
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Improving Indirect-Call Analysis in LLVM
with Type and Data-Flow Co-Analysis

Dinghao Liu and Shouling Ji, Zhejiang University;
Kangjie Lu, University of Minnesota; Qinming He, Zhejiang University

https://www.usenix.org/conference/usenixsecurity24/presentation/liu-dinghao-improving

Improving Indirect-Call Analysis in LLVM with Type and Data-Flow Co-Analysis

Dinghao Liu1, Shouling Ji1, Kangjie Lu2, and Qinming He1

1Zhejiang University, 2University of Minnesota

E-mails: {dinghao.liu, sji}@zju.edu.cn, kjlu@umn.edu, hqm@zju.edu.cn

Abstract
Indirect function calls are widely used in building system
software like OS kernels for their high flexibility and per-
formance. Statically resolving indirect-call targets has been
known to be a hard problem, which is a fundamental require-
ment for various program analysis and protection tasks. The
state-of-the-art techniques, which use type analysis, are still
imprecise. In this paper, we present a new approach, TFA, that
precisely identifies indirect-call targets. The intuition behind
TFA is that type-based analysis and data-flow analysis are
inherently complementary in resolving indirect-call targets.
TFA incorporates a co-analysis system that makes the best
use of both type information and data-flow information. The
co-analysis keeps refining the global call graph iteratively,
allowing us to achieve an optimal indirect call analysis. We
have implemented TFA in LLVM and evaluated it against five
famous large-scale programs. The experimental results show
that TFA eliminates additional 24% to 59% of indirect-call
targets compared with the state-of-the-art approaches, without
introducing new false negatives. With the precise indirect-call
analysis, we further developed a strengthened fine-grained
forward-edge control-flow integrity scheme and applied it to
the Linux kernel. We have also used the refined indirect-call
analysis results in bug detection, where we found 8 deep
bugs in the Linux kernel. As a generic technique, the precise
indirect-call analysis of TFA can also benefit other applica-
tions such as compiler optimization and software debloating.

1 Introduction

One of the powerful features of advanced programming lan-
guages like C/C++ is the function pointer, which allows de-
velopers to dynamically invoke different functions depending
on the runtime context. Function pointers are widely used in
modern software such as OS kernels to implement flexible

Qinming He and Shouling Ji are the co-corresponding authors.

and efficient functionalities. The invocation site of a function
pointer is called an indirect-call (icall for short in this paper).
However, the dynamic nature of icall makes it challenging
to determine its possible targets. This challenge hinders the
construction of a precise Control-Flow Graph (CFG), which
is essential for many significant program analysis and pro-
tection tasks (e.g., bug detection, program optimization, and
control-flow integrity).

Researchers have been actively proposing techniques to
identify icall targets. There are two main categories of tech-
niques for this problem. The first category is dynamic tech-
niques, which record the icall targets at runtime and update
the control flow graph accordingly [7, 23, 27, 51, 53]. How-
ever, it has limitations in terms of soundness and performance,
as it depends on the code coverage and the runtime support.
Therefore, we focus on the second category: static techniques,
which compute the possible icall targets without executing
the program. Some static techniques rely on whole program
pointer analysis to identify icall targets [20, 24, 47, 54], but
this approach faces challenges in balancing efficiency, sound-
ness, and effectiveness [29, 42]. In particular, precise inter-
procedural pointer analysis is often infeasible for analyzing
large programs such as OS kernels (e.g., Andersen [21]).
Moreover, the pointer analysis itself presupposes a global
control flow graph, which implies knowing the icall targets
beforehand.

As a result, most existing practical solutions rely on type
analysis for identifying icall targets [40, 50, 58, 60, 63, 64].
Specifically, they consider all address-taken functions (i.e.,
functions whose addresses have been referenced) that have
the same function type as the icall as possible targets. This
is known as type matching or signature matching. This ap-
proach is common in CFI schemes [10, 48, 50] and static
program analysis [28, 60, 63]. However, it suffers from high
false positives, as many unrelated functions can also match
the function type of the icall, especially for simple types (e.g.,
void (*)(int)). To address this limitation, two-layer type
matching [37, 43, 68] is proposed based on the observation
that most icalls in large programs are stored and used in com-

USENIX Association 33rd USENIX Security Symposium 5895

posite types like structures. By using the outer-layer struct
type information as an additional filter, it can eliminate many
invalid icall targets. TypeDive [42] extends this idea and
proposes multi-layer type matching (MLTA), where it tracks
the outer-layer struct types recursively (i.e., one struct type is
stored into another struct type) to obtain richer type informa-
tion for icall analysis.

The state-of-the-art method, MLTA, has achieved great
success in precisely identifying icall targets, and has been
adopted in many static analysis tasks [22, 32, 39, 62, 69].
However, it still suffers from several problems. (1) It is in-
effective for programs that rarely use composite types. For
instance, we found that only 25% of icalls in the OpenSSL
library involve composite types, and thus most icalls in
OpenSSL cannot benefit from MLTA. (2) Even for large
programs that extensively use composite types, the impact
of icalls that cannot benefit from MLTA (i.e., icalls that do
not involve composite types) is highly significant. Our exper-
imental results indicate that the minority (23%) icalls that do
not involve composite types account for the majority of icall
targets (77%) in the Linux kernel.

One fundamental problem of existing approaches is that
they do not fully utilize type and data-flow information. In this
paper, we present a new approach, TFA (Type and Flow co-
Analysis), for precise and sound indirect-call resolution. The
basic idea of TFA is to leverage the complementary advantages
of type analysis and data-flow analysis to resolve indirect-
call targets optimally. Specifically, for icalls with rich type
information, type analysis (e.g., MLTA) could provide us
an initial CFG, which enables the inter-procedural data-flow
analysis. For icalls with limited or general type information
(i.e., MLTA is ineffective), data-flow analysis kicks in to help
eliminate unrelated targets. Given an initial CFG generated
by MLTA, TFA iteratively improves it through type and data-
flow co-analysis until convergence is reached. The refined
CFG will make the subsequent analysis round more precise
and more manageable because it narrows the scope of inter-
procedural analysis.

While the intuition of TFA is straightforward, implement-
ing TFA needs to overcome two challenges. (1) The type
information used for icall analysis is not always accurate.
Many type-based icall analysis methods [37, 42, 43] are im-
plemented based on LLVM [13], a popular static analysis
framework. However, we discovered a series of LLVM com-
posite types that lack essential information (§2.2). We call
them broken types in this paper. Broken types affect the preci-
sion and soundness of type-based analysis and introduce both
false positives and false negatives. (2) Directly performing
inter-procedural data-flow analysis to track the data-flow rela-
tions between icalls and their targets is costly, especially for
large programs like OS kernels. Furthermore, TFA needs to
repeat the analysis iteratively, which poses a challenge to the
efficiency of TFA.

To address the first challenge, we propose a type recov-

ery technique that leverages the source code information to
identify and reconstruct the missing or broken types. Our
technique could enhance not only our icall analysis, but also
general type-based analysis in LLVM. To address the second
challenge, we present a two-dimensional data-flow analysis
method customized for icall analysis. It captures both the
data-flow dependencies between icalls and their targets, and
the type information that is hidden behind complex data-flows.
The rich type information obtained by our data-flow analysis
significantly improves the existing type analysis methods.

We have implemented TFA based on LLVM and evaluated
TFA with five representative C/C++ programs: the Linux ker-
nel, the FreeBSD kernel, the OpenSSL library, the OpenCV
library, and the MongoDB database. TFA could analyze the
complex Linux kernel in less than two hours. The experi-
mental results show that TFA further eliminates 24% to 59%
icall targets compared to the state-of-the-art multi-layer type
analysis method. The evaluation also indicates that the type
recovery method is effective in improving the soundness of
type analysis. The data-flow analysis of TFA does not in-
troduce any additional false negatives. We demonstrate the
practical benefits of TFA in two applications: CFI and bug de-
tection. We have implemented a prototype of a forward-edge
CFI scheme leveraging TFA for the Linux kernel, where each
icall’s valid target set is computed according to its unique se-
mantic. We also use TFA to detect bugs related to the misuse
of device release call-back functions in the Linux kernel. We
confirm 6 double-free bugs and 2 memory leak bugs that are
hidden behind indirect-calls and would be missed by existing
static bug detection tools. In summary, we make the following
contributions:

• A new approach for icall target analysis. We propose a
new approach, TFA, to precisely identify icall targets. TFA
integrates the type analysis and data-flow analysis in such
a way that they complement each other to compute icall
targets optimally. The approach is designed to be practical
for large programs, both kernel and user levels. We will
open source TFA to facilitate further researches.

• New techniques. We propose multiple techniques to ad-
dress challenges in implementing TFA. We propose a type
recovery technique to fix the broken types in LLVM. We
also design a customized two-dimensional data-flow analy-
sis for icall target resolving, which not only precisely finds
icall targets for cases where type analysis fails, but also
identifies richer type information.

• Extensive evaluation and feasible applications. We exten-
sively evaluate TFA’s efficiency, effectiveness, and sound-
ness on five large-scale programs. Compared with the state-
of-the-art methods, TFA further eliminates 24% to 59% icall
targets without introducing more false negatives. The eval-
uation results confirm that TFA’s icall analysis is precise,
scalable, and sound. We then implement a strengthened

5896 33rd USENIX Security Symposium USENIX Association

1 typedef void (*f_ptr)(int a, int b);
2 struct S {f_ptr field1; f_ptr field2};
3

4 void address_taken_func1(int a, int b){...}
5 void address_taken_func2(int a, int b){...}
6 void address_taken_func3(int a, int b){...}
7 void address_taken_func4(int a, int b){...}
8

9 struct S s1 = {.field1 = address_taken_func1,
10 .field2 = address_taken_func2};
11 struct S s2 = {.field1 = address_taken_func3,
12 .field2 = address_taken_func4};
13

14 void main() {
15 ...
16 s1.field1(100, 200); // address_taken_func1 is called here
17 ...
18 }

Figure 1: Example of type analysis for identifying icall targets.

forward-edge CFI scheme based on our precise icall anal-
ysis results and apply it to the complex Linux kernel. We
also apply TFA in bug detection and found 8 new bugs in
the Linux kernel.

