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COMPACTNESS OF M-UNIFORM DOMAINS AND OPTIMAL
THERMAL INSULATION PROBLEMS

HENGRONG DU, QINFENG LI, CHANGYOU WANG

ABSTRACT. In this paper, we will consider an optimal shape problem of heat insulation
introduced by [5]. We will establish the existence of optimal shapes in the class of M-
uniform domains. We will also show that balls are stable solutions of the optimal heat
insulation problem.

1. INTRODUCTION

1.1. Background. In this paper, motivated by Bucur-Buttazzo-Nitsch in their papers [4]
and [5], we consider the thermal insulation problem of designing the optimal shape  of R™
which represents a thermally conducting body, and determining the best distribution of a
given amount of insulating material around €2; the thickness of the insulating material is
assumed to be very small with respect to the size of 2 so the material density is assumed to
be a nonnegative function defined on the boundary 0€2. A rigorous approach is to consider
a limit problem when the thickness of the insulating layer goes to zero and simultaneously
the conductivity in the layer goes to zero.

Mathematically, this amounts to consider the limit of the family of functionals, as € — 0,

(u, h, Q) /yvu\de+ / \Vu!2da;—/fudx (1.1)

over u € Hj (), where Q. = QUY,. Here Q has a prescribed volume Vp, ¥, = {0 +tv(0) :
o€ 0Q,0<t<eh(o)} is the thin layer of sickness eh(o) around 9f2, and h € 7, where

oy = {h : 90 — Ris measurable, h > 0,/ hdo = m}
0N

and h denotes the distribution function of insulation material with fixed total amount m > 0.
As in [1] and [4], in the framework of I'-convergence passing to the limit ¢ — 0 in (1.1)
we obtain the limit energy functional

2
Fo(u, 1, Q) /\vuy dv + = / %da—/fudx. (1.2)
Q

By [3], for any fixed u and Q, if we minimize F'(u,h,Q) over h € ,, then F(u,h,(Q)
achieves its minimum when

|ul
h=m—" (1.3)
Joq [ul do
After substituting (1.3) for h into (1.2), we seek to minimize
1 1 2
TIm(u, Q) = —/ |Vu|? de + — (/ |u|dﬁf”_1> —/ fudz (1.4)
2 Ja 2m \Joq Q

over all u € H' (), subject to the volume constraint [Q| = V.
1
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It was proved in [4] that for every f € L*(), if 0 is fixed, then the minimization of (1.4)
admits a unique solution ug € H 1(Q), and moreover if ) = Br and f = 1, then
R? — |z|? m

2n nZw, R=2’

where w,, is the volume of unit ball in R"™ and Bp is the ball of radius R centered at origin.
Stationary solutions were also obtained in [4]. More precisely, for a given smooth vector

field n € C§°(R"™) with / divpdz = 0, let Fy(z) := F(t,z) be the flow map generated by
Q
the vector field 7, i.e., F; solves the ODE in R":

d
{ SF(ta) = (P (t,2) (15)
F(](ﬂj‘) = X.

UBR (z) =

It was proved in [4] that for f = 1, Bp is a stationary shape in the sense that
i‘ jm(uta Qt) = 07
dt lt=0

where u; = uo F; ', Q; = F,(Bg), and |Bg| = V.

Two open questions are asked by Bucur-Buttazzo-Nitsch in [5].
Problem 1.1. Do the optimal shapes minimizing the energy functional (1.4) exist?
Problem 1.2. Is it true that Bg is a unique optimal shape when f =17

1.2. Existence of minimizers over convex Domains. There has been a developed
scheme for the existence of a minimizer to the problem (1.4) over convex domains contained
within a container B and H' function associated to such domains, due to the compactness
properties of such domains, see [20], [3] and the survey book [19]. See also the paper [24]
by Lin-Poon. Indeed, the existence of problem (1.4) relies on the following properties for
convex domains: If Q C Bpg is convex, || = Vo > 0 and u € H'(Q2), then

1. (Uniform Poincaré inequality) There exists a universal constant C' > 0, independent
of (u, ), such that

/Qqux < C’(/Q |Vu|? dx + (/(’)Q |ul d%”‘l(x))z). (1.6)

This guarantees the uniform H'-bound of u; for any minimizing sequence (ug, §2;)
of Tm.-
2. (Uniform Sobolev extension property) There exists a universal constant C' > 0
independend of © such that for each u € H' (), there exists & € H'(R") such that
4 = wu in €2, and
] ey < Cllull ) (1.7)
3. (Compactness of convex domains) If ; is a sequence of convex sets in Br with
Q| = Vp, then there is a convex domain Q such that Q; — Q in L' , and
Y Lo, — 1 Lo

as convergence of Radon measures.
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4. (Lower semicontinuity of energy) From (1.6), (1.7) and the compactness of convex
domains in Bpg, for any minimizing sequence of pairs (u;,€);) to (1.4), there are €
and u € Hl(Q) such that up to a subsequence, ; — Q in L',

/ |Vu|? dz < liminf/ \Vu;|? de, (1.8)
[¢) 1— 00 Qi
/ luld ! < liminf/ g dm 1 (1.9)
oQ oo JoQy
and
lim fuide = | fudx. (1.10)
1—00 Qz 0

The proof of (1.9) relies on the parametrization of J§ by the sphere (see also [24]).
It is challenging to generalize this scheme for convex domains to more rough domains. In
this context, we formulate the problem for a class of specified rough domains as follows.

1.3. Formulation of problem (1.4) over rough domains. We would like to study the
minimization problem (1.4) over some controllable rough domains, belonging to the class
of Sobolev extension domains, with fixed volume. A natural class of Sobolev extension
domains is the so-called M-uniform domain. In fact, when n = 2, M-uniforms domain are
equivalent to extension domains for H' functions, see [21] and [16]. Recall the following
definition of M-uniform domain, which was first introduced in [14] and [21].

Definition 1.1. For M > 1, a domain Q C R"™ s called an M -uniform domain if for any
x1,x9 € Q, there is a rectifiable curve v : [0,1] — €, such that v(0) = z1,7(1) = x2, and

(i) A7) < Mz — 29, (1.11)
(i) d60.09) > minfl() — il b0 —wal) Ve DY, (112)

Roughly speaking, an M-uniform domain has no interior or exterior cusps, and it does
not have very thin connections. The class of M-uniform domains contains convex domains
in a ball, uniform Lipschitz domains and minimally smooth domain introduced in [28], and
it can have a purely unrectifiable boundary, such as the complement of 4-corner Cantor set.
This class has a wide range of sets.

We remark that if Q C Bg is an M-uniform domain and v € H'(Q), then u has an
extension 4 which is a BV function in an open neighborhood of Br. Thus if 2 also has
finite perimeter, then the trace of u can be defined on the reduced boundary 9*2 in the
sense that there exists a measurable function u* on 8" such that

lim i/ lu —u*(z)|dy = 0, A" La.e.x € 0*Q. (1.13)
r=0 1" /B (2)nQ
We call u* the (interior) trace of u on 9*(2. The reader can refer to the monograph |2,
Theorem 3.77].

Therefore, in the following, we formulate the minimization problem (1.4) over rough sets
as the minimization of

2
TIm(u, Q) = 1/ |Vu|? do + L (/ |u*|djf"_l> —/ fudz (1.14)
2 QO 2m *() Q
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over all u € H'(Q),|Q| = Vo. We will prove that there is a minimizer to (1.14) among
all sets of M-uniform domains with uniformly bounded perimeters, and thus we are able
to solve Problem (1.1) within this class of rough domains. The M-uniform condition of €
plays an important role in generalizing the scheme for convex domains as mentioned above.

1.4. Main Results. We will first state a theorem asserting the compactness of M-uniform
domains in Bg, which does not require the domains to have finite perimeters.

Theorem 1.2. For M > 0, let {Q;} be a sequence of M -uniform domains in Br such that
inf diam(€2;) > 0, (1.15)
1
then there exists an M -uniform domain ) such that after passing to a subsequence, §2; — )
in L, as i — co.
Remark 1.3. The assumption (1.15) automatically holds if |2 = Vo > 0, i.e. there is
¢ =c(Vo,n) > 0 such that diam(Q2) > ¢ > 0.

