sets that approach opti-

mality in the isoperimetric inequality so that we can apply the quantitative stability

theorem by Fusco-Maggi-Pratelli [15] (see also Maggi [40]) to show, after suitable

translations, Eε converges to B1 in L1.

Theorem 1.3 is also related to the optimal shape problem of variational prob-

lems on liquid crystal droplets previously studied by Lin-Poon [37]. More pre-

cisely, Lin and Poon [37] considered the following minimization problem

(1.42) inf
{∫

Ω

|∇n|2 dx+µH
n−1(∂Ω) | n∈H1(Ω,S

2),n(x) = ν∂Ω, |Ω|= |B1|
}
.

Among the class of convex domains Ω, it was shown by [37] that (Ω,u) = (B1,
x
|x|)

is a unique minimizer of (1.42). Very recently, this result was extended by Li-Wang

[38] to the class of star-shaped mean convex domains in R
3.

The paper is organized as follows. In section 2, we will establish both lower

and upper bounds of εEε(sε ,nε) and prove Theorem 1.2. In section 3, we will

study the bounded domain case and establish both refined lower and upper bounds

for Eε(sε ,nε) for all three cases and then prove Theorem 1.3. In section 4, we will

study the case that Ω is the entire space R
3 and prove Theorem 1.4.

2 Proof of Theorem 1.2

In this section, we will provide a proof of Theorem 1.2. It involves (a) a concrete

construction of comparison map (sε ,nε) in which sε exhibits a fast transition near Γ

with energy order α0

ε H 2(Γ); and (b) obtain the lower bound by typical arguments

of singular perturbations of functions of bounded variation.

2.1 Lower bound estimates

For either a bounded Ω ⊂ R
3 or Ω = R

3 itself, we assume that

(2.1) Λ = liminf
ε→0

εE (sε ,nε) = liminf
ε→0

∫

Ω

εW̃ε(sε ,nε ,∇sε ,∇nε)dx < ∞.

It follows from the condition (1.3) that

WOF(nε ,∇nε)≥ 0.

Observe that by Cauchy-Schwarz inequality, the following properties hold:

i) If 2L2
3 ≤ 4L1α , then

(2.2)

|L3(∇sε ·nε)sεdivnε | ≤
√

3|L3||∇sε ·nε ||sε ||∇nε | ≤ L1(∇sε ·nε)
2 +αs2

ε |∇nε |2,
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where we have used the inequality |divnε | ≤
√

2|∇nε | (see [31] for a proof).

ii) If L2
4 ≤ 4L2α , then

|L4sε∇sε(∇nε)nε | = |L4|
∣∣sε

(
∇sε − (∇sε ·nε)nε

)
(∇nε)nε

∣∣

≤ L2

∣∣∇sε − (∇sε ·nε)nε

∣∣2 +αs2
ε |(∇nε)nε |2

≤ L2|∇sε ∧nε |2 +αs2
ε |∇nε |2,(2.3)

where we have used the fact that nε ·((∇nε)nε) = 0, (1.9), and |(∇nε)nε | ≤
|∇nε |.

Since

W̃ε(sε ,nε ,∇sε ,∇nε) = s2
εWOF(nε ,∇nε)+αs2

ε |∇nε |2 +β |∇sε |2 +L1(∇sε ·nε)
2

+L2|∇sε ∧nε |2 +L3(∇sε ·nε)sεdivnε +L4sε∇sε(∇nε)nε +
1

ε2
W (sε),

we obtain that

i) Under the condition (A),

W̃ε(sε ,nε ,∇sε ,∇nε)

≥ αs2
ε |∇nε |2 +β |∇sε |2 +L1(∇sε ·nε)

2 +L3(∇sε ·nε)sεdivnε +
1

ε2
W (sε)

≥ β |∇sε |2 +
1

ε2
W (sε),

ii) Under the condition (B),

W̃ε(sε ,nε ,∇sε ,∇nε)

≥ αs2
ε |∇nε |2 +β |∇sε |2 +L2|∇sε ∧nε |2 +L4sε∇sε(∇nε)nε +

1

ε2
W (sε)

≥ β |∇sε |2 +
1

ε2
W (sε),

iii) Under the condition (C),

W̃ε(sε ,nε ,∇sε ,∇nε) ≥ αs2
ε |∇nε |2 +β |∇sε |2 +

1

ε2
W (sε)

≥ β |∇sε |2 +
1

ε2
W (sε).

Now we proceed by dividing the discussion into two separate cases:

Ω ⊂ R
3 is a bounded domain

For any δ > 0, define

Ω
+
ε,δ =

{
x ∈ Ω : |sε − s+| ≤ δ

}
; Ω

−
ε,δ =

{
x ∈ Ω : |sε | ≤ δ

}
,

and

Eε,δ = Ω\
(
Ω

+
ε,δ ∪Ω

−
ε,δ

)
=
{

x ∈ Ω : |sε |> δ , |sε − s+|> δ
}
.
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By the condition (1.5) and Federer’s co-area formula, we have that for any

0 < δ <
s+
2

,

εE (sε ,nε) =
∫

Ω

εW̃ε(sε ,nε ,∇sε ,∇nε)dx

≥
∫

Ω

(
εβ |∇sε |2 +

1

ε
W (sε)

)
dx

≥ 2
√

β

∫

Ω

√
W (sε)|∇sε |dx

≥ 2
√

β
(∫ δ

δ
2

√
W (τ)H 2(∂Ω

−
ε,τ ∩Ω)dτ

+
∫ s+− δ

2

s+−δ

√
W (τ)H 2(∂Ω

+
ε,τ ∩Ω)dτ

)

≥ 2
√

βCδ

(∫ δ

δ
2

H
2(∂Ω

−
ε,τ ∩Ω)dτ +

∫ s+− δ
2

s+−δ
H

2(∂Ω
+
ε,τ ∩Ω)dτ

)
.(2.4)

Therefore, by Fubini’s theorem there exists δ∗ ∈ ( δ
2
,δ ) such that

(2.5) H
2(∂Ω

−
ε,δ∗

∩Ω)+H
2(∂Ω

+
ε,δ∗

∩Ω)≤C(β ,Λ,δ ).

From (1.5), we know that there exists Cδ > 0 such that

(2.6)
∣∣Eε,δ

∣∣≤ 1

Cδ

∫

Ω

W (sε)dx ≤ Λε

Cδ
→ 0, as ε → 0.

From (2.5), there exist two subsets E± ⊂ Ω with finite perimeters in Ω such

that, after passing to a subsequence,

χ
Ω

±
ε,δ∗

⇀ χE± in BV(R3) and χ
Ω

±
ε,δ∗

→ χE± in L1(R3).

This and (2.6) imply that
∣∣Ω\ (E+∪E−)

∣∣=
∣∣E+∩E−∣∣= 0

so that Ω = E+∪E− (modulo a set of zero Lebesgue measure).

Define an auxiliary function φ : (−1
2
,1)→ R by letting

φ(t) = 2
√

β

∫ t

0

√
W (τ)dτ, t ∈ (−1

2
,1).

Notice that the 1-dimensional minimal connecting energy α0 = φ(s+). It follows

from (2.4) that
∫

Ω

|∇(φ(sε))|dx ≤ 2
√

β

∫

Ω

√
W (sε)|∇sε |dx

≤
∫

Ω

εW̃ε(sε ,nε ,∇sε ,∇nε)dx ≤ Λ+o(1).(2.7)

From the boundary condition (1.16), we know that

(2.8) φ(sε)→ 0 in L2(Σ−) and φ(sε)→ φ(s+) in L2(Σ+), as ε → 0.
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In particular, we may assume that

sup
0<ε<1

∫

∂Ω

|φ(sε)|2 dH
2 ≤C < ∞.

Hence by the Poincaré inequality we have that

∫

Ω

|φ(sε)|dx ≤C
(∫

Ω

|∇(φ(sε))|+
∫

∂Ω

|φ(sε)|dH
2
)
≤C(1+Λ).(2.9)

It follows from (2.7) and (2.9) that there exists ψ ∈ BV (Ω) such that after passing

to a subsequence, φ(sε)→ ψ weakly in BV(Ω) and strongly in L1(Ω)∩L1(∂Ω).
By the lower semicontinuity, we have that

|Dψ|(Ω)≤ liminf
ε→0

∫

Ω

|∇(φ(sε))|dx ≤ liminf
ε→0

∫

Ω

(
ε|∇sε |2 +

1

ε
W (sε)

)
dx

≤ liminf
ε→0

∫

Ω

εW̃ε(sε ,nε ,∇sε ,∇nε)dx ≤ Λ.

(2.10)

It follows from (2.8) that ψ = 0 on Σ
−, and ψ = φ(s+) on Σ

+. We claim that

(2.11) ψ(x) =

{
0 x ∈ E−,

φ(s+) x ∈ E+.

To see this, observe by Fatou’s lemma that

∫

E−
|ψ|2 dx =

∫

R3
|ψ|2χE− dx

≤ liminf
ε→0

∫

R3
|φ(sε)|2χ

Ω
−
ε,δ∗

dx

= liminf
ε→0

∫

Ω
−
ε,δ∗

|φ(sε)|2 dx

≤C
∥∥φ ′∥∥2

L∞([−δ∗,δ∗])
liminf

ε→0

∫

Ω
−
ε,δ∗

|sε |2 dx

≤C liminf
ε→0

∫

Ω
−
ε,δ∗

W (sε)dx ≤CΛε → 0,

where we have used the fact that W (τ)≈ τ2 for |τ| ≤ δ∗. Thus ψ = 0 a.e. in E−.
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Similarly, by using the fact that W (τ) ≈ |τ − s+|2 for |τ − s+| ≤ δ∗, we can

estimate
∫

E+
|ψ −φ(s+)|2 dx =

∫

R3
|ψ −φ(s+)|2χE+ dx

≤ liminf
ε→0

∫

R3
|φ(sε)−φ(s+)|2χ

Ω
+
ε ,δ∗

dx

= liminf
ε→0

∫

Ω
+
ε,δ∗

|φ(sε)−φ(s+)|2 dx

≤C‖φ ′‖L∞([s+−δ∗,s++δ∗]) liminf
ε→0

∫

Ω
+
ε,δ∗

|sε − s+|2 dx

≤C liminf
ε→0

∫

Ω
+
ε,δ∗

W (sε)dx ≤CΛε → 0,

this yields that ψ = φ(s+) a.e. in E+.

It follows from (2.11) that

(2.12) E+ =
{

x ∈ Ω : ψ(x)≥ t
}
, ∀t ∈ (0,α0).

In what follows, for a subset E ⊂ R
3 we denote by [[E]] the corresponding 3-

dimensional current (through integration), and denote by ∂ [[E]] the boundary cur-

rent of [[E]].

Since sε ∈ H1(∂Ω,(−1
2
,1)) satisfies (1.16),

∂
[[

∂ [[Ω+
ε,δ∗

]]
⌊

Ω
]]

= [[{x ∈ ∂Ω : sε(x) = s+−δ∗}]]→ [[Σ0]], as ε → 0,

holds as weak convergence of currents, we obtain that

(2.13) ∂
[[

∂ [[E+]]
⌊

Ω
]]

= [[Σ0]].

It follows from (2.12), (2.13), and the area minimality of Γ that

(2.14) H
2
(
∂ ∗{x ∈ Ω : ψ(x)≥ t

}
b Ω

)
≥ H

2(Γ), ∀t ∈ [0,α0).

Here ∂ ∗E denotes the reduced boundary of a set E of finite perimeter. By the

co-area formula for BV functions and (2.14), we then have

Λ = lim
εi→0

εE (sεi
,nεi

)≥ |Dψ|(Ω) =
∫

R

H
2
(
∂ ∗{x ∈ Ω : ψ(x)> t

}
bΩ

)
dt

≥
∫ α0

0
H

2
(
∂ ∗{x ∈ Ω : ψ(x)> t

}
bΩ

)
dt

≥ α0H
2(Γ).(2.15)

This proves the part “≥” of (1.19) in Theorem 1.2, when Ω is a bounded domain

in R
3.
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Ω = R
3 and

∣∣{x ∈ R
3 : sε(x)≥ s+}

∣∣= |B1|
First notice that for any 0 < δ ≤ s+,

(2.16)

∣∣∣
{

x ∈ R
3 : sε(x)≥ δ

}∣∣∣≥
∣∣∣
{

x ∈ R
3 : sε(x)≥ s+

}∣∣∣≥ |B1|

As in (2.7) of the previous subsection, we can obtain that for any 0 < δ <
s+
2

,

Λ+o(1) ≥
∫

R3
εW̃ (sε ,nε ,∇sε ,∇nε)dx

≥ 2

∫

R3

√
βW (sε)|∇sε |dx

≥ 2

∫ s+

0

√
βW (τ)H 2

(
∂ ∗{x ∈ R

3 : sε(x)≥ τ
})

dτ

By the isoperimetric inequality, we have that for any 0 < τ ≤ s+,

H
2
(
∂ ∗{x ∈ R

3 : sε(x)≥ τ
})

≥ (36π)
1
3

∣∣∣
{

x ∈ R
3 : sε(x)≥ τ

}∣∣∣
2
3

≥ (36π)
1
3 |B1|

2
3

Hence we obtain that

Λ+o(1) ≥ α0(36π)
1
3 |B1|

2
3 = α0H

2(∂B1).

