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Abstract

Visual-language foundation models, like CLIP, learn gen-
eralized representations that enable zero-shot open-set clas-
sification. Few-shot adaptation methods, based on prompt
tuning, have been shown to further improve performance
on downstream datasets. However, these methods do not
fare well in the taxonomic open set (TOS) setting, where
the classifier is asked to make prediction from label set
across different levels of semantic granularity. Frequently,
they infer incorrect labels at coarser taxonomic class lev-
els, even when the inference at the leaf level (original class
labels) is correct. To address this problem, we propose
a prompt tuning technique that calibrates the hierarchical
consistency of model predictions. A set of metrics of hi-
erarchical consistency, the Hierarchical Consistent Accu-
racy (HCA) and the Mean Treecut Accuracy (MTA), are
first proposed to evaluate TOS model performance. A new
Prompt Tuning for Hierarchical Consistency (ProTeCt) tech-
nique is then proposed to calibrate classification across
label set granularities. Results show that ProTeCt can be
combined with existing prompt tuning methods to signifi-
cantly improve TOS classification without degrading the leaf
level classification performance. The code is available at
https://github.com/gina9726/ProTeCt.

1. Introduction
Vision-language foundation models (FMs) have opened up
new possibilities for image classification. They are large
models, trained on large corpora, to learn aligned represen-
tations of images and text. For example, CLIP [32] com-
bines text and image encoders trained with 400M image-text
pairs in an open vocabulary fashion, using a contrastive
loss [3, 4, 36, 37]. Zero-shot classification can then proceed
by leveraging the feature alignments. Each class name is
first converted to a text prompt, e.g., “a photo of [CLASS],"
which is fed to the text encoder. The resulting text feature is
then used as the parameter vector of a softmax classifier of
image feature vectors. Since the training does not emphasize
any particular classes, CLIP supports open set classification.
Several works [17, 44, 47, 48] have shown that classification
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Figure 1. (Top) An example of class hierarchy, where CLIP predicts
the tiger image as “person" at the internal hierarchy level. (Bottom)
Correct/incorrect model predictions (green/red) of CoOp w/ and
w/o ProTeCt on ImageNet variants. L denotes the tree level.

Method Accleaf HCA MTA
CLIP [32] 68.36 3.32 48.21
CoOp [48] 71.23 2.99 46.98
MaPLe [17] 70.70 4.15 48.29

Table 1. TOS classification performance of CLIP-based classifiers.

accuracy can be enhanced by fine-tuning the FM on the few-
shot setting (i.e. few examples per class). To adapt the model
and maintain image-text alignment, these works augment
the FM with a few learnable prompts [17, 44, 47, 48]. The
model parameters are then frozen and only the prompts are
optimized. This process is known as prompt tuning and can
outperform zero-shot performance, on the dataset of interest.

While prompting enables classifiers to be designed for
virtually any classes with minimal dataset curation effort,
it should not compromise the open set nature and gener-
ality of the FM representation. In this work, we consider
the setting where “open set" means the ability to refer to
concepts at different levels of granularity. Consider, for
example, an educational application in biology. While at
grade school level it will teach students to classify animals
into (“cat", “dog", “lizard"), at the high-school level the
exact same images should be classified into much more
detailed classes, e.g. (“iguana", “anole", “komodo", etc.) for
lizards. A classifier that classifies an image as a “komodo"
lizard for high schoolers but “dog" for gradeschoolers is not
useful and trustworthy. Advanced biology students should
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even learn about the taxonomic relations between different
species. This requires a representation that supports hier-
archical classification [20, 30, 41, 43], where the classifier
understands the relations between the superclasses and sub-
classes that compose a class hierarchy, and provides correct
predictions across hierarchy levels.

Fig. 1 shows an example hierarchy built from Ima-
geNet [5] classes, according to the WordNet [11]. When
faced with a tiger image, the classifier should provide
a correct prediction under the label sets Y1 =(“dog”,
“cat", “tiger"), Y2 = (“person", “animal", “insect”) or
Y3 =(“physical entity", “abstraction"), where the correct
one is shown in bold. Note that, given a classifier with this
property, teachers have the ability to define different classi-
fication problems, for many levels of granularity, tailoring
the same app to different uses. We refer to this setting as
taxonomic open set (TOS) classification. In many real-
world applications, support for this restricted form of open
set classification is much more important than support for
unbounded open set classification. In the example above,
biology teachers do not really care if the classifier can still
discriminate between cars and trucks, or soda cans and wine
cups. Hence, these classes are irrelevant to the app developer.

In principle, TOS should be trivially supported by FMs.
Even at zero-shot level, it should suffice to specify [CLASS]
names at the desired levels of granularity. However, our
experiments show that this does not work because the rep-
resentation of most FMs fails to capture taxonmic relations.
This is illustrated for CLIP in Fig. 1. While the model knows
that the object is a tiger, it fails to know that it is “a physi-
cal entity" and not an “abstraction" or that it is a “placental
mammal" and not a “marsupial," indicating that it only un-
derstands class relations locally. It can perform well for the
leaf class label set Y1 , but cannot reason across abstrac-
tion levels, and can thus not support TOS classification. To
enable TOS, we introduce the notion of hierarchical consis-
tency, and a new hierarchical consistency accuracy (HCA)
metric, where classification is defined with respect to a tax-
onomic tree and its success requires the correct prediction
of all superclasses (e.g., mammal, object and physical en-
tity) of each ground truth leave class (e.g., tiger). This is
complemented by the notion of TOS classification, where
classifiers can have any set of nodes in the class hierarchy as
the label set, and a new mean treecut accuracy (MTA) metric,
which estimates classification accuracy in this setting.

Our experiments show that neither CLIP nor existing
prompt tuning methods [17, 47, 48] perform well under the
HCA and MTA metrics of the TOS setting. Fig. 1 illustrates
the problem and the inconsistent CLIP class predictions
(orange dots) across hierarchy levels. Table 1 compares the
standard (leaf) accuracy of the model with HCA/MTA, under
both the zero-shot and two prompt-tuning settings. While
the leaf accuracy is quite reasonable, hierarchical consis-

tency is very poor. To address this problem, we propose a
novel prompt-tuning procedure, denoted Prompt Tuning for
Hierarchical Consistency (ProTeCt), that explicitly targets
the TOS setting. Given a dataset of interest, a class hierarchy
is extracted from the associated metadata, a generic public
taxonomy (e.g. WordNet [11]), or a special purpose taxon-
omy related to the application (e.g. scientific taxonomies).
Since FMs support classification with open vocabulary, any
node in the hierarchy can be used in the label set of the
classifier. Prompts are then learned with the help of two
new regularization losses that encourage hierarchical con-
sistency. A dynamic treecut loss (DTL) encourages correct
classification at all tree levels by sampling random tree cuts
during training. A node-centric loss (NCL) contributes ad-
ditional supervision to each internal tree node to increase
classification robustness for all granularities of the hierarchy.

Experiments show that ProTeCt significantly improves
the performance of prompt tuning methods, like CoOp [48]
and MaPLe [17], under TOS setting. Fig. 1 shows the pre-
dictions of CoOp at different hierarchy levels before/after
adding ProTeCt. Under the HCA/MTA metrics, the improve-
ment can be more than 15/25 points on Cifar100, SUN and
ImageNet datasets. Following [17, 47, 48], we show that
these gains hold for zero-shot domain generalization to sev-
eral variants of ImageNet [14, 15, 33, 38], showing that hier-
archical consistency transfers across datasets. Furthermore,
ablations show that ProTeCt can be used with different CLIP
architectures, parameter tuning methods and taxonomies.

Overall, this work makes four contributions. First, we in-
troduce the TOS setting, including two novel metrics (HCA
and MTA) that evaluate the consistency of hierarchical clas-
sification. Second, we show that neither zero-shot CLIP nor
existing prompting methods fare well in this setting. Third,
we propose a novel prompt-tuning method for the TOS set-
ting, ProTeCt, which improves hierarchical consistency by
combining DTL and NCL losses. The former relies on a
dynamic stochastic sampling of label sets involving multiple
levels of the hierarchy, while the latter regularizes the clas-
sification of every node in the hierarchy. Finally, ProTeCt
is shown to outperform vanilla prompt tuning methods on
three datasets with different hierarchies. Extensive ablations
demonstrate that ProTeCt is applicable to different parame-
ter tuning methods, CLIP architectures, taxonomies and the
learned hierarchical consistency transfers to unseen datasets
from different image domains.