With the help of Theorem 1.2, we can prove two uniform Poincaré inequalities for M-
uniform domains, see Theorem 4.1 and Theorem 4.2 below. Applying Theorem 1.2 and
Theorem 4.2, we can prove

Theorem 1.4. For any M > 0,A > 0,R >0, and f € L} _(R"),

1 1
T, Q) 1= _/ yvu\2dx+—(/ \u*]d%”‘l)z—/fudx. (1.16)
2 Ja 2m> Joq )
Then T, admits a minimizer over

A= {(u, Q)|ue HY(Q),Q is an M-uniform domain in Bgr,|Q| = Vy > 0, P(Q) < A}

where P(§2) is the perimeter of Q).

It turns out that (1.16) can also be defined over the space of functions of special bounded
variations (or SBV).

Let D C R" be a bounded smooth domain, and f € L"(D), f > 0. Consider the following
minimization problem:

inf{J(u) = %/Rn |Vul|? d + %(/J (Ju™| + |u_|)djf"_l)2 - /]R” fudx} (1.18)

over S = {u € SBV(R",Ry) ‘ |{u>0}| =V, |suppu\ D| =0, jf”_l(,]u NoD) = 0}.
Here Vu is the absolutely continuous part of the distributional derivative Du with respect
to the Lebesgue measure, and " and u~ are one side limit of u on the jump set .J,, of w.
See [2] for the definition of SBV(R").

In this context, we are able to prove another existence result.

Theorem 1.5. J(-) admits a minimizer u € S.

Remark 1.6. If Q C D is an M-uniform domain of finite perimeter and u € H'(Q) is
a minimizer of the problem (1.4), then uxq € S. On the other hand, for a minimizer v
of (1.18), if Q := {xz € D : v(x) > 0} is a subdomain of D, and v has no jump in €, i.e.,
AN, N Q) = 0, where J, is the jump set of v, then v € H'(Q) and (v]q,Q) is a
minimizing pair of problem (1.14).
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We will also study Problem (1.2). This problem is extremely challenging. It seems to be
open that among all C? domains, if f = 1, then whether a ball is an optimal configuration,
let alone the uniqueness of an optimal shape. To see some of the difficulties to validate the
conjecture, one may compare the functional J,,(u,2) with the recently well studied energy
functional

j(u,Q):%/Q\Vu]2dx+5/fmu2da—/ﬂudx, (1.19)

where [ is a positive constant. Due to the linearly splitting property of the regular functional
J, Steiner symmetrization argument can be implemented to prove that any smooth optimal
domain for J must be a ball, see the explanation in [10]. In contrast, it seems that none of the
known symmetrization methods can be applied to the minimization problem of 7, (u, ).

However, we manage to make some partial progress of Problem (1.2). Our idea is to study
this optimization problem through the method of domain variations. After some delicate
calculations, which involves geometric evolution equations and eigenvalue estimate of the
Stekloff problem, we prove the following theorem.

Theorem 1.7. For any m > 0, R > 0, and any smooth vector field n € C3°(R",R"), with
n(x) L T,0BR for x € OBRg, if the flow map F;, associated with n, preserves the volume of
Bpg, then (ur, Br) is a stable, critical point of Jm(-,-) in the following sense:

d d?
- jm(uFt(BR)’Ef(BR)) =0, 322 |

4 Tluro B(BR) 20, (120)
Here up,(py) is the unique minimizer of Jm (-, F;(Bg)) in H'(Fy(Bg)).

1.5. Some further remarks. The compactness of M-uniform domains with uniformly
bounded perimeter was previously proved by Li-Wang [23], where the authors consider the
minimization problem arising from the liquid crystal droplet problem:

T, Q) = /Q Vul? dz + P(Q), (1.21)

where u € H'(Q,5%) and | = Vg > 0. If (u;, ;) is a minimizing sequence to (1.21), then
Q; automatically have uniformly bounded perimeters and thus have an L' limit up to a
subsequence. It was proven in [23] that the limit is £"-equivalent to an M-uniform domain.

Motivated by a volume estimate result in [12] for general porous domains, we will show
that M-uniform domains turn out to have uniformly bounded nonlocal perimeters, and
thus have an L' limit up to a subsequence by the fractional Sobolev compact embedding
theorem, see Corollary 3.3. This together with the argument in [23] yields Theorem 1.2.
Hence one may also consider problem (1.14) over M-uniform domains of finite perimeters,
without additionally requiring that the perimeters are uniformly bounded as assumed in
Theorem 1.4. The difficulty, however, is that even if there is a limit, and the limit of the
domains in the minimizing sequence is still an M-uniform domain, it might not have finite
perimeter and thus the boundary integral term in (1.14) may not be well-defined. It would
be very interesting to prove that minimizing sequence of (1.14) do have uniformly bounded
perimeters, instead of adding this as an assumption.

A byproduct of the compactness of M-uniform domains is an uniform Poincaré inequality
for such domains, see Theorem 4.1. In [6], such an uniform Poincaré inequality was only
proved for uniformly Lipschitz domains. Hence Theorem 4.1 generalizes this result of [6].
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1.6. Notations. Throughout this paper, we adopt the standard notations. For a set A C
R", we let A" := {x € R" : d(z,4) <r} and A, = {z € R" : B,(z) C A}. "1 denotes
the (n — 1)-dimensional Hausdorff measure, and dg(-,-) denotes the Hausdorff distance
between two sets. L" is the Lebesgue measure in R". |A| denotes the Lebesgue measure
of A. By(x) ={y € R": |y — x| < r}. 9"A denotes the reduced boundary of A. diam(A)
denotes the diameter of A. Also, we always let w, be the volume of the unit ball in R".

We let Mpg be the class of all M-uniform domains contained in Bg, and Mg, be the
subclass of Mp such that any domain in the subclass has diameter bigger than or equal to
¢ > 0. We always use u* to denote the trace of u in the sense of (1.13). Last, when we say
a set is a domain, we mean the set is a connected open set.

2. PRELIMINARIES ON ROUGH DOMAINS
We start with some definitions.
Definition 2.1. For ¢ > 0, D, is the class of sets E satisfying
|Br(z) NE| > cr™ (2.1)
for any x € OF and 0 < r < diam(FE).
The next remark says that any set in D, is L"-equivalent to its closure.
Remark 2.2. If E € D, then E = E (mod L").

Proof. By Lebesgue density theorem, if E € D., then E C E (mod L"). Hence |E \ E| =
0. O

Remark 2.3. If E € D, then for any x € E and 0 < r < 2diam(FE), there is ¢ = c/(¢,n) >
0 such that |B,(x) N E| > dr".

Proof. There are two cases:
(a) If r > 2d(z,0F), then there is z € OF and B:(z) C By(x), hence, |B,(z) N E| =

r\n

|B:(2) N E| > ¢ <§> =2""er".

(b) If r < 2d(x, OE), then By (z) C E. Thus |B,(z) N E| > w, (g)”

Hence there is ¢ = ¢/(c,n) > 0 such that |B,(z) N E| > " O
The next proposition says M-uniform domains belong to the class D..

Proposition 2.4. If Q is an M-uniform domain, with diam () > ¢y > 0, then Q € D, for
diam(E)

€o

some ¢ > 0 depending only on M, n and

Proof. For any x € 02 and 0 < r < diam(f2), we claim that there is a constant ¢; =
c1(M) > 0 such that there is a ball of radius ¢;r contained in B,(z) N . Indeed, since
0 <r < diam((2), thereisy € Q\B; (). Lety C Q be the curve connecting = and y as in the

1
definition of M-uniform domain. Choose z € OB%T(:E)FW. Then z € Q and d(z,09Q) > ik

1
Hence if we choose ¢ (M) = TR then B, (ap),(2) C Br(2)NS. In particular, for any z € 09
and any 0 < r < diam{2, |B,.(x) N Q| > | B, (an)(2)| = e1(M)r™. O

The following remark will be used in the proof of compactness of M-uniform domains.
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Remark 2.5. If Q is an M -uniform domain with |Q| > cg, then there is ro > 0 depending
only on M,n,cy such that Q0 contains a ball of radius rq.

Proof. By isodiametric inequality, there is ¢; = ¢1(n) > 0 such that diam(Q2) > ¢;. From

the proof of Proposition 2.4, Q2 contains a ball of radius G—MCL O

Similarly, we define D¢ as follows.
Definition 2.6. For ¢ > 0, let D¢ be the class of sets E such that
|Br(z) N E| > cr” (2.2)
holds for any x € OF and 0 < r < diam(E).

The following proposition is from [25, Proposition 12.19]. It says that for any set £ C R",
we can find an L"-equivalent set E with a slightly better topological boundary such that
OF = sptup, where pp is the distributional perimeter measure of F.