This proves “≥” of Theorem 1.2 for Ω = R
3. �

2.2 Upper bound estimates

The upper bound estimates are based on concrete constructions, similar to that

by [34]. We will first discuss the construction for a bounded domain Ω ⊂ R
3.

Ω ⊂ R
3 is a bounded domain

We need to introduce some notations. Fix a large constant L > 0, whose value

will be determined later, we may assume for simplicity that Q±
Lε :=

(
Ω

± \ΓLε

)
∩

(∂Ω)Lε ≈ Σ
±
Lε × [0,Lε]. We will construct a function ŝε in Q−

Lε , that is a linear

interpolation of of tε
∣∣
Σ
−
Lε×{0} and 0

∣∣
Σ
−
Lε×{Lε}, i.e.,

(2.17) ŝε(x, t) =
Lε − t

Lε
tε(x), (x, t) ∈ Σ

−
Lε × [0,Lε].

Similarly, a function ŝε in Q+
Lε is constructed by a linear interpolation of tε

∣∣
Σ
+
Lε×{0}

and s+
∣∣
Σ
+
Lε×{Lε}, i.e.,

(2.18) ŝε(x, t) =
Lε − t

Lε
tε(x)+

t

Lε
s+, (x, t) ∈ Σ

+
Lε × [0,Lε].
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Let n̂ε ∈ H1(Ω,S2) be given by (1.18). Then, by direct calculations and applying

(1.16) and (1.5), we have that
∫

Q−
Lε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx . ε

∫

Σ−

(
|∇tε |2 +

1

ε2
W (tε)

)
dH

2

+
1

ε

∫

Σ−
|tε |2 dH

2
,(2.19)

and
∫

Q+
Lε

(β |∇ŝε |2 +
1

ε2
W (ŝε)). ε

∫

Σ+
(|∇tε |2 +

1

ε2
W (tε))dH

2

+
1

ε

∫

Σ+
|tε − s+|2 dH

2
.(2.20)

By Fubini’s theorem, there exists L1 ∈ [L,2L] such that

(2.21)



L1ε

∫

∂Γ
−
L1ε∩Ω

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dH

2 .

∫

Q−
Lε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx,

L1ε

∫

∂Γ
+
L1ε∩Ω

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dH

2 .

∫

Q+
Lε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx.

It follows from the regularity theorem of area minimizing surfaces (see [13] and

[26]) that Γ ∈C∞(Ω). Let ξ ∈C∞
(
[−L1,L1]

)
be an almost minimal 1-dimensional

connecting orbit, i.e., ξ (−L1) = 0, ξ (L1) = s+, and

(2.22)

∫ L1

−L1

(
β ξ̇ 2 +W (ξ )

)
dτ = α0 +oL(1), lim

L→∞

oL(1) = 0.

Define ŝε : ΩLε ∩ΓL1ε → R by letting

(2.23) ŝε(x) = ξ
(dΓ(x)

ε

)
, x ∈ ΩLε ∩ΓL1ε .

By the co-area formula and the fact that |∇dΓ(x)| = 1 for x ∈ ΩLε ∩ΓL1ε , we can

estimate
∫

ΩLε∩ΓL1ε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx

=
1

ε2

∫

ΩLε∩ΓL1ε

(
β ξ̇ 2 +W (ξ )

)
(
dΓ(x)

ε
)dx

=
1

ε

∫ L1

−L1

(
β ξ̇ 2 +W (ξ )

)
(τ)H 2

({
x ∈ ΩLε : dΓ(x) = ετ

})
dτ

≤ 1

ε
(H 2(Γ)+oε(1))

∫ L1

−L1

(
β ξ̇ 2 +W (ξ )

)
dτ

≤ 1

ε
(H 2(Γ)+oε(1))(α0 +oL(1)),(2.24)
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where we have the fact that the surface
{

x ∈ Ω : dΓ(x) = τ
}

converges to Γ in

C2-norm, as τ → 0. Hence it holds that

H
2
({

x ∈ ΩLε : dΓ(x) = ετ
})

≤ H
2(Γ)+oε(1), −L1 < τ < L1,

where limε→0 oε(1) = 0. It is not hard to check that

(2.25)

∫

∂ΩLε∩ΓL1ε

(
β |∇tanŝε |2 +

1

ε2
W (ŝε)

)
dH

2 ≤ C

ε
(α0 +oL(1)).

In the regions Ω
±
Lε \ΓL1ε , we simply define

(2.26) ŝε = 0 in Ω
−
Lε \ΓL1ε ; ŝε = s+ in Ω

+
Lε \ΓL1ε ,

so that

(2.27)

∫

Ω
±
Lε\ΓL1ε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx = 0.

It remains to construct ŝε in the region (∂Ω)Lε ∩ΓL1ε , which can be shown to be bi-

Lipschitz equivalent to a ball of radius L1ε centered at x∗ ∈ Ω, with Lipshitz norms

independent of ε . Hence we can do a homogeneous of degree zero extension of

ŝε with respect to the center x∗, i.e.,

(2.28) ŝε(x) = ŝε

(
L1ε

x− x∗
|x− x∗|

)
, x ∈ (∂Ω)Lε ∩ΓL1ε .

Hence by (2.21), (2.25), (2.19), and (2.20), we have that
∫

(∂Ω)Lε∩ΓL1ε

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx

≤ Lε

∫

∂ [(∂Ω)Lε∩ΓL1ε ]

(
β |∇tanŝε |2 +

1

ε2
W (ŝε)

)
dH

2

= Lε
{∫

∂ΩLε∩ΓL1ε

+
∫

∂Ω∩ΓL1ε

+
∫

∂Γ
−
L1ε∩Ω

+
∫

∂Γ
+
L1ε∩Ω

}(
β |∇tanŝε |2 +

1

ε2
W (ŝε)

)
dH

2

≤CL(α0 +oL(1))+
{∫

Q−
Lε

+
∫

Q+
Lε

}(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx

+CLε

∫

∂Ω∩ΓL1ε

(
β |∇tantε |2 +

1

ε2
W (tε)

)
dH

2

≤CL+CLε

∫

∂Ω

(
β |∇tantε |2 +

1

ε2
W (tε)

)
dH

2

+
C

ε

(∫

Σ−
|tε |2 dH

2 +
∫

Σ+
|tε − s+|2 dH

2
)

≤C+
oε(1)

ε
,(2.29)

where we have used the conditions (1.16) and (1.17) in the last step.
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Finally, by putting together (2.17), (2.18), (2.23), (2.26), and (2.28), we find an

extension map ŝε : Ω → R. Furthermore, by the estimates (2.19), (2.20), (2.24),

(2.27), (2.29), we see that ŝε satisfies the estimate:
∫

Ω

(
β |∇ŝε |2 +

1

ε2
W (ŝε)

)
dx ≤ 1

ε
(H 2(Γ)+oε(1))(α0 +oL(1))

+C+
oε(1)

ε
.(2.30)

It follows from (1.18) that
∫

Ω

ŝ2
ε(WOF(n̂ε ,∇n̂ε)+α|∇n̂ε |2)dx ≤Cs2

+

∫

Ω

|∇n̂ε |2 dx ≤ oε(1)

ε
.(2.31)

To estimate the contributions from the terms involving the interactive energies be-

tween ∇ŝε and n̂ε , we proceed as follows:

i) Under the condition (A), we can estimate

∣∣
∫

Ω

(
L1(∇ŝε · n̂ε)

2 +L3(∇ŝε · n̂ε)(ŝεdivn̂ε)
)

dx
∣∣

≤C
(∫

ΩLε∩ΓL1ε

|∇ŝε · n̂ε |2 dx+
∫

Ω\ΩLε

|∇ŝε |2 dx+
∫

Ω

|∇n̂ε |2 dx
)
.

Notice that (2.19), (2.20), and (2.29) imply
∫

Ω\ΩLε

|∇ŝε |2 dx ≤ CLε

∫

∂Ω

|∇tε |2 dH
2

+Cε−1
(∫

Σ−
|tε |2 dH

2 +
∫

Σ+
|tε − s+|2 dH

2
)

≤ C+
oε(1)

ε
.

Since |ξ̇ (t)| ≤CL in t ∈ [−L,L] and n̂ε ·νΓ = 0 on Γ, we can estimate

∫

ΩLε∩ΓL1ε

|∇ŝε · n̂ε |2 dx =
1

ε2

∫

ΩLε∩ΓL1ε

ξ̇ 2
(dΓ(x)

ε

)
(∇dΓ(x) · n̂ε(x))

2 dx

≤Cε−2

∫

ΩLε∩ΓL1ε

(∇dΓ(x) · n̂ε(x))
2 dx

=Cε−2

∫

ΩLε∩ΓL1ε

(∇dΓ(x) · n̂ε(x)−∇dΓ(ΠΓ(x)) · n̂ε(ΠΓ(x)))
2 dx

≤Cε−2

∫

ΩLε∩ΓL1ε

(
|∇dΓ(x)−∇dΓ(ΠΓ(x))|2 + |n̂ε(x)− n̂ε(ΠΓ(x))|2

)
dx

≤C

∫

ΩLε∩ΓL1ε

(
|∇2dΓ(x)|2 + |∇n̂ε(x)|2

)
dx

≤Cε +
oε(1)

ε
,(2.32)
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where ΠΓ : ΓL1ε → Γ is the (smooth) nearest point projection. Hence we

have that

∣∣
∫

Ω

(
L1(∇ŝε · n̂ε)

2 +L3(∇ŝε · n̂ε)(ŝεdivn̂ε)
)

dx
∣∣≤C(1+ ε)+

oε(1)

ε
.(2.33)

Adding (2.30), (2.31), and (2.33) together, we arrive at

(2.34)

ε

∫

Ω

W̃ (ŝε , n̂ε ,∇ŝε ,∇n̂ε)dx ≤ (α0 +oL(1))(H
2(Γ)+oε(1))+Cε +oε(1).

After first sending ε → 0 and then L → ∞, and using the minimality of

(sε ,nε) we have that

limsup
ε→0

∫

Ω

εW̃ (sε ,nε ,∇sε ,∇nε)dx

≤ limsup
ε→0

∫

Ω

εW̃ (ŝε , n̂ε ,∇ŝε ,∇n̂ε)dx ≤ α0H
2(Γ).(2.35)

ii) Under the condition (B), we can bound

∣∣
∫

Ω

(
L2|∇ŝε ∧ n̂ε |2 +L4ŝε∇ŝε · (∇n̂ε)n̂ε

)
dx
∣∣

≤C
(∫

ΩLε∩ΓL1ε

|∇ŝε ∧ n̂ε |2 dx+
∫

Ω\ΩLε

|∇ŝε |2 dx+
∫

Ω

|∇n̂ε |2 dx
)

≤C(1+ ε)+
oε(1)

ε
+C

∫

ΩLε∩ΓL1ε

|∇ŝε ∧ n̂ε |2 dx.

Since n̂ε ∧νΓ = 0 on Γ, the last term in the right hand side can be estimated

as follows.
∫

ΩLε∩ΓL1ε

|∇ŝε ∧ n̂ε |2 dx =
1

ε2

∫

ΩLε∩ΓL1ε

ξ̇ 2
(dΓ(x)

ε

)
|∇dΓ(x)∧ n̂ε(x)|2 dx

≤Cε−2

∫

ΩLε∩ΓL1ε

|∇dΓ(x)∧ n̂ε(x)|2 dx

=Cε−2

∫

ΩLε∩ΓL1ε

|∇dΓ(x)∧ n̂ε(x)−∇dΓ(ΠΓ(x))∧ n̂ε(ΠΓ(x))|2 dx

≤Cε−2

∫

ΩLε∩ΓL1ε

(
|∇dΓ(x)−∇dΓ(ΠΓ(x))|2 + |n̂ε(x)− n̂ε(ΠΓ(x))|2

)
dx

≤C

∫

ΩLε∩ΓL1ε

(
|∇2dΓ(x)|2 + |∇n̂ε(x)|2

)
dx

≤Cε +
oε(1)

ε
,

which yields that

(2.36)
∣∣
∫

Ω

(
L2|∇ŝε ∧ n̂ε |2 +L4ŝε∇ŝε · (∇n̂ε)n̂ε

)
dx
∣∣≤C(1+ ε)+

oε(1)

ε
.
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Adding (2.30), (2.31), and (2.36) together yields (2.34). This, combined

with the minimality of (sε ,nε), implies

(2.37) limsup
ε→0

∫

Ω

εW̃ (sε ,nε ,∇sε ,∇nε)dx ≤ α0H
2(Γ).

iii) Under the condition (C), it is readily seen that (2.37) follows directly from

(2.30) and (2.31).

Therefore the “≤” part of Theorem 1.2 is proven, when Ω is a bounded domain in

R
3. �

Ω = R
3 and

∣∣{x ∈ R
3 : sε(x)≥ s+}

∣∣= |B1|
The construction for the upper bound estimates for Ω = R

3 is rather simple.

Here we sketch it as follows.