2. Related Work
Prompt Tuning of Vision-Language Models. Many large
vision-language FMs have been proposed recently [10, 39,
45]. Despite their promising zero-shot performance, sev-
eral works [16, 17, 47, 48] have shown that their few-shot
finetuning with a dataset from the target application can fur-
ther improve performance. Unlike conventional finetuning
methods that optimize the entire model, these methods are
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designed to (a) be parameter efficient and (b) maintain the
general purpose feature representation of the FM. Several
such tuning methods have been proposed for CLIP [32].
Inspired by prompt tuning techniques from the language
literature [21, 23, 24], CoOp [48] inserts learnable prompts
at the CLIP text input. CoCoOp [47] further learns a meta-
network to generate an image-conditioned prompt. The idea
of connecting image and text prompts is further extended
by UPT [44] and MaPLe [17]. The former learns a unified
transformer for generating an image and text prompt, the
latter learns a coupling function to generate image prompts
from text prompts. LASP [2] proposed a text-to-text cross-
entropy loss to regularize the distribution shift when different
prompts are used. Unlike these works, we investigate the
TOS problem, where labels can be drawn from any level in
a class taxonomy, and propose prompting techniques to im-
prove hierarchical classification consistency. This is shown
to be compatible with several of the above prompt-tuning
methods without degrading their leaf classification accuracy.
Hierachical Classifiers. Hierarchical classification aims
to predict labels at different levels of a class hierarchy.
Early works [6, 7, 30, 34, 35, 46] date back to the era be-
fore deep learning and are not directly applicable to deep
learning-based models. Several works [1, 13, 18, 25, 43, 49]
propose hierarchical classifiers for CNN-based deep mod-
els. For example, [13, 25, 49] use additional convolu-
tional modules to learn a hierarchical feature space. It
is unclear how these approaches generalize to the recent
transformer-based architectures [8, 26, 27]. Furthermore,
prior works [1, 13, 25, 41, 43, 49] finetune the entire model,
which requires substantial data and computation, especially
at the FM scale. In this work, we study the problem of hierar-
chical consistency for foundational vision-language models
(e.g., CLIP). While CLIP-based classifiers [32, 47, 48] have
outstanding zero/few-shot performance, we show that they
produce inconsistent predictions for label sets of different
granularity and cannot be used in the TOS setting. We pro-
pose an efficient prompt tuning method to address this.

3. Preliminaries
Foundation Models (FMs). Visual-language FMs are
composed by a text Φtext and a visual Φvis encoder, which
extract features from text and images, respectively. The two
encoders are optimized by contrastive training [3, 4, 36, 37]
to create a joint representation for the two modalities. Since
the encoders are learned from a large-scale corpus of image-
text pairs, the features are general and support various down-
stream tasks, e.g., image classification [17, 44, 47, 48] and
segmentation [28, 40]. While in this work we use the
CLIP [32], ProTeCt should generalize to other FMs.

Image Classification with FMs. Given a label set Y =
{ty}Cy=1, a zero-shot classifier can be designed in the FM
representation space by introducing a weight vector wy per

class y. These weight vectors are obtained by simply using
the class name ty (e.g., “dog") as a text encoder prompt,
i.e., wy = Φtext(Embt(ty)) ∈ Rk, where Embt(·) is a
word embedding. Given these weight vectors, an image
classifier of label set Y can be implemented by computing
class posterior probabilities with

p(ty|x;Y) =
exp (cos(wy,v)/τ)∑

tj∈Y exp (cos(wj ,v)/τ)
, (1)

where p(ty|x;Y) is the probability of class label ty given
image x, v = Φvis(Embv(x)) ∈ Rk the visual feature
vector, Embv(·) an image embedding, cos(·, ·) the cosine
similarity metric, and τ a temperature hyperparameter. Clas-
sification performance can usually be improved by inferring
the classifier parameters wy from multiple text prompts,
e.g. by including context words such as a prompt pre-
fix p =“a photo of", or p =“a drawing of", computing
wy = Φtext(Embt({p, ty})), and ensembling the vectors
wy obtained from multiple prompts [32, 48]. This, however,
requires multiple forward passes through Φtext during infer-
ence and can be undesirable for downstream applications.

More efficient inference can be achieved with prompt
tuning [17, 44, 47, 48], which leverages a set of learn-
able parameters {ctm}Mm=1 as context features. These
are prepended to each class name embedding Embt(ty)
as text prompts, to produce the weight vectors wy =
Φtext({ct1, . . . ctM , Embt(ty)}). Note that each cti has the
same dimension as the word embedding. Given a training
dataset D = {(xi, yi)}Ni=1, context features can be end-to-
end optimized with the cross-entropy loss

LY(C
t) =

1

N

N∑
i=1

∑
tj∈Y

−1(tj = tyi
) log p(tj |xi;Y,Ct)

(2)

for the classifier of (1), where 1(·) is the indicator func-
tion, and Ct the matrix of context features. Similarly, learn-
able prompts cvi can be inserted into the image branch, i.e.
v = Φvis({cv1, . . . , cvM , Embv(x)}), for better visual adap-
tation [16, 17, 44]. To prevent compromising the general-
ization of the FM embeddings, the parameters of the two
encoders (i.e., Φtext,Φvis) are frozen in the few-shot set-
ting. In this paper, we consider two prompt tuning variants,
CoOp [48] and MaPLe [17], the former using learnable
prompts in the text branch, and the latter on both branches.

Class Taxonomy. A class taxonomy Ytax organizes
classes into a tree where classes of similar semantics are
recursively assembled into superclasses, at each graph node
(e.g. “dog" is a superclass of “Chihuahua" and “Corgi"). For
a tree hierarchy, T , each node n ∈ N has a single parent
and multiple child nodes Chd(n), where N is the set of
tree nodes. Given a set of classes {ty}Cy=1, a tree hierarchy
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T can be built by treating {ty}Cy=1 as leaf nodes (where
Chd(ty) = ∅), i.e., Leaf(T ) = {ty}Cy=1, and recursively
grouping classes in a bottom-up manner until a single root
node is created, according to the similarity relationships de-
fined by the taxonomy Ytax. For example, ImageNet [5]
classes are organized into a tree of 1,000 leaf nodes derived
from the WordNet [11] taxonomy. Nodes that are not at the
leaves are denoted as internal nodes N int = N \ Leaf(T ).

4. Taxonomic Open Set Classification
Definition. A significant advantage of FMs for practical
applications is their support for open set classification. Since
the classifier of (1) can be implemented with any class names
ty , and the FM is trained with an open vocabulary, it is possi-
ble to perform classification for virtually any class. Prompt-
ing methods improve the classification of the classes defined
by the label set Y , but attempt to maintain this generality.
However, for most applications “open set" does not mean
the ability to recognize “any possible word." On the contrary,
the whole point of prompt tuning is to enhance the FM for a
given application context. This context defines what “open
set" truly means for the application. In practice, it frequently
means “all the possible ways" to refer to the classes in Y .

One important component of this requirement is the abil-
ity to describe classes at different levels of granularity. For
example, while user A (a car mechanic) may need to know
if an image depicts a “Fan Clutch Wrench" or a “Box-Ended
Wrench," user B (a retail store worker) may need to know
if the exact same image depicts a “a mechanic’s tool" or a
“plumber’s tool." A FM-based classification app should be
deployable in both the car garage or the retail store. However,
because the app is a tool classification app, the prompted
model does not need to be good at recognizing “lollipops,"
which are beyond the context of the app. On the other hand,
it is undesirable to have to prompt-tune the app for every
specific use or user group. Ideally, it should be possible to
prompt tune the FM once, with respect to the entire class
taxonomy Ytax of tools. The app can then be deployed to
each user base without any retraining, by simply drawing
the most suitable class names ty from Ytax. We refer to this
problem as Taxonomic Open Set (TOS) classification and
introduce a formal definition in the remainder of this section.

Datasets. Most existing classification dataset can be used
to study the TOS problem, since the very nature of tax-
onomies is to group objects or concepts into semantic
classes of different levels of granularity. Hence, most vi-
sion datasets are already labeled taxonomically or adopt
classes defined by a public taxonomy, usually WordNet [11].
We consider three popular datasets: Cifar100 [19], SUN [42]
and ImageNet [5]. ImageNet is complemented by the Im-
ageNetv2 [33], ImageNet-S [38], ImageNet-A [15] and
ImageNet-R [14] to enable the study of generalization across
image domains. For each dataset, the K-shot setting is con-

sidered, where K images per class are sampled for training.
We consider K = {1, 2, 4, 8, 16}.
Label sets. Given a dataset D and class hierarchy Ytax a
label set Y is defined at each level of granularity, according
the latter. The leaf label set Yleaf is defined as the set of
classes of D and the class hierarchy T is build recursively,
denoting by Yn = Chd(n) the set of class labels for the
children of node n. In our experiments, we adopt the default
hierarchy of the SUN dataset and use WordNet [11] to build
the hierarchy for Cifar100 and ImageNet. The resulting class
hierarchies are as follows. Cifar100 [19] contains 100 leaf
nodes and 48 internal nodes. SUN contains 324 leaf nodes
and 19 internal nodes (after pruning 73 leaf classes that have
confusing superclasses). ImageNet [5], ImageNetv2 [33] and
ImageNet-S [38] share a class hierarchy of 1,000 leaf nodes
and 368 internal nodes. ImageNet-A [15] and ImageNet-
R [14] only contain 200 subclasses and the corresponding
internal nodes from the ImageNet hierarchy.
Metrics: Given a classifier

ŷ(x;Y) = argmax
ty∈Y

p(ty|x;Y) (3)

using a label set Y , several metrics are proposed to evaluate
TOS performance.

Leaf Accuracy is defined as

Accleaf =
1

N

N∑
i=1

1[ŷ(xi;Yleaf ) = tyi
] (4)

and measures the classification accuracy at the leaves of the
taxonomic tree (usually defined as the “dataset classes").
This enables comparison of hierarchical classifiers to stan-
dard, or flat, classifiers which only consider the leaf classes.

