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Abstract

This study proposes a data-driven framework for collecting content and internal structure
validity evidence from text-based assessments using Natural Language Processing and
Structural Topic Model (STM). A case study of teachers’ written responses to an interview
protocol illustrates the framework’s application. Results show that STM provides a
promising approach for generating quantitative evidence from textual assessment by
identifying item-construct alignments and uncovering potential sources of construct
irrelevant variance. This framework offers practical and data-based inside that support the
design and refinement of text-based instruments in educational settings.
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Enhancing Interview Protocols: Topic Modeling as a Content Validity

Technique
1. Introduction

Constructed-response (CR) items, such as essays, short-response answers, and
interview questions, have shown significant utility in quantitative and qualitative research.
In quantitative studies, answers to CR items elicit higher-order thinking (Kuechler &
Simkin, 2010), facilitate divergent thinking (Guilford, |1957), reduce random guessing
(Haladyna & Rodriguez, 2013), and provide a method to evaluate examinees’ ability to
organize ideas coherently (Kuechler & Simkin, 2010). In qualitative studies, responses in
interview protocols help to explore and understand interviewers’ beliefs and perspectives
in-depth towards a certain phenomenon, enabling rich interpretations of how interviewers
assign meaning to their social experiences (Dunwoodie, Macaulay, & Newman, [2023).

An important aspect when measuring latent variables (e.g., abilities, beliefs, etc.) is
to ensure that the items or questions reflect the intended construct and that the
interpretations obtained from tests, assessments, or interviews (hereafter called
instruments) are valid for a specific purpose (Zumbo, 2006). Thus, the information derived
from items depends on the quality of the instrument and the validity evidence supporting
its use (S. Sireci & Benitez, 2023). For instance, a key question is whether items on an 1Q
test genuinely reflect a person’s intelligence. As such, validity must be carefully considered
by both assessment developers and stakeholders who rely on these assessments within their
specific contexts (Phakiti & Isaacs, 2021).

In general, we provide evidence of content validity using ratings from expert judges
and construct validity using methods such as factor analysis, structural equation model
(SEM), and item response theory (IRT'), which rely on numerical scores. However, CR
items contain rich information that can be lost when transformed into numerical
representation. Similarly, interview data is typically analyzed with qualitative techniques

such as content analysis, which uncovers patterns that help understand a social group. Yet,



due to its unstructured nature, interview data may introduce unanticipated content,
making it difficulty to analyze with traditional quantitative methods.

New advances in artificial intelligence have provided methods for analyzing textual
data quantitatively while maintaining the meaning of words. For example, topic models
have been applied to analyze students’ thinking and reasoning in answers to CR items (for
each item). However, no information is available yet about how to apply traditional
validity evidence techniques when using NLP methods.

This article proposes using STM as a data-driven approach to provide validity
evidence of test content and internal structure, offering a more automatic and interpretable

method for assessing validity in text-based assessments.
2. Validity Evidence with Traditional Methods

Assessing the degree to which each item in a test reflects the intended construct is a
critical aspect of measurement, as the information derived from test items depends on the
quality of the test and the validity evidence supporting its use (S. Sireci & Benitez, |2023).
Validity is a unitary concept that reflects the extent to which the evidence and theory
support the test’s score interpretations (S. G. Sireci, [1998). It is not an inherent property
of a test but rather an ongoing process of collecting evidence.

The Standards from American Educational Research Association (AERA),
American Psychological Association (APA) and National Council on Measurement in
Education (NCME) outline five sources of validity: (1) test content, (2) response process,
(3) internal structure, (4) relationship to other variables, and (5) testing consequences
(American Educational Research Association & National Council on Measurement in
Education, 2014). Among these, validity evidence based on test content, also called content
validity, is a critical measurement aspect. It evaluates the degree to which each item in a
test reflects the intended construct (S. G. Sireci, 1998).

Traditionally, content validity evidence is provided by expert judges who evaluate

how well each item is representative and comprehensive to measure the intended construct.



In other words, the degree to which each item is relevant to the construct (Almeida &
Xexeo, 2019) and the degree to which the test covers the full scope of the intended
construct (S. Sireci & Benitez, 2023). To this end, the panel of experts provides both
quantitative and qualitative evaluations, considering whether the items align with the
study purpose, measure the intended content, and are clearly formulated. Their evaluations
are then analyzed using quantitative techniques to ensure agreement among the experts
(Spoto, Nucci, Prunetti, & Vicovaro, 2023).

In qualitative research, particularly when using interviews, validity is conceptualized
differently. While test items in quantitative assessments are evaluated for their relevance
and comprehensiveness, interview questions are assessed based on their ability to elicit
meaningful and in-depth responses that align with the study purpose. Applying the same
procedure from quantitative research to obtain content validity evidence presents several
challenges. Interview questions are often more flexible, allowing variations in wording or
follow-up questions to clarify participants’ responses. Moreover, the open-ended nature of
interview responses can lead to the measurement of unanticipated content that traditional
quantitative methods might fail to capture. This flexibility and unstructured response data
make traditional quantitative methods less effective in evaluating content validity in this

setting (Torlig, Junior, Fujihara, Demo, & Montezano, 2022).
3. Topic Models

Before explaining how STM can be used as a data-driven method to obtain validity
evidence, the following section provides an overview of topic models, starting with the
simplest model, Latent Dirichlet Allocation, and proceeding to the development of STM.

Topic models are machine learning techniques in Natural Language Processing
(NLP) designed to identify, categorize, and summarize large collections of textual
documents into a latent topic structure (Blei, |2012). In general, topic models have been
applied to individual items to retrieve additional information from CR items or, in the case

of interview data, to summarize interviewees’ beliefs in each question. For instance,



researchers have applied topic models to analyze CR items in educational assessments,
finding that the topics identified by the model reflected key ideas emphasized in the expert
scoring guidelines (Choi et al.; [2019). Similarly, they have been used to examine
open-ended responses about the education system, with the resulting topics capturing
commonly held concerns among students, teachers, and parents (Cifuentes & Olartel [2023).
In higher education, topic models have also been used to summarize themes in student
course evaluations, demonstrating their utility for large-scale interpretation of feedback
(Sun & Yan, 2023).