For a sufficiently large L > 0, let ξL ∈C∞
(
[−L,L]

)
be an almost 1-dimensional

minimal connecting orbit, i.e., ξL(−L) = s+, ξL(L) = 0, and

(2.38)

∫ L

−L

(
β ξ̇ 2

L +W (ξL)
)

dτ = α0 +oL(1).

Define ŝε : R3 → R+ by letting

ŝε(x) =





s+ |x| ≤ 1,

ξL(
|x|−(1+Lε)

ε ) 1 ≤ |x| ≤ 1+2Lε,

0 |x| ≥ 1+2Lε.

Notice that
{

x ∈ R
3 : ŝε(x)≥ s+

}
= B1.

Direct calculations imply that

(2.39)

∫

R3

(
|∇ŝε |2 +

1

ε2
W (ŝε)

)
dx ≤ 1

ε
(H 2(Γ)+Cε)(α0 +oε(1)).

Next, we will construct a map n̂ε ∈ H1(B1,S
2) as follows:

i) Under the condition (A), it is well-known that there exists a map n̂ε :

B1+2Lε → S
2 such that n̂ε(x) · x = 0 on ∂B1, and

∫

B1+2Lε

|∇n̂ε |2 dx ≤C(L).

Hence

(2.40)

∫

R3
ŝ2

ε

(
WOF(n̂ε ,∇n̂ε)+α|∇n̂ε |2

)
dx ≤C(L)s2

+.
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While

∣∣
∫

R3

(
L1(∇ŝε · n̂ε)

2 +L3(∇ŝε · n̂ε)(ŝεdivn̂ε)
)

dx
∣∣

≤C
(∫

B1+2Lε\B1

|∇ŝε · n̂ε |2 dx+
∫

B1+2Lε

|∇n̂ε |2 dx
)

≤C(L)+Cε−2

∫

B1+2Lε\B1

∣∣n̂ε(x)− n̂ε(
x

|x|)
∣∣2 dx

≤C(L)+C

∫

B1+2Lε\B1

∣∣∇n̂ε

∣∣2 dx ≤C(L).

Therefore we arrive at

limsup
ε→0

∫

R3
εW̃ (sε ,nε ,∇sε ,∇nε)dx ≤ limsup

ε→0

∫

R3
εW̃ (ŝε , n̂ε ,∇ŝε ,∇n̂ε)dx

≤ α0H
2(∂B1).(2.41)

ii) Under the condition (B), we simply let

n̂ε(x) =
x

|x| , x ∈ B1+2Lε .

Then it is straightforward to check that

(2.42)

∫

R3
ŝ2

ε

(
WOF(n̂ε ,∇n̂ε)+α|∇n̂ε |2

)
dx ≤Cs2

+L.

While

∣∣
∫

R3

(
L2|∇ŝε ∧ n̂ε |2 +L4ŝε∇ŝε · (∇n̂ε)n̂ε

)
dx
∣∣

≤Cε−2

∫

B1+2Lε\B1

| x

|x| ∧
x

|x| |
2 dx = 0.(2.43)

Hence (2.41) holds.

iii) Under the condition (C), we simply set n̂ε ≡ (0,0,1) ∈ S
2. In this case, it

is easy to see that

∫

R3
εW̃ (ŝε , n̂ε ,∇ŝε ,∇n̂ε)dx =

∫

B1+2Lε\B1

(
ε|∇ŝε |2 +

1

ε
W (ŝε)

)
dx

≤ α0(H
2(∂B1)+Cε).

Hence (2.41) holds.

The “≤” part of Theorem 1.2 is proven, when Ω = R
3. Combining these two

subsections, we prove Theorem 1.2. �
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3 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3 for the case that Ω is a

bounded smooth domain in R
3. It involves refined estimates of both upper bounds

and lower bounds of the total energy E (sε ,nε) for minimizers (sε ,nε), in which the

strict stability of Γ plays a crucial role in a perfect matching of the coefficients of

leading order term or O( 1
ε ) term in the expansion of E (sε ,nε).

3.1 Refined energy upper bounds

In this subsection, we will prove a sharp upper bound for the energy E (sε ,nε)
of minimizers (sε ,nε). This is done by utilizing the additional assumption on the

boundary value (tε ,gε) to construct a comparison map such that sε is approximately

a minimal connecting orbit in the transition region of Γ of width of O(εγ), and nε

is approximately a minimizing harmonic map in the corresponding configuration

spaces in Ω+.

We divide the estimates of refined upper bounds for the cases (A), (B), and (C)

into three separate Lemmas.

Lemma 3.1. Assume Γ and the boundary values (tε ,gε) satisfy the same assump-

tions as in Theorem 1.3. Under the condition (A), it holds that

inf
{∫

Ω

Wε(s,n,∇s,∇n)dx
∣∣ (sε ,nε) = (tε ,gε) on ∂Ω

}

≤ 1

ε

∫ s+

0

√
2βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ +DA +oε(1),(3.1)

where DA is given by (1.27) and (1.28) of Theorem 1.3.

Proof. We first construct an extension of sε from ∂Ω to Ω as follows. For γ ∈
(0,1), let ξε,γ ∈ C∞([−εγ−1,εγ−1],R) be given by (1.22) and tε : ∂Ω → R satisfy

(1.23). Define sε in the fast transition region Γεγ by letting

sε(x) = ξε ,γ

(dΓ(x)

ε

)
, ∀x ∈ Γεγ .

In the off-transition region Ω
+ \Γεγ , we perform a linear interpolation between sε

and s+ in a εγ -neighborhood of Σ
+. More precisely, decompose

Ω
± \Γεγ =

(
(Ω± \Γεγ )∩{x ∈ Ω : d(x,Σ±)< εγ}

)

∪
(
(Ω± \Γεγ )\{x ∈ Ω : d(x,Σ±)< εγ}

)

= E±
εγ ∪F±

εγ .

Define

sε(x) =

{
s+, x ∈ F+

εγ ,

linear interpolation of sε

∣∣
Σ+\Γεγ

and s+
∣∣
{x∈Ω+\Γεγ :d(x,Σ+)=εγ}, x ∈ E+

εγ .
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Similarly, define

sε(x) =

{
0, x ∈ F−

εγ ,

linear interpolation of sε

∣∣
Σ−\Γεγ

and 0
∣∣
{x∈Ω−\Γεγ :d(x,Σ−)=εγ}, x ∈ E−

εγ .

Then by the co-area formula and direct calculations (see Maggi [41]) we can esti-

mate
∫

Ω

(
β |∇sε |2 +

1

ε2
W (sε)

)
dx

=
{∫

Γεγ

+
∫

E−
εγ

+
∫

E+
εγ

}(
β |∇sε |2 +

1

ε2
W (sε)

)
dx

≤ 1

ε

∫ εγ−1

−εγ−1

(
β |ξ ′

ε,γ(t)|2 +W (ξε,γ(t))
)
H

2(Γ(εt))dt

+Cεγ
∫

∂Ω\Γεγ

|∇tantε |2 dH
2

+Cε−γ
(∫

Σ+\Γεγ

|tε − s+|2 dH
2 +

∫

Σ−\Γεγ

|tε |2 dH
2
)

+C

∫

E+
εγ ∪E−

εγ

1

ε2
W (sε)dx

≤ 1

ε

∫ εγ−1

−εγ−1

(
β |ξ ′

ε,γ(t)|2 +W (ξε,γ(t))
)
H

2(Γ(εt))dt +Cεγ +oε(1).(3.2)

Here we have applied (1.5) and (1.23) in the last step, which ensures

∫

E+
εγ ∪E−

εγ

1

ε2
W (sε)dx ≤ Cεγ

(∫

Σ+\Γεγ

|tε − s+|2
ε2

dH
2 +

∫

Σ−\Γεγ

|tε |2
ε2

dH
2
)

≤ Cεγ
.

Notice that the condition (1.22) implies that

1

ε

∫ εγ−1

−εγ−1

(
β |ξ ′

ε,γ(t)|2 +W (ξε,γ(t))
)
H

2(Γ(εt))dt

≤ 1

ε

∫ εγ−1

−εγ−1

√
2βW (ξε,γ(t))|ξ ′

ε,γ(t)|H 2(Γ(εt))dt +C2εγ−2e−C1εγ−1

≤ 1

ε

∫ s+

0

√
2βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ +oε(1).(3.3)

Next we want to construct an extension map nε : Ω → S
2 from gε : ∂Ω → S

2.

To do it, let n ∈ H1(Ω+,S2) achieve DA, i.e., n = g on Σ
+ and n ·νΓ = 0 on Γ, and

E(n;Ω
+) = DA.
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Recall that there exists a map n̂ε in the region Ω
+ \

(
Γ2εγ ∪Ω

+
εγ

)
that is a linear

interpolation between gε

∣∣
Σ+\Γ2εγ

and n
∣∣
∂Ω

+
εγ \Γ2εγ

, i.e.,

n̂ε(r,θ) =
r

εγ
gε(θ)+

εγ − r

εγ
n(εγ

,θ),

where

x = (r,θ) ∈ (Σ+ \Γ2εγ )× [0,εγ ]≈ Ω
+ \

(
Γ2εγ ∪Ω

+
εγ

)
.

Since n̂ε may not map into S
2, we need to apply Hardt-Lin’s extension Lemma to

find a point a ∈ R
3, with |a| ≤ 1

2
, such that the map Ψa =

(
Πa

∣∣
S2

)−1 ◦Πa, with

Πa(y) =
y−a
|y−a| : R3 → S

2, satisfies

∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

s2
ε

∣∣∇(Ψa(n̂ε))
∣∣2 dx ≤C

∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

s2
ε

∣∣∇n̂ε

∣∣2 dx.

Now we define nε : Ω
+ → S

2 as follows. We refer the readers to page 8 above for

definitions of various notations, e.g. Ω
±
δ and Γδ , that will be used below. First, we

define

nε(x) =

{
n(x) x ∈ (Ω+∩Γεγ )∪Ω

+
εγ ,

Ψa

(
n̂ε(x)

)
x ∈ Ω

+ \
(
Γ2εγ ∪Ω

+
εγ

)
.

It is not hard to see that (Ω+ \Ω
+
εγ )∩ (Γ2εγ \Γεγ ) is bi-Lipschitz equivalent to

Bεγ (x∗) (ball of radius εγ and centered at a point x∗), with Lipschitz norms in-

dependent of ε . Thus we can define nε : (Ω+ \Ω
+
εγ )∩ (Γ2εγ \Γεγ ) → S

2 as the

homogeneous degree zero extension, with respect to x∗, of the value of nε on

∂
(
(Ω+ \Ω

+
εγ )∩ (Γ2εγ \Γεγ )

)
.

Then we can calculate

∫

(Ω+∩Γεγ )∪Ω
+
εγ

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

)
dx

≤ (1+oε(1))s
2
+

∫

Ω+
(WOF(n,∇n)+α|∇n|2)dx ≤ (1+oε(1))DA,(3.4)
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and
∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

)
dx

≤C

∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

s2
ε |∇nε |2 dx

≤Cs2
+εγ

(∫

Σ+
|∇tangε |2 dH

2 +
∫

∂Ω
+
εγ ∩Ω+

|∇tann|2 dH
2
)

+
Cs2

+

εγ

∫

Σ+\Γεγ

|gε(θ)−n(εγ
,θ)|2 dH

2

≤Cεγ +C

∫

Ω+\Ω
+
2εγ

|∇n|2 + C

εγ

∫

Σ+\Γεγ

|gε −g|2 dH
2

+C

∫

Σ+
|g(θ)−n(εγ

,θ)|2 dH
2

≤Cεγ +oε(1)+C

∫

Ω+\Ω
+
2εγ

|∇n|2 ≤Cεγ +oε(1).(3.5)

where we have used (1.24) and the absolute continuity of

∫
|∇n|2 dx, and the in-

equality
∫

Σ+
|g(θ)−n(εγ

,θ)|2 dH
2 ≤ εγ

∫

Ω+\Ω
+
εγ

|∇n|2 dx ≤Cεγ
.

While
∫

(Ω+\Ω
+
εγ )∩(Γ2εγ \Γεγ )

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

)
dx

≤Cs2
+

∫

(Ω+\Ω
+
εγ )∩(Γ2εγ \Γεγ )

|∇nε |2 dx

≤Cεγ
∫

∂
(
(Ω+\Ω

+
εγ )∩(Γ2εγ \Γεγ )

) |∇tannε |2 dH
2

≤Cεγ
{∫

Σ+∩Γ2εγ

+
∫

∂Γεγ ∩(Ω+\Ω
+
εγ )

+
∫

∂Ω
+
εγ ∩(Γ2εγ \Γεγ )

+
∫

∂Γ2εγ ∩(Ω+\Ω
+
εγ )

}
|∇tannε |2 dH

2

≤C
(

εγ
∫

Σ+
|∇gε |2 dH

2 +
∫

Ω+\Ω
+
εγ

|∇n|2 dx

+
∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

|∇nε |2 dx+
∫

Ω
+
εγ \Ω

+
2εγ

|∇n|2 dx
)

≤C(εγ +oε(1)+
∫

Ω+\Ω
+
2εγ

|∇n|2 dx)≤C(εγ +oε(1)),(3.6)
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where we have used (3.6) in the last step, and we have applied Fubini’s theorem

which guarantees the following inequalities:

εγ
∫

∂Γεγ ∩(Ω+\Ω
+
εγ )

|∇tannε |2 dH
2 ≤C

∫

Ω+\Ω
+
εγ

|∇n|2 dx = oε(1),

εγ
∫

∂Γ2εγ ∩(Ω+\Ω
+
εγ )

|∇tannε |2 dH
2 ≤C

∫

Ω+\(Γ2εγ ∪Ω
+
εγ )

|∇nε |2 dx ≤C(εγ +oε(1)),

and

εγ
∫

∂Ω
+
εγ ∩(Γ2εγ \Γεγ )

|∇tannε |2 dH
2 ≤C

∫

Ω+\Ω
+
2εγ

|∇n|2 dx = oε(1).