Hierarchical Consistent Accuracy (HCA) is defined as

HCA =
1

N

N∑
i=1

(1[ŷ(xi;Yleaf ) = tyi
]∏

n∈A(tyi )

1[ŷ(xi;Yn) ∈ A(tyi
) ∪ {tyi

}]),

(5)

where A(n) denotes all the ancestors of node n, and tyi is
the leaf node corresponding to class label yi. While Accleaf
considers successful any correct classification at the leaf
level of the tree, the HCA is stricter. It declares a success
only when all the ancestors of the leaf node are correctly
classified. In other words, each sample needs to be classified
correctly at each tree level to be viewed as correctly classified
under the HCA. Accleaf is an upper bound for the HCA.

Mean Treecut Accuracy (MTA) estimates the expected
accuracy under the TOS classification setting. It computes
the average accuracy over a set of treecuts Tc ∈ Ω,

MTA =
1

|Ω|
∑
Tc∈Ω

1

N

N∑
i=1

1[ŷ(xi;YTc
) = tyi

] , (6)
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where YTc
= Leaf(Tc). However, as shown by the follow-

ing lemma (see appendix for proof), the set of all possible
tree cuts in the hierarchy T is usually very large.

Lemma 4.1. For a balanced M-ary tree with depth L (root
node is excluded and is at depth 0), the number of all valid
treecut is L+

∑L
l=2

∑N−1
k=1

N !
k!(N−k)! |N=M l−1 .

For example, a tree with M = 2 and L = 6 has more than
4 billion treecuts. For a dataset like ImageNet (L = 15),
this number is monumental. Thus, we randomly sampled
|Ω| = 25 treecuts from T in all experiments and showed
that it is already fairly stable.
State-of-the-art. To test TOS performance of the CLIP with
existing prompting techniques, we performed an experiment
on ImageNet. Table 1 summarizes the performance of the
different methods under the three metrics. Two conclusions
are possible. First, the sharp drop from Accleaf to HCA
shows that none of the methods make consistent predictions
across the class hierarchy. Second, the low MTAs show that
the expected accuracy of TOS classification is dramatically
smaller than that of flat classification (leaf classes).

5. Prompt Tuning for Hierarchical Consistency
To enhance TOS performance of FMs, we propose Prompt
Tuning for Hierarchical Consistency (ProTeCt). ProTeCt
can be implemented with many existing prompt tuning meth-
ods (e.g., CoOp, MaPLe). These methods optimize context
prompts using the cross-entropy loss of (2) with leaf label
set Yleaf . While this optimizes leaf accuracy Accleaf , it is
not robust to label set changes, even for label sets comprised
of superclasses of Yleaf . A simple generalization would
be to replace (2) with L(Ct) =

∑
Yp∈T LYp

(Ct), i.e., to
consider all the partial label sets Yp of the tree T . However,
for sizeable taxonomies, this involves a very large number
of label sets and is not feasible. ProTeCt avoids the problem
by dynamically sampling label sets from T during training,
with a combination of two learning objectives, a node-centric
loss (NCL) and a dynamic tree-cut loss (DTL).

Node-Centric Loss (NCL). NCL is the aggregate cross-
entropy loss of (2) over all node-centric label sets Yn =
Chd(n) defined by each internal node n ∈ N int of the
hierarchy, i.e.,

LNCL(C
t) =

1

|N int|
∑

n∈N int

LYn
(Ct) . (7)

NCL optimization encourages prompts that robustify the
classification at different granularities. For example, “Corgi"
should be classified as “mammal" within the animal label set
Yn1

={mammal, reptile, bird}, as a “dog" in the mammal
label set Yn2 ={dog, cat, elephant, tiger}, and so forth.

Dynamic Treecut Loss (DTL). While NCL calibrates
node classification, guaranteeing consistency within each
node, the label sets of TOS classification can also span dif-
ferent sub-trees of the hierarchy, including nodes at different
levels, e.g., Y ={dog, cat, elephant, tiger, reptile, bird}.
DTL seeks to calibrate such label sets, by aggregating the
cross-entropy loss of (2) dynamically, i.e., on an example
basis, over randomly sampled label sets YTc

= Leaf(Tc)
comprised of the leaves of the tree cuts Tc (sub-trees) of T .
At each training iteration, a random tree cut Tc is sampled
with the TreeCutSampler procedure of Algorithm 1, as
illustrated on the middle of Fig. 2, to define the loss

LDTL(C
t) = LYTc

(Ct) Tc ∼ TreecutSampler(T , β), (8)

where β ∈ [0, 1] is a rate of tree dropout. For this, a Bernoulli
random variable Pn ∼ Bernoulli(β) of dropout rate β is
defined for each internal node n ∈ N int \ n0. The algorithm
descends the tree T , sampling a binary drop-out variable pn
at each node. If pn = 1, node n is kept in the pruned tree
Tc. Otherwise, the sub-tree of T rooted with n is dropped
from Tc. The parameter β controls the degree of pruning.
Larger β induces the pruning of more tree nodes, while β = 0

guarantess that YTc = Yleaf . The root node n0 is excluded,
as pn0 = 0 would imply discarding the whole T .

The TreeCutSampler algorithm is an efficient procedure
to sample tree cuts Tc from T . It starts by sampling a vector
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Algorithm 1 Treecut Sampler
Input: The tree hierarchy T of the dataset, tree dropout rate β
Output: The treecut label set YTc

// sampling p for internal nodes; prune the
sub-tree rooted at n if pn = 0

pn0 ← 1 ; // always keep the root node

for n ∈ N int \ n0 do
pn ← Bernoulli(β)

p← (pnint
1

, ..., pnint
K

)

// correct p based on the node dependency
p̃← p⊗ 1[Dp = D1]

// obtain blocked labels with predefined masks
and the sampled p̃

b← min(B, 0)T p̃+ B̄T (1− p̃)

// gather available (unblocked) labels as the
sampled label set

YTc ← {nj : nj ∈ N \ n0,bj = 0}
return YTc

p = (pnint
1

, ..., pnint
K

), where nint
i denotes the i-th internal

node and K = |N int|, containing pruning flags pn for all
internal nodes n ∈ N int. The next step is to enforce consis-
tency between these flags, according to the tree structure. If
any node in A(n) is pruned, then node n should be pruned
even if pn = 1. This is efficiently enforced across all the
flags by defining a dependency matrix D ∈ {0, 1}K×K where
Dij = 1[nint

j ∈ A(nint
i ) ∪ {nint

i }] indicates whether the i-th
internal node nint

i is a child of the j-th internal node nint
j .

An example is provided on the right of Fig. 2 for the tree on
the left. The sampled flags are then corrected by computing
p̃ = p ⊗ 1[Dp = D1], where 1 is the vector of K ones
and ⊗ the Hadamard product. Note that both D and D1 are
pre-computed, making the complexity of this step roughly
that of one matrix-vector multiplication.

To identify the leaves of the sampled treecut (YTc =

Leaf(Tc)) efficiently, a mask B ∈ {0, 1,−1}K×|N\{n0}| is
defined, where each row corresponds to an internal node, and
the columns contain all possible labels in T , i.e., all nodes
except the root n0. Entry Bij flags that nj cannot appear
in the sampled label set, given that ni ∈ N int has not been
pruned (i.e., p̃nint

i
= 1), as follows

Bij =


1, if nj ∈ A(nint

i ) ∪ {nint
i } (nj is an ancestor of nint

i )

0, if nint
i ∈ A(nj) (nj is a descendant of nint

i )

−1, otherwise (nj is outside of the sub-tree rooted at nint
i )

.

(9)

Similarly, a matrix B̄, of entries B̄ij = 1− |Bij |, is defined
to flag that nj cannot appear in the label set, given that
ni ∈ N int has been pruned, i.e. p̃nint

i
= 0. A mask of

the nodes unavailable to the label set is then computed by
accumulating the masks corresponding to the values of p̃,

b = min(B, 0)T p̃+ B̄T (1− p̃) , (10)

where the mask in min(B, 0) is selected if p̃n = 1, and that
in B̄ if p̃n = 0. Note that min(B, 0) clips Bij = −1 to 0. The

mask b can then be used to obtain YTc = Leaf(Tc) = {nj :

nj ∈ N \ n0, bj = 0}. Fig. 2 gives an example. When p̃ =

(p̃n0 , p̃n1 , p̃n2) = (1, 0, 0), then b = min(B1, 0)+ B̄2 + B̄3 =

(0, 1, 1, 2, 2, 0), signaling that only n1 and n6 are available
to the label set (as b1, b6 = 0), resulting in YTc = {n1, n6}.
More detailed examples are given in the appendix.

Optimization. The overall loss used for prompt tuning is
a combination of the two losses

L(Ct) = LDTL(C
t) + λLNCL(C

t) (11)

where λ is a hyperparameter. Note that, like previous prompt-
ing approaches, ProTeCt optimizes the learnable prompts
{cm}Mm=1 while keeping the parameters of Φtext, Φvis frozen.

6. Experiments
In this section, we discuss experiments for evaluating the
effectiveness of ProTeCt. To demonstrate that ProTeCt is a
plug-an-play method, it was applied to two SOTA prompt
tuning methods: CoOp [48] and MaPLe [17]. Each experi-
ment is averaged over 3 runs and full tables with error bars
are shown in the appendix for brevity. All experiments were
conducted on a single Nvidia A10 GPU, using Pytorch [31].
Please see the appendix for more training details and results.
ProTeCt code builds on the publicly available codebases for
CoOp and MaPLe and will be released upon publication.