Unlike traditional quantitative methods, which assume examinees’ scores on test
items (categorical, ordinal, or continuous) as the observed variables, or qualitative
methods, which treat interviewees’ textual responses as the observed units, topic models
assume words within a document as the observed variables. Specifically, topic models
assume a corpus M is a collection of D documents. Each document d consists of a
sequence of Ny words, where each word wg,, in a document d at position n is an element of
a finite vocabulary of size V' (wq,, € {1,2,...,V}).

Some of the most widely used topic models in education and social sciences are the
Latent Dirichlet Allocation (LDA; [Blei, Ng, & Jordan, 2003) and STM (Roberts et al.,
2014). Both are unsupervised topic models, meaning the latent topic structure is unknown
beforehand, similar in nature to an exploratory factor analysis (EFA). For example, both
evaluate multiple candidate models with different numbers of topics or factors, and the
best-fitted model is selected for interpretation. However, although topic models share
similarities with EFA, they also have distinct differences. For instance, topic models
assume that both observed and latent variables are categorical and belong to a family of
probabilistic models known as mixed membership models. This implies that documents
can be associated with multiple topics, such that a document may contain words related to
more than one topic. Additionally, topic models assume that examinees’ answers generate

latent topics, and these influence the observed words. In contrast, EFA assumes that the



item responses are indicators of the underlying factor structure.

The simplest unsupervised topic model is LDA, which estimates the number and
content of topics based only on the words associated with each document. On the contrary,
STM generalizes LDA by including additional information to estimate their effect in the
prevalence and content of topics (Abraham, Mardones-Segovia, Sarles-Whittlesey, &

Cohen, [2024). Each of them is detailed below.
2.1 Latent Dirichlet Allocation

LDA is a generative probabilistic model that estimates the probability distribution
over words (observed variables) and topics (latent variables). It models how each document
d is generated as a mixture of topics, with each topic k represented as a distribution over
words (Blei et al.| |2003).

More formally, LDA is defined by three main parameters. Each topic k € {1, ..., K'}
is represented by a word-topic distribution denoted as or = (k.15 ey Gr,v], which indicates
the probability of words occurring in each k£ topic. These distributions form a K x V
matrix, where each ¢y, entry denotes the probability of the vth word belonging to the kth
topic. Each document d is represented by a document-topic distribution (also referred to as
topic proportion), denoted as 0, = (041, -, 04", which represents the probability
distribution over topics for document d. These distributions form a D x K matrix, where
each entry 6, indicates the probability that the dth document is associated with the
content of the kth topic. Since ¢, and 6, are probability distributions, they satisfy the
following constrained: S>V_ ¢, =1, Vk € {1,..., K} and S5 04 = 1,Vd € {1,...,D}.
Finally, the topic assignments, denoted as zq,,, indicate the estimated topic membership of

each word n within a document d.
2.2 Structural Topic Model

The Structural Topic Model (Roberts et al., [2014) generalizes LDA by incorporating
document-level information, such as author characteristics, time, or other contextual

information, as covariates in the topic modeling process. Rather than assuming fixed



distributions of topics within documents and words within topics, STM allows these
distributions to vary based on these external variables. This flexibility enables researchers
to investigate how covariates influence the prevalence of topics across documents (topical
prevalence) and the language used within topics (topical content), offering detailed
information regarding the relationship between textual responses and contextual variables.

Formally, STM retains the main LDA parameters, where g is a vector representing
the distribution of topics in each document d, and qg represents the word-topic distributions.
However, instead of assuming that both are drawn from a Dirichlet distribution with
hyperparameters a and [, respectively, STM models them as functions of the covariates
(Roberts, Stewart, & Tingley, 2019). Specifically, 6 is modeled through a logistic
regression, where [ denotes the regression coefficient capturing the effect of covariates on
topic proportions, and Y represents the covariance matrix showing the relationship among
topics. In contrast, (E is modeled using an additive approach, where the word distributions
are adjusted based on the external variable to account for variations in topical content.

The generative process in STM assumes that, for each word w in a document d, a
topic assignment z is drawn from the document-topic distribution 5, such that
z ~ Multinomial (5) On the contrary, the word-topic distribution is modeled as
b exp(m + k), with m being the baseline word frequency and x reflecting the
topic-specific variations. These modeling variations enable (1) topics to correlate, (2) each
examinee’s answer to have a unique distribution over topics, and (3) the content to vary
based on covariates (Roberts et al., [2014).

As previously stated, topic models have been used in formative assessments with
mixed-format or CR tests, surveys containing CR items, and interview data to analyze
examinees’ written responses at the document level (e.g., |Cardozo-Gaibisso, Kim, Buxton,
& Cohen| 2019). This allows researchers to examine the examinees’ reasoning and thought
processes for each item, with and without considering the influence of external variables.

The STM versatility allows us to extend its applicability beyond individual items or



documents, enabling a test-level approach where examinees’ responses to all items are
analyzed jointly. By incorporating item identifications as covariates, we can evaluate how
individual items influence the distribution of topics across responses. This approach
provides a novel framework for exploring content and construct validity for written

response items, as described in the following section.
4. STM as a Data-Driven Validity Framework

This section introduces a novel methodological framework to provide validity
evidence regarding test content and internal structure for assessments composed of written
responses to CR items or interview data. Each approach will be explained below.

Compared to traditional strategies to gather validity evidence, which assume that
the constructs measured by a test are predetermined, this data-driven approach can reveal
unanticipated content that conventional quantitative methods might fail to capture,
identifying irrelevant or unintended constructs that could introduce bias.