Proposition 2.7. For any Borel set E C R™, there exists an L™ -equivalent set E such that
|[EAE| =0 and for any z € OF and any r > 0,

0 < |ENBp(z)] < w,r™ (2.3)
In other words, sptup = sptig = OF.
The next Lemma concerns the L'-convergence of sets in D,.

Lemma 2.8. Suppose D; C Bp, is a sequence of sets in D, such that D; — D in L' If we
identify D with its L™ -equivalent set D as in Proposition 2.7, then D € D.. Moreover, for
any € > 0, there is a positive integer N = N (€) such that for i > N, the following properties
holds:

(i) D C Ds.

(ii) (D;)e C D.

(iii) D; C D~

In particular, D; converges to D in the Hausdorff distance, i.e. dg(D;, D) — 0 as i — oo.

Proof. We argue by contradiction. If (i) were false, then there would exist 2 € D such that
Be(z) N D; = () for i sufficiently large. Hence by the hypothesis and Proposition 2.7, we
obtain 0 = |B¢(x) N D;| — |Bc(z) N D| > 0, a contradiction.
If (ii) were false, then there would be a sequence z; € (D;). \ D. We may assume z; — .
Thus xy € 9D U D¢. By Proposition 2.7, we have w,e" > |Bc(x¢) N D|. On the other hand,
since Be(x;) C D;, it follows

|Be(z9) N D| = lim |Be(z;) N D| > liminf(|Be(x;) N D;| — |D;AD))

11— 00 1— 00
= wpe" — limsup |D;AD| = w,e”,
1— 00

which is impossible.
If (iii) were false, then there would exist a subsequence of z; € D; \ D. Without loss of
generality, assume x; — x9 € R™\ D°. For any i, by Remark 2.3, there is ¢ > 0 depending
only on ¢ and n such that €” < |Be(x;) N D;|. On the other hand, since |Bc(x¢) N D| = 0,
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it follows
liminf |Be(z;) N D;| < limsup(|B(x;) N D| + |DAD;|)
100 i—00
< [Be(zo) N D] + limsup |D;AD| = 0,

1—00

which is a contradiction.
It remains to show D € D,. Since D; — D in L', for any = € 9D there is z; € D; such that
x; — x. Hence for any r > 0, by Remark 2.3 we have

|B,(x) N D| = lim | B,.(x;) N D| > liminf | B, (x;) N D;| — limsup |D;AD| > ¢/r™.
7 7 7

Hence D € D.. O
The following remarks follow immediately from (i) and (iii) in the above Lemma.
Remark 2.9. If D; and D satisfy the same assumption as in Lemma 2.8, and if int(D) # ()

then int(D) is a domain. If in addition |int(D)| = |D|, then int(D) € D, and D; — int(D)
in L.

For sets in D¢, we have the following result, which is similar to Lemma, 2.8.
Lemma 2.10. If D; € D¢ and D; — D in L', and we identify D with its L™-equivalent set
D as in Proposition 2.7, then D € D°. Moreover, for any € > 0, there is a positive integer
N = N(e¢) such that for i > N, the following properties holds:
(i) D C Ds.
(ii) (D;)e C D.
(iii’) D, C D;.

3. PROOF OF THEOREM 1.2
In this section, we will prove Theorem 1.2. We start with the following two Lemmas.

Lemma 3.1. Let Q be an M-uniform domain in Bg C R"™ with diam(Q) > ¢y > 0, then
there exists constants § = §(M,n) € (0,1] and C = C(co, M, R,n) > 0 such that

1(0Q)"| < Cr°,  Vr e (0,1]. (3.1)
Lemma 3.2. If Q; is a sequence of M-uniform domains in Br such that diam(€;) > ¢ > 0

and Q; — D in L', then there is an M-uniform domain Q such that Q; — Q in L.

Lemma 3.1 is essentially proved in [12], where a more general result for porous domains
is established. Here we present a simpler proof in the following for reader’s convenience.
The ideas are from [12].

Proof of Lemma 3.1. Choose kg > 1 such that

min{cg, 1}

9ko—1 < <27k, (3.2)

min{cop, 1}

If <r <1, then

2|Bri1|  _ _2|Brii
min{cg,1} — min{co, 1}

[(0)| < [Br1| < r’, 6 € (0,1]. (3.3)
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min{cg, 1}

Ifo<r< , then we can find some k > kg such that 9—k—1 <r< 2k,

It suffices to prove (3.1) for r = 2% since it would then imply
(09)7] < €274 = o(27F1)F < Ot < Cr¥/2,

For any x € (89)2%, there exists #1 € dQ such that |z—xz1| < 27%. Then for any ko < j
by the choice of kg in (3.2), diam(Q2) > 2777 so that there exists zo € By—j+1(z1)
Let v C Q be the path connecting z1 and z2 as in Definition 1.1. Let y € 0By—;(z1)
and thus

<k,
naQ.
N7,

1 277
d(y,00) > Mmin{\y—xl\,]y—m\}: I (3.4)
d(z,00) 1o .
We cover Bp \ 002 by < B,_(2) : z € BR\ 0Q,r, = 0 (= Bi. By Vitalli’s covering

Lemma, we can choose a countable pairwise disjoint subfamily B of By such that
Bgr \ 0f) C UpepbB.

Hence y € Bs,_(z) for some B,_(z) € B.
Clearly,

1 ,
d(z,00) <|z—x| < |z—y|+ |y —z1| <br,+277 = gd(z,(‘)Q) +277,

which implies

d(z,00) < 22—% 5r, < 27971
Therefore,
2 € By—j+1(x1) \ By—j-1(x1). (3.5)
Notice that by (3.4), it follows from y € Bs,_(z) that
% < 20r,,
and hence

|z —z| <|z—a|+ |1 —y|+ly—2] < 2774277 450, <279 L5,
< (40M +5)r, < 45Mr,.
Therefore, x € Bysnrr, (2).
So far, we have shown that for any x € (89)27’c and kg < j < k, thereis z; € By—j+1(x1)\
Bsy—j-1(x1) such that z € Busyr, (zj) and B, (zj) € B. Therefore, Vo € (89)2%, we have

k—k
ZX45MB(9€) Z 3 2,
BeB

since by (3.5) each B € B can be considered at most 3 times in order that x € 45M B.
By Hardy-Littlewood Theorem, there is constant ¢, > 1 such that for any p > 1,

(3.6)

1

where M¢ is the non-centered Hardy-Littlewood maximal function.

1/p
1Ml < (25) " ol (37)
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1
Let 0 = ———. B . h
e 9450 )e, y (3.6) we have

(90)2 "] =2k / okd
(022"

§2_k6/ 9(ko+33 " pep XasmB(2))0 g,
(99)27

<9—Hbgked f: 35ZBeBX45MB( z))™ s
Br ;=0

For any nonnegative ¢ € L%, m > 1, we have

/¢ ) > xasmp(z)ds <(45M)" Z ‘B’|45MB| ¢(x)dx

BeB 45M B

<(45M)" / Mo(z
BeB

1/m
<MUSM)" M| (/ (> x5(x) md‘"")
BeB
. i
<(45M)" com|Bag| 7 ||| -

Hence by duality, for m > 1 we obtain

H Z X45MBH 45M Cnm’BgR‘m (38)

It is straightforward to verify (3.8) for m = 1. Therefore,

_ 3(45M)"dcpl)’
(00| <2720y Y B e
=0

e l

<27 ko9kod| By | Z (g) , by Stirling’s formula and the choice of §
=0

=C(ko, R, 6,n)27%

<C(cg, M, R,n)2_k5, since ko depends on cg.

This completes the proof. O

Lemma 3.1 yields the following Corollary.

Corollary 3.3. Let Q2 be an M -uniform domain in Br C R"™ with diam(€2) > ¢o > 0. Then
there exists a constant 6 = 6(M,n) € (0,1] such that for any s € (0,9),

[XQ] Ws1(Bg) <C= C(M7 n, R7 S, CO)' (39)
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Proof. Let § be as in Lemma 3.1. Then (3.9) follows from the following estimate

2R
/ / |XQ + d dx / / / |XQ — (y)|d%n_l(y)d7‘d$
Br JBg |1L'—Z/|" 5 Br 8B, (z) 7"" s
2R
Q) J OB, (z) 7’" s

2R
< / / / n+sdyf"—1(y)d:cdr
0 Q) JoB(z) T

2R
/ Cror—s=ldr < C(M,n,R,s,cy) < o0,
0

IN

where in the second equality we have used that if x ¢ (0Q)" and y € B,(x), then xq(z) =
xa(y)- O

Next, we prove Lemma 3.2.

