UNIVERSITY OF CALIFORNIA
RIVERSIDE

Geospatial Computing from Data Lakes to Deep Learning Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

Computer Science
by
Majid Saeedan

June 2025

Dissertation Committee:
Dr. Ahmed Eldawy, Chairperson

Dr. Amr Magdy
Dr. Evangelos Christidis
Dr. Zhijia Zhao

Copyright by
Majid Saeedan
2025

The Dissertation of Majid Saeedan is approved:

Committee Chairperson

University of California, Riverside

A cknowledgments

First, I extend my sincere gratitude to my advisor, Dr. Ahmed Eldawy, for his
guidance, critical insights, and unwavering support throughout my research. His mentorship
has been instrumental throughout this journey.

I also want to acknowledge the members of my dissertation committee: Dr. Amr
Magdy, Dr. Ewvangelos Christidis, and Dr. Zhijia Zhao. Their valuable feedback and
encouragement were essential for the completion of this work.

I am indebted to my collaborators who contributed to various aspects of this re-
search. Dr. Zhijia Zhao, for his collaboration on the work presented in Chapter 3. Dr.
Alberto Belussi and Dr. Sara Migliorini, from the University of Verona, for their collabo-
ration on the work presented in Chapter 4. Dr. Evangelos Christidis and Dr. Muhammad
Shihab Rashid for their collaboration on the work presented in Chapter 5.

I would also like to acknowledge the Department of Computer Science and En-
gineering for providing a supportive and welcoming environment throughout my graduate
studies. Additionally, I thank all the staff of the department whose efforts behind the scenes
ensured that I could focus on my research.

Finally, I'd like to acknowledge that this work was supported in part by the Na-

tional Science Foundation (NSF) under grants I15-1954644, CNS-1924694, and I15-2046236.

iv

To my parents, my family, and my friends, for their unwavering support,

encouragement, and belief throughout this journey.

ABSTRACT OF THE DISSERTATION

Geospatial Computing from Data Lakes to Deep Learning Applications

by
Majid Saeedan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2025
Dr. Ahmed Eldawy, Chairperson

This thesis explores geospatial vector data, including geometric shapes such as
points, lines, and polygons. This data is crucial in navigation, urban planning, and many
more applications. Geospatial computing is a multidisciplinary field that focuses on creating
techniques and tools to handle large geospatial datasets.

Given the reliance on data lakes to store large data sets in their raw formats, it
is critical to have full support for geospatial datasets to enable scalable processing. To
address this, we make two contributions in this area. First, we propose a column-oriented
binary format called Spatial Parquet, which integrates geospatial vector data into Apache
Parquet that enables significant data compression and efficient querying. Second, to improve
support for semi-structured data, we introduce a distributed JSON processor for scalable
SQL queries on large JSON datasets, including GeoJSON. It processes complex datasets
like Open Street Map with features such as projection and filter push-down.

Advances in Deep Learning (DL), including foundation models and Large Lan-

guage Models (LLMs), offer opportunities for geospatial data analysis. We make three main

contributions in this area. First, we study how to design DL models that can express a wide
range of geospatial functions. We explore three representations: an image-based representa-
tion using geo-referenced histograms (Geolmg), a graph-based point-set representation (Ge-
oGraph), and a vector-based representation using a Fourier encoder (GeoVec). We formal-
ize these representations and design corresponding models: ResNet and UNet for the first,
PointNet++ for the second, and Poly2Vec with Transformers for the third. We evaluate all
approaches on four spatial problems, showing the accuracy and effectiveness of the three
approaches. Second, we create a benchmark called GS5-QQA for evaluating spatial question-
answering with LLMs. A semi-automated process generates diverse question-answer pairs
that cover various spatial objects, predicates, and complexities. An evaluation methodology
is suggested with some experiments. Finally, a prototype for generating geospatial vector
data from text prompts, called GeoGen I, is proposed. It has potential for applications
such as spatial interpolation, data augmentation, and change analysis. We adapt diffusion
models, traditionally used for generating realistic images, as geospatial data generators. We
also explore their use for similarity search through geospatial data embeddings, highlighting
the potential of vector databases in this domain.

This thesis advances geospatial data processing, storage, analysis, and generation,

opening new research pathways in geospatial computing.

Contents

List of Figures

List of Tables

1

2

Introduction

Spatial Parquet: A Column File Format for Geospatial Data Lakes

21 Imtroduction o L e e e
2.2 TheStructure v v v bt e e e e e e e e e e e
221 Point (type=1) L e
2.2.2 LineString (type=2) 0
223 Polygon (type=3)
224 MultiPoint (type=4) oL
2.2.5 MultiLineString (type=5) Lo ..
2.2.6 MultiPolygon (type=6)
227 GeometryCollection
23 TheEncoding i i e e e e e
2.3.1 Geometry type encoding L0 e
2.3.2 Geometry coordinate encodingo ..
24 Thelndexing i i e e e e e
2.5 Experiments. e e e e e e e e e

2.5.1 Comparing to Existing Spatial Formats 29

2.5.2 Effect of Sorting on Sample Distribution 33
2.5.3 Evaluating Possible Configurations in SpatialParquet 34
2.5.4 Column Statistics and Filtering 36
2.6 Related Work L 37
2.7 Conclusion e e 40
2.8 Preliminaries e e 41
2.8.1 Geometry Data Types i 41
282 Pargquet e e e e e e e e 42
2.8.3 IEEE Floating Point Format 43
2.9 Algorithm Psendo-Codes 43
dsJSON: A Distributed SQL JSON Processor 45
3.1 Imtroduction o L e e 45
3.2 Preliminaries e e 51
3.3 Projection Tree o . . . e e e e e e 52
3.4 JSONPath Query Processor 0 0 i it i i it i i et e 55
3.4.1 Processing a single JSONPath query 67
3.4.2 Merging multiple JSONPath queries 50
3.4.3 Defining object filters Lo oo 60
3.5 Partitioning L e e e e e e e e 62
3.5.1 Efficient with speculation 65
3.52 Exactwithafullfilepass 67
3.6 Schema Inference e 70
3.7 Projection Tree Optimizer it 74
3.8 RowParser e e e 76

3.82 FErrorHandling 78
3.9 Experiments. i e e e e e e e e e e e 70
3.9.1 Experimental Setup e 70
3.9.2 BScalability of Distributed Parsing 81
3.9.3 BQL Integration i i i it e e e e 85
3.9.4 Partitioning and Schema Inference 86
395 Detailed Use Case 88
3.10 Related work L L e e e 88
3.11 Conclusion L e e e e e e e e 01
Towards Learned Geospatial Data Analysis & Exploration 93
41 Imtroduction L e e e e e e 93
4.2 Geospatial Data Representation 96
421 Preliminaries L L 96
4.2.2 Geolmg: Image-based Representation 98
4.2.3 GeoGraph: Graph-based Representation 104
4.24 GeoVec: Vector-based Representation 107
4.3 Qeospatial Problems o o oo e 110
4.3.1 Spatial Data Synopsiso e 110
4.3.2 BSpatial Clustering e 115
4.3.3 Clustering i 0 i e e e e e e e e e e 119
4.3.4 Belectivity Estimation 120
4.3.5 Walkability Estimation, 122
44 Experiments. L e e e e e e e e e e 126
41 SELUD .« o o o e e 126

4.42 DataSynopsis e e e e e e e e e 128

443 Clustering 0 0 i e e e e e e e e e e 132
4.4.4 Belectivity Estimation 133
4.4.5 Walkability Estimation, 134
446 Discussion L e e e e 135
45 Related Work L 136
46 Conclusion L e e e e e 130
GS-QA: A Benchmark for Geospatial Question Answering 140
51 Imtroduction L L e e e e e 140
52 Related Work L 144
5.3 GS-0QA Benchmark Creation, 147
53.1 Reference Database, 148
5.3.2 Question Templates i 151
533 OpenRetrieval e 161
5.3.4 Question Generation0 e 162
535 Quality Checks o oo oot e e e e 165
5.3.6 Keeping G5-QA Uptodate 166
5.4 Baselimes L e e e e e e 167
541 Bare LLM Baselines 168
542 Text25QL Baselines 169
5.4.3 Retrieval Augmented Generation Baselines 171
5.5 Hxperiments. L e e e e e e e e e 173
6.5.1 Ewaluation Strategyo 173
552 Ewaluation Results 177
553 Discussion e e e e 181

5.6 Conclusion and Future Work o . o e 183

6 GeoGen I: Towards General Geospatial Point Data Generation from Text185

6.1 Imtroduction L L e e e e 185
6.2 Overviewof GeoGen I 1580
6.3 Data Preparation 0 i e e e e 191
6.3.1 Imput Data Types i 192
6.3.2 Preparation Process0 193

6.4 Geospatial Data Embeddings, 194
6.4.1 Contrastive Learning 195
6.42 TextEncoder e 197
6.4.3 Geospatial Encoder 0 o oo 198
6.4.4 Potential Applications 0. 199

6.5 Geospatial Data Generator i 200
6.5.1 Model architecture and training 200
6.5.2 Histogram to geospatial points 202

6.6 Experiments. i e e e e e e 204
B.6.1 SELUD .« o o e e e e e e 204
6.6.2 Qualitative evaluation 206
6.6.3 Quantitative evaluation 207
6.6.4 FEwaluationofencoder L. 210
6.6.5 Discussion e e e e 212

6.7 Related Work L 214
6.8 Conclusion e e e e 216
7 Conclusions 217
Bibliography 219

List of Figures

21

22

2.3

24

2.5

2.6

2.7

2.8

29

2.10

21

212

3.1

3.2

3.3

3.4

Column representation for a Point 12
Column representation for a LineString 12
Column representation for a Polygon 13
Column representation for a MultiPoint 14
Column representation for a MultiLineString 15
Column representation for a MultiPolygon 16

The effect of sorting on page boundaries with three methods with their re-
spective running time L. oL Lo Lo e e e e e e e 25

The effect of sorting on the number of records that require at least n bits for

delta encoding e e e 34
The effect of sorting on output size in SpatialParquet 36
Encoding and sorting overhead L0 L0 a7
The performance of the light-weight spatial index 38
The IEEE 754 standard for foating point numbers 43
An example highlighting dsJSON processing steps 46
System Architecture of dsJSON o L o 56
Complete Projection Tree Example 56
Example projection trees from single JSONPaths 50

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

5.3

5.4

5.5

6.1

6.2

Example filter expression tree and variables map 61

Changes in split positions and matched records (if!
Partitioned JSON Data Example (if!
Processing time with increasing input size 82
Memory usage compared to single machine parsers 82
Effect of integrating SQLon dsJSON 85
Comparing partitioning and schema inference 86
Complete use case example0 e a7
Geolmg architecture e 98
GeoGraph architecture L 99
GeoVec architecture L. 100
Example of synthetic datasets with both different spatial distributions and

distributions of thematic attributes. 114
Weather Station Clustering Example 118
Example of walkability computation. 124
GG-5 time and memory vs. input sizeo L. . 132
Data Synthesis Validation Loss by Epoch 132
Geospatial Question Answering Example 142
Direction angle ranges L i e e e e e e e 158
Example of Generating a (Question from a Template 163
Question Answering Pipeline with Text25QL 170
Question Answering Pipeline with RAG 172
Two generated datasets in the same region with two different prompts . . . 187
GeoGen I System Overview it ittt 190

6.3

6.4

6.5

6.6

Spatial join and grouping L L e 193
Example of contrastive learning 197
Denoising UNet Architecture, 202

Showing one example for generated data for each dataset by each model . . 207

List of Tables

21

22

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

Experiment Datasets e e 29
Output size in GB with/without compression 31
Write/Read time in seconds for uncompressed formats 33
Collected kevs map 0 0 i i i e e e e e e 65
Full-pass partitioning complete output 70
Inferred schema after expanding projection tree 70
Experiments datasets and queries 70
Comparing to other distributed systems 80
dsJSON breakdown of processing stages inseconds 85
Comparing dsJSON to parallel implementations 89
Problems definition summary0 e 111

Dataset Collections Summary: “syn” and “real” states for synthetic and real
datasets, respectively, while “SD5” means spatial data synopsis, “CL" is

spatial clustering, “SEL" is selectivity and “WK” is wallability. 127
Data Synopsis Summary by Collection (WMAPE) 129
Data Synopsis Summary by Output (wWMAPE) 130
Data Synopsis for Weather Data Outputs (wMAPE) 131

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Execution time by distribution in seconds 132

Evaluation of estimated clusters L. 133
Selectivity estimation (WMAPE)o L. 134
Summary of accuracy for walkability results 135
Comparison between our benchmark and GeoQA1089 145
Reference database summary L0 0. 150
Question templates L. L e e e e e e 153
Question Parameters Summary 0. it 0 e e e e e 154
Baseline combinations Lo 168
Metrics used for parsed output L0 L 177
Percentage of attempted questions in parsed answers 177
Evaluation of templates with entity name 178
Evaluation of templates with location 179
Evaluation of templates with direction 180
Relative error for templates with numeric answers 181
Text2S0QL error SUMMATY v 0 & v v v v vt e e e e e e e e e e 182
Prepared Data Count 0 i i it et e e 205
Comparison of KGD scores by dataset 209
Cross-modal retrieval performance generated data histograms to validation

data texts. Dataset matchingonly. 210
Cross-modal retrieval results for datasets & regions 211
Cross-modal retrieval results for datasetonly 211
Cross-modal retrieval results for regions only 212
Validation text embedding compared with training text embeddings 212

xvii

Chapter 1

Introduction

This thesis explores geospatial vector data, which includes geometric shapes such
as points, lines, and polygons related to positions on Earth. Points can represent precise
locations, such as a specific address. Lines are used to denote paths, such as roads, or
rivers. When a line starts and ends at the same point, it is called line ring. Polygons are
made up of one or multiple line rings and are used to define the outlines of geographic
areas, such as city boundaries, lakes, or even small buildings. Geospatial vector data are
crucial in diverse areas such as navigation; urban planning; environmental science; and
many more. Geospatial computing is a multidisciplinary field that combines elements from
geography and computer science to develop techniques and tools for handling and analyzing
large geospatial datasets. In this thesis, we explore two aspects for this data. We start
by exploring the research topic of data lakes and how we can improve their support for
geospatial data. Secondly, we explore deep learning applications in relation to geospatial

computing to take advantage of the most recent advancements in this field.

Data lakes are data repositories designed to store, manage, and analyze large vol-
umes of raw data. Various types of data are stored in data lakes, including structured,
semi-structured, and unstructured data, which allows organizations to consolidate informa-
tion from various sources. Common formats used in data lakes include CS5V, JSON, and
Parquet. Each format has its own advantages and disadvantages, from human readability,
flexibility in writing, and efficient processing. Due to the importance of data lakes for han-
dling large data sizes, it is crucial to have full support for geospatial datasets in them. We
make two contributions in this area. First, we propose Spatial Parquet which proposes a
structure and encoding for geospatial data, making it natively supported in Parquet. Sec-
ond, we propose dsJSON a system for distributed processing of JSON datasets, including
GeoJSON, that makes it possible to support running SCL queries using Spark on complex
datasets, like Open Street Map (OSM).

Recent advances in deep learning have profoundly influenced many fields. With
the development of foundation models and Large Language Models (LLMs), researchers are
now exploring the various ways that they can be used to address challenging problems. As
such, it is crucial to also explore how these advances can be utilized for geospatial problems.
We make three main contributions in this area. In the first contribution, we performed a
study to learn how to best represent spatial problems that involve a large number of points
using existing deep learning architectures. Second, we created a benchmark for evaluating
LLMs on geospatial question-answering. Finally, we explore the are of generative models

and propose an initial prototype for generating geospatial data.

The second chapter discusses Spatial Parquet, which is introduced because for
modern data analytics applications column-storage formats are preferred, due to their im-
proved storage efficiency through encoding and compression. Parquet is the most popular
file format for column data storage that provides several of these benefits out of the box.
However, geospatial data are not readily supported by Parquet. Spatial Parquet is a Parquet
extension that efficiently supports geospatial data. It inherits all the advantages of Parquet
for non-spatial data, such as rich data types, compression, and column/row filtering. Ad-
ditionally, it adds three new features to accommodate geospatial data. First, it introduces
a geospatial data type that can encode all standard spatial data types in a column format
compatible with Parquet. Second, it adds a new lossless and efficient encoding method,
termed FP-delta, that is customized to efficiently store geospatial coordinates stored in
floating-point format. Third, it adds a light-weight spatial index that allows the reader to
skip non-relevant parts of the file for increased read efficiency. Experiments on large-scale
real data showed that it can reduce the data size by a factor of three even without compres-
sion. Compression can further reduce the storage size. Additionally, Spatial Parquet can
reduce the reading time by two orders of magnitude when the light-weight index is applied.
This initial prototype can open up new research directions to further improve geospatial
data storage in column format.

In the third chapter, we propose a system called dsJSON. The popularity of JSON
as a data-interchange format resulted in big amounts of datasets available for processing.
Users would like to analyze this data using SCQL queries, but existing distributed systems

limit their users to only two specific formats, JSONLine and GeoJSON. The complexity of

JSON schema makes it challenging to parse arbitrary files in a modern distributed system
while producing records with unified schema that can be processed with SQL. To address
these challenges, we introduced dsJSON, a state-of-the-art distributed JSON processor that
overcomes limitations in existing systems and scales to big and complex data. dsJSON
introduces the projection tree, a novel data structure that applies selective parsing of nested
attributes to produce records that are ready for SQL processors. The key objective of
the projection tree is to parse a large JSON file in parallel to produce records with a
unified schema that can be processed with SQL. dsJSON is integrated into SparkSQL which
enables users to run arbitrary SQL queries on complex JSON files. It also pushes projection
and filter down into the parser for full integration between the parser and the processor.
Experiments on up to two terabytes of real data show that dsJSON performs several times
faster than existing systems. It can also efficiently parse extremely large files not supported
by existing distributed parsers.

The fourth chapter explores representations of geospatial vector data for deep
learning. There are multiple ways to format these data for deep learning models. In this
chapter, we study how to use three popular DL architectures for dealing with geospatial
data. The first one is an image-based architecture, where the geospatial data is first pre-
processed into a fixed size geo-referenced histogram that substitutes the image. We use
ResNet [85] and UNet [176] as reference models for the image-based architecture. The
second one is a graph-based architecture, where the input of the considered model is a
set of points having position coordinates, and each point is associated with additional

non-spatial attributes. We adapt this approach by designing and testing variations of the

PointNet++ [169] architecture. The third is a vector-based model that encodes geometries
into fixed-size vectors. To test this approach, we extend the Poly2Vec [188] encoder to work
with a Transformer [206]. Furthermore, we model four different spatial problems using the
three representations. This includes spatial data synopsis, spatial clustering, selectivity
estimation, and walkability estimation. These problems involve different spatial operations
and data characteristics, providing a lot of insights. Our goal is to study how the three
proposed data representations and model architectures can capture these different problems
while speeding up the query processing.

Fifth, Spatial()A is proposed as a benchmark for LLMs on geospatial question-
answering. The use of large language models (LLMs) as question-answering ((QA) systems
is rising in popularity. A QA system is designed to provide relevant answers given user
queries. To address the challenge of evaluating (QA systems, standardized benchmarks
have been introduced. This work presents a benchmark specifically for answering questions
related to geospatial objects. It includes a large set of question-answer pairs using Open
Street Maps (OSM) and Wikipedia data, covering various spatial objects and output types.
It includes an evaluation methodology that highlights the complexities of geospatial data.
LLM baselines are also evaluated to demonstrate the effectiveness of the benchmark.

In the next chapter, we look at the potential of diffusion models as geospatial
data generators, which are typically used to generate realistic images from text prompts.
Geospatial data generation has many use cases, such as spatial interpolation and change
analysis. Existing data generators are based on pre-defined spatial distributions or simulat-

ing a specific behavior. We adopt existing diffusion models and provide an initial prototype

[]

for generating geospatial vector data from text prompts. We also carried out experiments
on the possibility of using one of the components in this prototype for similarity search using
geospatial data embeddings, highlighting the potential of vector databases in this domain.
Many challenges still remain for a true general-purpose geospatial data generator.

Finally, we draw some conclusions about the contributions made in this work and

provide guidance on future research directions.

Chapter 2

Spatial Parquet: A Column File

Format for Geospatial Data Lakes

2.1 Introduction

Recently, there has been a tremendous increase in the amount of publicly available
data that are used for data science and data analysis projects. For example, Data.gov [57]
contains more than 350,000 dataset that are provided by the US federal government alone.
Other governmental and non-governmental open data repositories provide non-precedented
volumes of data that grow faster than Moore’s Law. These dataset open the door for many
interesting data science projects but maintaining all this data is challenging. These dataset
are often kept in data warehouses or dafa lakes where users can browse, download, and

analyze all this data.

To store any dataset on disk, the two major formats are row-oriented and column-
oriented formats. Traditional row-oriented formats, such as C5V and JSON, store the entire
record in consecutive disk locations. These formats are usually easier to process and are
suitable when the entire record is needed. However, for analytical jobs that need to access
a few fields, i.e.. columns, it adds unnecessary overhead. Thus, column-oriented formats
have been proposed to overcome these limitations. In column formats, the entire column is
stored in consecutive bytes on disk which provides two unique advantages over row formats.
First, if only a few columns are needed for an analytical job. e.g., calculate average income,
we can scan this entire column while not reading the rest of the file from disk. Second, it
enables more efficient encoding techniques, such as delta encoding, to store each column in
a more efficient way. In summary, column formats are preferred for large scale analytical
queries.

One of the most popular column formats is Parquet [208] which is an open-source
file format inspired by Google's Dremel [152] system. Parquet is more geared towards big
variety data by allowing nested and repeated attributes such as in JSON files. Similar to
other column formats, it supports a library of encoding and compression techniques for
numeric values to increase its efficiency.

With the increasing amount of geospatial data, Parquet is a very attractive solution
that has the potential of saving a significant amount of disk space while increasing the
performance of data analysis jobs. However, Parquet is not readily suitable for geospatial
data that is more complicated than simple numeric values. In particular, Parquet has three

main limitations that limit its use with geospatial data. First, geospatial data is stored

as points, lines, and polygons, which have some internal structure that Parquet does not
understand. Second, geospatial data consists mainly of (z,y) coordinates that are stored
in floating-point format but Parquet does not provide an efficient encoder for floating-point
values. Third, Parquet provides the feature of column statistics that can be used as an index
but it does not work for geospatial data. The only solution that is currently available is
GeoParquet [78] which partially addresses the first challenge and adds a significant overhead
which defies the purpose of using a column store in the first place.

To resolve these issues, this paper presents SpatialParquet, an extension to the
Parquet file format that overcomes the limitations of Parquet. First, it proposes a new
data type that is compatible with the Parquet file format and can store all common geome-
try types, i.e., Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon.
Second, it adds a novel FP-delta encoder that can significantly reduce the storage require-
ments for floating-point values that represent geospatial coordinates. Third. it combines the
statistics feature of Parquet with the proposed structure to provide a light-weight spatial
index that can skip disk pages that do not match a given spatial query range. We run
extensive experimental evaluation and found that SpatialParquet outperforms all existing
file formats in terms of storage size.

The rest of this paper is organized as follows. Section 2.2 explains how we structure
all standard geospatial data in Spatial Parquet. Section 2.3 describes the FP-delta encoding
method for floating-point geospatial coordinates. Section 2.4 introduces the light-weight
spatial index. Experimental evaluation results are detailed in Section 5.5. The related work

is explained in Section 2.6. Finally, Section 4.6 concludes the paper.

2.2 The Structure

This section describes how SpatialParquet stores all the geometry attributes into
a unified structure when writing to disk and how it reconstructs them when reading back
from disk. There are two main challenges that SpatialParquet has to overcome. First,
since Parquet requires all records to have the same schema, we need to create one common
schema that can support all the geometry types. i.e., Point, LineString, Polygon, MultiPoint,
MultiLineString, and MultiPolygon. GeometryCollection requires special handling that
we mention at the end. The second challenge is to ensure that this structure keeps the
semantic meaning of all the individual parts of the geometries to facilitate efficient storage
and retrieval, e.g., the coordinates and sub-parts of some geometries.

To overcome the two challenges above, we propose the following schema to store
geometries. We use Google Protocol Buffers Format (PBF) which is the one used by Par-

quet.

message Ceometry {
required int type;
repeated group part {
repeated group coordinate {
required double x;
required double y;

}
}
}

MNow, let us explain the structure above. The type attribute stores a numerical
value that represents the geometry type, i.e., 1=Point, 2=LineString, ... etc. We reserve
type 0 to represent empty geometries. The outer group, part, represents a connected

component in the geometry. For example, in a Polygon, the outer shell and each inner hold

10

is a part. Finally, the coordinate group represents a sequence of coordinates that comprise
one part. For brevity, this paper assumes two-dimensional coordinates but the structure
above can be directly extended to support three dimensions or more by adding their values
in the inner-most group. Notice that PBF allows any level of nesting so if the geometry is
a part of a feature along with other attributes, the entire definition above will be a single
attribute in the feature as shown below where the ‘..." will be replaced by the definition
above.
message Feature {

required int id;

optional string name;

// Other non-spatial attributes

optional group geometry { ... }
}

MNow, looking at the structure above, we can see that it overcomes the two chal-
lenges described earlier. First, this unified structure can support all geometry types as
detailed later in this section. Second, this structure contains three columns, type, x, and
vy, where each one holds a semantic meaning to the geometry and all of them are visible
to Parquet to store them efficiently. Additionally, the overhead of maintaining the double
nested group, i.e., part and coordinate, is minimal thanks to the Parquet structure. In
this specific case, only four extra bits are needed for the x and y attributes, two bits for

the definition level and tow bits for the repetition level. Interested readers can refer to the

Dremel paper [152] for more details about the definition and repetition levels.

11

a1

L
(3,2) o
Type | Coordinate
x Y
N e 3
(a) Sample point (b) Column Representation

Figure 2.1: Column representation for a Point

A
(1.4)
(2,3)

Part
gz Type | Coordinate
T | Y
2 1 1
(1.1) 2 ;
N 1 1

(a) Sample LineString (b) Column Representation

Figure 2.2: Column representation for a LineString

2.2.1 Point (type=1)

A Point contains a single coordinate (z,y) which can be represented as shown in

Figure 2.1.

12

t (5,5)

Part
Type | Coordinate

g: (4,3) =

]

(3.2 742
(1,1) (5,1)

R = -]
[| e L L = [=

(a) Sample Polygon (b) Column Representation

Figure 2.3: Column representation for a Polygon

2.2.2 LineString (type=2)

A LineString is a sequence of coordinates {(z1,v1), (z2,¥2), ... (Tn.¥n)). Fig-
ure 2.2 gives an example of a LineString, g2, with three points. The points are all represented

within one part in their respective order.

2.2.3 Polygon (type=3)

A Polygon contains a list of rings. Each ring is a LineString that has the same
starting and ending points, i.e., (z1,¥1) = (z,,¥,). The first ring represents the outer
shell while the subsequent rings represent the inner holes. In SpatialParquet, each ring is
represented as a part similar to how we store a LineString. For consistency, we follow a
common convention for storing polygons where the outer shell is stored in clock-wise (CW)
order while inner holes are stored in counter clock-wise (CCW) order. Notice that we do

not need this information when parsing a polygon since there is only one outer shell, i.e.,

13

(2,4)
.

g4

) U-’-l 3 P
art
(1 "3) (!] Type | Coordinate
T | y
4 1 3
2 4
. 1 3
(a) Sample MultiPoint (b) Column Representation

Figure 2.4: Column representation for a MultiPoint

the first ring, and all subsequent rings are holes. However, this information will become
useful for MultiPolygons.

Figure 2.3 illustrates an example of a polygon, gz, with one hole. The outer shell
contains four segments that are stored in CW order. Notice that we repeat the last point
which is similar to the first point as a common convention in most spatial file formats even
though it could be redundant. The inner hole is stored as a second part and the points are
ordered in CCW order. In the table representation, we use a horizontal line to represent
the end of each part. In Parquet, this is represented by using a repetition level = 1 for the

first value in the second ring.

2.2.4 MultiPoint (type=4)

A MultiPoint consists of a sequence of independent point locations. Each point is
represented as a single coordinate (z,y). A MultiPoint is represented in SpatialParquet by

creating a separate part for each point with a single coordinate inside it. Figure 2.4 shows

14

(2,4)
Part
(3;3} Type | Coordinate
(13) —
g5 {3 f2) 4 1
AN 3
2 4
(a0 @1 2|
(a) Sample MultiLineString (b) Column Representation

Figure 2.5: Column representation for a MultiLineString

an example of a single MultiPoint, g4, with three points inside it. Notice how each point
is stored as a separate part. We could also store all the points in one part and it will use
exactly the same storage size. However, we chose to use a single part for each point as it is

semantically more accurate.

2.2.5 MultiLineString (type=>5)

A MultiLineString consists of multiple line strings. Each line string is a sequence
of coordinates. SpatialParquet stores MultiLineStrings by creating a separate part for
each LineString. Each part contains the sequence of coordinates as done with LineString.
Figure 2.5 illustrates an example with a MultiLineString, gz, that contains two LineStrings.

Each LineString is represented as a separate part in the column representation.

15

Part

Type | Coordinate
T |
A (5,5) T
1 1
1 2
2,4) 5|2
2 4
9s i
(1,2) 4 4
3,2)="(5,2) o
2
(ADEER) i | o
- 1 1
(a) Sample MultiPolygon (b) Column Representation

Figure 2.6: Column representation for a MultiPolygon

2.2.6 MultiPolygon (type=6)

A MultiPolygon consists of a sequence of polygons. Each polygon contains one
outer shell and zero or more inner holes. In SpatialParquet, we represent a MultiPolygon by
storing each ring as a separate part, i.e., exactly in the same way as a regular Polygon. To
be able to know where each new polygon starts, we follow the convention of storing outer
shells in CW order and inner holes in CCW order. Thus, when reading a MultiPolygon
back, after reading each ring, we first test whether the coordinates are stored in CW or
CCW order which is a linear-time operation. If it is an inner hole, we append it to a list of
rings. If it is an outer shell, we first create a polygon from existing rings and then add the
new ring as the first one in the next polygon.

Figure 2.6 shows an example of a MultiPolygon, g5, with two sub-polygons. There
is a total of three rings as shown in the column representation. When parsing this geometry

back, SpatialParquet will read the first ring and keep it in a buffer. Then, it will read the

16

second ring and test the order of the points. It will find that they are stored in CCW order
so it will keep that ring on the side as a hole. Then, it will read the third ring and find that
it is stored in CW order which indicates that it is an outer hole. Thus, it will create the
first sub-polygon with one hole. Finally, since no more parts are left in this MultiPolygon,

it will create the second sub-polygon with one outer shell and no holes.

2.2.7T GeometryCollection

A GeometryCollection consists of a set of geometries that each can be any of the
six geometry types described above as well as another GeometryCollection. Supporting this
type is tricky since PBF and Parquet do not allow recursive definition, i.e., a GeometryCol-
lection within another GeometryCollection. We can partially support GeometryCollection
by making two changes. First, we change the original definition of Geometry to make the
entire Geometry a repeated group. Second, before storing any GeometryCollection we first
flatten it by replacing each sub-GeometryCollection with its contents. This way, we remove

all recursive definitions in the GeometryCollection and store all sub-geometries at one level.

Finally, each geometry in the GeometryCollection is stored as described above.

2.3 The Encoding

One of the main advantages of column-oriented stores, is that it groups together
homogeneous values, i.e., from the same domain, in each column and makes use of the
redundancy among these values to store them more efficiently. This is done through special

encoding schemes that work at their best when encoding homogeneous values. For example,

17

a very popular encoding is delta encoding which stores the deltas (differences) between
consecutive values to reduce the storage overhead if the differences are usually small.

This section describes how we encode the column-represented geometries in Spa-
tialParquet to improve the storage efficiency. In SpatialParquet, we primarily have two
column types, the geometry type column and the coordinate columns, which we describe

below.

2.3.1 Geometry type encoding

Geometry type is an integer value that takes a value in the range [0,6]. In almost
all practical cases, all geometries in one dataset have the same type. For example, a point-
of-interest dataset will consist of only points. Therefore, we use run-length-encoding (RLE)
to encode the geometry type value. RLE replaces consecutive entries with the same value
with two numbers, count and value. The former records how many times the latter value is
repeated. For example, if all the dataset consists of a single geometry type, e.g.. polygons,
this column will be stored in SpatialParquet as a pair (¢, 3), where ¢ is the total number of
records in the file and type=3 is the marker of the polygon data type. Thus, this method
can reduce the storage overhead of the type column to virtually a constant that does not

depend on data size.

2.3.2 Geometry coordinate encoding

The x and y coordinates are stored in floating-point representation! A very popular

encoding for integer values is delta encoding which stores the first value in a column in full,

"We assume 64-bit IEEE double floating-point representation but the discussion seamlessly applies to
32-bit single floating-point representation.

18

and then for subsequent values it stores only the delta between each value and its previous
one. For example, to store the sequence (15,16,15,17,20), they are replaced with the
sequence (15,+1, —1,42, +3). The key idea behind delta encoding is that when the deltas
have a smaller magnitude value, they can be represented in fewer bits. Additionally, since
all the deltas are stored consecutively in the column format, they are bit-packed to reduce
the storage size.

Unfortunately, delta encoding can only be directly applied to integer values. In
the IEEE floating point data representation, a smaller magnitude value does not necessarily
need fewer bits. This is because any Hoating point value has to be represented in the (sign,
exponent, fraction) format. Also the value has to be first normalized to move the decimal
point right after the most significant one in the number. Check Appendix 2.8 for more
details.

When looking at the geometry coordinates, we observe that subsequent values
are usually close to each other. For example, a trajectory represented as a MultiPoint is
expected to have geographically nearby values. Thus, for both # and y coordinates, each
two consecutive values will have a very small difference. However, as mentioned earlier,
if we just compute the Hloating-point difference, we cannot directly reduce the number of
significant bits in the number. However, we make another observation that subsequent
values are mostly within the same order of magnitude. In other words, they are expected
to have either the same, or very close exponents in their floating point representation.
Furthermore, if they have the same exponent, then their fractions are also expected to have

a small difference.

19

FP-delta Encoding: Based on the observations above we have above, we proposed a
floating-point-delta encoding, FP-delta, that requires only one single operation to calculate.
FP-delta simply calculates the difference of the integer interpretation of the floating point
values. In other words, we ignore the (sign, exponent, fraction) representation and just
treat the entire 64-bit double floating-point value is a 64-bit two’s complement long integer
value. Of course, the difference in this case does not necessarily hold any physical meaning,.
However, since the exponents are in the most significant part of the value, and if the
exponents are similar, then they will cancel each other. Furthermore, if they cancel each
other, the resulting delta will represent the difference between the two fractions. Thus,
if the two values have the same exponent and their values are close to each other. the
FP-delta value is expected to have only a few significant bits which allows us to reduce the
amount of storage. As in integer-based delta encoding, we follow our FP-delta encoding with
zigzag encoding which maps the deltas of (0,1,-1,2,—2,...}) to the positive-only value of
{0,1,2,3,4,...). This encoding simply removes the leading ones that are present in negative
values in the two's complement representation.

To summarize, the algorithm works as follows. Given a sequence of floating-point
numbers, we scan all the values to calculate how many bits we need for the deltas (further
explained later). Then, we start producing the output by writing the first value in full.
After that, we scan the subsequent values and compute the delta followed by the zigzag
encoding, again. At this point, if the delta can be stored in the determined number of bits,
we store it directly. Otherwise, if it needs more bits, we store a special reset marker and

store the value in full.

Algorithm 1 FP-delta encoding algorithm*

1: function FP-DELTA-ENCODE(double]] X, BitOutputStream out)
2: n* = COMPUTEBESTDELTABITS(X)
3 resetMarker = -1 =% (64-n*)

4: significantOnes = -1 < (n*)

5 out.write(n*, 8)
ﬂ.
T
8

out.write{ X [0], 64)
fori=1to|X|-1do
delta = cast-long(X [i])-cast-long({ X [i — 1])

0 zigzag = (delta 3 63) @ (delta < 1)

10 if (zigzag & significantOnes # 0) or (zigeag = resetMarker) then
11: out.write(resetMarker, n*)

12 out.write{ X[i], 64)

13: else

14: out.write{zigeag, n*)

* = ig the arithmetic shift right, *2& is the logical shift right, < i= shift left, & is the logical AND
operator, and & is bit-wise XOR

Algorithm 1 provides the pseudo-code of the FP-delta encoding algorithm. The
input is an array of floating-point values and the output goes to a bit output stream. The
bit output stream bit-packs all the written values depending on how many bits are used
for each value. Line 2 uses the function coMPUTEBESTDELTABITS, explained later, to
compute the number of bits, n*, to use for deltas that will minimize the overall output size.
After that, it computes the reset marker which is simply the highest possible zigzag-delta,
i.e., all bits set to one. It then computes a value with its most significant bits set to one,
corresponding to the number of bits to be discarded. Line 6 writes the first value as a full
fi4-bit value. Then, the loop in Line 7 writes all the remaining values. First, it computes
the FP-delta and encodes it using zigzag. Then, it checks if the zigzag-encoded delta has
any of its significant bits set to one out of the bits to be removed or if it is equal to the reset
marker. If so, we first write the reset marker followed by the full 64-bit value. Otherwise,

it writes this value directly to the output stream in n* bits.

21

To complete the encoding algorithm, we describe how to compute the number of
bits that minimizes the storage size. The challenge in this part is to balance the trade-off
between the number of bits needed for deltas and the number of overflow deltas that need
to be encoded as 64-bit values. To overcome this challenge, we scan the entire dataset to
compute the number of bits needed for each delta. As we do so, we build a histogram h of
number of deltas for each number of bits. That is h[n] indicates the number of deltas that
need at least n bits to be stored. This means that 3~ h = | X| — 1 since each value falls into
one of the histogram bins. Then, we calculate the output size for each of the deltas and
choose the minimum.

To calculate the output size S, recall that each value that can be encoded as a
delta will take n bits, where n is the number of bits reserved for the deltas. Any value that
cannot be encoded in n bits will be stored as n+ 64 bits, that is, the special marker followed
by the full 64-bit value. Thus, for any value n, the output size can be calculated using the
following equation.

i=6d

S Al 2.1)

i=n+l

S(n) =n-Y hli]+(n+64)-
i=0
Since } h = |X| — 1, we can rewrite this equation as follows.

i=fd
S(n)=n-(|X|-1)+64- > hli] (2.2)

i=n+1

The optimal number of bits for the deltas to minimize the storage size is as follows.

n* = argmin {S(n)} (2.3)
D<n<hd

There are two notes about this approach. First, since we can accurately compute
the encoded data size, we can easily skip this algorithm altogether and store the data in its
raw format in case the calculated saving is very little. Second, this algorithm has space and
time complexities of O(|X|) since it needs to store and scan all the values before writing
them. However, keep in mind that this algorithm is applied for each page in the Parquet
file which has a default size of 1MB. Thus, the overhead is not significant. Still, if we want
to save the overhead., we can skip this function and use an empirical best value that can
be calculated experimentally for the application depending on the dataset characteristics.

The pseudo-code for this algorithm is available in Appendix 2.9.

FP-delta Decoding: The decoding algorithm is simpler since it does not need to calcu-
late the output size or choose the best number of bits for the delta. The decoder begins by
reading the first byte that contains the number of bits n that will be used for the deltas.
Then, it reads a 64-bit value that represents the first-Hloating point value. After that, it
keeps reading n bits from the input and checking the value. If it is not the reset marker,
it is treated as delta and the next value is emitted accordingly. Otherwise, if it is the reset
marker, it is ignored and the next 64-bit double value is read and emitted.

Algorithm 2 gives the pseudo-code of the FP-delta decoding algorithm. It takes
an input bit stream and produces all the output values to a DoubleOutput stream. First, it

reads an 8-bit value that indicates the number of bits n used for the deltas. Then, it reads

23

Algorithm 2 FP-delta decoding algorithm
1: function FP-pECODE(BitInputStream in, DoubleCOutput out)

LN n = in.read(8)

3 reset-marker = -1 3 (64-n*)

4 prev-x = cast-double(in.read(64))

e out.write{x)

f: while more values in the input do

T

B

)

zigzEag = in.read(n)
if zigzag # reset-marker then
: delta = (zigzag 2% 1) @ -(zigzag & 1)
10 next-x = cast-double((cast-long)prev-x + delta)

11: else

12: next-x = cast-double(in.read({64))
13: out.write{next-x)

14: prev-x = next-x

=% is logical shift right, & is bit-wise AND

the first value as a 64-bit floating point value and emits it directly to the output. It also
keeps it in the variable prev — z to use for delta decoding. After that, it keeps reading from
the input bit stream as long as there are value. Notice that Parquet determines if there are
more values depending on the definition level so we do not need to keep this information.
For each value, it first reads n bits that represent the zigzag-encoded delta. If this value
is not equal to the reset marker, it reverses the zigzag encoding to get the delta value as
shown. The next value is then calculated by adding this delta to the previous value. Notice
that the addition is a 64-bit integer addition and we cast the values accordingly to get the
actual double value. Otherwise, if the zigzag value is equal to the reset marker, we simply
discard it and use the next 64-bit value as the next x value. Finally, we emit this value and

keep it in the buffer so that we can read the next value.

Parquet Integration The only encoder for floating point values in Parquet is the raw-

encoder that stores each value as-is, and may apply a run-length-encoding to save space on

24

i

[]

(a) Input data (5.6 M points) (b) Z-Curve (0.56 seconds)

o= | |
—— — - -

= F-

1

(c) Hilbert-Curve (0.74 seconds) (d) R*-Grove (9.47 seconds)

Figure 2.7: The effect of sorting on page boundaries with three methods with their respective
running time

repeated values. To integrate our FP-delta method into Parquet, we extended the Encoder
and Decoder interfaces in Parquet to support the encoder and decoder functions described
above. We configured Parquet to automatically use the FP-delta method for floating-point
values in the geometry data type. This allows Parquet to still recognize the floating-point

values in the coordinate columns which is helpful for the next part. the indexing.