By incorporating item identifications as covariates for the topic proportions, STM
allows us to achieve four key objectives. First, it identifies latent topics that summarize
examinees’ written answers to test questions. This allows for exploring latent topics
without assuming the underlying constructs beforehand. Second, it estimates how well a
test is both relevant and comprehensive for its intended purpose. The topic prevalence
results indicate the degree to which each item elicits responses aligned with each topic
(Almanasreh, Moles, & Chen, [2019), reflecting whether the item responses are pertinent to
the measured construct. Third, it facilitates evaluating whether questions comprehensively
cover all intended topics or if specific areas are underrepresented, indicating content gaps.
Finally, this approach can also detect instances where responses reflect unintended
constructs, indicating potential construct-irrelevant variance. Together, STM offers a
comprehensive framework for gathering content validity evidence.

Beyond evaluating content validity, STM’s regression framework also facilitates

preliminary assessment of construct validity. Specifically, the regression coefficients



associated with each item reflect the strength between individual items and the latent
topic. In a Bayesian framework, the posterior mean of the regression coefficients estimates
the relationship between item and topic, while its corresponding credible interval measures
the uncertainty around this estimate. These results will provide insight into whether items
adequately represent the intended construct. Conceptually, the posterior mean is similar to
factor loadings in an exploratory factor analysis, which measure the extent to which an
item aligns with an underlying construct.

Two aspects influence how the content and latent structure of responses are
interpreted: (1) item complexity and (2) construct relationship. Items can be classified as
either simple or complex depending on the number of latent variables they are intended to
measure. Simple items are designed to elicit responses aligned with a single content,
whereas complex items can simultaneously elicit answers from more than one content.
Likewise, constructs may be independent, correlated, or hierarchically related, depending
on the nature of their conceptual relationships. Our framework allows for exploring item
complexity through the STM’s mixed-membership structure and examining construction
relationship through a posterior topic correlation analysis. However, STM does not directly
support exploring hierarchical contents in its current form. See section 4.1.6. for detailed
information.

The STM as a data-driven approach includes five main tasks: (1) Data
preprocessing, (2) STM configuration, (3) selecting the number of topics, (4) interpreting
and labeling topics, and (6) providing data-driven validity evidence. Each of them is

explained below.
4.1.1. Data Preprocessing

STM takes as input a Document-Term Matrix denoted as DT M, with dimensions
D x V. Fach DT My, entry indicates the frequency of word v in document d. Within the
NLP framework, this corresponds to the bag-of-word feature extraction method, where the

sequence or order of words is disregarded, and only word frequency is considered in the



topic modeling process (Jurafsky & Martin, 2023).

Different NLP techniques are applied to pre-process examinees’ written responses
and convert them into a DT M . This process includes converting words to lowercase,
correcting misspellings mistakes, removing punctuations and high frequent words that do
not carry relevant information to interpret the results (e.g., ‘the, ‘a‘, ‘of*), normalizing the
words to a common root (e.g., the words ‘jump‘ and ‘jumping‘ portray the same meaning
but in difference tenses), and tokanizing or separating words into meaningful units. After

tokenizing words, these are converted as a DT M.
4.1.2. STM Configuration

The proposed method uses item IDs to evaluate their effect on topic prevalence. To
account for the fact that an examinee may respond to multiple items, examinee ID is also
included as an additional covariate to control for non-independence. In this approach,
covariates are specified only for the topic proportion, meaning that the word-topic
distribution ¢y, is estimated directly from the observed words’ frequencies, similar to the
standard approach used in LDA.

Let j € {1,...,J} denote examinees’ ID and i € {1,...1} represent the item’s ID.
Each document d corresponds to one written response from examinee j to item ¢. In the
STM framework, these categorical variables are internally converted into binary indicator
variables, omitting one reference category to avoid multicollinearity. Accordingly, STM
defines a design matrix X of dimensions D x P, where P = (I + J) — 2 represents the
number of dummy-coded covariates (Roberts et al., 2014).

Given the selected topic structure, the topic proportion vector for each document d
is modeled as: 64 ~ LogisticNormal(X 48,%), where X is a row vector containing the
dummy-coded covariates, 3 is the covariance matrix of topics, and B is the regression
coefficients matrix of dimension P x K, such that each entry (,; reflects the effect of
examinee j and item ¢ on the prevalence of topic k. These effects are in a logit scale,

meaning each S, represents the changes in the log-odds of topic & being discussed in a



document when holding the proportion of the other topics constant.

In this model configuration, the mean vector of the document-topic distribution is
conditioned on both examinee and item IDs. However, as previously stated, examinee IDs
are included only as a control variable to account for the non-independence of responses
from the same examinee. Thus, only the item coefficients are used for validity evidence.

STM includes two main strategies to start the model: the LDA and the Spectral
initialization. The LDA initialization method uses the collapsed Gibbs sampling for Latent
Dirichlet Allocation (LDA) to produce initial topic-word distributions before proceeding
with STM’s variational inference algorithm (Blei et al., [2003). On the contrary, the
Spectral initialization method leverages non-negative matrix factorization of the word
co-occurrence matrix to provide globally consistent initial parameter values, resulting in
more stable and reproducible topic solutions [Roberts et al. (2019).

To our knowledge, no prior study has evaluated the optimal STM configurations in
assessment data. Thereby, this study evaluates the initialization strategies when presenting

a case study in section 5.
4.1.3. Model Selection

After converting examinees’ written responses to a numerical format, we specify the
topic structure and select the best-fitted model. Typically, studies in education run
between 2 and 10 candidate topic models (e.g., Cardozo-Gaibisso et al., 2019) and evaluate
them based on two coherence metrics. Semantic coherence measures the tendency of
high-probability words within a topic to co-occur together, indicating internal consistency
of topics, while exclusivity assesses the degree to which high-probability words in a topic
are exclusive to that topic rather than appearing with high probability across multiple
topics. The best latent topic structure, then, is defined as the model that maximizes both,
semantic coherence and exclusivity (Abraham et al., [2024).