2 Background and Motivation

2.1 Type-Based Indirect-Call Analysis
We present an example of an icall in Figure 1 to compare
different type analysis methods. This icall occurs at line 16
and has a function type defined at line 1. A one-layer type
matching method would consider any address-taken function
with the same function type as the icall as a possible tar-
get. Thus, it would include all four functions defined from
line 4 to line 7 as valid targets. A two-layer type matching
method would also examine if an address-taken function is
assigned to a field of a structure, which is a common pat-
tern in large software such as OS kernels. In this example,
the icall is retrieved from the first field (.field1) of struct S.
Only address_taken_func1() and address_taken_func3()
are used to initialize this field. Therefore, two-layer type
matching identifies these two functions as valid targets of the
icall, which eliminates 50% of false positives compared to
one-layer type matching.

2.2 Problems with the Type Analysis in LLVM
LLVM is one of the most widely used static analysis frame-
works, which is essential for implementing various type-based
icall analysis techniques. However, LLVM suffers from two
issues that compromise the soundness of type analysis. In
this paper, we call these issues broken types.

2.2.1 Unreliable Type Equality Checking

One essential requirement of the aforementioned type-based
analysis is to determine the equality of different types, espe-
cially for struct types. However, even such a fundamental

1 /* source code */
2 struct A {
3 int i;
4 int (*f)(int, struct A*);
5 int (*g)(char, struct A*);
6 };
7

8 /*Expected LLVM IR of struct A */
9 %struct.A = type {i32, i32 (i32, %struct.A*), i32 (i8, %struct.A*)}

10

11 /*Actual LLVM IR of struct A */
12 %struct.A = type {i32, {}*, i32 (i8, %struct.A*)}

Figure 2: Example of omitting function pointer fields.

1 /* source code */
2 struct dvb_usb_adapter_properties adapter[2];
3

4 /*Expected LLVM type of variable adapter */
5 [2 x %struct.dvb_usb_adapter_properties]
6

7 /*Actual LLVM type of variable adapter */
8 <{{i8, i8, i32 (%struct.dvb_usb_adapter*, i32)*,
9 i32 (%struct.dvb_usb_adapter*, i32, i16, i32)*, {i8, i8, i8,

10 {%struct.anon.163, [8 x i8]}}}, %struct.dvb_usb_adapter_properties}>

Figure 3: Example of type unfolding.

task is hard to accomplish in LLVM intermediate represen-
tations (IRs). The default type-pointer comparison is only
applicable for types within the same LLVM module. Some
previous works [42, 43] rely on the hashed type strings to
perform cross-module type comparison, which is effective
for primitive types (e.g., integers). However, this approach
is unsound in comparing struct types due to the following
anomalies in LLVM type representations:

• Omitting function pointer fields. In some cases, the func-
tion pointer field of a structure will be replaced as an empty
pointer ({}*) rather than its point-to type, as shown in
Figure 2. This issue has been reported and discussed in
several different technical forums [2–5], but it still persists
in LLVM 15. Some developers suggest this is a known bug
in Clang [1, 2].

• Missing struct names. A common programming practice
is to initialize a global variable at the point of its declaration
(e.g., line 9 and line 11 in Figure 1). In our analysis on
the Linux kernel, we found that 17.8% of global struct
variables are declared without specifying their struct type
names in LLVM IRs. This poses a challenge for the two-
layer type matching algorithm, as we cannot determine
that address_taken_func1() is used to initialize a field of
struct S in Figure 1, which occurs for 13.5% of outer-layer
struct types in the Linux kernel.

• Type unfolding. One challenge in analyzing the content
of a struct’s fields is that they may be partially unfolded,
as shown in Figure 3. Sometimes, an i64 type could be
split into two i32 types. Based on our manual analysis,
this scenario is likely to occur when a structure has a union
field.

USENIX Association 33rd USENIX Security Symposium 5897

These type representations make type comparisons based
on type strings unreliable. LLVM provides a built-in type
comparison method [9], which recursively verifies every
struct field of the two struct types. LLVM linker also em-
ploys another type comparison method based on isomorphism
checking [8]. Denisov et al. proposed a tree-automata-based
type comparison method for LLVM [6]. However, none of
these methods can guarantee the soundness of type compari-
son.

2.2.2 Type Information Omission in Optimized Code

One of the key tasks in type-based analysis is to determine
the type information of different layers (i.e., identify which
field of a structure a variable belongs to). In LLVM IRs,
this is done by using the getelementptr instructions, which
are used to access struct fields. For instance, given a GEP
instruction like %ptr = getelementptr inbounds %struct.S*
%0, i64 0, i32 5, we can infer that the pointer %ptr originates
from the fifth field of struct S.

Previous works on icall analysis have focused on programs
compiled with no optimization (O0) [42, 43], and the impact
of code optimization on type analysis has not been well stud-
ied. We discovered that many GEP instructions in optimized
code (e.g., O2 optimization level), which is often preferred
by static analysis techniques for its advantages on data-flow
analysis [52, 60, 69], would lose crucial type information. For
example, the GEP instruction above would be transformed
into %ptr = getelementptr inbounds i8, i8* %0, i64 28 after
optimization. The struct pointer type is replaced by a prim-
itive pointer type i8*. The field index is replaced by a byte
offset based on the primitive pointer. In this scenario, existing
methods are unable to retrieve the nested struct types or fields.

2.2.3 Causes of Broken Types

We argue that the above abnormal cases should not be re-
garded as mere bugs, since they do not cause any observable
runtime errors in our experiments. The optimization that elim-
inates type information in §2.2.2 is justified, as it simplifies
the address calculation and improves the runtime performance.
Previous work also shows that types in LLVM IRs are not al-
ways consistent with the source code (i.e., cases in §2.2.1) for
the sake of optimal machine code generation [36]. However,
this poses a challenge for researchers who want to perform
type-based analysis on LLVM IRs. Therefore, instead of mod-
ifying LLVM’s type system directly, we propose a program
analysis oriented type recovery approach to address the issues
caused by broken types.

2.3 Type Recovery and Co-Analysis

As discussed in §2.2, broken types can exhibit various pat-
terns, but they all share a common problem: the lack of type

information. To address this challenge, we present a novel
type recovery technique (§4.1) that can infer the missing type
information for broken types, enabling more sound and pre-
cise type-based analyses (e.g., icall analysis).

The icall in Figure 1 has only one possible target:
address_taken_func1(), which cannot be determined by
type analysis alone. However, if we can leverage additional
data-flow analysis to identify that the icall only involves
variable s1, we can reduce the set of potential targets to
address_taken_func1() and address_taken_func2(). By
combining the results of two-layer type matching and data-
flow analysis, we can achieve the exact ground-truth result
in this example. This observation inspires us to design and
implement TFA.

3 Overview

The goal of TFA is to resolve icall targets soundly and pre-
cisely. The key idea of TFA is to combine multi-layer type
analysis and data-flow analysis in an iterative manner to refine
the control-flow graph (CFG) progressively. The overview
of TFA is shown in Figure 4, which consists of two analysis
phases.

In the first phase, TFA takes the LLVM IR files as inputs
and performs type recovery on them. TFA scans all struct
variables and GEP instructions of the program in the LLVM
IRs to detect and fix broken types. Specifically, TFA lever-
ages the source code information and recovers the missing
type information layer by layer. Based on the recovered type
information, TFA then conducts multi-layer type analysis to
generate an initial CFG of the program, which enables inter-
procedural data-flow analysis in the next phase. TFA also
records the detailed analysis results of each icall in this phase
to guide the subsequent data-flow analysis.

In the second phase, TFA refines the icall targets iteratively
using a two-dimensional data-flow analysis. This analysis
establishes the data-flow relationships between the icalls and
their possible targets, and also extracts layered type informa-
tion from inter-procedural context. These two analysis flows
enhance the icall analysis directly and indirectly, respectively.

The icall target analysis produces a refined CFG in each
round, and stops when the CFGs of two consecutive rounds
are sufficiently similar. The final CFG is then stored in a
database to facilitate further static analysis.

4 System Design

In this section, we first introduce our type recovery approach,
which aims to improve existing type analysis. Next, we
present the customized alias analysis method we used. Fi-
nally, we introduce the two-dimensional data-flow analysis of
TFA, which cooperates with the type analysis on refining icall
targets.

5898 33rd USENIX Security Symposium USENIX Association

Env Preparation

Type Recovery

Mlti-layer Type Analysis

Indirect-call
analysis results

Icall Analysis Results

Mlti-layer Type Info

Global Call Graph

LLVM IRs

Indirect-Call Target Analysis

Two-Dimentional Data-Flow Analysis
 - Icall Data-flow Relation Analysis
 - Icall-Oriented Type Mining

Mlti-layer Type Analysis

Converging?N Y

Broken Type Checking Address-taken funcs Indirect-calls

Outer-layer
types

Undecidable
pointers

Indirect-calls Address-taken
 funcs

CFI
Bug detection
...

Figure 4: The overview of TFA. It has a preparation phase and an iterative icall analysis phase. It takes the LLVM IRs as inputs and outputs the
icall analysis results to a local database.

Broken Struct
Types

Optimized GEP
Instructions

Iterative Struct
Field Recovery

Struct Field
Index Recovery

Recovered
Type Storage

Typ
e N

am
e R

eco
very

Figure 5: The overview of type recovery.

4.1 Type Recovery
Type recovery aims to recover the missing struct type informa-
tion to support precise and sound type analysis. The overview
of type recovery is shown in Figure 5. It takes two types of
inputs that have incomplete or distorted type information: (1)
the broken struct types (i.e., cases in §2.2.1), and (2) the opti-
mized LLVM GEP instructions (i.e., cases in §2.2.2). For the
broken struct types, TFAwill reconstruct the erased struct type
names and fields. For the optimized GEP instructions, TFA
will infer the struct types and field indices from the optimized
types (i.e., i8*) and byte offsets.

For both types of inputs, the first step of type recovery
is to recover the corresponding struct type names. For the
broken struct types, we then recursively examine and restore
their possible broken field types. For the optimized GEP
instructions, we additionally recover the field indices that
the instructions originally accessed. TFA maintains a global
map to store the recovered types for facilitating subsequent
type-based static analysis in LLVM.