2.4 The Indexing

This section describes how to build a light-weight index on-top of SpatialParquet

using the built-in structure of Parquet. The goal of the index is to be able to avoid reading

25

the entire file if the user wants to process data in a small geographical region. Most popular
spatial indexes, e.g., Quad-tree, R-tree, and GridFile, group records into minimum bounding
rectangles (MBR) so that an entire block can be skipped when it falls outside the query
range.

Parquet provides a light-weight method of pruning non-relevant records by adding
column statistics. Mainly, it adds the range, [min, maz/, for each column and allows the user
to skip reading the data if the desired range does not overlap with the column data range.
To make this pruning more effective, Parquet splits each column into pages of roughly 1MB
each so that it can skip over some of these pages. Furthermore, each page is compressed
separately which makes skipping these pages more efficient.

The structure we propose in SpatialParquet gives us the opportunity of collecting
statistics for the z and y columns. This is only possible because Parquet identifies each
of these as a separate column. In contrast, if we store the entire geometry in WKB or
WHKT format. Parquet will not be able to collect these statistics. Together, the ranges of
x and y make a spatial bounding box for each page. Thus index construction is as simple
as instructing Parquet to collect the minimum and maximum for the z and y columns and
store them in the output file.

At reading time, if the user provides a query rectangle in the form of [(Z,:n, Ymin),
(Trmazr; Ymaz)], we translate it into two separate ranges, [Tmin, Tmaz| a0d [Ymin, Ymaz] for the
x and y columns, respectively. Then, we pass these ranges to Parquet to read only the

pages that intersect the query range.

The effectiveness of this light-weight index highly depends on the distribution of
the data. in one extreme, if data is highly scattered such that each page contains data from
all over the data domain, then this technique will be very ineffective since all [min, maz|
ranges will cover almost the entire input space leaving no room for pruning. On the other
extreme, this technique will be very efficient if the data is highly-clustered, that is, spatially
nearby records are very close to each other in the input order. This will allow the range of
each page to be very tight and more pruning can happen.

To improve the effectiveness of the index, we add a sorting step that tries to cluster
nearby records. Notice that it does not have to be perfect. All we need is to avoid the very
bad situation where each page covers the entire world. Thus, we do not want to pay a high
cost for a very accurate partitioning technique. We decided to use two light-weight space
filling curve sort methods, namely, Z-curve and Hilbert curve. Both techniques can provide
a linear sort order that takes into account both x and y coordinates, with Hilbert curve
known to be more effective with a slightly higher computation cost. Furthermore, since this
is not a traditional hierarchical index with a single root, we do not care about sorting the
entire dataset which can be very costly. Rather, we process the records into groups with a
fixed number of records, e.g., one million. Whenever we have that number of records, we
sort them and write them to SpatialParquet. This ensures that the memory overhead is
upper bounded and that the computation overhead of sorting grows only linearly with the
data size.

Figure 2.7 provides an example of the effect of sorting the records before writing the

SpatialParquet file for a 5.6 million point dataset. Without using any sorting, all partitions

27

cover the entire input space so we do not show it here. While not perfect, both of them
provide an opportunity for pruning some disk pages depending on the range query. Notice
that SpatialParquet does not care how the partitions are created so if the user is willing to
spend more time, more sophisticated big-data partitioning techniques can be used [65]. In
the figure, we show an example of using R*-Grove [211] which yields much better partitions
with no overlap but, in this case, it takes slightly less than 10 seconds. Given the static
nature of the data, users might also be interested in using learned spatial indexes [19] but

we leave this as future research directions.

2.5 Experiments

This section shows the results of an extensive experimental evaluation that com-
pares SpatialParquet to existing spatial data formats, as well as, studying the effect of
various parameters.

All experiments are executed on a machine running on Intel(R) Xeon(R) CPU
E5-2603 v4 @ 1.70GHz and 64GB of RAM.

We use four datasets for all evaluations. All the dataset are publicly available on
UCR-Star [79] and are summarized in Table 3.4. Each of these datasets contains predom-
inantly one geometry type. This helps us evaluate the effect of different geometry types
on compression and storage size. These datasets also have different sizes in terms of the
total number of geometries and points contained in them. The versions of these datasets
only contain geometry data, and all objects are stripped of any metadata. This so that we

compare purely on the geometry values, since this is the main focus of our work. Second,

28

Tahble 2.1: Experiment Datasets

Dataset (Acronym) Geometry Type # of Geometries Num points
Porto Taxi (PT) MultiPoint 1.7TM M
TIGER18/Roads (TR) | MultiLineString 18 M 350 M
MSBuildings (MB) Polygon 125 M 753 M
eBird (eB) Point s01 M 01 M

the objects on some of these datasets already follow some sorted order as they are provided
from the source. We discuss the effect of sorting in detail.

We implement SpatialParquet in Java based on the original Parquet Java reposi-
tory [11].

In the remainder of this section, first we compare our proposed work to existing
spatial formats. We discuss both savings in terms of required storage size, as well as,
performance implications. After that, we show the effect of space-filling-curve-based sorting
on the distribution of values in each column chunk. Following, we show the effect of various
parameters like encoding, compression, and sorting on the data size and on the performance.
Finally, we show how column statistics improves the performance of reading by pruning

column chunks and pages based on a provided filtering range.

2.5.1 Comparing to Existing Spatial Formats

We compare Spatial Parquet to three existing baselines: GeoParquet, ShapeFile,
and GeoJSON. We use Java implementations for all of these baselines. For GeoParquet,

its existing implementation is only available as a Python package, so we provide a new

Java implementation for a fair comparison. Its implementation differs from SpatialPar-
quet in which it requires five values per geometry object. One value represents the Well-
Known-Binary (WKB) of the geometry, and the other four values determine the minimum-
bounding-rectangle of the geometry for easy filtering. For reading and writing ShapeFile
and GeoJSON we use implementations provided in Beast [66].

For evaluations in this section, the source data for writing these files are sorted
using the Hilbert-curve method. The details of how the sorting is applied and its effects are
provided in the following sub-section.

In the first evaluation, we evaluate the formats based on the total data size without
any compression. The left part of Table 2.2 shows the size of data stored in these formats
without any compression. For all datasets, SpatialParquet with delta encoding significantly
decreases the size of the data. In the case of the PT, MB and eBird datasets, its size is
less than half that of the nearest data size for the other formats. We believe that this alone
makes SpatialParquet a strong candidate for storing Geospatial data.

Compressing the data using a general purpose compression techniques can further
reduce the sizes, but it has some performance implications for both reading and writing.
We store the same files in the previous evaluation after compressing their contents using
GZIP [58] compression technique. However, there are some differences in how the compres-
sion is applied. In SpatialParquet and GeoParquet, the compression is applied on column
pages, usually one megabyte in size. This is important to minimize the overhead when
reading records from an arbitrary position. Also, compressing small chunks of data adds

minimal overhead at write time, but it loses a little bit compared to when the compression

Table 2.2: Output size in GB with/without compression

Uncompressed Compressed

Format PT TR | MB | eB | PT TR | MB | eB
SpatialParquet | 0.856 | 3.5 | 8.2 |11 || 0.388 | 1.9 | 40 |19
GeoParquet 1.8 6 17 43 [0.718 | 35 |87 |6
ShapeFile 1.4 64 |19 28 [0654 |35 [T8 |57
GeolSON 2.2 14 | 32 97 || 0.439 |22 | 3.8 | 1.8

is applied to the entire dataset at once. For GeoJSON files, the entire dataset is written as
one giant .geojson.gz file. Thus, the compression technique is applied to it as one large
file. ShapeFiles are compressed a little differently. Due to the implementation used for
writing Shapefiles, to avoid running out of memory, we divide the data up to one million
geometry object and write them into a separate Shapefile partition. So when we apply the
compression, we apply it to each of these files individually. The result of this evaluation
is shown in the right part of Table 2.2. Clearly, compression adds significant benefits for
all formats, with SpatialParquet still considerably lower than all other formats, except in
two cases. The compressed GeoJSON file of the MSBuildings dataset is slightly smaller
than that of GeoParquet. This can be attributed to the fact that compression is applied
differently as described. This shows that compressing an entire dataset using GZIP can save
a little bit in storage size compared to compressing small chunks separately. However, keep
in mind that a compresses GeoJS0ON file has to be processed entirely and sequentially while
SpatialParquet provides more efficient access methods such as choosing specific column or
filtering by rows using the light-weight index (as detailed shortly). Other binary formats
are up-to three times bigger than SpatialParquet.

Next, we compare the writing time of SpatialParquet against the baselines. Ta-

ble 2.3 shows the writing time in seconds for the uncompressed files. SpatialParquet has

31

the best performance by far for the PT and eB datasets. However, it performs slower than
GeoParquet on the TR and MB datasets. These two dataset contain geometries of type
MultiLineString and Polygon, respectively. These two data-types are more complex than
the Point and MultiPoint types. More complex types require more calls to the parquet
interface, since we send each individual value by itself, and it has to track the size of each
geometry part. Because Parquet has BY TE ARRAY as a native type the well-known-binary
(WKB) is sent directly as one value through the Parquet interface. Keep in mind that our
current implementation is a first-cut solution while WKB reading and writing has been op-
timized for years. Given the huge space saving of SpatialParquet, we will further optimize
the writing operation to reduce any potential overhead.

Finally, we compare SpatialParquet to the baselines in terms of the reading time.
Table 2.3 shows the reading time in seconds for the uncompressed files. GeoParquet and
Shapefile have the best reading times. Similar to writing, reading data in WKB is much
more efficient than requesting values repeatedly through the Parquet interface. We believe
we can improve the reading performance in the future by providing a lower-level access to
the coordinate arrays from Parquet rather than reading one value at a time using the current
APIL Notice that the information is already stored in the Parquet file in the format that
we want, i.e., consecutive arrays of floating points values, so we should be able to further
optimize the reading part in the future without changing the SpatialParquet format.

In summary, SpatialParquet provide an excellent alternative for the existing geo-
spatial data formats. It can add significant savings in storage requirements. It does not

currently always perform the best in terms of writing and reading speed for all datasets, but

32

Table 2.3: Write/Read time in seconds for uncompressed formats

Writing Time Reading Time
Format PT | TR | MB | eB PT ([TR | MB | eB
SpatialParquet | 74 | 215 | 544 | 833 || 49 | 143 | 455 | 546
GeoParquet 226 | 99 | 425 | 1490 || 17 |64 | 204 | 500
ShapeFile 123 | 490 | 1445 | 4246 || 88 | 43 | 161 | 534
GenJSON 105 | 485 | 956 | 2342 || 55 | 424 | 610 | 1280

future improvements can be added to bridge this gap without changing the proposed format.
In addition to adding more improvements to the implementation, we plan to integrate
it within Beast [66], which would make it more straightforward to convert from and to
SpatialParquet with other geo-spatial formats, on top of making it possible to process big

data in distributed systems.

2.5.2 Effect of Sorting on Sample Distribution

In this section, we highlight the effect of sorting on the distribution of the deltas in
a column chunk. Sorting results in delta values with less number of significant bits. We show
the histogram of the first column chunk of the eBird dataset and the MSBuildings dataset.
Sorting has a considerable effect on the eBird dataset because it is not readily sorted from
the source. The MSBuildings dataset is somewhat sorted because the data is divided by
U.5. state, but applying a sort function still adds more benefit. The other two datsets seem
to be well sorted from the source and do not benefit much from sorting. Figure 2.8a shows
how a Hilbert-curve sort shifts the distribution of values towards the left, meaning more
values requiring less number of significant bits. The count of delta values that require 64
significant bits is large for the unsorted eBird dataset because it includes consecutive values

alternating between positive and negative numbers. However, this basic sorting completely

33

M no sort W hillbert Mno sort W hillbert

g

Count (bgarlthmic soalks)
g

Count (bgarlthmic soalks)

‘-- "

I 1 | 1

O 3 38 30 X2 34 32 38 40 42 44 42 48 B0 BT 54 BB GE 80 82 84 0 3 38 30 X2 34 32 38 40 42 44 48 48 B0 BT 54 58 BB 80 82 84
Roquired number of bits Roquired number of bits
(a) eBird (b) MSBuildings

Figure 2.8: The effect of sorting on the number of records that require at least n bits for
delta encoding

removes this spike. We notice the same effect on the MSBuildings dataset in Figure 2.8b,
but to a lesser degree since all records are in the US. Applying a Z-curve sort, has more or
less of a similar effect on all datasets.

Another thing we notice from these two figures is that a considerable number of
values are concentrated at the zero significant bit bar. This bar represents consecutive
values that are exactly the same. This is common for geotagged values that are created
from the same address. This means that we can add an additional run-length-encoding
after the deltas to store all of these consecutive equal delta values in a more compact way.

We leave this as a future improvement.

2.5.3 Evaluating Possible Configurations in SpatialParquet

In this part, we delve into SpatialParquet to evaluate the possible configurations
for it. First, we look into the effect of using FP-delta with and without compression, hefore

applying any sorting. In Figure 2.9a. in all cases FP-delta results in a smaller size with

34

and without GZIP compression, except for the eBird dataset. The eBird is not sorted by
default and since all of its geometries are points, there is no gain from applying the delta
to a single geometry object. Therefore, sorting is required to significantly reduce the size.

We show the sizes of compressed data after sorting in Figure 2.9b. The main
difference can be noticed in the eBird dataset because it is the only one that is not orig-
inally sorted, although we could have shuffled the other datasets for the purposes of this
experiment.

Both FP-delta and sorting add benefits in reducing the final data size, but they
add some performance overhead. This evaluation is depicted in Figure 2.10. FP-delta
requires an additional iteration over the data, given that it calculates the final bit size
after completing all the differences. Also, its current implementation involves allocating an
additional buffer to store the final values. In the worst case. it seems that it adds up to
80% of overhead compared to writing the plain double values. Sorting can add a significant
overhead, because it is performed sequentially on a buffer of size at most one million ohjects.
However, considering the major benefits it adds this should be negligible. Moreover, in
practice we can sort very big data using distributed sorting/indexing techniques. Beast [66]
has several of these methods implemented on top of Spark. We plan to integrate Spatial
Parquet within Beast, which would make sorting/indexing, among other optimizations, a

more seamless process.

35

B FP-Dalta FP-Dalta+GZIP B FP-Delta+Hillbert © FP-Dalta+E

¥ Plain B Plain+GEIP '-=l_.' N Plaint+Hillbart W Plain+ %
“ - .00
g .
- 2 ane AL

12 ‘:II =
= = : =
o] in 1 El\.I:IIII - =
= - = -
B8 A 4o
= = £ = 55
= ® a2 ! 200 o o
T 8 o -
a g & = 85 Tg3g

" - g 210 = -

a H &
B -z | 1
= a
o A
PT TR MB aB PT TR MB el
Datasat Datasat
(a) No sorting (b) Hilbert- and Z-Curve sorting

Figure 2.9: The effect of sorting on output size in SpatialParquet

2.5.4 Column Statistics and Filtering

Parquet by default collects column statistics for column groups, and chunks. In
this experiment, we show the case when no filter is applied, and two additional cases with
a small range filter, covering less than 0.01% of the total area covered by the dataset,
and a somewhat larger range filter, covering something between 0.33% to 4% depending
on the dataset. Figure 2.11 shows these results for reading based on these configurations.
MNote that this filtering is applied per column group first, and then per column chunk. The
figure clearly highlights the benefit of this type of filtering. Note that GeoParquet has
similar benefit in terms of pruning parts of columns, but it stores additional columns for
the minimum-bounding-rectangle and applies the filters based on them. The current default
implementation of Parquet doesn’t support filters on repeated columns, however, we made
a slight modification to its source code to make it work in our case.

This is only the most basic type of pruning which is provided out-of-the-box.

However, there are several opportunities for more advanced indexing. Additional metadata

36

M Sort © Write

1363.523

o 1021.019

£00. 000
381.520
400,000
193843 214.856
200.000 oy 303 74.205 :
0.000 | [
-

& > > & &
@‘i& & R 5&*’ o R
<8 ¢ & F 4 s

Exccution time (s

Dataset 4+ Encoding

Figure 2.10: Encoding and sorting overhead

can be stored on each column and retrieved when reading prior to unpacking the values.
By implementing custom filters specific to spatial indexes, it should be possible to apply
more advanced pruning. Additionally, more accurate sorting can be applied by sorting the
entire dataset efficiently. The partitioning techniques available in Beast [66] can be used to

do so efficiently.

2.6 Related Work

This section covers the related work in two areas, column formats and encoding.

Column Formats Column stores [194] have been proposed for data warehousing and
analytical queries due to their efficient storage and retrieval. To support semi-structured

big-data with nesting and repetition, Dremel [152] was introduced by Google which then

37

B Read without filker Read with medium range filter

N Read with small range filter
G040 . (D

545.633

2
g
455.003

g
g

2
g
142,887

Execution time (seconds)
113.453

2
g
£2.004

12.071
I B.701
20,047
La80

']
=
S
3

PT TR MB eB

Figure 2.11: The performance of the light-weight spatial index

inspired the open-source Parquet file format [11]. It is widely used across many applications
for data storage and data analysis. Several big-data systems adopted Parquet as one of
its standard formats such as Apache Spark [229] which uses it in its Spark SQL [3] and
MLIib [154]. An experimental evaluation [69] showed the efficiency of Parquet with text
data. We plan to integrate SpatialParquet within existing big spatial data systems, e.g.,
Beast [66], which would make it possible to benefit from the existing functionality in Spark
for the Parquet data format. The only existing attempt to provide a column-oriented
format for geo-spatial data is GeoParquet [78], also referred to as geo-arrow, which encodes
the geometry value in the Well-Known Binary (WKB) format. However, as shown in the
experiments, this does not provide a good output size since it can only apply general purpose

compression methods.

Encoding Parquet ships with encoding techniques for integer and string values, e.g.,
delta, run-length, and dictionary encoding[17, 160, 102, 116]. We use RLE for the type
column but none of these techniques work with floating-point coordinates. Due to the
complexity of encoding floating-point values, some recent work proposed methods that are
tailored for specific applications, however, none of these focuses on geographic coordinates.
Gorilla [166] targets time series data. It applies XOR between consecutive values and adds
post-processing steps to remove leading and trailing zeros. Our preliminary investigation
determined that this method does not work well for geographic data and we found that the
proposed method is more efficient with geographic data. Similarly, the work in [39] focuses
on time series data and improves over Gorilla [166]. Also, [110] focuses on time series data
but provides a different approach by encoding similar patterns in time series by mapping
them to a dictionary.

Furthermore, other literature focused on the lossless compression of scientific data.
The work in [174] uses the integer delta encoding and XOR for encoding the values, as well
as, a hash-table for predicting the previous value. Other examples of lossless compression
of scientific data include [71, 54, 113]. These compression techniques can be applied after
the delta encoding but we leave this work for future research. We do not consider lossy
compression techniques [26, 59, 234, 134] in this paper since we propose a general-purpose
storage format while lossy techniques can be applied only to some applications.

There are several general optimizations that can be added for column structured
data. For example, the work in [186] explores how re-arranging the data can help improve

the space saved with run-length-encoding (RLE), which is something that we have discussed

39

in the experiments. RLE is not specific to any data type. Moreover, [94] provides a SIMD
based optimization for better filtering of column data. It claims that this optimization can
be faster by 90% than the default filtering in Parquet.

In summary, and to the best of our knowledge, SptialParquet is the only sys-
tem that proposes a specialized lossless encoding technique for floating-point geographic

coordinates.

2.7 Conclusion

This paper introduced SpatialParquet, a column-oriented file format for geospatial
data. SpatialParquet is designed to store large-scale spatial data in a column format that
reduces disk size and improves the performance of analytical queries. To accomplish its
goals, we explained how SpatialParquet introduces a Parquet data type that structures
all common geospatial data types, e.g., points, lines, and polygons, in a format that is
compatible with Parquet. To make the storage of floating-point coordinate values more
efficient, SpatialParquet introduced the FP-delta encoder, which is an efficient encoder that
captures the redundancy in geospatial attributes and utilizes it to reduce the storage size.
Finally, SpatialParquet used column statistics from Parquet to build a light-weight spatial
index that can reduce disk access by skipping file pages that do not overlap with a spatial
query range. Experiments on large-scale real data showed that SpatialParquet outperforms

all popular spatial file formats when it comes to data analytics.

2.8 Preliminaries

This appendix provides some preliminaries that are needed to understand this

paper in case the reader needs a quick memory refresh.

2.8.1 Geometry Data Types

Vector geometry data is represented as points, lines, and polygons. The Open
Geospatial Consortium (OGC) defines an industry standard for representing geospatial
data. It defines primarily seven data types as detailed shortly. Notice that each of these
data types has a variation that stores three-dimensional points (z, y, z) and four dimensional
points (z,y,z,m). We focus on two-dimensional points for simplicity but all the proposed

techniques in this paper can seamlessly apply for any number of dimensions.

1. Point is defined by a single coordinate (z, y).

2. LineString is defined as an ordered sequence of coordinates. A special case of

LineString is a Hing which has the same starting and ending points.

3. Polygon is defined as a sequence of Rings. The first Ring defines the outer shell and

subsequent rings define holes in the polygon.

4. MultiPoint is a set of Points.

5. MultiLineString is a set of LineStrings.

6. MultiPolygon is a set of Polygons.

7. GeometryCollection is a set of geometries that can include nested GeometryCol-

lections.

41

2.8.2 Parquet

Parquet is a column-oriented file format that is geared for big data storage. It
can store any data type that can be defined using Google Protocol Buffers Format (PBF).
Basically, PBF can store primitive values, e.g., numbers and strings, arrays, and nested
objects. Parquet only stores the primitive values in columns. Nesting and repetition are
supported by attaching definition and repetition levels to each column as further detailed
in [152]. The only limitation in Parquet is that all values in the file have to follow the same
exact PBF schema. Therefore, two records cannot contain mismatching values for the same
column, e.g., string and number.

Parquet groups the records into row groups which are typically 1GB in size. Within
each group, each column is stored separately as a column chunk. Each column chunk is
further split into pages. Finally, each page is encoded and compressed to improve storage
efficiency. When reading a file back, the minimum reading unit is a page. By default, each
page is about 1MB of size.

Parquet provides the delta encoding and run-length-encoding (RLE) to reduce the
storage size for each page. It also provides lossless compression techniques such as GZip
and Snappy to reduce the storage size. Finally, Parquet can collect statistics for each page,
e.g., minimum and maximum, and can use this information to skip reading pages that do
not fall within a user-provided query range. For example, if a user wants to read all entries
with the anomalous temperature of 125°F or more, Parquet can skip all pages that have

degrees below 125.

42

2.8.3 IEEE Floating Point Format

In computers, floating-point values are represented in the IEEE 754 floating point
standard as shown in Figure 2.12. The value is stored in three parts, sign, exponent, and

fraction. The value stored in this format can be calculated as:

(—1)9" (1. fraction), x 2°Pomeni—1023 (2.4)

Sign | Exponent Fraction
1- 11 bits 52 bits
bit

Figure 2.12: The IEEE 754 standard for floating point numbers

The key idea behind this representation is that any binary floating-point number
can be represented in the scientific notation as 1.frac x 2°F. Therefore, any value is first
normalized to make the decimal point® right after the most-significant one bit. After that,

only the fraction and exponent need to be stored.

2.9 Algorithm Pseudo-Codes

Algorithm 3 provides the pseudo-code for the algorithm that computes the number
of bits that minimizes the output size. First it initializes the histogram that captures the
number of deltas for each number of bits. Notice that the histogram has 65 bins since
the number of bits can go from zero to 65. The for loop in Lines 3-, scans all the values

and computes the delta as done in the original algorithm. For each value, it computes the

*We use the term decimal point for convenience even when describing binary numbers.

43

Algorithm 3 Find the number of bits to minimize the output size
1: function coMmPUTEBESTDELTABITS(double]] X)
2 h = Array|0..64] = The histogram has 65 bins
3 fori=1to |X|-1do
4: delta = cast-long(X [i])-cast-long(X [i — 1])
5: zigrag = (delta > 63) @ (delta < 1)
6
T
8
)

n = num-significant-bits(zigzag)
hin] + +
for n = 63 downto 0 do - Compute suffix sum
hin]+ = hjn +1]
10: n* =10
11: Smin = 64(|X| — 1)
12: for n =1 to 63 do

13: S=mn-(|X|-1)+64-hn]
14: if § < Snin then

15: (n*, Smin) = (n, 5)

16: return n*

minimum number of bits required for this delta and increments the corresponding bin in
the histogram. After that, the loop in Line 8 calculates the suffir sum of the histogram.
This is to allow the summation in Equation 2.2 to be calculated in constant time. After
that, to find the best value, we simply try all the 65 possible values and choose the one
that yields the minimum output size by applying Equation 2.2. Finally, we return the best

value n* that corresponds to the minimum.

Chapter 3

dsJSON: A Distributed SQL JSON

Processor

3.1 Introduction

The JavaScript Object Notation (JSON) is an open data-interchange format. It
gained its popularity with the rise of web applications, since it is the native representation
of data in JavaScript. As a result, it has been adopted in various applications resulting in
the need for storing and processing very big JSON data.

Consider the JSON file snippet in Figure 3.1. A user is interested in extracting
the objects (enclosed by { and }) in the products array, that fall within a specific category
(category == 11). To avoid expensive serial parsing, which can take hours for terabytes of
data, the file should be partitioned and parsed in parallel by different machines, as shown in

the figure. However, this is extremely challenging because, for the second and subsequent

45

Programming Interface

[*somahriribore®: ..., "produsts®:[
. o T Sormat (RAnTIcEe) ["id": 1, "regularPrice": 5.32, o]
-eption (® jssnbath® = ghi ppi nglaval sofSasy T
“§.produsts[# (8. cabegary Tdesil) | #} hmlw":l,m s
Load(® fpath/ e v jeen) Eigh . 5.091, ...1,
| . crma tabsReplace Tanp'las (producsts®) FundEERLERL Loats 3,080 !
[batasat<hows FiltaradDf = spack.sqgl (=" }
SELECT * FROM products e = = = = - 2
WEERS shippingOost. < 10°%%) ["LdF: B1OTE, *regulasPricas: 100.00;
£1] Earadbf, count () "shippingtavelsofseryicas: [1,
Initialize parser .
independently at each lFm - - ===
- . Fricat: 2, Worier §
partition following the *shippingLevelsofSarvicss: [{
Bulk-Synchromous- Egarvicalavellds 3
" P Parallel model FundtEhippingPeice®: 5}, ...]1,
Idel’lhf_lfﬂ Ill’I‘F_'leﬂ Ergviass®: [["sevias 149:3 Ssspbants :
structure for all .. my, o..] ¥
records matching 1)
the user provided
Spark DataF
fon = L Output: Spa rame
Analyze outputs
with Spark SQL
___. 1 532

Figure 3.1: An example highlighting dsJSON processing steps

partitions, the parsing state needs to be determined in the middle of the file. Moreover, as
the attributes (key-value pairs) of an object might be split among two (or more) partitions,
it is non-trivial for the parser to examine the filtering conditions specified by the user.
Even worse, since big data frameworks, like Spark [4] and AsterixDB [22], use the bulk-
synchronous-parallel (BSP) model, the parallel parsers are not allowed to communicate
asynchronously while parsing. To be able to perform different types of analysis readily
available like SparkS(Q)L queries, the JSON processor should build a unified schema that
matches the user provided queries. In this case, it builds a schema for all products that
fall within the specified category. Then, various SQ)L queries can be easily applied on the
extracted records. The example on the top-left highlights a simple query that counts the

extracted records with shippingCost < 10.

46

JSON data is produced and consumed in a large variety of use cases. As a popular
data interchange format, it is widely used to store data logs, backups, in raw text format,
usually encoded in UTF-8 or other suitable text encodings. It is also usually used to store
big data dumps that are collected from web APIs, or scraping websites. Furthermore, JSON
is used to represent datasets generated by professionals from various fields, like GeoJSON
which is a popular format for Geospatial datasets, thanks to its flexibility in metadata
storage.

Due to the vast range of use cases, JSON data often contains complex nested
structures and can be very large in size, posing several challenges. Unfortunately, existing
tools have limitations that can make it difficult to process JSON data in certain situations,
leaving users with the option of creating their own ad-hoc programs to extract the necessary
data. However, this process can be time-consuming, and even the final program may still
have issues due to the complexity of the problem. The following section outlines the three
primary limitations of current state-of-the-art JSON processors.

L1. Limited flexibility for parsing compler nested JSON records. Existing tools do
not provide full Hlexibility to the user to determine the most relevant parts that should be
parsed and included in the output. Without this Hexibility, processing big JSON data can
be impractical, due to memory and time constraints. The simplest JSON parsers simply
parse the entire input to one large object in memory. Others provide a little more fexibility
by taking a simple query from the user and extract values that match it. However, it is

still not possible to select multiple attributes from different nesting levels. Hence, the user

47

is still limited in defining the values to be included in the output. Distributed systems like
Apache Spark don’t support all use cases due to lower flexibility at the parsing stage.

L2. Limited scalability for data in the general JSON format. Existing distributed
systems like [4, 22, 66] cannot parse the general JSON format, instead they are limited to
a specific type like the JSONLines [100] format, in which records are separated by the new
line character, where each line corresponds to one record in the output. However, many
real applications require processing general JSON files like the one shown in Figure 3.1,
which can grow in size, making it a huge bottleneck when processed in a single machine
environment. Existing parallel parsers of the general JSON format are designed for parallel
shared-memory systems or asynchronous message passing interface (MPI) and cannot be
used in big-data shared-nothing systems such as Apache Spark and AsterixDB which rely on
the BSP model where asynchronous communication is not allowed. This makes it impossible
to process very large files where the resources of a single machine are not sufficient.

L3. Limited support for reading JSON data to a structured format to support ex-
ecuting analytical queries. Performing analysis, like executing SQ)L queries or training a
machine-learning model, requires identifying a unified structure of the data. This can be
challenging on its own. Systems like Spark perform an inference step to identify this struc-
ture by simply computing the union of the object type of each JSONLine in the input data.
However, this would fail when there are hundreds of thousands of different attributes in all
records which is too big to handle for Spark as further detailed in Section 3.6. Furthermore,

existing single-machine parsers that support the general JSON format are not integrated

with a full-featured data analytics system, making it very difficult to perform complex anal-
ysis without applying intermediate steps like converting the data into a different format.

Simply converting data to the JSONLines format is not always practical. First,
there is no unique way to do this conversion. In the example in Figure 3.1, a user interested
in product reviews will only extract the reviews which include the review score and text,
while a user interested in price analysis will extract product data including category, price,
and description. Second, there is no scalable way to convert general JSON to JSONLine
as mentioned in L2. Ensuring data is generated as JSONLines is not always possible when
data is collected from various sources. Third, even if data is strictly collected in this format,
existing JSONLine processors could fail with complex records since they provide very limited
options for schema inference, like identifying a schema for a specific product category, or
simplifying complex schema.

Moreover, it is worth noting that the data we are concerned with is stored in raw
text format, encoded using UTF-8 or similar, making it even more challenging to process,
since the start and end of each record and the number of attributes it contains is not known
prior to parsing. This is in contrast to data stored in managed databases like [2, 165
that can efficiently process JSON records by storing them in a binary format and possibly
building indexes around them, after a required data insertion step.

To address the above limitations and challenges, this work introduces the first Dis-
tributed SQL JSON (dsJSON) processor, fully integrated into an analytics system (Apache

Spark). It parses any valid JSON file into a set of records (Dataframe) that can then be

49

processed using SQL queries or machine learning models. In mitigating L1, dsJSON pro-
poses a data structure called the projection tree, that is used to track the parsing state, and
selectively extract the desired attributes, which ensures minimal overhead. The projection
tree is built from user provided queries, providing a lot of flexibility for the user to define the
parsing stage. To overcome L2, dsJSON provides two partitioning techniques that make it
possible to initialize and process the parser at each partition fully independently, following
the BSP model. The minimal memory requirement, in addition to the robust partitioning
methods, make dsJSON easily scale to very big JSON data. To address L3, dsJSON pro-
vides a schema inference method using the proposed projection tree. Building a schema,
based on the selectively parsed records, makes it possible to handle very complex records.
Schema inference is required for integration with systems that expect (semi-)structured
data, like SparkSQL [3] and MLIlib [154]. Furthermore, dsJSON pushes SQL projection and
filter operations into the parser to improve the performance by skipping unnecessary parts
of the input file.

The rest of this paper is organized as follows. Section 3.2 provides some prelim-
inaries about JSON grammar and parsing. Section 3.3 introduces the projection tree and
provides an overview of the system. Section 3.4 describes how we build the initial projection
tree for the user provided JSONPath queries. Partitioning and schema inference are dis-
cussed in Sections 3.5 and 3.6, respectively. Section 3.7 discusses SQ)L projection and filter
push down into the projection tree. Section 3.8 gives the details of record parsing. Sec-
tion 3.9 provides an extensive experimental evaluation of the system. Section 3.10 describes

the related work. Finally, Section 3.11 concludes the paper.

3.2 Preliminaries

The standard JSON grammar has two main components: objects and arrays. An
object can have multiple key-value pairs. The order of the pairs has no significance, and
this can add to the complexity of parsing the records into a structured, uniform format.
The other major component is arrays. The elements of arrays can be any valid JSON value.
A wvalue in JSON can be any nested JSON record, or a primitive value. Primitives can be
strings, numbers, or one of the reserved words: true, false, and null. The latest version
of the standard JSON grammar can be accessed at [99).

There are many variants of the JSON syntax. One very popular variant is the
JSONLine format, in which each line in the file contains a separate JSON object. While
this format imposes more restrictions over the general JSON format, it is adopted in some
systems, e.g., Apache Spark [4] and AsterixDB [22], due to the simplicity of parsing it in
parallel. Simply, the file is partitioned into lines and each line is parsed as one unit. Another
well-known variant of the JSON format is GeoJSON. This format follows the conventions
of the standard JSON format, and the records can exist in multiple lines. It follows a
pre-detrmined structure, but may contain metadata that is different from one object to
another.

A JSON document can be tokenized into several parts, defined next, and these

tokens can be used to track the position within the document while parsing.

Definition 1 (JSON token) is either one of the control characters, <{* , }> , [’ , and

‘|’ ., a key, which is a string that comes before a colon, or a primitive value, e.g. a number

or a string.

While parsing a JSON document similar to how it is done in [96], a stack is used
to track the position. Encountering one of the open control characters { or [or a key
results in a push operation. Encountering one of the closing characters } or] or reaching
the end of a value after a key results in a pop operation, and it must correspond to the top
of the stack.

A simple way to query a JSON structure is by using a JSONPath query [80], which
is similar to the XPath [55] queries for XML data. Similar to XML, a valid JSON file is
represented as one tree with a single root. This makes it unsuitable for SQL processing
which requires a set of records, unless we are processing small JSON files, where each file
represents one record.

Some JSON data can get very complex, with records containing hundreds of key-
value pairs, and deeply nested objects. Furthermore, some queries can further complicate
the parsing with the addition of filtering and descendant elements. To mitigate this, JP-
Stream [96] introduces the concept of streaming-automaton that is built from a user provided

JSONPath, and uses it to track the parsing state.

3.3 Projection Tree

This section gives an overview of the projection tree, which is a data structure
that dsJSON introduces to selectively parse JSON data and convert the extracted semi-
structured JSON records to a structured data format. This is a vital step to run any SQL
query on the JSON data and what distinguishes dsJSON from regular JSON parsers that

just produce a JSON object. In relational algebra, projection is the operator that can add

or remove columns in relations. The name of the projection tree comes from the fact that
it selects a subset of values from different nesting levels from complex JSON documents,
and converts them from a semi-structured textual format to a structured one that can be
processed using relational algebra operators. Before formally defining the projection tree,

first we provide definitions for its basic building blocks.

Definition 2 (JSON path) A set of JSON tokens that determine the position of a value
within a JSON structure. These tokens contain open object *{’, open array ‘[’, or a key,

i.e., attribute name.

For example, in Figure 3.1, both attributes id and regularPrice exist under the JSON
path: { *{*, ‘products’, ‘[’, ‘{’). Knowing the path leading to a value allows us to

determine whether its value is needed, leading us to the essential path.

Definition 3 (Essential path) A path in a JSON document that leads to an attribute
required for parsing a desired record.

In dsJSON, essential paths are determined from user provided queries, i.e., JSON-
Path and SQL queries. When parsing, a JSON path that does not correspond to an essential
path triggers a skipping mechanism to discard values descending from it, until reaching the

prefix of an essential path. To track all of these transitions and more, we unify them under

the concept of the projection tree.

Definition 4 (Projection tree) A tree comprised of all essential paths that are used to
selectively parse a JSON document and apply compler nested record projections. Each node
in the tree corresponds to a token within an input JSON document, where leaf nodes corre-

spond to primitive attribute values, e.q., numbers or strings. Transitions in the tree occur

53

as JSON tokens are read from the input, and can trigger several operations like filtering,

skipping, or projecting the selectively parsed values to a structured format.

The design of the projection tree makes it more efficient to overcome the limitations
we are addressing. dsJSON goes through a few stages prior to producing the final structured
output, and all stages relate to the projection tree. Figure 3.2 highlights the five stages of
projection tree processing in dsJSON, namely, initial tree construction, input partitioning,
schema inference, SQL push down, and row parsing, further detailed below.

The first stage in dsJSON is building an initial projection tree by processing the
user-provided JSONPath queries into tree structures, and merging them. Figure 3.3 shows
an example of a projection tree. The first part of the tree (nodes #0-#10) is built after
processing the user provided JSONPath queries. This initial tree can only support sequential
JSON parsing but cannot produce structured records. This process is detailed in Section 3.4.

To be able to process the input data in parallel, the next stage in dsJSON is parti-
tioning. This stage uses the projection tree to determine how to shift the starting position
at each partition, such that the starting JSON path at an arbitrary starting position is
known, and to avoid splitting records among different processors. We provide two parti-
tioning methods, which are specifically required for data in the general JSON format. In
this stage, one node in the tree is identified as the split node, e.g., node #3 in Figure 3.3.
Section 3.5 provides the details about this stage.

MNext, schema inference is performed on the initial projection tree. This stage
produces the expanded projection tree, adding nodes #11-#24 in the tree in Figure 3.3.

This makes it possible to identify a structured format for the final output. Performing

schema inference through the projection tree resolves some of the limitations in existing
systems that cannot produce structured records. The details about schema inference are
provided in Section 3.6.

The fourth stage is SQ)L push down that further optimizes the projection tree by
pushing down SQL projection and filters. Based on the types of queries the user executes
on the structured data, SparkS(QL determines the required attributes and pushes down
some of the filters, especially those non-aggregate in nature. In Figure 3.3, SQL push-
down results in pruning nodes #10, #16, #18-#24, and adding the last predicate to the
filter associated with node #4. In a lot of cases, SO)L push-down may result in pruning or
skipping hundreds of attributes which can provide significant performance gains. This step
produces an optimized projection tree, which is what is used in the final stage of actually
parsing the input records. This part is detailed in Section 3.7.

Finally, after obtaining the optimized version of the projection tree, the row parser
starts producing the final output records in the expected schema. The transitions that occur

in the projection tree while parsing JSON documents are detailed in Section 3.8.

3.4 JSONPath Query Processor

The first problem we face when parsing JSON files is how to define the output
records. Keep in mind that a well-formed JSON file is just one big object but it also
contains many nested objects at various levels. There is really no right or wrong definition
of which records to produce since it all depends on the user application. Notice that in the

JSONLine format, each line in the input corresponds to one record in the output, while for

]

3 ¥
‘ 4
1
=]
=
!
=y
o

Figure 3.3: Complete Projection Tree Exam-

Figure 3.2: System Architecture of dsJSON ple

the GeoJSON format each record is defined by a geometric feature. However, even for these
formats it can be more practical to parse complex records more selectively. To resolve the
issue of defining the selected attributes while giving the user the full flexibility, we adopt
the syntax of the JSONPath query as a method of defining which records to return.

In the remainder of this section, we first describe how a single JSONPath query
is processed to construct a projection tree. Then. we show how multiple projection trees
produced from different JSONPath queries are merged into a single projection tree. After

that, we describe how JSONPath filters for each object are combined.

3.4.1 Processing a single JSONPath query

This part explains how we construct an initial projection tree from a single JSON-
Path query. A JSONPath query indicates to the parser that all values descending from this
path must be included in the output. The first step in processing a JSONPath query is
tokenizing it into its components, and identifying the type of each one. The first token in
a query based on the JSONPath syntax always starts with the root symbol $. Following
tokens can then be one of three types: key-token, descendent-key-token, and array-token.

The key-token type corresponds to a key in the corresponding depth in the JSON
file, and is preceded by a dot, e.g., *.products’. The second token type is descendent-key-
token written as .. and followed by a key, which indicates that the depth of the JSON
path for matching the next token should not be dependent on the corresponding level on
the query, e.g., *..secondDay’. The third type is army-token, written as a pair of square
brackets, e.g., “[*]’.

An array-token can can either take the wild card symbol * for accepting all el-
ements in the array, or can take a filter, e.g., ‘[?(@.categoryld==11)]’. The original
JSONPath query syntax can take the indexes of arrays as filters. However, we omit index-
ing since it is impractical to know the exact index of each object when the file is partitioned
and parsed in parallel. This is because communication is not allowed among Spark execu-
tors, following the BSP model. For most use cases, filters and projections are sufficient
for selecting the relevant records and the order of records in an array is not important.
Furthermore, if a fixed number of records is desired, the parsing can stop after producing

that desired number. Additionally, in most cases, the order is still preserved knowing the

partition id, and we also provide the option to store an additional field that can be used to
access the rows based on their order.

The original JSONPath filters are only supported for arrays, but for additional
flexibility, we allow filters to be provided after any key in the query as long as the value is a
nested JSON object, and it can be written between a pair of round parentheses instead of
square brackets to differentiate between the different token types. For example, this makes
it possible to add a filter on the address object, like ‘$.products[+]. .address(7(@.city
== Seatle))’.