Metrics: Accleaf of (4), HCA of (5) and MTA of (6)
are considered. MTA uses 5 tree dropout rates (β ∈
{0.1, 0.3, 0.5, 0.7, 0.9}) to sample treecuts of various granular-
ities. For each β, T treecuts are sampled without repetition
to obtain a total of 5T treecuts. MTA(5T ) indicates the result
is averaged over these 5T treecuts. We ablate T = 5 and
T = 20 on Cifar100 and use T = 5 for all datasets by default.

Training Details: All vanilla prompt-tuning and their Pro-
TeCt counterparts are trained under the same setting. The
following configuration is used unless noted. All experi-
ments use SGD optimizer and the learning rate is set to 0.02
with a cosine learning rate scheduler. By default, a pretrained
ViT-B/16 CLIP model is used as initialization. For Cifar100
and SUN, we train both CoOp and MaPLe prompts for 200
epochs, using a batch size of 128 and 32, respectively. For
ImageNet, CoOp is trained for 30 epochs with a batch size of
8, while MaPLe is trained for 10 epochs with a batch size of
2. Note that the setting is slightly different from the original
paper due to our GPU availability.

6.1. TOS Classification Performance
Table 2 shows that vanilla CoOp and MaPLe have reason-
able leaf accuracy for both 1-shot and 16-shot classification
on Cifar100, SUN, and ImageNet. However, their very low
HCA shows that their predictions are not consistent over
the class hierarchy. As a result, their TOS classification per-
formance (MTA) is much weaker than their leaf accuracy.
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Method K- w/ Cifar100 SUN ImageNet
Shot ProTeCt Accleaf HCA MTA (25) MTA (100) Accleaf HCA MTA (25) Accleaf HCA MTA (25)

CoOp

16 72.88 10.04 50.64 51.14 73.82 38.28 52.99 71.23 2.99 46.98
16 ✓ 72.94 56.85 87.69 87.30 74.59 62.94 83.51 69.92 37.74 88.61

(+0.06) (+46.81) (+37.05) (+36.16) (+0.77) (+24.66) (+30.52) (-1.31) (+34.75) (+41.63)
1 65.03 7.81 41.78 44.17 63.65 33.36 51.20 63.67 1.59 40.52
1 ✓ 66.88 41.01 81.64 81.01 63.79 49.62 76.25 66.11 25.79 86.14

(+1.85) (+33.2) (+39.86) (+36.84) (+0.14) (+16.26) (+25.05) (+2.44) (+24.2) (+45.62)

MaPLe

16 75.01 17.54 52.21 50.82 71.86 33.25 54.29 70.70 4.15 48.29
16 ✓ 75.34 61.15 88.04 88.33 72.17 59.71 82.27 69.52 31.24 87.87

(+0.33) (+43.61) (+35.83) (+37.51) (+0.31) (+26.46) (+27.98) (-1.18) (+27.09) (+39.58)
1 68.75 4.65 50.60 54.99 63.98 25.15 50.31 68.91 2.97 48.16
1 ✓ 69.33 48.10 83.36 83.78 64.29 50.45 76.73 66.16 20.44 85.18

(+0.58) (+43.45) (+32.76) (+28.79) (+0.31) (+25.30) (+26.42) (-2.75) (+17.47) (+37.02)

Table 2. TOS performance w/ and w/o ProTeCt on Cifar100 (λ = 0.5), SUN (λ = 0.5) and ImageNet (λ = 1). β = 0.1 for all datasets.
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Figure 3. Relative gain/loss after adding
ProTeCt to CoOp and MaPle, respec-
tively. (Top) HCA ; (Bottom) Accleaf .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Beta ( )

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

70.9
73.3 72.5 71.5 70.2 69.2 68.3

66.6 66.6 66.8

54.4

58.0 59.3 58.8 57.9 56.7
53.8 53.3

50.7 49.8Leaf Acc.
HCA

0 0.1 0.3 0.5 0.7 1
Lambda ( )

20

30

40

50

60

70

Ac
cu

ra
cy

64.8 66.2 67.1 66.9 66.5
63.8

32.9

39.4 40.8 41.0 40.4 40.0

Leaf Acc.
HCA

16 8 4 2 1
Shots

0

10

20

30

40

Re
la

tiv
e 

Ga
in

/L
os

s

0.9 1.4 1.9
-0.8

2.1

46.6
42.8

33.0

27.8
32.1

Leaf Acc.
HCA

(a) (b) (c)

Figure 4. Ablation of (a) tree dropout rate β, (b) NCL strength λ and (c) CLIP ViT B32 architecture.
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Figure 5. ProTeCt correctly predicts examples from ImageNet (a,b) and its variants (c,d) at all
levels. [GT, Prediction] shows the groundtruth and incorrect prediction by vanilla prompt tuning.

For example, 16-shot classification with CoOp on ImageNet
has a leaf accuracy of 71.23, but expected TOS accuracy of
46.98. This is explained by the very low HCA of 2.99. Simi-
lar observations hold for different few-shot configurations.
In all cases, ProTeCt (results on rows with a checkmark)
significantly improves HCA and MTA(25). For example,
it boosts the HCA of 16-shot classification with CoOp on
ImageNet by 34.75 (2.99 vs 37.74), leading to an increase
of MTA(25) of 41.63 (46.98 to 88.61).

Note that, in all cases, MTA(25) after ProTeCt training
is higher than leaf accuracy. This is expected for a well-
calibrated classifier, since decisions at intermediate levels of
the tree are coarser-grained than those at the leaves, which
can require very fine class distinctions. These results show
that ProTeCt robustifies the model for use in the TOS classi-
fication setting. The table also shows that ProTeCt maintains
leaf accuracies comparable to those of the vanilla methods.
Furthermore, the MTA results when 25 and 100 treecuts are
sampled (corresponding to T = 5 and T = 20), are compared
on Cifar100. It can be seen that the performances are similar,
showing that sampling 25 treecuts is sufficient to achieve

good estimation. Fig. 3 compares the relative gains in HCA
and leaf accuracy of training with ProTeCt, as compared to
vanilla prompt tuning. These gains are shown for both CoOp
and MaPLe, under several few shot configurations, on SUN
dataset. In all cases, ProTeCt increases HCA by more than
15 points, while maintaining a leaf accuracy comparable to
that of vanilla CoOp/MaPLe. Similar results for Cifar100
and ImageNet can be found in appendix.

6.2. Domain Generalization of TOS Classification
We investigate whether TOS classification performance gen-
eralizes across datasets, following the domain generaliza-
tion setting of [17, 44, 47, 48]. The CLIP model with Pro-
TeCt prompts trained on ImageNet (source) is applied to 4
ImageNet variants (target) with visual domain shift: Ima-
geNetv2 [33], ImageNet-Sketch [38], ImageNet-A [15] and
ImageNet-R [14]. Table 3 summarizes the three metrics on
these datasets for CoOp and MaPLe. Similarly to Table 2,
ProTeCt enables significant gains in HCA and MTA(25) over
the baselines for all datasets. Note that since ImageNet-A
and ImageNet-R only contain 200 ImageNet subclasses, their
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Method K- w/ ImageNetv2 [33] ImageNet-S [38] ImageNet-A [15] ImageNet-R [14]
Shot ProTeCt Accleaf HCA MTA (25) Accleaf HCA MTA (25) Accleaf HCA MTA (25) Accleaf HCA MTA (25)

CoOp

16 64.01 2.31 43.74 47.82 1.39 38.58 50.28 2.97 52.56 75.83 18.49 64.13
16 ✓ 62.60 32.84 86.66 46.80 20.73 82.60 49.08 22.45 78.21 74.94 31.18 75.59

(-1.41) (+30.53) (+42.92) (-1.02) (+19.34) (+44.02) (-1.20) (+19.48) (+25.65) (-0.89) (+12.69) (+11.40)
1 56.43 1.51 38.27 41.38 1.11 33.61 45.92 1.76 47.54 69.84 11.74 55.31
1 ✓ 60.16 22.95 84.38 44.75 13.88 80.64 48.95 20.52 76.95 74.26 27.46 76.48

(+3.73) (+21.44) (+46.11) (+3.37) (+12.77) (+47.03) (3.03) (+18.76) (+29.41) (+4.42) (+15.72) (+21.17)

MaPLe

16 64.15 1.97 45.93 48.97 1.58 43.37 50.61 2.31 54.88 76.61 20.67 63.06
16 ✓ 62.77 27.86 86.14 47.47 17.77 82.52 47.41 19.75 77.46 75.70 32.58 77.99

(-1.38) (+25.89) (+40.21) (-1.50) (+16.19) (+39.15) (-3.20) (+17.44) (+22.58) (-0.91) (+11.91) (+14.93)
1 61.78 2.18 45.50 46.79 1.70 45.26 47.55 3.52 55.48 74.55 18.85 62.48
1 ✓ 59.14 17.89 83.27 44.92 11.24 79.94 47.15 16.03 76.81 74.60 25.20 75.72

(-2.64) (+15.71) (+37.77) (-1.87) (+9.54) (+34.68) (-0.40) (+12.51) (+21.33) (+0.05) (+6.35) (+13.24)

Table 3. The gain of hierarchical consistency after adding ProTeCt generalizes across datasets in unseen domains. All methods are fine-tuned
on ImageNet and evaluated on its 4 variants.