4.1.1 Type Name Recovery

We present a case study from the Linux kernel to demonstrate
the process of type name recovery, as shown in Figure 6. This
case involves a global variable omap_rtc_driver with a struct
type named platform_driver. Ideally, its representation in
LLVM IR should include three essential elements: struct
name, struct definition, and initializer. However, its struct

/* drivers/rtc/rtc-omap.c */
static struct platform_driver omap_rtc_driver = {
 .probe = omap_rtc_probe,
 .remove = omap_rtc_remove,
 ...
};

@omap_rtc_driver = internal global { } { } align 8, !dbg !4378

@omap_rtc_driver = internal global %struct.platfrom_driver { } { } align 8, !dbg !4378

Struct name

Struct definition

Initializer

Metadata tag

Expected LLVM IR:

Actual LLVM IR (struct name is missing):

Source code

!4378 = !DIGlobalVariableExpression(var: !4379, expr: !DIExpression())

!4379 = distinct !DIGlobalVariable(name: "omap_rtc_driver", scope: !2, file: !4352,
line: 1018, type: !4380, isLocal: true, isDefinition: true)

!4380 = distinct !DICompositeType(tag: DW_TAG_structure_type, name:
"platform_driver", file: !4381, line: 204, size: 1600, elements: !4382)

Figure 6: The workflow of type name recovery.

name is absent. We examined the entire Linux kernel and
discovered 64,457 global struct variables (17.8%) that lacked
their struct type names in the definition.

Our approach is to leverage the source code information
(stored in the LLVM metadata nodes) to recover the missing
struct name. For instance, in Figure 6, by tracking the meta-
data layer by layer (!4378→!4379→!4380), we can identify
the type name of omap_rtc_driver and construct a complete
struct type in LLVM IRs.

For an optimized LLVM GEP instruction, we first obtain
the pointer operand of this instruction (e.g., i8* %0 in the ex-
ample of §2.2.2). We then inspect the use-chain of this value
to locate the llvm.dbg.value instruction, which records the
corresponding source code information. Finally, we extract
the metadata node from this instruction and recover the type
name of this value (Struct.S in the example of §2.2.2) using
the same process as in Figure 6.

4.1.2 Iterative Struct Field Recovery

Struct types that contain fields of other struct types are fre-
quently used in programming. One challenge of the type re-
covery is that the broken struct types could propagate through
nested struct fields, and we need to recover all possible broken

USENIX Association 33rd USENIX Security Symposium 5899

field types accurately. For instance, if the name of a struct
type is missing, its nested struct fields are also likely to have
missing names. Usually, the incorrect types are mixed with
correct types, which complicates the recovery process.

To address this problem, we propose the following recovery
methods for a given broken struct type. We first recover the
missing name with the workflow in §4.1.1. We then search the
type definition list of the current module and find the intact
struct definition (i.e., identified struct type) of the broken type
based on the recovered name. Finally, we iteratively match
all fields of the broken and intact struct types to recover all
potential broken field types. In the matching procedural, we
apply three additional strategies to ensure soundness: (1) We
recursively unfold all composite types into primitive types
to enable sound and effective type comparison. (2) We split
all integer types into multiple i8 types according to their bit-
width. (3) We conservatively allow void pointer type to cast
to any function pointer type.

4.1.3 Struct Field Index Recovery

For an optimized GEP instruction, we need to additionally
recover the exact struct field index that the GEP instruction
intends to access. Since we have recovered the original struct
type names, we can use the LLVM API 1 to obtain the field
index by computing the byte offset. However, this approach is
not always reliable. We manually examined the corresponding
LLVM IRs and discovered that the code optimization pipline
could merge multiple GEP instructions. For instance, given a
C code snippet s = a->b->c, LLVM would normally generate
two GEP instructions to get the address of variable s: one
GEP for computing the address of b from a, and another
for computing the address of c from b. However, these two
GEP instructions could be combined into one during the code
optimization, which sums up the two address offsets and loses
the information of struct b. Consequently, existing methods
fail to analyze the struct accessing behaviors correctly.

To address this problem, we propose an algorithm to iden-
tify the types and indices for the merged fields, as illustrated
in Algorithm 1. The basic idea of our algorithm is to re-
cursively compute the address offset layer by layer until it
matches the given offset. In particular, when we encounter a
struct field (line 5), we find the nearest field index according
to the current offset (line 6) and compute the delta between
this field’s offset and the given offset (line 7-8). If the delta is
non-zero, then the GEP must access a subfield of the current
struct field, and we use the delta as the new offset to locate
the subfield. When we encounter a struct array field (line
12-14), we simply descend into the element struct type and
use the remainder of the given offset and the element type
size to locate the subfield (line 15-17).

1LLVM API getElementContainingOffset(): given a valid byte offset into
the struct type, it returns the struct index that contains it.

Algorithm 1: Get layered types and indices
Input: BST : Base struct type of the GEP instruction;

o f f set: Byte offset in the GEP instruction
Output: ST List: The recovered struct type list;

indexList: The index list of the fields in ST List
1 cur_o f f set← 0;
2 CST ← BST ;
3 index← 0;
4 while o f f set > 0 do
5 if CST is Struct Type then
6 index←CST.GETINDEXFROMOFFSET(o f f set);
7 cur_o f f set←CST.GETELEMENTOFFSET(index);
8 o f f set← o f f set− cur_o f f set;
9 ST List.PUSH_BACK(CST);

10 indexList.PUSH_BACK(index);
11 CST ←CST.GETELEMENTTYPE(index);
12 else if CST is Array Type then
13 eleTy← GETELEMENTTYPE(CST);
14 if eleTy is Struct Type then
15 type_size← GETTYPESIZE(eleTy);
16 CST ← eleTy;
17 o f f set← o f f set mod type_size;
18 end
19 else
20 return NULL, NULL;
21 end
22 return ST List, indexList;

4.2 Alias Analysis

To perform data-flow analysis of TFA, we need to track alias
relationships among program variables. We adopt a data struc-
ture called alias graph [35, 38] to store these relationships.
The alias analysis method is inter-procedural, flow- and field-
sensitive, and it achieves a good trade-off between efficiency
and precision for large-scale programs. In this paper, we en-
hance the soundness of the alias analysis for icall analysis
scenario by making the following modifications:
Flow-insensitivity. Flow-sensitivity is a property of alias anal-
ysis that takes control-flow information into account. For our
analysis, we require both forward and backward data-flow
exploring, which makes the flow-sensitivity irrelevant. There-
fore, we use a flow-insensitive approach that simplifies the
computation and improves the soundness of our analysis.
Field-insensitivity. Field-sensitivity is the ability to distin-
guish different fields of the same composite object. We do
not support field-sensitivity in alias analysis for two reasons:
(1) Our analysis result is the intersection of data-flow analysis
and multi-layer type analysis, which already provides field-
sensitivity. (2) The Linux kernel has a mechanism, called
container_of, to obtain the starting address of a struct value
from its field value. This mechanism introduces soundness
issue [41] because it prevents us from getting the correct
outer-layer struct type (which is missing) or the correct index

5900 33rd USENIX Security Symposium USENIX Association

of the current field (which is negative).
Supporting May-Alias Query. Current design of the
alias graph based alias analysis mainly supports must-alias
query [35], which will introduce soundness issues in icall
analysis. Therefore, we re-design the graph updating algo-
rithms to support may-alias query.

We have reimplemented the alias analysis according to the
above requirements. Our analysis is integrated with a data-
flow analysis framework that performs alias and data-flow
analysis simultaneously. Whenever a new instruction is pro-
cessed by the data-flow analysis, the alias analysis updates the
global alias graph accordingly. We provide more details about
the alias graph structure and the graph updating algorithm in
§A.1 in the Appendix.

4.3 Two-Dimensional Data-Flow Analysis

Previous work has tried to utilize data-flow analysis or point-
to analysis to resolve icall targets [30, 49, 55, 61]. These
techniques attempt to establish the data-flow or alias rela-
tionships between icalls and address-taken functions directly.
However, for large-scale programs (e.g., OS kernels), these
relationships can be very complex and intricate, which leads
to inefficiency, imprecision, and unsoundness of existing data-
flow based analysis methods [29, 42].

Our key observation is that existing multi-layer type analy-
sis can effectively reduce the false positives of icall analysis
by exploiting the rich layered struct type information, but
such information is often obscured by complex data-flows.
Therefore, improving icall analysis does not necessarily re-
quire a complete data-flow analysis between icalls and their
targets, but a lightweight type information mining. Based on
this insight, we present a two-dimensional data-flow analysis
to improve icall analysis. Specifically, it aims to analyze not
only the direct data-flow relationships between icalls and their
targets, but also icall-related layered struct type information
across inter-procedural contexts.

4.3.1 Icall Data-Flow Relation Analysis

Bidirectional Data-Flow Analysis. To obtain rich data-flow
information, TFA analyzes the data-flows of icall traces inter-
procedurally from two directions, i.e., bidirectional data-flow
analysis. (1) A backward data-flow analysis that starts from
an icall and identifies the possible address-taken functions that
can be its targets. After completing the backward analysis,
TFA calculates the intersection of the alias set of the icall and
the result of multi-layer type analysis to obtain the final icall
targets. (2) A forward data-flow analysis that starts from an
address-taken function and determines which icalls can have
it as one of their targets. For icalls that are not in the alias
set of the address-taken function, TFA can safely exclude the
address-taken function from their target sets.

Fall Back Strategies. Occasionally, data-flow analysis may
confront cases that compromise analysis soundness and result
in false negatives. To cope with this problem, we have intro-
duced several early termination conditions designed to pre-
serve soundness while balancing effectiveness and efficiency.
The data-flow analysis halts and the results are conservatively
reverted to type analysis upon triggering any of the specified
conditions:

• The number of the aliased value reaches the threshold.
TFA allows users to specify a maximum number (500 by
default) of values that are aliased with the input value (e.g.,
an icall pointer). TFA terminates the data-flow analysis
when the number of aliased values reaches the limit and
falls back to type analysis.

• The input value is aliased with assembly code. Assembly
code is currently out of the scope of our analysis. There-
fore, when the input value is aliased with assembly calls,
TFA terminates the data-flow analysis and falls back to type
analysis. In addition, TFA also stops the data-flow anal-
ysis when the subgraph includes global variables named
llvm.compiler.used (llvm.used in LLVM 14 and earlier
versions). Usually, this could happen when the program
initializes and updates global variables through assembly
code (e.g., Linux static calls).

• The input value is aliased with arithmetic operated val-
ues. A pointer value may be modified by arithmetic oper-
ations in practice. Static analysis of its alias set is still an
open challenge, and the soundness of the results is hard to
guarantee. Therefore, TFA terminates the data-flow explo-
ration in this case and falls back to type analysis.