After tokenizing a selection query and extracting any filters, those tokens are then
used to build an initial projection tree. We show four examples in Figure 3.4. Notice
that each token in a provided query has one corresponding node in the produced tree.
Additionally, prior to any node corresponding to a key-token we add a preceding object
node. Keys in a JSON document always exist within a JSON object. Also, object nodes in
a projection tree are used to apply filters and transitioning down to and up from an object
node corresponds to reading an { and } , respectively. The projection tree transitions are
described in more detail in Section 3.8.

When building a projection tree, we identify a special node that determines when a
record is fully processed and sent to the final output. We refer to this node as the projector

node.

Definition 5 (Projector node) A node that indicates the level at which the record is
complete and ready to return. It is always the first node from the root where the tree

diverges into multiple paths.

- dirsot ohild te Inedineot ohild =0 objsot Nker pointer

O

CH e H]

G g ko’

CH H R H |

bl T == truel]. svalsOTarviosl*]

[HHW

—

@ fpr bt vioa[PHl.type == &t] rios

Rl PN bl o IS]

HHLW |

Figure 3.4: Example projection trees from single JSONPaths

In a tree built from a single JSONPath, the projector node is always the last node corre-

sponding to the last token in the query.

3.4.2 Merging multiple JSONPath queries

While one JSONPath query could be enough to properly select the desired set of
records, there are many cases where the user might need to specify two or more JSONPath
queries. For example, in Figure 3.1, the nested object contains hundreds of attributes but
the user might want to select only ‘servicelevelld’ and ‘unitShippingPrice’. If we use
a single JSONPath query, then all the sub-attributes will be selected which incur a huge
overhead on all the stages of JSON parsing. Therefore, the design of dsJSON allows users

to provide many JSONPath queries, which unlocks the potential for complex use cases.

59

The main part in merging multiple JSONPath queries is to find the most common
path among them, ignoring any filters. The queries in Figure 3.3 all share the JSON path {
“{’, ‘products’, ‘[’, “{’). This corresponds to the first five nodes in their individual
initial projection trees. Merging the queries results in producing an initial projection tree
containing nodes #0-#10 shown in Figure 3.3. The last node that is common among all
the queries (node #5) is defined as the projector node, since it is the first node when the

initial trees start to diverge into multiple paths.

3.4.3 Defining object filters

The filter expressions, from the JSONPath queries, can be used to improve the
performance of JSON parsing by early skipping records that do not match without fully
parsing them. To integrate these filters into the projection tree, each filter is converted
to an internal tree structure, e.g., Figure 3.5, and attached to corresponding nodes in the
tree. The leaf nodes in the tree correspond to JSON attributes (variables) or constants.
Each internal node represents a predicate, e.g., =, or a Boolean operation, e.g., AND (&&).
Additionally, we add a hashmap that maps each variable to its leaf node in the tree to
quickly locate it. As soon as a variable is parsed from the input, we plug its value in the
tree and propagate the evaluation up to the root. A predicate is evaluated when all its
operands are available. For example, in Figure 3.5, since the root node is an AND operator,
as soon as one of its children evaluates to false, the remainder of the record is skipped.
In the case of the AND operator, it propagates if one of the operands evaluates to false or
all the operands evaluate to true, while for the OR operator it propagates if one is true or

all are false. By default, when a filter does not fully evaluate because a value is missing

60

is considered true, the user can change this behavior by including a predicate that checks
that these required values exist (?(... && @.someAttribute '= null)). When merging

multiple JSONPaths, the filters at corresponding nodes are also merged. While we build the
initial projection tree using multiple JSONPath queries, we opted for the option to support
only one, possibly compound, filter per object. By default, if an object has filters coming
from multiple paths, they are merged using an AND operator. While it can be trivial to add
support for multiple filters, and only discard values descending from the path of a filter
that evaluates to false, it makes the behavior harder to follow from the perspective of the
user. The user can control logical operators by simply writing the filter corresponding to a
specific node in one JSONPath query, instead of splitting among multiple queries.

In addition to the simple filters on primitive attributes, dsISON is extensible and
can supports user-defined complex filters for different data types. In the experiments, we

use filters for the Geometry data type when parsing GeoJSON files.

{clearance == trus) &5 [quantityLimit = 1) & [reguiarPrice == 1000)

M-

)

PN IV

(—\ll_ ...--"z
J_.:M

Figure 3.5: Example filter expression tree and variables map

61

3.5 Partitioning

Similar to most big-data systems, Spark uses the bulk synchronous parallel (BSP)
model in which asynchronous communication is not allowed between executors. This means
that each partition in a JSON file should be parsed independently. However, the projection
tree used to track the parsing will not be able to parse the second and subsequent partitions
without being initialized at the correct node. This is very challenging since the initial path
at an arbitrary position generally depends on the entire file before. The JSONLines format
does not require this part, since the start and end of each partition is shifted to the next
newline character, hence, the entire JSON object is always contained in only one partition.

To make sure that partitioning does not split output records and projection filters

among two processors, the projection tree has a special node referred to as the split node.

Definition 6 (Split node) It is the decpest node in the tree prior to the projector node
and any object with a filter. It determines the initial JSON path allowed at the start of a
partition. The start of a partition must be shifted such that its start is not descending from
the path corresponding to this node to avoid splitting output records and filters between two

partitions.

The split node in Figure 3.3 is node #3. When initializing the projection tree at an
arbitrary token the partitioner must shift to a token at a path that is not descending from
the split node. To illustrate this concept, Figure 3.6 shows how the positions of characters
suitable for splitting change with different queries. The projection tree of each of these
queries are those in Figure 3.4. ()1 extracts all objects in the products array. Each of these

objects will represent one row in the final Dataframe (table) output. The split node, being

62

at the array-node just prior to the projector node, makes any control character { } []
. or white space characters that are not within the matched objects suitable for splitting.
()2 selects inner objects, and this allows for more split points, as long as the matched inner
objects are not split. Q3 is similar to (2 except that it adds a filter to objects in the
products array. This filter causes the split node to be the same as that of)1, to ensure
that filters are not split among partitions, and similarly for Q4.

This design choice has considerable practical benefits, but it imposes two minor
limitations. First, it cannot efficiently partition a document when filters are added at the
root node or with attributes that exist only at the start or end of a very large document.
These types of filters might be useful to prune JSON documents out of a very large set.
This will cause no issues for small files since they do not need to be partitioned, but for large
documents, it hinders the level of parallelism that can be achieved. In practice, this is not a
big issue since existing JSONPath processors only support applying filters to JSON arrays
of type object, because typically users are interested in filtering large arrays. Furthermore,
for this type of analysis, each matched row is not expected to be big. Second, it limits
partitioning opportunities when matching documents that are extremely large. However,
most database stores impose a limitation on the size of a row, usually in the order of
megahytes, and this is still too small to cause any serious partitioning issues.

To overcome this challenge, dsJSON provides two methods for partition initializa-
tion, speculative and full pass. The speculative method collects information from the start of
the file and then speculates based on this information at each partition. The second method

uses a full pass on the file that tracks the path at the end of each partition. Then, a merge

63

maiched objects |ﬁﬁﬁis=emnpxmuu

«» - |placeholder for omittad JSON text

Figure 3.6: Changes in split positions and matched records

step determines exactly the start state of each partition. The full pass method is helpful

in the uncommon use cases where speculation might fail. At the end of the partitioning

method, the initial path for each partition is determined and is used to initialize the state

in the row parsing stage.

{"total": ..., "url":..., ..
{..., "id": 1, "productId":
--—— Partition ling ———
1436108,"locations": [

{midv: ...,
"address": {"street":

1, ...},
£..., "id": 2,
[{"id": ..., "nama":
-——— Partition line -——-
"city": ...} 31, ...

.y "products": [

"mame": ...,

"productId": 2636643,"locations":

Moo

cey Mediry": L.} R

"address": {"street": ...,

11

Figure 3.7: Partitioned JSON Data Example

64

3.5.1 Efficient with speculation

The key idea of the speculative partitioning method is to collect some information
from the beginning of the file and use this information to accurately speculate the projection
tree at each partition. This method assumes that the entire file will mostly follow the
structure of the first part and will use that to resolve any confusion. For example, if it
knows from the first part of the file that the key ‘address’ appears only while the parser
is at a specific projection tree node, the parser will use this information to adjust the
projection tree node whenever that key is encountered.

This method collects the information needed for speculative partitioning only from
a small portion at the start of the input file. We empirically found that in the majority
of use cases, the first megabyte of the file is sufficient for accurate state identification. It
starts from the beginning of the input file and collects all the encountered keys along with
the corresponding path encountered prior to reaching the key. The key-collector also has a
counter for how many times a key is encountered at a given path. The counter helps select
the best keys for speculation when partitioning. To illustrate this, the key collector will
generate the map in Table 3.1 from the JSON data in Figure 3.7. Some rows are omitted

from space.

Tahble 3.1: Collected keys map

Keys Path Ciount
total, products 1

id, locations producta [1000
id, name, address products [{ locations [5234
city products [| locations [| address | [5234

65

This table is used to resolve the ambiguity of the starting node of the projection
tree without having to start parsing from the beginning of the file. In most cases, the format
of the JSON file is consistent throughout, which makes the parsing state similar when one
of the keys in the table is encountered. Furthermore, most keys in the table have only one
entry which makes it possible to identify the initial node without any ambiguity. It is also
possible to speculate on a key that has multiple entries as long as they result in the same
projection tree node and exist at the same depth in the JSON structure and only differ in
the value of the keys. However, there are cases where the same key could appear at multiple
paths. For example, the key id in the table appears at two different paths. Moreover, the
counter keeps track of the frequency of each occurrence so that the state initializer will
rely more on the more frequent occurrences that has one entry in the table. The most
frequent keys with only one entry, in this example, are name, address, and city, followed
by locations. All of these make good choices for speculation. In the real dataset that this
is based on, there are hundreds of such keys. If one of these keys is encountered, it is used
to determine the state. In the rare case, where the matched key exists at a different path
than the one on the table, then the wrong node will be identified.

Based on this concept, the speculative partitioning method continues after building
the table in two steps. First, it defines an initial data-oblivious partitioning that simply
partitions the file into fixed-size partitions, e.g., 128 MB each. Second, it applies a data-
aware adjustment step that shifts the partition boundaries to the next identified key from
the table. Notice that the adjustment step happens in parallel since each partition boundary

is shifted independently, which suits the BSP model. After that, the position is shifted to

match a node at or prior to the split node to ensure that a matching record is not split.
Speculation can also be improved by searching for multiple keys that are correlated, even if
some of them exist in multiple paths. However, since we found that practically the simpler
version works well we leave this as a future improvement.

In the example in Table 3.1, if the partition initially starts at the name field, which
is at a path that is descending from the path corresponding to the split node, then it must
search for the following characters }, 1, and }, respectively, to arrive at the split node. This
ensures that matching records are not split.

With invalid speculation, the parser either will encounter unmatched closing char-
acters when traversing the projection tree, which would raise an exception, or the parser
will continue unaware of the error. However, if the parser continues, it is unlikely that it
will match any records, or it will match records that look very different from the inferred
schema. To ensure that no errors happen, we add a post-processing check that verifies that
the initial path of each partition matches the termination path of the previous partition. If
they are equal for all consecutive partitions, then speculation is guaranteed to be correct.
The program raises an exception if speculation is not verified with information about at
which partition it occurred and the token that was used. Users will then fallback to the

full-pass method which is described next.

3.5.2 Exact with a full file pass

While speculation works most of the time, there are cases where it could fail. It is
when the schema of the first N records is not enough to generalize to all records in the file.

This can happen when a dataset contains recursive objects. Consider the products array

67

example shown earlier, if records within it also contain an attribute called relatedProducts
that also contains all the attributes within the parent product, it would not be possible to
speculate on this dataset since for any attribute within the products array there are at
least two possible parsing states, assuming the relatedProducts is also repeated and the
nesting can go multiple levels deep. In this case, the only option is to do the partitioning
using the full-pass method. The user can also try to normalize the structure of the data
through appropriate JSONPath queries by only selecting the productId attribute of all
related products, for example.

One reasonable use case that we were able to identify is partitioning GeoJSON files
that contain nested GeometryCollections. That is, it contains objects of type GeometryCol-
lection that also contain GeometryCollection objects within them, and the nesting can go
multiple levels deep. This way, all the keys in the file will exist in multiple depths. Using
speculation on this file, will raise an exception, since filtering the encountered-keys table
will result only in the keys that exist once at the top of the file. Hence, a full pass parti-
tioner is required for these use cases that rarely occur in practice. Previous work considers
multiple paths that are possible and start parsing assuming one of them, and restarting
when a path is identified as false. However, the way the system is designed based on the
Spark Data Source API, records are returned as soon as they are parsed. While we can
delay returning those values until we eliminate all the alternative possibilities, which might
result in multiple full passes over a partition, we opted to have one full pass that guarantees
the correct state is initialized, and ensure no significant memory overhead is required to

store intermediate values. The data is not fully parsed during this iteration, and it requires

minimal memory and communication overhead since only a small array is gathered from all
the partitions at the end of this stage.

The key idea of the full-pass partitioner is to scan all partitions in parallel and
record the path that leads to each key within this partition. Except for the first partition,
the second and subsequent partitions will record invalid paths since they are unaware of
the initial path at the beginning of this partition. For example, in Figure 3.7, the second
partition starts at the path { *{", ‘products’, ‘'[", *{’, ‘productId’ }. To resolve this issue, the
full-pass partitioner keeps track of two additional pieces of information for each partition.
1) The inner path, which is the path that leads to the end of the partition that is not closed
yet as shown in Table 3.2. 2) Any close object ‘}’ or close array ‘]’ tokens that are not
matched with a corresponding open token. This information is collected at a central node
that corrects the paths within each partition. The idea is to propagate the inner paths,
representing open token with no closing token, with non-matching close token in the same
order of partitions to determine the initial path for each partition. Once the initial path is
determined, the correct path leading to each token can be easily calculated by prepending
the initial path to the one computed within the partition. Finally, the start and end position
of each partition are shifted according to the stored positions of the latest open symbaol.
Using this method also makes it possible to skip an entire partition in later processing if
it starts at a redundant path that does not end by the end of the partition. The start
positions are also shifted to match the split node similar to the previous method.

The main edge case when applying the full-pass partitioning function is when the

start of a partition falls within a string. This is easily handled knowing the JSON syntax.

69

Simply, we start parsing as if the partition does not start in a string. If parsing fails due
to incorrect JSON format. we restart assuming that the partition starts within a string.

Interested readers can refer to [95] for more details.

Tahble 3.2: Full-pass partitioning complete output

Part | Toner Path Initial Path

[[prodncta [| productld ENFTY

1 } | locations [| addrass { | [products [{ productId

F] I DERER] [producta [[locations [| addrass

3.6 Schema Inference

This step takes as input the initial projection tree and the input data. It produces
a unified schema for all records that will be added to the final output. The schema is defined
as a list of pairs (name, type), each indicating an attribute with the name that appears in
the JSON file and its data type, e.g., string, numeric or a nested structure. This schema is
important for SparkSCQ)L which needs an initial schema to be able to parse and analyze the
SQL queries that the users provide. For example, it needs to verify that there is a numeric
column named regularPrice for the SQL query in Figure 3.3. This section describes two
methods for schema inference, optimistic and pessimistic. Then, it follows with a discussion

on how to mitigate a JSON file with an extremely complex schema.

Table 3.3: Inferred schema after expanding projection tree

id | regularPrice | secondDay Ehlm:f_mr Tobjoct]
unitShippin ice | secondLevelld | service Level Name
long double array[doublo| Ao ubluEPt Tong StTinE

T0

The optimistic method produces the schema from a fixed size at the start of the
input data, which we limit to 1000 records by default, but it is left as an option to the user.
This method is much more efficient since it uses a very small portion of the data under
the realistic assumption that all other records will follow the same schema. The likelihood
that the matched records follow the exact same schema increases based on how selective
the JSONPath filters provided by the user. For example, given a filter that selects products
from a specific category, then, the variability of the schema would be minimal, hence, only
a small number of records will be needed to build a unified schema. The pessimistic method
runs a full pass over the file to ensure the result is correct without making assumptions.

Optimistic schema inference works by first getting the initial projection tree in
order to find matching records. It starts parsing from the beginning of the file, whenever a
record is matched with the JSONPath query, it stores all attribute names and their inferred
data types. Figure 3.3 illustrates how schema inference works. In a sense, dsJSON expands
the initial projection tree (nodes #0-#10) when parsing a record, producing all other nodes
in the tree. After it completes a record, the row projector node returns the row schema of
the matched record, like the one shown in Table 3.3. Then, as more records are matched,
the schema of all matched records are merged into one while updating data types to be
more broad. Most type conflicts are when all previously obtained records have a key of
undefined type, while a new record might have a different type. Some attribute types might
also be resolved from long type to a double type, as new records are matched. We limit
the inference to be based on at most the first 1000 records by default. We found that this

default number produces accurate schema while still being reasonably efficient, but it can be

71

easily changed by the user. This method is executed simultaneously with the partitioning
stage if the user chose the speculation method.

For the pessimistic schema inference, first it is required that the data is partitioned
and the projection tree at each partition is initialized accurately, so that this stage is
processed in parallel. Pessimistic schema inference is required for data where some keys
may only exist in some records, and when the entire correct schema is required. It works
similar to the optimistic schema inference described above, but it uses the entire data. After
each partition is processed independently similar to the optimistic approach to produce a

schema. Then, all schemata are merged to produce the final complete schema.

Extremely complex schema: In some use cases, merging the schema of matched records
may result in a very large nested schema that causes failures due to requiring a very large
memory footprint. This is because some fields may not have uniform nested structures
across the data. In existing systems, like in the Apache Spark JSON reader, failures can
only be mitigated when the user manually provides the schema and setting those complex
nested objects as string columns, or discarding them completely. However, the data in these
columns would still be in their raw semi-structured JSON format, and will not benefit read-
ily from the existing tools like SparkSCQL queries without additional processing iterations
that might require implementing some custom functionality. dsJSON resolves this schema
expansion issue in three ways, filters, multiple JSONPath queries, and lazy parsing.

First, because dsJSON supports applying filters when inferring the schema, pro-
viding appropriate filters results in selecting objects that are more uniform in structure,

minimizing the issue of schema expansion. Consider the OpenStreetMap dataset [232] that

T2

we use in the experiments, without using filters, the merged schema grows very large result-
ing in an estimated size of 1MB per record, which is much larger than the size of a record
individually, eventually resulting in execution failure due to running out of memory. This is
because it has a large variety of objects which have different attributes in their metadata.
Adding appropriate filters, like limiting the selected types and geometric boundaries, re-
duces the estimated size per record to 400 hytes, which is the expected size for 20 attributes
of type string, thus, avoiding the failure. This is not to mention that this dataset cannot
be processed using the existing Spark JSON reader. because it is not in the JSONLines
format, and the entire dataset is one large JSON object that exceeds two terabytes in size.
While Beast [66] supports reading GeoJSON files, its current version fails while partitioning
this dataset, moreover, it doesn’t support applying analytical queries like those provided by
Spark SQL, because it doesn't have schema inference. Therefore, this only leaves dsJSON
as the only solution that supports this type of complex large scale data processing.
Secondly, because dsJSON supports extracting values using multiple JSONPath
queries, this allows designing path queries that avoid sections in the JSON data that causes
schema expansion. The Wikipedia dataset [9] that is also used in the experiments causes
schema expansion failure when the schema of the entire records are merged. The way this
dataset is designed includes id names as keys within objects, and the size of one record
can be hundreds of kilobytes. When merging the schema of different objects, the schema
size keeps increasing until the program fails. dsJSON avoids this issue by using multiple
JSONPath queries including descending paths, which results in building a compact schema

that covers only the relevant part of the data for the desired output.

T3

In this case, the user can adjust their JSONPath queries in a way such that that
the final matched records are more unified, especially with the use of descendent attributes.
There is also the option to apply the JSONPath filters while building the schema. An
appropriate filter may lead to selecting records that mostly follow the same schema, thus
avolding that issue. Without these options, it would not be possible to find a schema of a
reasonable size that matches all the records. For example, because none of these options is
available in the JSONLines reader in Apache Spark, it fails prematurely while inferring the
schema of some files, as shown later in the experiments.

For the lazy parsing method, dsJSON provides the option to automatically detect
fields that may result in schema expansion by setting a threshold for the number of allowed
subfields, and treat those detected fields as strings, where they can still be processed sepa-
rately in later stages and they will need to be parsed then. This comes as the last option for
avolding schema expansion without any loss of data. The user also has the option to pro-

vide their own schema which would save the schema inference time, assuming the provided

schema is valid for the matched records.

3.7 Projection Tree Optimizer

This section shows how the projection tree is finalized by pushingSQL filters and
projections down into the tree. While we can simply let SparkS(Q)L operators apply the
projection and filter operations, this additional optimization step can greatly speed up the

parsing by skipping parts of the input that are not needed. For example, if the filter does

T4

not pass, the rest of the record can be skipped. Also, if only a few attributes are needed,
the parsing can stop once these attributes are found.

MNote that SCQ)L queries can only be applied to the fields in the inferred schema of
the records matching the JSONPath queries, since Spark SQL [3] requires analyzing the
schema before pushing down filters and projections, and the schema is based only on the
output of the matched records.

SQL projection push-down optimizes the projection tree by pruning paths that
lead to non-required attributes. SparkS(Q)L pushes-down projections as a list of fields in the
schema that are required for the applied analysis. Based on this list, different changes on
the projection tree are applied. If a node does not exist on the list of required attributes and
it is not used in a filter, then it is pruned out of the tree along with its descendent nodes.
If a node does not exist on the list but it is used in a filter, it is changed to a filter-only
node. Nodes that exist on the list are kept as-is. In the example provided in Figure 3.3,
this operation results in pruning nodes #6, #7 and #10 and all of their descending nodes.
In practice, as further confirmed in the experiments, projection push-down can result in
pruning hundreds of nodes, which provides significant performance gains.

SQL filter push-down is integrated by converting the provided filter to an internal
expression and appending it to the filter associated with the projector node, e.g., node #4 in
Figure 3.3. It also results in updating the expression tree of the associated filter, like the one
in Figure 3.5. Note that the existing JSON reader in Spark also implements projection and
filter push-down which confirms the effectiveness of this step. However, dsJSON makes two

fundamental differences. First, Spark uses the Jackson parser [6] as a black-box and adds

7o

the projection and filter support as a post-processing step while dsJSON integrates them
into the row parsing. Second, dsJSON seamlessly combines JSONPath and SQL projections

and filters into one data structure, i.e., the projection tree, which makes it more powerful

than Spark that only works with SQL filters.

3.8 Row Parser

In this final stage, each worker in a distributed cluster takes one partition produced
by the partitioner, i.e., start and end offsets in the file, as well as, the initial JSON path.
It initializes the optimized projection tree accordingly. The first partition always starts
at an empty path and is initialized to the root node. Other partitions are initialized as
discussed in Section 3.5 so that the active node matches the initial path. Then, it iterates
over the input, token-by-token, while processing them using the projection tree. When the
projection tree transitions into the projector node, it starts parsing a new row. This section
first describes the type of operations that occur when processing a projection tree, and

when they are triggered. Then, we describe the error handling mechanism.

3.8.1 Projection Tree Operations

Several operations can occur as the parser iterates over the input.
Transition downward. It occurs when the parser reads a token that matches
the token of one of the children of the current active node. Object nodes are matched with

an open curly-brace ({), array nodes are matched with an open square-bracket ([), key

TG

nodes are matched with an equivalent key of the node, while primitive values are matched
with a primitive value of the same type.

Transition upward. This occurs when the parser completes reading a value
corresponding to a node. For objects, it occurs after reading the closing curly-brace (}
). For arrays, it is after reading the closing square-bracket (1). For key nodes, it occurs
when the value associated with the key is fully processed, and results in adding it to its
parent object. An upward transition from any value results in adding it to its parent node
or appending it to its parent array. Additionally, an upward transition from the projector
node triggers returning the parsed record to the output, and resets filters.

Propagate to filter. A value is propagated to a filter after an upward transition
from a key node, if the key is one of the variables in the filter expression tree for its parent
object. If the filter evaluates, to true or is still not fully evaluated, processing continues
normally. Conversely, if the filter evaluates to false the remainder of the object is skipped,
and any already processed values descending from this object are discarded.

Skip redundant paths. This operation is triggered when there is no matching
essential path for a downward transition, resulting in skipping a value without serializing
it. The active node remains the same if its value is not yet fully processed. Skipping is
also triggered at object nodes when all of the required values are obtained, or a filter is
evaluated to false. It searches for the matching closing character keeping track of all
control character in between.

These summarize the main operations that occur when processing a JSON docu-

ment using a projection tree.

T

3.8.2 Error Handling

The flexibility of JSON means that unexpected input tokens are bound to be en-
countered, especially when dealing with very large scale data coming from different sources.
Most existing JSON parsers fail immediately when encountering unexpected tokens or mal-
formed inputs. However, we designed dsJSON to work in a more permissive mode, making
it a lot more robust to failure. Next, we discuss how some unexpected tokens are handled.

Handling mismatched types or invalid primitives. This occurs when the
schema expects a specific type while the input contains a different one. In this case, it is
easy to avoid any errors. First, dsJSON attempts to convert the type to the expected type.
For example, if the expected type is a string and the encountered type is numeric, this
number value is stored as a string. If the value cannot be converted to the expected type,
it is simply stored as null. This possibility of data loss is avoided when using pessimistic
schema inference, since it would ensure selecting the broadest datatype, and in case of
mismatched types, it is by default set to a string.

Handling malformed JSON structures. Failures from some syntax errors can
be easily avoided. For example, missing comma characters between array values, or two
key-value pairs within an object, can be easily ignored. More problematic syntax errors are
those related to control characters, the curly-braces, the square-brackets, and the double
quote character. If an input file has a missing chunk at the end, then that can easily be
ignored, and the parts processed prior to it are considered valid. However, we consider
encountering non-matching closing tokens a fatal error, which happens when the last token

in the current path corresponding to the active node in the projection node does not match

T8

it. This is because ignoring such a syntax error would put the execution in speculative
mode, similar to what happens with invalid speculation. If it is important that malformed
structures are detected, the user can use full-pass partitioning which also can be used to

verify the structural integrity of JSON documents.

3.9 Experiments

In this section, we execute an extensive set of experiments to provide an experi-
mental evidence of the scalability and efficiency of dsJSON over existing JSON parsers. We
also evaluate the effectiveness of the components that comprise dsJSON. Notice that since
dsJSON supports some use cases that are not supported by any of the existing parsers, e.g.,
parsing general JSON files, there is sometimes no suitable baseline to compare to. We also

provide a more detailed example to showcase one example enabled by dsJSON.

3.9.1 Experimental Setup

Tahble 3.4: Experiments datasets and queries

Dintaset Short name | Format Biwe TEONPath [
[Besthuy 5] BH Sed. JEON [IGE $.productsa[«]
IMDE [37] IMDB Std. JSON | 7T2CGE | [=]
Wikapedia 0] Wik: TE0R e | 1I3TE [*] .claims. .mainsnak
| MEH CoolS0N | 25508 | §.featares[#]
OpenStrootMagp [232] | OEM GeaJS0N | 2TE §.features[«]

The experiments are executed on a cluster with one head node and twelve worker
nodes. The head node is running on two Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz,
with 8 cores per chip and 2 sockets per core for a total of 32 processing units. Each worker

node is running on Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.7T0GHz with two sockets, for a

Ta

total of 12 processing units per node, resulting in a total of 144 processing units among all
worker nodes. The head node is running on 128GB of RAM, while each data node is running
on 64GB. The data is stored using Hadoop Distributed File System (HDFS) running on
the same worker nodes. Also, Table 3.4 shows the datasets used along with the JSONPath
queries. We use the same version of the BB dataset from [96] but we scale it to 16GB for
all experiments, unless otherwise indicated.

We use the end-to-end running time as a performance metric which includes any
required reformatting, parsing, and processing time. During experiments, we vary the input
size and the SCQL query that we run on each dataset. We compare to four sequential parsers
and three distributed parsers. The sequential parsers are JPStream [96], SIMDJSON [115],
Jayway [7], and Python JSONDecoder [1]. The distributed parsers are the built-in Spark
JSONLine reader, a hand-crafted RDD-based Spark+Jayway reader, and Beast [66] which
supports GeoJSON files. We added the hand-crafted parser to enable JSONPath processing

for JSONLine files, a feature that is not supported by the built-in Spark JSON reader.

Tahble 3.5: Comparing to other distributed systems

System Qualitative Comparison Total execution time (seconds)

?;":IIZ;N :.?GN JSON ;S?hN SQL (| BB IMDE | MSB Wiki| OSM
e “ 16GB | 7.2GB | 29GH 1.3TB2TB

dsJSON w v ' w v 52 3z E6 1275 | 2712

Spark JSON 117 91 i

i v v | rosan) | gosan | VA | Pl | N/A

Spark Text 92 30

Reader + Jayway v v (T0422) | (604+29) NfA | 1222 | N/A

BEAST w MN/A MN/A 42 N/A | Fails

3.9.2 Scalability of Distributed Parsing

Due to the variety of baselines and the different features supported by each, we
show a qualitative comparison between these on the left half of Table 3.5. These missing
features in other baselines limit the quantitative experiments that we can run. In this part
of the experiments, when processing a standard JSON file, we run an efficient reformatting
step that converts it to a JSONLine format that can be processed by Spark JSON and
Spark+-Jayway readers. We report the conversion time separately for convenience. The
conversion scripts we used are custom to each dataset and only perform string operations
without the need for full serialization which makes them highly efficient.

The right half of Table 3.5 reports the total execution time, where N/A indicates
a non-supported case. When conversion is needed, the breakdown is provided between
parentheses (conversion + processing). Firstly, only dsJSON can successfully process all
the datasets and is consistently scalable. Spark JSON reader lags behind for both BB and
IMDB datasets due to the bottleneck in file conversion. Interestingly, even after conversion,
dsJSON is very close to the parsing step, which indicates the low overhead of schema
inference and partitioning. This slight difference is mostly due to implementation details
like the way the input reader is used and intermediate data type conversion. However, given
that this is a first cut implementation of dsJSON, the results are promising for moving
forward to potentially replace the exdsting Spark JSON reader, after some development
iterations.

For GeolJSON files (MSE and OSM), dsJSON can still parse them efficiently. For

MSB, Beast was almost twice as fast for three reasons. First, it runs on the low-level RDD

81

f— e TPt o B, —%— IPStromn Parallal

—&— Spark JEONL e with Cammndon Tnn * Tmmm Python TSOND aceder
—t— Hpark Thrtilywy with Comvarton Tins —l-—:.l-l::fs-;.
am T aom
200 500
B ™ i
= G00 "; 2000
B s B
400 3
§ 200 § om
R R
@ 100 @
d o & a
18 2 i 128 1 2 1 -] 18 az
Data Size (GB) Data Size (GB)
(a) Compared with distributed systems (b) Compared with single-machine

Figure 3.8: Processing time with increasing input size

== JPStream Soq.

=g=JPStream Parallel
== SIMDIS 0N
=i¢= Python JEOMNDocodar

1- = Jaywny
& =M= dsJS0MN
1 2 & 12

g

o B B HEBE

Mamory Consumption

4 B
Data Size (GB)

Figure 3.9: Memory usage compared to single machine parsers

API, hence, does not require a schema inference step. Second. the code is hand-crafted
to support only GeoJSON files while dsJSON is more general. Third, Beast can directly
parse geometry objects into a compact in-memory representation while dsJSON keeps it as
a nested JSON object with a complex schema. Even with that, Beast failed to parse the
2TB OSM file due to parsing errors. In the future, we can add a custom parser to GeoJSON
files that can represent geometry objects in a compact way to reduce the schema size and
increase efficiency.

One of the main motivating factors for introducing dsJSON is to skip the conver-
sion step from the standard JSON format to the JSONLine format for very large datasets.

Figure 3.8 shows the scalability of dsJSON when parsing standard JSON files with a SELECT

82

query. In this experiment, we scale the BB dataset from 16GB up to 128GB, and compare
the time for converting and processing using existing systems against only using dsJSON.

Figure 3.8(a) compares dsJSON to the distributed parsers, Spark JSON reader
and Spark+Jayway RDD parser,including the required time to convert to JSONLine. Since
the conversion step requires a full pass over the file, dsJSON is up-to 400% faster. Note
that the conversion step is [0-bound so a more efficient converter will not help much while
dsJSON completely eliminates this step.

In Figure 3.8(b), we compare to four single-machine parsers which can parse and
process a JSONPath query in a single scan over the data. JPStream [96] (both sequential
and parallel) and SIMDJSON are implemented in C++, Jayway [7] is in Java, and the
Python JSONDecoder is readily available in Python. All of them run on the head node.
We use $.products[+].categoryPath[+] as the JSONPath query which selects records
with only two attributes. For SIMDJSON, we use its interface to extract the same values.
This query reduces the complexity and size of the final output, since some of these single-
machine parsers are not optimized for complex output. All of these parsers produce an
error as we increase the data size, mainly due to memory requirement. dsJSON scales well
to large data sizes even in the single machine serial execution case.

We also show the memory consumption in Figure 3.9. The execution time and
memory consumption are measured using the time tool in Linux. When measuring the
memory consumption, we executed dsJSON in a single machine to make it easier to capture
its total consumption. Also, note that memory allocation in Java, and Spark specifically,

works differently. It allocates a large memory chunk for all Spark components as configured

83

in the cluster. Therefore, this experiment focuses on how the memory grows as the input
size increases. For the 1 GB file, JPStream executes the fastest and with the least memory
consumption. However, its current implementation fails for larger sizes, due to implementa-
tion issues. We attempted to modify its implementation to make it scale to larger sizes, but
it caused memory leaks and we conducted this finding to its authors. Regardless, its design
requires storing the entire extracted data for filtering and finalizing the output. SIMDJSON
only works on data less than 4GB, although it can be easily scaled on JSONLines, especially
for queries that don’t require aggregation of results. It consumes memory at a factor of 1.6
of the input size. The other two parsers are considerably slower and use considerably more
memory. Except on the 1GB file, dsJSON executes the fastest, and its memory consump-
tion scales well as data increases. The most important part is that dsJSON can process
arbitrarily large files without requiring extra memory. To confirm that, we estimated the
memory used by all the data structures in dsJSON using the SizeEstimator Spark library,
and they only consume a few hundred kilobytes per process. Finally, when executing dsJ-
SON in a single thread, we observed that SIMDJSON is about 60% faster, highlighting a
major potential benefit of integrating them.

Finally, Table 3.6 shows the breakdown of all the stages of dsJSON. These results
are for executing a SELECT # query with no filtering and with speculative partitioning and
optimistic schema inference. The main takeaway is the low overhead of schema inference
and partitioning steps even for the very large datasets, e.g., 31 seconds in the optimistic
case for the 2TB one. Verification does not add considerable overhead and it passes for all

datasets and queries.

Table 3.6: dsJSON hreakdown of processing stages in seconds

Diataset | Schema | Partitioning | Parsing | Verification | Other | Total
BB 2 4 27 25 125 48
IMDEBE 1 [] 14 0.5 12.5 a2
MEB 2 [] [E1] 1 12 T
Wiki 1 16 1538 5 il 1520
05M 1 41 2008 10 15 005
| M Filter push-down Projection push-down HPush-down both
k 40
e 30 g P33
3 a0 303131 i n
2 3
7 & 25 23
=20 18 = 20
2 16 15 2 M
E . 2
= 2 2 95
e
E 10 2 10
: i
0 0
No filter Delayed filter Early filter No filter Delayed filker Early filter
(a) SBELECT COUNT(*) (b) SELECT *

Figure 3.10: Effect of integrating SQL on dsJSON

3.9.3 SQL Integration

Following, we study the effect of pushing down filtering and projection on the
parsing time. To study the effect of projection, we study two extreme SELECT clauses,
SELECT COUNT(*) and SELECT * which project an empty set and a full set of attributes,
respectively. Additionally, to study the effect of filtering, we study three WHERE clauses,
no-filter, delayed filter, and early filter. No-filter does not apply any filters at all. Delayed
filter applies a condition that select about 1% of the data and works on attributes that
appear towards the end of each record in the file. Farly filter applies a condition that also
select 1% of the data but works on attributes that appear towards the beginning of each

record. With early filter, we expect the parser to be more efficient since it can skip parsing

the rest of the record once the condition fails.

835

| N Optimistic Pessimistic | N Speculative EFull-pass

@
B

]
@ 42 @ 0 i
an
§ 40 g
i 10 i 25
an
o o M
16
: 20 : 15
g g 10
g 10 T g 4 b 4
P2 om i
1] — —_— | 1]
BB IMDB MSB BB IMDB MSB
(a) Schema inference options (b) Partitioning options

Figure 3.11: Comparing partitioning and schema inference

The results are shown in Figure 3.10. The times shown in this figure are the
average of five executions, to reduce the effect of variability, especially due to scheduling,
and fetching files from HDFS. These results support our claims in the paper. With a
COUNT (*) query, projection push-down can save up-to 50% of the execution time. Similarly,
with the early filter condition, the speedup of filter push-down is significant even with the
SELECT # query. In the worst case, the filter and projection push-down add minimal or no

overhead so it would be wise to enable these features by default.

3.9.4 Partitioning and Schema Inference

Next, we study the effect of the partitioning and schema inference techniques given
different datasets. The results of this evaluation are shown in Figure 3.11. The optimistic
schema inference depends on the average size of the matched records. Since for larger
records, it would have to consume more bytes to build a schema on the first 1000 matches.

It also depends on the complexity of the records and the level of nesting. The time for

b
~

— L

A J

Figure 3.12: Complete use case example

the optimistic schema inference also incorporates the time for the key-collector, since they
are performed simultaneously. Partitioning with speculation is always small relative to the
total execution time, and this time also involves issuing the tasks and collecting the results,
since it is performed as a separate stage. Some of this time can be saved by making the
speculation as the first step in the parsing stage, should that be desired. The pessimistic
schema inference can be faster or slower than full-pass partitioning, depending on the nature
of the schema. Some may contain nested objects and arrays, which takes more operations
to merge than a flat schema. The combination of the optimistic schema inference and
partitioning with speculation provide basis for the best-case, while the combination of the

pessimistic schema inference and the full-pass methods provide basis for the worst-case.

BT

3.9.5 Detailed Use Case

To demonstrate the power of dsJSON in running arbitrary SQL queries on JSON
files, we perform a slightly complex SQL query, that involves join, on data extracted from
the OSM and the Wiki datasets. The OSM wversion in this experiment is smaller in size,
but contains records with more metadata. From OSM, we select records within the US
of type boundary (usually a state, or county boundaries, etc.) that has a reference to a
Wikipedia record. From Wiki, we select the id, the English label and description, and all
the references to other Wiki items. Then, both dataframes are joined based on the Wiki id.
The final dataframe contains the geometry objects of the selected OSM records as well as all
references to Wikipedia items related to it. We then store this dataframe in Parquet, which
is a column oriented data format, just to demonstrate the full integration with SparkS(Q)L.
Being able to process two very big JSON datasets by extracting the desired information and
perform an expensive join operation on them in an hour is extremely valuable. Note that
both of these datasets are poorly supported by existing parsers, as discussed in Section 3.6,
s0 a user that needs to perform a similar operation in a distributed fashion might need to
spend a lot of effort in implementing a custom processor specific to their use case. While
this is a more memory intensive query, Spark successfully completes it with the same fixed

memory allocated for each executor.

3.10 Related work

This section goes over the most related work to the contributions proposed in this

paper. First, we compare dsJSON to existing parallel implementations and show how it

differs based on the following attributes: Al) Can process data in the general JSON format
in parallel, A2) Scales well to very large data sizes, A3) Can directly apply SQL queries
or other types of analysis, and A4) Provides options to handle complex JSON schema, as

summarized in Table 3.7.
Tahble 3.7: Comparing dsJSON to parallel implementations

Processor | dsJS0ON | Spark [4] | AstorixDB [23] | BEAST [66] | SparkJayway | JFStroam |36 | Pison [95)
v’ v

Al v
Az - - - -

Al v v v vy v
Ad -

Existing parallel JSON parsers [96, 95| don’t scale well to large data, mainly due
to their memory requirements and the fact they are not designed following the BSP model,
making it difficult to adopt their proposed design in distributed systems, as discussed.

Existing distributed systems only support a specific subset of JSON like JSON-
Lines [4, 22, 165] and GeoJSON [66]. To process very big JSON data in these systems, it
can either be done sequentially or the user must convert it first to the JSONLines format
sequentially or using a customized implementation. dsJSON supports all of these formats
as well as the general format, eliminating the need for sequential conversion. dsJSON also
solves the issue of complex attribute selection by inferring a schema using multiple JSON-
Path queries, making it possible to unify the structure of the matched records, in cases
where it is not straightforward to unify them.

On top of not scaling to big data, most single machine implementation are not
integrated with a data analytics systems, making it a challenge to perform even a simple
type of analysis. dsJSON, however, supports this functionality out of the box, since it is

fully integrated in Spark. Some prior work focused on analytics, including [64, 91, 35].

80

However, their focus is more on integrating JSON into existing RDBMS, but they don’t
tackle the issue of distributed processing of very large JSON files or schema inference.

Single machine environment parsers like [8, 132, 115, 98, 164, 42| focus on adding
low level optimizations, like utilizing SIMD instructions. dsJSON on the other hand fo-
cuses on solving issues related to scalability and big data analysis. The optimizations they
propose can be integrated into dsJSON in the future. SIMD optimizations can further im-
prove dsJSON. The optimizations introduced in [98] can improve the skip functionality in
dsJSON. The indexing techniques in [95] can be used to improve the full-pass partitioning,
by utilizing SIMD instructions to track the positions of control characters. Furthermore,
the optimizations in [115] can be used to improve the main parsing process and serializing
the ohjects. There are several approaches for this integration: including using the SIMD
supoort in the Vector API in Java, utilizing the Java-Native-Interface to communicate with
C++ code, or implementing dsJSON in a low level language in a system that is compatible
with the Dataframe API and the BSP model. There are many sequential JSON parsers,
implemented in different languages with different features. Interested readers can refer to
a JSON parsing benchmark [226] for details.