DTL NCL
16-shot 1-shot

AccLeaf HCA MTA (25) AccLeaf HCA MTA (25)
72.88 10.04 50.64 65.03 7.81 41.78

✓ 72.81 47.97 87.32 64.77 32.93 81.38
✓ 64.20 51.69 79.44 61.22 38.02 62.16

✓ ✓ 72.94 56.85 87.69 66.88 41.01 81.64

Table 4. Loss ablation with CoOp on Cifar100 dataset. Both losses
improve the hierarchical consistency.

K- w/ CLIP-Adapter [12] CLIP+LORA [9]
Shot ProTeCt Accleaf HCA MTA (25) Accleaf HCA MTA (25)
16 71.96 5.59 42.93 70.45 4.57 47.19
16 ✓ 72.47 57.15 87.67 70.64 51.06 77.29

(+0.51) (+51.56) (+44.83) (+0.19) (+46.49) (+30.10)
1 65.35 8.35 48.25 63.57 2.89 38.63
1 ✓ 67.29 36.21 78.49 63.62 24.66 56.42

(+1.94) (+27.86) (+30.24) (+0.05) (+21.8) (+17.79)

Table 5. ProTeCt also improves adapter-based methods, including
CLIP-Adapter [12] and CLIP+LORA [9] (dataset: Cifar100).

hierarchy is different from that of ImageNet. These results
demonstrate the flexibility and robustness of ProTeCt, even
when transferring the model to a target domain whose class
hierarchy is different from that of the source domain.

6.3. Ablation Study and Visualization
In this section, we discuss the ablations of ProTeCt compo-
nents and visualize the predictions (more in the appendix).

Tree Dropout Rate β: Fig. 4 (a) plots Cifar100 Accleaf
and HCA as a function of the drop-out rate β, for 16-shot
CoOp+ProTeCt training (λ = 1). Larger values of β reduce
the likelihood of sampling the leaf nodes of the tree, resulting
in shorter trees and weaker regularization. Hence, both leaf
accuracy and HCA degrade for large β. However, always
using the full tree (β = 0) also achieves sub-optimal results.
The two metrics peak at β = 0.1 and β = 0.2, respectively.
β = 0.1 is selected for all experiments.

Loss: Fig. 4(b) ablates the strength of NCL loss (i.e. λ) for
ProTeCt+CoOp using 1-shot setting on Cifar100 and β = 0.1.
The introduction of NCL improves leaf accuracy/HCA from
64.8/32.9 (λ = 0) to 66.9/41 (λ = 0.5). We adopt λ = 0.5

for CIFAR100 and SUN. For ImageNet, λ = 0.5 and λ = 1

have similar performance. Table 4 further summarizes the
CoOp+ProTeCt performance with and without the two losses
of (11). Both losses improve TOS performance individually

and there is a large additional gain when they are combined.
Using NCL alone can degrade leaf performance, due to the
lack of regularization across different levels of the hierarchy.
The combination of the two losses overcomes this problem.
Architecture: Fig. 4 (c) shows that the gains for
CoOp+ProTeCt in Fig. 3 with CLIP ViT B16 also hold for
ViT B32, showing the plug-and-play properties of ProTeCt.
Adapter-based tuning methods: We further use the Pro-
TeCt losses to train the CLIP adapter of [12] and the
CLIP+LORA method of [9] to test the generation of ProTeCt.
Table 5 shows that this again produces large consistency
gains on the TOS setting, indicating that ProTeCt losses
generalize to both prompt-based and adapter-based methods.
Visualization: Fig. 5 shows examples from ImageNet (a,b)
and its variants (c,d). While ProTeCt correctly classifies
these examples at all hierarchy levels, vanilla prompt tuning
fails at certain levels. More examples are in the appendix.

7. Conclusion
In this work, we formulated the TOS classification setting,
including datasets, performance metrics, and experiments.
Given a dataset, a class hierarchy is built by assigning dataset
classes to leaf nodes and superclasses to internal nodes. The
TOS classifier is then expected to support classification with
label sets drawn throughout the taxonomy. We have shown
that existing FMs and prompting methods fail under this
setting and proposed ProTeCt training to enhance the TOS
performance of FMs, as a plug-and-play method. ProTeCt
includes two losses. A dynamic treecut loss, based on an
efficient treecut sampler, dynamically regularizes labels of
varying granularity. A node-centric loss encourages cor-
rect predictions at all hierarchy levels. Experiments show
that ProTeCt enhances TOS performance of existing prompt-
tuning techniques, and the gain generalizes across unseen do-
mains. Finally, we show that ProTeCt is applicable to various
architectures, hierarchies, and parameter-tuning methods.
Acknowledgement This work was partially funded by NSF
awards IIS-2303153, and a gift from Qualcomm. We also
acknowledge and thank the use of the Nautilus platform for
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Supplementary Material

The appendix is organized as follows. Section 8 pro-
vides more training details for ProTeCt. Section 9 shows
the complete proof of Lemma 4.1. Section 10 shows more
examples for explaining the implementation of treecut sam-
pler. Section 11, Section 12, and Section 13 shows the
complete results conducted on Cifar100, Sun and ImageNet,
respectively. Section 13 further shows the complete domain
generalization results by applying the model trained on Ima-
geNet to its 4 variants in a zero-shot fashion. We also test the
robustness of ProTeCt on additional hierarchies in Section 14
with the FGVC Aircraft [29] dataset and the RSI-CB [22]
satellite dataset. Ablations of different ProTeCt components
are shown in Section 15 and more visualizations of incor-
rect predictions from existing prompt tuning methods are
illustrated in Section 16.

8. Additional Training Details
In addition to the training details provided in the main paper,
we list the url links that are used for training and evaluating
ProTeCt. For CoOp and CoCoOp baselines, we adopt the
code from https://github.com/KaiyangZhou/CoOp.
For MaPLe, we adopt the code from https://github.

com/muzairkhattak/multimodal-prompt-learning.

9. Treecut size of a balanced M-ary tree

Lemma 4.1. For a balanced M-ary tree with depth L (root node

is excluded and is at depth 0), the number of all valid treecut is

L+
∑L

l=2

∑N−1
k=1

N !
k!(N−k)!

|N=Ml−1

Proof. This can be proved by induction. Given an M-ary tree with

depth L, the number of treecuts is denoted as fL. The idea is that

when adding the depth L, we only need to recompute the additional

possible treecuts between depth L− 1 and L. Since there are N =

ML−1 nodes in layer L−1, the possible treecuts after adding layer L

is 1 +
∑N−1

k=1
N !

k!(N−k)!
|N=ML−1 , where 1 indicates the treecut that

covers all nodes at depth L and
∑N−1

k=1
N !

k!(N−k)!
|N=ML−1 means k

nodes are covered in layer L− 1. Below is the proof.

• When L = 1, f1 = 1.

• When L = 2, f2 = 1 + f1 +
∑N−1

k=1
N !

k!(N−k)!
|N=ML−1 . Con-

sider the binary case, where M = 2 and N = ML−1 = 2, then

f2 = 1 + f1 +
2!

1!(2−1)!
= 1 + 1 + 2 = 4

• Similarly, f3 = 1 + f2 +
∑N−1

k=1
N !

k!(N−k)!
|N=ML−1

•

fL = 1 + fL−1 +
N−1∑
k=1

N !

k!(N − k)!
|N=ML−1

= 1 + 1 + fL−2 +
N−1∑
k=1

N !

k!(N − k)!
|N=ML−2

+
N−1∑
k=1

N !

k!(N − k)!
|N=ML−1

= L+
L∑

l=2

N−1∑
k=1

N !

k!(N − k)!
|N=Ml−1

10. Additional Examples for Treecut Sampler
In this section, we provide more detailed examples of the
proposed Treecut sampler (i.e. Algorithm 1 in the main
paper). Given the class hierarchy T on the left of Figure 6,
three possible treecuts can be sampled by T , i.e., YTc =

{n1, n6} (see Figure 6), YTc = {n2, n3, n6} (see Figure 7),
and YTc = {n3, n4, n5, n6} (see Figure 8), depending on
the sampled values pn at each internal node n ∈ N int =

{n0, n1, n2}. Note that pn0 is always set to 1 to ensure that
the tree is not entirely pruned. As described in the paper,
we use a dependency matrix D to correct p as p̃, which is
aligned with the dependency relationship among the internal
nodes. For example, in the example shown in Figure 6,
pn2 = 1 is corrected as p̃n2 = 0, since n2 depends on n1 and
pn1 = 0. A mask b, flagging the unavailable labels, is then
computed according to the values of p̃. More specifically,
the corresponding row in min(B, 0) is fetched when p̃n =

1, and that in B̄ is used when p̃n = 0, for each internal
node n ∈ N int. These masks are accumulated into the final
mask b, as shown on the right of each figure, where entries
of 0 indicate the available labels for the sampled label set.
For example, in Figure 7, the sampled label set contains
{n2, n3, n6}, because b2, b3 and b6 are 0s. Note that since the
proposed Treecut Sampler maintains the node dependency
with pre-computed matrices defined by the given hierarchy
T , it does not require any recursive traversal over the tree,
and thus it is very efficient for the on-the-fly treecut sampling.