4.3.2 Icall-Oriented Type Mining

The state-of-the-art multi-layer type analysis achieves more
precise icall analysis by utilizing richer layered struct type
information. However, in large programs (e.g., OS kernels),
the storage relationships between structural types and icalls
could be complex (e.g., involves inter-procedural data-flows).
As a result, existing methods fail to resolve these cases, which
limits the effectiveness of MLTA. TFA aims to resolve this
problem through data-flow based type mining. However, type
mining can be costly and impractical for programs with a
large number of structural types. To address this problem, we
present icall-oriented type mining, a technique that focuses
on tracking and extracting type information that is relevant to
indirect call analysis from two perspectives.
Type Mining for Icalls. We found that many indirect function
calls with nested type information are not handled correctly
in multi-layer type analysis. A common case in the Linux
kernel is illustrated in Figure 7. Multi-layer type analysis
assumes that the indirect call at line 4 lacks any enclosing
struct type information and resorts to one-layer type analysis.

USENIX Association 33rd USENIX Security Symposium 5901

1 /* sound/core/pcm_lib.c */
2 static int interleaved_copy(..., pcm_transfer_f transfer) {
3 ...
4 return transfer(...); //No outer-layer type in MLTA
5 }
6

7 snd_pcm_sframes_t __snd_pcm_lib_xfer(...) {
8 ...
9 pcm_copy_f writer;

10 pcm_transfer_f transfer;
11 ...
12 writer = interleaved_copy; //An icall of interleaved_copy
13 ...
14 transfer = substream->ops->copy_kernel;
15 ...
16 err = writer(..., transfer);
17 }

Figure 7: Example of hidden layered type.

However, there is a caller of interleaved_copy() at line 16,
which passes a function pointer transfer as an argument.
The origin of transfer reveals that it does have an enclosing
type substream->ops->copy_kernel at line 16.

To make these icalls benefit from multi-layer type analy-
sis, we perform a backward data-flow analysis starting from
them and track their origins. TFA conducts an inter-procedural
analysis to determine if an icall is derived from a struct field,
which indicates aliasing with a struct field. Unlike the pre-
vious data-flow analysis, this phase terminates early when
an aliased value with nested type information (i.e., GEP in-
structions in LLVM IRs) is encountered during data-flow
propagation.
Type Mining for Undecidable Targets. Multi-layer type
analysis requires recording the confined targets for a struct
type. However, this could be infeasible when a struct field
has an undecidable target (i.e., type-escaping [42]). Figure 8
illustrates a typical case in the Linux kernel. A function
pointer is assigned to the detach field of the struct pointer ap
at line 7, which has the type struct drm_aperture. Since
the function pointer originates from the argument (detach at
line 3), its potential identities cannot be determined by type
analysis alone. Multi-layer type analysis maintains a global
map to record the fields of structs that encounter type-escaping
(e.g., drm_aperture->detach in this case). When an indirect
call has an escaped outer-layer type (e.g., the indirect call at
line 16), multi-layer type analysis will fall back to one-layer
type matching conservatively to ensure soundness.
TFA addresses this problem through backward data-flow

tracking. In this example, we choose the function pointer
whose source is undecidable (i.e., detach at line 3) as the start-
ing point of data-flow analysis. TFA precisely identifies the ori-
gin of the input pointer (drm_aperture_detach_firmware()
at line 22). This allows us to eliminate the escaped layered
types (drm_aperture->detach) from the global escaping map.
As a result, more icalls could benefit from MLTA.
Mutual Enhancement. Our type mining approach for indi-
rect calls has a remarkable feature: its two analysis compo-
nents can mutually enhance each other in the iterative data-

1 /* drivers/gpu/drm/drm_aperture.c */
2 static int devm_aperture_acquire(struct drm_device *dev, ...
3 void (*detach)(struct drm_device *)) {
4 ...
5 struct drm_aperture *ap;
6 ...
7 ap->detach = detach; //An undetermined pointer is stored
8 }
9

10 static void drm_aperture_detach_drivers(resource_size_t base,
11 resource_size_t size) {
12 ...
13 struct drm_aperture *ap = container_of(...);
14 struct drm_device *dev = ap->dev;
15 ...
16 ap->detach(dev); //Indirect call site
17 ..
18 }
19

20 int devm_aperture_acquire_from_firmware(...) {
21 ...
22 return devm_aperture_acquire(...,
23 drm_aperture_detach_firmware);
24 }

Figure 8: Example of type-escaping because of undecidable targets.

flow analysis process. The type mining for indirect calls
enables more indirect calls to benefit from the multi-level
type analysis, but it also generates more undecidable targets.
The type mining for undecidable targets effectively addresses
this issue. This forms a positive feedback loop that improves
the precision of indirect call resolution.

5 TFA Implementation

We have implemented TFA on LLVM of version 15-init as sev-
eral analysis passes, which contains 12k lines of C++ code (in-
cluding 1.7k LoC of the implementation 2 of TypeDive [42]
for multi-layer type analysis). It accepts unlinked LLVM bit-
code files as inputs, and outputs the analysis results into a
local MYSQL database.

5.1 LLVM Bitcode Generation

We use an independent LLVM pass for bitcode generation,
which uses LLVM API WriteBitcodeToFile() to dump bit-
code files. We modify the Makefiles of our target programs to
load this pass. We add -g flag into the CFLAGS of Makefiles
to retain debug information for type recovery and icall infor-
mation storage. Additionally, we have observed instances
where the same struct type is compiled as a packed struct in
certain modules and as a normal struct elsewhere, resulting in
disparate struct layouts that affect the type recovery in TFA.
To resolve this inconsistency, we employ the Clang compila-
tion option -mms-bitfields to ensure uniform struct layouts
across different modules.

2https://github.com/umnsec/mlta

5902 33rd USENIX Security Symposium USENIX Association

5.2 Type Comparison
In TFA, we use struct type names to compare different struct
types. For struct types with the same name in different mod-
ules, we include the struct’s definition file as part of the struct
name. The missed type names would be recovered through
type recovery. However, developers could define struct or
union types without names in C/C++. LLVM will automati-
cally generate type names for them (e.g., %union.anon.157,
%struct.anon.8). The type recovery of TFA conservatively
regards them as invalid because different LLVM modules
could generate different names for the same nameless struct
field. This affects the type analysis when a function pointer
is stored in a nameless field. In such cases, we fall back to
one-layer type matching, which means that any icall that has
the same function type as the function pointer can potentially
target it. Fortunately, this limitation only affects 270 (0.4%)
address-taken functions in the Linux kernel.

5.3 Multi-Layer Type Analysis
We adopt the implementation of existing state-of-the-art multi-
layer type analysis as a part of TFA with necessary mod-
ifications. Specifically, we use the implementation 3 of
TypeDive [42] with the following modifications: (1) We
set the outer-layer number as two, so TypeDive executes two-
layer type matching for icall analysis. Considering that we
need to iteratively execute multi-layer type analysis, two-layer
type matching is the most cost-effective type analysis for us.
(2) We rewrite its type recording system to apply our type
recovery approach.

5.4 Kernel Macro Optimization
The Linux kernel macro EXPORT_SYMBOL is frequently utilized
to make functions from one kernel module available in other
modules. Theoretically, it should not affect the analysis of
icalls. However, the function pointer associated with this
macro emits an LLVM IR pattern identical to that of assem-
bly code, encompassing llvm.used for data-flow propagation
and potentially causing premature termination of the analysis.
To mitigate this issue, we meticulously examine the source
code of each address-taken function by checking the corre-
sponding LLVM metadata. Should a function be engaged
with EXPORT_SYMBOL, TFA continues the data-flow propaga-
tion without interruption.

5.5 Supporting C++
In C++ programs, virtual function calls constitute a signifi-
cant proportion of icalls. According to our manual analysis,
such icalls are often devoid of sufficient outer layer type in-
formation. Furthermore, the analysis of data-flows associated

3https://github.com/umnsec/mlta

with these icalls tends to be resource-intensive. Consequently,
existing approaches for type or data-flow analysis tend to be
ineffective for such icalls. To address this challenge, we em-
ploy the strategy outlined in TypeDive [42]. Specifically, we
analyze the constructors of all C++ classes to catalog their
virtual function tables (VTables). Upon the invocation of a
virtual function call, we first identify the class issuing the
call and subsequently pinpoint the precise callee function by
referencing the corresponding VTable.

5.6 Convergence Checking
Previous works [30, 42, 68] evaluate the effectiveness of icall
analysis based on the number of icall targets. In this paper,
we adopt the same metric to compare the effectiveness of
different analysis rounds of TFA. We consider the analysis to
have reached convergence and terminate the analysis when the
difference of icall targets between adjacent analysis rounds is
less than 10,000.

6 Evaluation

We aim to answer the following research questions (RQs) in
our evaluation.

• RQ1:Compared to existing methods, how effective and
efficient is TFA in refining icall targets?

• RQ2: Could TFA guarantee the soundness after introducing
data-flow analysis?

• RQ3: How do broken types affect icall analysis? More-
over, how effective is the type recovery in addressing this
challenge?

• RQ4: Does TFA benefit real-world applications?

6.1 Experimental Setup
We evaluate TFA on top of a Linux server (Ubuntu 20.04.1)
with 126GB RAM and an Intel Xeon Silver 4316 CPU at
2.30GHz (80 cores). We choose five widely used programs as
the analysis targets: the Linux kernel (v5.18), the FreeBSD
kernel (v12.4), the OpenSSL library (v3.0.6), the OpenCV
library (v4.9.0), and MongoDB (v8.0.0). Additionally, for
the Linux kernel, we built it with two different configurations:
the allyesconfig to evaluate the scalability of TFA, and the
localmodeconfig to emulate the most common kernel usage
scenario.

6.2 Performance on Eliminating Icall Targets
TFA aims to eliminate false positives for icall analysis and pro-
vide a more fine-grained icall target result. Similar to existing

USENIX Association 33rd USENIX Security Symposium 5903

icall analysis works [30, 42, 68], we use the average icall tar-
get number to evaluate the performance of TFA on eliminating
icall targets. We leverage the OpenMP library [15] to enable
multi-core parallel acceleration for TFA, with a concurrency
of 32 threads in our evaluation. Even for the Linux kernel,
which comprises nearly 28 million lines of code, TFA could
complete the entire icall analysis in two hours. This result is
promising, given the complexity of the analysis task.

6.2.1 Performance Comparison with Existing Tools

Comparison with Type Analysis. We present the comparison
of three icall target analysis methods in Table 1: signature (the
most commonly used method), MLTA (the state-of-the-art
method), and TFA. MLTA effectively reduces false positives
compared with the signature matching method. In MLTA’s
paper [42], only icalls that have multi-layer type information
are included in the evaluation. Therefore, it reports a higher
precision. In comparison, our evaluation includes all icalls.
The results indicate that TFA could further eliminate 24% to
59% of icall targets compared with state-of-the-art type-based
MLTA method.