Hence ∫

Ω+

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

)
dx

≤ (1+oε(1))DA +C
(
εγ +oε(1)

)
.(3.7)

The most difficult term to estimate is the interactive energy between ∇sε and nε .

To do it, we proceed as follows.
∫

Ω+

(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε)

)
dx

≤
{∫

Ω+∩Γεγ

+
∫

Ω+\(Ω+
εγ ∪Γεγ )

}(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε

)
dx

≤C
(∫

Ω+∩Γεγ

|∇sε ·nε |2 +
(∫

Ω+∩Γεγ

|∇sε ·nε |2
) 1

2

)

+C
(∫

E+
εγ

|∇sε |2 dx+
(∫

E+
εγ

|∇sε |2 dx
) 1

2

)
= I + II.

From the estimate (3.2), we can see that
∫

E+
εγ

|∇sε |2 dx ≤C(εγ +oε(1))

so that

II ≤C(ε
γ
2 +oε(1)).

To estimate I, let ΠΓ : Γεγ → Γ be the smooth nearest point projection map. Since

∇dΓ(x) = νΓ(x) for x ∈ Γ, we have that ∇dΓ(x) ·n(x) = 0 for x ∈ Γ. Hence
∫

Ω+∩Γεγ

|∇sε ·nε |2 dx ≤ 1

ε2

∫

Ω+∩Γεγ

(ξ ′
ε,γ)

2(
dΓ(x)

ε
)|∇dΓ(x) ·n(x)|2 dx

≤ 1

ε2

∫

Ω+∩Γεγ

(ξ ′
ε,γ)

2(
dΓ(x)

ε
)|∇dΓ(x) ·n(x)−∇dΓ(ΠΓ(x)) ·n(ΠΓ(x))|2 dx

=
1

ε2

{∫

Ω+∩ΓLε

+
∫

Ω+∩(Γεγ \ΓLε )

}
(ξ ′

ε,γ)
2(

dΓ(x)

ε
)

·
(
|∇dΓ(x)−∇dΓ(ΠΓ(x))|2 + |n(x)−n(ΠΓ(x))|2

)
dx

= III + IV.
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III can be estimated similarly to (2.32) so that

III ≤Cε +oε(1).

While we can utilize the decay property of |ξ ′| to estimate IV as follows.

IV ≤ C

ε2

∫

Ω+∩(Γεγ \ΓLε )
e−

C
ε dΓ(x)

(
|∇dΓ(x)−∇dΓ(ΠΓ(x))|2 + |n(x)−n(ΠΓ(x))|2

)
dx

≤ C
∥∥∇

2dΓ

∥∥
Ω+∩Γεγ

εγ +Cε−2

∫

Ω+∩Γεγ

e−
C
ε dΓ(x)|n(x)−n(ΠΓ(x))|2 dx.

Notice that by identifying Ω
+∩Γεγ with Γ× [0,εγ ], we can bound

∫

Ω+∩Γεγ

e−
C
ε dΓ(x)|n(x)−n(ΠΓ(x))|2 dx

≤C

∫

Γ

∫ εγ

0
e−

Ct
ε |n(t,θ)−n(0,θ)|2 dtdH

2

≤C

∫

Γ

∫ εγ

0
te−

Ct
ε (

∫ εγ

0
|nt |2(τ,θ)dτ)dtdH

2

≤C
(∫ εγ

0
te−

Ct
ε dt

)∫

Ω+∩Γεγ

|∇n|2 dx

≤Cε2
(∫ ∞

0
te−Ct dt

)∫

Ω+∩Γεγ

|∇n|2 dx

≤Cε2

∫

Ω+∩Γεγ

|∇n|2 dx.

Therefore we obtain that

IV ≤Cεγ +C

∫

Ω+∩Γεγ

|∇n|2 dx ≤Cεγ +oε(1).

From the estimates of III and IV , we obtain that

(3.8)

∫

Ω+

(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε)

)
dx ≤C

(
ε

γ
2 +oε(1)

)
.

Next we want to construct a map nε : Ω
− → S

2 such that it enjoys an upper

bound estimate similar to that in Ω
+. First let n̂ε : Ω

− → R
3 be such that





∆n̂ε = 0 in Ω
−,

n̂ε = gε on Σ
−,

n̂ε = n on Γ.

Then it is well-known that
∫

Ω−
|∇n̂ε |2 dx ≤C

∥∥n̂ε

∥∥2

H
1
2 (∂Ω−)

≤ C
(∫

Σ−
|∇gε |2 dH

2 +
∫

Ω+
|∇n|2 dx

)

≤ C
(
1+

∫

Σ−
|∇g|2 dH

2 +
∫

Ω+
|∇n|2 dx

)
.
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Moreover, since gε → g in H1(Σ−), there exists ñ ∈ H1(Ω−) such that

(3.9) n̂ε → ñ in H1(Ω−).

Applying Hardt-Lin’s extension Lemma again, there exists a ∈ R
3 with |a| ≤ 1

2

such that for nε = Ψa(n̂ε), where Ψa =
(
Πa

∣∣
S2

)−1 ◦Πa, with Πa(y) =
y−a
|y−a| : R3 →

S
2, satisfies

∫

Ω−
|∇nε |2 dx ≤C

∫

Ω−
|∇n̂ε |2 dx ≤C

(
1+

∫

Σ−
|∇g|2 dH

2 +
∫

Ω+
|∇n|2 dx

)
,

and

(3.10) nε → Ψa(ñ) in H1(Ω−).

With the help of (3.10), we can estimate

∫

Ω−

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

)
dx ≤C

∫

Ω−
s2

ε |∇nε |2 dx

≤C
(∫

Ω−∩Γεε

s2
ε |∇nε |2 dx+

∫

E−
εγ

s2
ε |∇nε |2 dx

)

≤C
(∫

Ω−∩Γεγ

|∇nε |2 dx+
∫

E−
εγ

|∇nε |2 dx
)

≤C

∫

Ω−
|∇(nε −Ψa(ñ))|2 dx+C

(∫

Ω−∩Γεγ

|∇ñ|2 dx+
∫

E−
εγ

|∇ñ|2 dx
)

= oε(1).(3.11)

While

∫

Ω−

(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε)

)
dx

≤
{∫

Ω−∩Γεγ

+
∫

Ω−\(Ω−
εγ ∪Γεγ )

}(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε)

)
dx

≤C
(∫

Ω−∩Γεγ

|∇sε ·nε |2 +
(∫

Ω−∩Γεγ

|∇sε ·nε |2
) 1

2

)

+C
(∫

E−
εγ

|∇sε |2 dx+
(∫

E−
εγ

|∇sε |2 dx
) 1

2

)
=V +V I.(3.12)

Again from the estimate (3.2), we see that

V I ≤C
(
ε

γ
2 +o(1)

)
.
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V I can be estimated similarly to that of I. In fact,
∫

Ω−∩Γεγ

|∇sε ·nε |2

≤Cε−2
(

ε2+γ
∥∥∇

2dΓ

∥∥
L∞(Γεγ )

+
∫

Ω−∩Γεγ

|ξ ′|2(dΓ(x)

ε
)|n(x)−n(ΠΓ(x))|2 dx

)

≤Cεγ +oε(1)+Cε−2

∫

Ω−∩(Γεγ \ΓLε

|n(x)−n(ΠΓ(x))|2 dx

≤Cεγ +oε(1).

Hence

V I ≤Cε
γ
2 +oε(1).

Substituting the estimates of III and IV into (3.12), we obtain

(3.13)

∫

Ω−

(
L1|∇sε ·nε |2 +L3(∇sε ·nε)(sεdivnε)

)
dx ≤C

(
ε

γ
2 +oε(1)

)
.

Combining (3.2), (3.7), (3.8), (3.11), with (3.13) and (3.3), we obtain the upper

bound (3.1). �

Lemma 3.2. Assume Γ and the boundary value (tε ,gε) satisfies the same assump-

tions as in Theorem 1.3. Under the condition (B), it holds that

inf
{∫

Ω

Wε(s,n,∇s,∇n)dx : (sε ,nε) = (tε ,gε) on ∂Ω

}

≤ 1

ε

∫ s+

0

√
2βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ +DB +oε(1),(3.14)

where DB is given by (1.30) and (1.31) of Theorem 1.3.

Proof. The proof of (3.14) can be done almost exactly as in Lemma 3.1. In fact,

the construction of sε is exactly same as in Lemma 3.1. While the construction

nε also follows the same procedure, except that we replace the map n, that is a

minimizer of DA in Lemma 3.1, by a map n that minimizes DB. Namely, n ∈
H1(Ω+,S2) satisfies n = g on Σ

−, n∧νΓ = 0 on Γ, and

E(n;Ω
+) = DB.

Since every other term in the integral

∫

Ω

εW̃ε(sε ,nε ,∇sε ,∇nε)dx can be esti-

mated in the same way as in Lemma 3.1, it suffices to sketch the estimate of the

term ∫

Ω+∩Γεγ

(L2|∇sε ∧nε |2 +L4sε∇sε · (∇nε)nε

)
dx.

Recall from the condition n∧νΓ = 0 on Γ that

∇dΓ(ΠΓ(x))∧n(ΠΓ(x)) = 0, ∀x ∈ Ω
+∩Γεγ .
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From the construction of (sε ,nε), we know that

∫

Ω+∩Γεγ

L2|∇sε ∧nε |2 dx ≤Cε−2

∫

Ω+∩Γεγ

|ξ ′
ε,γ |2(

dΓ(x)

ε
)|∇dΓ(x)∧n(x)|2 dx

≤Cε−2

∫

Ω+∩Γεγ

|ξ ′
ε,γ |2(

dΓ(x)

ε
)|∇dΓ(x)∧n(x)−∇dΓ(ΠΓ(x))∧n(ΠΓ(x))|2 dx

≤Cε−2

∫

Ω+∩Γεγ

|ξ ′
ε,γ |2(

dΓ(x)

ε
)(|∇dΓ(x)−∇dΓ(ΠΓ(x))|2

+|n(x)−n(ΠΓ(x))|2)dx

≤Cεγ +oε(1).

This implies that

|
∫

Ω+∩Γεγ

L4sε∇sε · (∇nε)nε dx|

≤C
(∫

Ω+∩Γεγ

|∇sε ∧nε |2 dx
) 1

2
(∫

Ω+∩Γεγ

|∇n|2
) 1

2 = oε(1).

Thus the estimate (3.14) holds. �

Lemma 3.3. Assume Γ and the boundary values (sε ,nε) satisfy the same assump-

tions as in Theorem 1.3. Under the condition (C), it holds that

inf
{∫

Ω

Wε(s,n,∇s,∇n)dx : (sε ,nε) = (tε ,gε) on ∂Ω

}

≤ 1

ε

∫ s+

0

√
2βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ +DC +oε(1),(3.15)

where DC is given by (1.33) and (1.34) of Theorem 1.3.

Proof. The proof of (3.15) can be done almost exactly as in Lemma 3.1. In fact,

the construction and estimate of sε is exactly same as in that in Lemma 3.1. While

in the construction of nε , we simply replace the minimizer n of DA in Lemma 3.1

by a map n that minimizes DC. Namely, n ∈ H1(Ω+,S2) satisfies n = g on Σ
+,

∂n
∂νΓ

= 0 on Γ, and

E(n;Ω
+) = DC.

Since L1 = L2 = L3 = L4 = 0,
∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

=
∫

Ω

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2 +β |∇sε |2 +

1

ε2
W (sε)

)
dx

can be estimated as in (3.2), (3.7), and (3.11) of Lemma 3.1. �
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3.2 Refined energy lower bounds for the case (A)

In this subsection, we will establish an improved lower bound of energy that

matches the refined upper bound of energy, which ensures the planar anchoring

condition for the limiting director field on the sharp interface Γ.