Semantic coherence measures the tendency of high-probability words within a topic

to co-occur together, indicating internal consistency of topics, while exclusivity assesses the



degree to which high-probability words in a topic are exclusive to that topic rather than
appearing with high probability across multiple topics. The optimal model should balance

these two metrics to reach for an optimized results.
4.1.4. Interpreting and Labeling Topics

After selecting the best-fitted model, STM estimates the document-topic and
word-topic distributions. The most probable documents and words within a topic form the
basis for interpreting and labeling the latent topic structure.

Specifically, ChatGPT-40 interprets the content of each topic using the most
representative documents (examinees’ answers) for each topic. These interpretations are
then reviewed by expert judges to evaluate the accuracy of the interpretations. For
instance, consider examinees one, two, and three, whose topic proportions are:

6, = [0.94,0.03,0.03], 6, = [0.02,0.95,0.03], and 65 = [0.01, 0.02, 0.97], respectively. This
information indicates that 94% of the content of examinee one corresponds to topic 1, 95%
of the content of examinee two corresponds to topic 2, and 97% of the content of examinee
three corresponds to topic 3. Accordingly, ChatGPT uses the responses of examinees one,
two, and three to interpret and label topics 1, 2, and 3, respectively. By selecting highly
probable documents for each topic, ChatGPT examines the common words across

responses and provides an initial interpretation to ease the expert judges’ task.
4.1.5. Data-driven Validity Evidence

After fitting the regression model for the selected topic model, two main outputs are
obtained: (1) the posterior mean topic proportion for each item in a given topic and (2) its
95% credible intervals. The first output is used to gather content validity evidence, while
the second supports initial internal structure validity evidence by reflecting the uncertainty

around an item-topic association. Each of them is explained below.
4.1.5.1. Evidence of content validity

For simplicity, the posterior mean topic proportions for each topic across items can

be visualized using bar plots, where the z—axis represents the item ID and the y—axis



shows the posterior mean topic proportions.

The first piece of evidence comes from the number and interpretation of topics
extracted. These topics may align with, differ from, or extend the constructs the
instrument was intended to measure. In theory, a construct’s conceptual definition should
closely resemble its corresponding topic’s definition (American Educational Research
Association & National Council on Measurement in Education, [2014). For example,
suppose the instrument was designed to measure proportional reasoning, fractional
reasoning, and problem solving, but the answers to the test were clustered in only two
topics. In that case, this may indicate that the items did not fully cover the intended
construct. On the contrary, if the responses reflected four topics, it could indicate that the
items elicit unintended constructs, showing a potential source of measurement bias. Expert
judges can be used to evaluate the interpretation of these topics and assess their alignment
with the conceptual definition of the intended construct.

The second piece of evidence comes from identifying the likelihood of each item in
each topic, as estimated by the posterior topic proportion. As noted before, the
interpretation of the item-topic relationship depends on the combination of item

complexity and construct relationship, with four cases:

1. Independent constructs with simple items. When an item is designed to measure a
specific content, the estimated topic proportion for its corresponding topic should be
close to one, and therefore, zero for others. For example, if a simple item elicits
response patterns from more than one topic, it may indicate that the item prompt
was ambiguous or that the item measures unintended content, thereby raising
concerns regarding its quality. Conversely, if the item elicits responses primarily

aligned with a single topic, it provides evidence of its clarity and content alignment.

2. Independent constructs with complex items. For items designed to measure multiple
aspects of a construct, the estimated topic proportion is expected to be more evenly

distributed across the relevant topics. Accordingly, if an item produces answers



related to a mixture of topics with one being more predominant, it may reveal an

imbalance in how those different concepts are being measured.

3. Related constructs with simple items. When an item is designed to measure a single
construct that is conceptually related to another, the topic proportion may show
some overlap, such that the answers to the item predominantly include words related
to one topic. However, if the proportions are more evenly distributed across topics, it

may indicate that the item is measuring additional constructs.

4. Related constructs with complex items. When an item is designed to measure two or
more related constructs, the estimated topic proportion should be balanced across
the topics. However, if the topic proportions are heavily skewed toward one topic, it

may suggest that the item is not capturing the intended constructs equally.

The final piece of evidence comes from the representativeness of items across topics.
In traditional test theory, a concept, skill, or ability requires a sufficient number of items to
measure a given concept accurately. Likewise, each concept should be measured using a
similar number of items of similar quality (S. G. Sireci, [1998). For example, Diagnostic
Classification Models suggest that a test must include between three and five items for
each attribute and a balanced Q-matrix to provide stable parameter estimates (Bradshaw
& Madison, 2016). In the STM framework, we can observe the number of items that load
higher for each topic and assess their representativeness and balance by comparing the
number of items across topics. Likewise, we can observe the topic density by counting the
most predominant documents for each topic. If a topic is less discussed across documents,

it can indicate that the items did not fully capture the intended topic.
4.1.5.2. Evidence of internal structure

Besides using the posterior mean, i.e., the estimated mean topic proportion, a 95%
credible interval can be utilized as a measure of uncertainty around this estimate, offering

evidence of construct validity. In factor analysis research, loadings > 0.7 typically represent



a strong association between an item and a factor (e.g., Tabachnick & Fidell, |2007).
Because of their similarities, this study uses the same cutoff criterion to interpret the
item-topic alignment.

Evidence of construct validity will vary depending on the four cases detailed before:

1. Independent constructs with simple items. When an item is designed to measure a
single construct that is unrelated to others, we expect the posterior topic proportion
to be high (> 0.70) for one topic and close to zero for all others. A narrow, credible
interval (e.g., a range of 0.10 or less) around the dominant topic provides stronger
evidence that the item consistently elicits responses aligned with the intended
construct. If the item shows moderate to high proportions across multiple unrelated
topics, or if the intervals overlap, this may suggest item ambiguity, unintended
construct activation, or poor alignment. Conversely, if an item has a low posterior
mean and narrow interval for a topic it was not designed to measure, this supports

construct validity by showing discriminant evidence.