There are some similarities between parsing JSON and parsing XML, [96] goes
through some of these differences and how working with JSON is more challenging. The
work in [142] provides a parallel XML parser that divides the data based on the learned
schema. It basically identifies the position in the structure at each partition based on the
open tag of array elements, however, these open tags do not exist in JSON and this limits

the splitting to array objects. In [97], they use the learned grammar of the XML data to

reduce the possible execution paths at each partition. We opted for avoiding techniques that
consider multiple execution paths to avoid having to fully parse records more than once,
which may not scale well and also does not fit the computational model where results are
immediately sent to the next processing stages. Moreover, [31] provides a grammar based
parallel parser that also supports JSON, but can only provide outputs once the entire data
is parsed.

dsJSON takes distributed JSON parsing to a whole new level by providing a
general-purpose parser that can support any JSON file. The work in [76] provides a par-
allel parser for the CSV format. Similar to our work, they provide a speculative approach
and a fallback full-pass alternative, however, JSON requires more complex partitioning and
schema inference. While we provide schema inference techniques, our focus was not on
schema analysis and discussing the intricacies associated with it, refer to [28, 56, 60, 29]
for details. [112] is similar in that it builds a data structure that stores the inferred types,
but it focuses on finding discrepancies or updates in the schema. dsJSON instead infers a

unifying schema based on attributes selected by the user as discussed earlier.

3.11 Conclusion

This paper introduced dsJSON, a full-featured scalable JSON processor for dis-
tributed shared-nothing systems. dsJSON is integrated into Spark to provide SQL query
processing and complex data analytics. It includes several novel components starting with
the projection tree for selective parsing, and the robust partitioning techniques, as well as,

the techniques for schema inference. It overcomes limitations in existing systems, and fills

01

a gap that enables more complex analysis of large scale JSON data. Experiments on real

data of up to two terabytes confirmed the scalability and efficiency of dsJSON.

02

Chapter 4

Towards Learned Geospatial Data

Analysis & Exploration

4.1 Introduction

We are witnessing continuous growth in data-driven scientific methods that rely
on the abundance of real data to drive scientific findings. Most of these applications are
based on data lakes [161, 24] that store very large datasets and provide scalable query
interfaces such as SQL. Studies show that 60-80% of data contains a geospatial component
which is very important for data analysis [87]. Example datasets include temperature
measurements [155], traffic prediction [200], and online text posts [144], with applications
in urban planning [61], epidemiology [185, 181], and weather forecasting [143].

Recent advances in machine learning (ML) and deep learning (DL) are shifting

data analytics from manual processes to model-driven approaches. Vector databases [215]

93

now enable robust semantic search, powering applications like Retrieval Augmented Gen-
eration (RAG)[123]. However, search quality depends on embedding quality, produced by
models such as CLIP[171]. Meanwhile, geospatial data remains only supported in tradi-
tional data lakes. Our goal is to move closer towards better support for geospatial data by
DL architectures.

Consider a realtor with no geospatial expertise searching for regions matching com-
plex, poorly articulated criteria (e.g., amenities, density, proximity to roads and coastlines).
Traditional GIS queries and custom programs for such tasks are difficult and require domain
expertise, and processing large datasets. Recent advances in DL can help provide an alter-
native solution, where models can be trained to learn different types of properties about
geospatial data. Then, they can be used to estimate those properties, or the embeddings
they generate can be used to build advanced geospatial semantic and similarity searches.
However, many challenges still exist in building such models. One challenge is how to best
represent the data to feed into a DL model, as well as understand how well the models
capture the different geospatial operations.

This paper studies how to enrich DL models to allow them to express a wide
range of complex geospatial analytic functions. This is a step towards enabling DL-based
geospatial query analytics where users can search thousands of geospatial datasets efficiently
with the help of deep learning. To accomplish this goal, this paper breaks down the problem
into two major components, spatial data representation and spatial problem modeling.

First, we study how to use three popular DL architectures for dealing with geospa-

tial data. The first one is an image-based architecture, where the geospatial data is first

04

pre-processed into a fixed size geo-referenced histogram that substitutes the image. We
use ResNet [85] and UNet [176] as reference models for the image-based architecture. The
second one is a graph-based architecture, where the input of the considered model is a
set of points having position coordinates, and each point is associated with additional
non-spatial attributes. We adapt this approach by designing and testing variations of the
PointNet++ [169] architecture. The third is a vector-based model that encodes geometries
into fixed-size vectors. To test this approach, we extend the Poly2Vec [188] encoder to work
with a Transformer [206]. Our initial study showed that all techniques can work well for a
variety of geospatial problems, but each has advantages and drawbacks.

Second, we model four different spatial problems using the three representations.
This includes spatial data synopsis, spatial clustering, selectivity estimation, and walkability
estimation. These problems involve different spatial operations and data characteristics,
providing a lot of insights. Our goal is to study how the three proposed data representations
and model architectures can capture these different problems while speeding up the query
processing.

To evaluate the three models, we conducted an extensive experimental evaluation
using synthetic and real datasets. Our results show that the three architectures perform well,
with some trade-offs. The graph-based approach works better when data are more dense and
distances between geometries are very small. The other two approaches scale much better
since the input is always fixed in size. The image-based approach works better for inputs
that join multiple datasets. All approaches make inferences much faster than computing

the exact values, while maintaining high accuracy. For the data synopsis problem. the

95

speed-ups reach more than 600x in the best case and 8x in the worst case. These results
are very encouraging and open several new directions for future research.

The remainder of this paper is structured as follows. Section 4.2 discusses the
three representation methods that we considered. Section 4.3 goes over the four geospatial
problems and discusses their definitions, data preparation, and model architectures. Sec-
tion 4.4 details the extensive experimental evaluation and discusses the results. Following
that, Section 4.5 presents the related work. Finally, Section 4.6 concludes the paper and

discusses future directions.

4.2 Geospatial Data Representation

Geospatial vector data involves a set of records with geometric shapes and non-
geometric features. This data cannot be used directly with existing deep learning archi-
tectures. A conversion step is required to transform the data into a more suitable repre-
sentation. This step is not always straightforward since, based on different characteristics
of the data, the conversion step may result in a loss of information affecting the quality
of the modeled problem. The remainder of this section discusses some preliminaries, and
then presents three approaches, Geolmg, GeoGraph, and GeoVec to properly represent

geospatial data to exploit existing models for a set of well-known problems.

4.2.1 Preliminaries

In the problems that we are studying, a single input is a geospatial dataset D = {g |

g = (type, coords, attr) }, which is a set of vector geometries. Each geometry g € D is a tuple

including the type of the geometry, which could be: Paint, LineString, or Polygon, an
ordered list of coordinates, each one as a pair (longitude, latitude), representing together
the position and shape of each object. Finally, each geometry could also be associated
with a set of attributes. For example, a dataset could be a set of points each associated
with a temperature value. Our objective is to model problems of the form O = f(D),
where f is an analytical function, and () is the target tensor it produces. Moreover, some
problems require analyzing two or more input datasets which have the signature O =
f(D,D',...). For these problems, the target value has a fixed shape, where O = m
Ré**de where the number of dimensions k, and the size of each dimension depend on f.
Furthermore, some problems have a target dataset Dy, which contains target geometries
for the analytical function to compute values for. These problems will have the signature
O = f(D,Dy) or f(D,D’,...,Dy). In this case, O = M € RIPrixdix-d Note that
the first dimension of O is equal to the cardinality of Dy, while the others are fixed and
defined based on f. For example, the target m could be the position of the neighborhood
of the point with the maximum average temperature, while M will contain a label for
each geometry of D that is produced for clustering [). Note that for some problems the
geometries in Dy can be the same as [), and some definitions of f may also take additional

parameters such as distance thresholds. In summary, @ can be:

m= f(I}) or f(D, IV, ..} where m & Ré = xdx
0= w

M = f(D,Dr) or f(D,I¥,...,Dr) where M & RIPrixdixxds

Our goal is to train a set of DL models that resemble analytical functions f in-

volving complex geospatial operations. However, with existing DL techniques, we cannot

o7

Max Hist.
Min Hist. P 025
aze | 032
as2 | 031 0.57
0.40
079 | 010

Input Histogram Params

Convolution 1
L1: number of layers
D1: dimension

Feed Forward

v

Prediction

Figure 4.1: Geolmg architecture

directly feed the datasets I) or produce target values for the geometries of). We discuss

three representation approaches next.

4.2.2 Geolmg: Image-based Representation

This section describes our first approach for image-based representation. This part
is inspired by Convolutional Neural Networks (CNNs) which are commonly used for working
with images. We chose this as our first approach becanuse CINNs are versatile and can be

used to model a variety of problems. Representing our data as images enables the use of

08

X ¥ aril aitl

001 f 005 032 | 012

083 | 037 ps1 | oz Params

Positions 0 Shfpe (M, 2) Artributes 3Shape M. I

Set Abstraction 1
51: sampling ratio
B1: range radms
MLP(2+L ... I1)
Positions 1 Attributes 1
Shape (S1*N, 2) ¥ pe (S1¥MN_I1)
Set Abstraction
52: sampling ratio
B1: range radms
MLP2+I1, ..., ID)
Positions 2 Attributes 2
Shape (S1*32*N_2), v Shape (51*52*N, 12)
LClobal Set Abstraction
MLP(2+12, ... 13)
+ Embedding Shape (1, I3)
MLP
MLP{I3, ..., Pred)
¥

Prediction Shape (1, Pred)

Figure 4.2: GeoGraph architecture

09

Coordinates anl attl

[(0.0L,0.05)] 032 | 0a2

[(0.53,038)] 051 | o8

Shape coordinates Attributes —

—

E: embedding dim

!

Embeddings

Params @

Transformer
L: number of layers
D hidden dimension
H: mumber of attention heads

Eeed Forward
v

Prediction

Figure 4.3: GeoVec architecture

100

existing CNN architectures. The simplest approach for converting our data to an image is
by rasterizing them. In graphics, rasterization means plotting the shapes as an image of a
given resolution, similar to rendering them on a map. However, one of the drawbacks of this
is that it loses subtle features that get lost in small resolutions, making this approach more
suitable for smaller regions and sparse data. Alternatively, histograms work by dividing the
input reference space, into a grid of fixed-size cells and storing a summary of the geometries
that fall within each cell. Previous work used a similar representation, but we show that
this can be generalized to a variety of problems.

To address these limitations, this part introduces Geolmg, an approach for rep-
resenting geospatial data as histograms for working with image-based DL models. We chose
histograms because they are more flexible for representing a large set of problems, as long
as we define a suitable set of aggregate functions. After defining the histograms, it becomes
easy to utilize existing CNN architectures such as ResNet [85] and UNet [176]. We discuss
this representation in four parts, including representing geometry positions, non-geometry

features, handling multiple-input datasets, and representing target values, as shown next.

Representing geometry positions

To represent geometry positions inside a histogram, we first transform the geome-
tries of a dataset I} into a metric reference system, which is required if coordinates are
latitude and longitude, so that the distance between points becomes meaningful and corre-
sponds to the real distance. We also compute the Minimum Bounding Rectangle (MBR)
of I) to determine its reference space. Then, we select a histogram size, to compute the

desired subdivision of the reference space into cells. Finally, we define an aggregate function

101

freount (D), ¢) which returns the number of geometries intersecting a grid cell ¢ divided by the
input cardinality |D)|. In this case, the value of each cell in the histogram will have the per-
centage of all geometries that intersect the range of coordinates that the cell represents, and
the sum will always be 1.0 for points, but could be larger for other types of geometries when
some shapes intersect multiple cells. The histogram H, = Histogram(D, freoun:t(), size) is

then created.

Representing non-geometric attributes

To represent additional attributes, we use the same size of H, (the positions
histogram), but we define an aggregate function for each additional attribute. As a result,
when i attributes are present in D), and we use one aggregation per attribute, we will end
up with i histograms. These histograms are stacked on top of each other, starting with Hp,

making a final input histogram H e Rli+1)xsizexsize

Representing multiple datasets

For multiple datasets D, D', D",..., we first have to create the histogram based
on the global reference space, i.e. the MBR of the union DUD'U D" Then, to combine
the histograms, we stack them on top of each other since they are all of the same resolution.
For example, given two input datasets with i; and iz attributes, respectively, and dim = 64,
we will have a histogram stack Hy € RU+1)x684x64 5p4 [, ¢ Rli2+1)x64x64 YWo combine

them into one histogram H ¢ R{f1+i2+2)x64x64

102

Representing target values

For global values representing features of the whole input dataset I, that is, one
target for the entire dataset. The representation is a single tensor m that contains such
values. For local values, i.e., output for each target geometry, we define a new histogram
for each target value, where each cell of the histogram represents all geometries it contains.
In this case, the final result is obtained by assigning to each geometry of the cell the same
target value. Note that the dimension of the output histogram does not need to be the
same as the input, even though it can be the same for many applications.

While this method can capture more information than simply rasterizing the ge-
ometries, it still has some drawbacks. One drawback is that it cannot capture small patterns
that are smaller than the cell size. Also, all geometries on the same cell will end up with
the same label. For these reasons, we consider an alternative approach that avoids this type

of data loss.

Model architecture

As mentioned, we used CNIN-based architectures for this representation. For prob-
lems with a fixed target size m, we use a ResNet [85] architecture. An example of this is
shown in Figure 4.1. In this example, the network takes our histogram representation that
summarizes the input dataset I), and produces a fixed-size output m. For problems with
variable output size M, we use a UNet [176] architecture, and the target is represented, as
discussed earlier. The first part of a UNet is similar to a ResNet, but it has additional layers

that perform up-convolution to produce an image output. UNet architectures are typically

103

used for problems like image segmentation [176]; here we use it to make estimations based

on geographic positions.

4.2.3 GeoGraph: Graph-based Representation

This section introduces an alternative approach that is tailored for graph based
DL architectures. Specifically, we focus on point-set based approaches that build a nearest-
neighbor graph at run-time. These types of architectures operate directly on a set of points
and are inspired by point-cloud-based models, e.g., PointNet++ [169]. They enable the
model to have a richer representation and capture the local relationships among the points
more accurately than an image-based approach. The same properties that emabled this
approach to be successful in the point-cloud domain can also be beneficial in the geospatial
domain. Additionally, one advantage of this approach over Geolmg is that it works with
variable-sized datasets [), whereas an image-based approach represents any input dataset
D in a fixed size, potentially leading to information loss. Furthermore, this approach
does not require a heavy pre-processing step. However, geospatial problems have different
characteristics and scales, and these types of models have not been studied in this domain
yet. The remainder of this section introduces GeoGraph for representing geospatial data

following a point-set approach. We iterate over its four parts, next.

Representing geometry positions

In this approach, for |D| = n, when the type of geometries is Point, the positions
are represented as a tensor G € R™?, where each point is given by two coordinates:

the first column represents the longitude, and the second one is the latitude. For other

104

types, we chose to use the centroid point to represent them, but we added additional
geometry descriptor attributes. For example, attributes about the geometry could represent
the coordinates of its MBR, which makes G € R™*%, where the first and second columns
represent the longitude and latitude of the centroid of the shape. The other columns
represent the boundaries of the MBR. Other attributes can also be used, such as the area of
geometries or the length or width of geometries. Furthermore, we transform the coordinates
to a metric reference system as done for the Geolmg approach. In addition, we also scale
the coordinates in the range [0..1], using the minimum and maximum coordinate values in

each column for the given dataset.

Representing non-geometric attributes

Additional attributes associated with geometries can be represented as a tensor
A € R™_ where j is the number of attributes, so each row contains the attributes associated
with the corresponding geometry in (. Pre-processing can include normalizing the features
for each set independently or using global statistics about the entire training set, which is

composed of a collection of datasets D.

Representing multiple datasets

This simply requires generating a geometry position tensor G and an attribute
tensor A for each one of the input datasets. However, in this case, the positions must all be
normalized using the MBR. of the union of all input datasets before generating the position

and attribute tensors.

105

Representing target values

Target values represent the output that we need the model to learn. In the case of
a single aggregate prediction for an entire dataset [}, the target becomes a tensor m which
will have a fixed shape. Depending on the range of values, we might need to normalize them
to allow the model to work more effectively. In case we have a target set of geometries, D,
we need to represent its geometries similar to the positions tensor & for the input dataset,
and the target tensor M will have its first dimension equal to the cardinality of Dy, while
the other dimensions will be fixed similar to m depending on the shape of the target values.
The geometries represented in Dy can be exactly the same as the ones of D), but this is
not always necessary, since the specific problem can generate values for geometries different

from those in the input.

Model architecture

An example of the architecture of this model for problems with a fixed target size
m is shown in Figure 4.2. It is characterized by four main components. As input, it takes
a set of points, represented by their position coordinates, and a set of attributes for the

points.

The first layer of the model is called a Set Abstraction layer, referred to as SA1.
This layer has three main steps. (i) A sampling step with a percentage parameter that
selects a subset of the points to propagate to the next layer. (ii) A range query step that
computes the edges needed for message passing for the sampled points and takes a range

and a maximum number of neighbors as parameters. (iii) Finally, a multilayer perceptron

106

(MLP) is trained based on the coordinates of the points and their features by applying a
message-passing step per the design of graph neural networks. The MLP part is the only
trainable component in a Set Abstraction layer. The output of this layer is the coordinates
of the sampled points and their associated features from the MLP. Similarly, additional SA
layers can be used, that are then followed by a global abstraction layer that summarizes
the entire input dataset. This is then followed by a final component that produces the final
target m. For problems with a target dataset Dy, additional layers are used. These are
called feature propagation layers. This works by reversing the process and generating new
features for the larger point set in the previous layer, from the features of the points in
the lower layer, until producing one prediction for each point in the target dataset. The
features are interpolated by finding the k-nearest neighbors in the points from the previous
step, and using an MLP to generate a new one for the target point. Refer to [169] for
more details on how this architecture works. For problems where there are multiple input
datasets, we add an SA layer that joins datasets. In this method, we use one dataset as the
reference points and use the other as the sampled points. From this layer, we get a set of

features for each point in the second dataset from its nearest points in the first dataset.

4.2.4 GeoVec: Vector-based Representation

This section introduces our third approach based on a Transformer [206] model
architecture. Transformers are mainly used for natural language processing (NLP) applica-
tions, but have been applied successfully for a variety of applications including geospatial
data [131, 131]. However, there are still challenges related to how it generalizes to different

types of geospatial problems, and it is not clear how it compares to the other approaches.

107

This approach requires less preprocessing and is more flexible than Geolmg. However, it is
less flexible than GeoGraph, since there is a fixed upper bound for the number of geome-
tries. The remainder of this section introduces GeoVec, a Transformer-based architecture,

where geospatial objects are represented as vectors. We discuss its components next.

Representing geometry positions

In NLP, words are typically represented using word vectors and positional encod-
ing. in a way that ensures that the relationships among the words are maintained. Similarly,
for the geospatial objects, we must use embeddings that ensure that the spatial relation-
ships among the objects are still maintained. To achieve this, we use Poly2Vec [188], a
recently proposed geospatial encoder that has been shown to produce vector embeddings
that maintain the spatial relationships among the objects. This encoder takes as input a
sequence of coordinates for each input shape. For example, if all the inputs are points,
the data is represented as G € B"*1*2_ for rectangles it is G € R™*5*2 since a polygon
must start and end with the same point. For mixed shapes. the representation becomes
G ={G; e R4 KE}?=1- where ¢; is the number of coordinates for each shape. This encoder
produces an embedding of size e. Since the Transformer architecture has a fixed upper
bound b for the input sequence, we perform a sampling step if n > b, and pad the sequence
with zeros if n «<- b. The sampling is performed prior to encoding the geometries. Therefore,

after this step, the output is always V € RY®.

108

Representing non-geometric attributes

The attributes are represented similarly to GeoGraph as discussed in Section 4.2.3.
However, this step only includes the attributes of the sampled objects. After this step, the
attributes tensor is always A € R"J where j is the number of attributes. This tensor is

concatenated with the geometry embeddings to make the input to the Transformer model

to have the shape RP*(e+7),

Representing multiple datasets

For this, first, we merge all the datasets as one, but we add a one-hot encoded label
determining which dataset each record belongs to. Then, we perform stratified sampling
based on the dataset label. ensuring the proportion of the datasets is maintained. For two
datasets, each with j1 and j2 number of attributes, we have A € RP*01+3241) The final
input to the model after encoding becomes of the form RP*(e+il+i2+1) Apy additional
parameters to the input are also appended as columns. This matrix is also padded with
additional zero columns to ensure that number of columns is a multiple of the number of
attention heads, which is a requirement for this architecture. Also, the data is normalized

similar to GeoGraph.

Representing target values

When having a fixed target size m, this is represented similarly to GeoGraph.
However, when having a target set of geometries, Dy, this is not as straightforward. When

the geometries in D are the same as the input geometries in I, we set the target for the

model to be the labels of the input geometries, which is of fixed size M e RO*d1%*de

109

Then, we assign the labels for all the points in [+ based on the nearest points in the
sampled input. If the geometries in) are different from Dy, first we must assign labels to

the input geometries based on the labels of the nearest target geometries.

Model architecture

In this architecture, first, the geometries are passed to the Poly2Vec encoder.
Then, the embeddings are concatenated with the geometry attributes. This is then passed

as input to a Transformer model. An example of this architecture is shown in Figure 4.3.

4.3 Geospatial Problems

This section discusses the four target geospatial problems that we consider. For
each of them, we provide the definition of the problem, the input and output format for each
specific model. The goal is to show that the proposed models can be applied to a variety of
spatial data analysis problems and can capture a wide range of spatial data characteristics,
e.g., proximity and data density, producing an approximate solution faster than the exact
solutions. Table 4.1 summarizes the four problems and the corresponding proposed models

as we further detail in the rest of this section.

4.3.1 Spatial Data Synopsis

Spatial data can have many characteristics that are used in applications, e.g.,

skewness, symmetry, coverage of geometries, or density analysis regarding specific thematic

110

Tahble 4.1: Problems definition summary

Model Output
Problem Approach Name Input Shape Shape
. Geolmg GI-5 H ¢ p=ti=na
Synopsis Ge RIDT=2Z e

m = f(D,kr) | GeoGraph GG-5 Ae RIPIxt

GeoVeo GV-5 V £ RA=TEET |

GBOII'.I'.I.E {g{é:l: H e REME&M&I szﬂd.xﬂd.

Clustering aaC G € RUT2
M = f(D, Dr, GeoGraph GOCP Ae RIDI= RIPwl=C
€1,€2, M F) GV-C 1024 (3241 1024 &
GeoVec GVP Vg RIDH=32+1 R
. Geolmg GLE H c Fr=T=
S‘““f‘:;lgt}’ GeoGraph | GG-E G € RIOE R
m = f(D.q) OeoVer OV-E V £ R0Ea=(3ra)
. Geol GLW H ¢ Rii=H=H
Walkability e 6o € RPTT B!
m = f(D, D) B

GeoGraph | GG-W G € RIP'1=2
Ap € RIPI=10
GeoVec GV-W V € RINA=EZFIT]

attributes. However, as data sizes become very large, which is typical for geospatial datasets,

the computation of these characteristics becomes very expensive.

Problem definition

Spatial analytics often require the computation of aggregate values, called syn-
opsis, that summarize different spatial features of a given dataset. We consider three
categories of synopsis: (i) finding extreme values and the regions where they are located
(this can require a preliminary phase to calculate the k nearest neighbors for all geometries
in the dataset and to compute the average of the thematic attribute among its neighbors);
(ii) compute the Kq. of a dataset, which is a measure of the connectivity of a set of ge-
ometries, given a maximum distance r; this value is also very expensive to compute: when
K yaiue is large, most of the geom in the set are very close to each other. When it gets lower,

it means that the geoms are farther apart, and we expect them to be sparsely distributed

111

throughout the reference space; (iii) compute the box-count values, Fy(D) and E5(D), as
defined in [33]. These are good descriptors of the skewness of the data.

These operations can be formally described as follows. Given a dataset) = {p; =
(Point, g;,v;), ...}, and the parameter k, the average value of the thematic attribute on the

k-nearest neighbors of each point p; € D is computed as:

avgAtt(D, k) = {(p;, avg:), ...} where avg; = % Z T
kNN D,p;)

From avgAtt(D, k), we then extract four results: the maximum and minimum of avg; and
their location pmae, and pmin.

The computation of K, ,p,. of D) with radius r is as follows:

1

Kyate(D, 1) = m

Z |f'ange,.{D? -'I:-Pi}l
relD

where the function range, (D, z.p;) computes the range query for a point p; given a window
r. Finally, the computation of Ep(I)) and E3(D) works by dividing the space into a grid
with cells of side length r. and counts the number of cells in the grid that intersect at least
one point in the set (for Ey(D))) and the number of points intersecting each cell (for E5(D}).
It keeps increasing the number of boxes in the grid until the counts do not change. This
was shown to approximate the skewness in the spatial distribution of geometries.

These problems help us to evaluate if the models are able to predict not only a

numeric aggregate value, but also properties that depend on the spatial distributions of the

112

geometries and their relative position and distance. Moreover, they are all expensive to

compute and also capture complex spatial behaviors.

Target values

Considering Equation 4.1 proposed in Section 4.2, for spatial synopsis the target

value (J is computed as an array m:

[mam{ﬂvgi :l Fl min {G'Ugi J? Pmars Prmins Kmiue {D: T:I 3 E[I'(D}: Ei! ED}]

These are a total of nine values since the positions are represented by two coordinates.
Therefore, the function signature is of the form m = f(D,k,r) R®, as shown in Table 4.1.

The input datasets containing 2D points have been synthetically generated using
the Spider Generator [106], producing datasets with various distributions and including
values of a thematic attribute.

Figure 4.4 shows some examples of the generated data, where the color associated
with each point denotes a different value of the thematic attribute. Given the generated
datasets with associated attributes, we compute the target values above described by ap-
plying the implementation of the algorithms representing the exact solution, building in
this way the ground truth for training the models. We then pre-process the data following
the approaches illustrated in Section 4.2, and build three models GI-5, GG-5, and GV-S.

These are summarized in Table 4.1 and discussed next.

113

0.5 1.0
a4 = LRER 0.8 =
2 2
£ u.:i_% £ 6] -;].E.%
5 - %04 -
s | - E = I E
0.2
E 0.15
0l 0.2]
. ol a2
00 02 04 06 08 L0 00 02 04 06 08 L0
Longriude Longriude
(a) Uniform (b) Gaussian
1.0f l 1.0f
an .58
i 07 g L) 056 8
F
=06 a.n; =06 054 E
é 0.5.¥ :'i 052 g
S E S a 'I‘.IE
04 § -
nE: {3 04T
0,3
0,45
0.0 0 0.0 :
00 02 04 06 08 L0 ’ 00 02 04 06 08 L0
Longtuch Longtuch
(¢) Diagonal (d) Sierpinski

Figure 4.4: Example of synthetic datasets with both different spatial distributions and
distributions of thematic attributes.

Geolmg model (GI-S)

This model is based on a generic ResNet [85] architecture that takes the histogram
as input and is trained to produce as output the tensor of target values.

We set the histogram size to 64, by default, and define two aggregation functions
for the thematic attribute, frmae and frmin. that we use to assign a summarized represen-
tation of the thematic attribute to each cell. This makes the input histogram H e R3*64x64
Given a cell ¢ the functions frmar and frmi, compute the minimum and maximum values
of the thematic attribute, respectively, considering the points in ¢. The model takes as

input H, and two parameters k& and r.

114

GeoGraph model (GG-5)

This model is based on the original PointNet++ [169] model for point-cloud classi-
fication. The input is organized as follows: (i) the coordinates of the points are represented
as a tensor G with shape (N,2), N representing the cardinality of the dataset I, and the
thematic attribute values as a tensor A with shape (N, 1), following the approach described

in Section 4.2.3.

GeoVec model (GV-5)

This model is based on a Poly2Vec approach [188]. First, a sampling (or padding)
phase is applied to fit the upper bound b = 1024 of the Transformer model. Then, the
geometries are passed to the Poly2Vec encoder, with the embedding size ¢ = 32. Then, the
embeddings are concatenated with the thematic attribute and passed as a single input to
the Transformer, resulting in an input tensor V' with shape (1024, 3241). Furthermore, any
parameters are appended to the input; the columns are padded to a size that is a multiple

of the attention head dimension.

4.3.2 Spatial Clustering

Clustering is one of the most commonly used techniques for spatial analysis. It is
used to find regions where specific events are concentrated. One motivation for considering
this problem is that it requires making a prediction for all points in the input, and not one
prediction for the entire input. Similar problems might be related to outlier detection and

spatial interpolation.

115

Problem definition

DBSCAN is one of the most popular clustering algorithms. It has two main param-
eters, a distance € and a minimum number of points M P. It starts by selecting a random
point P and determining if it is a core point, i.e. if it has at least M P neighbors within
€ distance from it. If P is a core point, it is used to initialize a cluster, and the process
continues by adding points to it that are within ¢ distance of any point in the cluster. Then,
the process repeats until no more core points are found. Points that do not end up associ-
ated with any cluster are labeled as noise points, or outliers. Many variants of DBSCAN
have been defined in the literature, in particular, ST-DBSCAN [36] is an extension tailored
for dealing with spatio-temporal data. In this case, two distance thresholds, €1 and €3, are
defined, one for the spatial and one for the time dimension. However, the second distance
is not strictly required to be related with the time dimension but could be associated with
any other attribute. In the original paper [36], the authors also do experiments where the
second distance refers to the temperature measured in each point, and the algorithm detects
clusters based on the spatial distance, as well as an additional attribute, like temperature
or time. We define this problem on the basis of this generic definition. The objective is
to build models that resemble the clustering labels produced by this algorithm given some

parameters, since our focus is on supervised learning.

Data preparation

To prepare the collection of datasets, a recent copy from the Global Historical

Climatology Network (GHCN)-Daily [155] dataset has been downloaded. For this problem,

116

only the longitude and latitude as the point coordinates and the maximum temperature
associated with each point are used. The data is then partitioned by year and month,
and each group is saved in a separate file. This results in having one file for each month
that contains the average maximum temperature for each weather station across the world.
Then, the ground truth labels are generated using ST-DBSCAN for clustering; we use the
implementation provided by [45]. The algorithm is applied to every month separately, and
the target value for each point is composed of the identifier of the cluster it belongs to.
Next, we save the labels for each point in every month based on the cluster label
produced by ST-DBSCAN, for all parameter sets. We show an example of cluster assignment
in Figure 4.5. Since the order of the labels produced by the algorithm has no meaning,
we reorder the labels based on the average temperature of each label. The outliers are
given label zero, then the cluster with the minimum average is given label one, and so on.
Finally, we randomly select 80% of all the years to be used for training and 20% for testing.
Furthermore, the temperature is scaled to [0..1] using the global minimum and maximum

temperatures.

117

Figure 4.5: Weather Station Clustering Example

Target values

For this problem, the input is a dataset I and a target dataset Dy, as described in
Section 4.2, where all the geometries are of type Point, and each point is associated with an
attribute, representing for example the measured temperature. The geometries in Dy are
the same as), since we are producing a label for defining the cluster each point belongs to.
Considering Eq. 4.1 proposed in Sec. 4.2, for this problem the target value is computed as the
tensor M = f(D, Dr, 1,62, MP) € RIPT*C wwhere C is the maximum number of clusters,
since the labels are one-hot-encoded, and €1, €2 and M P are the clustering parameters.
This function generates one prediction for each point in Dy, i.e. the probability to belong
to each cluster in C.

We build six models for this problem. Two models for each representation, with
one being parameterized, and one trained on fixed parameters. The models are labeled
GI-C, GG-C, and GV-C, for the ones with fixed parameters. A summary is provided in

Table 4.1.

118

4.3.3 Clustering
Geolmg model (GI-C)

We use a UNet [176] like architecture. The input histogram H is similar to the first
problem, as defined in Section 4.3.1. Thus, H € R**%4*8_ For the target, we represent the
output as a histogram with shape (3,64, 64), and assign each label a unique color. Each
cell will have the color corresponding to the most common label associated with the points
it contains. We implement a function that translates a color back to a cluster label. GI-CP

is similar but takes parameters with the input.

GeoGraph model (GG-C)

This model is based on the original PointNet++ [169] model for segmentation.
Given a set of points, this model makes a prediction for each point in the set, instead of
making a single prediction for the entire set. The first part of this model works the same
as the original model, reported in Fig. 4.2, until generating an embedding for the set from
the Global Abstraction layer. Then, a few more layers are added to propagate the features
back to all points in the input using interpolation.

The input is organized as follows: (i) the coordinates of the points are represented
as a tensor (with shape (N,2), N representing the cardinality of the dataset), and
the thematic attribute values as a tensor A with shape (N,1). The output in this case is
a tensor of dimension (N,C'), since the label is one-hot-encoded, and the model predicts

probabilities for each point.

119

GeoVec model (GV-C)

The adopted architecture is similar for all problems. Inputs are the same as for
GeoGraph model, but limited by the upper bound b of the Transformer layer. The target
output represents the cluster labels for each point in the input. The other points are assigned

labels based on the closest point in the points used in the input set.

4.3.4 Selectivity Estimation

This problem has applications in database systems and query optimization. We
include it as an example of a problem that involves working with shapes other than points
and in the presence of another parameter beside the dataset I). This can be a simple query
window g for the selectivity of range query, or another dataset IV for the selectivity of

spatial join.

Problem definition

Given an input dataset [} and a geometry g defining a range query, the objective
is to estimate the percentage of geometries g € D) that intersect with g. This problem
is based on [34], which studies selectivity for both range and join queries of spatial data,
using a histogram approach. Due to space constraints, we consider in the following only
the selectivity estimation of the range query operation, since the selectivity of join can be
considered an extension of this one, where each geometry of the second dataset represents

a query window for the geometries of the first one.

120

Target values

We start from a subset of the datasets used in [34] which includes several datasets
of rectangle geometries following different distributions. For each of these spatial datasets
D, many range query windows g have been identified and the corresponding selectivity value
has been computed. Therefore, this problem is in the form m = f(D,q) € R!. Selectivity is
a value between 0 and 1. We build three models for this problem: GI-E, GG-E, and GV-E,

summarized in Table 4.1, and described next.

Geolmg model (GI-E)

We use a model that is very similar to GI — S model, and using as input a similar
histogram according to the reference work [34]. The histogram representation still matches
our representation approach described in Section 4.2.2. The aggregation functions include
the averages of the area, the horizontal length, and the vertical length of all geometries

intersecting each cell.

GeoGraph model (GG-E)

The difference between this model and the one used for the first problem is that
in this case the inputs are the MBRs of a geometry.

An MBR is compactly represented by four numerical values: ..., Ymin: Tmar
and Ymar, representing the minimum and maximum z and y coordinates of one geometry,
respectively. We also need to extend the notion of distance to work with rectangles instead
of points. There are several ways to compute the distance between two rectangles. The sim-

plest one is to pre-compute the centroid of each rectangle and then compute the Euclidean

121

distances based on that. The centroid is defined as (Zms ‘;”*‘“’, y"“—“‘gmj The input ge-

ID|%6 where the first two columns represent the

ometries are represented as a tensor G € R
centroid used when computing the distances in the range query, and the last four columns

represent the MBR used in the message-passing step.

GeoVec model (GV-E)

The adopted architecture is similar for all problems. We used the centroid of
the rectangles to represent the geometries. First, we experimented with representing the
rectangles using five coordinates as polygons. However, this was not efficient since each
input includes thousands of shapes, and the encoder step was taking longer time. Instead,
we represented the rectangles similar to GG-E, using the centroid and the MBR as additional
features. Furthermore, sampling and padding are applied appropriately like the previous

problems.

4.3.5 Walkability Estimation

The last problem that we consider is for walkability estimation. The motivation to
consider this problem is due to its complexity, given that it requires a spatial join operation
involving two separate datasets, followed by an aggregation step. Building a reasonably
accurate model for this problem will give us more confidence about the suitability of the

two approaches for general spatial analysis.

122

Problem definition

We define the walkability of a given geographic region to be about accessibility
of various amenities and services from any location within that region. Each geographic
region is given a score from 0 to 1, with 0 representing non-walkable regions. The calculation
involves two different sets of points. The first set represents nodes in the road network, but
only for the type of roads that are pedestrian-friendly. The second set includes the points
of interest (POI) within the same region, from a fixed set of ten categories, like shopping,
restaurants, etc. The main idea is that a point on the road network that is within a very
close distance from at least one POI of all these categories are considered to have a perfect
walkability score. The score for a region is simply the average of the scores for all points
within its road network.

The first step in computing the score is finding the nearest point from each POI
category for every node in the road network and storing the distances. The score for a
specific node in the network is computed on the basis of these distances. A POI that is
within a half-kilometer distance is given a score of 1, while those that are farther than two
kilometers are given zero. Then, the scores for each category are averaged to produce the
score for each node. Finally, the scores for each node in the road network are averaged, and

the value is the walkability score for the entire region. These steps are shown in Fig. 4.6.

Data preparation

First, we extracted road networks using [41] and the points of interest for several

geographic regions from OpenStreetMap (OSM). Then, we subdivide those large regions

123

—— iy
For each road node N, compute
distance to closest POI by category.

Node | Restaurant | Shopping
N1 431 870
Conv:f:rt distances tu SCOTES.
¥
Node | Restaurant Score
N1 1.0 0.74

Region's Walkability Score = AVG{Score)

Figure 4.6: Example of walkability computation.

to smaller areas, to make the computations more feasible and to increase the number of
examples for training and evaluation. After that, we computed the exact walkability scores
as described earlier.

The resulting data could be very unbalanced. It could be quite common to have a
very small number of partitions that have a perfect walkahility score, while low walkability
scores have a very large number of examples. Therefore, to increase the effectiveness of the
training, an augmentation phase is necessary. In particular, two augmentation strategies
are used: we rotate the points around the region center with a random angle, and we shuffle
the labels of the POI categories randomly. Both changes do not affect the walkahbility score

because it is not dependent on the direction and all the POI categories have the same

weight.

124

Finally, the data is pre-processed following our discussion in Section 4.2, noting

that this problem involves two datasets.

Target values

This problem can be formalized as a function m = f(D, I)') where D) is the nodes
dataset, and [is for POIs. The value m represents the walkability score. We train three
models for each representation, GI-W, GG-W, and GV-W, shown in Table 4.1 and described

next.

Geolmg model (GI-W)

We use an architecture similar to the first problem. The input is represented as

R11x64x61 where we have one histogram channel for each type of points:

a histogram H
one for the road network, and the rest for the POI categories, one for each. All are based

on the aggregation function fr.,une. a8 described in Section 4.2.2.

GeoGraph model (GG-W)

We experimented with different variations for how to perform the joining of the
two datasets. We used the version that produced the best results. It first includes a set
abstraction layer between the POI points only. Then, the following set abstraction uses
the POI points and their features produced from the first layer as the reference points, and
computes features for the road nodes. Then, it is followed by a similar architecture as the

one used in the data synopsis problem.

125

GeoVec model (GV-W)

The adopted architecture is similar for all problems. The main difference here is
using a stratified sampling step to ensure that the data is sampled in proportion to its size.
We use all the labels in the stratified sampling including the labels of the points of interest,
and the label that indicates the dataset. This ensures that points from all types of points

of interest in the region are included.

4.4 Experiments

In this section, we run an extensive set of experiments to evaluate how both types

of representations perform for all four problems.

4.4.1 Setup

Hardware

For CPU based processing, such as when computing ground truth values, the
tasks were ran on two AMD EPYC 77153 64-Core Processor with a total of 256 threads
and memory of 128GE. GPU-based tasks, e.g., training and inference, were run on a server
with AMD EPYC 7545 52-Core Processor with a total of 64 threads, 256GB of memory

and NVIDIA A100-SXM4-80GB GPU.

Datasets

The datasets used in the experiments are grouped into different collections, which

have been detailed in Table 4.2 based on their type, i.e., synthetic or real, and the problem

126

for which they have been considered. In particular, we have: (i) collections that contain
synthetic datasets, i.e., type = syn, generated through the Spider Generator tool [106].
These collections are grouped based on the considered spatial distributions: uniform, di-
agonal, Gaussian, Sierpinski, bit, or parcel. The suffix “large” has been added to dis-
tinguish synthetic datasets with a larger number of geometries. Additionally, we obtain
the range_queries dataset from previous work [34] which includes a collection of synthetic
datasets with different spatial distributions and associated with the results of range queries
and their selectivity. (ii) Collections that contain real datasets, i.e., type = real, namely
weather and walkability, which are obtained from [155] and Open Street Map (OSM), re-
spectively.

Table 4.2: Dataset Collections Summary: “syn” and “real” states for synthetic and real

datasets, respectively, while “5D5” means spatial data synopsis, “CL" is spatial clustering,
“SEL” is selectivity and “WK” is walkability.

Collection Type | Problem | # Sets | Min Set Size | Max Set Size
diagonal VI sSDs 675 10000 0000
Faussian VT sSDs 300 10000 0000
sierpinski SVn SDS 300 10000 20000
uniform SVn SDS 300 10000 20000

diagonal_large VT sSDs 108 25000 100000
paussian_large VT sSDs 75 25000 THO00
sierpinski_large SVn SDS 100 25000 100000
uniform_large SVn SDS 100 25000 100000
bit SVn SDS 102 10000 20000
parcel SVn SDS 108 10000 20000
range_queries VT SEL E000 10240 974
weather real SDs, CL 1568 1025 11613
walkability real WK 20000 2 27009

All of these datasets are preprocessed following our three representations described
in Section 4.2. Some collections are only used in evaluation, while for the collections that

are used in training, we keep a 20% subset for testing.

127

The following subsections describe in detail the obtained results for each considered

problem.

4.4.2 Data Synopsis

The models for this problem are trained to predict nine different values, given
a dataset), as discussed earlier in Sec. 4.3.1, i.e., the maximmum and minimum average
value (hotspots), the location of hotspots, the Koy, and the box count values Ep and
E5. We evaluate these models from different perspectives. First, we look into how they
perform for different collections of datasets both those used in training and additional ones.
The ones used in training include a separate 20% that is used for this evaluation. We
summarize the results for this part for models GI-S, GG-S, and GV-5 in Table 4.3. The
last column is added to compare how the models perform to a random number generator,
since no baseline is available in this case. The metric used in this table is the average of
the weighted Mean Absolute Percentage Error of all the model outputs, where wMAPE =
(3oi g |y —i]) /(3211 |wi|) and y; is the actual value, while g; is the predicted value. Note,
that wMAPE is computed for each output value separately.