Proof of Lemma 3.2. Without loss of generality, we may assume sptup = D as in Propo-
sition 2.7. We first prove that int(D) # (. Indeed, notice that by Remark 2.5, each Q;
contalns a fixed ball of radius ry depending only on cg,n and M. Therefore, for each §2;,

if e < 20 2 , then by definition (€2;) contains a ball of radius 7”2_0. By Lemma 2.8 (ii), D also

contains a ball of radius % In particular, int(D) # 0.

Now let Q = int(D). It suffices to show Q is an M-uniform domain, since the L'

convergence in the statement can then be directly deduced from Remark 2.2, Proposition
2.4 and the fact Q C D C (.

1
Fix any z,y € (), then for any given N > 2M, we may choose 0 < € < ~ 5 small that

ke < d(z,0) < (k + 1)e for some k > (1 + %)(N + 1), and |z — y| > 2(INV + 1)e. Since

int(Q) # 0, it follows from Lemma 2.8 (i) and (iii) that dg(£2;,Q) — 0. Hence we can find
xi,yi € Q, with |z; — 2| < €,|y; —y| < € for ¢ large. By Lemma 2.8 (ii), we may choose i so
large that

(Q)e C Q. (3.10)

Also we choose 7v; C £; to be the rectifiable curve connecting x; and y; in §2; as in the
definition of M-uniform domain. For any p € ~;, if p € By(x;) U Bne(y:), then clearly
P € Bns1)e(z) U B(n41)e(y) C Q. Moreover, this implies

d(p, 00) > ke — (N + 1)e > M(N+ e > %mm{\p L p—yl} (3.11)

Clearly, (3.11) also holds for any p on the line segment between x; and x, and between y;
and y. If p ¢ Bye(z;) U Bye(y;), then

1 Ne

N> T mi — 7 — s i

d(p,0) > 37 min{|p — @il [p — :l} > 57,

thus p € (QZ)% C (2i)e € 2N Q;. Moreover, let r = d(p,d((£2;)¢)), then by (3.10),
B, (p) C Q,s0d(p,00) >r =d(p,d((2)c)) > d(p,0;) — €. Therefore,

d(p,0Q) d(p,0Q;) — € 1 € 1 1

- Z = > -2

min{|p — x|, |p — vi|} ~ min{|p —x;|,[p—vil} * M Ne " M N

(3.12)
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Hence by the choice of € and N, it follows

1 1 1

A(p, 09) > (77 —) min{lp—z, lp—yl}—¢) > (-~ (min{lp—a, lp—y[})~

i N (3.13)

MN’
Therefore, we may let v~ be the curve that consists of the following three parts. The
first part is a line segment starting from x to x;, the second part is the curve ~; found above,
which starts from z; to y;, and the third part is a line segment starting from y; to y.
It is clear from the discussion above that 4 C Q and 4" starts from z to y. Moreover,
from (3.11) and (3.13) and the choice of €, we obtain that

%I(VN) < Mlx; —yil + |z — =]+ |yi — v
< Mz —yl+ (M +1)|z; — x|+ (M + 1)|y; — y|
M+1
< Mz —y|+2 N
and
d(p59)>(i—imm{lp . lp— yl}—L vp e AN
’ =M N MN’

Then by the compactness of (2, dg ), and since ’yN is connected, there is a compact connected
set E C Q such that dg(y", E) — 0 as N — co. Then by [13, Theorem 3.18],

HVE) < l}\gonofjfl(ij) < M|z —y|.

Hence by [13, Lemma 3.12], E is arc-wise connected so that we can choose a rectifiable
curve 7 C F joining x and y. For any p € -, we can choose sequence py € VN,pN — p.

Since

1 1 1

it follows by passing to the limit N — oo that

A(p, 02) > 5 min{lp —al,Ip — ),

which also implies v C int(€2). Therefore 7 satisfies both properties in the definition of
M-uniform domain, and 2 is M-uniform. By Corollary 2.9 and Proposition 2.4, 2 is a
domain. This finishes the proof. O

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Corollary 3.3, the sequence xq, are uniformly bounded in Ws Y(BR).
By the compact embedding from W*!(Bg) to LY(Bg) space with 1 < ¢ < 1* :=

, we
n—s

conclude that there exists a subsequence of ; that converges to a set D C Bg in L'. By

Lemma 3.2, D is L' equivalent to an M-uniform domain. This finishes the proof. O

4. UNIFORM POINCARE INEQUALITY AND EXISTENCE OF MINIMIZER TO (1.14)

In this section, we will apply Theorem 1.2 to deduce two uniform Poincaré inequalities
via compactness argument, and then we will prove Theorem 1.4.
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Theorem 4.1. For any domain Q) € Mg, there exists a constant C > 0 depending on M, R
such that

/uzdng/ |Vul|? dz, Yu e H'(Q) with /udx:O. (4.1)
Q Q Q

Proof. We divide the proof of (4.1) for 2 € Mg into two cases:
(i) If diam(€2) > 1, then we argue by contradiction. Suppose there exist pairs (€2;, u;) such
that Q; € Mg, diam(Q;) > 1, u; € H'(Q;) satisfies

/uid:E:O, /u?dmzl,
Qi Qi

/ |V |2dz — 0 as i — oo.
Q;

but

Let u; be an extension of u; such that
il (Br) < C(M,n)||willg(q,)-

Hence {i;} is a bounded sequence in H'(Bg). Hence we may assume that there exists
u € H'(Bg) such that ; — v in H'(Bg) and @; — u in L?(Bg). By Theorem 1.2, there is
an M-uniform domain Q € Mp such that Q; — Q in L.

Since xq,Vu; — xoVu weakly in L?, by the lower semicontinuity property of weak
convergence, we have

/ |Vu|? dz < liminf/ |V dz = 0.
) 1—00 Q;

Hence v = ¢ in €. On the other hand,

]/ u?dw—/qua:\gl/ u?da:—/ uzda:\—k]/ u2da:—/u2dg;\

<IN + ull 2 (s s — wll 2) + / Pda
Q; AQ

—0, asi— o0.

Hence

/Qu2d:1: =1. (4.2)

Similarly, we have / uwdr = lim u;dr = 0. Hence ¢ = 0 and / u?dz = 0. This
Q

QO 1—>00 Q;
contradicts (4.2). Therefore, we have proved (4.1).
(ii) If diam(€2) < 1, then we may assume that 0 € Q2. Hence we can choose a 0 < ¢ < 1 such

1
that € := ;Q € Mg with diam(Q;) = 1. For any u € H'(Q) with / udzr = 0, from (i)
Q
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we then have

/ u?(x) da :t"/ u (tx)de < Ot [ |V (u(tz))? dx
Q Qy Q

_ o / Vu(ta) 2 dz = Cr2 / Vul? da
Q4 Q

g()/ V(@) dz,
Q
since 0 < t < 1. This finishes the proof. O

The second uniform Poincaré inequality has a slightly different form, which will be useful
to prove the existence of the minimization problem (1.14).

Theorem 4.2. For any Q € Mp . with P(Q) < A, there ezists a constant C > 0 depending
on M, ¢, A and R such that

/Qzﬂ de < 0(/Q IVl dz + (/6*Q (@) ")), vue H'(Q). (4.3)

Proof. Suppose (4.3) were false. Then by scaling, we may assume that there would exist
pairs (€, u;) such that Q; € Mg, P(Q;) < A, diam(Q;) > ¢, u; € H'(Q;) such that

/u?zl,
Q;

/ |Vui|2dx+(/ |u*|djf"_1)2—>0 as i — 0o.
o8 0*Q

but

We may assume for convenience that u; > 0. Let u; be an extension of u; such that
@il 11 (BRy < C(M, 1) [[will 1 (02y)-

Hence {;} is a bounded sequence in H'(Bg). Let u € H'(Bgr) be the weak limit of %; in
HY(Bg) and %; — u in L?*(Bg). By Theorem 1.2 and lower semicontinuity of sets of finite
perimeter, there is an M-uniform domain Q@ € Mg, with P(Q) < A such that Q; — Q in
L

As in the proof of Theorem 4.1, we have that

/ |Vul*dx < liminf/ |Vug|?dz = 0,
Q 11— 00 Qi
and thus u = ¢ in Q for some constant c¢. Also,

/ﬁmzL (4.4)
Q
Now let 4; = u;xq, and 4 = uxq. By [2, Theorem 3.84] and the structure of BV function,
we know that @;,u € SBV(R"), with

Ju, = 0"Q; N {u; >0}
and

Ju = 0" QN {u* > 0}.