2. Independent constructs with complex items. When an item is designed to measure
two or more distinct (uncorrelated) constructs, we expect posterior topic proportions
to be moderately distributed across the corresponding topics, each with narrow and
non-overlapping credible intervals. Non-overlapping intervals suggest that the item
certainty elicits words related to each construct. If one topic disproportionately
dominates (e.g., > 0.70), or if the credible intervals overlap substantially, this may
indicate that one construct is underrepresented, the item is imbalanced, or there is

uncertainty in how constructs are elicited.

3. Related constructs with simple items. When an item is designed to measure a single
construct that is conceptually related to others, the posterior topic proportion should
be high for the intended construct. Compared to the other cases, credible intervals

could potentially overlap. However, if topic proportions are more evenly distributed



across topics or the credible intervals for different topics overlap substantially, this
may suggest that the item unintentionally elicits responses aligned with multiple

constructs, weakening construct clarity.

4. Related constructs with complex items. When an item is complex and the constructs
are related, we expect a more evenly distributed topic proportion with overlapping
credible intervals. In this case, the overlapping reflects the integration of concepts.
Conversely, if the answers to the item predominantly elicit words related to one topic
or the intervals do not overlap, it may suggest that the item is not capturing the

shared construct.

As noted before, because our proposed model is conceptually similar to factor
analysis, we can visualize the topic structure by creating a diagram that shows which items
elicit answers related to a topic. In our proposed framework, however, item responses
generate the documents, each of which is a mixture of topics, and these topics are a
mixture of the observed words (item responses — documents — topics — words).

We can visualize the models’ results as a directed acyclic graph (DAG), effectively
showing the relationship between items and topics. In this diagram, items are observed
nodes that elicit the responses related to a topic and topics are latent nodes representing
the concepts or themes that summarize a collection of examinees’ written responses. The
edges, represented by arrows, connect the items to the topic. An item-topic edge denotes
the degree of alignment between an item and topic and is quantified by the posterior topic
proportion. The corresponding credible interval, shown in square brackets, reflect the

uncertainty around the estimate.
5. Case Study
This section includes a case study to illustrate step-by-step the methodological

framework. Because no prior study has evaluated the optimal STM configurations in

assessment data and the number of topics is unknown, this study evaluates STM’s results



by manipulating two factors: (1) initialization strategy and (2) number of candidate

models. Each of them is detailed in sections 5.3 and 5.4.
5.1 Case Background

The proposed framework was applied to a dataset including responses from 16
middle-grade math teachers from New Jersey and Florida. These responses were collected
via a semi-structured interview composed of 11 main questions (or prompts) including 36
sub-questions in total. This interview sought to capture their thinking processes when
solving fraction problems before participating in a professional development (PD)
intervention aimed at expanding their knowledge of fractions and proportional reasoning.
Due to time constraints, each teacher responded to approximately seven questions, thereby
resulting in a corpus of 502 documents, where each document corresponded to a teacher’s
response to specific questions and sub-questions.

The interview protocol aimed to measure four mathematical concepts: (1) Referent
Unit, (2) Invariance, (3) Covariance, and (4) Quantity. Reference Unit refers to the whole
quantity to a fraction or ratio. Invariance is the property that remains unchanged under
certain operations. Covariation shows how two quantities vary with each other. Quantity is
the measurement of objects or phenomena.

Table [1] shows sub-items distribution across themes. A value of 1 indicates that the
sub-question was designed to measure a theme, while zero indicates otherwise. The column
labeled Theme Total represents the number of themes measured by each item. Sub-items
with values greater than 1 in this column are considered complex, whereas those with a
value of 1 are considered simple. The row labeled Item Total shows the total number of
sub-questions associated with each theme. Overall, the distribution of sub-questions across
themes is uneven, with Referent Unit being measured by 28 sub-questions and Covariance
by only two sub-questions. Additionally, 16 of the 36 sub-questions measured more than

one theme, indicating a substantial proportion of complex items.



Table 1

Sub-items by Themes

Covariance Invariance Quantity Referent Unit ‘ Themes Total

Sub-items

1.1

1.2
1.3
14
1.5
1.6

2.1

2.2
3.1

3.2

4.1

4.2

4.3

4.4
5.1

5.2

5.3
5.4

6.1

6.2

6.3
6.4
6.5
7.1

7.2

7.3

8.1

8.2

8.3
9.1

9.2

10.1

10.2

10.3

11.1

11.2

28 | 56

11

15

Items Total




5.2. Data Preprocessing

Before applying the STM, the raw text data needs to be systematically preprocessed
to prepare it for subsequent analysis. The interview data was automatically transcribed
from the audio files, which could potentially lead to the situations of extraneous
whitespaces, typos, and extra punctuation. In order to standardize the text, the data went
through a series of normalization procedures. Punctuations, numbers, and extraneous
whitespace were removed. Misspellings are replaced. Moreover, all texts are converted to
lowercase to avoid inconsistencies arising from case differences.

In this study, the stopword list includes both standard English stopwords and a
custom list specifically created based on the dataset. Additional stopwords were classified
into 11 categories according to their meanings: agreement, uncertainty, exclamations,
casual expressions, time and condition, gratitude, quantity, miscellaneous, action, states,
and others. These filler words and irrelevant phrases can introduce noise into the analysis.
Therefore, a comprehensive stopword list was developed based on these criteria, and all
identified stopwords were removed accordingly.

Moreover, some phrases were modified in the preprocessing step. The topic
modeling can identify phrases with more than one word as multiple words, which could
cause confusion. For example, during the interview, a few teachers used phrases like ‘not
equivalent’ or ‘not equal’. These phrases will be treated as two individual words by topic
modeling, which could cause confusion. To avoid the separation, such phrases are
transferred into a single word by removing the whitespace between the words. In this case,
‘not equal’ is recorded as ‘notequal’.