For C++ programs, multi-layer type analysis is suboptimal
in eliminating redundant icall targets. The virtual function
analysis method presented in §5.5 demonstrates superior per-
formance. Even when both virtual function analysis and
MLTA are applied, our system, TFA, succeeds in eliminat-
ing 44% to 56% of icall targets in C++ programs, thereby
confirming its effectiveness.
Comparison with Program Modularization. We further
compare TFA with TyPM [41], a program modularization
based icall analysis approach. The basic idea of TyPM is
to refine icall analysis by performing type matching locally
within modules that have type dependencies, rather than glob-
ally as in existing techniques. We evaluate TyPM on the Linux
kernel compiled with the localmodeconfig and measure its
effectiveness in reducing icall targets. TyPM further eliminates
19.8% of icall targets compared with the results of MLTA. On
comparison, TFA eliminates additional 55.4% of icall targets
compared with MLTA for the same program, demonstrating
the benefits of type and data-flow co-analysis of TFA.
Comparison with Abstract Interpretation. Abstract inter-
pretation is a technique that projects a program’s behavior into
an abstract domain, systematically over-approximating the
possible states of the program, and by extension, the potential
targets of icalls. We investigated two representative tools:
Frama-C [18] and Ikos [25]. Frama-C actually necessitates
developers to explicitly annotate potential icall targets via spe-
cialized comments, which implies that precise and automated
icall analysis remains unaddressed by this tool. Furthermore,
an attempt to apply Ikos to the Linux kernel did not culminate
within 12 hours, and a significant portion of the analysis was
marred by substantial runtime errors arising from unsupported
LLVM types, affecting approximately 40% of the modules.

These observations indicate that for extensive codebases, ab-
stract interpretation-based methods for icall analysis may lack
scalability. TFA, in contrast, aims to provide a more feasible
solution.

Comparison with Other Co-Analysis Method. KELP [26]
shares a similar observation with TFA: a multitude of function
pointers in icall analysis are straightforward and could be re-
solved through affordable data-flow analysis. KELP conducts
localized pointer analysis for such functions and integrates
this analysis with MLTA. As the source code of KELP was
unavailable at the time of this paper’s writing, and its icall
analysis metrics appear to differ from those used by TFA, a
high-level comparison is provided here for clarity and com-
pleteness. The primary distinctions in design between KELP
and TFA are twofold: (1) KELP makes data-flow analysis
as a separate preliminary stage prior to MLTA, whereas TFA
integrates data-flow analysis and type analysis into a unified
co-analysis framework, allowing for mutual enhancement. (2)
KELP is designed for a single execution with an emphasis
on efficiency, whereas TFA employs an iterative analysis to
achieve greater accuracy.

6.2.2 Performance of Analysis Rounds and Phases

In this subsection, we conduct an in-depth evaluation of the
performance across different analysis rounds within our two-
dimensional data-flow analysis, as well as its distinct phases.
Due to page constraints, we have selected the Linux kernel
(kernel space C program), OpenSSL (user space C program),
and MongoDB (user space C++ program) as representative
targets for evaluation.

Analysis Rounds. Table 2 shows the numbers of the total
icall targets that remain after each analysis round of TFA.
The two-dimensional data-flow analysis utilizes the results of
MLTA as its initial inputs. For MongoDB, the initial results
incorporate virtual function analysis subsequent to MLTA.
We found that the first analysis round eliminates the most
icall targets. The convergence speed of our analysis depends
on the size and complexity of the target software. Smaller
software could reach convergence faster than larger software.
However, even for OS kernel-level software, our analysis
converges within three rounds. This demonstrates the effec-
tiveness and efficiency of TFA for resolving indirect calls in
real-world software.

Analysis Phases. We studied the impact of each analysis
phase in our two-dimensional data-flow analysis, as presented
in Table 3. The bidirectional data-flow analysis has the most
significant effects on eliminating the number of icall targets
for all the three programs. The two components of icall-
oriented type mining also contribute substantially to the pre-
cision of our analysis.

5904 33rd USENIX Security Symposium USENIX Association

Table 1: Icall target analysis results. Avg. indicates the average icall target number. Sig, MLTA, and MLTA+VH indicate the signature
matching, multi-layer type analysis, and multi-layer type analysis + virtual function analysis, respectively.

System Language Bitcode
Files

Total
Icalls

Avg.
(Sig)

Avg.
(MLTA)

Avg.
(MLTA+VH) Avg. (TFA) Analysis

Rounds
Analysis
Time

OpenSSL C 1,309 2,200 32.3 27.5 27.5 20.9 (24%↓) 2 34s
Linux-loc C 2,978 9,527 52.5 18.6 18.6 8.3 (55%↓) 2 4m 8s
FreeBSD C 3,826 20,901 38.1 20.2 20.2 11.6 (43%↓) 3 19m 4s
MongoDB C++ 4,406 23,885 34.8 30.0 11.7 6.6 (44%↓) 2 1h 57m
OpenCV C++ 1,583 33,602 44.5 44.5 32.6 14.2 (56%↓) 2 42m 2s
Linux-all C 21,438 73,163 161.7 44.9 44.9 18.6 (59%↓) 3 1h 59m

Table 2: Results of different analysis rounds of TFA. Each number
in the table indicates the number of total icall targets after the current
round of co-analysis analysis.

Systems Init Round1 Round2 Round3

Linux-all 3,288,024 1,465,868 1,360,894 1,358,831
OpenSSL 60,417 46,224 46,038 -
MongoDB 279,272 158,971 158,177 -

Table 3: Results of different analysis phases of two-dimensional
data-flow analysis. The BDA in the table indicates the bidirectional
data-flow analysis. The TM-I and TM-UT indicate type mining for
icalls and undecidable targets, respectively. Each number in the
table indicates the reduced number of total icall targets brought by
corresponding analysis phases.

Systems BDA TM-I TM-UT

Linux-all 1,157,344 362,363 409,486
OpenSSL 7,204 1,501 5,674
MongoDB 94,968 8,633 17,494

6.3 False Negative Analysis

One important concern for TFA is to ensure the soundness of
the data-flow analysis results. In this subsection, we present
the false negative analysis of TFA and the method we used to
collect icall traces as the ground-truth for evaluation. We se-
lected the Linux kernel and OpenSSL library as the evaluation
targets in this section.

6.3.1 Trace Collection

We collect icall traces through LLVM instrumentation for the
Linux kernel. Specifically, we compile the kernel with Clang
and insert a hook function that records the icall information
before each icall site. This function logs the source location
and the callee name of each icall to the system log. We
implement the function in the kernel source code and make it
globally visible. It utilizes the kernel API sprint_symbol()
to retrieve the callee names from their addresses. We also

filter out any duplicate traces before logging them to simplify
the subsequent trace analysis. To obtain a sufficient number
of icall traces, we run the Linux Test Project [12] on the
Linux kernel. We finally collect 6,929 unique traces. Our
instrumentation is implemented as an LLVM pass with 230
lines of C++ code.

The tracing strategy of OpenSSL is similar to the OS ker-
nels, where we also instrument the program to collect traces.
To obtain the name of the callee function from the symbol
table, we initially attempted to use the Linux API dladdr(),
but this API often failed and returned empty results. Hence,
we leveraged the LLVM prefix data to identify callees. In
particular, we assigned a fixed-size function name as the pre-
fix data for every address-taken function, which could be
accessed with a fixed offset from the function’s entry point.
We compiled the hook function as a static library and linked
it to OpenSSL by modifying its Makefile. We stored the
icall traces in a local MYSQL database. We used the openssl
speed [16] benchmark to collect icall traces and obtained 851
unique traces in total.

6.3.2 Results for False Negative Analysis.

We apply two criteria to select the icall traces that are valid
for our analysis. First, we discard traces that do not have
valid callee names, which indicates that the symbols are not
resolved correctly. Second, we exclude traces that have mis-
matched icall or callee locations with the source code, which
implies that the binary code is not consistent with the source
code. After applying these filters, we obtain 6,452 unique and
valid icall traces from the Linux kernel and 683 traces from
the OpenSSL library.
FN Results of the Linux Kernel. TFA only misses two
callees in our analysis, which come from two icalls in function
__apply_relocate_add(). Specifically, these two icalls miss
the same callee: __memcpy(). The reason for the two false
negatives is that our type analysis phase fails to identify the
callee. We examine the whole kernel code and discover that
the address of __memcpy() is never assigned to any pointer
(i.e., it is not an address-taken function). There are only a
few direct calls to this function. Therefore, __memcpy() is

USENIX Association 33rd USENIX Security Symposium 5905

not considered as a possible icall target by our type analysis,
even when we use signature matching. We also investigate
the icall target sets produced by TFA, and we notice a wrapper
function of __memcpy(): memcpy(). We suspect that some
compiler optimizations replace memcpy() with __memcpy()
and cause this false negative.
FN Results of the OpenSSL Library. We identified 58 false
negatives in OpenSSL in total. We investigate these cases
and find all of them are missing since type analysis (signature
matching). In particular, the OpenSSL tends to define icalls
with general parameter types (e.g., void *). However, the
actual parameters could cast to other types (e.g., MD5_CTX *).
This is a common challenge for many existing icall analysis
works [30, 42, 58], and leads to false negatives even for sig-
nature matching. One feasible solution for this problem is
conservatively equating void pointers with any other pointer
types. We applied this approach to TFA and reevaluated its
performance on the OpenSSL library. The average number of
icall targets for both signature matching and MLTA increased
significantly (63.6%↑ and 60.2%↑). However, the impact on
TFA was relatively small (12.1%↑). Moreover, this approach
eliminated all false negatives for TFA.

Finding 1: The data-flow analysis of TFA does not intro-
duce more false negatives than existing type-based analysis
methods. TFA performs better when we adopt more conser-
vative type analysis methods.

6.4 Effectiveness of Type Recovery

To better understand how broken types impact type-based
analysis, in this subsection, we use the traces collected from
the Linux kernel to check the effectiveness of our type recov-
ery.