11. Complete Table of Cifar100 Experiments
In this section, we report the complete experiment results
conducted on Cifar100. Table 6, Table 7 and Table 8 shows
the results of vanilla CoOp and its results after adding Pro-
TeCt. The CLIP features from ViT B16, ViT B32 and ViT
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Figure 6. Treecut example of YTc = {n1, n6}.
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Figure 7. Treecut example of YTc = {n2, n3, n6}.
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Figure 8. Treecut example of YTc = {n3, n4, n5, n6}.

L14 are considered in Table 6, Table 7 and Table 8, respec-
tively. While it is known that CLIP ViT L14 has a more
powerful representation than ViT B32 and ViT B16 (also re-
flected in the leaf accuracy between three tables), all of them
perform equally poor in terms of HCA (10.04/4.95/11.14
for 16-shot CoOp using CLIP B16/B32/L14 feature). This
shows that simply using a stronger CLIP feature does not
address the problem of hierarchical classification and does
not improve hierarchical consistency. Furthermore, Table 6
contains the result of ProTeCt without using the treecut sam-
pler (β = 0 ; Block 2 and Block 3) and without using NCL
loss of (7) (λ = 0 ; Block 4) under multiple low-shot set-
tings. For example, when 16-shot is considered, adding both
NCL loss and treecut sampler (λ = 0.5 and β = 0.1) gives
the result of 56.85 for HCA. Removing the tree dropout
(λ = 0.5 and β = 0) yields 51.99 and removing the NCL

loss (λ = 0 and β = 0.1) yields 47.97. This shows that both
the NCL loss and the treecut sampler are important and lead
to a significant gain over vanilla CoOp (HCA=10.04). Ta-
ble 9 shows similar results when adding ProTeCt on MaPLe.
Furthermore, we sampled T treecuts for each dropout rate
β = {0.1, 0.3, 0.5, 0.7, 0.9}, where T = 5 and T = 20, result-
ing in 25 and 100 treecuts, respectively. Table 10 demon-
strates ProTeCt can improve the MTA metric for both CoOp
and MaPLe for both 25 and 100 randomly sampled tree-
cuts. Table 11 further shows that ProTeCt can generalize to
ResNet-based architectures.
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Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B16 16 N/A N/A 72.88 ± 0.62 10.04 ± 1.11
CoOp ViT B16 8 N/A N/A 70.84 ± 0.85 6.03 ± 0.64
CoOp ViT B16 4 N/A N/A 69.47 ± 0.90 6.15 ± 1.04
CoOp ViT B16 2 N/A N/A 68.17 ± 0.57 4.19 ± 0.81
CoOp ViT B16 1 N/A N/A 65.03 ± 0.56 7.81 ± 0.14
CoOp ViT B16 16 ✓ 0.5 0 72.08 ± 0.38 51.99 ± 0.24
CoOp ViT B16 8 ✓ 0.5 0 68.94 ± 0.52 49.01 ± 0.54
CoOp ViT B16 4 ✓ 0.5 0 66.38 ± 1.18 45.24 ± 0.93
CoOp ViT B16 2 ✓ 0.5 0 63.96 ± 0.57 42.78 ± 1.49
CoOp ViT B16 1 ✓ 0.5 0 62.01 ± 0.80 34.90 ± 1.08
CoOp ViT B16 16 ✓ 1 0 70.86 ± 0.59 54.39 ± 0.68
CoOp ViT B16 8 ✓ 1 0 68.76 ± 0.90 52.14 ± 0.32
CoOp ViT B16 4 ✓ 1 0 66.92 ± 0.20 47.63 ± 0.54
CoOp ViT B16 2 ✓ 1 0 64.87 ± 1.28 40.74 ± 0.87
CoOp ViT B16 1 ✓ 1 0 62.57 ± 0.06 38.97 ± 1.29
CoOp ViT B16 16 ✓ 0 0.1 72.81 ± 0.31 47.97 ± 0.70
CoOp ViT B16 8 ✓ 0 0.1 70.94 ± 0.18 48.53 ± 0.02
CoOp ViT B16 4 ✓ 0 0.1 69.10 ± 0.92 45.20 ± 0.25
CoOp ViT B16 2 ✓ 0 0.1 68.85 ± 0.11 42.28 ± 1.57
CoOp ViT B16 1 ✓ 0 0.1 64.77 ± 1.37 32.93 ± 0.42
CoOp ViT B16 16 ✓ 0.5 0.1 72.94 ± 0.83 56.85 ± 1.60
CoOp ViT B16 8 ✓ 0.5 0.1 71.10 ± 1.06 52.27 ± 0.62
CoOp ViT B16 4 ✓ 0.5 0.1 69.46 ± 0.58 48.71 ± 0.13
CoOp ViT B16 2 ✓ 0.5 0.1 68.63 ± 0.67 46.03 ± 0.24
CoOp ViT B16 1 ✓ 0.5 0.1 66.88 ± 0.21 41.01 ± 1.18
CoOp ViT B16 16 ✓ 1 0.1 73.26 ± 0.66 58.01 ± 0.43
CoOp ViT B16 8 ✓ 1 0.1 70.10 ± 0.08 52.81 ± 0.05
CoOp ViT B16 4 ✓ 1 0.1 68.41 ± 0.50 49.59 ± 0.89
CoOp ViT B16 2 ✓ 1 0.1 67.73 ± 1.25 45.27 ± 0.28
CoOp ViT B16 1 ✓ 1 0.1 63.84 ± 1.51 40.05 ± 1.48

Table 6. Performance of few-shot CoOp on Cifar100 under ViT
B16. Ablations cover both NCL strengths λ and tree dropout rate
β.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B32 16 N/A N/A 68.13 ± 0.19 4.95 ± 0.61
CoOp ViT B32 8 N/A N/A 65.52 ± 0.15 5.82 ± 0.29
CoOp ViT B32 4 N/A N/A 63.42 ± 1.40 8.56 ± 0.72
CoOp ViT B32 2 N/A N/A 63.65 ± 0.60 10.25 ± 0.88
CoOp ViT B32 1 N/A N/A 59.53 ± 0.60 3.43 ± 0.86
CoOp ViT B32 16 ✓ 0 0.1 68.42 ± 0.91 47.79 ± 0.54
CoOp ViT B32 8 ✓ 0 0.1 66.39 ± 0.48 44.47 ± 0.98
CoOp ViT B32 4 ✓ 0 0.1 64.73 ± 0.17 31.72 ± 0.33
CoOp ViT B32 2 ✓ 0 0.1 64.55 ± 0.44 30.78 ± 0.66
CoOp ViT B32 1 ✓ 0 0.1 60.91 ± 0.42 34.64 ± 0.55
CoOp ViT B32 16 ✓ 0.5 0.1 68.87 ± 1.09 51.55 ± 0.65
CoOp ViT B32 8 ✓ 0.5 0.1 66.85 ± 0.32 48.39 ± 1.35
CoOp ViT B32 4 ✓ 0.5 0.1 65.41 ± 0.74 41.63 ± 0.39
CoOp ViT B32 2 ✓ 0.5 0.1 62.86 ± 0.81 38.13 ± 0.61
CoOp ViT B32 1 ✓ 0.5 0.1 61.59 ± 0.80 35.65 ± 0.19
CoOp ViT B32 16 ✓ 1 0.1 68.93 ± 0.22 51.67 ± 0.58
CoOp ViT B32 8 ✓ 1 0.1 65.54 ± 0.54 48.36 ± 0.63
CoOp ViT B32 4 ✓ 1 0.1 64.28 ± 0.07 42.78 ± 1.04
CoOp ViT B32 2 ✓ 1 0.1 61.68 ± 0.67 40.53 ± 0.42
CoOp ViT B32 1 ✓ 1 0.1 58.98 ± 0.88 36.59 ± 0.76

Table 7. Performance of few-shot CoOp on Cifar100 under ViT
B32. Ablations cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT L14 16 N/A N/A 79.98 ± 0.97 11.14 ± 0.47
CoOp ViT L14 8 N/A N/A 79.37 ± 0.90 6.91 ± 0.67
CoOp ViT L14 4 N/A N/A 77.34 ± 0.78 7.78 ± 0.82
CoOp ViT L14 2 N/A N/A 76.63 ± 0.65 5.21 ± 0.87
CoOp ViT L14 1 N/A N/A 73.26 ± 0.95 4.87 ± 0.15
CoOp ViT L14 16 ✓ 0 0.1 81.17 ± 0.34 63.40 ± 0.30
CoOp ViT L14 8 ✓ 0 0.1 80.00 ± 0.98 62.11 ± 0.81
CoOp ViT L14 4 ✓ 0 0.1 79.05 ± 0.68 57.19 ± 0.26
CoOp ViT L14 2 ✓ 0 0.1 78.53 ± 0.69 40.59 ± 0.68
CoOp ViT L14 1 ✓ 0 0.1 76.48 ± 0.52 45.11 ± 0.68
CoOp ViT L14 16 ✓ 0.5 0.1 80.95 ± 0.38 68.92 ± 0.77
CoOp ViT L14 8 ✓ 0.5 0.1 79.87 ± 0.11 64.05 ± 0.57
CoOp ViT L14 4 ✓ 0.5 0.1 79.18 ± 0.51 51.88 ± 0.45
CoOp ViT L14 2 ✓ 0.5 0.1 76.76 ± 0.24 51.96 ± 0.06
CoOp ViT L14 1 ✓ 0.5 0.1 73.89 ± 0.62 50.31 ± 1.02
CoOp ViT L14 16 ✓ 1 0.1 80.45 ± 0.90 70.15 ± 0.98
CoOp ViT L14 8 ✓ 1 0.1 79.25 ± 0.93 65.75 ± 0.69
CoOp ViT L14 4 ✓ 1 0.1 78.37 ± 0.13 47.30 ± 0.20
CoOp ViT L14 2 ✓ 1 0.1 75.21 ± 0.33 54.78 ± 0.66
CoOp ViT L14 1 ✓ 1 0.1 74.93 ± 0.15 52.08 ± 1.04