The first four datasets collections were seen in training. The GeoGraph model
(GG-5) performs better for the seen datasets and their scaled versions, like uniform and
uniform_large. There is only one case where it performs slightly worse than the other
approaches. For the parcel distribution, GG-S performs much better for the hotspot-related
values, but worse for some of the K, ajues and the box counts. However, we note that the
actual K, j,,.. where GG-S performs worse are very close to zero, and small deviations from

the actual value result in larger errors. All models, however, have much smaller errors

128

than the random predictions. In general, GG-5 actually produces much better results for
the K, ., with the smallest radius. These results help give us confidence that the models
actually learn the functions they were trained to predict, especially since some distributions
were not seen in training, and most of the sets in the evaluation have hotspot positions that
were not seen in training. The results on the larger datasets show that the guality is still
consistent even if we make inferences on data sizes that are a few times larger than those
seen in training.

Table 4.3: Data Synopsis Summary by Collection (wMAPE)

Collection | GI-8 GG-5 GV-5 Random
Collections seen in training |
diagonal 0.105% 0.0660 0.0801 1.5825
gaussian 07006 0.1377 0.1660 23565
sierpinski 0.1271 0.1183 01235 27929

uniform 0.6664 0.1932 02632 102451
Collections not seen in training |
bit 0.3271 0.1831 03026 1.4528
parcel 0.2381 04653 0.2261 2.7672
weather 0.4323 0.3326 04937 08745

diagonal large | 0.1091 0.0638 0.0788 1.6031
sierpinskilarge | 0.1177 0.1075 0.1134 29641
gaussian large | 0.5805 0.1243 0.1633 2.2329
uniform large | 0.6520 0.1905 02970 9.7232

Next, we evaluate the results by output type and summarize the results in Ta-
ble 4.4. For this evaluation, we also use wMAPE, but this time it is computed for each
output value for all datasets across all collections. The table shows that GG-5 performs
better for hotspot prediction, similar performance for K, .., and worse for box counts.
It is not surprising that the image-based model works better for box counts since the first
step for computing the box counts is creating a histogram, where a similar histogram is
provided as input to the model. However, the Geolmg model performs noticeably worse

when it predicts K,uue with the smallest radius. This is most likely due to the fact that

129

Table 4.4: Data Synopsis Summary by Output (wMAPE)

Attribute value Params GI-5 GG-5 GV-5 Random
hotspots min-value k=16 0.20 0.12 0.28 0.84
hotspots Tmin k=16 0.25 0.12 0.13 0.60
hotspots Ymin k=16 0.33 0.16 0.2 0.68
hotspots max-value k=16 0.05 0.04 0.11 0.31
hotspots Tmas k=16 0.25 0.18 0.25 0.74
hotspots Yma= k=16 0.19 0.14 0.18 0.72
hotspots min-value k=32 0.21 0.13 0.2 0.80
hotspots Tmin E=132 0.25 0.13 0.13 0.59
hotspots Ymin E=132 0.32 0.18 017 0.67
hotspots max-value k= 32 0.05 0.03 012 0.31
hotspots Tmas E=132 0.25 0.18 0.26 0.78
hotspots Ymae E=132 017 0.14 0.16 0.71
hotspots min-value k=64 0.21 0.13 0.18 0.78
hotspots Tmin k=064 0.25 0.12 0.15 0.60
hotspots Ymin k=064 0.32 0.18 0.18 0.69
hotspots max-value k=64 0.04 0.04 012 0.32
hotspots Tpae k=064 0.25 017 0.30 0.75
hotspots Yma= k=064 0.16 0.15 017 0.69
Koaiue r=0.025 | 1.88 0.1 0.76 16.30
Kuatue r = 0.05 0.56 0.60 .68 5.30
Kl.lﬂi'ﬂ! r=10.1 0.36 0.50 62 1.69
Koaiue r=10.25 0.34 0.15 0.42 0.60
box counts Eyg - 0,03 0.05 0.07 0.22
box counts Ea - 0,11 0.20 0.33 0.28

each pixel in the input histogram covers space that is multiple times larger than the radius.
This result is consistent with our expectations.

Moreover, we perform experiments on real-world datasets, specifically, the weather
collection. For this collection, we evaluated six models, three models trained on synthetic
data, GI-5, GG-5, and GV-5, and three models trained on weather data, GI-S-W, GG-5-
W, and GV-S-W. The results are shown in Table 4.5. The results are consistent with our
previous observations.

Furthermore, we evaluate the running time for estimating these values, using our
models, relative to computing them by using traditional algorithms. This is summarized in

Table 4.6. The prediction time by the Geolmg model remains small even for large sizes since

130

Table 4.5: Data Synopsis for Weather Data Outputs (wMAPE)

Attribute value Params | GI-8 GG-5 | GV-5[GI-5-W GG-5-W | GV-5-W | Random
hotspots min-value k= 16 040 022 0.52 0.07 0.07 0.12 0.55
hotspots Tmin k=16 046 022 0.15 |0.10 0.08 0.14 0.45
hotspots Ymin k=16 072 0.3 041 0.16 0.12 0.26 0.72
hotspots max-value k= 16 007 005 025 0.02 0.02 0.03 0.28
hotspots Tmae k=16 061 046 0.60 0.27 0.24 0.34 0.70
hotspots Ymas k=16 0.27 027 0.24 |[0a7 0.15 0.20 0.52
hotspots min-value k= 32 040 024 034 0.04 0.04 0.07 0.54
hotspots Tmin k=32 047 023 0.14 |0.10 0.09 0.14 0.48
hotspots Ymin k=32 0.70 039 0.34 (0.4 0.09 0.23 0.67
hotspots max-value k= 32 007 0.04 032 0.01 0.01 0.02 0.26
hotspots Tmae k=32 066 048 0.72 0.27 0.25 0.31 0.76
hotspots Ymas k=32 0.21 025 0.26 012 0.12 0.16 0.52
hotspots min-value k= 64 041 024 028 0.07 0.08 0.07 0.51
hotspots Tmin k=64 048 023 0.17 | 0.11 0.09 0.14 0.48
hotspots Ymin k=64 0.67 039 0.35 |[0.14 0.11 0.20 0.66
hotspots max-value k= 63 008 007 033 0.02 0.02 0.02 0.26
hotspots Tma. k=64 067 049 095 0.28 0.24 0.29 0.9
hotspots Tmas k=64 0.18 0.30 0.32 0.11 0.11 0.15 0.45
Kyatue r=0025]1.24 0.60 085 247 0.46 1.16 8.05
Kuatue r=005 |0.30 0.76 0.96 0.43 0.18 0.30 214
Koatue r=0.01 |[0.49 0.74 0.95 0.23 0.17 0.28 0.57
Kyatue r=025 (044 0.24 091 0.7 0.05 0.09 0.47
box counts Eo - 0.05 0.12 0.19 0.02 0.02 0.03 0.20
box counts Es - 0.30 0.64 1.32 0.01 0.01 0.02 0.49

the input size is fixed; however, the time to prepare the histogram increases with increasing
data sizes, even if it still scales well. Similarly, GV-5 scales well, since its input is bounded
in size.

The running time for the GeoGraph model can increase significantly with increas-
ing the dataset size, but it is still much lower than the time it takes to compute the target
values with traditional algorithms. We also evaluate how GG-5 scales with increasing the
dataset size. Some results are shown in Figure 4.7. We start with 10 thousand points
and keep doubling the size. We get a memory access error once we reach the size 28 = 104
points. The memory consumption increases linearly, while the inference time increases

sub-quadratically. The main effect is caused by the number of edges required for each

131

message-passing step. Another observation we make is that the GeoGraph model converges

in a smaller number of epochs compared to the others, as shown in Figure 4.8.

— 20 _ 0.8
30 <) -~
-1 5= 5 0.6
; : E
201 - —
_E Fi0 E g 0.4 1
E 10 = -
-E s = 02
= -
B~ o0qs , Ay = 0.0+
10k 0.64M 128M 0 10 20 30 40 50
Input Size (number of points) Epoch
Figure 4.7: GG-S time and memory vs. Figure 4.8: Data Synthesis Validation
input size Loss by Epoch

Tahle 4.6: Execution time by distribution in seconds

. GI-5 Exact
Collection Inference +Histogram GGS | GV-S value
uniform 0.02 1.61 237 0.23 199,54
diagonal 0.02 3.53 5.02 0.49 521.88
gaussian 0.01 1.55 2.38 0.22 338.21
sierpinski 0.01 1.61 3.02 0.22 178.17
weather 0.04 4.49 3.39 1.16 2051.31
bit 0.02 275 4.25 0.38 542,20
parcel 0.01 2.83 4.35 0.39 308.092
uniform_large 0.01 11.25 204 .86 | 0.37 270600
gaussian_large 0.01 10.93 20296 | 0.37 6749.55
diagonal_large 0.01 11.83 219.14 | 0.39 1756.75
gierpinski_large | 0.01 10.63 20547 | 0.36 1659.95

4.4.3 Clustering

We compare the clusters estimated by models with the clusters discovered by
ST-DBSCAN, which is what the model was trained to predict. We used three scores for
this evaluation: (i) A perfect homogeneity score indicates that all points within a predicted

cluster are within the same cluster in the ground truth. (ii) Completeness has a perfect score

132

of 1.0 if all points in a single cluster in the ground truth are predicted to be within the same
cluster. (iii) The V-measure is an average of the other two scores. For more information
on these scores, see [177]. The results of this evaluation are shown in Table 4.7. The best
clustering was produced by GG-C, the non-parametrized GeoGraph model. Generally, the
models perform well in all cases except two. The two cases are the ones with MinPoints
equal to 5. It also happens that these parameters result in a larger number of clusters. We
also evaluate the running time, and computing the estimated results in both cases is much

lower compared to computing the ground truth with ST-DBSCAN.

Table 4.7: Evaluation of estimated clusters

Model | Param. Homogeneity Completeness V-Measure
GI-C (0.05, 200, 50) 0.86 0.04 0.80
GI-CP (0.02, 200.0, 5.0) 0.85 0.67 0.74
GI-CP (0.03, 50.0, 5.00 0.81 0.69 0.74
GI-CP (0.03, 200.0, 20.0) 0.83 0.79 0.81
GI-CP (0.05, 100.0, 50.0) 0.83 0.87 0.85
GI-CP (0.05, 200, 50) 0.85 0.89 0.87
GI-CP Average 0.83 0.78 .80
GG-C (0.05, 200, 50) 0.95 0.095 0.95
GG-CP | (0.02, 200.0, 5.0) 0.79 0.71 0.74
GG-CP | (0.03, 50.0, 5.00 0.73 0.68 0.70
GG-CP | (0.03, 200.0, 20.0) 0.80 0.81 0.80
GG-CP | (0.05, 100.0, 50.0) 0.85 0.87 0.86
GG-CP | (0.05, 200, 50) 0.85 0.88 0.86
GG-CP | Average 0.80 0.79 0.79
GV-C (0.05, 200, 50) 0.90 0.02 0.80
GV-CP | (0.02, 200.0, 5.0) 0.55 04 0.45
GV-CP | (0.03, 50.0, 5.00 0.51 0.35 0.4
GV-CP | (0.03, 200.0, 20.0) 0.75 0.67 0.7
GV-CP | (0.05, 100.0, 50.0) 0.82 0.81 0.81
GV-CP | (0.05, 200, 50) 0.83 0.81 0.82
GV-CP | Average 0.69 0.61 .64

4.4.4 Selectivity Estimation

We summarize the results in Table 4.8. We notice that the GeoGraph approach

performs better in most cases, from very low selectivity to higher selectivity. However,

133

notice that we only used the smaller data sizes for this problem, where each set is only
tens of thousands of points, whereas in our reference [34] much larger sizes were considered.
Also, notice that most of the examples have very low selectivity, due to the range queries

associated with the datasets.

Table 4.8: Selectivity estimation (wMAPE)

Selectivity Range | GI-E GG-E GV-E Random
[0.0, 1e-D5] 334E+03 5.33E+02 187E+03 4.31E+05
{1e-05, 0.0001] 1LB3E+02 J.72E4+01 B2 42E+01 7.92E+03
{0.0001, 0.001] L31E+01 3.B1E4+00 951E+00 1.04E+03
(0,001, 0.01] 3.52E+00 1.5E+00 235E4+00 1.41E+02
{0.01, 0.1] 4.32E-01 5.17E-01 4. B6E-01 1.57TE+01
(0.1, 1.0] TOE-01 3.18E-01 5.48E-01 236E+00

4.4.5 Walkability Estimation

We summarize the walkability results in Table 4.9. The table shows for each
walkability range the percentage of scores that are predicted within 0.1 of their actual
value. From the table, GI-W seems to work much better than the other two, which show
similar accuracy. We think this can be attributed to three aspects related to each method.
First, in this data set, the data is divided by 5km x 5km regions; this results in more
sparse histograms and less overlap of points in each histogram pixel. Second, the decrease
in accuracy in GG-W could be due to the way the dataset join is performed. While we
experimented with several variations in performing the join, there is still more room for
improvement. Third, in GV-W, the significant decrease in accuracy could be due to the
sampling. However, all three cases still produce reasonably good results and are much faster

than the exact method.

134

Table 4.9: Summary of accuracy for walkability results

Tabal Wodal |0 U1, 0.0] (0.5, 0. T, 0, EN &, 06 (0.0 TE, 0. Avg
TW [&% ;1A 7 5% 74 B B T T, =
Califormin oow | o BET 0%, £8% ET% % TH% 0% £8% ™
OV.W | M% B o B E4% % TH% EI% 5E% T
LW | 100 o % T TR T T L
Flarida oowW | % 8%, 1% 1% % 5% 5T BO%E
ov-w | R 0% B3 BB £1% B5% 43% TI%
TLW | W% LT % % =% Ei 0% B W L
Ttaly oo.wW | BE% B % B% ™% TE% 2% TBR 0% TR
av.w | R B0, ETH B 51% 8% 2% &% ET% TE%
W [100 T, TR TEE =R T T BT T, TR W
Mow York oow | Bi% D1% 1% Eis TI% 0% BE%, 4% 19% B1%
ov-w | 8% 3% e4% B TI% 100% 0% BI% [% e8%
LW | 100 6% % 0% ET Ei a1 TE% 105 100 %
United Kingdom | Q0-W | 809 3% = 1% e 505 £0% BE%, B0 21% T
ov.w | % 6% 4% B % £9% TE% 6% AT 0%, 4%

Note: each column represents regions within a walkability range, and scores represent the percentage of
regions that received highly accurate estimates.

4.4.6 Discussion

In this part, we discuss the main takeaways from these results. From the data
synopsis results, we notice that position-based predictions and predictions that require
analyzing points at very small distances, like when the K,;. is very small, GeoGraph
is more suitable. For values that only require a global overview of the data, and where
localized values are less relevant, like when computing the box counts, Geolmg is more
suitable.

From the clustering results, we notice that all types of models generally work well
and estimate clusters efficiently. However, the model may not be accurate if the number
of expected clusters is large, especially if the model is parameterized. The results for this
problem serve as a motivation for other problems like spatial interpolation, and we expect
that GeoGraph would be more suitable.

From the selectivity results, we still notice that there are issues related to scalability
that need to be addressed for GeoGraph, especially when data sizes grow to millions of
points. Several directions can be investigated, such as partitioning, indexing, and sorting-

based methods. We leave this for future work. We also notice that better representations

135

for geometries other than points are needed. However, a simple representation, such as
using the centroid point and pairing it with some features, is sufficient for many use cases.

From the walkability results, we notice that joining multiple datasets under Geo-
Graph still needs some improvements. Joining datasets under Geolmg is straightforward,
since we just align the histograms on top of each other. It worked relatively well in our
case, since the area is small (5km x 5km), and there is not much overlap on each pixel,
and there is a lot of sparsity. However, in other cases, Geolmg may not be suitable, and a
more accurate GeoGraph based approach will be needed. For GeoVec, better sampling or
partition approaches can be considered. For example, instead of just taking samples prior to
feeding to the model, some aggregations can be used. Furthermore, some hybrid approaches
can also be considered. For example, a set abstraction layer can be used to summarize the
points in each region, and then embeddings can be passed to a different model architecture.

We leave it for future work.

4.5 Related Work

Deep learning for geospatial data. The use of deep learning architectures with
geospatial data is improving. Recently, libraries like TorchGeo [193] have been introduced,
as well as geospatial foundation models like [153, 13, 205], and others, refer to [238] for a
recent survey. However, all of these are based on vision models and tailored for geospatial
raster data, which is a different modality than geospatial vector data.

Although there have been successful applications of deep learning with geospatial

vector data, full support is still lacking. There have been several proposals for better

136

representing geospatial vector data for deep learning architectures. These include [147, 222,
149, 188] which all focused on representing a single object, either a point or a polygon, and
possibly encoding the context around the object. However, this is very limiting, since a
lot of geospatial problems require analyzing a huge set of geometries, such as the problems
we consider in this work. We integrated Poly2Vec [188] with the GeoVec architecture,
and it is a promising approach. The work in [146] provides a survey on different spatial
representations, including models that work with point sets. To the best of our knowledge,
this is the first work that studies point set models for geospatial applications, analyzing
their effectiveness for various spatial operations and learning about existing limitations.

Point-set architectures. Several architectures have been proposed that take a set of
points as input, and they are mainly related to the points-of-cloud domain, where a set
of points represents three-dimensional objects. We chose to study PointNet++ [169] due
to its suitability for the problems that we consider and the fact that it follows a multi-
scale hierarchical approach. While we focused on this architecture, we keep our discussions
general enough in a way where it is possible to replace different layer types since this might
produce higher quality results. However, our goal is not to provide the best accuracy
possible but to learn about the suitability of point-set-based approaches for problems that
involve geospatial vector data. Point Transformer [233] is one alternative, and its more
recent version PTv3 [219] provides more efficient aggregation by using space-filling curves.
Anyway, it does not support processing attributes associated with points, a requirement

for all our problems. Also, these new aggregations are not yet integrated with PyTorch

137

Geometric [68] which is the library of choice. There are also other alternatives, and [146]
provides a good comparison among them.

Data synopsis. The K41y metric is based on Ripley’s K function, used in traffic
flow, neighborhood accessibility, clustering, and hotspot detection [101, 135, 199, 90, 141].
To address scalability, Spark-, GPU-, and heuristic-based solutions exist [216, 198, 48]. Box
counts [33] have been used in query optimization [209]. Other applications of synopsis
include similarity search [224]. Metric selection is application-driven, e.g. [181] develops
custom metrics, and we only considered a small subset. Clustering. It has a very wide
range of applications [18, 46, 49, 187]. There has been work on clustering with deep learning
[202, 20, 157, 104]. It involves different architectures, custom clustering loss functions, and
other steps. We focused on supervised learning on showing how the different representations
can replicate the operations of existing algorithms. We leave the unsupervised learning for
geospatial clustering for future work. Selectivity. Selectivity estimation is important for
query optimization; some related DL-based methods include [84, 34], and [231] provides
a survey. Walkability. We study walkability because it includes spatial joins. There are
many ways to measure walkability [207], and often it involves OpenStreetMap data [83, 133].
Spatial joins are expensive [236, 72, 218, 209]; our aim is to evaluate the effectiveness of
different representations in capturing an operation with a spatial join rather than advancing

walkability estimation.

135

4.6 Conclusion

We have presented three different approaches Geolmg, GeoGraph, and GeoVec
for working with geospatial vector data and deep learning. We modeled four geospatial
problems following the three approaches and learned about their effectiveness and limita-
tions. The results show that all enable modeling complex geospatial operations. Future
research directions include improving scalability, designing more generalized models and
applications, and enabling models that work with multiple modalities of geospatial data.

Which will all take us closer to realizing the use cases that we envision.

139

Chapter 5

GS-QA: A Benchmark for

Geospatial Question Answering

5.1 Introduction

Question Answering (QA) systems are designed to answer free-form questions.
Earlier QA works focused on questions based on a given text passage [53], while more recent
work focuses on open-domain (YA, where a large collection of documents or other data must
be searched to find the answer. Recent advancements have shown that Large Language
Models (LLMs) are excellent for synthesizing text responses given complex questions, and
can be used to build more robust QA systems. Recent work has proposed benchmarks for

the evaluation of the performance of LLMs in QA systems [25, 114, 52, 184].

140

In the area of geospatial data management, ()A has the potential to disrupt the
way that people look for geospatial information, given the complexity of querying geospa-
tial data for non-experts. As an example, consider the question 'Which four star hotels are
within 50km of UCR towards LAX?' To answer such a question, first, the anchoring locations
must be identified, which are the Univesity of California, Riverside ('vcr') and Los Angles
International Airport ('Lax'). Then, their location coordinates must be retrieved. After
that, the spatial predicates must be identified, which are a range query within a 50 kilo-
meters radius and a direction filter based on an angle. Finally, hotels that are in locations
that satisfy the spatial predicates are retrieved, as shown in Figure 5.1.

Surprisingly, state-of-the-art conversational Al tools like GPT-4 are unahble to
correctly answer such questions, because they do not account for all the spatial predicates.
For example, passing the example question to ChatGPT returns popular hotels in Riverside
and some nearby cities that are not necessarily in the search area; that is, the directional
predicate is ignored. Changing the question by replacing LAX with Las Vegas, which is
towards the opposite direction, still produces the same answer.

Designing a system for answering such questions is challenging. First, understand-
ing spatial predicates and performing spatial reasoning are required. Current LLMs often
respond with popular entities, e.g., the names of popular hotels, which may not necessar-
ily be the best answer. Second, the answers to some questions can change over time, so
the LLM may not be up-to-date. Third, some questions may require synthesizing data

from multiple sources, which may include unstructured data sources. Building an effective

141

|wxﬁd1ﬁurm:hudsnraﬁnsa:&mu{'ucnmmu:e|

Lt A gt
ilu; Search area

Figure 5.1: Geospatial QQuestion Answering Example

geospatial (JQA system could enable users and practitioners from many fields to get reliable
answers without relying on specialized tools or languages.

There is limited work on benchmarking Geospatial Question Answering (GeoQA)
[108, 168, 103]. These have various limitations. First, they include a small number of
questions and no mechanism to generate more questions of given types. Second, they
assume the existence of a spatial knowledge graph, which is often not awvailable in practice,
or it may only store part of the necessary information to answer a question. Finally, they
have limited spatial operators or non-spatial conditions.

Evaluating Geo()A is challenging for various reasons. Geospatial data represent
many different types of entities, such as points representing restaurants, lines for roads,
polygons for region borders, etc. There are many types of questions that can be asked about
this type of data, such as asking about directions, the location of an object that satisfies some
conditions, and more, including questions that require aggregation and analysis of a large
number of records. Further, the generated question-answer pairs must be unambiguous. A
question must have a unique answer that can be computed deterministically given reference

data. In addition, we need a clear process for evaluating the correctness and quality of the

142

generated question-answer pairs. Furthermore, we want a benchmark that can be easily
updated or expanded given reference data.

In this work, we introduce G5-(JA, a benchmark for evaluating open-ended answers
on questions that involve geospatial data. It includes 28 question templates, incorporating
a variety of spatial objects, spatial predicates, and output types, among others. It also
includes multi-source (i.e., multi-hop) questions that require multiple steps to be answered,
synthesizing information from multiple spatial and non-spatial sources. We provide one
hundred questions for each template, for a total of 2800 questions. We also propose var-
ious evaluation strategies appropriate for Geo(QA, which go beyond traditional text-based
matching used in existing QA work. We complement text-based matching with spatial-
based measures, such as relative distance error. We created and complemented a suite of
six diverse LLM-based Geo()A baselines, which combine LLMs, retrieval, and structured
querying (ie., text-to-SQL).

In summary, our contributions are as follows:

We create a G5-QQA, a benchmark dataset comprising 2800 questions from 28 tem-
plates, with a wide range of spatial objects, predicates, and non-spatial information.

We have published GS-QA along with the baselines’ results [150].

We develop a methodology for generating a large number of question-answer pairs
based on our templated and a reference database, using corresponding SQL query

templates.

We implement several LLM-based Geo()A baselines, based on state-of-the-art retrieval

methods.

143

We propose a suite of text-based and geospatial-specific evaluation measures.

We perform extensive experiments that show that existing baselines have low perfor-

mance for most of the query templates of G5-QA.

We start by summarizing the related work in the literature and how GS-QA fills
a needed gap in Section 5.2. In Section 5.3, we present our methodology used to create the
benchmark. In Section 5.4, we discuss the baselines that we use to demonstrate how to use
the benchmark. In Section 5.5, we provide experimental results evaluating the baselines.

Finally, in Section 5.6 we discuss future work and conclude.

5.2 Related Work

GeoQA Datasets. Existing benchmarks for open-domain Geo(QA include Geo-
Questions1089 [108] and GeoQuestions201 [168]. Both include natural questions with associ-
ated queries that get the answer from a reference knowledge graph, namely, YAGO2geo [103]
and one of its variants [40] in the case of GeoQuestions1089. We propose GA-QA over an
existing benchmarks such as GeoQuestions1089 for multiple reasons. First, they assume
the existence of a knowledge graph, whereas G5-(QA is an open-retrieval benchmark, i.e.,
it operates on top of heterogeneous data sources, including structured spatial databases
and document stores. Second, all G5-QA questions reference multiple entities, including
the question itself and when computing the answer. This is to ensure that the system is
evaluated based on performing spatial operations and not simple retrieval based on string
matching. Furthermore, our proposed benchmark includes a larger number of question cat-

egories and each category has a larger variety of questions. Also, in being able to automate

144

the question generation process, our benchmark can be easily extended to include more

question categories. These differences are summarized in Table 5.1.

Table 5.1: Comparison between our benchmark and Geo(QA1089

Benchmark Proposed benchmark GeoQA1089

Main reference data OpenStrestMap Geospatial knowledge graphs
Cery language SQL (PostGIS) GeoSPARQL

Includes open retrieval | Yes No

Cuestion categories 28]

Number of questions 2800 1089

Creation method Automated template-based | Manual

Easily extensible Yes No

GeoQA Systems. Existing systems for GeoQA [51, 124, 108] focus on question
answering on a knowledge graph by converting the user question into a dependency parse
tree that extracts the final answer from the knowledge graph. Our system is more versatile
by utilizing the power of LLM. It can convert the user question into queries that run on
any data store, e.g., a database, and use the query result to formulate the final answer.

Closed-domain Spatial Reasoning. There has been work on evaluating spatial
reasoning, such as SPARTQA [158]. The problem here is: given a description (e.g. “We
have three blocks, A, B, and C. Block B is to the right of block C and it is below block A.")
we ask a question (e.g. “Which object is above a medium black square?”) that requires
spatial reasoning on the provided description. This work is different from our problem,
which is open-domain question answering. There is also work on visual spatial reasoning
[138], where the input is an image instead of a textual description. Similar works also fall
under the domain of spatial reasoning and spatial proximity, including [50, 125]. The work

in [107] evaluates spatial reasoning in the context of GeoQA.

145

Benchmarks for LLM-based QA Ewaluation. With the rapid and wide
spread of LLMs, researchers have developed several benchmarks to evaluate LLMs on ques-
tion answering. Some benchmarks rely on multiple choice questions, e.g., MMLU [86] and
GPQA [175]. These benchmarks are more challenging and they require deep domain knowl-
edge. The proposed benchmark has more open-ended answers and we take that into account
when designing the evaluation strategy as detailed in the paper.

There are also domain-specific benchmarks such as MATH-500 [136] which evalu-
ates LLMs on solving math problems in a step-by-step approach. In this case, all the steps
are used to evaluate the model and not just the final answer. Our benchmark focuses on
spatial QA and it evaluates only the final answer. We believe that step-by-step evaluation
can be useful but we leave this for future work. In this case, the answer will need to change
to steps that resemble how GIS analysts approach the question. Another difference is that
the MATH-500 dataset was used for both training and evaluation while this paper focuses
on evaluation. Our QA dataset generator can also be used to generate data for training but
we leave this also for future work.

The evaluation of LLMs is very challenging, and the process is not yet standardized.
The work in [117] discusses the challenges and strategies for LLM evaluation. Some of
the challenges include contamination of benchmark data in training, tailoring prompts to
include examples very similar to the questions being asked, and reproducibility issues. This
informs how we designed our baselines.

Multi-hop questions. These types of questions require multiple steps in order to

be answered, because they typically involve fact-chaining. There existing datasets for these

146

types of questions including [225, 196, 89, 204], and [170] provides a survey on this topic.
The main difference in our benchmark is that all the facts are related to a spatial object,
either identifying a spatial object by its that is referenced in the question or first answering
a question by retrieving a spatial object and then retrieving an external fact related to it.

Multi-modal question answering. These types of questions involve working
with multiple modalities, such as text and images. Some existing benchmarks for multi-
modal question answering include [183, 197]. Our benchmark also falls under this category,
since we work text and geospatial data. All our questions require reasoning over text,
including retrieving information from text documents, as well as perform some geospatial
analysis.

Text2SQL. Converting a natural language question to an SQL query is another
active area of research. In the literature, this problem is usually referred to as Text25QL
or NL2SQL. Several methods have been proposed, including LLM-based approaches [121].
There exist several benchmarks for this problem, such as [237, 126], but they are not
focused on geospatial queries. OQur work can serve as a reference point for the Text25QL

for geospatial data, as well as for building a scalable training dataset.

5.3 GS-QA Benchmark Creation

This section outlines our methodology for creating the GS-QA benchmark’s refer-
ence data, questions, and answers. First, Section 5.3.1 explains how we extract and prepare
geospatial reference data from OpenStreetMap. Then, Section 5.3.2 discusses the creation

of question templates by selecting predicates, spatial entities, and answer types. After

147

that, Section 5.3.4 describes how to instantiate these templates to generate questions.
Section 5.3.5 explains the process of verifying question quality and answer correctness
to ensure question diversity. Finally, Section 5.3.6 discusses how to keep the benchmark

up-to-date as the reference data is updated.

5.3.1 Reference Database

The first step in creating the benchmark is to prepare the reference dataset that
the LLM will use to answer all questions. Our goal is to create a large number of questions
that are primarily focused on spatial objects and spatial operations. However, there are
four challenges in doing that, as mentioned earlier in the introduction. These include en-
suring the questions have a large variety, there is a standardized method to get the correct
answers, scalability, and handling data updates. The reference database we create is a struc-
tured database instance that we generate from OpenStreetMap (OSM). Building a reference
database with a known structure helps us with these challenges. First, it provides us with a
clear structure about the type of spatial objects available and the attributes associated with
them. This makes it more straightforward to create a diverse set of question templates. Sec-
ondly, the support of standardized SQL queries by the database makes it possible to create
queries that instantiate the question templates, as well as define their answers. Further-
more, by having standardized queries, it is possible to generate question/answer pairs on a
scale. Additionally, there are also advantages in relation to data updates and handling data
from multiple sources in the future. The database can also serve as a reference in RAG

(Retrieval Augmented Generation) systems.

148

We get our source data from OSM. We use it as our source because it is the largest
publicly available geospatial dataset. However, our methodology can be used on any source
data. We don’t use OSM directly since it is in a semi-structured format, and converting
it to a relational database provides all the benefits mentioned earlier. We obtain the most
recent version of OpenStreetMap for the entire United States of America from GeoFabrik
OpenStreetMap Extracts [77], which are updated daily. We use the extract produced on
February 2, 2024. We show in Section 5.3.6 how to update the generated question-answer
Ppairs using more recent versions.

Then, we use OSMX [191] to extract five different datasets. 1) Points of interest
(POI). which includes points for restaurants, shops, hospitals, and many more. 2) Ad-
ministrative boundaries, which contains boundaries for states, counties, cities, etc., at
different administrative levels. 3) Parks contains boundaries for recreational parks, nature
reserves, and sports stadiums, among others. 4) Water bodies which includes lakes, rivers,
streams, and others. 5) Roads and walkways includes roads for cars and pedestrians.
Readers can refer to [191] for more details on the extraction process.

Each object in OSM has a geometry attribute, which is the main attribute relevant
to creating our questions. Additionally, each object has a set of tags which add more
information to each object, e.g., park name or speed limit. Since tags are user-defined, they
can be very arbitrary and it would be difficult to store all of them as separate attributes.
Instead, we identified some common attributes that are useful for question answering, such
as name, a reference to a Wikipedia page, and address. Then, we selected a small subset

of other attributes that are related to specific categories like points of interest that provide

149

Tahble 5.2: Reference database summary

Table Columns/Attributes Geometries | Records
Geometry, OSM 1D, Name,
Wikipedia, Address, Leisure,
Amenity, Tourism, Emergency,
Restaurant attributes.
Geometry, OSM ID, Name,
Wikipedia, Address, Leisure.
Geometry, OSM ID, Name,
Lake Wikipedia, Address, Water, All types TOERES1
Waterway.

Geometry, OSM ID, Name,
Wikipedia, Address, Highway.
Geometry, OSM ID, Name,
Wikipedia 1D, Address, LineStrings
Border type, Polygon
Adminstration level.

POI Points 267612

Park All types 007048

All types AGS2ATHA0

Region amarv

services, or are related to tourism, etc. These columns provide us with enough variety
to create a large set of natural questions. We summarize the selected attributes for all
tables in the database in Table 5.2. Refer to [163] for details about different attributes
and their possible values. Using the schema (columns) in Table 5.2, we create a database
instance using PostgreSQL with PostGIS. The statistics of our reference database are shown
in Table 5.2.

The name attribute is used to refer to entities in our questions-answer pairs. The
columns related to Wikipedia are used to retrieve information related to question entities to
create multi-hop questions that contain information from an additional information source.
This can provide another dimension for evaluating question answering systems.

The addresses are stored in multiple columns and are used for disambiguation,
since an object’s name may exist in many locations. Some address attributes like state
and county are appended to names to make them less ambiguous. The address attributes

are also used as an additional indicator of the importance of a POI, since many records

150

do not have an address defined, although it is relatively straightforward to translate the
coordinates to an address, but it may not always be accurate.

The amenity column is associated with points of interest that provide everyday
services, like restaurants and coffee shops. Although there are many types of amenities, we
selected only a few types that would create natural-sounding questions and still provide a
wide variety of values. We only considered amenities related to sustenance such as restau-
rants and coffee shops, as well as hospitals and universities when we created the questions.
When the value for this column is restaurant, other columns can also be used to add ad-
ditional non-spatial descriptors such as the type of cuisine, availability of drive-through, or
outdoor seating. Later, this helps to add more variety to the questions.

From the tourism column, we selected ten categories, including hotels, museums,
theme parks, art galleries, etc. The museum column is used to add a non-spatial attribute
to the questions when the value in the tourism column is a museum.

In the leisure column, we consider values like park, beach resort, golf course,
nature reserve, sports center, among others. For water bodies, we consider lakes, bays,
rivers, streams, and a few others. For roads, we consider primary, secondary, residential,

and more.

5.3.2 Question Templates

To create a large number of questions that can efficiently benchmark a spatial
QA system, we first create guestion templates, and then use these templates to instantiate
an arbitrarily large number of questions. Table 5.3 lists all the 28 templates that we use.

Each template has one or more variables or placeholders that are substituted from the

151

database to create a question instance. Table 5.4 lists all these variables and how they
get substituted. For example, template T1 can be instantiated into the question ‘Can you
suggest a restaurant within 1 km from San Diego Zoo?.

A question template is defined by (a) one or more predicates (e.g., “nearest neigh-
bor™), (b) one or more spatial anchor entities (e.g., “Yosemite National Park”), (c) output
type (e.g., “location”), and (d) a set of text phrases that can be used to instantiate a
question.

Additionally, for each question template, we create an associated SQL query tem-
plate that computes the answer to the question when applied to the reference database.

The templates are based on a variety of combinations of predicates and output
types. The table shows only one text example for each template, but each template has
several text phrases to choose from, adding to the richness of the generated questions. They
are based on a subset of spatial predicates, metrics, and aggregate functions from all the
operations supported by PostGIS. It would be intractable to include all combinations of
operations and functions of PostGIS in the benchmark. Instead, we focused on a smaller
subset of combinations that can be easily translated to natural language questions that
can be asked by everyday users. We note that even this smaller subset is already very
challenging to answer using existing LLM based tools, as will be shown later. However,
based on the question generation process that we define here. The benchmark can be easily
extended to support more operations and variety of questions in later iterations.

Furthermore, for some of these templates, specifically T1. T5, T13, and T17, we

created four more templates that include an additional non-spatial predicate, specifically

152

Table 5.3: Question templates

D | Text Dutput Type | Spatial Prodicat
T1 | Cun you sugget [POLCAT] within [DISTANCE] fram |ANCH_POI? Tnnge
T2® | Cun you suggest [POLNONSPAT] within [DISTANCE) fram [ANCH_POIT Tangs
T3 | Which [POLCAT] i loetod within [DISTANCE] in the [DIRECTION] of [ANCHPOIT Tange, Diroction
Tq1 | Which [POLCAT] can | find within [DISTANCE] Eom [ANCH_POIL] towards |ANCH_POLZ]? Tlangs, Towurds
T: | What i the noaret [POLCAT] fram [ANCHLPOI? Nearot Wi ghbar
TO" | What & the noaret [POLNORSFAT] Fom [ARCH FOIT] Nenrt Ve ghbar
T7Y | What is the capacity of the noarest [POLCAT) Fam [ANCH_POI]T Eutity nnme ot Naghbar
Ta] | What is the noaret [POLLDAT] fram [ANCH POLextormal] 7 Nonrmt Neaghbar
TO | What i the cluset |POI_CAT) [DIRECTION] of [ANCH POI]T Nenrt Wi ghbar, Diroction
TI0 | What i the choset [POLCAT) Erom | ANGCH_POIL| townrds |ANCEPOIZ])T Nenrt Wi ghbar, Towards
TIT | What & the lrget [PARK_WATH] in [RECTON]T Tetorcts
TIZ | What i the langest [ROAD_WATW] in [REGION]? Tetorscts
T13 | Whero ean 1 Eued [POLCAT] within |DISTANCE] fron [ANCHPOIL]? Tangs
T | Where aan | el [POICAT| within NS TANCE] Froan [POLNOREPATTT Tangs
TIG | Whero ean 1 Ened [POLCAT] locatcd within [DISTANCE] in the [DIRECTION] o [ANCH_POIT Tange, Diroction
T8 | What location has {POLCAT] within [DISTANCE] Eum [ANCHPOU] towards [ANCEPOLZI? | Tiangs, Towards
TI7 | Whero ean 1 Eud the nearmt [POLCAT] Bum [ANCH POLT Nearot i ghbar
TI8" | Whero ean 1 Eud the nearmt [POLMONSPAT] froen [ANCHLPOIL]? Nearot i ghbar
TIT | Where &= tha dlosest [POLCAT] [DIRECTIORT of [ARCHTOITT Nenrmt Waighbar, Direction
T2 | Whern i= tha closet [POLCAT] from [ANCELPOIL] towards [ANCELPOIZ]? Nenrt Wi ghbar, Towards
T2 | In which direction s [POICAT | loented within [DISTANCE] froom [ANCELPOT]? Angie Tangs
T | What & the dirostion townrds the closes [POLCAT] Fom [ANCH POIT Wearet Waghbar
T20 | How many [POLCAT] within [DISTANCE] o |ANCH POL]T Tangs
T24 | How many (POLCAT] arc there in (REGION]T Coart Tetorscts
T35 | Haw fnr can 1 Bod [POLCAT] within [DISTANCE] from [ANCH_POI]? - Tangs
T30 | Few Tar & the dosst [POICAT] Fom [ARCHPOIT Distanc Wearet Waghbar
TZ7 | What i the total arca of all [PARK_WATB] i [AEGION]? Area Tetorscts
TI8 | What i the total lungth of all [ROAD WATW] in [HEGION]? Longth Tetorscts

* Includis an sdditionnl non-spatisl prodicste, where POI_CAT is more sposifie.
T A nilti-bop question that asks sbout information retrieved fram another source.
¥ A multi-hop question whore the ANCH_POI is replsced with anique information from an externsl source.

T2, T6, T14 and T18, respectively. These are based on some of the attributes we included

in the reference database, such as the type of cuisine, the type of museum, etc. Additionally,

we created two more templates from TS as multi-hop questions, which are T7 and T8 that

include information that does not exist in the reference database. For T7, the information

the question is asking about does not exist in the reference database. Alternatively, for T8,

the name of the anchor point in the question is replaced by unique information about it

retrieved from another source. Both types of questions add another layer of difficulty in

which the QA system must synthesize information from multiple sources to find the final

answer. Next, we cover the building blocks of these templates in more detail.

153

Table 5.4: Question Parameters Summary

Parameter Description
MName of anchoring POI from one of these categories:
ANCH_POI aquarium, attraction, \riewpoin!., art: gallery, theme park,
museum, gallery, zoo, hotel, university, park, nature reserve,
garden, stadium, hospital
POI category name: restaurant, café, fast food,
POLCAT plus all the categories in ANCH_POI.
A more specific POI category,
POLNONSPAT like cuisine for a restaurant, or museum type.
REGION MName of regic_rn from one of: -::itE}r, town, village,
island, municipality, county, neighborhood, suburb, state
MName of road or waterway type, including:
ROAD_WATW | primary, residential, pedestrian, etc., for roads
river, stream, and others for waterways.
MName of park or water body types, including:
PARK_WATE nature reserve, park, garden, golf course, etc., for parks
lake, bay, etc., for water bodies
DISTANCE Random distance in the range [1,200] kilometers.
DIRECTTON Direction one of: north, northeast, east, southeast, ete.

154

Question Parameters

Anchor POI (ANCH_POI): This refers to a POI that is used to anchor the location of
the search for the desired entity. The categories we selected for this type are more prominent
POIs like attractions, museums, universities, and others. We avoided points that can exist
repeatedly within a small geographic area, such as restaurants. To further reduce ambiguity,
we attach the city and state to the name of the anchor point in a question.