First, it follows from 2L2
3 < 4L1α that there exists a positive number µ > 0 such

that 2L2
3 ≤ 4(L1 −µ)(α −µ) so that by Cauchy-Schwarz inequality we have

|L3(∇sε ·nε)sεdivnε | ≤
√

2|L3||∇sε ·nε ||sε ||∇nε |
≤ (L1 −µ)(∇sε ·nε)

2 +(α −µ)s2
ε |∇nε |2.(3.16)

This implies that

W̃ε(sε ,nε ,∇sε ,∇nε) = (β |∇sε |2 +
1

ε2
W (sε))+ s2

εWOF(nε ,∇nε)

+
(
αs2

ε |∇nε |2 +L1(∇sε ·nε)
2 +L3(∇sε ·nε)sεdivnε

)

≥ β |∇sε |2 +
1

ε2
W (sε)+µs2

ε |∇nε |2 +µ|∇sε ·nε |2

=
[
(β + γ cos2 θε)|∇sε |2 +

1

ε2
W (sε)

]
+µs2

ε |∇nε |2

≥ 2

ε
|∇sε |

√
W (sε)

√
β +µ cos2 θε +µs2

ε |∇nε |2,

where cosθε =
∇sε
|∇sε | ·nε .

Thus by the co-area formula we obtain
∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥
∫

Ω

(2

ε
|∇sε |

√
W (sε)

√
β +µ cos2 θε +µs2

ε |∇nε |2
)

dx

≥ µ

∫

Ω

s2
ε |∇nε |2 dx+

2

ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)

√
β +µ cos2 θε dH

2 dτ

= µ

∫

Ω

s2
ε |∇nε |2 dx+

2

ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)

(√
β +µ cos2 θε −

√
β
)

dH
2 dτ

+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ,(3.17)

where Sε(τ) =
{

x ∈ Ω : sε(x)≥ τ
}

.

It follows from the assumption of sε on ∂Ω that for any 0< τ < s+, the enclosed

surface Tε(τ) ⊂ ∂Ω between ∂ ∗Sε(τ) and Σ is a strip with width at most Cε .

Hence by the area minimality of Γ, we have

H
2(Γ) ≤ H

2
(
∂ ∗

Sε(τ)∪Tε(τ)
)
= H

2
(
∂ ∗

Sε(τ)
)
+H

2
(
Tε(τ)

)

≤ H
2(∂ ∗

Sε(τ))+Cε, 0 < τ < s+.(3.18)
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This implies that

(3.19)
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ ≥ 1

ε
α0H

2(Γ)−C.

Notice that

√
β +µ cos2 θε −

√
β =

µ cos2 θε√
β +µ cos2 θε +

√
β

≥ µ∗ cos2 θε ,

where µ∗ =
µ√

β +µ +
√

β
> 0.

Hence, by matching the refined upper bound (3.1) with (3.17), we conclude that

(3.20) µ

∫

Ω

(s2
ε |∇nε |2 + |∇sε ·nε |2)dx ≤ DA +C+oε(1),

(3.21)
µ∗
ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)
cos2 θε dH

2 dτ ≤ DA +C+oε(1),

and

(3.22)
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ ≤ 1

ε
α0H

2(Γ)+DA +oε(1).

For any fixed δ > 0 and for any ε ∈ (0,1), applying Fubini’s theorem to (3.21)

and (3.22) we obtain that there exist C > 0, that is independent of δ , and δε ∈
(δ ,2δ ) such that

(3.23)

∫

∂ ∗Sε (s+−δε )
cos2 θε dH

2 ≤C(β ,DA)
ε

δ
,

(3.24) H
2(∂ ∗

Sε(s+−δε))≤ H
2(Γ)+C

ε

δ
.

Since it is straightforward to get (3.23), we only sketch how to obtain (3.24). From

(3.18), we have

2

ε

{∫ s+−2δ

0
+
∫ s+

s+−δ

}√
βW (τ)H 2

(
∂ ∗

Sε(τ)
)

dτ

≥ 2

ε

(∫

[0,s+−2δ ]∪[s−−δ ,s+]

√
βW (τ)dτ

)
H

2(Γ)−C,

so that
(

inf
s+−2δ≤τ≤s+−τ

H
2(∂ ∗

Sε(τ))
)2

ε

∫ s+−δ

s+−2δ

√
βW (τ)dτ

≤ 2

ε

∫ s+−δ

s+−2δ

√
βW (τ)H 2

(
∂ ∗

Sε(τ)
)

dτ

≤
(2

ε

∫ s+−δ

s+−2δ

√
βW (τ)dτ

)
H

2(Γ)+DA +C+oε(1).
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This, combined with the estimate

∫ s+−δ

s+−2δ

√
βW (τ)dτ ≈ δ , yields (3.24).

If we set

Ω
−
ε,δ =

{
x ∈ Ω : sε(x)< δ

}
, Ω

+
ε,δ =

{
x ∈ Ω : sε(x)> s+−δ

}
,

and

Eε,δ =
{

x ∈ Ω : δ ≤ sε(x)≤ s+−δ
}
,

then it follows from (1.5) and (3.20) that

(3.25)





|Eε,δε
| ≤ Cε

δ 2
,

∫

Ω
+
ε ,δε

|∇nε |2 ≤
C(α,DA)

(s+−δ )2
.

It follows from the energy upper bound (3.1) that
∫

Ω
+
ε,δε

1

ε2
W (sε)dx ≤ C

ε
,

this, combined with (1.5), implies that for a.e. x ∈ Ω
+
ε,δε

, s+− δε ≤ sε(x) ≤ 1 and

sε(x)→ s+ as ε → 0. Hence for any 1 < p < ∞, it holds that

(3.26)

∫

Ω
+
ε,δε

|sε(x)− s+|p dx → 0, as ε → 0.

Furthermore, from the Cauchy-Schwarz inequality and (3.19), we also have
∫

Ω

(β |∇sε |2 +
1

ε2
W (sε))dx ≥ 2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ

≥ 1

ε
α0H

2(Γ)−C.

Matching with the refined upper bound (3.1), this also implies that
∫

Ω

(
s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2

+L1(∇sε ·nε)
2 +L3(∇sε ·nε)sεdivnε

)
dx

≤ DA +C+oε(1).(3.27)

From (3.23) and (3.25), there exist εi → 0, δi = δεi
∈ (ε

1
4

i ,2ε
1
4

i ), a set Ω∗ ⊂ Ω

of finite perimeter such that for Ωi = Ω
+
εi,δi

, it holds that

(a) χΩi
⇀ χΩ∗ in BV (Ω), and χΩi

→ χΩ∗ in L1(R3).
(b) We also view Γi = ∂ΩibΩ and Γ∗ = ∂ ∗

Ω∗bΩ as oriented boundaries and in-

tegral rectifiable 2-currents, and use the same notations, i.e., Γi = [[∂ΩibΩ]]
and Γ∗ = [[∂Ω∗bΩ]]. Then

Γi ⇀ Γ∗
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weakly converges as oriented boundaries and integral rectifiable 2-currents.

By the lower semicontinuity, we have that

(3.28) H
2(Γ)≤ H

2(Γ∗)≤ lim
i

H
2(Γi) = H

2(Γ),

where the first inequality follows from the area minimality of Γ, since ∂Γ=
∂Γ∗ = [[Σ0]].

Since Γ is assumed to be a unique area minimizing surface spanned by Σ
0, we

have that Γ∗ = Γ. Also, since

∂Ωib(R3 \Ω)→ Σ
+

as convergence of currents, we conclude that

∂Ω∗b(R3 \Ω) = Σ
+
.

Therefore Ω∗ = Ω
+. Next we need to show

Claim 1. For any η > 0, it holds

(3.29) lim
εi→0

H
2(∂Ωi ∩

{
x ∈ Ω : dΓ(x)≥ η

}
= 0.

It follows from (3.28) that

H
2b(∂Ωi ∩Ω)⇀ H

2bΓ

as weak convergence of Radon measures. Hence by the lower semicontinuity,

H
2(Γ) = H

2
(
Γ∩

{
x ∈ Ω : dΓ(x)< η

})

≤ liminf
εi→0

H
2
(
∂Ωi ∩

{
x ∈ Ω : dΓ(x)< η

})

≤ liminf
εi→0

H
2(∂Ωi ∩Ω) = H

2(Γ).

This clearly implies (3.29).

Claim 2. There exists a map n ∈ SBV(Ω+,S2) 3 such that after passing to a sub-

sequence,

nεi
χΩi

⇀ nχΩ+ in BV(Ω), and sεi
χΩi

→ s+χΩ+ in L2(Ω).

Furthermore, n ∈ H1(Ω+,S2).

To show Claim 2, we first observe that the absolutely continuous part of the dis-

tributional derivative of vi = nεi
χΩi

is ∇vi = ∇nεi
χΩi

, which is uniformly bounded

in L2, i.e. ∫

Ω

|∇vi|2 dx =
∫

Ωi

|∇ni|2 dx ≤C.

The jump part Jvi
of vi satisfies

Jvi
⊂ ∂Ωi ∩Ω = Γi,

3 Here SBV(Ω) denotes the space of all BV (or bounded variations) functions such that the Cantor

part of the distributional derivatives is zero. See Ambrosio [1] for more discussions.
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so that

H
2(Jvi

)≤ H
2(Γi)≤ 2H

2(Γ).

Moreover, we have that

‖vi‖L∞(Ω) ≤ 1.

Thus it follows from [1] that {vi} ⊂ SBV(Ω) is a weakly compact sequence in

SBV(Ω). There exists a n ∈ SBV(Ω) such that vi ⇀ n in BV(Ω) and strongly in

L1(Ω). Since |vi|= 1 in Ωi and |vi|= 0 in Ω\Ωi, it follows that |n|= 1 in Ω
+ and

|n| = 0 in Ω \Ω
+ so that n ∈ SBV(Ω+,S2). From the lower semicontinuity, we

have that

(3.30)

∫

Ω+
|∇n|2 dx ≤ liminf

εi→0

∫

Ωi

|∇nεi
|2 dx

Now we want to show its jump set has H 2-measure zero. This follows from (3.29)

and the lower semicontinuity:

H
2
(
Jn ∩

{
x ∈ Ω

+ : dΓ(x)> η
})

≤ liminf
εi→0

H
2
(
Jnεi

∩
{

x ∈ Ω
+ : dΓ(x)> η

})

≤ liminf
εi→0

H
2
(
∂Ωi ∩

{
x ∈ Ω

+ : dΓ(x)> η
})

= 0.

This, after sending η → 0, yields H 2
(
Jn ∩Ω

+) = 0. Hence n ∈ H1(Ω+).

It follows from (3.30) that ∇nεi
χΩi

⇀ ∇nχΩ+ in L2(Ω), and hence

sεi
∇nεi

χΩi
⇀ s+∇nχΩ+ in L1(Ω).

This, combined with the uniform H1 bound (3.25), further implies

(3.31) sεi
∇nεi

χΩi
⇀ s+∇nχΩ+ in L2(Ω).

We claim that

(3.32) ∇sεi
·nεi

→ 0 in D
′(Ω+).

To see this, let φ ∈C∞

0 (Ω
+). Then by integration by parts we have

∫

Ω+
∇sεi

·nεi
φ dx = −

∫

Ω+
sεi

(
divnεi

φ +nεi
∇φ

)
dx

→ −
∫

Ω+
s+

(
divnφ +n∇φ

)
dx

= −
∫

Ω+
s+div(nφ)dx = 0, as εi → 0.

Since

∫

Ωi

|∇sεi
·nεi

|2 dx is uniformly bounded, it follows from (3.32) that

(3.33) ∇sεi
·nεi

χΩi
⇀ 0 in L2(Ω).
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It follows from (3.31) and the lower semicontinuity of

∫

Ω+
s2

εi
WOF(nεi

,∇nεi
)dx that

∫

Ω+
s2
+WOF(n,∇n)dx =

∫

Ω

s2
+WOF(n,∇n)χΩ+ dx

≤ liminf
εi→0

∫

Ω

s2
εi

WOF(nεi
,∇nεi

)χΩi
dx

= liminf
εi→0

∫

Ωi

s2
εi

WOF(nεi
,∇nεi

)dx.(3.34)

Next we claim that
∫

Ω+
αs2

+|∇n|2 dx

≤ liminf
εi→0

∫

Ωi

(
αs2

εi
|∇nεi

|2 +L1(∇sεi
·nεi

)2 +L3(∇sεi
·nεi

)sεi
divnεi

)
dx.(3.35)

For η > 0, define Ω
+
η =

{
x ∈ Ω

+ : d(x,∂Ω
+)> η

}
. Since Ωi → Ω

+ in Hausdorff

distance, we may assume that for i sufficiently large, Ω
+
η ⊂ Ωi and hence

(3.36) sεi
∇nεi

⇀ s+∇n in L2(Ω+
η ), ∇sεi

·nεi
⇀ 0 in L2(Ω+

η ).

This and (3.16) imply that

D ≡ liminf
εi→0

∫

Ωi

(
αs2

εi
|∇nεi

|2 +L1(∇sεi
·nεi

)2 +L3(∇sεi
·nεi

)sεi
divnεi

)
dx

≥ liminf
εi→0

∫

Ω
+
η

(
αs2

εi
|∇nεi

|2 +L1(∇sεi
·nεi

)2 +L3(∇sεi
·nεi

)sεi
divnεi

)
dx

= liminf
εi→0

∫

Ω
+
η

[
α|sεi

(∇nεi
−∇n)+ sεi

∇n|2 +L1(∇sεi
·nεi

)2

+L3(∇sεi
·nεi

)(sεi
(divnεi

−divn)+ sεi
divn)

]
dx

= liminf
εi→0

{∫

Ω
+
η

αs2
εi
|∇n|2 dx

+
∫

Ω
+
η

[
αs2

εi
|∇(nεi

−n)|2 +L1(∇sεi
·nεi

)2 +L3(∇sεi
·nεi

)sεi
div(nεi

−n)
]

dx

+
∫

Ω
+
η

(
2αsεi

∇(nεi
−n)(sεi

∇n)+L3(∇sεi
·nεi

)(sεi
divn)

)
dx
}

= liminf
εi→0

(Ai +Bi +Ci).