Here J, denotes the measure theoretical jump part of a BV function u.
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We let w~ and w denote the measure theoretical interior and exterior trace of a BV
function w on 0*Q respectively. Since /"~ 1(9*Q;) < A, and that Vi;xq, — Vixg weakly
in L?(Bg), we can apply [30, Theorem 2.3 and Theorem 2.12] to obtain

/ u* dAm ! :/ lu™ —uT| da™ !
*Q Ju

<liminf [ |a; —a]|dse™!
1—00 ;
=lim inf/ u;.
1—00 0*Q;
Hence / uw*dA"t =0 and u = 0 in Q. This contradicts (4.4). O
*Q

Now we are ready to give a proof of Theorem 1.4:

Proof of Theorem 1.4. Let (u;,€);) be a minimizing sequence, and we may assume that u;
is a minimizer of J,(-,Q;) among all H(€;) functions. From J,(ui, Q) < Fn(0,€;) = 0,
we deduce that

1
/ |Vui|2d:n+—(/ uidjf"_l)2§/ fuidxge/ u?dw—l—C’e/ﬂd:E
o8 2m " Jaq, Q o8 Q
§Ce</ \Vuilzda:—k(/ \uﬂd,%””_l)2> +C5/ f?de,
Q 9*Q Q

where we have used Theorem 4.2. By choosing a small € > 0, this implies that
sup (/ |V, |? dm—l—/ u; d%"_1> < 0. (4.5)
T Q; o

Hence the infimum of 7, > —oo. Moreover, by Theorem 4.2 and (4.5),
sup ||| g1 (a;) < oo
(2
Now we can repeat the same argument as in the proof of Theorem 4.2 to conclude that
there exists a (u,2) € A such that
TIm(u, Q) < liminf Jp, (u;, ;).
1—00

The proof is completed. O

5. EXISTENCE OF MINIMIZERS IN SBV

In this section we will extend the existence results in the previous section to the setting
of SBV, and prove Theorem 1.5. The argument of our proof is similar to that by [11].

Proof of Theorem 1.5. We prove it by the direct method of calculus of variation.

Claim 1: J is bounded from below on S.

For any v € S, since suppu C D and ,%”"_1(Ju N oD) = 0, we have the following Sobolev
type inequality ([22, Theorem 4.10)):

lall 2y ) < C1Dul (D) (5.1)
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From (5.1), Young’s inequality and the fact that t*> > ¢ — 1, we can derive

1 2 1 + — n—1 2
Jw =g [ v dm—l—R</Ju(|u [+ o)

1 1 + - n—1 __ _
1 2 1 + — n—1 2

> - _—

_4/D\vuy dx+4m</](yu |+ |u™|) do# )

+C /\Vu]da:—i—/ (Jut —u~|)d#" 1 /fuda:

/\vuy2dx+—(/J(yu+y+\u—\)d;sﬂ"—l)

+ C|Du|(D) — C — / fudz

(5.2)

> 1/ |Vu|2dx + —</ (Ju™] + |u_|)djf"_l)2 + C'|Du| (D)
- 4 D 4m Ju

e —r
> =C=C|fllgnpy

Ln(D)

provided e is chosen sufficiently small. Hence the functional J is bounded from below, and
we can find a minimizing sequence {u;} in S such that

lim J(u;) = 12£ J(u) > —o0. (5.3)

1—00

Claim 2. There exists u € SBV(D) such that after taking a subsequence, u; — u in BV.
From the penultimate inequality of (5.2) we have

sup ”Ui”Bv(D) = Sup (IDus|(D) + HuiHLl(D))

(5.4)
< Csup (T (i) + C +Clflpupy ) < oo,

and

sup (/ |Vui|2d:L'+/ (|Uz+| + |ui_|)d%n_1)
1 D J’u,i (5-5)
< Csup <j(Ui) +C+C ||f||L"(D)> < 00.

By the compactness theorem of BV functions ([2, Theorem 3.23]), there exists a subse-
quence {u;, } and u € BV (D) such that u;, — v in BV (D), i.e

{uik—>u in LYD),

% 5.6
Duw;, = Du in M(D). (5.6)

For every € > 0, let u;, := max{u;,, ¢}, u" := max {u, e}. Then we have

ug, —uS in BV(D). (5.7)
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From (5.5) we have

€ 12 __ .
sgp/D]Vqu] —sgp/D‘VquX{uikx}

Moreover, from the Chebyshev inequality we have

_ 1 _ _
sup " M) S - [ (i e

2
< sup/ |V, | < oo. (5.8)
k JD

C
— 5.9
-, (59)
where we use that fact that Jugk - J“ik N {u;, > €}.

Now from (5.7), (5.8) and (5.9), we can apply the SBV compactness theorem (]2, Theorem
4.7]) to conclude that u¢ € SBV(D), and

€ € 1
V%k *Vu‘ 1n‘ L (D), (5.10)
Dui = D’u® in M(D),
where D7 denotes the jump part of the distributional gradient Du. Moreover,
/ V> < liminf/ |Vuf-k|2 < liminf/ Vg, |. (5.11)
D k—o00 D k—o00 D
Since Vu® = Vux(ysep — Vu a.e. in D as € — 0, by Fatou’s lemma we have that
/ |Vul|? < liminf/ V|2 < Sup/ |V, | < oo, (5.12)
and this implies Vu € L?(D). From the dominated convergence theorem we have that
Vu¢ — Vuin L*(D) as € — 0. (5.13)
For the jump part of u, since u € BV (R"), we get
/ lut —u”|dA" < . (5.14)
Ju
Notice that ‘
DIy = ((u6)+ — (ue)_) v, A1 |7, (5.15)
By (5.14), (5.15) and the dominated convergence theorem, we have
Diuf — Diuin M(D) as € — 0. (5.16)

Since both convergence of (5.13) and (5.16) are strong, the Cantor part Du of Du vanishes.
In fact, for any open set A,

|Du|(A) < liminf |[Du‘|(A)
e—0

:nminf</A|Vuf|dx+IDjuEI(A)> (5.17)

e—0

:/ |Vu| dz + | DIul(A),
A

which implies |Du|(A) = 0. Hence D = 0 and u € SBV(R"). From (5.6) we can derive
that [suppu \ D| =0, and [{u > 0} = V.

Claim 3: The lower semicontinuity property holds for functional 7. From (5.11) and (5.13),

we can conclude that
/\vng lim / Vs, 2. (5.18)
D k—oo D
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For any open set A C R", in view of the bound estimate (5.8), we can apply the lower
semicontinuity result in ([30, Theorem 2.12]) to {ug, } to obtain

/ (J(u) T+ [(u) ") do™ ! < liminf/ (J(ug )T+ [(ug,)7[) doe™ ™t (5.19)
Jyen JugkﬂA

k—o00
u

Passing the € to 0 and applying the monotone convergence theorem to the left hand side of
(5.19) gives

/ (jut| + Ju~) d%“‘lgliminf/ (Iuif| + g |) doem1. (5.20)
JuNA k=00 ), nA

Choose A = R™\ D, we then get " 1(J, \ D) = 0 and hence v € S. From (5.6), (5.18),
and (5.19), we can conclude that

J(u) < limkinf J(ui,) = in‘fS J(u) (5.21)
ue
which entails u is a minimizer of the problem. O

6. SOME PROPERTIES ON SMOOTH CRITICAL POINTS

In this section, we will show that smooth solutions are stationary critical points.

For a bounded C*-domain Q C R, since J,,(-,Q) : H'(Q) — R is convex, it is readily
seen in [4] that there exists a unique critical point, denoted as uq, of

1 2 gy 4 L 2 _
TIm(0,9Q) = 2/QIV1)] dz + 2m(/m\v\d0) /dex, (6.1)

over v € HY(Q). In fact, ug is a minimal point of J,(-,Q) over v € H(Q). Since
Im(Jual, ) < Tn(ua, ), we conclude that ug > 0. Moreover, we have the following
proposition on the regularity of 2.