Table 8. Performance of few-shot CoOp on Cifar100 under both
ViT L14. Ablations cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
MaPLe ViT B16 16 N/A N/A 75.01 ± 0.37 17.54 ± 0.83
MaPLe ViT B16 8 N/A N/A 73.93 ± 0.46 9.44 ± 1.13
MaPLe ViT B16 4 N/A N/A 72.68 ± 0.47 20.29 ± 1.07
MaPLe ViT B16 2 N/A N/A 71.37 ± 1.39 12.15 ± 0.25
MaPLe ViT B16 1 N/A N/A 68.75 ± 0.96 4.65 ± 1.52
MaPLe ViT B16 16 ✓ 0 0.1 75.82 ± 0.10 58.63 ± 0.43
MaPLe ViT B16 8 ✓ 0 0.1 74.29 ± 0.91 57.31 ± 0.79
MaPLe ViT B16 4 ✓ 0 0.1 72.92 ± 0.42 54.12 ± 1.56
MaPLe ViT B16 2 ✓ 0 0.1 71.09 ± 1.35 47.78 ± 0.64
MaPLe ViT B16 1 ✓ 0 0.1 68.32 ± 0.20 39.43 ± 0.25
MaPLe ViT B16 16 ✓ 0.5 0.1 75.34 ± 0.39 61.15 ± 0.53
MaPLe ViT B16 8 ✓ 0.5 0.1 74.30 ± 0.29 60.24 ± 0.82
MaPLe ViT B16 4 ✓ 0.5 0.1 71.35 ± 0.61 56.03 ± 0.35
MaPLe ViT B16 2 ✓ 0.5 0.1 70.24 ± 1.01 52.56 ± 0.48
MaPLe ViT B16 1 ✓ 0.5 0.1 69.33 ± 0.81 48.10 ± 0.26
MaPLe ViT B16 16 ✓ 1 0.1 76.30 ± 0.56 62.04 ± 0.97
MaPLe ViT B16 8 ✓ 1 0.1 73.60 ± 0.69 61.20 ± 0.77
MaPLe ViT B16 4 ✓ 1 0.1 72.06 ± 0.34 56.51 ± 1.24
MaPLe ViT B16 2 ✓ 1 0.1 69.95 ± 1.30 53.53 ± 0.67
MaPLe ViT B16 1 ✓ 1 0.1 70.44 ± 0.10 46.94 ± 0.85

Table 9. Performance of few-shot MaPLe on Cifar100. Ablations
cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β MTA (25) MTA (100)
CoOp ViT B32 16 N/A N/A 52.33 54.58
CoOp ViT B32 8 N/A N/A 46.09 47.20
CoOp ViT B32 4 N/A N/A 53.35 54.30
CoOp ViT B32 2 N/A N/A 53.13 53.81
CoOp ViT B32 1 N/A N/A 38.80 40.16
CoOp ViT B32 16 ✓ 0.5 0.1 86.26 85.73
CoOp ViT B32 8 ✓ 0.5 0.1 85.05 84.57
CoOp ViT B32 4 ✓ 0.5 0.1 81.01 80.61
CoOp ViT B32 2 ✓ 0.5 0.1 79.95 79.98
CoOp ViT B32 1 ✓ 0.5 0.1 78.08 76.95
CoOp ViT B16 16 N/A N/A 50.64 51.14
CoOp ViT B16 8 N/A N/A 47.95 50.41
CoOp ViT B16 4 N/A N/A 43.77 46.29
CoOp ViT B16 2 N/A N/A 40.81 42.95
CoOp ViT B16 1 N/A N/A 41.78 44.17
CoOp ViT B16 16 ✓ 0.5 0.1 87.69 87.30
CoOp ViT B16 8 ✓ 0.5 0.1 86.28 86.01
CoOp ViT B16 4 ✓ 0.5 0.1 84.52 83.79
CoOp ViT B16 2 ✓ 0.5 0.1 83.49 83.18
CoOp ViT B16 1 ✓ 0.5 0.1 81.64 81.01
CoOp ViT L14 16 N/A N/A 58.81 60.89
CoOp ViT L14 8 N/A N/A 40.49 43.20
CoOp ViT L14 4 N/A N/A 44.71 47.39
CoOp ViT L14 2 N/A N/A 39.44 43.22
CoOp ViT L14 1 N/A N/A 52.32 54.90
CoOp ViT L14 16 ✓ 0.5 0.1 90.83 90.48
CoOp ViT L14 8 ✓ 0.5 0.1 89.39 89.16
CoOp ViT L14 4 ✓ 0.5 0.1 84.48 84.79
CoOp ViT L14 2 ✓ 0.5 0.1 85.57 85.29
CoOp ViT L14 1 ✓ 0.5 0.1 83.65 83.52

MaPLe ViT B16 16 N/A N/A 52.21 50.82
MaPLe ViT B16 8 N/A N/A 58.56 61.48
MaPLe ViT B16 4 N/A N/A 66.14 67.06
MaPLe ViT B16 2 N/A N/A 55.98 57.59
MaPLe ViT B16 1 N/A N/A 50.60 54.99
MaPLe ViT B16 16 ✓ 0.5 0.1 88.04 88.33
MaPLe ViT B16 8 ✓ 0.5 0.1 87.65 88.13
MaPLe ViT B16 4 ✓ 0.5 0.1 86.72 87.04
MaPLe ViT B16 2 ✓ 0.5 0.1 85.03 85.39
MaPLe ViT B16 1 ✓ 0.5 0.1 83.36 83.78

Table 10. Performance of MTA for both few-shot CoOp and MaPLe
on Cifar100. 25 (T = 5) and 100 (T = 20) treecuts are sampled
for MTA evaluation.

Method Encoder K-shot w/ ProTeCt Accleaf HCA MTA (25)
CoOp ResNet-50 16 52.61 5.72 41.97
CoOp ResNet-50 16 ✓ 52.83 33.34 79.06
CoOp ResNet-101 16 56.97 5.58 53.43
CoOp ResNet-101 16 ✓ 57.64 39.93 81.76

Table 11. CoOp 16-shot results on Cifar100 with ResNets.
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12. Complete Table of SUN Experiments

In this section, we report the complete experiment result
conducted on SUN. Table 12 and Table 13 show the results
of vanilla CoOp and MaPLe, and their results after adding
ProTeCt. When comparing the HCA results of the vanilla
prompt tuning with that of Cifar100 and ImageNet, the HCA
result on SUN is much higher and the gap between HCA and
Accleaf is much smaller. This is due to the shallow hierarchy
of SUN dataset, indicating SUN is a much simpler dataset
for hierarchical classification. However, we still see that
ProTeCt achieves consistent improvement over the vanilla
prompt tuning methods. Table 14 further compares the MTA
result of vanilla CoOp and MaPLe, and their ProTeCt coun-
terpart.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B16 16 N/A N/A 73.82 ± 0.12 38.28 ± 0.46
CoOp ViT B16 8 N/A N/A 71.77 ± 0.67 33.95 ± 0.08
CoOp ViT B16 4 N/A N/A 69.31 ± 0.51 30.51 ± 0.71
CoOp ViT B16 2 N/A N/A 66.34 ± 0.33 36.85 ± 0.67
CoOp ViT B16 1 N/A N/A 63.65 ± 1.42 33.36 ± 0.21
CoOp ViT B16 16 ✓ 0 0.1 74.95 ± 0.69 60.95 ± 0.91
CoOp ViT B16 8 ✓ 0 0.1 72.31 ± 0.18 57.61 ± 1.31
CoOp ViT B16 4 ✓ 0 0.1 69.53 ± 0.77 54.79 ± 0.12
CoOp ViT B16 2 ✓ 0 0.1 67.01 ± 1.10 50.78 ± 0.03
CoOp ViT B16 1 ✓ 0 0.1 64.45 ± 0.96 47.75 ± 0.11
CoOp ViT B16 8 ✓ 0.5 0.1 74.59 ± 0.41 62.94 ± 0.15
CoOp ViT B16 4 ✓ 0.5 0.1 71.53 ± 0.67 58.17 ± 0.33
CoOp ViT B16 2 ✓ 0.5 0.1 69.80 ± 0.98 56.85 ± 0.41
CoOp ViT B16 16 ✓ 0.5 0.1 67.29 ± 1.32 51.82 ± 1.20
CoOp ViT B16 1 ✓ 0.5 0.1 63.79 ± 1.16 49.62 ± 1.40
CoOp ViT B16 16 ✓ 1 0.1 74.31 ± 0.23 62.96 ± 0.61
CoOp ViT B16 8 ✓ 1 0.1 71.27 ± 0.42 58.74 ± 0.98
CoOp ViT B16 4 ✓ 1 0.1 68.81 ± 0.71 55.90 ± 0.09
CoOp ViT B16 2 ✓ 1 0.1 67.66 ± 0.51 50.94 ± 1.31
CoOp ViT B16 1 ✓ 1 0.1 63.95 ± 1.19 50.99 ± 1.21