Applying (3.16) with nε replaced by nεi
−n, we have that Bi ≥ 0. From (3.26) and

(3.36), we see that Ci → 0. On the other hand, since sεi
∇n ⇀ s+∇n in L2(Ω), we

have

liminf
εi→0

Ai ≥
∫

Ω
+
η

αs2
+|∇n|2 dx.
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Therefore we obtain that

D ≥
∫

Ω
+
η

αs2
+|∇n|2 dx.

Sending η to zero, this yields the claim (3.35), that is,

(3.37) D ≥
∫

Ω+
αs2

+|∇n|2 dx.

Combining (3.37) with (3.34), we arrive at

E(n,Ω+) =
∫

Ω+
s2
+

(
WOF(n,∇n)+α|∇n|2

)
dx(3.38)

≤ liminf
εi→0

∫

Ω

(
s2

εi
WOF(nεi

,∇nεi
)+αs2

εi
|∇nεi

|2

+L1(∇sεi
·nεi

)2 +L3(∇sεi
·nεi

)sεi
divnεi

)
dx.

From the assumption on gεi
on Σ

+, we see that n = g on Σ
+. Next we want to

show the trace of n on Γ satisfies the planar anchoring condition:

(3.39) n ·νΓ = 0 on Γ.

Sketch of proof of (3.39). We will show the planar anchoring condition of n on Γ

as follows. For simplicity, write ni = nεi
. First it is not hard to show that as i → ∞,

Ωi → Ω
+ in Hausdorff distance,

dH
2bΓi ⇀ dH

2bΓ

as convergence of Radon measures, and

ni ⇀ n in H1(Ω+
,S

2).

This implies that

div(ni)⇀ div(n) in L2(Ω), χΩi
→ χΩ+ in L2(R3).

Therefore
∫

Γi

ni ·νΓi
dH

2 =
∫

∂Ωi

ni ·ν∂Ωi
dH

2 −
∫

∂Ωi∩∂Ω

gi ·ν∂Ω dH
2

=
∫

Ωi

div(ni)dx−
∫

∂Ωi∩∂Ω

gi ·ν∂Ω dH
2

=
∫

R3
div(ni)χΩi

dx−
∫

∂Ωi∩∂Ω

gi ·ν∂Ω dH
2

→
∫

R3
div(n)χΩ+ dx−

∫

∂Ω+∩∂Ω

g ·ν∂Ω dH
2

=
∫

∂Ω+
n ·ν∂Ω+ dH

2 −
∫

∂Ω+∩∂Ω

g ·ν∂Ω dH
2

=
∫

Γ

n ·νΓ dH
2
.(3.40)
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It is readily seen that the planar anchoring condition of n on Γ follows from

(3.40) and the following lower semicontinuity property: for any nonnegative con-

vex function f : R→ R+, it holds that

(3.41)

∫

Γ

f
(
n ·νΓ

)
dH

2 ≤ liminf
i→∞

∫

Γi

f
(
ni ·νΓi

)
dH

2
.

Indeed, if we choose f (θ) = θ 2, then (3.41) and (3.23) imply that
∫

Γ

(
n ·νΓ

)2
dH

2 ≤ liminf
i→∞

∫

Γi

(
ni ·νΓi

)2
dH

2 = liminf
i→∞

∫

Γi

cos2 θε dH
2 = 0.

This implies that n ·νΓ = 0 H 2 a.e. on Γ.

Now we want to show (3.41) as follows. Define a family of Radon measures

Θi(A) = H
2(Γi ∩A) for i ≥ 1; Θ(A) = H

2(Γ∩A),

and

µi(A) =
∫

A
f
(
ni ·νΓi

)
dΘi

for any measurable set A ⊂ R
3.

It is readily seen that there exists a nonnegative Radon measure µ such that,

after passing to a subsequence,

Θi ⇀ Θ and µi ⇀ µ,

as convergence of Radon measures in R
3. By the Radon-Nikodym theorem, we

can decompose

µ = (DΘµ)Θ+µs
, with µs ⊥ Θ.

Then we have ∫

A
DΘµ dΘ ≤ µ(A)≤ liminf

i→∞

µi(A),

for any open set A ⊂ R
3. Hence (3.41) follows, if we can show

(3.42) f (ν ·νΓ)(x)≤ (DΘµ)(x), Θ− a.e. x ∈ supp(Θ) = Γ.

From the convexity of f , there exist ak,bk ∈ R such that

(3.43) f (θ) = sup
k

(akθ +bk).

For x ∈ Γ, we can find r j → 0 such that for each j, it holds that

(3.44)

{
limi→∞

∫
∂Br j

(x)∩Ωi
ni · y−x

|y−x| dH 2 = limi→∞

∫
∂Br j

(x)∩Ω+ n · y−x
|y−x| dH 2,

µ
(
∂Br j

(x)
)
= 0.

Therefore we have that

(3.45) lim
i→∞

∫

Br j
(x)∩Γi

f (ni ·νΓi
)dH

2 = lim
i→∞

µi(Br j
(x)) = µ(Br j

(x)).
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Similar to (3.40), we have that for each j,

lim
i→∞

∫

∂ (Ωi∩Br j
(x))

ni ·ν∂ (Ωi∩Br j
(x)) dH

2

= lim
i→∞

∫

Ωi∩Br j
(x)

divni dx

=
∫

Ωi∩Br j
(x)

divndx

=
∫

∂ (Ω+∩Br j
(x))

n ·ν∂ (Ω+∩Br j
(x)) dH

2
.

This, combined with (3.44), implies that for each j it holds that

lim
i→∞

∫

Γi∩Br j
(x)

ni ·νΓi
dH

2 =
∫

Γ∩Br j
(x)

n ·νΓ dH
2
.

Recall that for Θ a.e. x ∈ Γ, it holds that

DΘµ(x) = lim
j→∞

µ(Br j
(x))

Θ(Br j
(x))

,

and

lim
j→∞

∫
Γ∩Br j

(x) n ·νΓ dH 2

Θ(Br j
(x))

= (n ·νΓ)(x).

Applying (3.45), we obtain that for any fixed k,

DΘµ(x) = lim
j→∞

lim
i→∞

∫
Γi∩Br j

(x) f (ni ·νΓi
)dH 2

Θ(Br j
(x))

≥ lim
j→∞

lim
i→∞

∫
Γi∩Br j

(x)(akni ·νΓi
+bk)dH 2

Θ(Br j
(x))

≥ lim
j→∞

lim
i→∞

[
ak

∫
Γi∩Br j

(x) ni ·νΓi
dH 2

Θ(Br j
(x))

+bk

Θi(Br j
(x))

Θ(Br j
(x))

]

≥ lim
j→∞

[
ak

∫
Γ∩Br j

(x) n ·νΓ dH 2

Θ(Br j
(x))

+bk

]

= ak(n ·νΓ)(x)+bk.

Taking supremum over k ≥ 1, we conclude that for Θ a.e. x ∈ Γ,

DΘµ(x)≥ sup
k

(
ak(n ·νΓ)(x)+bk

)
= f

(
n ·νΓ

)
(x).

This yields (3.41).
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For 0< τ < s+, let T (τ)⊂Ω be an area minimizing surface spanned by Σ(τ) ={
x ∈ ∂Ω : dΓ(x) = t

}
= ∂Γ(t):

H
2(T (τ)) = min

{
H

2(S) : S is an integral 2-current in Ω, ∂S = Σ(t)
}
.

Then by putting all the above estimates together, we obtain the following lower

bound:

liminf
ε→0

∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ 2

ε

∫ s+

0

√
βW (τ)H 2(T (εξ−1

ε,γ (τ))dτ +E(n,Ω+),(3.46)

where E(n,Ω+) is the Oseen-Frank energy given by

E(n,Ω+) = s2
+

∫

Ω+

(
WOF(n,∇n)+α|∇n|2

)
dx.

Finally, we want to show that n∈H1(Ω+,S2) is a minimizer of the Oseen-Frank

energy E(·,Ω+), subject to the boundary condition: n = g on Σ
+ and n ·νΓ = 0 on

Γ, i.e.,

(3.47) E(n,Ω+) = DA.

In order to prove (3.47), we need to show that the leading order term in the lower

bound estimate (3.46) exactly matches that in the refined upper bound estimate

(3.1), i.e.,
∫ s+

0

√
βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ

≤
∫ s+

0

√
βW (τ)H 2(T (εξ−1

ε,γ (τ))dτ +Cε2
.(3.48)

The validity of (3.48) is a consequence of the strict stability of Γ, which ensures

Claim 3. Under the condition that Γ is a strictly stable, area minimizing surface,

there exist η0 > 0 and C0 > 0, depending only on Γ and Ω, such that

(3.49) H
2(Γ(λ ))≤ H

2(T (λ ))+C0λ 2
, ∀λ ∈ [−η0,η0].

The proof of (3.49) is based on the second variation of surface areas and the strict

stability of Γ, we refer the reader to [34] page 45-47.

It follows from (3.49) that
∫ s+

0

√
βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ

≤
∫ s+

0

√
βW (τ)

(
H

2(T (εξ−1
ε,γ (τ))+C(εξ−1

ε,γ (τ))
2
)

dτ

≤
∫ s+

0

√
βW (τ)H 2(T (εξ−1

ε,γ (τ))dτ +Cε2

∫ s+

0

√
βW (τ)

(
ξ−1

ε,γ (τ)
)2

dτ

≤
∫ s+

0

√
βW (τ)H 2(T (εξ−1

ε,γ (τ))dτ +Cε2
,
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since there exists C > 0, that is independent of ε , such that

∫ s+

0

√
βW (τ)

(
ξ−1

ε,γ (τ)
)2

dτ ≤Cα0.

Hence (3.48) holds. Now it is readily seen that the refined upper bound (3.1), the

refined lower bound (3.46), and (3.48) imply E(n,Ω+) ≤ DA. On the other hand,

since n = g on Σ
+ and n ·νΓ = 0 on Γ, we automatically have E(n,Ω+)≥DA. Thus

(3.47) holds, and

(3.50)∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx =
2

ε

∫ s+

0

√
βW (τ)H 2(Γ(εξ−1(τ))dτ +DA +oε(1).

Finally, we claim that (see also [34] page 46)

(3.51)
2

ε

∫ s+

0

√
βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ =
α0

ε
H

2(Γ)+oε(1).

In fact, it is not hard to see that

H
2(Γ(λ )) = H

2(Γ)+aλ +O(λ 2), λ ∈ (−εγ
,εγ),

where a = d
dλ

∣∣
λ=0

H 2(Γ(λ )). Thus we have that

2

ε

∫ s+

0

√
βW (τ)H 2(Γ(εξ−1

ε,γ (τ))dτ

=
2

ε

∫ εγ−1

−εγ−1

√
βW (ξε,γ(t))H

2(Γ(εt))|ξ ′
ε,γ(t)|dt

=
2

ε

∫ εγ−1

−εγ−1

√
βW (ξε,γ(t))

(
H

2(Γ)+aεt +O(ε2t2)
)
|ξ ′

ε,γ(t)|dt

=
α0

ε
H

2(Γ)+2a

∫ εγ−1

−εγ−1

√
βW (ξε,γ(t))|ξ ′

ε,γ(t)|t dt +O(ε)

=
α0

ε
H

2(Γ)+O(ε),

where we have the fact that
√

βW (ξε,γ(t))|ξ ′
ε,γ(t)| is an even function so that

∫ εγ−1

−εγ−1

√
βW (ξε,γ(t))|ξ ′

ε,γ(t)|t dt = 0.

Thus we arrive at

(3.52)

∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx =
α0

ε
H

2(Γ)+DA +oε(1).

This proves part (A) of Theorem 1.3. �
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3.3 Refined lower bound for the case (B)

The refined lower bound in this case can be done similarly to that of the case

(A). The major difference arises in showing the homeotropic boundary condition

of the limiting map n on the sharp interface Γ, on which we will focus.

First, from L2
4 < 4L2α we can find a positive number µ > 0 such that L2

4 ≤
4(L2 −µ)(α −µ). Hence by Cauchy-Schwarz inequality we have

|L4sε∇sε · (∇nε)nε |
= |L4(∇sε − (∇sε ·nε)nε) · (sε∇nε)|
≤ (L2 −µ)|∇sε − (∇sε ·nε)nε |2 +(α −µ)s2

ε |∇nε |2

= (L2 −µ)|∇sε ∧nε |2 +(α −µ)s2
ε |∇nε |2.(3.53)

This implies that

W̃ε(sε ,nε ,∇sε ,∇nε) = (β |∇sε |2 +
1

ε2
W (sε))+ s2

εWOF(nε ,∇nε)

+
(
αs2

ε |∇nε |2 +L2|∇sε ∧nε |2 +L4(sε∇sε) · (∇nε)nε

)

≥ β |∇sε |2 +
1

ε2
W (sε)+µs2

ε |∇nε |2 +µ|∇sε ∧nε |2

=
[
(β +µ sin2 θε)|∇sε |2 +

1

ε2
W (sε)

]
+µs2

ε |∇nε |2

≥ 2

ε
|∇sε |

√
W (sε)

√
β +µ sin2 θε +µs2

ε |∇nε |2,

where sinθε =
∇sε
|∇sε | ∧nε .