POI category (POI_CAT): This refers to the type of POI the question asks about. The
answer to the question includes a non-spatial filter that selects points from this category.
Any type of POI category can be used, but we require that it be from a different category
than the anchoring point to increase the chance that the generated question is more similar
to questions that could be asked by everyday users.

As an example, we show how the previous two parameters can be used to instan-
tiate a template such as 'Where can I find the nearest {POI_CAT} from {ANCH_P0I}?' (T17 in
Table 5.3). The output category could be instantiated with restaurant while the anchor
point could be Alaska Pacific University, Anchorage, AK. Note that it is easy to also use
other types of objects such as roads as the anchoring ohject in a question, using the same
text phrase and the same query that obtains the answer.

More specific POI category (POI_NONSPAT): This is similar to the previous vari-
able, but it represents a more specific POI_CAT. For example, instead of just instantiating
with restaurant, the question can be instantiated with something more specific like restau-

rant with outdoor seating. This is discussed in more detail later in this section.

155

Administrative regions (REGIONS): all the regions in the region table as described
in subsection 5.3.1 are used in questions involving topological operations and aggregations.
Parks and water bodies (PARK_WATB): The parks and water bodies, like lakes, are
used to instantiate questions that ask about areas. An example of such a template is 'What
is the largest {PARK_WATE} in {RECION}?' (T11 in Table 5.3).
Roads and water ways (ROAD_WATW): the different types of roads and waterways
such as rivers are used to instantiate questions asking about length. For example, a template
that includes these object is 'What is the total length of all {RD_WATW} in {RECION}?' (T28
in Table 5.3).

These parameters are summarized in Table 5.4. These make up a major spatial
component in the questions. The other major spatial component is the spatial filtering

operations.

156

Spatial Predicates

All the questions that we generate contain at least one spatial predicate. In addi-
tion, the predicates determine what types of spatial objects are used. Next, we define the
five spatial predicates that we included.

Nearest Neighbor: this is the simplest spatial predicate, and it filters based on spatial
proximity. It requires an anchoring point, such as the user’s location, and provides the
nearest object that satisfies other predicates in the question. An SQL query for a question

that contains this predicate will include the following:

ORDER BY pgeometry <-> anchor_point ASC LIMIT 1;

Range: similar to the nearest-neighbor predicate, but also requires providing a distance
limit. In this predicate, there might be multiple possible answers within the provided

distance. The SQL will include something like:

ST_DWithin(geometry, anchor_point, distance)

Direction: This adds another predicate to a question, which filters based on the direction
the user is interested in, such as: north, west, northeast, etc. We define eight directions and
specify a specific angle range for each as shown in Figure 5.2. For example, the northeast

direction will have the following SQL predicate:

degrees (S3T_Azimuth(anchoring point, geometry)) BETWEEN 22.E5 AND &7.5

157

Figure 5.2: Direction angle ranges

Towards: For this predicate, an additional anchor point is added that determines the

direction in which the user is interested. The angle is computed with the following SQL:

degrees (8T_Azimuth(ancrhor_peinti, anchor_point2))

The geometries are then filtered similar to the direction predicate, but the angle range is
based on the computed angle £22.5.
Intersects: This type of predicate takes a defined region as its anchor, like the boundaries
of a city or a state, instead of anchoring points as the previous predicates. The intersection
predicate selects the objects that intersect with the provided boundary, and we use it in
questions that ask for aggregate values.

The direction and towards predicates are combined with one of the nearest neighbor
or range predicates. As such, in total, we have seven different spatial selectors. Although

there are many predicates that we can consider, we selected these five predicates to generate

155

a diverse set of spatial questions. More variety can be easily added in the future, for example,

to consider more topological operations such as contains, overlaps, touches, etc.

MNon-Spatial Predicates

These provide an additional aspect to create more complex questions. They are based on
other attributes that exist in our tables that we defined in Section 5.3.1. We only selected
non-spatial predicates for points representing restaurants, museums, and hospitals. For
museums, the predicate is to specify the type of museum in which the user is interested.
For restaurants, the predicates are about the cuisine, but also about services such as delivery,
drive-through, or outdoor seating. And for hospitals, we added a predicate for filtering for
hospitals that provide emergency services. We can easily add many more predicates of
this type, but the ones that we selected provide us with enough variety to generate many
natural-sounding questions. This component is used to create four additional templates
from T1, TS, T13, and T17. These are templates T2, TG, T14, and T18. The difference is
in how POI_CAT is instantiated. For example, with the inclusion of a non-spatial predicate
that specifies the type of museum, it would be instantiated with the phrase 'art museun',

and the SQL will include this predicate museum = 'art'.

Output Types

The output type or the answer type also adds another aspect to the questions. The user
may ask about the name of an entity based on the provided predicates or about the location
of the desired entity, such as the coordinates or the address. Additionally, the outputs can
also be obtained from spatial operators such as distance, area, and length, which can also

be aggregated according to the question.

159

Entity name: The display name of the spatial object that matches the question.
Location: The coordinates or the complete address of the spatial object that matches the
question.

Direction: The azimuth angle in degrees toward which the spatial object that matches
the predicates of the question can be found starting from the anchor point of the question
and where zero represents the north direction.

Distance: The distance at which the spatial object that corresponds to the predicates of
the question can be found, starting from the anchor point of the question.

Count: The number of spatial objects that match the question according to the topological
operation it requires.

Area: The area in meters squared of the spatial object or objects that match the predicates
of the question.

Length: the length in meters of the spatial object or objects that match the predicates of
the question.

Ezxternal: external responses involve information retrieved from outside the system (out-
of-schema) after determining the spatial objects that answer the question. Examples include

the capacity, the year it was created, the person who designed, etc.

Apggregate operations

Some templates require an aggregation step before producing the final answer. These tem-
plates include those that ask for the total area or length, or the count, as well as the

templates that ask about the entity that has the maximum area or length.

160

5.3.3 Open Retrieval

We also create a set of multi-hop questions, which involve information that is
not part of our reference data described in subsection 5.3.1. This adds another layer of
complexity to these questions.

We create this by selecting one of the entities in a generated question, which
could be an anchor POI or the entity that represents the answer. Then, we retrieve some
information from Wikipedia about it, such as the year it was built, who built it, among
several other attributes.

We create two types of multi-hop questions. The first type involves asking about
out-of-schema information for the entity of the answer, like T7 in Table 5.3. There are
several ways to phrase the question in this case, for example, 'What is the nearest hospital
from ...7' can be l:hzl.l]gedtu 'What type of emergency department is available at ...7'. So to
answer such a question, first the nearest hospital must be determined, then out-of-schema
information about it must be obtained.

The second type of multi-hop question involves modifying the name of the anchor
point with out-of-schema information; see T8 in Table 5.3. One such example is that when
the anchor point is a university, then its name can be replaced by 'the university with ...
as its mascot'.

These two types add more complexity, since the answer cannot be directly obtained
from the reference data. And require multiple steps and synthesizing information from

multiple sources to obtain the correct answer.

161

Although we only included these two types, it is possible to add more variety based
on them. For example, region names can be replaced with descriptions about something
that uniquely identifies them. Also, instead of just using Wikipedia, other sources can
be used. However, we believe that the two types that we included and the attributes we
considered are sufficient to test the ability of ()A systems to answer questions that involve
multiple steps, especially since selecting suitable attributes and ensuring that they translate
to natural-sounding questions involves some manual work. Also, later we show that even at
this level of complexity the baselines we consider fail in answering these types of questions.

Next, we discuss the methodology for instantiating a question from a template and

identifying the correct answers.

5.3.4 Question Generation

In this section, we discuss how to generate questions from a template. The com-
plete process is shown in Figure 5.3, which shows an example of a question instantiated
using the T3 template from Table 5.3. Each template has a fixed set of possible phrases in
addition to the one shown in Table 5.3. The first step is to select a text phrase randomly
from all the phrases available for the template that were created and stored in a previous
step. In this step, we used an LLM to create different phrases for each template of ques-
tions. We also manually edit the LLM output to ensure that all text phrases for a template
are valid. Each template also has an associated SC)L template. Once we have the question

phrase and the SQL template, we can start with instantiating them.

162

Template: T3

v

1. Select a paraphrased verzion of the template

Which{POI_CAT} is available within
{DISTANCE} kilometers in the
{DIRECTION} direction of
{ANCH_POI}?

1. Select the POI category for the answer
POI_CAT = stadium

v

3. Select the anchoring POI

ANCH_POI = Strawberry Hill, San

Francisco, CA

!

4. Select distance and direction

DISTAMCE=1T0
DIFECTION = east

v

5. Instantiate question phrasze

Which stadium is available within 170
kilometers in the east direction of
Strawberry Hill, San Franciseo, CA7

v

6. Instantiate SQL query

SELECT * FROM pois

[WHERE ST DWithin{...,
1700000

IBND leisure = "stadium'

IBND degrees (5T _Azimuth(...})

BETWEEN €7.5 RND 112.5;

¥
5. BEun 5QL Query and get answers
ANSWERS =[] |

¥

6. Verify and append to questions

Figure 5.3: Example of Generating a (Juestion from a Template

163

In the next step, we start by selecting a value for POI_CAT that the question
asks for. The category is selected randomly from a defined list of possible categories.
Additionally, for templates with a non-spatial filter, the filter is appended to the category
name and added to the SQL query. Once a category and its filter are determined, a POI
that matches it is selected randomly. This POI is used to limit our search in the next step.
We do this to ensure anchor points are chosen in locations with existing answers, as we
exclude questions without answers. Without limiting the search space, the generator takes
a long time to find questions with answers. We excluded questions without answers, though
evaluating a QA system on such questions could be insightful. However, generating such
questions is simple, as we can create them using random names and coordinates. Next,
we randomly select a POI for ANCH_POT from a predefined list of categories and within the
restricted region identified above. After that, we randomly select a value for DIRECTION and
DISTANCE. All parameters are now defined. Next, both the question phrase and the SQL can
be instantiated. The question text is also passed to a grammar checker and correction tool
because some templates require pluralizing a name or appending the ‘a‘ or ‘an‘ articles.

The next step is to run the instantiated SQL query to get the answers. If the
SQL yields no answers, the question is skipped. and the process restarts with new values.
Otherwise, a verification and quality check step is applied before the question is appended
with all its associated entities to a question bank.

For multi-hop questions, the question is modified after identifying relevant out-of-

schema information based on its type. This process was described in subsection 5.3.3.

164

Other templates are instantiated following a similar procedure based on the type
of objects in the template.

For each template, in the question generation step, we generate 1000 questions,

with the exception of TT and T8. A total of 26, 000, all of which have passed this quality
check. Additionally, a number of 150 questions for each multi-hop type, TT7 and T8, are
included, since they are more expensive to generate. In the final benchmark, we include
only 100 questions of each type, which adds up to 2800 questions. Next, we discuss the
process of how these questions were selected from the larger set.

Using a question template that has POI_CAT and ANCH_POI as parameters, such
as TS5, we can divide its 1000 gquestions into hundreds of smaller sets. For example, in
this case all the questions that ask about a “restaurant” (POI_CAT), and starting from a
“park” (ANCH_POI.category), will be grouped together. Given the variety in all of these
parameters, we will have more than 100 groups, and we select one question from each group
that enhances the variety and richness of the questions included in the benchmark. We were
able to perform this selection by identifying a set of parameters that allow the questions to

be grouped into more than 100 groups for each template.

5.3.5 Quality Checks

This section outlines how we check the quality of benchmark questions. In per-
forming quality checks, we make an attempt to ensure that the guestions are reasonable.
That they can be asked by average users and are not ambiguous to a human reader. For
this reason, we only consider more prominent records when instantiating a question. Omne

reason for requiring this is that it helps us avoid inaccurate or incomplete records, since

165

0O5M is crowd-sourced. This verification step involves multiple types of checks. For POls,
we require that they have a name and some address attributes. While it is possible to geoen-
code a point’s coordinates to an address, we use this as a simple indicator of prominent
POIs, since a large percentage of POIs in OSM do not have these fields set. For other types
of objects, like regions, we require that they have a Wikipedia page available if they are
used in anchoring a question, since a lot of regions are administrative regions, and may not
even have a name. A region with a Wikipedia page ensures that we select more prominent
regions. Additionally, for questions that have a number as their answer such as length,
distance, area, and count, we ensure that the answer is not zero.

Finally, we manually review about 10% of the questions for each template with

their answers to ensure their correctness.

5.3.6 Keeping G5-QA Up-to-date

It is important to keep the benchmark based on the most recent reference data,
because geospatial data is constantly being updated. Since we are using OSM as our main
source, in this section we discuss how the benchmark can be updated to match the most
recent version of OSM.

For every question that we included in the benchmark, we store with it the OSM
records that were used in building the question. Each OSM record has a unique identifier.
The process is straightforward and starts by obtaining the most recent version of OSM,
and rebuilding our database using it. Next, for every question in the benchmark, we check
if any of its associated records changed and update the values if needed. The next step is

rerunning the SQL query again to get the answers and update them if needed. Then, the

166

question must also pass the quality checks that we described earlier. For questions that do
not pass the quality check, we can discard them and include a new generated question from

the same template and possibly based on the same categories but associated with new OSM

records.

5.4 Baselines

To test the validity of our benchmark, we build six baselines to evaluate how they
perform on it. The purpose of building these baselines is three-fold. First, they allow us to
understand how the state-of-the-art LLMs behave with the benchmark, which can reveal
interesting research problems. Second, the results of these baselines will allow future, more
efficient techniques to be compared with these results. Third, they provide an example of
how the benchmark can be used and verify its function.

We define three types of baselines and each is tested with two LLMs, one proprietary
and another open-source, for a total of siz basclines. We also add an additional baseline
that is based on a random answer generator. The first type of baselines is based on feeding a
question directly to an LLM without any context. The second type of baseline incorporates
a Text2S(Q)L step that takes the question and possibly some context about the tables in the
database to translate the question into an SQL query first. Then, the SQL query is passed
to our database, and the answer is used as additional context for the model to provide the
final answer to the question in a textual form. The third type involves Retrieval Augmented
Generation (RAG). In this method, a datastore is used to maintain reference data. Before

passing a question to the LLM, a retrieval step is performed to get the most relevant records

167

Table 5.5: Baseline combinations

Label | LLM Text2SQL | Retrieval
G GPT4-o0 ® ®

L Llama 3.2 | x ®

GT GPT40 e ®

LT Llama 3.2 | ®

GR GPT40 ® v’

LR Llama 3.2 | x v

R Random * *

for the question from the datastore. The retrieved records are appended to add context to
the LLM to help enhance the final answer. In total, we have six baselines summarized in

Table 5.5, and each is discussed in detail in the following subsections.

5.4.1 Bare LLM Baselines

We select two popular models for all our baselines, one proprietary and one open-
source. These models will help evaluate how state-of-the-art LLMs perform when asked
questions from our benchmark, given the various scenarios when different types of context
are provided. Next, we briefly describe the models that we use.

GPT-4o: It is a transformer model developed by OpenAl and achieved state-of-
the-art results in several domains at the time of its release. It can take as input multi-modal
data including text, images, and audio, and can generate all three types [12]. This model’s
context window is 128 thousand tokens, and its maximum output size is a little over 16
thousand tokens.

Llama 3.2: An open-source model developed by Meta. It achieved state-of-the-
art in various natural language tasks. Its context window size is 128 thousand tokens, and

we use a distilled version with 3 billion parameters [14].

165

In the first two baselines, G and L, as shown in Table 5.5, we use prompt engineer-
ing to feed the question to the LLM without any additional work. The prompts are designed
to provide a concise answer in a standard format that is expected by the benchmark and

easy to evaluate. The following is the system prompt:

Answer the provided user question while satisfying the following requirements:
1. do not include any parts of the guestion in the answer you must provide the
— answer directly.

2. provide only the property the user is asking for, like name of an entity, its
—+ location, distance, directiom.

3. don't provide information the user didmn't ask for.

4. any mumber must be written as words and rounded to the nearest ten.

5. only use metric umits.

We found that this prompt provides concise answers that are relevant to the questions,

which are more suitable for text-based evaluation discussed in Section 5.5.1.

5.4.2 Text25QL Baselines

This baseline uses an LLM to answer questions in three steps. First, it uses the
LLM as a Text250QL generator to create a SQL query out of the question. This step also
feeds the database schema to guide the generation process. Second, it runs the produced
SQL query on a traditional database to get the answer. Finally, it feeds the SQL result as

context to the LLM to produce the final answer in the desired format.

169

Question

_i How many spectators can the nearest |
i stadium from The Comner ... hold?

|

Create Text2SQL Prompt

¥
LLM

SELECT * FROM pois ;
WHERE leisure = 'stadium’'
'ORDER BY geomstry <->

OSM Relational
Database

i {"po1_name": "Negoesco Stadium", ;
"osm_1d": 358857211, ..}

Create prompt
with context

v

LLM

r

i Negoesco Stadium 1s the closestto .. |
' with capacity of 3000. ;

Figure 5.4: Question Answering Pipeline with Text25QL

170

The Text25QL problem using LLMs has recently received a lot of attention. There
are various benchmarks specifically for this task, like [74, 127, 237]. Although our objec-
tive is not to provide a Text25(Q)L benchmark, our benchmark can be specifically used to
evaluate queries that include spatial components. We will include this evaluation later
in the experiments. Figure 5.4 shows the complete (QA pipeline when Text25QL is used.
The Text25QL prompt includes the user’s question, and context that includes information
about the database schema like the table names, and information about each table and its
columns. After passing the prompt to the LLM, we extract the SQL query produced by the
LLM, and execute it on our database. If the query is valid and produces an output. This
output is used as context to get the final answer to the user’s question. The baselines GT

and LT are based on this pipeline.

5.4.3 Retrieval Augmented Generation Baselines

One way to improve the quality of the generated answers is to use Retrieval Aug-
mented Generation (RAG) [120]. This method works by first running a similarity search
to retrieve the most similar documents to the question and then uses them as context to
answer the question by the LLM. Note that technically the previous Text250Q)L pipeline
can also be considered a RAG method, but here we mainly refer to dense-retrieval methods
[235]. In dense-retrieval, the search is based on embeddings that represent some text. In
our case, we use the distilled LLAMA model to generate our embeddings. A datastore is

needed for an efficient RAG-based baseline. We build it using the LLAMA embeddings,

171

_. How many spectators can the nearest |
stadium from The Comer ... hold? |

Vector Data Store

"The Comer ...", !

Negoesco Stadium 1s the closestto ...
with capacity of 3000.

Figure 5.5: Question Answering Pipeline with RAG

172

and use ChromaDB [16], an open-source database for storing those embeddings, and per-
forming efficient searches. We create our datastore by including all records in all the tables
in the reference database that we used when generating the questions, and a small subset
of Wikipedia, containing those pages that were considered when generating the multi-hop
questions.

To answer a question, we first encode it using the same distilled LLAMA model,
and then we use ChromaDB to get the top-10 records with the most similar embeddings.
After that, we prompt the LLM with the question and provide the closest documents as

context to get the final answer. The baselines GR and LR are based on this pipeline.

5.5 Experiments

In this section, we study the effectiveness of the baselines described in Section 5.4
on the GS-QA benchmark. Simply applying standard text-based evaluation techmiques,
comparing the answer string to the ground truth string, is not adequate, given the inherent
structure of spatial answers. For example, two answers may not share any words, but they
may be spatially too close to each other. For that, we consider a comprehensive suite of
spatial-aware evaluation measures, in addition to standard text-based measures, as discussed

in Section 5.5.1. The results are presented in Section 5.5.2 and a discussion in Section 5.5.3.

5.5.1 Evaluation Strategy

We use two evaluation approaches: tert-based matching, and structured spatial-

aware evaluation.

173

The text-based matching searches for common words between the ground truth and
the generated answers. Before matching, a simple preprocessing step is applied to remove
punctuation, convert to lower case, and convert numbers to words. Then, three values are
computed. Precision is the percentage of common words between the two sentences divided
by the number of words in the predicted sentence. Recall is the percentage of common
words divided by the number of words in the ground truth answer. The F1 score is the
harmonic mean of the two scores. When precision and recall are both zero, we also set F1
to zero. We do not consider scores like BERTScore [230], since when evaluating addresses
or entity names exact matching is required as compared to semantic similarity.

For the structured spatial-aware evaluation, the answer is first converted to a
JSON document, using the 3B Llama 3.2 model and a prompt specifying the desired JSON
schema, as in the following example:

The nearest science museum is the Orlando Science Center,
located in Orlando, Florida, approximately fifty kilometers

north of the Central Florida Zoo & Botamical Gardemns,

Sanford, FL.

Converted to JSON:

{
"name": "Orlando Science Center",
"address": "Orlando, Florida",
"distance": 50, "azimuth_angle": 90,
"count": null, "length": oull, "area": null
¥

174

MNote that inaccuracies might occur in this step, such as setting the angle to 90° for
the north direction when north is 0°. Also, additional attributes such as "architect” might
be included for multi-hop questions. Based on the JSON fields, we consider spatial-aware
measures, customized for each output type, as shown in Tahble 5.6. Specifically, when the
answer type is an entity name, we use the same metrics as in the free-text form. We expect
that the scores in this case will be better because of the more compact representation,
compared to the text-based matching approach. Similarly, multi-hop answers are evaluated
as text using the same metrics.

When the answer type is a location, it is evaluated in two ways. First, the address
text is the three text-based measures. In addition, we calculate the distance in meters
between the geo-encoded position of the predicted address and the expected position. The
distance is divided by a threshold, which we set to five hundred kilometers. If the distance
is more than the threshold, the error is set to the maximum value of one. Also, given this
threshold, an error of 0.01 is equivalent to five kilometers in distance. We use the Open
Street Map free geoencoding service, called Nominatim [15]. This step may not always be
accurate.

When the answer type is an angle, we evaluate using both an exact match text
approach and a geometric metric. For the text-based approach, the angles are converted
to their description, and if both angles fall in the same range, they will be an exact match.
Angle ranges are obtained by dividing the 360°, into eight equal ranges, as shown in Fig-
ure 5.2. For the angle value, an angle error score is computed using the following equation,

where zero is an exact match and one is a 180 degrees difference.

175

w’ if |anglel — angle2| < 180
Angle Error = (5.1)

360— lel —angle2 .
|E"EIED = |.., otherwise

For all other output types, which are numeric, the relative error is used to measure

the quality using the following equation.

|Prediction — Actual|

Relative Error = Actual

(5.2)

For all questions in the benchmark, the actual answer for the output types Area,
Length, Distance, and Count is never zero, which makes the relative error defined for all
questions. For all output types, when the attribute related to it is missing or is out of the
expected range, the question is counted as not attempted, such as when the address value
is missing or empty and the output type is location. Additionally, the geoencoding step
may not produce an output, which might indicate that the address is malformed, and these
questions are also counted as not attempted for the distance error score.

For questions that can have multiple valid answers, like questions with the Range
predicate, each predicted answer is compared to all possible answers, and only the best
scores are reported.

There are some considerations for questions that can have multiple valid answers.
One consideration is to rank all the possible answers based on some quality metric. For
example, when there are many restaurants that fit the criteria of the questions, we give
more weight to more popular ones. Furthermore, some types of questions can be interpreted

differently. For example, users asking about lakes may only be interested in natural lakes,

176

Tahle 5.6: Metrics used for parsed output

Recall F1 Distance | Angle | Relative
Output Type Full-text | Parsed | Error Error | Error
Entity name w v
Location w v
Direction v w
Area w
Length v
Distance w
Count '

Tahble 5.7: Percentage of attempted questions in parsed answers

Output type | G | GR | GT | L | LR | LT | R

name 0097 077 093 095 082 092 096
loc 1.0 074 087 099 09 089 098
angle 001 087y 08 092 072 084 051
area 009 089 076 099 044 099 1.0
count 083 087 09 094 074 086 053
distance 009 084 09 1.0 08 096 097
length 049 031 05 083 034 08 085

while the system may consider man-made lakes and seasonal lakes. We leave the evaluation

of these special cases for future work.

5.5.2 Ewaluation Results

In the experiments, we organize the results by output types, as shown in Table 5.3,
because each type may have its own unique evaluation measures (Table 5.6).

Attempted questions We mark a question as attempted if the generated JSON
contains a value for the required key, e.g., for the key “address,” “name” or “distance.”
We provide a summary of the percentage of questions attempted in Table 5.7. We see that

numeric questions are less likely to be answered, which we discuss in more detail for each

output type.

177

Table 5.8: Evaluation of templates with entity name

Recall on full text output F1 on parsed output

G |GR|GT|L |LH‘.|LT |R G |GR|GT |L |LH‘.|LT |H‘.

T1 [0.07 0.03 0.06 0.08 0.07 0.08 0.0 (039 0.43 0.36 035 0.29 0.34 035
T2 |0.09 0.02 0.13 0.13 0,12 0.12 0.0 (026 023 0.39 0.27 0.24 0.26 0.29
T8 |0.11 0.06 0.14 0.1 008 0.1 00 (0.2 022 0.85 0.20 0.22 0.26 0.3
T4 |0.03 0.02 0.02 0.04 003 0.03 0.0 [0.48 045 04 046 0.36 0.41 047
Ts |0.18 0.06 0.42 0.18 0,13 0.16 0.12(017 008 0.42 01 0.11 0.09 012
T6 |0.14 0.09 0.46 0.21 0.14 0.2 0.15(0.14 0.14 0.45 0,16 0.12 0.15 0.15
7 |0.01 0.02 0.06 021 0.14 0.23 0.0 |0.01 0.02 0.01 0.03 0.01 0.04 0.04
T8 |0.15 0.08 0.15 0.17 0.15 0.17 0.1 [0.15 0.11 0.14 012 0.11 011 0.1
T9 |0.15 0.09 0.18 0.16 0,12 0.16 0.0 (013 008 0.17 012 0.07 0.12 013
Ti0 |0.12 0.05 0.09 0.12 009 0.1 0.0 (009 004 0.08 0.11 0.07 0.08 0.09
Ti1 |0.38% 0.34 0.39 0.34 028 0.33 0.0 (045 044 0.46 0.3 0.25 0.28 0.25
TiZ |0.26 0.26 0.23 0.19 0,12 0.18 0.0 [0.26 0.26 0.24 0,16 0.14 0.16 0.12
AVG|0.14 0.09 0.19 0.16 0.12 0.16 0.03(0.24 021 0.29 0.21 017 0.19 0.20

Return type: Entity name We show the results for twelve templates from
Table 5.3 in 5.8. We consider two scores. For the free text output, we look at the recall
(R) score. For the parsed output, we use the F1 value to compare the true answer to the
extracted entity name, or the multi-hop attribute in the case of T7. This score only includes
the attempted questions as defined earlier. We notice that the baseline GT has considerably
higher scores for several question categories.

Moreover, we manually checked many of the answers, and noticed a lot of the
answers are correct, and they correlate with the scores shown in the table. Also, one
observation is that the scores are affected by common words in the entity names. For
example, many parks and lakes have the word 'Park’ and 'Lake’ in their official names.
Therefore, if the official name has only two words, the presence of these words would give
precision and recall at 50%. On the other hand, some names are spelled a little differently

than the reference answer, which results in penalizing correct answers. With regard to

178

Table 5.9: Evaluation of templates with location

F1 for address text

Distance Error

G |[GR|GT [L [LR[LT [R

G [GR[GT[L [LR[LT R

T13

Ti4

Tis

T16

T17

Ti18

T19

0.27 0.19 0.25 0.24 0.22 0.24 0.26
0.24 0.20 0.25 0.19 0.17 0.21 0.24
0.20 0.17 0.20 0.14 0.13 0.18 0.20
0.38 0.35 0.38 0.26 0.28 0.28 0.36
0.19 0.15 0.24 0.16 0.16 0.18 0.08
0.10 0.09 0.17 0.10 0.09 0.07 0.16
0.14 0.10 0.16 0.09 0.11 0.10 0.15
0.13 0.06 0.13 0.14 0.11 0.16 0.20

0.45 0.53 0.48 0.54 0.58 0.52 0.84
0.34 0.54 0.45 0.55 0.63 0.54 0.80
0.45 0.52 0.54 0.54 0.60 0.52 0.66
0.19 0.39 0.19 0.50 0.68 0.63 0.68
0.46 0.57 0.39 0.70 0.58 0.62 0.87
0.64 0.64 0.54 0.61 0.67 0.66 0.80
0.49 0.57 0.44 0.61 0.57 0.63 0.81
034 0.74 0.32 0.61 0.77 0.71 0.80

AVG

0.21 0.16 0.22 0.17 0.16 0.18 0.21

0.42 0.56 0.42 0.58 0.63 0.60 0.78

multi-hop questions, TT and T8, we noticed that none of the baselines correctly answered
any of the questions.

Return type: Location The results are provided in Table 5.9. Looking at the
distance error score, we see that several templates have errors noticeably better than the
random baseline. We observed that many valid addresses were provided, especially by the
baselines using GPT-40. However, there are a few cases where the baseline did not provide
an address, and in the parsing step, the LLM selected the address of the ANCH_POI from
the question instead of the answer.

Return type: Direction We show the results in Table 5.10. Since the angle
has a limited range of possible values, we first compute the expected error for a random
number generator baseline. We find the expected angle error to be 0.5, since on average
the angles would be at 90° difference in either direction. Based on this, we notice that for
T22, which is based on the k-nearest-neighbor predicate, all the angle errors are around
the expected error for a random generator, even though there are quite a few questions
where the correct direction was predicted. For T21, the error is less because the score keeps

the best matching prediction to any of the possible correct answers. The expected error

179

Tahle 5.10: Evaluation of templates with direction

TID F1 for parsed direction Angle Error

G |GH‘. |GT|L |LR |LT |R G |GR |GT|L |LR|LT |H‘.
T21 |0.62 0.54 0.62 0.57 0.45 0.56 0.53(0.16 0.23 0.19 0.20 0.26 0.21 0.20
T22 |0.16 0.19 0.16 0.11 0.13 0.18 0.09(0.51 0.48 0.50 0.51 0.49 0.52 0.54

depends on the number of possible correct answers and the number of predictions. For
example, if we have only one possible correct answer, and three predictions were provided,
the expected error for a random generator is around 0.25. We obtained these expected
errors by running a simple simulator. Note that the error is also affected by the number
of unattempted questions as defined earlier, since these get an error of 1.0. Similar to the
location-based questions, we think a more sophisticated evaluator would first evaluate the
predicted entity and that it exists in the reference data, which could be different from the
reference data used for building the benchmark, and that it matches all the specifiers in the
question. Only after that can we evaluate its direction relative to the ANCH_POI in the
question.

Other return types We provide a summary for the remaining templates in
Table 5.11. Note that we limit the relative error to a maximum of 1.0. Hence, any baseline
with a score of 1.0 provided answers very far from the correct answer.

The baselines performed worse compared to the random number generator for
template T25. For template T26, G performs a little better than random, and this happens
when the provided answer has a small distance, since most of the correct answers have
small distances. We think the evaluation of these types of questions should also evaluate
the correctness of the entity where the distance is measured. Otherwise, the LLM may

provide some random numbers that may seem correct. Note that we store the entire entity

180

Tahble 5.11: Relative error for templates with numeric answers

Output type|TID|G_|GR|GT |[L [LR|LT [R
T23[0.77 1.00 0.78 0.74 0.78 0.75 0.96
T24[0.98 0.95 0.97 0.83 0.92 0.86 0.98
Distance | L25]0.95 003 0.96 0.96 0.94 0.96 0.81
T26(0.88 0.92 0.95 0.95 0.93 0.93 1.00
Area T27[0.99 0.9 0.99 0.92 0.99 0.92 0.98
Length T280.85 0.84 0.82 0.87 0.87 0.90 1.00

Count

in the reference answer, and the associated SQL query to the questions gets the entity as
well as the distance, in case the user has their own reference data.

T27 and T28 are analytical queries that require aggregating the area or length
of many geometries that intersect with a provided search area. Baseline LT for template
T27 seems to have a few questions with good answers, but we think this is also due to
randomness, rather than an actual quality prediction. For example, it produces 50000 as
an answer to many questions, and it happens that some questions have an answer that is
close to this value. We also make a similar observation for T28. Another thing for T28,
is that many gquestions were left unattempted, and this is due to the parsing stage, while
the baseline provides some number text. The parsing step does not detect this numhber as

a length value, and either ignores it or assigns it to the distance value.

5.5.3 Discussion

Analysis of Text250QL performance The Text25QL pipeline resulted in signif-
icant improvements in the answers for templates T5 and T6. As mentioned, both templates
are only based on the nearest neighbor predicate and other non-spatial predicates. We

categorize the generated SQ)L queries into valid and invalid, and summarize the results in

Table 5.12. GPT4-0 (G) generated valid queries for about 73% of the questions, while the

181

Table 5.12: Text25QL error summary

Category Subcategory | L | G
Ran successfully 117 1832
Valid SQL Timed out 528 203
| Total ™~~~ ~ 7 T T TN 645~ 2085
Syntax error 743 16

Function does not exist 692 274
Operator does not exist 116 2
Column does not exist 306 405
Imvalid SQL | Relation does not exist 169 0
Missing FROM clause 126 3

Sub-query error 4 ar
Other 43 28
| Total ™~~~ T T T 7F 2100~ TEE]

distilled LLAMA (L) generated valid queries for only about 23% of the questions. Note
that a valid query does not necessarily mean the query resulted in retrieving the correct
answers. A large percentage of the queries timed out. The time limit for each query is set to
be twice that of the maximum time it takes to run any of the queries in the corresponding
template that we use to get our true answer. Furthermore, the queries that ran successfully
may retrieve incorrect answers. Also, we limit the retrieved records to only 20 records, since
some of the generated queries result in retrieving a very large set. We further categorize the
invalid SQQL queries into multiple sub-categories. A lot of errors are caused due to improper
use of spatial functions and predicates. There are clearly a lot of improvements needed for
a more accurate Text25(Q)L when it comes to geospatial data.

Analysis of RAG performance From the previous results, it is clear that the
dense-retrieval-based baselines GR and LR consistently perform the worst. This is mainly
due to the quality of the embeddings, which we found to not give importance to location
information. To evaluate this method further, we manually crafted a few examples to test

its quality. For example, when we search using non-spatial terms like the type of cuisine,

182

generally relevant records are retrieved. However, when we search using the name of a city
usually it does not retrieve relevant records. When combining non-spatial keywords with the
name of a region, usually records relevant to the non-spatial keywords are retrieved. Clearly,
a more suitable dense-retrieval method that gives importance to geospatial information is
needed, since a keyword-based sparse-retrieval might have performed better.

Summary of results The results show that only questions with entity name
output type provided relatively good answers and only for those questions with the simplest
spatial predicate. However, for other answer types, the baselines mostly provide random

answers. We also discussed the existing limitations in the evaluation method.

5.6 Conclusion and Future Work

We created an extensible benchmark, GS-QA, for spatial QA, based on an au-
tomated question and answer generator. GS-(QA includes a variety of spatial predicates,
geospatial and non-geospatial entities, and output types. We proposed spatial-specific evalu-
ation measures that go beyond standard text-based matching. We have shown that existing
LLM-based baselines are not sufficient to answer such questions.

We have identified several future research directions. First, while we have proposed
an evaluation strategy that takes spatial characteristics into account, a more sophisticated
and standardized evaluation is still needed. For example, we may want to quantify how
good the answer “California” is if the correct answer is “Los Angeles.” Further, instead of
just evaluating based on the final answer, we can also evaluate the correct identification of

the releant geospatial entities. Moreover, when extracting a spatial entity from an LLM’s

183

response, parsing errors may occur, which need to be quantified. Second, we argue that
more advanced Geol)A systems are needed. Such systems must be able to handle a variety
of spatial predicates and integrate non-spatial information, like in the case of multi-hop
questions that we included. Third, better retrieval methods that take geospatial information
into account are needed, as seen in the discussion for the Text2SCQL and RAG results.
Finally, research is needed to support even more advanced geospatial questions that could

be asked by geospatial analysts in areas such as urban planning and epidemiology.

184

Chapter 6

GeoGen I: Towards General
Geospatial Point Data (Generation

from Text

6.1 Introduction

Spatial data generation is critical for the development, testing, and evaluation of
new algorithms, index structures, and systems. Synthetic data offer a key advantage over
real-world datasets by allowing researchers to control characteristics such as size, distribu-
tion, and location to match their needs and to promote reproducibility and fair comparison.
However, most existing spatial data generators rely on simple statistical or fractal-based
models that fail to capture the complexity of real-world spatial distributions [213, 32, 73].

As a result, evaluations based on such synthetic data often overlook the challenges posed by

185

more realistic scenarios. Although the availability of real spatial datasets is improving [79)],
they remain difficult to find at the desired scale or region, limiting their practical utility.
This gap underscores a pressing need for a data generation framework that combines the
flexibility of synthetic data with the variety of real-data distributions. Such a tool would
not only streamline experimentation but also lead to more reliable and generalizable system
evaluations.

An effective spatial data generator should meet three essential criteria. First, it
must support a broad range of distributions that go beyond the standard statistical models
to better reflect real-world spatial variability. Second, it should be easy to use and avoid
complex configurations with many obscure parameters. Third, it should allow grounding
the data to specific geographic regions which helps combining the generated data with other
datasets.

Recent advances in generative Al have enabled models to synthesize complex data
types, including text [44], audio [139], images [179, 172], and even videos [190], with re-
markable quality. These developments have opened new opportunities for synthetic data
generation across other domains. However, current generative models lack an inherent
understanding of spatial context and geographic semantics, rendering them ineffective for
producing realistic spatial data [81, 67]. Recent work has explored the use of machine learn-
ing to run agent-based simulations [23] or generate trajectory data [92, 137, 130]. While
promising, these approaches are tailored to specific data types and require significant over-

head to setup and use.

186

R L
..“E:"f° 13
A T N A T
" ey,
I’\= - I'H'I. L
-?T'!. uﬂsﬁuﬂzﬁn “ﬁ E‘.%EE-\RE -a
IR * e b
. ol % BN o *-»5
aﬁwieﬁﬁ
—Generate ™

I.'|u|||:|||'||;| locations nGenerate
a pawerline poles,

Figure 6.1: Two generated datasets in the same region with two different prompts

This paper introduces GeoGen I, a framework for generating geospatial point data
from natural language prompts. For example, given the prompt “generate residential build-
ing locations in Irwindale, CA”, the system synthesizes a plausible spatial point distribution
resembling building placements in the specific region. Figure 6.1 illustrates an example of
two datasets gemerated by the same model in the same region, but with two different
prompts, one for power line poles and one for buildings. Even though both are randomly
generated data, each one follows a distinct pattern, e.g., a linear distribution for power lines
and a clustered distribution for buildings. The use of a generative model has the promise of
supporting virtually an endless number of distributions. It is also easy to use since it runs
on natural language prompts. Finally, it can be localized to specific locations as we later
show in this paper.

Developing GeoGen I as a general-purpose geospatial data generator entails sev-
eral challenges. 1) Data availability: Training requires a large and diverse collection of
geospatial datasets paired with descriptive text across various locations. 2) Represen-

tation learning: The model must learn associations between spatial distributions and

187

corresponding textual descriptions. 3) Spatial awareness: The system must incorpo-
rate contextual map data to differentiate between regions and generation location-specific
outputs.

GeoGen 1 addresses the above challenges to produce an end-to-end framework as
follows. First, it constructs a large number of data examples from real datasets by applying
spatial and attribute-based partitioning to extract a huge number of examples from a few
real datasets. Second, it employs contrastive learning to jointly train a text encoder and
geospatial encoder, aligning their representations in a common embedding space. Third,
it incorporates contextual map data, e.g., land cover or satellite imagery, that guides the
generative model and makes it aware of the underlying map data. Finally, it uses a diffusion
model to generate the data distribution, which is then converted into sets of geospatial
points.

We built a prototype of the proposed model to test its applicability in data gener-
ation. We found that the model can generate patterns similar to those of real data across
different datasets. We trained multiple version of the generator model, and conducted
various evaluations to assess the quality and highlight existing limitations.

The remainder of the paper is structured as follows. First, in Section 6.2 we provide
an overview of the proposed system. Second, in Section we discuss the data preparation pro-
cess and how to curate a dataset and associate it with labels. Then, we discuss the encoders
for generating geospatial data embeddings and associating them with text embeddings in
Section 6.4. After that, in Section 6.5 we discuss the data generator model, and the steps

to convert generated histograms to geospatial points with valid coordinates. Following, in

185

Section 6.6 we provide our experiments, including a detailed discussion. We discuss the

related work in Section 6.7, and provide the conclusion and future work in Section 6.8,

6.2 Overview of GeoGen I

Figure 6.2 provides an overview of, GeoGen 1, our proposed spatial data generator.
Inspired by text-to-image diffusion models, GeoGen I adapts this generative framework to
the geospatial domain. The generation process consists of three main stages, data prepara-
tion, embedding, and generation as further detailed below.
Stage 1: Data Preparation: This stage processes input datasets into a training-ready
format. It takes as input three types of data. 1) Hegion boundaries: Polygons represent-
ing geographic divisions, e.g., states, counties, or cities, that define the spatial scope for
training. 2) (eospatial data: Point datasets, e.g., building locations, roads, or power poles,
that capture various spatial distributions. 3) Contertual map data: Auxiliary information
about regions, e.g., land use, elevation, or satellite imagery, used to condition generation on
physical geography. This stage first applies a three-way spatial join to partition geospatial
features into the predefined regions. The data is then grouped by dataset-specific attributes,
e.g., building type, to enrich the representation. Finally, we synthesize a textual description
based on the region and data grouping to pair the data with natural language input. This
stage is further explained in section 6.3.
Stage 2: Embedding: This stage encodes both the text description and spatial data
into a shared embedding space. The key challenge is to capture not only individual repre-

sentations but also their alignment. To address this, we use contrastive learning [93, 171]

189

B ;:..i ' :
_., ,,! Counties | Buildings . -
; *“' Cities : Roads =

Region Geospatial
Boundaries| | Data
_----""""'J

Contextual
Map Data

Y

> X Join, Group & Transform |-

L

| Spatial Data | Grouping | Region |Text desc | Cuntextl
‘ ‘)

Stage 2: Embedding Stage 1: Data Preparation

: ¥ AR SO ¥
Geospatial Text
arror
Encoder Encoder
Geospatial Text
Embeddin —|Embdddin
9 _|Contrastive|" J
Learning
= Conditioning
o3 1
_|Forward |x,, X, |Denoise
Diffusion U Net
G
L ,
Partially %
denoised data

%

Fully denoised data

Final

Output

Stage 3: Generation

Figure 6.2: GeoGen [System Overview

190

to concurrently train dual encoders that minimize the distance between the text encoding
and its corresponding dataset encoding. This jointly learned embedding enables effective
conditional generation. Further details are in section 6.4.
Stage 3: Generation: This stage trains a diffusion model [192] to generate new spatial
datasets from text. The forward diffusion process incrementally adds noise to an input
spatial dataset xp to produce a sequence xj -- -z, with x, being pure noise. A denoising
maodel is then trained to reverse this process, step-by-step, transforming =}, ; to x}. Starting
from pure noise, this iterative denoising yields a synthesized dataset zj, which is decoded
into a final set of spatial features. The denoising steps are guided by the embedding used
for conditioning to produce the desired output. This stage is described in more detail in
section 6.5.