Proposition 6.1. If Q € R" is a C? bounded domain, and u € H' () is a minimizer of
TIm (-, Q) over HY(Q), then u € WHP(Q) for any 1 < p < 0o and

max {[|ully e ), [|(Va) || ro0) } < Cm,p, 19 c2). (6.2)
Proof. For any € > 0, consider J5,(+,Q), an e-regularization of 7,,(+, ), which is defined by

jﬁl(v,Q):l/ ]Vﬁu]Zda:—ki(/ \/v2+e2d0)2—/vdaz.
2 Jo 2m " Jaq Q

Let v, € H'(Q) be a minimizer of J¢ (-, Q), whose existence is standard. Then v, > 0 in ,
and direct calculations imply that v, is a weak solution to the following Neumann boundary
value problem:

—Av.=1 in Q,

ov 1 v
€ _ — 2 2 ¢
oy 9= (m/aQ\/vE—l-e do) e on 0f).

It is easy see that
T (v, 2) < T (1,9) < C(m, 09, [2]), VO <e < 1.

This, combined with the Poincaré inequality, implies that

/ Vo2 + (/ luel)? < C(m, 99, |2)), Y0 < ¢ < 1,
Q o0
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and hence
[vell 1 (@) < C(m, 092, ]Q]), VO <e< 1.

1
Since |ge| < po- / V' 1+ v2 on 9Q, this implies that g. € L*(9€), and
oN

19e |l oo o) < C(m,109],19]), Y0 < e < 1.

Therefore we can apply the standard elliptic theory to conclude that v, € WP (Q) for any
1 <p<oo,and

[vellwip) < C(m,p, |2 ¢c2), Y0 < e <1
In fact, we have the stronger estimate, namely the LP-norm of the non-tangential maximal
function of Vv, can be bounded that of g, i.e.

1079 | ooy < COmp, [90lc2) ellzo(ony, Y1 < p < oo. (6.3)

‘ ‘ Lr(0Q)

Hence we may assume, after taking a possible subsequence, that there exists v € WP (Q),
€ (1,00), such that
ve — v in WP(Q), V1 < p < c0.
Now we want to show that v is also a minimizer of 7,,(-,€). In fact, for any function
w € H'(Q) we have that
T (ve; Q) < T, (w, Q).

Since ve — v in H'(£2), it follows from the lower semicontinuity that

TIm(v,Q) < hmlnfj (v, Q) < limi(l)lf T5(w, Q) = T (w, Q).

Since Jm (-, Q) is convex over H'(Q), there is a unique minimizer of J,(-,Q) in H'(Q).
Hence u = v in . This proves (6.2). O

It follows from Proposition 6.1 and the Sobolev embedding theorem that u € C*(Q2) for
any 0 < a < 1. Hence, by direct calculations, we obtain that © = ug > 0 is a weak solution
to the following boundary value problem

—Au=1 in Q,

u X[ wde on o9z u(z) > 0}, (6.4)

ov m Joq
ou 1
— > —— udo on 92N {x:u(z) =0}
ov a0

It is readily seen that u Z 0 on 92. The following lemma indicates that any nonnegative
weak solution of (6.4) also minimizes J, (-, €2).

Lemma 6.2. For any bounded C*-domain Q C R™, if u € H'(Q)NCY(Q) is a nonnegative
weak solution of (6.4), then

Tn(1, Q) < Tn(v,9Q), ¥ v e HY(Q). (6.5)
Proof. For any v € H'(Q), multiplying (6.4) by u — v and integrating over €2, we obtain

/]Vu\2dx—/udm—/ %uda
aQ
/Vu Vvda:—/vda:—/ —vda (6.6)
aQ
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From (6.4)2, we see that

— —uda— /uda / u—— uda).
on Ov 09 09 m > Jaq

On the other hand, we have
— —vdaz—/ —UdO'—/ —uvdo
a0 Ov o0 {u(z)>0} OV 80N {u(z)=0} OV
= —/ uda)/ vda—/ %vda
00 00N {u(z)>0} 00N {u(z)=0} OV

= i/ / vda—/ (8u+ L uda)vda
m 20N {u(x)= 0} ov

1
= —/ / vdo —|— / uda / do
m a0N{v(x)>0} o0 ANN{v(x <0}

@v do

1
— —/ / vda—/

m 00N {u(x)=0}N{v(z)<0} 20N {u(z)=0}n{v(z)<0} OV
— / @ + i uda)v do

00N {u(z)=0}n{u(z)>0} OV  m Jao

< (i/ uda)/ |v|da—/ %vda
m Jaq 20 20N {u(z)=0}n{v(z)<0} OV

— / @ + i U da)v do.
00N {u(z)=0}n{u(z)>0} OV  m Jao
It follows from (6.4)3 that

(%(g;) = [ wdo)o(e) > 0, Vo € 020 {ulx) = 0} 1 fu(a) > 0},
o0

and hence

1
8u+ uda)vdazO.

/890{u(x) 0} {u(z)>0} OV o0
Since u € C1(Q) satisfies u > 0 in Q, it follows that %(x) < 0 on 02 N {u(z) = 0} and

hence

/ @v do > 0.
00N {u(x)=0}n{v(z)<0} OV

/ —vd < ( / uda)/ |v| do,
89 o0 [2)9]
and hence

/Vu Vvda:—/vdx—/ —vda
8Q
/Vu Vvd:n—/vdm—l—( / uda)/ |v|do
Q o0 o0

1 2 1 2
< = Vu2dx+—/ Vv2dx—/vdx+— / udo +—/ vldo)”.
2/9’ | 2 Q‘ | Q 2m( o0 ) 2m( BQ‘ |d7)

Thus we obtain



HEAT INSULATION PROBLEM 21

Substituting this into (6.6) yields that J,,(u, Q) < Jn(v, Q). O

For m > 0, it follows from the discussion above that if u € H 1(Q) is a critical point of
TIm(+,Q), then v > 0 in Q. If, in addition, u > 0 in 2, then it follows from (6.4) that u
solves

—Au=1 in Q,
@ = L udo on Of. (6.7)
v m Jaq

Thus it follows from the standard elliptic theory that u € C*?(Q) for all 0 < § < 1.

However, the following example shows that there exists a bounded C?-domains € such that

any minimizer u € H'(Q) to J;n(-, Q) has zero points on 9.

Example 6.3. Forn=2and Q={z € R?: 1 < |z| <2}. If0 < m < 37 — 471n?2, then
1

u(z) = —Z\xlz +c1ln|z| + ¢ for x € Q, with

. m+3m ~2m—(m—m)n2
 2m+4nln2’ 2= 2m + 4rln 2

C1 )

is the unique minimizer of Jp (-, ) over H'(Q).

Proof. Notice that 092 = 9By U 0Bs. It is easy to see that u > 0 in QU 0By and u = 0 on
0Bs, and satisfies

—Au=1 in Q,
ou 1
—=—— 0By,
v m o (6.8)
0 1
gu > —— U on 0Bs.
% m Jaq
From Lemma 6.2, u is a minimizer of J,,(-, Q) in H(). O

Proposition 6.4. Ifu € W2%(Q) is a critical point of T (-, ), then it is also critical with
respect to the domain variation, i.e.,

d
@h:ojm(ut’ Q) =0, (6.9)

where u'(x) = w(F(t,z)), and F(-,-) : (=6,0) x Q — Q is a C'-family of C*-diffeomorphism
satisfying

F(0,7) =z, Vz € Q,
F(t,z) € 09, Y(z,t) € 90 x (=6,0).

Proof. Define the deformation vector field n(z) = %]tzoF (t,x) for z € Q. Then

n(x) € Tp(092) or n(z) -v(z) =0, Vo € 0N.
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By direct calculations, we have

1
dt‘t o5 /‘Vutlzdx)
= —%/ |Vul divndaz—i—/uiujn; dx
Q Q
= 5 |Vu|=divy dx + n-Vua— do — Au(n-Vu)da:— 5 n-V(|Vul|?) dz
Q 9 v Q

= _l/djv(]vuﬁn)da:—i—/ Vu—da—/Aun Vu)d
2 Q oN

1
= ——/ |Vu|217-1/d0—|—/77-Vud:17—|—/ n-wa—da
2 Joa 0 00 ov

= /n-Vud:E—l—/ n-Vtanu@da,
Q 00 ov

where we have used the equation (6.4)1, and Vipu = (I, — v @ v)Vu.

d 1 / C a1 /
— — u’ do = — udo - Vianu do.
dt‘tZO{Qm( o0 S} m Jaq aQn ’

It is readily seen that

= (- dz) = — [ n-Vuda.
U [ = [0V

Putting these identities together, we obtain that

d . ou 1
- m 7Q = -V anU\ 53— — do) d
oot = [ 0 V(G s L wdo)ao
1
= / n-Vtanu(@+— uda) do = 0.
80N {u>0} ov  m Jaq
This completes the proof. O

Definition 6.5. Given a bounded C*-domain Q C R™, let u = ug € H'(Q) be the unique
minimizer of (6.1). We say that (u,)) is a critical point of Jm(-,-), if either I(t) =
TIm(uqe), Ut)) is not differentiable at t =0, or

d
7 li—oTm (U, A1) =0, (6.10)

where Q(t) = {F(t,x) : * € Q} and uqq) is the unique minimizer of Jp(-,€2(t)) over

HY(Q(t)). Here F(t,z) : (=6,6) x Q — R" is any C’l-ﬁzmily of C*-volume preserving
diffeomorphism, that is generated by a vector field n € C*(Q,R"), i.e.,

F
Cfi—t(t,x) =n(F(t,z)); F(0,z) =z, Yz €Q, —d <t <.