Note that we also have

W̃ε(sε ,nε ,∇sε ,∇nε) = (β |∇sε |2 +
1

ε2
W (sε))+ s2

εWOF(nε ,∇nε)

+
(
αs2

ε |∇nε |2 +L2|∇sε ∧nε |2 +L4(sε∇sε) · (∇nε)nε

)

≥ β |∇sε |2 +
1

ε2
W (sε)+µs2

ε |∇nε |2 +µ|∇sε ∧nε |2

≥ 2

ε
|∇sε |

√
βW (sε)+µs2

ε |∇nε |2 +µ|∇sε ∧nε |2.

Hence, by the co-area formula, this implies that
∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥
∫

Ω

(2

ε
|∇sε |

√
W (sε)

√
β +µ sin2 θε +µs2

ε |∇nε |2
)

dx

≥ µ

∫

Ω

s2
ε |∇nε |2 dx+

2µ∗
ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)
sin2 θε dH

2 dτ

+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ,(3.54)
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where µ∗ =
µ√

µ +β +
√

β
, and

∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ µ

∫

Ω

(
s2

ε |∇nε |2 + |∇sε ∧nε |2
)

dx+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ.(3.55)

Matching (3.54) and (3.55) with the upper bound (3.14), we conclude that

(3.56) µ

∫

Ω

(s2
ε |∇nε |2 + |∇sε ∧nε |2)dx ≤ DB +C+oε(1),

(3.57)
µ∗
ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)
sin2 θε dH

2 dτ ≤ DB +C+oε(1),

and

(3.58)
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ ≤ 1

ε
α0H

2(Γ)+DB +oε(1).

As in the previous section, for any small δ > 0 there exist C > 0, independent of ε ,

and δε ∈ (δ ,2δ ) such that

(3.59)

∫

∂ ∗Sε (s+−δε )
sin2 θε dH

2 ≤C
ε

δ
,

(3.60) H
2(∂ ∗

Sε(s+−δε))≤ H
2(Γ)+C

ε

δ
.

Moreover, from (3.57) we have

(3.61)

∫

Ω
+
ε,δε

(
|∇nε |2 + |∇sε ∧nε |2

)
dx ≤C.

As in the previous section, there exists εi → 0 and δi ∈ (ε
1
4

i ,2ε
1
4

i ) such that

Ωi = Ω
+
εi,δi

converges to Ω
+ weakly in BV (R3),

Γi = ∂ΩibΩ ⇀ Γ = ∂Ω
+bΩ,

as convergence of measures and integral 2-currents. Furthermore, there exists a

map n ∈ H1(Ω+,S2) such that

nεi
χΩi

⇀ nχΩ+ in BV(Ω), and sεi
χΩi

→ s+χΩ+ in L2(Ω),

and hence

∇nεi
χΩi

⇀ ∇nχΩ+ , and sεi
∇nεi

χΩi
⇀ s+∇nχΩ+ in L2(Ω).

As a consequence of these weak convergences and (3.61), we can deduce

∇sεi
∧nεi

⇀ 0 in L2(Ω).

Similar to the proof of (3.34) and (3.35), we can obtain
∫

Ω+
s2
+WOF(n,∇n)dx ≤ liminf

εi→0

∫

Ωi

s2
εi

WOF(nεi
,∇nεi

)dx,(3.62)
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and
∫

Ω+
αs2

+|∇n|2 dx

≤ liminf
εi→0

∫

Ωi

(
αs2

εi
|∇nεi

|2 +L2|∇sεi
∧nεi

|2 +L4(sεi
∇sεi

· (∇nε)nε

)
dx.(3.63)

Adding (3.62) with (3.63), we arrive at

E(n,Ω+) =
∫

Ω+
s2
+

(
WOF(n,∇n)+α|∇n|2

)
dx(3.64)

≤ liminf
εi→0

∫

Ω

(
s2

εi
WOF(nεi

,∇nεi
)+αs2

εi
|∇nεi

|2

+L2|∇sεi
∧nεi

|2 +L4sεi
∇sεi

· (∇nεi
)nεi

)
dx.

Now we want to show the homeotropic condition of n on Γ, i.e.,

(3.65) n∧νΓ = 0 on Γ.

In order to show (3.65), we first want to prove

(3.66)

∫

Γ

n∧νΓ dH
2 = lim

i→∞

∫

Γi

ni ∧νΓi
dH

2
.

In fact, since

∇×ni ⇀ ∇×n in L2(Ω+), and χΩi
→ χΩ+ in L2(R3),

we must have

lim
i→∞

∫

Ωi

∇×ni dx =
∫

Ω+
∇×ndx.

This, combined with the divergence theorem, implies that
∫

∂Ωi∩∂Ω

ni ∧ν∂Ωi
dH

2 +
∫

Γi

ni ∧νΓi
dH

2

=
∫

(∂Ωi∩∂Ω)∪Γi

ni ∧ν∂Ωi
dH

2 =
∫

Ωi

∇×ni dx

→
∫

Ω+
∇×ndx =

∫

(∂Ω+∩∂Ω)∪Γ

n∧ν∂Ω+ dH
2

=
∫

∂Ω+∩∂Ω

n∧ν∂Ω dH
2 +

∫

Γ

n∧νΓ dH
2
.

On other hand, it follows from the assumption on gεi
on ∂Ω that

∫

∂Ωi∩∂Ω

ni ∧ν∂Ωi
dH

2 =
∫

∂Ωi∩∂Ω

gεi
∧ν∂Ωi

dH
2

→
∫

∂Ω+∩∂Ω

g∧ν∂Ω dH
2 =

∫

∂Ω+∩∂Ω

n∧ν∂Ω dH
2
.

Thus (3.66) holds.
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From (3.66), we can use a similar argument to show that for any nonnegative

convex function f : R→ R+, it holds that

(3.67)

∫

Γ

f (n∧νΓ)dH
2 ≤ liminf

i→∞

∫

Γi

f (ni ∧νΓi
)dH

2
.

In particular, this implies that

(3.68)∫

Γ

|n∧νΓ|2 dH
2 ≤ liminf

i→∞

∫

Γi

|ni ∧νΓi
|2 dH

2 = liminf
i→∞

∫

Γi

sin2 θεi
dH

2 = 0.

This yields (3.65).

For the convenience of readers, we will sketch the proof of (3.67) as follows.

Define a family of Radon measures

Mi(A) =
∫

A
f (ni ∧νΓi

)dΘi,

for any measurable set A ⊂ R
3.

Without loss of generality, we can assume that there exists a Radon measure

M in R
3 such that

Mi ⇀ M

as convergence of Radon measures on R
3. Again by Radon-Nikodym theorem, we

can decompose

M = (DΘM )Θ+M
s
, M

s ⊥ M .

Hence for any open set O ⊂ R
3, it holds that

∫

O
DΘM dΘ ≤ M (O)≤ liminf

i→∞

Mi(O).

Now we want to show

(3.69) DΘM (x)≥ f (n∧νΓ)(x), Θ a.e. x ∈ Γ.

First, it is not hard to see that for any x ∈ Γ, it holds that for L1 a.e. r > 0,

lim
i→∞

∫

∂Br(x)∩Ωi

ni ∧
y− x

|y− x| dH
2 =

∫

∂Br(x)∩Ω+
n∧ y− x

|y− x| dH
2
.

This, combined with
∫

∂ (Br(x)∩Ωi)
ni ∧ν∂ (Br(x)∩Ωi) =

∫

Br(x)∩Ωi

∇×ni

→
∫

Br(x)∩Ω+
∇×n =

∫

∂ (Br(x)∩Ω+)
n∧ν∂ (Br(x)∩Ω+),

yields that

lim
i→∞

∫

Br(x)∩Γi

ni ∧νΓi
dH

2 =
∫

Br(x)∩Γ

n∧νΓ dH
2
.

It is readily seen that

M (∂Br(x)) = 0

holds for L1 a.e. r > 0.
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Therefore, for any given x ∈ Γ,

M (Br(x))

Θ(Br(x))
= lim

i→∞

Mi(Br(x))

Θ(Br(x))

≥ lim
i→∞

∫
Br(x)∩Γi

(akni ∧νΓi
+bk)dH 2

Θ(Br(x))

= ak lim
i→∞

∫
Br(x)∩Γi

ni ∧νΓi
dH 2

Θ(Br(x))
+bk

= ak

∫
Br(x)∩Γ

n∧νΓ dH 2

Θ(Br(x))
+bk(3.70)

holds for any k ≥ 1 and L1 a.e. r > 0.

Since

DΘM (x) = lim
r→0

M (Br(x))

Θ(Br(x))
,

and

(n∧νΓ)(x) = lim
r→0

∫
Br(x)∩Γ

n∧νΓ dH 2

Θ(Br(x))

hold for Θ a.e. x ∈ Γ, after passing to the limit in (3.70) we obtain that for Θ a.e.

x ∈ Γ,

DΘM (x)≥ ak(n∧νΓ)(x)+bk, ∀k ≥ 1.

Taking supremum over k ≥ 1 and using (3.43), this yields (3.69).

From (3.65), we conclude that by

E(n; Ω
+)≥ DB,

which, combined with (3.55) and (3.64), implies that

∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ 2

ε

∫ s+

0

√
βW (τ)H 2(Sε(τ))dτ +DB +oε(1).(3.71)

This, combined with the inequality (3.48) and the upper bound (3.14), further im-

plies that

E(n; Ω
+) = DB,

(3.72)

∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx =
α0

ε
H

2(Γ)+DB +oε(1).

The part (B) of Theorem 1.3 is proven. �
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3.4 Refined lower bound for the case (C)

This case is the easiest among the three cases we discuss in this paper. In fact,

by (3.15) and direct calculations, we obtain that

α0

ε
H

2(Γ)+DC +oε(1)

≥
∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx

=
∫

Ω

[
(β |∇sε |2 +

1

ε2
W (sε))+(s2

εWOF(nε ,∇nε)+αs2
ε |∇nε |2)

]
dx

≥ 2

ε

∫ s+

0

√
βW (τ)H 2(S (εξ−1

ε,γ (τ))dτ

+(s+−δ )2

∫

Ω
+
ε,δ

(WOF(nε ,∇nε)+α|∇nε |2)dx

≥ α0

ε
H

2(Γ)−C

+(s+−δ )2

∫

Ω
+
ε,δ

(WOF(nε ,∇nε)+α|∇nε |2)dx.

This implies that for any δ > 0, there exists δε ∈ (δ ,2δ ) such that

(3.73)

∫

Ω
+
ε,δε

(WOF(nε ,∇nε)+α|∇nε |2)dx ≤ 1

(s+−δε)2

(
DC +C+oε(1)

)
,

and

(3.74) H
2(Sε(s+−δε))≤ H

2(Γ)+C
ε

δ
.

As in the previous two cases, we can argue as follows. For εi → 0, there exists

δεi
∈ (ε

1
2

i ,2ε
1
2

i ) such that Ωi = Ω
+
εi,δεi

→ Ω
+ weakly in BV(R3),

Sε(s+−δεi
) = ∂ΩibΩ ⇀ Γ = ∂Ω

+bΩ,

weakly converges as measures and integral currents. Furthermore, there exists

n ∈ H1(Ω+) with n = g on Σ
+ such that

sεi
∇nεi

χΩi
⇀ s+∇nχΩ+ in L2(Ω).

By the lower semicontinuity, we then have

DC ≤
∫

Ω+
s2
+(WOF(n,∇n)+α|∇n|2)dx

≤ liminf
εi→0

∫

Ω

(
s2

εi
WOF(nεi

,∇nεi
)+αs2

εi
|∇nεi

|2
)

dx.(3.75)

On the other hand, it follows from the inequality (3.48) that

2

ε

∫ s+

0

√
βW (τ)H 2(S (εξ−1

ε,γ (τ))dτ ≥ α0

ε
H

2(Γ)−Cε.
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Thus we can conclude that

E(n; Ω
+) = DC,

and ∫

Ω

W̃ε(sε ,nε ,∇sε ,∇nε)dx =
α0

ε
H

2(Γ)+DC +oε(1).

This establishes the conclusion of part (C) in Theorem 1.3. �

4 Proof of Theorem 1.4

In this section, we will consider the asymptotic expansion of E (sε ,nε) for Ω =
R

3 and prove Theorem 1.4. We will first provide a sharp upper bound estimate for

the cases (A), (B), and (C).

4.1 Refined upper bounds

The constructions are similar to those in the section 2.2.2, except that we need to

use an almost minimal 1-dimensional connecting orbit in the fast transition region

of width O(εγ) around ∂B1.