6.4.1 Broken Struct Type Recovery

To evaluate the impact of broken struct types in §2.2.1, we
build a Linux kernel with O0 optimization and turn off the
type recovery feature in TFA. We then reexamine the icall
analysis outcomes. The number of false negatives for the
Linux kernel rises to 879 (13.6%). Figure 9 illustrates a typi-
cal false negative case in the Linux kernel, where the callee
con_write_room() is omitted for the icall at line 4. The omit-
ted callee is assigned to the write_room field of struct type
tty_operations at line 13. Ideally, when the icall is gen-
erated from the same field of the same struct type (i.e., the
ops->write_room at line 4), the callee should have been de-
tected as a possible target. However, the representations of the
struct type tty_operations are inconsistent in the two LLVM
bitcode files, where one of them represents two function point-
ers’ types as {}*. Consequently, type analysis considers them
as distinct struct types, which results in false negatives. By

1 /* drivers/tty/tty_ioctl.c */
2 unsigned int tty_write_room(struct tty_struct *tty){
3 if (tty->ops->write_room)
4 return tty->ops->write_room(tty);
5 return 2048
6 }
7

8 /* drivers/tty/vt/vt.c */
9 static unsigned int con_write_room(struct tty_struct *tty){...}

10

11 static const struct tty_operations con_ops = {
12 ...
13 .write_room = con_write_room,
14 ...
15 };
16

17 // struct tty_operations in tty_ioctl.bc
18 %struct tty_ioctl_operations = type {... {}*, {}*, ...}
19

20 // struct tty_operations in vt.bc
21 %struct tty_ioctl_operations = type {... i32 (%struct.tty_struct*)*,
22 i32 (%struct.tty_struct*)*, ...}

Figure 9: False negative example of MLTA in the Linux kernel.

applying type recovery, we can eliminate all false negatives
caused by broken struct types.

6.4.2 Optimized GEP Instruction Recovery

To evaluate the impact of optimized GEP instructions, we
build a Linux kernel with O2 optimization and disable the
GEP instruction recovery in TFA. We repeat the icall analysis
results and observe that the number of false negatives rises to
80. The main sources of false negatives are imprecise storage
analysis of address-taken functions and nested struct fields,
which require accurate identification of nested struct types
and field indices from GEP instructions. By applying type
recovery, we successfully eliminate 77 false negatives. There
is one additional false negative compared to the previous
experiment due to a GEP instruction that performs an implicit
type casting. Since this scenario is rare, we leave it as future
work.

Finding 2: The broken types significantly influence the
soundness of type analysis. The type recovery in TFA effec-
tively prevents false negatives introduced by broken types.

6.5 Application I: Fine-Grained CFI
We implemented a forward-edge CFI scheme that leverages
our fine-grained icall analysis results, which is built based on
the KCFI sanitizer [10, 11]. It prevents control-flow hijack-
ing attacks by disallowing changes to the pre-defined CFG.
Currently, our CFI scheme is implemented on LLVM IRs in
Clang compiler to support various backends. We load the
valid target sets from the database during compilation and
encode them as read-only data. We utilize LLVM prefix data
to determine which function will be called before we emit
the icall. We insert a verification function before each icall
to check if the callee belongs to the corresponding target set.

5906 33rd USENIX Security Symposium USENIX Association

Dhrys
ton

Whets
tone

Exc
el

File
Copy-1

File
Copy-2

File
Copy-3

Piplin
e T

hro
ughput

Contex
t S

witc
h

Pro
ce

ss
 C

rea
tio

n

Shell
 Scri

pts-
1

Shell
 Scri

pts-
2

Sys
tem

 C
all

Ave
rag

e
-10

-5

0

5

10

15
Pe

rfo
rm

an
ce

 O
ve

rh
ea

d
(%
)

Figure 10: Overheads of the CFI scheme.

If an invalid function is invoked, the CFI scheme redirects
the control flow to a user-defined error-handling function
for further debugging. Our scheme is compatible with any
forward-edge CFI scheme that allows specifying a target set
for each independent icall (e.g., Clang CFI [58]).

We measured the performance of our forward-edge CFI
scheme on a Ubuntu virtual machine with 4 CPUs (Intel Core
i7-8770 CPU, 3.20Ghz). We used the UnixBench 5.1.2 [17]
as the benchmark, which offers a diverse range of workloads
and is widely used in CFI evaluation [30, 37]. Compared
with the original system without CFI protection, the average
system performance decreased only by 4.1% on average. The
detailed overheads of each task are shown in Figure 10. The
evaluation result confirms that our fine-grained CFI scheme is
feasible in practice. Notably, we observed negative overheads,
a phenomenon also reported in other CFI research [30]. This
improvement may be attributed to the CFI instrumentation
altering the code layout, resulting in enhanced code alignment
or more efficient utilization of the instruction cache, thereby
accelerating context switches. The overhead of the CFI could
be further optimized through architecture-specific (e.g., x86)
implementation, which is mainly an engineering effort. We
leave this part as further work.

6.6 Application II: Bug Detection

One of the potential applications of icall analysis is static bug
detection, which requires a precise CFG for inter-procedural
analysis. We leverage our fine-grained icall analysis to ana-
lyze the Linux kernel, focusing on a specific type of icalls:
the release call-back functions in devices. These functions are
responsible for resource cleanup when a device is no longer in
use. They are controlled by reference counting and assigned
by the device allocators. However, the device allocators may
also have their own error handling code for resource cleanup,
which could conflict with the release call-back functions. This
scenario involves three challenging mechanisms for static

analysis: indirect-call, reference counting, and error handling.
Existing methods typically overlook this scenario and only
address one of these mechanisms [33, 34, 43, 46, 56, 57, 65].
TFA Assisted Trace Analysis. To understand the trigger-
ing mechanism of the release callback, we perform a trace
analysis in the first step. We use the icall analysis results
generated by TFA and trace backward from a callback func-
tion. The trace consists of six function calls originating from
put_device(), among which three are indirect calls. TFA ac-
curately determines that the three indirect calls have only one
caller each. With TFA’s assistance, a non-expert researcher
can complete this task in 15 minutes. If we use type analy-
sis instead of TFA’s co-analysis for icall target identification,
there would be 64 possible callers of the release callback, and
we would have to manually examine all these callers and their
transitive callers.
Bug Detection. From the trace analysis, we identify that the
release callback is invoked by put_device() after the device
reference count reaches zero. In this step, we use TFA to
detect two types of bugs in the release callbacks: (1) redun-
dant cleanup, which may lead to use-after-free or double-free
vulnerabilities, and (2) missing resource release, which may
cause memory leaks. We compared the release callback code
with the error handling code after put_device() in the device
allocators to detect these bugs. Out of 243 release callbacks
generated by co-analysis, TFA reported nine bugs. We man-
ually verified them and found eight real bugs, including six
double-free bugs and two memory-leak bugs, as shown in
Table 4. Three of them have been fixed by other developers
in the latest kernel. We submitted patches for the remaining
bugs and four of them have been applied. If we use type
analysis instead of co-analysis, we would have 671 potential
release callbacks, and 63.8% of them would be false positives,
which would make the bug detection ineffective.

Table 4: List of bugs detected in the Linux kernel. The S, A, and F
in the Status column indicate submitted, applied, and fixed by other
developers in the latest version, respetively.

Bug function Impact Status
zfcp_port_enqueue Double-free A
ptp_ocp_device_init Double-free A
ocxl_file_register_afu Double-free F
rpmsg_virtio_add_ctrl_dev Double-free F
rpmsg_probe Double-free F
stm_register_device Double-free S
css_alloc_subchannel Memleak A
i3c_master_register_new_i3c_devs Memleak A

7 Discussion

Assembly Code Analysis. At present, TFA does not have the
capability to analyze assembly code. When encountering as-
sembly code, we adopt a conservative approach and terminate

USENIX Association 33rd USENIX Security Symposium 5907

the data-flow analysis, falling back to type analysis. Prior
works [30, 37] rely on manual analysis to resolve indirect calls
and jumps in assembly code. We manually checked some
failure cases due to assembly calls in the Linux kernel and
found many of them are introduced by a new feature called
Linux static call. We plan to design a dedicated analysis pass
for this feature in our future work.
Type Analysis in LLVM. In addition to the broken types
discussed in §2.2, prevalent type analysis methods, such as
signature matching, also falter due to type casting. For in-
stance, unexpected type casting can engender substantial false
negatives in the analysis of icalls within the OpenSSL library.
To address this problem, Ge et al. used taint analysis to

infer icall targets [30]. IFCC [58] used two more conserva-
tive approaches to construct icall target set: Single (which
collects all functions into a single set) and Arity (which infers
icall targets according to the number of arguments). FINE-
CFI [37] presented some IR-based methods to address this
problem, but they were ineffective for eliminating the false
negatives in our analysis. As a result, LLVM 16 introduces
an opaque pointer type to replace all pointer types containing
their point-to types, due to various issues with the latter [14].
Furthermore, typed pointers have been deprecated in LLVM
17+, as the LLVM community discourages the reliance on
LLVM’s internal type system for conducting type-based anal-
yses. Nevertheless, the latest LLVM releases have introduced
’tbaa’ metadata [19], designed to represent the type system of
higher-level languages and aid in type analysis. This meta-
data has been employed in the implementation of type-based
alias analysis. We posit that this feature holds considerable
promise as a solution, and we propose the examination of this
new capability as an avenue for future work.

8 Related Work

Indirect-Call Analysis for CFI Schemes. CFI schemes
usually give priority to the soundness of icall analysis. Many
existing CFI schemes adopt Single or Arity to construct icall
targets [58, 59, 66, 67]. These methods do not rely on type
information and can be applied to binary executables. A more
precise approach is to use the types of function pointers to
match icall targets [10, 48, 50], but this approach suffers from
soundness degradation due to primitive type casting. Recently,
some CFI schemes have leveraged the idea of MLTA to further
refine icall targets [30, 37]. However, they do not address the
problem of broken types, which can affect the security of CFI.
In this paper, we systematically study the causes and impacts
of this problem and propose a type recovery system to solve
it.
Indirect-Call Analysis for Bug Detection. Icall analysis
is essential for static bug detection, which relies on a global
CFG to perform inter-procedural analysis. A common chal-
lenge for this task is the high false positive rate caused by

inaccurate icall analysis. Therefore, some tools opt to ignore
icalls altogether [33, 38, 45]. Many static bug detection tools
adopt one-layer type matching to resolve icalls (e.g., Dead-
line [63], LRSan [60], and K-MELD [28]). When multi-layer
type analysis was introduced, it was quickly applied to bug
detection [22, 32, 39, 52, 62]. Recently, directed fuzzing also
demands precise icall analysis to calculate the cross-function
distance [44]. We believe TFA could benefit both existing and
future static or dynamic analysis.
Type and Data-Flow Co-Analysis. Ghavamnia et al. pro-
posed two filtering schemes to refine the results of Ander-
sen’s points-to analysis and obtain more accurate icall tar-
gets [31]. These schemes exactly perform one-layer type
matching, which do not exploit the rich layered type informa-
tion for optimization. FINE-CFI [37] introduced the concept
of struct location vector to enable two-layer type analysis.
However, when an icall originates from a function argument,
FINE-CFI falls back to one-layer type matching. The data-
flow analysis approach of TFA could effectively resolve this
problem. Ge et al. applied taint analysis from address-taken
functions for icall analysis [30]. When a function pointer is
assigned to a struct’s field, all memory objects of this struct’s
field are tainted, which is similar to two-layer type match-
ing. This method relies on two strict assumptions on function
pointer operations to support its taint analysis. When a viola-
tion occurs, users have to interrupt the analysis and manually
resolve it. TFA does not make any assumptions or require
frequent manual intervention. TFA also improves the icall
analysis through mining the hidden layered types, which is
missed by existing methods.