Next, lemmatization was applied to reduce inflectional and derivational forms of
words to their base or dictionary form. This process allows us to preserve the semantic
meaning of words while reducing lexical variation. During the process, all text is converted
to lowercase to ensure consistency. Then various word forms are transformed to their base

form while preserving special mathematical terminology relevant to fractions and rational



numbers. Following lemmatization, we implemented a second stage of preprocessing to
remove stopwords and ensure that the lemmatization process had not introduced
unintended words.

Before the data was cleaned, the corpus contained 4,488 unique words and 502
documents with a total number. However, due to the suboptimal quality in portions of the
interviews, the qualitative team decided to exclude sub-questions 1.1, 1.2, 1.6, and all those
under sections 3, 5, and 10. Thus these items were not included in the further coding
process. Following the exclusion of these items and the preprocessing step, the corpus
reduced to 1,129 unique words and 321 documents. See Table [2| for more details.

Table 2
Comparison of Descriptive Statistics Before and After Preprocessing

State Vocabulary of Documents Total Words  Average  Standard
Unique Words Document Deviation
Length
Before Preprocessing 4488 502 59298 118.13 88.83
After Preprocessing 1129 321 16512 51.44 37.51

5.3 STM configuration

STM included interview sub-questions and participant IDs as document-level
covariates, enabling topic prevalence variations based on the specific question being
discussed.

As mentioned, STM includes two main strategies to start the model: the LDA and
the Spectral initialization. We evaluated four strategies: (1) spectral initialization and
LDA initialization with (2) & = 0.5 and g = 0.05, (3) a = 1 and § = 1 Mardones-Segovia,
Choi, Hong, Wheeler, and Cohen (2022), and (4) o« = 50/T and § = 0.01, where T
represents the number of topics [Steyvers and Griffiths (2007).For the models with LDA
initialization, we also set the burn-in period as 10,000 iterations and the number of

iterations post-burn-in as 15,000 iterations.



5.4. Model selection

For each initialization strategy, we estimated a set of candidate topic models
ranging from 2 to 10 topics as suggested in previous studies (e.g., |(Cardozo-Gaibisso et al.,
2019). Thereby, we studied 32 possible parameters’ combinations in total.

The best-fitting model was selected using semantic coherence and exclusivity.
Figure [1| shows a scatterplot with the model selection results for the 32 tested models.
These results suggest that a 3-topic, 5-topic, 6-topic, and 10-topic model with spectral
initialization, and a 6-topic model with LDA initialization (=1, f=1) stand out for their
balance in both semantic coherence and exclusivity.

To further investigate which model performs best, we applied Min-Max
Normalization to measure the two metrics in the same scale (Patro & Sahu, 2015). After
normalization, equal weights (0.5) were assigned to each metric to compute a combined
score for each model. This step ensures that semantic coherence and exclusivity contribute
equally to model evaluation (Singh & Singh, 2022).

The results shown in Table |3 suggest that models with spectral initialization have
better performance than those using LDA. Among the spectral initialization models, the
10-topic model achieved the highest combined score (0.713), closely followed by the 6-topic
(0.705) and 3-topic (0.704) models, with minimal differences among them. Based on these
findings, we selected the 10-topic, 6-topic, and 3-topic models from the spectral
initialization for further comparison.

Table 3
Normalized Score for Semantic Coherence and Exclusivity

candidate_model SC EXC Score

Spectral-3-topic 1.000 0.409 0.704
Spectral-5-topic 0.592 0.746 0.669
Spectral-6-topic 0.573 0.837 0.705
Spectral-10-topic 0.426 1.000 0.713

LDA-6-topic (a=1, 8=1) 0.394 0.818 0.606
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5.5. Interpreting and Labeling topics

For the remaining three models, we use ChatGPT 4o to interpret the top 10
documents most strongly association with each topic. The interpretation results are
presented in Tables [4] [5 and [6] respectively along with the corresponding number of
documents per dominant topic shown in Figures and

Overall, the 6-topic model offered the best balance between interpretability and
granularity, effectively capturing key aspects of teachers’ understanding, including number
line visualization for fraction division, equivalent fractions and proportional relationships,
unit relationships in context, visual analysis of fraction equivalence, area models for
multiplication, and contextual fraction problems. This topic structure aligned closely with
the original constructs while avoiding the redundancy observed in the 10-topic model,

where several topics overlap in their focus on referent units.



Table 4

Large Language Model Interpretation Summary (3-Topic)

Topic Label

Key Content

1 Contextual Fraction
Problem-Solving

Teachers apply the fraction concepts in a contextualized garden scenario. Teachers
demonstrate their understanding by determining what fraction of a whole (garden or acre)
different sections represent.

2 Analysis of Teachers analyze different representations of equivalent fractions and proportional
Representational relationships. Teachers evaluate the pedagogical effectiveness of representations,
Models for distinguishing between those that better illustrate equivalence versus those that
Equivalence and demonstrate proportionality.
Proportion
3 Analyzing Area Teachers interpret and critique area models for multiplying fractions. Teachers analyze
Models for Fraction  student work samples, identifying how fractions are represented within area models and
Multiplication evaluating the correctness and clarity of different approaches.




Table 5

Large Language Model Interpretation Summary (6-Topic)

Topic Label Key Content
1 Number Line Teachers demonstrate how number lines can be used to visualize fraction division, particularly the
Visualization for relationship between 8/16 and 1/4. They use visual models to help bridge abstract mathematical
Fraction Division concepts with concrete representations. Teachers value these visualizations for helping students
see relationships between fractions.
2 Equivalent Fractions  Teachers analyze different visual models representing the same mathematical relationship (2/3 =
and Proportional 8/12), distinguishing which representations better demonstrate fraction equivalence versus
Relationships proportional relationships. This reveals pedagogical content knowledge as they evaluate
representations based on their instructional affordances, recognizing that different models serve
different pedagogical purposes depending on the concept being taught.
3 Unit Relationships in Teachers reason about fractional relationships between different-sized garden beds, demonstrating
Garden Context understanding of how establishing a referent unit is crucial for determining fractional
relationships. They show flexibility by defining different referent units and calculating
corresponding relationships, converting between different referent units, and demonstrating grasp
of the relative nature of fractions in contextual problems.
4 Identifying Equivalent = Teachers analyze diverse visual representations to determine fraction equivalence, demonstrating
Fractions in Visual ability to recognize that different visual models can represent the same fraction value despite
Representations varying appearances. They identify which representations are equivalent to 1/2 and which are
not, explaining their reasoning process and showing capacity for flexible visual reasoning with
fractions across various representations.
5 Area Models for Teachers engage with area models representing fraction multiplication (3/4 x 2/3), demonstrating
Fraction Multiplication varying levels of comfort and familiarity with interpreting these visual representations. Their
responses reveal analytical processes as they make sense of how visual models correspond to
mathematical operations.
6 Basketball and Pizza  Teachers analyze two different situations that appear to involve fraction addition but represent