Based on this design, we implement a working prototype of GeoGeo I and conduct
a rigorous experimental evaluation. We assess the generated data using both qualitative
and quantitative methods. A central challenge addressed in this work is how to objectively
evaluate the realism and utility of generated spatial data. The prototype and evaluation

are further explained in section 6.6.

6.3 Data Preparation

The first challenge in building a generalized spatial data generator is the lack of
large-scale, ready-to-use datasets for training. In particular, we require a large number of
real datasets each paired with a descriptive text prompt to effectively learn the mapping

between spatial distributions and semantic descriptions. These datasets must capture the

191

diversity observed in real-world spatial patterns. This stage describes how to take a small
number of real datasets and systematically enrich them to produce a large number of training
corpus. The core idea is to partition each dataset both spatially, by location, and non-
spatially, by other attributes, to generate numerous subsets. For each resulting subset, we
synthesize a corresponding text description. Below, we introduce the three types of input

data and then describe the preparation pipeline.

6.3.1 Input Data Types

Geospatial Data: This includes real-world point-based datasets such as building footprints
or road intersections, which form the core training input for learning spatial distributions.
These datasets can be sourced from public repositories, e.g., UCR-Star [79], and may include
rich attribute information. We focus on datasets that contain additional metadata, such as
building type, to support finer-grained learning and grouping during preprocessing.
Region Boundaries: This dataset defines a set of geographic regions, e.g., cities or states,
that serve as spatial units for segmentation. While arbitrary partitions such as grid cells
or random rectangles are possible, we choose real administrative or natural regions for
three reasons. 1) Real regions often encapsulate meaningful and coherent spatial patterns,
whereas random partitions may lack content or context. 2) Named regions can be leveraged
to enrich text prompts with place-specific descriptions (e.g., urban vs. rural). 3) Users are
more likely to query or evaluate generated data in recognizable regions rather than arbitrary
spatial units.

Contextual Map Data: This dataset contains auxiliary contextual information from

the map that helps the generator ground the data to spatial features. This can range

192

il =

/ L

/ / :

?J'I___j‘-w'l n Multifamily

Regions rﬁs
-2 I L

E.;.}'ﬁ- ' 7] Commercial
-1 *

Contextual M:ap5 Grouping

Figure 6.3: Spatial join and grouping

from generic data, e.g., satellite view, to more specific data, e.g., land use, land cover, or
elevation. There are two important points to consider for this part. First, the contextual
data should be relevant to the spatial data distribution for it to be useful. Second, as the
contextual data gets more complex, the model will need more and more data to be able to

learn the distinct patterns.

6.3.2 Preparation Process

Figure 6.3 illustrates the first part of the preparation workflow, namely, spatial join
and grouping. Given the spatial datasets, region boundaries, and contextual map layers,
we first perform a ternary spatial join to associate each spatial feature to its context with
the appropriate geographic region. This produces a set of region-specific partitions for both
the spatial and contextual data as shown in the figure.

Next, we apply a grouping step within each region based on non-spatial attributes.

For example, buildings can be grouped by usage type, e.g., single-family, multifamily, or

193

commercial, while other datasets can be grouped by time, e.g., hor, day or season. This
breakdown creates smaller, semantically coherent subsets that the model can learn more
effectively.

For each resulting subset, we then synthesize a tert description composed of key-
words from all three input sources. From the geospatial data, we extract the dataset type,
grouping attribute, e.g., multifamily, and the main keywords that appear in other fields,
e.g., descriptions or tags. From the region, we extract the region type and name and any
other high-level classification, e.g., city or rural area. From the contertual data, we can op-
tionally extract relevant keywords, e.g., climate or terrain, although our prototype focuses
on raster-based features without keyword extraction.

Finally, we rasterize the geospatial data into a fixed-resolution histogram grid, e.g.,
64 = 64, and resize the contextual raster layers to match this resolution. This alignment
allows both inputs to be processed jointly by the diffusion model’s U-Net architecture, as

described in section 6.5.

6.4 Geospatial Data Embeddings

An embedding is a dense vector of floating point numbers that summarizes the
information provided to the model that produced it. It is very crucial to have embeddings
that accurately capture the information in the input domain. There are several use cases for
embeddings. In generative models, they are used to guide the training to produce the desired
output. Generally, good quality embeddings result in higher quality outputs as opposed to

only providing a text description directly, encoded as a sequence of fixed word identifiers,

194

for example. Embeddings are also used in dense retrieval methods. In this case, they enable
retrieving data based on how similar their embeddings are, using some similarity metrics.
They also enable linking information from one input domain to another. For example,
embeddings of text descriptions can be used to retrieve images with embeddings similar
to that of the provided description. Such a use case is enabled by training two models
together using methods like contrastive learning. Where one model takes data from one
input domain like text, and one model takes from another domain like images, and the two
models are trained together to generate similar embeddings for paired inputs from both the
text and image domains. While there is a lot of research on text and image embeddings,
there is no existing model for embedding geospatial vector data. In this section, we discuss
the different aspects needed for building a geospatial encoder. We discuss the process of
contrastive learning, then discuss text embeddings generally and from the perspective of
geospatial data. Then, we discuss the topic of geospatial embeddings, and what we expect
it can capture, and different types of geospatial encoders that can be designed. Finally, we
discuss the applications that can result from having a good quality and general geospatial

encoder.

6.4.1 Contrastive Learning

The main idea behind contrastive learning is associating similar samples, posi-
tive pairs, and pushing away dissimilar samples, negative pairs, in the embedding space.
Contrastive learning also enables working with multi-modal data, by associating data from
multiple modalities in the embedding space, such as associating text to images, and vice

Versa.

195

It is enabled by using a contrastive loss function like the Info Noise-Contrastive
Estimation (InfoNCE). When training for two modalities like text and images, like in
CLIP [171], and ALIGN [93], the InfoNCE loss is computed in both directions. First,
the loss is computed for each image in relative to all text pairs, as shown in Equation 6.1.
In this loss, the similarity between an image and its paired text is measured in the numer-
ator, and its similarity to all other texts in the denominator. The values are also scaled

using a temperature parameter 7.

1 Z—lﬂg exp(sim(z;, y;))/7) (6.1)

Fimee =N 24T E T explsim(zi, 17))/7)

Similarly, the same equation is used in the other direction, by computing the
similarity between a given text and all images, as shown in Equation 6.2. Then, both
losses are added together for all pairs, which makes the ALIGN loss shown in Equation 6.3.
The loss aims to minimize the similarity distance between positive pairs and maximize the
distance between negative pairs. This way, text descriptions get embeddings similar to

embeddings of images that have content that matches the text.

1 exp(sim(y;, z;))/7)
Liet =73) —lo 6.2
N 2 TN cxploim(ye 25))/7 ©2)
£ = 5 (Cimage + Luon) (6.3)

This same learning approach can be used to build a model that encodes geospatial

data and enables all the applications provided by it. Figure 6.4 illustrates the concept

196

Figure 6.4: Example of contrastive learning

of encoding geospatial data into an embedding space that associates with embeddings of
texts that summarize their content. Next, we discuss the text encoder component from the

perspective of geospatial applications.

6.4.2 Text Encoder

Having a text encoder that generates embeddings similar to that of embeddings
of data from other modalities is very crucial. It enables many applications for translating
data between different input domains, such as text-to-image or image-to-text, which can
include data generation or retrieval. A good encoder also enables more rich text descriptions
without being limited to fixed text descriptions or a fixed set of classes.

There are several choices in the case of text encoders. The first option is using
an existing pre-trained text encoder without any finetuning. In this case, the geospatial
encoder will be trained to generate embeddings similar to those of the already existing text
encoder, which might be limiting its quality. The second is using an existing text encoder

197

but adjusting it during the training, which might help in improving the text embeddings.
This might help produce more representative embeddings and still benefit from the pre-
training of the text encoder. The third option is building a new model and training it from
scratch. This might be needed if our text descriptions are unique compared to an existing
text encoder designed based on text descriptions for images, for example.

In our prototype, we train a custom model from scratch based on the ALIGN [93]

architecture, and we compare it to a pre-trained version.

6.4.3 Geospatial Encoder

There are many design choices involved in designing a geospatial encoder. First,
the choice for the model architecture, which dictates how to represent the geospatial data.
For example, a typical vision encoder using a ResNet [85] can be used. In this case, the data
must be represented in an image format such as a rasterized version of the vector data or
a summary histogram. Other architectures include graph neural networks, point set-based
architectures, and transformer models. The representations for these architectures would
require a custom graph representation. a point-set representation which requires minimal
processing, or a vector-based representation for each geometry object using encoding tech-
niques like Poly2Vec [189]. In the current prototype, we use a vision model and represent
the data as histograms.

Second, deciding what type of regional context to provide with the model. In
the case of vision models, we can use a remote-sensing image as context, for example.
Other choices also include processed rasters, such as, a raster for land use, road networks,

vegetation index, among others. In this prototype, we use remote-sensing images as context.

195

For other architectures, like graphs and point sets, each node can be associated with some
features about its geographic location. It will also still be possible to use raster images in
those models by introducing some layers that merge the two representations.

Third, deciding on the data resolution is another challenge. As discussed in Sec-
tion 6.3 patterns in datasets can be observed at different resolutions. In the case of the
geospatial encoder, it is important to decide on specific resolutions and region areas. For
vision models, the input is always a fixed-size image. Rescaling the image to very small
sizes can result in losing information required to see the patterns in the data. For other
architectures, like point sets, this is less of an issue since they take variable-sized input, and

inputs are normalized using their MBR.

6.4.4 Potential Applications

While our goal of building these encoders is to build a text to geospatial data
model, these encoders can be used in various applications. For example, they can be used
in the other direction: building models that take geospatial data as input and generate
text descriptions for them. Another potential and important application is building vector
databases for geospatial data. We highlight the potential of this use-case in the experiments.
However, to build something more general purpose and ready for real-world use-cases, a large
effort in data preparation is needed. This involves a variety of datasets, the scale of the
datasets. It is also important to study the quality of the datasets to ensure their suitability

for such applications.

199

6.5 Geospatial Data Generator

The geospatial data generator is the last component in this prototype. First, we
design a denoising UNet, trained following a diffusion process. Then, we discuss how this
model is used to generate the histograms. Finally, we discuss the process for converting the

histograms to geospatial data.

6.5.1 Model architecture and training

Since we represent the data as histograms, we can use vision-based approaches to
design this model. Typically, a UNet architecture is used to generate images. This archi-
tecture takes images as inputs and produces images as outputs. It is comprised of multiple
convolutional down blocks that encode the input, followed by multiple convolutional up-
blocks for decoding the output of the down-blocks and producing images in the desired
shape. When working with multiple modalities, such as generating images from text, text
encodings are added to the encoded input after the down-blocks. This conditions the model
to generate the desired output. Furthermore, the model is trained following a diffusion
process [192]. In this way, the model is not trained to generate the desired output in one
step, but following an iterative process. In each step, the model takes some noisy input and
is trained to predict the noise that is then subtracted from the noisy input. In the context
of geospatial data, there are two choices that we are making.

The first choice involves the choice of histogram representation. In this case,
we represent the histogram in two layers. The first layer is a mask with zero/one values

indicating whether there are points in the corresponding pixel or not. The second layer is

200

the actual point count in the corresponding pixel. The reason we make this choice is that
the histogram mask helps in discarding noisy pixels in the final generated histogram, as
we will discuss later. One alternative to this approach is to divide this into two separate
models. The first model is used to only estimate the histogram mask, which can use a
Bernoulli diffusion process, which is more suitable for discrete data. Then, the output mask
can be used as an angmentation image in the model that generates the histogram.

The second design choice is related to the region context. In this case, it is provided
in two ways. First, by providing a raster image augmented with the noisy input histogram.
In this case, we used the land cover image, but we also tested with a 3-channel satellite
image of the region. Second, the text encodigns also have information about the region.

Figure 6.5 shows the architecture of this model and an example of one training
step. In each training step, the noise generator selects a random noise step to add to the
input. In this case, t = 0 is the original input without any noise added, and ¢ = 1000 means
the input is complete Gaussian noise. In this step, a random time step (t + 1) is selected,
and the noisy example is used as the input. The model is trained to predict the noise that
is subtracted from H;,) in order to move it to the less noisy example H;. The noise is
not added to the land cover image. Doing this for many iterations results in a model that
is good at removing the noise given the conditioning text and the augmented images.

The generation process goes through a full loop of denoising. Every sample starts
at step t = 1000, which is complete noise, and is gradually de-noised to step ¢ = 0, which is

the final output histogram.

2m

ol | -9 Hy-H
(Moisy (Target
Land Cowver Toput) naise)
ompate

LE =]

Imput: Text
Encodings

Figure 6.5: Denoising UNet Architecture

6.5.2 Histogram to geospatial points

Given the generated histograms, we want to convert them to their final form as
geospatial points in the correct reference space. To do this, first, we do some pre-processing
to clean the histogram and remove some noise based on the mask. Then, we scale the
histogram and generate the points using a Gaussian generator given a desired cardinality and
the density in each histogram cell. Finally, the generated points are translated to the correct
reference space given the MBR of the region. This process is shown in Algorithm 4. Since
the model produces continuous values, we first use the threshold to convert the histogram
mask to binary values. Higher thresholds can be used when we are more sensitive to noise.
By default, we set the threshold value to 0.5. Then, all the values in the count histogram are

set to zero where the mask is zero. After that, the count histogram is converted to a density

202

histogram. We do this to control the cardinality of the data which is the parameter k in
this procedure. Then, a Gaussian generator takes the density histogram and the cardinality
k to produce k points following the density histogram. This is described in Algorithm 5,
which generates points around the center of each histogram cell based on its density. These
points are then translated to the same reference space as their region using the MBR. of the
region. This is the final step that completes the pipeline from text description to finally

generated points based on the description and on the desired geographic region.

Algorithm 4 ProcessHistogram

Require: mask: histogram mask

Require: hist: count histogram

Require: t: mask threshold

Require: k: total number of points to generate

Require: mbr: minimum bounding rectangle for mapping
1: procedure ProcEssHisTocraM(mask, hist, t, k, mbr)
2: mask + (mask > t)

hist[mask == 0] + 0

s+ ¥ hist

density +— if s > 0 then hist/s else 0

pts +— GAUSSIANGENERATOR(density, k)

return TRANSLATET 0COORDINATES(pts, mbr)

Algorithm 5 GaussianGenerator
Require: density: density histogram
Require: k: total number of points to generate
1: procedure GAUSSIANGENERATOR(density, k)
2. points + []
counts + density = k
for all (i, j) in density do
n + round(counts[i][j])
forl=1tondo
x + Normal(i + 0.5, 7)
y < Normal(j + 0.5,)
points.append((z,y))
10 return points

203

6.6 Experiments

In this section, we perform a set of experiments to evaluate the different com-
ponents in this prototype and evaluate some of the design choices, as well as to highlight

future research directions.

6.6.1 Setup
Hardware

We used a server with AMD EPYC 7545 32-Core Processor with a total of 64

threads, 256GB of memory and an NVIDIA A100-SXM4-80GEB GPU.

Datasets

We prepare four datasets based on the ebird dataset, buildings, and two subsets
from points of interest in OpenStreetMap, including power lines and traffic signals. We
only extract data within the boundaries of California. For the region boundaries, we use
the boundaries of administrative regions, like cities, counties, etc. This is summarized in
Table 6.1. For the text descriptions, we used a key-value pair JSON representation including
the region name and the dataset. For the region context, we considered two alternatives:
satellite images with three RGB channels and land-cover images that only contain one

channel.

204

Table 6.1: Prepared Data Count

Dataset Training Validation Total
Buildings 682 164 846
Traffic Signals 578 143 721
Power Lines 500 119 619
Bird Observations 682 151 833
Total 2442 577

Models

First, we train the encoder models: the text encoder (TE), and the geospatial
encoder (GE). The encoders are designed similar to ALIGN [93]. Then, we train three

different variations of the denoising UNet. All UNet variations have the same architecture

but different inputs. This is summarized as follows:

TE: a text encoder that takes the descriptions of the geospatial data, which we rep-

resent as key-value pairs.

s GE: a geospatial encoder (convolutional neural network) that takes a raster image

and a histogram of geospatial data.

s Ul: a UNet model that is conditioned on embeddings from our text-encoder (TE)
which represent the prompt, and the input histogram is augmented with a raster RGB

image.

s U2: a UNet model that is conditioned on embeddings from our text-encoder (TE) ,

and the input histogram is augmented with a land-cover image.

U3: a UNet model that is conditioned on embeddings from the pre-trained ALIGN

text encoder, and the input is just the histogram without augmentation.

205

Next, we go over a set of evaluations. We start by performing a qualitative evalua-
tion where we look at the generated data by all the models. Then, we perform a quantitative
evaluation to evaluate the generated data using some quality metrics. Finally, we evaluate

the encoders and the quality of the embeddings that they generate.

6.6.2 Qualitative evaluation

We perform a qualitative evaluation by observing how the generated data by all the
models compares with data from the ground truth. We show an example for each dataset for
each model in Figure 6.6. The blue circles represent data from the ground truth for the text
used in the prompt. The red circles represent the data generated by the model. All of these
are examples from the validation set. In general, we notice that all three models U1, U2, U3,
can differentiate between the four different datasets. For example, power lines tend to follow
some line patterns, traffic signals tend to follow a grid-like pattern, while bird observations
tend to be more sporadic, and buildings tend to be clustered and dense. However, we notice
that the generated data doesn't follow some low details, such as not generating buildings
in water areas or generating the traffic signals around road intersections. Furthermore,
all models can generate noisy examples. However, we find that the gquality of the data is
sufficient enough for generating synthetic data for data augmentation for different tasks.
Some of the noisy examples can be discarded using some of the quality metrics. We later

discuss potential directions for future improvements in Section 6.6.5.

206

u2
- 4 E P
LT S | J Shl
[S . - A . &)
U SN ﬁ? AT PN b
CAFIG sy AR
o e MR oo ’ A S
Power Lines Traffic Signals Bird Observations

® True points @ Generated points

Figure 6.6: Showing one example for generated data for each dataset by each model

6.6.3 Quantitative evaluation

Next, we perform a quantitative evaluation to compare the three UNet models by

comparing the generated data for each dataset to the ground truth datasets.

Kernel Geospatial Embedding Distance (KGD)

This evaluation is based on the Kernel Inception Distance (KID) [38], which is used
to evaluate the similarity between images based on their embeddings from the Inception [195]
image classification model. However, we cannot use such a model to get embeddings for our
geospatial data. Instead, we can use the embeddings from our Geospatial Encoder model.
This metric includes using a polynomial kernel that takes two embeddings and generates
some value. Then, the expected value for this kernel among all pairs in the real data is

computed, followed by the expected value for all pairs in the generated data, and finally

207

the expected value between every real and generated pair. This is shown in Equation 6.4,
where x.a' are for real data, and y.,3' are for generated data. For this score, lower values
are better, indicating more similar distributions. We used this metric because it does not
require a large sample size and our validation set for every dataset includes only a few

hundred examples.

KID = Ez,:r' [kl:ﬂ.‘, :r‘r}] + E!‘I'.!f [k{y: yj}] - EE:E,y [k(:r? y}] {64}

The results for the evaluation using this metric are provided in Table 6.2. The way
to read these values is that for each true dataset, its corresponding generated dataset should
have the closest score to zero compared to the other generated datasets. Based on this, we
can see that only two cases match this criteria. Possible explanations for the closeness of
the scores between the different distributions could include the presence of noisy examples

in all datasets and the sparse nature of the input datasets.

Geospatial Embedding Based Evaluation

In this evaluation, we use the embeddings of the prompts from the text encoder
(TE) and the embeddings of the generated data from the geospatial encoder (GE). This is
similar to an evaluation based on the CLIP Similarity [88] score. This evaluation is more
easier to interpret compared to the previous one. We evaluate based on the recall based
on the closest matching embeddings. For example, given an embedding for a generated
histogram for a given prompt, if its closest text embedding is from the same dataset, it will

be counted for the score RG1, meaning recall at one. Similarly, R@5 means that one of the

208

Table 6.2: Comparison of KGD scores by dataset

True Dataset Gen Dataset M1 M2 M3
building building -0.0195 -0.0138 0.0018
building ebird 0.0291 -0.0018 0.0169
building power -0.0222 0.0187 0.0093
building signal -0.0030 0.0199 0.0128
ebird building 0.0065 0.0087 0.0196
ebird ebird 0.0077 0.0083 -0.0014
ebird power 0.0076 0.0151 -0.0043
ebird signal -0.0004 -0.0039 -0.0202
power building 0.0056 -0.008% 0.0086
power ebird 0.0366 0.0131 0.0360
power power 0.0167 -0.0101 -0.0048
power signal 0.0104 -0.0135 0.0009
signal building 0.0071L 0.0086 0.0240
signal ebird -0.0010 -0.0103 -0.0056
signal power 0.0047 0.0124 0.0002
signal signal 0.0116 -0.0182 -0.0052

top five closest text embeddings are from the same data. We also use the Mean Reciprocal

Rank (MRR), shown in Equation 6.5.

1 gL 1
MRER = ~ ; — (6.5)

The results for this evaluation are shown in Table 6.3. The scores are close to
the MRR we get when evaluating the embeddings of training data from the encoder that
we discuss later in Section 6.6.4, which is around 70%. This result also shows that M3 is
slightly better than M1 and M2. This also corresponds to our observations when performing
the qualitative evaluation, although all three models perform somewhat similarly. These
results show a relation between the quality of the generated data and the gquality of the

encoders. We evaluate the encoders in more details next.

209

Table 6.3: Cross-modal retrieval performance generated data histograms to validation data
texts. Dataset matching only.

Model R@1 R@5 R@10 R@50 MRR

M1 0.5355 0.9324 0.9844 1.0000 0.6984
M2 0.5130 0.9307 0.9913 1.0000 0.6870
M3 0.5962 0.9393 0.9827 1.0000 0.7419

6.6.4 Ewaluation of encoder

In this section, we evaluate the two encoder models TE and GE. First, we evaluate
the cross-modal retrieval between the image embeddings and the text embeddings. In this
evaluation, both the location and the dataset must be matching between the geospatial
embedding and the text embedding. We show this evaluation in Table 6.4. We compare our
model to pre-trained models for images. Since the pre-trained models are not trained on
similar data, they don’t work on relating the histograms and the texts. However, our model
can relate the two modalities, with 0.89 MRR for the validation data. To learn more about
if our model gives more focus to the location as compared to the dataset, we divide the
evaluation into two parts. First, we evaluate by matching only on the dataset, and we show
the results in Table 6.5. The results for this comparison show similar values for the R@1.
The pre-trained model shows values close to a random recall for R@1 which is 25%, since
we have four datasets. Second, we evaluate by matching only on the region, and we show
the results in Table 6.6. This result shows much higher values compared to the combined
evaluation. This indicates that encoders focus more on the region labels as compared to

the datasets. There could be many reasons for explaining this behavior. One main reason

could be related to the quality and size of the datasets that we use.

210

Finally, we evaluate the text encoder only. We compare the embeddings of the
texts from the validation set to the embeddings in the training set. This evaluation is
shown in Table 6.7. While our model worked well in associating the geospatial embeddings
to the text embeddings, the text encoder by itself does not work well for associating similar
texts between the training and validation data. However, one thing we note is that all the
combinations of regions and datasets in the validation data are not seen in the training.
For each region, the model only sees a few of the datasets, and the others are kept for
training, so the combinations are mutually exclusive. The pre-trained text-encoder models
can associate well the dataset labels but not the region labels, since the dataset labels are

also common in image datasets, like birds and building, etc.

Table 6.4: Cross-modal retrieval results for datasets & regions

Model Dataset R@l1 R@5 R@10 RG@50 MRR
Train 0.4959 0.9967 1.0000 1.0000 0.7129

Our Model - 0.8146 0.0879 0.0879 0.9806 0.8074
ALIGN Train 0.0000 0.0020 0.0037 0.0258 0.0035
Val 0.0017 0.0121 0.0243 0.1127 0.0139
oLP Train 0.0008 0.0041 0.0057 0.0200 0.0040
Val 0.0017 0.0156 0.0225 0.0971 0.0136

Tahble 6.5: Cross-modal retrieval results for dataset only

Model Dataset R@G1 R@G5 R@10 RG@50 MRR
Train 0.5057 1.0000 1.0000 1.0000 0.7203
Our Model

Val 0.8195 0.9945 0.9965 1.0000 0.9029
ALICN Train 0.2068 04717 0.6167 0.9828 0.3315
Val 0.2166 0.6499 0.9497 1.0000 0.4188
CLIP Train 0.3493 0.5762 0.6691 0.9496 0.4589
Val 0.2877 0.4437 0.6603 1.0000 0.3816

211

Table 6.6: Cross-modal retrieval results for regions only

Model Dataset R@l1 R@5 R@10 RG@50 MRR
Train 0.9959 1.0000 1.0000 1.0000 0.9977

Our Model 1) 0.0827 0.0879 0.0879 0.9896 0.0849
ALICN Train 0.0004 0.0078 0.0152 0.0737 0.0089
Val 0.0017 00173 0.0364 0.1542 0.0181
- Train 0.0016 0.0127 0.0197 0.0786 0.0117
Val 0.0017 0.0208 0.0364 0.1490 0.0184

Tahble 6.7: Validation text embedding compared with training text embeddings

Model Retrieval Type R@ml Ras5 R@10 R@s50 MRR
Our Model Datasets Only 01724 07502 00386 1.0000 0.4091
Regions Only 04189 04238 04250 04263 0.4212
ALIGN Datasets Only 08452 09996 1.0000 1.0000 0.9188
Regions Only 01511 0.2179 0.2350 0.2735 0.1833
CLIP Datasets Only 09639 1.0000 1.0000 1.0000 0.9830
Regions Only 00192 0.0622 01061 02514 0.0465

6.6.5 Discussion

In this section, we discuss the implications of these results and possible future

directions.

Dataset preparation

The datasets that we prepared showed clearly distinctive behavior, and the models
that we trained can differentiate between them. However, there are still many challenges
associated with dataset quality especially when working with datasets from multiple sources.
For example, it is challenging to assess that there is a strong correlation between the datasets
themselves and the attributes used for creating the text labels. Furthermore, when working
with multiple datasets, it can be challenging to ensure that patterns in some datasets have
similar behavior in another dataset that was labeled differently. In our case, we looked

manually at different datasets and selected ones that clearly show distinctive behavior.

212

However, this can be challenging to verify at scale. For example, if we partitioned the bird
observations dataset by bird species, it is too challenging to verify that the data in each
partition shows distinctive behavior. Sometimes distinctive behaviors can only be observed
at a higher level and not at the city or neighborhood level. This brings us to another aspect,
which is the resolution of the data. In our prototype, we defined the regions based on
administrative regions and scaled all of them to 64 by 64 images. A more general approach
should probably use a fixed aspect ratio and incorporate different resolutions, while the
histograms are built for each dataset based on its appropriate resolution. A more general
approach should probably use a fixed aspect ratio, and incorporate different resolutions,

while the histograms are built for each dataset based on its appropriate resolution.

Geospatial encoder

The encoders that we trained can associate between the geospatial data embed-
dings with the embeddings of their text descriptions. The detailed evaluation showed that
the embeddings tend to give higher weights on the regional context data as opposed to the
geospatial data description. This could also be due to the dataset size and quality discussed
earlier. It could also be related to how the data is partitioned since the combinations of
text descriptions in the training are different from those in the validation. We still think
that multi-modal encoders such as these have many promising applications for geospatial

data retrieval and other applications.

213

Data generation

The data generator model can differentiate between the different datasets and
produce similar distributions. The quality of the produced images is sufficient for data
augmentation. However, the models do not pick up on small details like generating points
for buildings on top of water areas. Omne potential way to address this is to use masking
augmentations to guide the training. For example, we can provide a mask for the road
network when generating traffic data or power lines. Or alternatively, provide a mask
for other types of land cover, like urban areas for buildings. There are many works for
generating data at a specific location in an image using a masking layer [27] is one such
example. While we used land cover for augmentation which contains this information,
perhaps it is too general, and the model did not pick up on those patterns. It could also be
that our dataset is not rich enough to enable the model to pick up on those small details.
Furthermore, we only considered histograms of size 64x64. This is perhaps not sufficient to
produce high-quality histograms. For image generators, typically there is a set of models,
where the first model produces a low-resolution image, and the following models resize the

image and increase its clarity. We leave the investigation for this for future work.

6.7 Related Work

Several works have explored image generation from text, including DALL-E2 [172],
which proposed a diffusion prior step that translates text embeddings to image embeddings,
resulting in higher quality images. Also, Imagen [179] provided state of the art image

generation and showed that larger language models for text embeddings result in better

214

images. Others focused on specific cases like SpaText [27], which focused on generating
images based on textual descriptions and specific regions of existing images. Such work can
be useful in geospatial data generation, such as generating data around the boundaries of
objects like roads. A comprehensive survey presented in [223] covers diffusion models for
various data generation tasks such as text-to-image and text-to-video; however, discussions
about geospatial applications are still limited.

Some of the recent efforts in geospatial data generation have focused on produc-
ing raster data using diffusion-based models. MESA [43] uses a diffusion model trained
on global remote sensing data to synthesize high-quality terrain from textual descriptions.
DiffusionSat [109] similarly generates satellite imagery from text inputs, incorporating ad-
ditional conditioning information such as geographic coordinates, timestamps, and sen-
sor specifications. Moreover, RSVQ-Diffusion [75] leverages a diffusion-based architecture
to produce satellite images conditioned on textual descriptions. SatSynth [203] generates
synthetic satellite images, with a segmentation mask, and highlights the benefits of data
augmentation. Other works focused on more application-specific generation. These include
SEEDS [129] for weather forecasting, and [118] for rain prediction. MapGen-Diff [201] takes
remote sensing images and produces a corresponding map image, and similarly [167).

Some works have discussed the vision for geospatial foundation models [220]. We
think the work in this paper takes us a step closer to realizing these visions, including
highlighting all the current challenges. Some works have discussed more details like privacy

implications when building geospatial foundation models [173].

215

For works related to geospatial data embeddings, one notable work is SatCLIP [171]
which is similar to CLIP [171]. However, this model is only trained on satellite images for
the image encoder, and the other encoder only takes the latitude and longitude of the center
of the region. It is not related to geospatial vector data and does not incorporate rich textual
descriptions. Existing encoders for geospatial vector data typically are application-specific.
These include: KnowSite [140], for embedding urban knowledge graphs, and T-JEPA [128],

which provides a self-supervised trajectory embedding model, among others.

6.8 Conclusion

We introduced GeoGen 1, a framework for generating geospatial point data from
text prompts. The models generate data that is distinctive and showing similar behavior to
real data. However, several limitations remain. First, dataset preparation is still challeng-
ing, like verifying that partitions exhibit distinctive patterns, especially when relying on
loosely labeled data. Second, the model resolution is low (64x64), which restricts the detail
it can capture. This affects the generator’s ahility to avoid errors like placing buildings over
water. Third, the encoders seem to rely more heavily on regional context than the text
descriptions, which may reflect shortcomings in the training data or the encoder alignment.

Future work should focus on improving dataset quality and label consistency, in-
corporating multi-resolution generation, and exploring masking techniques to enforce spatial
constraints. These directions could make the system more robust and allow it to generate

higher-quality spatial data suitable for a wider range of applications.

216

Chapter 7

Conclusions

This thesis presented a set of systems and models aimed at improving the storage,
processing, and generation of large-scale geospatial vector data. Each chapter addressed
a specific limitation in the current ecosystem, offering practical solutions that scale and
generalize.

SpatialParquet introduced a columnar file format tailored for geospatial data,
demonstrating how the column representation enabled significant data savings through com-
pression and encodings like FP-delta. The data statistics stored with the column also enable
more efficient querying. dsJSON tackled the long-standing inefficiency of distributed JSON
processing by integrating selective parsing, robust partitioning, and schema inference di-
rectly into Spark. It filled a critical gap in enabling scalable analytics over semi-structured
data. While we made some progress, support for geospatial data in data lakes is still lack-
ing, especially with new innovations such as data lake formats like Apache Iceberg, which

incorporate storing more statistics and enable more efficient querying.

217

In deep learning for geospatial vector data, we showed that the three modeling
approaches, Geolmg, GeoGraph, and GeoVec, are viable, but come with trade-offs in gen-
eralization and scalability. Future works can focus on providing more scalable alternatives,
solutions for more complex spatial data such as complex lines and polygons, and also so-
lutions for integrating vector and raster data. The GS-QQA benchmark highlighted major
deficiencies in current LLM-based systems when dealing with spatial reasoning. It also
outlined several areas where more robust evaluation and retrieval strategies are necessary.
Finally, GeoGen I demonstrated the feasibility of generating geospatial point data from text
but exposed clear limitations in data curation and quality, as well as challenges related to
resolution and location context. For future research, focus can be given to data curation
and quality assessment, and also generation based on masked regions, to guide the generator
to specific parts of the region, such as generating traffic signals around road intersections.

Together, the systems and experiments in this thesis make some progress in provid-
ing more support for geospatial data in data lakes and deep learning applications; however,

significant open problems remain.

218

Bibliography

[1] Json encoder and decoder. Available at https://docs.python.org/3/library/
json.html.

[2] MongoDB. Available at https://www.mongodb. com.
[3] Spark sql: Relational data processing in spark. In SIGMOD, pages 1383-1394, 2015.

[4] Apache spark: A unified engine for big data processing. Commun. ACM, 59(11):56-65,
October 2016.

[5] Bestbuy developer api, 2021. Retrieved from https://bestbuyapis.github.io/
api-documentation/.

[6] Jackson, 2021. Available at https://github. com/FasterXML/jackson.
[7] Jayway JsonPath, 2021. Available at https://github. com/json-path/JsonPath.
[8] RapidJSON, 2021. Available at https://rapidjson.org/.

[9] Wikipedia json dumps, 2021. Retrieved from https://dumps.wikimedia.org/
wikidatawiki/latest/.

[10] geo-arrow-spec, June 2022. original-date: 2020-04-06T21:00:33Z.

[11] Parquet, June 2022. original-date: 2014-06-10T07:00:07Z.

[12] GPT-40 System Card, August 2024.

[13] IBM-NASA Prithvi Models Family (ibm-nasa-geospatial), December 2024.
[14] llama3.2, July 2024.

[15] Nominatim: Open source geocoding with openstreetmap data, 2024.

[16] chroma-core/chroma, February 2025. original-date: 2022-10-05T'17:58:447.

[17] Sushila Aghav. Database compression techniques for performance optimization. In
ICCET, volume 6, pages V6—714-V6-717, 2010.

219

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://www.mongodb.com
https://bestbuyapis.github.io/api-documentation/
https://bestbuyapis.github.io/api-documentation/
https://github.com/FasterXML/jackson
https://github.com/json-path/JsonPath
https://rapidjson.org/
https://dumps.wikimedia.org/wikidatawiki/latest/
https://dumps.wikimedia.org/wikidatawiki/latest/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca Foschini, and
Rebecca Montanari. Locality-preserving spatial partitioning for geo big data analytics
in main memory frameworks. In 2020 IEEFE Global Communications Conference,
pages 1-6, 2020.

Abdullah Al-Mamun, Hao Wu, and Walid G. Aref. A tutorial on learned multi-
dimensional indexes. In SIGSPATITAL, pages 14, Seattle, WA, Nov 2020. ACM.

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel
Cremers. Clustering with Deep Learning: Taxonomy and New Methods, 2018,
arXiv:1801.07648 [cs].

Wail Y. Alkowaileet, Sattam Alsubaiee, Michael J. Carey, Till Westmann, and Yingyi
Bu. Large-scale complex analytics on semi-structured datasets using asterixdb and
spark. Proc. VLDB Endow., 9(13):1585-1588, sep 2016.

Sattam Alsubaieel Yasser Altowiml Hotham Altwaijry, Alexander Behm, Vinayak
Borkarl Yingyi Bul Michael Carey, Inci Cetindill Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrieloval Raman Groverl Zachary Heilbron, Pouria Pirzadehl
Vassilis T'sotrasT Rares Vernica, Jian Wen, and Till Westmann. Asterixdb: A scalable,
open source bdms. Proceedings of the VLDEB Endowment, 7(14), 2014.

Hossein Amiri, Will Kohn, Shiyang Ruan, Joon-Seok Kim, Hamdi Kavak, Andrew T.
Crooks, Dieter Pfoser, Carola Wenk, and Andreas Ziifle. The patterns of life hu-
man mobility simulation. In Mario A. Nascimento, Li Xiong, Andreas Ziifle, Yao-Yi
Chiang, Ahmed Eldawy, and Peer Kriger, editors, Proceedings of the 32nd ACM
International Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL 2024, Atlanta, GA, USA, 29 October 2024 - 1 November 2024, pages 653—656.
ACM, 2024.

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszezak, et al.
Delta lake: high-performance acid table storage over cloud object stores. Proceedings
of the VLDB Endowment, 13(12):3411-3424, 2020.

Soren Auer, Dante A. C. Barone, Cassiano Bartz, Eduardo G. Cortes, Mohamad Yaser
Jaradeh, Oliver Karras, Manolis Koubarakis, Dmitry Mouromtsev, Dmitrii Pliukhin,
Daniil Radyush, Ivan Shilin, Markus Stocker, and Eleni Tsalapati. The SciQQA Sci-
entific Question Answering Benchmark for Scholarly Knowledge. Scientific Reports,
13(1):7240, May 2023.

Woody Austin, Grey Ballard, and Tamara G. Kolda. Parallel tensor compression for
large-scale scientific data. In IPDPS, pages 912-922, 2016.

Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi
Parikh, Dani Lischinski, Ohad Fried, and Xi Yin. SpaText: Spatio-Textual Rep-
resentation for Controllable Image Generation . In 2025 IEEE/CVF Conference on

220

Computer Vision and Pattern Recognition (CVPR), pages 1837018380, Los Alami-
tos, CA, USA, June 2023. IEEE Computer Society.

[28] Mohamed-Amine Baazizi, Clément Berti, Dario Colazzo, Giorgio Ghelli, and Carlo
Sartiani. Human-in-the-Loop Schema Inference for Massive JSON Datasets. In EDET
2020 - 25nd International Conference on Ertending Database Technology, pages 635—
638, Copenhagen, Denmark, March 2020. OpenProceedings.org.

[29] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Para-
metric schema inference for massive json datasets. The VLDE Journal, 28(4):497-521,
2019.

[30] Furqan Baig, Chao Gao, Dejun Teng, Jun Kong, and Fusheng Wang. Accelerating
spatial cross-matching on cpu-gpu hybrid platform with cuda and openacc. Frontiers
in Big Data, 3, 2020.

[31] Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, Federica Panella, and
Matteo Pradella. Parallel parsing made practical. Science of Computer Programming,
112:195-226, 2015.

[32] Norbert Beckmann and Bernhard Seeger. A benchmark for multidimensional index
structures, 2008.

[33] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. Detecting skewness of big spatial
data in spatialhadoop. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL 18, page
432-435, New York, NY, USA, 2018. Association for Computing Machinery.

[34] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. A generic machine learning
model for spatial query optimization based on spatial embeddings. ACM Trans.
Spatial Algorithms Syst., 10(4), October 2024.

[35] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Mohamed Eltabakh, and Andrey
Balmin. Jaqgl: A scripting language for large scale semistructured data analysis. vldb,
2011.

[36] Derya Birant and Alp Kut. ST-DBSCAN: An algorithm for clustering spa-
tial-temporal data. Data & Knowledge Engineering, 60(1):208-221, January 2007.

[37] Enam Biswas. Imdb review dataset, 2021. Retrieved from https://www.kaggle.
com/dsv/1836923.

[38] Mikolaj Birikowski, Dougal J Sutherland, Michael Arbel, and Arthur Gretton. Demys-
tifying mmd gans. In International Conference on Learning Representations (ICLR),
2018.

[39] Davis Blalock, Samuel Madden, and John Guttag. Sprintz: Time series compression
for the internet of things. IMWUT, 2(3):1-23, 2018.

21

https://www.kaggle.com/dsv/1836923
https://www.kaggle.com/dsv/1836923

[40] Martin Béckling, Heiko Paulheim, and Sarah Detzler. A planet scale spatial-
temporal knowledge graph based on openstreetmap and h3 grid. arXiv preprint
arXiv:2405.15375, 2024.

[41] Geoff Boeing. Modeling and Analyzing Urban Networks and Amenities with OSMnx,
2024.

[42] Daniele Bonetta and Matthias Brantner. Fad. js: fast json data access using jit-based
speculative optimizations. Proceedings of the VLDE Endowment, 10(12):1778-1789,
2017.

[43] Paul Borne-Pons, Mikolaj Czerkawski, Rosalie Martin, and Romain Rouffet. Mesa:
Text-driven terrain generation using latent diffusion and global copernicus data, 2025.

[44] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In Advances in Neural Information Processing
Systems, volume 33, pages 18771901, 2020.

[45] Eren Cakmak, Manuel Plank, Daniel S. Calovi, Alex Jordan, and Daniel Keim. Spatio-
temporal clustering benchmark for collective animal behavior. In Proceedings of the
1st ACM SIGSPATIAL International Weorkshop on Animal Movement Ecology and
Human Mobility,. HANIMOB 21, page 58, New York, NY, USA. 2021. Association
for Computing Machinery.