9 Conclusion

In this paper, we present TFA, which performs type and data-
flow co-analysis to optimally resolve indirect-call targets. We
also propose several techniques to enhance the scalability,
soundness, and precision of TFA. We evaluate TFA on five
famous C/C++ programs, and show that TFA could further
eliminate 24% to 59% of indirect-call targets compared with
the state-of-the-art approaches. We also apply TFA to improve
the security of forward-edge CFI and the ability of static bug
detection. As a generic technique, we believe that the pre-
cise indirect-call analysis of TFA can benefit various security
research domains.

10 Acknowledgment

We sincerely appreciate our shepherd and all the anonymous
reviewers for their insightful comments on our work. This
work was supported by the Key R&D Program of Zhejiang
Province (2022C01086). Kangjie Lu was supported in part by
the NSF awards CNS2045478, CNS-2106771, CNS-2154989,
and CNS-2247434. Any opinions, findings, conclusions or

5908 33rd USENIX Security Symposium USENIX Association

recommendations expressed in this material are those of the
author and do not necessarily reflect the views of NSF.

References

[1] 2013. Bug 14920: incomplete conversion of recursive
(function) types. https://bugs.llvm.org/show_
bug.cgi?id=14920

[2] 2013. Why a function pointer field in a LLVM IR struct
is replaced by {}*? https://stackoverflow.com/
questions/18730620

[3] 2016. Function pointer type becomes empty
struct. https://lists.llvm.org/pipermail/
cfe-dev/2016-November/051601.html

[4] 2016. Function pointer type becomes empty
struct. https://lists.llvm.org/pipermail/
cfe-dev/2016-November/051633.html

[5] 2016. Function pointer type becomes empty
struct. https://lists.llvm.org/pipermail/
cfe-dev/2016-November/051635.html

[6] 2020. Type Equality in LLVM. https://
lowlevelbits.org/type-equality-in-llvm/

[7] 2022. CFGgrind. https://github.com/rimsa/
CFGgrind

[8] 2022. LLVM function areTypesIsomorphism().
https://www.llvm.org/docs/doxygen/
IRMover_8cpp_source.html

[9] 2022. LLVM function cmpTypes(). https:
//llvm.org/doxygen/FunctionComparator_
8cpp_source.html

[10] 2023. KCFI sanitizer. https://reviews.llvm.
org/D119296

[11] 2023. KCFI Support. https://lwn.net/Articles/
893164/

[12] 2023. Linux Test Project. https://github.com/
linux-test-project/ltp

[13] 2023. The LLVM Compiler Infrastructure. https:
//llvm.org

[14] 2023. Opaque Pointers in LLVM. https://llvm.
org/docs/OpaquePointers.html

[15] 2023. The OpenMP API specification for parallel pro-
gramming. https://www.openmp.org

[16] 2023. OpenSSL Speed. https://www.openssl.
org/docs/man1.1.1/man1/openssl-speed.html

[17] 2023. UnixBench. https://github.com/kdlucas/
byte-unixbench

[18] 2024. Frama-C - Framework for Modular Analysis of
C programs. https://www.frama-c.com

[19] 2024. LLVM ’tbaa’ Metadata. https://llvm.org/
docs/LangRef.html#tbaa-metadata

[20] Martn Abadi and Mihai Budiu. 2005. lfar Erlingsson,
and J. Ligatti. Control-flow integrity. In Proceedings
of ACM Conference on Computer and Communications
Security (CCS), Vol. 1. 2.

[21] Lars Ole Andersen. 1994. Program analysis and spe-
cialization for the C programming language. Ph. D.
Dissertation. Citeseer.

[22] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. 2021.
Static Detection of Unsafe DMA Accesses in Device
Drivers. In 30th USENIX Security Symposium (USENIX
Security 21). 1629–1645.

[23] Mohamad Barbar, Yulei Sui, Hongyu Zhang, Shiping
Chen, and Jingling Xue. 2018. Live path cfi against
control flow hijacking attacks. In Australasian Confer-
ence on Information Security and Privacy. Springer,
768–779.

[24] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011.
Mitigating code-reuse attacks with control-flow locking.
In Proceedings of the 27th Annual Computer Security
Applications Conference. 353–362.

[25] Guillaume Brat, Jorge A Navas, Nija Shi, and Arnaud
Venet. 2014. IKOS: A framework for static analysis
based on abstract interpretation. In Software Engineer-
ing and Formal Methods: 12th International Conference,
SEFM 2014, Grenoble, France, September 1-5, 2014.
Proceedings 12. Springer, 271–277.

[26] Yuandao Cai, Yibo Jin, and Charles Zhang. 2024. Un-
leashing the Power of Type-Based Call Graph Construc-
tion by Using Regional Pointer Information. In 33nd
USENIX Security Symposium (USENIX Security 24).

[27] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris,
Taesoo Kim, and Wenke Lee. 2017. Efficient Protection
of Path-Sensitive Control Security. In 26th USENIX
Security Symposium (USENIX Security 17). 131–148.

[28] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen
McCamant. 2021. Detecting kernel memory leaks in
specialized modules with ownership reasoning. In The
2021 Annual Network and Distributed System Security
Symposium (NDSS’21).

USENIX Association 33rd USENIX Security Symposium 5909

https://bugs.llvm.org/show_bug.cgi?id=14920
https://bugs.llvm.org/show_bug.cgi?id=14920
https://stackoverflow.com/questions/18730620
https://stackoverflow.com/questions/18730620
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051601.html
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051601.html
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051633.html
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051633.html
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051635.html
https://lists.llvm.org/pipermail/cfe-dev/2016-November/051635.html
https://lowlevelbits.org/type-equality-in-llvm/
https://lowlevelbits.org/type-equality-in-llvm/
https://github.com/rimsa/CFGgrind
https://github.com/rimsa/CFGgrind
https://www.llvm.org/docs/doxygen/IRMover_8cpp_source.html
https://www.llvm.org/docs/doxygen/IRMover_8cpp_source.html
https://llvm.org/doxygen/FunctionComparator_8cpp_source.html
https://llvm.org/doxygen/FunctionComparator_8cpp_source.html
https://llvm.org/doxygen/FunctionComparator_8cpp_source.html
https://reviews.llvm.org/D119296
https://reviews.llvm.org/D119296
https://lwn.net/Articles/893164/
https://lwn.net/Articles/893164/
https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://llvm.org
https://llvm.org
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://www.openmp.org
https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://www.frama-c.com
https://llvm.org/docs/LangRef.html#tbaa-metadata
https://llvm.org/docs/LangRef.html#tbaa-metadata

[29] Reza Mirzazade Farkhani, Saman Jafari, Sajjad Arshad,
William Robertson, Engin Kirda, and Hamed Okhravi.
2018. On the effectiveness of type-based control flow
integrity. In Proceedings of the 34th Annual Computer
Security Applications Conference. 28–39.

[30] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent
Jaeger. 2016. Fine-grained control-flow integrity for
kernel software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 179–194.

[31] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra,
and Michalis Polychronakis. 2020. Temporal system
call specialization for attack surface reduction. In Pro-
ceedings of the 29th USENIX Conference on Security
Symposium. 1749–1766.

[32] HyungSeok Han, Andrew Wesie, and Brian Pak.
2021. Precise and Scalable Detection of Use-after-
Compacting-Garbage-Collection Bugs. In 30th USENIX
Security Symposium (USENIX Security 21). 2059–
2074.

[33] Suman Jana, Yuan Jochen Kang, Samuel Roth, and
Baishakhi Ray. 2016. Automatically detecting er-
ror handling bugs using error specifications. In 25th
USENIX Security Symposium (USENIX Security 16).
345–362.

[34] Zhouyang Jia, Shanshan Li, Tingting Yu, Xiangke Liao,
Ji Wang, Xiaodong Liu, and Yunhuai Liu. 2019. De-
tecting error-handling bugs without error specification
input. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE,
213–225.

[35] George Kastrinis, George Balatsouras, Kostas Ferles,
Nefeli Prokopaki-Kostopoulou, and Yannis Smarag-
dakis. 2018. An efficient data structure for must-alias
analysis. In Proceedings of the 27th International Con-
ference on Compiler Construction. 48–58.

[36] Lukáš Korenčik. 2019 [cit. 2022-11-19]. Decompiling
Binaries into LLVM IR Using McSema and Dyninst
[online]. Master’s thesis. Masaryk University, Faculty
of InformaticsBrno. SUPERVISOR: RNDr. Petr
Ročkai, Ph.D..

[37] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng
Ma. 2018. Fine-cfi: fine-grained control-flow integrity
for operating system kernels. IEEE Transactions on
Information Forensics and Security 13, 6 (2018), 1535–
1550.

[38] Tuo Li, Jia-Ju Bai, Yulei Sui, and Shi-Min Hu. 2022.
Path-sensitive and alias-aware typestate analysis for
detecting OS bugs. In Proceedings of the 27th ACM

International Conference on Architectural Support for
Programming Languages and Operating Systems. 859–
872.

[39] Changming Liu, Yaohui Chen, and Long Lu. 2021.
KUBO: Precise and Scalable Detection of User-
triggerable Undefined Behavior Bugs in OS Kernel..
In NDSS.

[40] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhen-
guang Liu, Jianhai Chen, and Qinming He. 2021. De-
tecting Missed Security Operations Through Differential
Checking of Object-based Similar Paths. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 1627–1644.