Here (ugq(g), ©2(0)) = (u, ).

Now we have
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Theorem 6.6. For m > 0 and a bounded Cz-domai'n Q C R", let ug be the unique
minimizer of Jp (-, Q) over H (Q). If ug is positive in Q, then (uq,Q) is a critical point of
TIm (-, ) if and only if the following identity holds:

1,1 1
\Vtaan] —uqg — —(—/ UQ)2 + (—/ UQ)UQH = constant, on 91, (6.11)
2 m Joq m Jaq

where H denotes the mean curvature of Q. In particular, for any ball Br C R™ with radius
R; (UBR7BR) s a critical pO’l’flt Of jm(7 )

Proof. For simplicity, denote u = ug. Since u € C(Q) is positive, it follows that u solves
(6.10) so that u € CH*(Q)NW>2(Q). Hence there exists 6y > 0 such that u > &y in Q. For a
small 0 < §; << dy and an open set U D Q, let F(t,z) : (—01,61) x U — R™ be a C''-family
of C?-volume preserving diffeomorphism, generated by a vector field n € 02(U, R™). It is
readily seen that Q(t) = F()(Q), =6, < t < 81, is a C''-family of bounded C?-domains. By
an argument similar to that of Proposition 6.1, we can show that u(t) = uqq) (F(t,-)) = u

_ 5 _
in C°(Q) as t — 0 so that there exists 0 < d < 0; such that u(t)(y) > 50 for y € Q(t) and
€ (—d3,02). Hence u(t), —d2 < t < da, solves

—Au(t) =1 in Q(t),
{;u“(t) - —% u(t)(y)do  on 9Q(t). (6.12)
oQ(t)

Applying Proposition 6.1 again, we have that for any 1 < p < oo,
Hu(t)HW2»2(Q(t)) + [t HWlP @y S C@), t€(=02,0).

This implies Jp, (u(t), Q(t)) € C*((—52,52)).
It follows from |2(t)| = || for —d2 < ¢ < g that

/ divnp = 0. (6.13)
Q

d
Now we calculate Ejm(u(t), Q(t)) for t € (—d2,02). We claim that

(1), 1)) = /6 o T = 3190 =t
+(%/ u(t))u(t)H (t)]n - vdo, (6.14)
o90(t)

for all ¢t € (—0d2,d2). Here H(t) denotes the mean curvature of 9Q(t), and Vianf = (I, —
v)V f denotes the tangential derivative of f on 9€(t).

To simplify the proof, denote u(t,x) = w(t)(x) and set v(t,z) = %u(t,x), z € Qt).

Notice that = Q(0) and uq(z) = u(0,z), z € Q. Recall the formula [20, Corollary 5.2.8]

d

il _ of . i
dt Q(t)f(t,y) dy_/Q(t) ot (t,y) dy+/m(t)f(t,y)n(y) v(t,y)do, (6.15)
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for any f € C’l({(t,x) : t € (—02,02), x € Q(t)}), where v(t,-) denotes the outward unit
normal of 9(t). Applying (6.15), we can calculate

d 2
dt/()—\Vu(t,x)\ dx

= Vu(t,z) - Vo(t,z) de + / l]Vu(t, x)*n(x) - v(t,z) do
Q) o0(t) 2

Ii(t) =

=— Au(t,x)v(t,z)dx + / v(t,z)o,u(t, ) do
Q) 80(t)
4 [ SIvuta)Pata) - vit) do,
a0(t) 2
and
d
I3(t) = —/ u(t,z)dx = / v(t,x) dx +/ u(t,x)n(zx) - v(t,x)do.
dt Jo Q) 20(1)
Also recall the formula [20, Proposition 5.4.18]
d / / of of
— t,x)dr = + == x)-v(t,x))do
7 L S0 [ G )+ 5t amte) vie. )
[ feoH@ @) - vlt0) do (6.16)
80(t)

for any f € Cl({(t,a:) : t € (—02,02), € Q(t)}). Applying (6.16) and (6.12), we find

Lt) = % i(/@Q u(t, ) d0)2}
1 ou
= G [ 2680) [ (00 + (Gt a) ¢ uit ) 2)nte) vt ) do

= - / @(t, !E) ['U(t, l‘) + (@(t l‘) + ’LL(t, :E)H(tv :E))’I’}(l‘) ’ V(t7 :E)] dU,
aq(t) v v

where H (t,z) = H(t)(z) denotes the mean curvature of 9Q(t) at x € 98(¢).
Adding I;(t), I2(t), and —I5(t) together, and applying the equation (6.12); we obtain
that

9 Fulult). Q1) = (1) + B(0) ~ 1) (6.17)

/ —Au(t,z) — 1)v(t,z) dx
Q)

du ou
—I—/aQ(t —|Vu(t,z)|* — |$|2(t,x) +u(t,x) — 5(7& z)u(t,z)H(t, z))n(z) - v(t,x)do

/8Q ]Vtanu (t,z)|* — %\%\Q(t,x) +u(t,x) — %(t,x)u(t,x)H(t,x))n(x) -v(t,x) do.



HEAT INSULATION PROBLEM 25

Thus, by setting ¢ = 0 and applying (6.12)2, we obtain that

d
E |t:0\7m(u(t)7 Q(t))

B 1 , 1.0u, 1
_/ag <§|Vtanu| —§|$| +u—(E/(99udJ)uH>n(:E)-uda. (6.18)

Notice that for any given C'-family of volume preserving C*-diffeomorphism maps F (t,x) :
(=61,01) X  +— R" for some §; > 0, it is necessary that the velocity field 7 satisfies

n - vdo = 0. Substituting such an 7 into (6.18), we see that (6.11) holds iff (uq,(?) is a
o
critical point of Jp,(, ).
Recall that when Q = Bp, the unique critical point of J,,,(-, Bg) is given by

R? — |x|? m
up,(x) = o + 2o B2 x € Bp, (6.19)
where wy, is the volume of the unit ball in R". Since up, is smooth and positive in Bpg, and
satisfies (6.11), it follows that (up,, Br) is a critical point of Jp, (-, ). O

7. STABILITY OF (up, Br)

It follows from Theorem 6.6 that for any R > 0, (up,, Br) is a critical point for J,(-,-)
for any m > 0. In this section, we will prove Theorem 1.7, namely, (upy,, Br) is a stable
critical point of Jp,(, ).

Proof of Theorem 1.7. 1t follows from the discussion in the previous section that there exists
do > 0 such that u(t,z) = uq(x) is positive, satisfies (6.12), and is smooth in €(t) for
t € (—6,0). Hence by the formula (6.17) we have that for ¢t € (-4, 9),

& Tn(u(1), (1)
= / [E|Vu|2(t,x) — |%|2(t,:p) —u(t,x) — @(t,x)u(t,:n)H(t,:E) n(z) - v(t,z)do
20(t) L2 % v
=1(t)+ 1I(t)+I11(t)+ IV (t). (7.1)
To simplify the presentation, set
v(z) = %(O,x), uo(x) = u(0,z), x € Bp,

and ((z) = n(x)-v(z) for x € IBg. From the volume constraint |Q(¢)| = |Bg| for t € (-6, ),
we claim that

(z)do = divn(z) dx = 0, (7.2)
8BR BR
and
(z)divn(z) do = / div(divyn) dz = 0. (7.3)
0BRr Br

To see this, notice that since [Q(t)] = / JF(t,z)dz is constant, we have that
Br

d d?
dt‘tzo/BRJ (t,x)dx dt2|t:0/BRJ (t,z)dz =0
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While by direct calculations we have

S IF(t,2) = (divn o F(t,2))JF (1, ),

and
d2
de?