[46] Eugenio Cesario, Paolo Lindia, and Andrea Vinci. A scalable multi-density clustering
approach to detect city hotspots in a smart city. Future Generation Computer Systems,
157:226-236, 2024,

[47] T'sz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, and Reynold Cheng. Large-
scale geospatial analytics: Problems, challenges, and opportunities. In Companion af
the 2025 International Conference on Management of Data, SIGMOD ’23, page 21-29,
2023.

[48] Tsz Nam Chan, Leong Hou U, Yun Peng, Byron Choi, and Jianliang Xu. Fast network
k-function-based spatial analysis. Proc. VLDEB Endow., 15(11):2853-2866, 2022.

[49] Ashesh Chattopadhyay, Pedram Hassanzadeh, and Saba Pasha. Predicting clustered
weather patterns: A test case for applications of convolutional neural networks to
spatio-temporal climate data. Scientific Reports, 10(1):1317, 2020.

[50] Jiagi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric Xing, and
Liang Lin. Geo(QA: A Geometric Question Answering Benchmark Towards Multi-
modal Numerical Reasoning. In Chengging Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 513-523, Online, August 2021. Association for Computational
Linguistics.

222

[51] Wei Chen, Eric Fosler-Lussier, Ningchuan Xiao, Satyajeet Raje, Rajiv Ramnath, and
Daniel Sui. A Synergistic Framework for Geographic QQuestion Answering. In 20153
IEEE Seventh International Conference on Semantic Computing, pages 94-99, Irvine,
CA, USA, September 2013. IEEE.

[52] Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xuegnang Ma, Jianyu Xu,
Xinyi Wang., and Tony Xia. Theorem()A: A theorem-driven question answering
dataset. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages
T&89-T901, Singapore, December 2023. Association for Computational Linguistics.

[53] Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tan Yih, Yejin Choi, Percy
Liang, and Luke Zettlemoyer. QuAC: QQuestion answering in context. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii. editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Lanquage Processing, pages 2174-2184,
Brussels, Belgium, October-November 2018, Association for Computational Linguis-
tics.

[54] Steven Claggett, Sahar Azimi, and Martin Burtscher. Spdp: An automatically synthe-
sized lossless compression algorithm for floating-point data. In 2018 Data Compression
Conference, pages 335-344, 2018,

[55] James Clark, Steve DeRose, et al. Xml path language (xpath), 1999.

[56] Pavel Contos and Martin Svoboda. Json schema inference approaches. In Georg
Grossmann and Sudha Ram, editors, Advances in Conceptual Modeling, pages 173—
183, Cham, 2020. Springer International Publishing.

[57] Data.Gov: The home of the U.S. Government’s open data, June 2022.
[58] Peter Deutsch. Gzip file format specification version 4.3. Technical report, 1996.

[59] Sheng Di, Dingwen Tao, Xin Liang, and Franck Cappello. Efficient lossy compression
for scientific data based on pointwise relative error bound. TPDS, 30(2):331-345,
2019.

[60] Michael DiScala and Daniel J Abadi. Automatic generation of normalized relational
schemas from nested key-value data. In Proceedings of the 2016 International Con-
ference on Management of Data, pages 295-310, 2016.

[61] Harish Doraiswamy, Eleni Tzirita Zacharatou, Fabio Miranda, Marcos Lage, Anasta-
sia Ailamaki, Claudio T. Silva, and Juliana Freire. Interactive visual exploration of
spatio-temporal urban data sets using urbane. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD, pages 1693-1696. ACM, 2018.

[62] Gabriele D'Orso and Marco Migliore. A GIS-based method for evaluating the walka-
hility of a pedestrian environment and prioritised investments. Journal of Transport
Geography, 82:102555, 2020.

223

[63] Matthijs Douze, Alexandr Guzhva, Chenggi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss
library. 2024.

[64] Dominik Durner, Viktor Leis, and Thomas Neumann. JSON Tiles: Fast Analytics
on Semi-Structured Data, page 445-458. Association for Computing Machinery, New
York, NY, USA, 2021.

[65] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. Spatial Partitioning Tech-
niques in Spatial Hadoop. PVLDE, 8(12):1602-1605, 2015.

[66] Ahmed Eldawy et al. Beast: Scalable exploratory analytics on spatio-temporal data.
In CIKM, pages 3796-3807, 2021.

[67] Markus Endres, Asha Mannarapotta Venugopal, and Tung Son Tran. Synthetic data
generation: A comparative study. In Proceedings of the 26th International Database
Engineered Applications Symposium, IDEAS 22, page 94-102, New York, NY, USA,
2022. Association for Computing Machinery.

[68] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[69] Avrilia Floratou, Umar Farooq Minhas, and Fatma Ozcan. Sql-on-hadoop: Full circle
back to shared-nothing database architectures. PVLDEB, T(12), 2014.

[70] Christian A. Flores-Villamil, Huizilopoztli Luna-Garcia, Mauricio Ramirez-Villegas,
Carlos H. Espino-Salinas, Alejandro Mauricio-Gonzélez, and José G. Arceo-Olague.
School Clustering Through Machine Learning and Geospatial Analysis. In Geograph-
ical Information Systems, pages 86-104, 2025.

[71] Nathaniel Fout and Kwan-Lin Ma. An adaptive prediction-based approach to lossless
compression of floating-point volume data. TVCG, 18(12):2295-2304, 2012.

[72] Luis Iribarne Francisco Garcia-Garcia, Antonio Corral and Michael Vassilakopoulos.
Efficient distributed algorithms for distance join queries in spark-based spatial ana-
lytics systems. International Journal of General Systems, 52(3):206-250, 2023.

[73] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim, un-fixability, and approx-
imation. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD 15, page 519-530, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[T4] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. Text-to-sgl empowered by large language models: A benchmark eval-
uation. Proc. VLDB Endow., 17(5):1132-1145, January 2024.

[75] Xin Gao, Yao Fu, Xiaonan Jiang, Fanlu Wu, Yu Zhang, Tianjiao Fu, Chao Li, and
Junyan Pei. Rsvg-diffusion model for text-to-remote-sensing image generation. Ap-
plied Sciences, 15(3), 2025.

224

[76] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Kossmann.
Speculative distributed csv data parsing for big data analytics. In Proceedings of the
2019 International Conference on Management of Data, pages 883-899, 2019.

[77] Geofabrik Download Server, 2024.
[78] GeoParquet: Store Vector Data in Apache Parquet, June 2022.

[79] Saheli Ghosh et al. UCR-STAR: The UCR Spatio-Temporal Active Repository.
SIGSPATIAL Special, 11(2):34-40, December 2019.

[80] Stefan Goessner. JSONPath - XPath for JSON, February 2007. Available at https:
//goessner.net/articles/JsonPath/.

[81] Mandeep Goyal and Qusay H. Mahmoud. A systematic review of synthetic data
generation techniques using generative ai. Electronics, 13(17), 2024.

[82] Todd J Green, Gerome Miklan, Makoto Onizuka, and Dan Suciu. Processing xml
streams with deterministic automata. In International Conference on Database The-
ory, pages 173-189. Springer, 2003.

[83] Peigin Gu, Zhiyuan Han, Zhejing Cao, Yulin Chen, and Yang Jiang. Using Open
Source Data to Measure Street Walkability and Bikeahbility in China: A Case of
Four Cities. Transportation Research Record: Jowrnal of the Transportation Research
Board, 2672(31):63-75, 2018.

[84] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and
Gautam Das. Deep learning models for selectivity estimation of multi-attribute
queries. In Proceedings of the 2020 ACM SIGMOD Int. Conf. on Management af
Data, SIGMOD ’20, page 1035-1050, 2020.

[85] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages T7T0-778, 2016.

[86] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. Measuring massive multitask language understanding,.
Proceedings of the International Conference on Learning Hepresentations (ICLR),
2021.

[87] Nicolaus Henke, Jacques Bughin, Michael Chui, James Manyika, Tamim Saleh, Bill
Wiseman, and Guru Sethupathy. The Age of Analytics: Competing in a Data-driven
World. Technical report, McKinsey Global Institute, 2016.

[88] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clip-
score: A reference-free evaluation metric for image captioning. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP),
2021.

225

https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Chi Ho, Bill Yuchen Lin, Xiang Ren Chen, and Xiang Ren. Constructing multi-hop
knowledge paths for complex question answering over knowledge bases. In Proceedings
of the 28th International Conference on Computational Linguistics (COLING), pages
6302-6318, 2020.

Alexander Hohl, Minrui Zheng, Wenwu Tang, Eric Delmelle, and Irene Casas. Spa-
tiotemporal Point Pattern Analysis Using Ripley’s K Function. In Geospatial Data
Science Techniques and Applications. CRC Press, 2017.

lonut Hrubaru, George Talaba, and Marin Fotache. A basic testbed for json data
processing in sql data servers. In Proceedings of the 20th International Conference
on Computer Systems and Technologies, CompSysTech '19, page 278283, New York,
NY, USA, 2019. Association for Computing Machinery.

Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khurram
Shafique. Trajgpt: Controlled synthetic trajectory generation using a multitask
transformer-based spatiotemporal model. In Mario A. Nascimento, Li Xiong, An-
dreas Ziifle, Yao-Yi Chiang, Ahmed Eldawy, and Peer Kriger, editors, Proceedings af
the 32nd ACM International Conference on Advances in Geographic Information Sys-
tems, SIGSPATIAL 2024, Atlanta, GA, USA, 29 October 2024 - 1 November 2024,
pages 362-371. ACM, 2024.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V.
Le, Yunhsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision- G
representation learning with noisy text supervision, 2021.

Hao Jiang and Aaron J. Elmore. Boosting data filtering on columnar encoding with
simd. In DaMeN@SIGMOD, 2018.

Lin Jiang, Jungiao Qiu, and Zhijia Zhao. Scalable structural index construction for

json amalytics. Proc. VLDB Endow., 14(4):694-T07, dec 2020.

Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao. Scalable processing of contem-
porary semi-structured data on commodity parallel processors-a compilation-based
approach. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems., pages 79-92,
2019.

Lin Jiang and Zhijia Zhao. Grammar-aware parallelization for scalable xpath query-
ing. ACM SIGPLAN Notices, 52(8):371-383, 2017.

Lin Jiang and Zhijia Zhao. Jsonski: streaming semi-structured data with bit-parallel
fast-forwarding. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 200-211,
2022,

JSON, 2021. Available at https://www. json.org/.

226

https://www.json.org/

cumentation for the json lines text file format, . able at https:
100] Do ion for the j li file fi 2021. Availabl h
//jsonlines.org.

[101] Zihan Kan, Mei-Po Kwan, and Luliang Tang. Ripley's k-function for network-
constrained How data. Geographical Analysis, 54(4):7T69-T88, 2022.

[102] Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Practical string dictionary
compression using string dictionary encoding. In Innovate-Data, 2017,

[103] Nikolaos Karalis, Georgios Mandilaras, and Manolis Koubarakis. Extending the yago2
knowledge graph with precise geospatial knowledge. In The Semantic Web-ISWC
2019: 18th International Semantic Web Conference, Auckland, New Zealand, October
26-530, 2019, Proceedings, Part II 18, pages 181-197. Springer, 2019.

[104] Md Rezaul Karim, Oya Beyan, Achille Zappa, Ivan G Costa, Dietrich Rebholz-
Schuhmann, Michael Cochez, and Stefan Decker. Deep learning-based clustering
approaches for bioinformatics. Briefings in Bioinformatics, 22(1):393-415, 2021.

[105] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Dangi Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain
Question Answering, September 2020. arXiv:2004.04906 [cs].

[106] Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, and Alberto Belussi. Spi-
derweb: A spatial data generator on the web. In Proceedings of the 28th International
Conference on Advances in Geographic Information Systems, SIGSPATIAL 20, page
465-468, New York, NY, USA, 2020. Association for Computing Machinery.

[107] Mohammad Kazemi Beydokhti, Matt Duckham, Amy L. Griffin, Yaguang Tao, Ross
Purves, and Maria Vasardani. Probabilistic qualitative spatial reasoning with appli-

cations to Geo(QA. International Journal of Geographical Information Science, pages
1-30, December 2024.

[108] Sergios-Anestis Kefalidis, Dharmen Punjani, Eleni Tsalapati, Konstantinos Plas,
Maria-Aggeliki Pollali, Pierre Maret, and Manolis Koubarakis. The question answer-
ing system Geo(JA2 and a new benchmark for its evaluation. International Journal
aof Applied Earth Observation and Geoinformation, 134:104203, November 2024.

[109] Samar Khanna, Patrick Liu, Lingi Zhou, Chenlin Meng, Robin Rombach, Marshall
Burke, David Lobell, and Stefano Ermon. Diffusionsat: A generative foundation
model for satellite imagery, 2024.

[110] Abdelouahab Khelifati, Mourad Khayati, and Philippe Cudré-Mauroux. Corad:
Correlation-aware compression of massive time series using sparse dictionary coding.
In IEEE BigData, pages 2280-2298, 2019.

[111] Konstantin Klemmer, Esther Rolf, Caleb Robinson, Lester Mackey, and Marc
Ruffwurm. Satclip: Global, general-purpose location embeddings with satellite im-
agery, 2024.

227

https://jsonlines.org
https://jsonlines.org

[112] Meike Klettke, Uta Stérl, and Stefanie Scherzinger. Schema extraction and structural
outlier detection for json-based nosql data stores. Datenbanksysteme fiir Business,
Technologie und Web (BTW 2015), 2015.

[113] Fabian Knorr, Peter Thoman, and Thomas Fahringer. ndzip: A high-throughput
parallel lossless compressor for scientific data. In DCC, pages 103-112, 2021.

[114] Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, and Georgios
Paliouras. BioASQ-QA: A manually curated corpus for Biomedical (Question Answer-
ing. Scientific Data, 10(1):170, March 2023.

[115] Geoff Langdale and Daniel Lemire. Parsing gigabytes of json per second. The VLDB
Journal, 28(6):941-960, 2019.

[116] Robert Lasch et al. Fast & strong: The case of compressed string dictionaries on
modern cpus. In DaMoN@SIGMOD, 2019.

[117] Md Tahmid Rahman Laskar, Sawsan Algahtani, M Saiful Bari, Mizanur Rahman, Mo-
hammad Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei
Tan, Md Rizwan Parvez, Enamul Hoque, Shafiq Joty, and Jimmy Huang. A systematic
survey and critical review on evaluating large language models: Challenges, limita-
tions, and recommendations. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 13785-13816, Miami. Florida, USA, November 2024.
Association for Computational Linguistics.

[118] Jussi Leinonen, Ulrich Hamann, Daniele Nerini, Urs Germann, and Gabriele Franch.
Latent diffusion models for generative precipitation nowcasting with accurate uncer-
tainty quantification, 2023.

[119] Benjamin Lewis and Devika Kakkar. Harvard CGA Geotweet Archive v2.0, 2016.

[120] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rockt&schel, Se-
bastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS "20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc.

[121] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of
natural language to sql: Are we fully ready? Proceedings of the VLDB Endowment,
17(11):3318-3331, 2024.

[122] Fei Li, Tan Yigitcanlar, Madhav Nepal, Kien Nguyen, and Fatih Dur. Machine learn-
ing and remote sensing integration for leveraging urban sustainability: A review and
framework. Sustainable Clities and Society, 96:104653, 2023,

[123] Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. Llm for data management. Proceedings
of the VLDB Endowment, 17(12):4213-4216, 2024.

228

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Haonan Li, Ehsan Hamzei, Ivan Majic, Hua Hua, Jochen Renz, Martin Tomko, Maria
Vasardani, Stephan Winter, and Timothy Baldwin. Neural factoid geospatial question
answering. Journal of Spatial Information Science, (23):65-90, December 2021.

Jianing Li, Xi Nan, Ming Lu, Li Du, and Shanghang Zhang. Proximity (JA: Unleash-
ing the Power of Multi-Modal Large Language Models for Spatial Proximity Analysis,
January 2024. arXiv:2401.17862 [cs].

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. Can llm already serve as a database
interface? a big bench for large-scale database grounded text-to-sqls. Advances in
Neural Information Processing Systems, 36, 2024.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen (in, Ruiying Geng, Nan Huo, Xuanhe Zhou, Ma Chenhao, Guoliang Li, Kevin
Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM Already Serve as A
Database Interface? A Blg Bench for Large-Scale Database Grounded Text-to-S({)Ls.
Advances in Neural Information Processing Systems, 36:42330-42357, December 2023.

Ke Li, Yuxuan Wang, Zhichao Lin, and Yu Wang. T-jepa: Self-supervised trajectory
representation learning with joint-embedding predictive architecture. In Proceedings
af the 32nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2024.

Lizao Li, Rob Carver, Ignacio LopezGomez, Fei Sha, and John Anderson. Seeds:
Emulation of weather forecast ensembles with diffusion models, 2023.

Siyu Li, Toan Tran, Haowen Lin, John Krumm, Cyrus Shahabi, Lingyi Zhao, Khurram
Shafique, and Li Xiong. Geo-llama: Leveraging llms for human mobility trajectory
generation with spatiotemporal constraints. MDM, 2025.

Xiang Li, Kun Han, Han Hu, Yu Zhang, and Junchi Wang. Trajectoryvbert: Pre-
training spatial trajectories with metric learning. In Proceedings of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1265712667,
2023.

Yinan Li, Nikos R Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and
Donald Kossmann. Mison: a fast json parser for data analytics. Proceedings of the
VLDEB Endowment, 10(10):1118-1129, 2017.

Yunqin Li, Nobuyoshi Yabuki, and Tomohiro Fukuda. Integrating GIS, deep learning,
and environmental sensors for multicriteria evaluation of urban street walkability.
Landscape and Urban Planning, 230:104603, 2023.

Xin Liang et al. Error-controlled lossy compression optimized for high compression
ratios of scientific datasets. In IEEFE BigData, pages 435-447, 2018,

229

[135] Zhenjie Liao and Lijuan Zhang. Spatial distribution characteristics and accessibility
analysis of characteristic towns in guangdong province based on ripley’s k function.
J. Math., 2022(1):2873707, 2022.

[136] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, [lya Sutskever, and Karl Cobbe. Let’s verify step by
step. arXiv preprint arXiv:2505. 20050, 2023.

[137] Haowen Lin, Sina Shaham, Yao-Yi Chiang, and Cyrus Shahabi. Generating realistic
and representative trajectories with mobility behavior clustering. In Matthias Renz
and Mario A. Nascimento, editors, Proceedings of the 315t ACM International Confer-
ence on Advances in Geographic Information Systems, SIGSPATIAL 2025, Hamburg,
Germany, November 13-16, 2023, pages 10T:1-107:4. ACM, 2023.

[138] Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions
af the Association for Computational Linguistics, 11:635-651, 2023.

[139] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu
Wang, and Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffu-
sion models. In Proceedings of the 40th International Conference on Machine Learn-
ing, pages 21450-21474. PMLR, 2023.

[140] Wei Liu, Meng Li, Yuchen Zhang, and Enhong Chen. Knowsite: Knowledge-driven
site selection for urban retail expansion. In Proceedings of the 51st ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, 2023.

[141] Yongyi Liu, Yunfan Kang, Ahmed Mahmood, and Amr Magdy. Scalable evalua-
tion of local k-function for radius-accurate hotspot detection in spatial networks. In
Proceedings of the 31st ACM International Conference on Advances in Geographic
Information Systems, SIGSPATTAL 23, 2023.

[142] Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach to xml parsing. In Pro-
ceedings of the Tth IEEE/ACM International Conference on Grid Computing, GRID
06, page 223-230, USA, 2006. IEEE Computer Society.

[143] Minbo Ma, Peng Xie, Fei Teng, Bin Wang, Shenggong Ji, Junbo Zhang, and Tian-
rui Li. HiSTGNN: Hierarchical spatio-temporal graph neural network for weather
forecasting. Inf. Sci., 648(C), 2023.

[144] Ahmed R. Mahmood and Walid G. Aref. Query processing techniques for big spatial-
keyword data. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD, pages 1777-1782. ACM, 2017.

[145] Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao
Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, Chris Cundy, Ziyuan Li. Rui
Zhu, and Ni Lao. On the opportunities and challenges of foundation models for geoai
(vision paper). ACM Trans. Spatial Algorithms Syst., 10(2), 2024.

230

[146] Gengchen Mai, Krzysztof Janowicz, Yingjie Hu, Song Gao, Bo Yan, Rui Zhu, Ling
Cai, and Ni Lao. A review of location encoding for geoai: methods and applications.
International Journal of Geographical Information Science, 36(4):639-673, 2022.

[147] Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-
scale representation learning for spatial feature distributions using grid cells. CoRR,
abs/2003.00824, 2020.

[148] Gengchen Mai, Krzysztof Janowicz, Rui Zhu, Ling Cai, and Ni Lao. Geographic
Question Answering: Challenges, Uniqueness, Classification, and Future Directions,
May 2021. arXiv:2105.09392 [cs].

[149] Gengchen Mai, Chiyu Jiang, Weiwei Sun, Rui Zhu, Yao Xuan, Ling Cai, Krzysztof
Janowicz, Stefano Ermon, and Ni Lao. Towards general-purpose representation learn-
ing of polygonal geometries. Gesinformatica, 27(2):280-340, 2022.

[150] Majid Saeedan, Muhammad Shihab Rashid, Ahmed Eldawy, and Vagelis Hristidis.
GS-QA, March 2025.

[151] Yuning Mao, Yichong Xu Li, Bo Pang, William Yang Wang, et al. End-to-end beam
retrieval for multi-hop question answering. In Proceedings of the 2024 Conference
af the North American Chapter of the Association for Computational Linguistics
(NAACL), 2024.

[152] Sergey Melnik et al. Dremel: Interactive analysis of web-scale datasets. PVLDB,
3(1):330-330, 2010.

[153] Matias Mendieta, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. Towards geospa-
tial foundation models via continual pretraining. 2023.

[154] Xiangrui Meng et al. MIllib: Machine learning in apache spark. The Journal of
Machine Learning Research, 17(1):1235-1241, 2016.

[155] Matthew J. Menne, Imke Durre, Russell S. Vose, Byron E. Gleason, and Tamara G.
Houston. An Overview of the Global Historical Climatology Network-Daily Database.
Journal of Atmospheric and Oceanic Technology, 29(7):897-910, July 2012. Publisher:
American Meteorological Society Section: Journal of Atmospheric and Oceanic Tech-

nology.

[156] Microsoft. Computer generated building footprints in all 50 us states., 2020. Retrieved
from UCR-STAR https://star.cs.ucr.edu/?MSBuildingskd.

[157] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. A Survey
of Clustering With Deep Learning: From the Perspective of Network Architecture.
IEEE Access, 6:39501-39514, 2018.

[158] Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang Ning, and Parisa Kordjmashidi.
Spartga:: A textual question answering benchmark for spatial reasoning. arXiv
preprint arXiv:2104.05832, 2021.

231

https://star.cs.ucr.edu/?MSBuildings&d

[159] Sobhan Moosavi, Mohammad Hossein Samavatian, Srinivasan Parthasarathy, Radu
Teodorescu, and Rajiv Ramnath. Accident risk prediction based on heterogeneous
sparse data: New dataset and insights. In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL "19, page 33-42, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[160] Ingo Miiller et al. Adaptive string dictionary compression in in-memory column-store
database systems. In EDBT, volume 14, pages 2832094, 2014.

[161] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Aro-
cena. Data lake management: challenges and opportunities. Proc. VLDB Endow.,
12(12):1986-1989, August 2019.

[162] Enkhbold Nyamsuren, Haiqi Xu, Eric J. Top, Simon Scheider, and Niels Steenbergen.
Semantic complexity of geographic questions - A comparison in terms of conceptual
transformations of answers. AGILE: GIScience Series, 4:1-10, June 2023. Publisher:
Copernicus GmbH.

[163] Map features - OpenStreetMap Wiki, 2024.

[164] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Filter before you
parse: Faster analytics on raw data with sparser. Proceedings of the VLDE Endow-
ment, 11(11):1576-1589, 2018.

[165] Christina Pavlopoulou, E Preston Carman Jr, Till Westmann, Michael J Carey, and
Vassilis J Tsotras. A parallel and scalable processor for json data. In EDET, pages
5T6-587T, 2018.

[166] Tuomas Pelkonen et al. Gorilla: A fast, scalable, in-memory time series database.
PVLDB, 8(12):1816-1827, 2015.

[167] Marcin Przymus and Piotr Szymanski. Map diffusion - text promptable map gen-
eration diffusion model. In Proceedings of the 1st ACM SIGSPATIAL International
Workshop on Advances in Urban-AI UrbanAl '23, page 32-41, New York, NY, USA,
2023. Association for Computing Machinery.

[168] D. Punjani, K. Singh, A. Both, M. Koubarakis, I. Angelidis, K. Bereta, T. Beris,
D. Bilidas, T. loannidis, N. Karalis, C. Lange, D. Pantazi, C. Papaloukas, and G. Sta-
moulis. Template-Based QQuestion Answering over Linked Geospatial Data. In Proceed-
ings of the 12th Workshop on Geographic Information Retrieval, pages 1-10, Seattle
WA USA, November 2018. ACM.

[169] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: deep hierarchical
feature learning on point sets in a metric space. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS'17, page 5105-5114, Red
Hook, NY, USA, 2017. Curran Associates Inc.

232

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Yujia Qiu, Xuehai Wu, Yulong Gao, Qiongkai Wu, Bin Zhang, and Baoxun Hu. Multi-
hop question answering: Challenges and methods. arXiv preprint arXiv:2204.09140,
2022,

Alec Radford. Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural
language supervision. In International Conference on Machine Learning, volume
abs/2103.00020, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hier-
archical text-conditional image generation with clip latents, 2022,

Jinmeng Rao, Song Gao, Gengchen Mai, and Krzysztof Janowicz. Building privacy-
preserving and secure geospatial artificial intelligence foundation models. In Proceed-
ings of the 31st ACM International Conference on Adveances in Geographic Informa-
tion Systems (SIGSPATIAL °23), pages 1-4, 2023.

P. Ratanaworabhan, Jian Ke, and M. Burtscher. Fast lossless compression of scientific
floating-point data. In DCC, pages 133-142, 2006.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe
Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-
level google-proof qdza benchmark. In First Conference on Language Modeling, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In 18th Int.l Conf. on Medical Image Computing
and Computer-Assisted Intervention, MICCAI 2015, pages 234-241, 2015.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 410420, 2007.

Majid Saeedan and Ahmed Eldawy. Spatial parquet: A column file format for geospa-
tial data lakes [extended version|, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Den-
ton, Seyed Kamyar Seyved Ghasemipour, Burcu Karagol Ayan, 5. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad
MNorouzi. Photorealistic text-to-image diffusion models with deep language under-
standing, 2022.

Srikumar Sastry, Subash Khanal, Aayush Dhakal, and Nathan Jacobs. GeoSynth:
Contextually- Aware High-Resolution Satellite Image Synthesis . In 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 460470, Los Alamitos, CA, USA, June 2024. IEEE Computer Society.

233

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

Christopher Scarpone, Sebastian T. Brinkmann, Tim Grofle, Daniel Sonnenwald, Mar-
tin Fuchs, and Blake Byron Walker. A multimethod approach for county-scale geospa-
tial analysis of emerging infectious diseases: a cross-sectional case study of COVID-19
incidence in Germany. International Journal of Health Geographics, 19(1):32, 2020.

Filippo Schiavio, Daniele Bonetta, and Walter Binder. Dynamic speculative opti-
mizations for sql compilation in apache spark. Proceedings of the VLDB Endowment,
13(5):754-T67, 2020.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and
Roozbeh Mottaghi. A-OKVQA: A benchmark for visual question answering using
world knowledge. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 641-657, 2022.

Juan Sequeda, Dean Allemang, and Bryon Jacob. A benchmark to understand the
role of knowledge graphs on large language model’s accuracy for question answering
on enterprise sql databases. In Proceedings of the Tth Joint Workshop on Graph
Data Management Erperiences & Systems (GRADES) and Network Data Analytics
(NDA), GRADES-NDA 24, New York, NY, USA, 2024. Association for Computing
Machinery.

Tong Shen, Yang Li, and José M. F. Moura. Forecasting COVID-19 dynamics: Clus-
tering, generalized spatiotemporal attention, and impacts of mobility and geographic
proximity. In 3%th IEEE International Conference on Data Engineering, ICDE, pages
2892-2004. IEEE, 2023.

Jia Shi. Column partition and permutation for run length encoding in columnar
databases. In SIGMOD, page 2873-2874. Association for Computing Machinery, 2020.

N Shobha and T. Asha. Monitoring weather based meteorological data: Clustering
approach for analysis. In 2007 Int. Conf. on Innovative Mechanisms for Industry
Applications (ICIMIA), pages 75-81, 2017.

Maria Despoina Siampou. Jialiang Li, John Krumm, Cyrus Shahabi, and Hua Lu.
Poly2vec: Polymorphic encoding of geospatial objects for spatial reasoning with deep
neural networks, 2024,

Maria Despoina Siampou. Jialiang Li, John Krumm, Cyrus Shahabi, and Hua Lu.
Poly2vec: Polymorphic fourier-based encoding of geospatial objects for geoai applica-
tions, 2025.

Amanpreet Singh, Yang Song, Jacob Menick, Quoc Le, Chen-Yu Tan, Dhruv Maha-
jan, Ting Xu, Zongze Wang, Shiry Ginosar, Han Wang, et al. Make-a-video: Text-
to-video generation without text-video data. arXiv preprint arXiv:2200.14792, 2022,

Samriddhi Singla, Yaming Zhang, and Ahmed Eldawy. OSMX: spark-based geospatial
data extractor from OpenStreetMap. In Proceedings of the 30th International Confer-

ence on Advances in Geographic Information Systems, pages 1-4, Seattle Washington,
November 2022. ACM.

234

[192]

[193]

[194]

[195]

[196]

[197]

[108]

[199]

[200]

[201]

[202]

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics, 2015.

Adam J. Stewart, Caleb Robinson, Isaac A. Corley, Anthony Ortiz, Juan M. Lavista
Ferres, and Arindam Banerjee. Torchgeo: deep learning with geospatial data. In
Proceedings of the 30th Int. Conf. on Advances in Geographic Information Systems,
SIGSPATTAL '22, 2022.

Michael Stonebraker et al. C-store: A column-oriented DBMS. In VLDB, pages
553-564, 2005.

Christian Szegedy, Wei Liu, Yangqging Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1-9. IEEE, 2015.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering com-
plex questions. In Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pages 641-651, 2018.

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai,
Gabriel [lharco, Hannaneh Hajishirzi. and Jonathan Berant. Multimodalga: Complex
question answering over text, tables and images, 2021.

Wenwu Tang, Wenpeng Feng, and Meijuan Jia. Massively parallel spatial point pat-
tern analysis: Ripley’s K function accelerated using graphics processing units. Inter-
national Journal of Geographical Information Science, 29(3):412-439, 2015.

Ran Tao, Jean-Claude Thill, and Ikuho Yamada. Detecting Clustering Scales with
the Incremental K-Function: Comparison Tests on Actual and Simulated Geospatial
Datasets. In Vasily Popovich, Christophe Claramunt, Manfred Schrenk, Kyrill Ko-
rolenko, and Jérome Gensel, editors, Information Fusion and Geographic Information
Systems (IFEGIS’ 2015): Deep Virtualization for Mobile GIS, pages 93-107. 2015.

David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Murtaza
Choudhury, and A. Kai QQin. A survey on modern deep neural network for traf
fic prediction: Trends, methods and challenges (extended abstract). In 59th IEEE
International Conference on Data Engineering, ICDE, pages 3795-3796. IEEE, 2023.

Jilong Tian, Jiangjiang Wu, Hao Chen, and Mengyu Ma. Mapgen-diff: An end-to-end
remote sensing image to map generator via denoising diffusion bridge model. Hemote
Sensing, 16(19), 2024.

Kai Tian, Shuigeng Zhou, and Jihong Guan. DeepCluster: A General Clustering
Framework Based on Deep Learning. In Machine Learning and Knowledge Discovery
in Databases, pages 809-825, 2017.

235

[203] Aysim Toker, Marvin Eisenberger, Daniel Cremers, and Laura Leal-Taixe. Sat-
Synth: Augmenting Image-Mask Pairs Through Diffusion Models for Aerial Semantic
Segmentation . In 2024 IEEE/CVF Conference on Computer Vision and Pattern
Hecognition (CVPR), pages 27685-27695, Los Alamitos, CA, USA, June 2024. [EEE
Computer Society.

[204] Harsh Trivedi, Matt Gardner, Wen-tau Yih, Tom Kwiatkowski, and Oyvind Tafjord.
Musique: Multi-hop questions via single-hop question composition. Transactions af
the Association for Computational Linguistics (TACL), 10:648-662, 2022.

[205] Aristeidis Tsaris, Philipe Ambrozio Dias, Abhishek Potnis, Junqgi Yin, Feiyi Wang,
and Dalton Lunga. Pretraining Billion-scale Geospatial Foundational Models on Fron-
tier, 2024.

[206] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and [llia Polosukhin. Attention is all you need. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems,
NIPS'17, page 6000-6010, 2017.

[207] Alessandro Venerandi, Hal Mellen, Ombretta Romice, and Sergio Porta. Walkability
indices—the state of the art and future directions: A systematic review. Sustainability,
16(16), 2024.

[208] Deepak Vohra. Apache Parguet, pages 325-335. Apress, Berkeley, CA, 2016.

[209] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. A learning-based frame-
work for spatial join processing: estimation, optimization and tuning. The VLDE
Journal, 33(4):1155-1177, 2024.

[210] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldway. Using deep learning
for big spatial data partitioning. ACM Trans. Spatial Algorithms Syst., T(1), 2020.

[211] Tin Vu and Ahmed Eldawy. R*-Grove: Balanced Spatial Partitioning for Large-Scale
Datasets. August 2020.

[212] Tin Vu, Ahmed Eldawy, Vagelis Hristidis, and Vassilis Tsotras. Incremental parti-
tioning for efficient spatial data analytics. Proc. VLDB Endow., 15(3):713-726, 2021.

[213] Tin Vu, Sara Migliorini, Ahmed Eldawy, and Alberto Bulussi. Spatial Data Gener-
ators. In 1st ACM SIGSPATIAL International Workshop on Spatial Gems (Spatial-
Gems 2019), pages 13-24. ACM, 2019.

[214] Fusheng Wang, Rubao Lee, Dejun Teng, Xiaodong Zhang, and Joel Saltz. High-
performance spatial data analytics: Systematic rd for scale-out and scale-up solutions
from the past to now. Proc. VLDB Endow., 17(12):4507-4520, 2024.

[215] Jianguo Wang, Eric Hanson, Guoliang Li, Yannis Papakonstantinou, Harsha
Simhadri, and Charles Xie. Vector databases: What’s really new and what's next?
(vldb 2024 panel). Proc. VLDEB Endow., 17(12):4505-4506, 2024.

236

[216] Yuan Wang, Zhipeng Gui, Huayi Wu, Dehua Peng, Jinghang Wu, and Zousen Cui.
Optimizing and accelerating space—time Ripley 's K function based on Apache Spark
for distributed spatiotemporal point pattern analysis. Future Generation Computer
Systems, 105:96—118, 2020.

[217] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for
multi-hop reading comprehension across documents. Transactions of the Association
for Computational Linguistics (TACL), 6:287-302, 2018.

[218] Randall T. Whitman, Bryan G. Marsh, Michael B. Park, and Erik G. Hoel. Dis-
tributed spatial and spatio-temporal join on apache spark. ACM Trans. Spatial Al-
gorithms Syst., 5(1), 2019.

[219] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli
Ouyang, Tong He, and Hengshuang Zhao. Point transformer v3: Simpler, faster,
stronger. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 48404851, 2024.

[220] Yiqun Xie, Zhaonan Wang, Gengchen Mai, Yanhua Li, Xiaowei Jia, Song Gao, and
Shaowen Wang. Geo-foundation models: Reality, gaps and opportunities (vision pa-
per). In Proceedings of the 31st ACM International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL °23), pages 1-4, 2023.

[221] Yan Xu, Huicheng Zheng, Yu Wang, and Yong Yu. Spatial-temporal transformer net-
works for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 1234-1241, 2020.

[222] Bo Yan, Krzysztof Janowicz, Gengchen Mai, and Song Gao. From itdl to place2vec:
Reasoning about place type similarity and relatedness by learning embeddings from
augmented spatial contexts. In Proceedings of the 25th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, SIGSPATIAL
17, 2017.

[223] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wen-
tao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive
survey of methods and applications, 2024.

[224] Wenzhe Yang, Sheng Wang, Yuan Sun, and Zhiyong Peng. Fast dataset search with
earth mover’s distance. Proc. VLDB Endow., 15(11):2517-2529, 2022.

[225] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. Hotpotga: A dataset for diverse, ex-

plainable multi-hop question answering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2018.

[226] Milo Yip. Native JSON Benchmark, 2021. Available at https://github. com/
miloyip/nativejson-benchmark.

237

https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark

[227] Jia Yu, Jinxuan Wu, and Mchamed Sarwat. Geospark: A cluster computing frame-
work for processing large-scale spatial data. In SIGSPATIAL, pages 1-4, 2015.

[228] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-
BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling . In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 19291-19300, Los Alamitos, CA, USA, June 2022. IEEE Computer Society.

[220] Matei Zaharia et al. Fast and interactive analytics over hadoop data with spark.
Useniz Login, 37(4):45-51, 2012.

[230] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q). Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. In Imternational Conference on
Learning Representations, 2020.

[231] Xin Zhang and Ahmed Eldawy. Spatial query optimization with learning. Proc.
VLDB Endow., 17(12):4245-4248, 2024.

[232] Yaming Zhang and Ahmed Eldawy. Openstreetmap all map points, 2021. Retrieved
from UCR-STAR https://star.cs.ucr.edu/%osm21/all_nodeskd.

[233] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point trans-
former. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 16239-16248, 2021.

[234] Kai Zhao et al. Optimizing error-bounded lossy compression for scientific data by
dynamic spline interpolation. In ICDE, pages 1643-1654, 2021.

[235] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based
on pretrained language models: A survey. ACM Trans. Inf. Syst., 42(4), February
2024.

[236] Xujun Zhao, Jifu Zhang, and Xiao Qin. k nn-dp: Handling data skewness in knn joins
using mapreduce. IEEE Transactions on Parallel and Distributed Systems, 29(3):600—
613, 2018.

[237] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured
queries from natural language using reinforcement learning. CoRR, abs/1709.00103,
2017.

[238] Yue Zhou, Litong Feng, Yiping Ke, Xue Jiang, Junchi Yan, Xue Yang, and Wayne
Zhang. Towards vision-language geo-foundation model: A survey, 2024.

[239] Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James J.Q). Yu.
Difftraj: generating gps trajectory with diffusion probabilistic model. In Proceedings
af the 37th International Conference on Neural Information Processing Systems, NIPS
23, Red Hook, NY, USA, 2023. Curran Associates Inc.

238

https://star.cs.ucr.edu/?osm21/all_nodes&d

	List of Figures
	List of Tables
	Introduction
	Spatial Parquet: A Column File Format for Geospatial Data Lakes
	Introduction
	The Structure
	Point (type=1)
	LineString (type=2)
	Polygon (type=3)
	MultiPoint (type=4)
	MultiLineString (type=5)
	MultiPolygon (type=6)
	GeometryCollection

	The Encoding
	Geometry type encoding
	Geometry coordinate encoding

	The Indexing
	Experiments
	Comparing to Existing Spatial Formats
	Effect of Sorting on Sample Distribution
	Evaluating Possible Configurations in SpatialParquet
	Column Statistics and Filtering

	Related Work
	Conclusion
	Preliminaries
	Geometry Data Types
	Parquet
	IEEE Floating Point Format

	Algorithm Pseudo-Codes

	dsJSON: A Distributed SQL JSON Processor
	Introduction
	Preliminaries
	Projection Tree
	JSONPath Query Processor
	Processing a single JSONPath query
	Merging multiple JSONPath queries
	Defining object filters

	Partitioning
	Efficient with speculation
	Exact with a full file pass

	Schema Inference
	Projection Tree Optimizer
	Row Parser
	Projection Tree Operations
	Error Handling

	Experiments
	Experimental Setup
	Scalability of Distributed Parsing
	SQL Integration
	Partitioning and Schema Inference
	Detailed Use Case

	Related work
	Conclusion

	Towards Learned Geospatial Data Analysis & Exploration
	Introduction
	Geospatial Data Representation
	Preliminaries
	GeoImg: Image-based Representation
	GeoGraph: Graph-based Representation
	GeoVec: Vector-based Representation

	Geospatial Problems
	Spatial Data Synopsis
	Spatial Clustering
	Clustering
	Selectivity Estimation
	Walkability Estimation

	Experiments
	Setup
	Data Synopsis
	Clustering
	Selectivity Estimation
	Walkability Estimation
	Discussion

	Related Work
	Conclusion

	GS-QA: A Benchmark for Geospatial Question Answering
	Introduction
	Related Work
	GS-QA Benchmark Creation
	Reference Database
	Question Templates
	Open Retrieval
	Question Generation
	Quality Checks
	Keeping GS-QA Up-to-date

	Baselines
	Bare LLM Baselines
	Text2SQL Baselines
	Retrieval Augmented Generation Baselines

	Experiments
	Evaluation Strategy
	Evaluation Results
	Discussion

	Conclusion and Future Work

	GeoGen I: Towards General Geospatial Point Data Generation from Text
	Introduction
	Overview of GeoGen I
	Data Preparation
	Input Data Types
	Preparation Process

	Geospatial Data Embeddings
	Contrastive Learning
	Text Encoder
	Geospatial Encoder
	Potential Applications

	Geospatial Data Generator
	Model architecture and training
	Histogram to geospatial points

	Experiments
	Setup
	Qualitative evaluation
	Quantitative evaluation
	Evaluation of encoder
	Discussion

	Related Work
	Conclusion

	Conclusions
	Bibliography