[41] Kangjie Lu. 2023. Practical Program Modularization
with Type-Based Dependence Analysis. In 2023 IEEE
Symposium on Security and Privacy (SP). 1256–1270.

[42] Kangjie Lu and Hong Hu. 2019. Where does it go? re-
fining indirect-call targets with multi-layer type analysis.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1867–1881.

[43] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. De-
tecting Missing-Check Bugs via Semantic- and Context-
Aware Criticalness and Constraints Inferences. In Pro-
ceedings of the 28th USENIX Security Symposium (Se-
curity). Santa Clara, CA.

[44] Changhua Luo, Wei Meng, and Penghui Li. 2022. Se-
lectFuzz: Efficient Directed Fuzzing with Selective Path
Exploration. In 2023 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 1050–1064.

[45] Yunlong Lyu, Yi Fang, Yiwei Zhang, Qibin Sun, Siqi
Ma, Elisa Bertino, Kangjie Lu, and Juanru Li. 2022.
Goshawk: Hunting memory corruptions via structure-
aware and object-centric memory operation synopsis. In
2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2096–2113.

[46] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi.
2016. RID: finding reference count bugs with inconsis-
tent path pair checking. In Proceedings of the Twenty-
First International Conference on Architectural Support
for Programming Languages and Operating Systems.
New York, NY, USA, 531–544.

[47] Ana Milanova, Atanas Rountev, and Barbara G Ryder.
2004. Precise call graphs for C programs with function
pointers. Automated Software Engineering 11, 1 (2004),
7–26.

[48] João Moreira, Sandro Rigo, Michalis Polychronakis,
and Vasileios P Kemerlis. 2017. DROP THE ROP
fine-grained control-flow integrity for the Linux kernel.
Black Hat Asia (2017).

5910 33rd USENIX Security Symposium USENIX Association

[49] Ben Niu and Gang Tan. 2013. Monitor integrity protec-
tion with space efficiency and separate compilation. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. 199–210.

[50] Ben Niu and Gang Tan. 2014. Modular control-flow
integrity. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation. 577–587.

[51] Ben Niu and Gang Tan. 2015. Per-input control-flow
integrity. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
914–926.

[52] Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error
Handling Hurts! An In-Depth Study and Context-Aware
Detection. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security.
Association for Computing Machinery, 1203–1218.

[53] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho
Chung, Taesoo Kim, and Wenke Lee. 2019. RAZOR:
A Framework for Post-deployment Software Debloat-
ing. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA,
1733–1750.

[54] Anh Quach, Aravind Prakash, and Lok Yan. 2018.
Debloating Software through Piece-Wise Compilation
and Loading. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Balti-
more, MD, 869–886.

[55] Yulei Sui and Jingling Xue. 2016. On-demand strong
update analysis via value-flow refinement. In Proceed-
ings of the 2016 24th ACM SIGSOFT international sym-
posium on foundations of software engineering. 460–
473.

[56] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and
Min Yang. 2021. Detecting Kernel Refcount Bugs
with Two-Dimensional Consistency Checking. In 30th
USENIX Security Symposium (USENIX Security 21).
2471–2488.

[57] Yuchi Tian and Baishakhi Ray. 2017. Automatically
diagnosing and repairing error handling bugs in c. In
Proceedings of the 2017 11th joint meeting on founda-
tions of software engineering. 752–762.

[58] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and
Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In 23rd USENIX
security symposium (USENIX security 14). 941–955.

[59] Victor Van Der Veen, Enes Göktas, Moritz Contag, An-
dre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos,
Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 934–
953.

[60] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018.
Check it Again: Detecting Lacking-Recheck Bugs in
OS Kernels. In Proceedings of the 25th ACM Confer-
ence on Computer and Communications Security (CCS).
Toronto, Canada.

[61] Zhi Wang and Xuxian Jiang. 2010. Hypersafe: A
lightweight approach to provide lifetime hypervisor
control-flow integrity. In 2010 IEEE symposium on
security and privacy. IEEE, 380–395.

[62] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen
McCamant, and Kangjie Lu. 2021. Understanding
and detecting disordered error handling with precise
function pairing. In 30th USENIX Security Symposium
(USENIX Security 21). 2041–2058.

[63] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. 2018. Precise and scalable
detection of double-fetch bugs in OS kernels. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE,
661–678.

[64] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng
Wang, Chengyu Song, Zhiyun Qian, Mohsen Lesani,
Srikanth V Krishnamurthy, and Paul Yu. 2020. UBI-
Tect: a precise and scalable method to detect use-before-
initialization bugs in Linux kernel. In Proceedings of the
28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering. 221–232.

[65] Dongyang Zhan, Xiangzhan Yu, Hongli Zhang, and
Lin Ye. 2022. ErrHunter: Detecting Error-Handling
Bugs in the Linux Kernel Through Systematic Static
Analysis. IEEE Transactions on Software Engineering
49, 2 (2022), 684–698.

[66] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Las-
zlo Szekeres, Stephen McCamant, Dawn Song, and Wei
Zou. 2013. Practical control flow integrity and random-
ization for binary executables. In 2013 IEEE Symposium
on Security and Privacy. IEEE, 559–573.

[67] Mingwei Zhang and R. Sekar. 2013. Control Flow
Integrity for COTS Binaries. In Proceedings of the 22nd
USENIX Conference on Security (Washington, D.C.)
(SEC’13). USENIX Association, USA, 337–352.

USENIX Association 33rd USENIX Security Symposium 5911

[68] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee
Jung, Ahmed M Azab, and Ruowen Wang. 2019. PeX:
A Permission Check Analysis Framework for Linux
Kernel.. In 28th USENIX Security Symposium (USENIX
Security 19). 1205–1220.

[69] Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji,
and Kangjie Lu. 2022. Non-Distinguishable Inconsis-
tencies as a Deterministic Oracle for Detecting Secu-
rity Bugs. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security.
3253–3267.

A Appendix

A.1 Customized Alias Analysis

A.1.1 Alias Representation

Figure 11 shows an example of alias graph, in which we
define four variables: a, b, c, and d. The alias graph of this
code snippet consists of three nodes. Each node represents an
alias set, whose member pointers are aliased with each other.
An edge in the alias graph represents a pointer dereference
operation. In this paper, the single alias graph is always linear,
as shown in the example. Multiple subgraphs constitute the
global alias graph that represents the alias relationships for a
program.

int a = 10;
int *b = &a;
int **c = &b;
int **d = &b;

c,d b a* *

n1 n2 n3

AliasSet1: {c,d}
AliasSet2: {b, *c, *d}
AliasSet3: {a, *b, **c, **d}

Source code Alias graph Alias sets

Figure 11: Alias graph and alias set.

A.1.2 Graph Building and Updating

The alias analysis mainly focuses on three types of alias re-
lationships: Move (i.e., v1 = v2), Load (i.e., v1 = *v2), and
Store (i.e., *v2 = v1). Figure 12 shows the graph updating
process while handing these alias relationships.
Handle Move. The Handle_Move() accepts three parameters:
the two values v1 and v2 with move relationship (v1 = v2),
and the global alias graph G. The algorithm first gets the two
nodes which v1 and v2 belong to respectively, namely n1 and
n2 (line 1 and line 2). If v1 or v2 does not belong to any node
in G, GetNode() will create a new node for it and add it into
G. It then merges these two nodes into one that contains all
values of the original two nodes (line 3). If n1 or n2 has a
predecessor or successor node, MergeNode() will recursively
execute node merging for the two alias graphs that contain

v1 v2 v1, v2

... ...

... ...

...

...

v1

v2

... ...

... ...

vy

...

vx

v1, vy

v2, vx

...

* *

* *

*

*

Handle_Move (v1, v2, G)

n1 n2

G)；,GetNode(v n 11 

G)；,GetNode(v n 22 

G)；,n,nMergeNode(G' 21

G' return

G)；,GetNode(v n 11 

G)；,GetNode(v n 22 

thenif G nn y2 

G)；,n,nMergeNode(G' y1

thenif else G nn 1x 

G)；,n,nMergeNode(G' 2x

else

}；n{nGG' 12  
G' return

Handle_Load&Store (v1, v2, G)

nx

nyn1

n2

1

2

3

4

1

2

3

4

5

6

7

8

9

Algorithms of alias handing Graph updating

*

*

* *

*

* *

*

*

*

*

*

Figure 12: Alias graph building.

n1 and n2. The global alias graph will be updated to G’ after
Handle_Move().
Handle Load & Store. The logic for handling Load
(v1 = *v2) and Store (*v2 = v1) is the same, where the al-
gorithm also takes two values (v1 and v2) and a global alias
graph G as inputs. It then gets the two nodes that v1 and v2
belong to (i.e., n1 and n2) and checks whether there exists an
edge that starts from n2 and ends at another node (e.g., ny) in
G (line 3). If so, the algorithm will execute a recursive node
merging the same way as handling Move for n1 and ny (line 4).
If not, the algorithm then checks whether there exists an edge
ending at n1 and starting from another node (e.g., nx) in G (line
5). If the edge exists, the algorithm recursively merges nx and
n2 (line 6). If none of the above-mentioned cases happen, we
only need to add a new edge starting from n2 and ending at n1
into G (line 8).

5912 33rd USENIX Security Symposium USENIX Association

	Introduction
	Background and Motivation
	Type-Based Indirect-Call Analysis
	Problems with the Type Analysis in LLVM
	Unreliable Type Equality Checking
	Type Information Omission in Optimized Code
	Causes of Broken Types

	Type Recovery and Co-Analysis

	Overview
	System Design
	Type Recovery
	Type Name Recovery
	Iterative Struct Field Recovery
	Struct Field Index Recovery

	Alias Analysis
	Two-Dimensional Data-Flow Analysis
	Icall Data-Flow Relation Analysis
	Icall-Oriented Type Mining

	TFA Implementation
	LLVM Bitcode Generation
	Type Comparison
	Multi-Layer Type Analysis
	Kernel Macro Optimization
	Supporting C++
	Convergence Checking

	Evaluation
	Experimental Setup
	Performance on Eliminating Icall Targets
	Performance Comparison with Existing Tools
	Performance of Analysis Rounds and Phases

	False Negative Analysis
	Trace Collection
	Results for False Negative Analysis.

	Effectiveness of Type Recovery
	Broken Struct Type Recovery
	Optimized GEP Instruction Recovery

	Application I: Fine-Grained CFI
	Application II: Bug Detection

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix
	Customized Alias Analysis
	Alias Representation
	Graph Building and Updating