Thus we obtain
/ divn(z) dz = 0,
Bpgr

div(divyn)(z) dx = /B ((divy)? 4+ nVdivy) (z) dz = 0

JFE(t,z) = (divp o F(t,z))* + (Vdivy o F(t,x))(n o F(t,x))JF(t, x).

Br

so that (7.2) and (7.3) hold.
From (6.19), we see that

_ o ~ Oug _E
up = P R 2 and Vug(z) = ~ on OBg; 5 — " OBR.
Applying (6.16), we have
d 1 1 auo
il il - = 70 H
pn ‘t:o(m /ag(t) u(t, z) do) o (v(z) + Y (2)¢(z) + uo(z)H (2)((z)) do
1 n—1 R
= E . U(l‘) dO’ + (W - %) 9B C(ZE) dO'
-1 v(x) do, (7.4)
M JoBgr
n—1
where we have used H = on JBpg.

Now we want to show that v solve the boundary value problem in Bg:

ov . on 0Bn. (7.5)

{ —Av =0, in Bp,

S |

5 =
To see (7.5), let ¢ € C5°(Bpry1). Then by (6.15) we have

d

0 = Lo /Q  (Bults) + o) de

= Av(z)p(z) dx + / (Aug + 1)p(x)((x) do

Br 0BR

= Av(z)¢(z) dz,
Br

where we have used the fact that Aug+ 1 = 0 on 0Bg. Since ¢ is arbitrary, we conclude
that Av =0 in Bg. To show v satisfies the boundary condition (7.5)2, we apply (7.4) and
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(6.16), and proceed as follows.

d 1
0=leo [ oD Tutt )+ Gty o] de
x v x
= Jon. ¢($)(§ Vo(z) + 50 (0,2) - Vg + [ -
[ @) [ swdot [ o @0 (L[ @y do)) () do
OBR 0BRr OBRr OBRr
= [ o@D L@y L[ wwydo), (7.6)

0BRr m OBRr

where we have used the following facts:

ov R 0v

(E(O,:E),Vuo(ﬂf» = —g<a(0,x)a’/(0,$)> =0, on JBg,
T x 1z T
2wy, (Y= B
7 V(|$|) Vug 7 V(|$|) x =0, on OBR,
Tt g, tr w1
R®R.Vu0— nR®R'I"_ n,on@BR,

and
8’&0

It follows from (7.6) that

ov (¢ 1

— =2 - — d Brg. .

5w m/aBRv(a:) o, on 0B (7.7)
Since Av = 0 in Bp, we have

@ do =0,
OBRr 81/

this, combined with (7.7) and ¢ = 0, implies that
OBRr

L[ @yde=o. (7.8)

m JoBg
Thus v solves (7.5). From (7.8) and (7.4), we also have that

d 1
ileoly [, vt-m)do) =0 (7.9)
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Next we want to compute the second order variation based on (7.1). First, applying
(6.16), we have

1O =gl [ 5V v o

= [, (Tu(a)- Telo)(e) + 51T ate) - G10.2) de

b [ ) Vue) - Vunlalale) - v(o) + 5 Vuo(o)n- Vn(a) - v(a)) do
OBRr

1
+ /é)BR §|Vuo(w)l2H(x)(77($) - v(x))? do, (7.10)

where we have used the fact that v(z) = v(0,z) for z € IBpg.

Since (%(O,x), v(z)) =0 and n(z) = {(x)v(x) on IBR, we see that
1 0
/a . 31Vl S (0.0)do =0, (7.11)

Since v(z) = % and Vug(z) = —% on OBg, by (7.5) we see that

Vuo(z) - Vo(z)((x)do = —52 ¢(z) do. (7.12)
0BR n* JoBr

Direct calculations yield
| nfa)- PPus(e) - Vun(an(o) - viz) do
OBRr

-/ ri@) (=) ) @) do
OBg 2n "% 2n Y
= o[ @) 2@
OBR
R 2
7, Cads (7.13)

Notice that on 0Bpg, we have the formula

n-Vn-v) = (v, V¢) = (div(¢y) - ¢*divw
= (divy — ¢%H. (7.14)

Thus we obtain that
1
| 3vu@Pn- Vo) - via) do
OBRr

_ /8 ) %|Vu0(x)|2(§(x)div77(:n)—(2(:1:)H(x)) do. (7.15)
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Substituting (7.11), (7.12), (7.13), (7.15) into (7.10) and applying (7.3), we obtain that

o) = [ 5VuPde)di) do

R2
= — x)divn(z) do = 0. 7.16
5 [, Cdiontz) (7.16)
Next, by (7.3) and (6.16), we compute
d
II7'(0) = ——_/ u(t,z)n(x) -v(t,x)do
( ) dt‘t_O 29(t) ( ) ( ) ( )
%

= [, @) w@nte) - 50.0))do

_ / (290 201 1 wg(ay - Vin(a) - via)) do
OBRr

ov
—/ uo(2)¢%(z)H(z) do
OBR
= [ (@) - @) do - [ ug()g(e)diva(a) do
OBR n OBg
- B egyan - / o(2)C(x) do, (7.17)
n JoBgr OBR

3}
where we have used the fact n(z) - 8—;(0,:17) =0, (7.14), and (7.16) on 0Bp.
Recall that the mean curvature of 9€2(t) satisfies (see Huisken [18])

0H
E(t,l') = _Aaﬂ(t)n(x) ' V(t,.il’) - ‘A(t7$)‘277($) ' V(tax)7 HAS 8Q(t)7 (718)
where Apqy) is the Laplace operator on 9€(t), and A is the second fundamental form of
00Q(t).

Applying (7.9), (6.16), (7.14), and (7.15) we can compute

d
e = —=|_, [(% - u(t,z) do)’ /6 e n(z) - v(t,z) da]
= — i U 2i xX)- -V X g
= G, gl [ vt
2 1%
= T @) 200+ ) V) @) + HE@)E (@) do
n® JoBg
2 1%
= i [, ) 500+ (@) - G @) + H)Ce) do
= —R—j (z)divn(z) do = 0. (7.19)
n* JoBgr
Applying (7.9), (6.16), (7.18), and (7.14), and using
1 ug(x)do = E, |A(z)]? = n-l for x € OBg,

m Jopg n R?
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we can compute
IV'(0)
d 1
= o [ G [t do)uttn) o) vlt,z) do
dt"=0 Jaa) a9(t)

m

+(— /E)BR ug(x) do) /BBR(U(x) + n(z) - Vug(z))H (z)¢(x) do

m

‘|‘(l /aB UO(:E) dO‘)/ uo(x)(_AﬁBRC(l‘) _ |A($)|2C($))C($) do

OBRr

—F(%/6 up() da) /83 uo(x)Hz(a;)C2(a;) do

VT X O'—n—_1 2.’1’ g
[— /{)BRUC()d - aBRC()d

O [ (-BamC) — @)@ do]

n2wan—2 oB
— 1R -1
=R e+ P [ @) do
OBRr n O0BRr

m
nBWan—?)

n

/aBR (IVianC (@)]* — E;lc%)) do. (7.20)

Therefore, by adding (7.10), (7.19), (7.17), and (7.20) together, we obtain

j—;hzojm(w),ﬂ(t)) = I'(0) + IT'(0) + III'(0) + IV'(0) = I'(0) + IV'(0)

- R 2$ O'—l v\xr X ag
_ (x)d ABR<><<>d

)
n® JoBg n
m n

—1
+W/83R(!Vtanda:)!2— 7 CC(@)) do. (7.21)

Since / ((x)do =0, it follows from the Poincaré inequality on 0Bp that
OBRr

-1
| (Vi@ = S @) do > 0. (7.22)
Now we claim that
R |
=] o /8 @) do >0, (7.23)
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To see this, notice that by (7.8), / v(z) do = 0. Recall that the first Stekloff eigenvalue

OBr

1
on Bp is T which implies that

/ v?(x)do < R Vo (z)|? d. (7.24)
dBr Br

Applying the equation (7.5) for v, we have

2 = 8U($)'UZE O':l T )v\x)aoc
[, v = [ S ()l d

" JoBr
L 2 3 2 :
< ;(/6331) (z)do) 2 ( 8BR§ (z)do)
R—% 2 3 2 z
< ([, @R[ i)
This implies
: = 2 R 2
;/8312 C(x)v(x)do = /BR Vo(@)" de < — /aBRC (z)do. (7.25)

Hence (7.23) holds. Putting (7.22) and (7.23) into (7.21), we conclude that

d2
ﬁ‘tzojm(u(t),Q(t)) > 0.

This completes the proof. O
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