Fraction Addition
Contexts

different mathematical concepts: the basketball free throw context (2/3 4+ 3/4 = 5/7) involving
combining ratios, and the pizza context (2/3 + 3/4 = 17/12) involving standard fraction addition.
They identify fundamental differences between these contexts, recognizing distinctions between
ratio reasoning and part-whole interpretations.




Table 6

Large Language Model Interpretation Summary (10-Topic)

Topic Label

Key Content

1 Defining and Applying
Referent Units

Teachers engage with using one object as a referent unit to describe the relative sizes of other
objects, demonstrating the ability to use a given object (marigolds) as a unit of measurement.

2 Representations of
Fraction Multiplication

Teachers evaluate different representations of fraction multiplication (2/3 x 6/7), demonstrating
varying levels of familiarity and comfort with different visual models.

3 Number Lines for
Fraction Relationships

Teachers interpret how number lines can represent relationships between fractions. The teachers
primarily focus on using the visual representation to understand fraction division or to compare
equivalent fractions.

4 Analyzing Geometric
Representations of
Equivalent Fractions

This topic reveals teachers’ ability to analyze geometric shapes to identify patterns and
relationships in equivalent fractions. Teachers demonstrate skill in recognizing when different
visual representations.

5 Units and Wholes in
Fraction Contexts

This topic emphasizes teachers’ understanding of how the definition of the "whole" or "unit"
affects fraction interpretation.

6 Comparing Models for
Proportional
Relationships

This topic focuses on teachers’ comparative evaluation of different models for teaching equivalent
fractions versus proportional relationships. Teachers demonstrate knowledge by distinguishing
which representations better support different concepts.

7 Analyzing Area Models
for Fraction

This topic shows teachers critically analyzing an area model for fraction multiplication (3/4 x
2/3). Teachers demonstrate their ability to evaluate representations, identify limitations, and

Multiplication explain how they would improve the representation.
8 Contextual This topic explores teachers’ understanding of how context influences the meaning and operations
Interpretation of of fractions. Teachers demonstrate awareness that the same mathematical operation can have
Fractions different meanings and require different approaches.
9 Application of This topic reveals teachers’ approaches to solving complex fraction problems. Teachers
Fractions to Multi-Step demonstrate their ability to break down a problem involving nested fractions, showing multiple
Problems solution paths and explanations.

10 Critical Evaluation of
Student Visual
Representations

This topic centers on teachers’ ability to interpret and evaluate student-created visual
representations of mathematical concepts. Teachers demonstrate their skill in analyzing student
work to identify understanding or misconceptions in mathematical representations.
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5.6. Data-Driven Validity Evidence
5.6.1. Evidence of Content Validity

The first source of content validity evidence is derived from the number and
interpretation of the topics. The results in Table |5|and Figure [5]illustrate that a six-topic
structure was coherent and interpretable, with each topic representing aspects of teachers’
reasoning in fractions and proportions. This appears to satisfy the condition that the
intended constructs should closely resample their topic definition.

Based on the proposed framework, each topic should ideally show a one-to-one
relationship with an intended construct. However, the results indicate that most of the
topics mapped onto more than one construct, except for Topic 1, which directly aligned
with the Referent Unit. Topic 2 reflected Invariance and Covariance; Topic 3 aligned with

Referent Unit and Invariance; Topic 4 with Invariance, Quantity, and Referent Unit; Topic
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5 with Referent Unit and Quantity; and Topic 6 with Covariance and Referent Unit. These
patterns suggest potential limitations regarding the extent to which constructs were
exclusively reflected in teachers’ responses.

The second source of content validity evidence comes from interpreting the
likelihood of each item in each topic. The results in Table [7| show that although several
items were designed to measure one construct, the latent topics derived from teachers’
responses often reflected multiple constructs. For example, Items 1.3, 6.1, and 6.5 were
simple items intended to measure Referent Units. However, answers to Item 1.3 mostly
elicited words related to Topic 3, which closely aligned with Referent Unit and Invariance.
Similarly, Items 6.1 to 6.5 primarily aligned with Topic 5, which included Referent Unit
and Quantity words.

In some cases, items elicited responses related to a different construct than

intended, indicating possible content misalignment or poor writing. For example, Items 7.1



Number of Documents per Dominant Topic

54
46
40 38
34 34
31
25
22 o0

| ﬁ I

Topic 1 Topic 2 Tapic 3 Topic 4 Topic & Topic 6 Topic 7 Topic & Topicd  Taopic 10
Topic

Mumber of Documents

Figure 4
Model Selection

to 7.3 were intended to measure Quantity but elicited answers related to Referent Units
and Quantity.

The third source of evidence concerns the items representativeness and balance
across topics. As shown in Table [7] Referent Unit was the most frequently represented
construct, aligned with its intended interview protocol. However, the empirical and
intended distributions revealed gaps in content coverage, as most contents appeared

embedded within multi-construct topics rather than being measured in isolation.