Let ξε,γ ∈C∞([−εγ ,εγ ]) be given by (1.22). Define ŝε : R3 → R+ by letting

ŝε(x) =





s+ |x| ≤ 1,

ξε,γ(
|x|−(1+εγ )

ε ) 1 ≤ |x| ≤ 1+2εγ ,

0 |x| ≥ 1+2εγ .

Then we have {
x ∈ R

3 : ŝε(x)≥ s+
}
= B1,

and
∫

R3

(
|∇ŝε |2 +

1

ε2
W (ŝε)

)
dx

=
1

ε

∫ εγ−1

−εγ−1

(
β |ξ ′

ε,γ(t)|2 +W (ξε,γ(t))
)
H

2(∂B1+εγ+εt)dt

=
4π

ε

∫ εγ−1

−εγ−1

(
β |ξ ′

ε,γ(t)|2 +W (ξε,γ(t))
)

·[(1+ εγ)2 +2ε(1+ εγ)t + ε2t2]dt

=
α0

ε
H

2(∂B1)+Cε2γ−1 +oε(1) =
α0

ε
H

2(∂B1)+oε(1),(4.1)

since γ >
1
2
.

Now we divide the discussion into three different cases:

Case (A) Let n ∈ H1(B1,S
2) be such that n ·ν∂B1

= 0 on ∂B1, and

(4.2) E(n;B1) = DA,
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where DA is given by (1.36) and (1.37). Assume n̄ ∈ H1(B1+2εγ ,S2) be

such that n̄ = n in B1, and
∫

B1+2εγ \B1

|∇n̄|2 dx = oε(1).

Then we have
∫

R3
ŝ2

ε

(
WOF(n̄,∇n̄)+α|∇n̄|2

)
dx

≤
∫

B1

s2
+

(
WOF(n,∇n)+α|∇n|2

)
dx+Cs2

+

∫

B1+2εγ \B1

|∇n̄|2 dx

= DA +oε(1).(4.3)

While
∣∣
∫

R3

(
L1(∇ŝε · n̄)2 +L3(∇ŝε · n̄)(ŝεdivn̄)

)
dx
∣∣

=
∣∣
∫

B1+2εγ \B1

(
L1(∇ŝε · n̄)2 +L3(∇ŝε · n̄)(ŝεdivn̄)

)
dx
∣∣

≤C
(∫

B1+2εγ \B1

|∇ŝε · n̄|2 dx+
∫

B1+2εγ \B1

|∇n̄|2 dx
)

≤ oε(1)+Cε−2

∫

B1+2εγ \B1

|ξ ′
ε,γ |2

( |x|− (1+ εγ)

ε

)∣∣n̄(x)− n̄(
x

|x|)
∣∣2 dx

≤ oε(1)+C

∫

B1+2εε \B1

∣∣∇n̄
∣∣2 dx = oε(1).(4.4)

Therefore by putting together (4.1), (4.3), and (4.4), we arrive at

limsup
ε→0

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≤ limsup

ε→0

∫

R3
W̃ (ŝε , n̄,∇ŝε ,∇n̄)dx

≤ α0

ε
H

2(∂B1)+DA.(4.5)

Case (B) Let n ∈ H1(B1,S
2) be such that n∧ν∂B1

= 0 on ∂B1, and

(4.6) E(n;B1) = DB,

where DB is given by (1.39) and (1.40). Assume n̄ ∈ H1(B1+2εγ ,S2) be

such that n̄ = n in B1, and
∫

B1+2εγ \B1

|∇n̄|2 dx = oε(1).

Then we have
∫

R3
ŝ2

ε

(
WOF(n̄,∇n̄)+α|∇n̄|2

)
dx

≤
∫

B1

s2
+

(
WOF(n,∇n)+α|∇n|2

)
dx+Cs2

+

∫

B1+2εγ \B1

|∇n̄|2 dx = DB +oε(1).(4.7)
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While

∣∣
∫

R3

(
L2|∇ŝε ∧ n̄|2 +L4(ŝε∇ŝε)(∇n̄)n̄

)
dx
∣∣

=
∣∣
∫

B1+2εγ \B1

(
L2|∇ŝε ∧ n̄|2 +L4(ŝε∇ŝε)(∇n̄)n̄

)
dx
∣∣

≤C
(∫

B1+2εγ \B1

|∇ŝε ∧ n̄|2 dx+
∫

B1+2εγ \B1

|∇n̄|2 dx
)

≤ oε(1)+Cε−2

∫

B1+2εγ \B1

|ξ ′
ε,γ |2

( |x|− (1+ εγ)

ε

)∣∣n̄(x)− n̄(
x

|x|)
∣∣2 dx

≤ oε(1)+C

∫

B1+2εε \B1

∣∣∇n̄
∣∣2 dx = oε(1).(4.8)

Therefore by putting together (4.1), (4.7), and (4.8), we arrive at

limsup
ε→0

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≤ limsup

ε→0

∫

R3
W̃ (ŝε , n̄,∇ŝε ,∇n̄)dx

≤ α0

ε
H

2(∂B1)+DB.(4.9)

Case (C) Let n ≡ (0,0,1) ∈ S
2. Then by (4.1) we see that

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≤

∫

R3
W̃ (ŝε , n̄,∇ŝε ,∇n̄)dx

=
∫

R3

(
|∇ŝε |2 +

1

ε2
W (ŝε)

)
dx

≤ α0

ε
H

2(∂B1)+oε(1).(4.10)

4.2 Refined lower bounds

In this subsection, we will sketch the proof of a sharp a lower bound estimate

for the cases (A), (B), and (C). The ideas are similar to those presented in the

section 3 for bounded domain cases, except that we will work on the entire space

R
3 where we only have the weak compactness property of BV(R3) locally in R

3.

We will focus on the case (A), and only sketch the cases (B) and (C).

Case (A) First, as in the discussion of the section 3.2, there exists µ > 0 such that

∫

R3
W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ 2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ +µ

∫

R3

(
s2

ε |∇nε |2 +(∇sε ·nε)
2
)

dx,(4.11)
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and∫

R3
W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ µ

∫

R3
s2

ε |∇nε |2 dx+
2µ∗
ε

∫ s+

0

√
βW (τ)

∫

∂ ∗Sε (τ)
cos2 θε dH

2 dτ

+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ,(4.12)

where Sε(τ) =
{

x ∈ R
3 : sε(x)≥ τ

}
, cosθε =

∇sε
|∇sε | ·nε , and

µ∗ =
µ√

β +µ +
√

β
> 0.

Notice that by the isoperimetric inequality (see, e.g., Case (C) below)

we have

(4.13)
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ ≥ α0

ε
H

2(∂B1).

It follows from (4.11), (4.12), (4.13) and (4.5) that there exists τε ∈ (0,s+)
such that

(4.14)

∫

Sε (τε )
(s2

ε |∇nε |2 + |∇sε ·nε |2)dx ≤C(µ, DA),

(4.15)

∫

Sε (τε )
cos2 θε dH

2 ≤Cε,

and

(4.16) H
2(∂ ∗

Sε(τε))≤ H
2(∂B1)+oε(1).

By the isoperimetric inequality and the volume constraint condition, we

have that

(4.17) |B1| ≤
∣∣Sε(τε)

∣∣≤ |B1|
(
∣∣H 2(∂ ∗Sε(τε))

∣∣
H 2(∂B1)

) 3
2 ≤ |B1|(1+oε(1)).

To simplify the presentation, we denote by Eε = Sε(τε). Although Eε

may not converge in L1(R3) due to the non-compactness of R3, we can

apply the quantitative stability theorem by Fusco-Maggi-Pratelli [15] (see

also [40]) to show that Eε does converge in L1(R3) after suitable transla-

tions. In fact, if we set the isoperimetric deficit and Fraenkel asymmetry

by

(4.18)

A(Eε) =
H 2(Eε)

3|B1|
1
3 |Eε |

2
3

−1, and δ (Eε) = inf
{ |Eε∆Br(x)|

|Eε |
: |Br(x)|= |Eε |

}
,

then it follows from [15] that

(4.19) A(Eε)≤Cδ (Eε)
1
2 ≤ oε(1),
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where we have used (4.16) and (4.17) in the second inequality of (4.19).

From (4.17), there exist xε ∈ R
3 and rε = 1+oε(1) such that after passing

to a subsequence,

|Eε∆Brε (xε)| → 0, as ε → 0,

or equivalently,

(4.20) Êε ≡ Eε \{xε}→ B1 in L1(R3).

Since the problem is invariant under translations, for simplicity we may

assume that xε = 0 so that Eε = Êε . The rest of argument can be done

almost identically to the case (A) of Theorem 1.3 presented in section 3.2.

For instance, we can show that there exists n ∈ H1(B1,S
2) such that

sε → s+ in L2(B1), nε ⇀ n in H1(B1),

and

n(x) · x = 0 on ∂B1.

Moreover, by the lower semicontinuity we have that

DA ≤ E(n;B1) = s2
+

∫

B1

(WOF(n,∇n)+α|∇n|2)dx

≤ liminf
ε→0

∫

Eε

(
s2

εWOF(nε ,∇nε)+α|∇nε |2

+L1(∇sε ·nε)
2 +L3(∇sε ·nε)sεdivnε

)
dx

= liminf
(∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx−

∫

R3

(
|∇sε |2 +

1

ε2
W (sε)

)
dx
)

≤ DA.

Hence

E(n;B1) = DA,

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≥ α0

ε
H

2(∂B1)+DA +oε(1).

Case (B) First, as in the discussion of the section 3.2, there exists µ > 0 such that

∫

R3
W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ 2µ∗
ε

∫ s+

0

√
W (τ)

∫

∂ ∗Sε (τ)
sin2 θε dH

2

+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ,(4.21)
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where µ∗ =
µ√

µ +β +
√

β
and sin2 θε = | ∇sε

|∇sε | ∧nε |2, and

∫

R3
W̃ε(sε ,nε ,∇sε ,∇nε)dx

≥ µ

∫

R3

(
s2

ε |∇nε |2 + |∇sε ∧nε |2
)

dx

+
2

ε

∫ s+

0

√
βW (τ)H 2(∂ ∗

Sε(τ))dτ.(4.22)

As in the case (A), we can find τε ∈ (0,s+) such that

(4.23)

∫

Sε (τε )
(s2

ε |∇nε |2 + |∇sε ∧nε |2)dx ≤C(µ, DB),

(4.24)

∫

Sε (τε )
sin2 θε dH

2 ≤Cε,

and

(4.25) H
2(∂ ∗

Sε(τε))≤ H
2(∂B1)+oε(1).

As in the discussion of Case (A) above, we can apply the quantitative

stability theorem of [15] to conclude that after passing to a subsequence,

Sε(τε)→ B1 in L1(R3).

Furthermore, by an argument similar to Case (B) of Theorem 1.3 presented

in the section 3.3, there exists a n ∈ H1(B1,S
2) such that

sε → s+ in L2(B1), nε ⇀ n in H1(B1),

n(x)∧ x = 0 on ∂B1,

and by the lower semicontinuity,

DB ≤ E(n;B1) = s2
+

∫

B1

(WOF(n,∇n)+α|∇n|2)dx

≤ liminf
ε→0

∫

Eε

(
s2

εWOF(nε ,∇nε)

+α|∇nε |2 +L2|∇sε ∧nε |2 +L4sε∇sε · (∇nε)nε

)
dx

= liminf
ε→0

(∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx−

∫

R3

(
|∇sε |2 +

1

ε2
W (sε)

)
dx
)

≤ lim
ε→0

(α0

ε
H

2(∂B1)+DB +oε(1)−
α0

ε
H

2(∂B1)
)
= DB.

Hence

E(n;B1) = DB,

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≥ α0

ε
H

2(∂B1)+DB +oε(1).
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Case (C) This case is the simplest, since it reduces to the iso-perimetric inequality:
∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≥

∫

R3

(
|∇sε |2 +

1

ε2
W (sε)

)
dx

≥ 2

ε

∫

R3

√
βW (sε)|∇sε |dx

≥ 2

ε

∫ s+

0

√
βW (τ)H 2

(
∂ ∗{x ∈ R

3 : sε(x)≥ τ
})

dτ.

Since∣∣∣
{

x ∈ R
3 : sε(x)≥ τ

}∣∣∣≥
∣∣∣
{

x ∈ R
3 : sε(x)≥ s+

}∣∣∣=
∣∣B1

∣∣, ∀0 < τ < s+,

it follows from the isoperimetric inequality in R
3 that for all 0 < τ < s+,

H
2
(
∂ ∗{x ∈ R

3 : sε(x)≥ τ
})

≥ (36π)
1
3

∣∣∣
{

x ∈ R
3 : sε(x)≥ τ

}∣∣∣
2
3

≥ (36π)
1
3 |B1|

2
3 = H

2(∂B1).

Hence we obtain that

(4.26)

∫

R3
W̃ (sε ,nε ,∇sε ,∇nε)dx ≥ α0

ε
H

2(∂B1).

Completion of Proof of Theorem 1.4. It is readily seen that Theorem 1.4 follows by

combining the arguments from both section 4.1 and section 4.2. �
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