Table 7

Construct-to-Topic Alignment for Selected Items

Sub-item Item Type

Construct(s) Measured

Highest Posterior Topic

Topic Alignment

1.3
14
1.5
2.1
2.2
4.1
4.2
4.3
4.4
6.1
6.2
6.3
6.4
6.5
7.1
7.2
7.3
8.1
8.2
8.3
9.2
11.1
11.2

Simple
Complex
Complex
Complex
Simple
Complex
Complex
Complex
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Complex
Simple
Complex
Complex
Simple
Simple

Referent Unit

Quantity, Referent Unit

Quantity, Referent Unit

Invariance, Referent Unit
Invariance

Invariance, Quantity, Referent Unit
Invariance, Quantity, Referent Unit
Invariance, Quantity, Referent Unit
Referent Unit

Referent Unit

Referent Unit

Referent Unit

Referent Unit

Referent Unit

Quantity

Quantity

Quantity

Covariance, Invariance, Referent Unit
Referent Unit

Covariance, Invariance

Quantity, Referent Unit

Referent Unit

Referent Unit

Topic 3
Topic 3
Topic 3
Topic 4
Topic 4
Topic 2
Topic 2
Topic 2
Topic 2
Topic 5
Topic 5
Topic b
Topic 5
Topic 2
Topic 1
Topic 1
Topic 1
Topic 6
Topic 6
Topic 6
Topic 4
Topic 5
Topic b

Referent Unit and Invariance

Referent Unit and Invariance

Referent Unit and Invariance
Invariance, Quantity, and Referent Unit
Invariance, Quantity, and Referent Unit
Invariance and Covariance

Invariance and Covariance

Invariance and Covariance

Invariance and Covariance

Referent Unit and Quantity

Referent Unit and Quantity

Referent Unit and Quantity

Referent Unit and Quantity

Invariance and Covariance

Referent Unit

Referent Unit

Referent Unit

Covariance and Referent Unit
Covariance and Referent Unit
Covariance and Referent Unit
Invariance, Quantity, and Referent Unit
Referent Unit and Quantity

Referent Unit and Quantity
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5.6.2. Evidence of Internal Structure

Evidence of internal structure was evaluated using the posterior topic proportion
and its corresponding credible interval based on item complexity and construct
independence. Although topics were estimated as uncorrelated, many of them integrating
multiple constructs.

Figure [6] illustrates the diagram between items and topics. Bold edges denote a
strong and certain item-topic association, where the posterior and the lower bound of the
credible interval are > 0.7. Blue dashed edges typically represent complex items with high
posterior topic proportion but wider intervals or mixed-topic associations. These edges
indicate alignment with one topic but with some uncertainty around it. Red dotted edges
reflect items with lower posterior mean (< 0.7) and wide intervals. These typically include
complex items where one concept appears more salient than others.

Overall, the results showed that many simple items aligned well with their intended



constructs. For example, Item 1.3, which was designed to measure Referent Unit, had a
posterior topic proportion of 0.91 on Topic 3 with a narrow 95% credible interval [0.87,
0.95], indicating strong and consistent alignment. Items 6.1 through 6.5, also simple and
targeting Referent Unit, loaded on Topic 5 with proportions ranging from 0.74 to 0.87,
providing further support for structural alignment. In contrast, Items 7.1 to 7.3, which
were designed to measure Quantity, loaded on Topic 1 (Referent Unit). This suggests
construct misalignment despite high posterior estimates.

Complex items showed more varied patterns. For instance, Item 4.1, which was
designed to measure Invariance, Quantity, and Referent Unit, loaded primarily on Topic 2
(0.53; [0.43, 0.63]), suggesting that Invariance dominated participants’ responses. While
some complex items such as Item 8.1 (targeting Covariance, Invariance, and Referent Unit)
loaded almost exclusively on a single multi-construct topic (Topic 6), this was interpreted

as evidence of conceptual integration rather than imbalance.



Figure 6
Item-Topic Diagram

0.87
Ttem 6.1 Lot

0.99
Ttem 8.1 [0.94, 1.03]

0.84
[0.74, 0.92]

0.64
[0.54, 0.74]
s, .
\
053
. Ra3.083] L
0.64
[0.54,0.74]
. 0.63
Item 11.1 [0.55, 0.72)

0.91
Ttem 1.3 [0.87, 0.95]



6. Discussion and Conclusion

This study proposed a novel data-driven framework to provide validity evidence for
text-based assessments and illustrated its uses through a corpus of teachers’ written
answers to an interview protocol designed to measure their knowledge of proportional
reasoning and fractions before participating in a professional development intervention.

Although the resulting topic structure deviated from the ideal of clean construct
separation, these results likely reflected the complexity of teacher reasoning in applied
instructional contexts. In mathematics education, constructs such as Referent Unit and
Quantity are conceptually related and often co-occur in practice. Moreover, many of the
items designed for this instrument were intentionally complex, increasing the likelihood
that the elicited responses would activate multiple constructs.

These findings may also reflect a form of hierarchical reasoning, in which teachers
begin with foundational ideas about Referent Unit to then build upon concepts such as
Quantity and Invariance. Thus, rather than being separated constructs, these ideas may
emerge in a sequential fashion. Notably, Referent Unit was the most frequently intended
construct to be measured by the instrument, which may suggest that this concept was not
only pedagogically important but also implicitly recognized during the item development
phase. Overall, the results supported, in part, the expected patterns based on item
complexity and construct relationships, with narrow credible intervals providing evidence
that the internal structure aligned with expectations.

To conclude, the proposed framework provides a systematic approach to gather
evidence of content and internal structure in text-based assessment by fully capturing
uncovered patterns that could have been lost when using traditional psychometric
techniques. Its flexibility also supports simple and complex items, with or without topic
relationships, offering an alternative approach to gather validity evidence. Furthermore,
the research findings suggest that the proposed framework can be used in designing and

refining textual tests, ensuring a more balanced and comprehensive distribution of items



across topics. However, given its data-driven nature, its results are grounded by the
observed language patterns rather than from a pre-defined theoretical model. Therefore,

while it allows for rich interpretations, the results are tied to a specific dataset.
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