Table 12. Performance of few-shot CoOp on SUN. Ablations cover
different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
MaPLe ViT B16 16 N/A N/A 71.86 ± 0.11 33.25 ± 1.31
MaPLe ViT B16 8 N/A N/A 68.96 ± 0.51 29.63 ± 0.19
MaPLe ViT B16 4 N/A N/A 67.27 ± 0.45 25.97 ± 0.53
MaPLe ViT B16 2 N/A N/A 65.33 ± 1.21 29.79 ± 0.13
MaPLe ViT B16 1 N/A N/A 63.98 ± 0.99 25.15 ± 0.76
MaPLe ViT B16 16 ✓ 0 0.1 72.89 ± 0.77 56.52 ± 0.88
MaPLe ViT B16 8 ✓ 0 0.1 71.24 ± 0.76 55.49 ± 1.05
MaPLe ViT B16 4 ✓ 0 0.1 69.24 ± 0.41 51.88 ± 1.22
MaPLe ViT B16 2 ✓ 0 0.1 66.98 ± 0.44 51.60 ± 0.55
MaPLe ViT B16 1 ✓ 0 0.1 63.80 ± 1.51 47.93 ± 0.31
MaPLe ViT B16 16 ✓ 0.5 0.1 72.17 ± 1.20 59.71 ± 0.04
MaPLe ViT B16 8 ✓ 0.5 0.1 71.04 ± 0.09 57.78 ± 1.22
MaPLe ViT B16 4 ✓ 0.5 0.1 68.64 ± 0.61 54.86 ± 1.08
MaPLe ViT B16 2 ✓ 0.5 0.1 66.37 ± 0.62 53.13 ± 0.39
MaPLe ViT B16 1 ✓ 0.5 0.1 64.29 ± 1.23 50.45 ± 0.40
MaPLe ViT B16 16 ✓ 1 0.1 71.03 ± 0.99 59.92 ± 0.06
MaPLe ViT B16 8 ✓ 1 0.1 69.66 ± 0.16 57.60 ± 0.81
MaPLe ViT B16 4 ✓ 1 0.1 66.96 ± 0.31 53.61 ± 0.55
MaPLe ViT B16 2 ✓ 1 0.1 66.74 ± 0.36 53.54 ± 0.76
MaPLe ViT B16 1 ✓ 1 0.1 63.46 ± 0.14 50.49 ± 1.01

Table 13. Performance of few-shot MaPLe on SUN. Ablations
cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β MTA
CoOp ViT B16 16 N/A N/A 52.99
CoOp ViT B16 8 N/A N/A 55.24
CoOp ViT B16 4 N/A N/A 49.48
CoOp ViT B16 2 N/A N/A 51.94
CoOp ViT B16 1 N/A N/A 51.20
CoOp ViT B16 16 ✓ 0.5 0.1 83.51
CoOp ViT B16 8 ✓ 0.5 0.1 81.34
CoOp ViT B16 4 ✓ 0.5 0.1 80.30
CoOp ViT B16 2 ✓ 0.5 0.1 76.59
CoOp ViT B16 1 ✓ 0.5 0.1 76.25

MaPLe ViT B16 16 N/A N/A 54.29
MaPLe ViT B16 8 N/A N/A 53.24
MaPLe ViT B16 4 N/A N/A 55.79
MaPLe ViT B16 2 N/A N/A 51.30
MaPLe ViT B16 1 N/A N/A 50.31
MaPLe ViT B16 16 ✓ 0.5 0.1 82.27
MaPLe ViT B16 8 ✓ 0.5 0.1 80.71
MaPLe ViT B16 4 ✓ 0.5 0.1 79.10
MaPLe ViT B16 2 ✓ 0.5 0.1 77.55
MaPLe ViT B16 1 ✓ 0.5 0.1 76.73

Table 14. Performance of MTA for both few-shot CoOp and MaPLe
on Sun.

13. Complete Table of ImageNet Experiments

In this section, we report the complete experiment result con-
ducted on ImageNet. Table 15 first show the performance
of CLIP and CoCoOp as a complement of Table 1 in the
main paper. Note that none of the CLIP features (e.g. ViT
B32, ViT B16, RN50, RN101) nor existing prompt tuning
methods help the HCA metric. Table 16 and Table 17 show
the results of vanilla CoOp and MaPLe, and their results
after adding ProTeCt. Table 18 further compares the MTA
result of vanilla CoOp and MaPLe, and their ProTeCt coun-
terpart. Clearly, adding ProTeCt boosts both HCA and MTA.
Furthermore, we apply the model trained on ImageNet to
its four variants. Table 19, Table 20, Table 21 and Table 22
report the domain generalization results on ImageNetV2,
ImageNet-sketch, ImageNet-A and ImageNet-R datasets for
Accleaf , HCA and MTA. All four tables show that ProTeCt
can not only improves the hierarchical consistency on the
seen dataset, but also unseen datasets from other image do-
mains.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CLIP ViT-B32 0 N/A N/A 63.31 4.29
CLIP ViT-B16 0 N/A N/A 68.36 3.32
CLIP RN50 0 N/A N/A 59.81 4.16
CLIP RN101 0 N/A N/A 62.30 2.03

CoCoOp ViT-B16 16 N/A N/A 71.20 ± 0.13 2.92 ± 1.23

Table 15. Performance of zero-shot CLIP and 16-shot CoCoOp on
ImageNet.
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Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B16 16 N/A N/A 71.23 ± 0.67 2.99 ± 1.04
CoOp ViT B16 8 N/A N/A 69.40 ± 0.52 3.00 ± 0.58
CoOp ViT B16 4 N/A N/A 68.06 ± 0.42 2.95 ± 0.62
CoOp ViT B16 2 N/A N/A 65.46 ± 0.77 1.56 ± 0.17
CoOp ViT B16 1 N/A N/A 63.67 ± 0.85 1.59 ± 0.43
CoOp ViT B16 16 ✓ 0 0.1 70.47 ± 0.22 27.81 ± 0.71
CoOp ViT B16 8 ✓ 0 0.1 70.03 ± 0.14 26.17 ± 0.52
CoOp ViT B16 4 ✓ 0 0.1 69.32 ± 0.11 21.99 ± 0.10
CoOp ViT B16 2 ✓ 0 0.1 68.09 ± 0.23 20.92 ± 1.02
CoOp ViT B16 1 ✓ 0 0.1 67.26 ± 0.65 18.69 ± 1.12
CoOp ViT B16 8 ✓ 0.5 0.1 70.27 ± 0.36 34.63 ± 0.33
CoOp ViT B16 4 ✓ 0.5 0.1 69.65 ± 0.41 31.84 ± 0.35
CoOp ViT B16 2 ✓ 0.5 0.1 68.09 ± 0.16 27.05 ± 0.27
CoOp ViT B16 16 ✓ 0.5 0.1 67.24 ± 0.24 26.09 ± 0.53
CoOp ViT B16 1 ✓ 0.5 0.1 66.69 ± 0.15 23.79 ± 0.15
CoOp ViT B16 16 ✓ 1 0.1 69.92 ± 0.21 37.74 ± 0.12
CoOp ViT B16 8 ✓ 1 0.1 69.34 ± 0.17 34.66 ± 0.55
CoOp ViT B16 4 ✓ 1 0.1 68.06 ± 0.44 30.87 ± 0.32
CoOp ViT B16 2 ✓ 1 0.1 67.12 ± 0.35 26.34 ± 1.1
CoOp ViT B16 1 ✓ 1 0.1 66.11 ± 0.50 25.79 ± 0.06

Table 16. Performance of few-shot CoOp on ImageNet. Ablations
cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
MaPLe ViT B16 16 N/A N/A 70.70 ± 0.11 4.15 ± 1.05
MaPLe ViT B16 8 N/A N/A 70.44 ± 0.06 4.32 ± 0.90
MaPLe ViT B16 4 N/A N/A 70.20 ± 0.06 2.95 ± 0.87
MaPLe ViT B16 2 N/A N/A 69.74 ± 0.25 4.27 ± 1.32
MaPLe ViT B16 1 N/A N/A 68.91 ± 0.13 2.97 ± 1.08
MaPLe ViT B16 16 ✓ 0 0.1 70.08 ± 0.26 23.38 ± 1.43
MaPLe ViT B16 8 ✓ 0 0.1 69.00 ± 0.26 21.71 ± 0.64
MaPLe ViT B16 4 ✓ 0 0.1 68.50 ± 0.41 19.03 ± 0.21
MaPLe ViT B16 2 ✓ 0 0.1 67.45 ± 0.32 17.54 ± 0.52
MaPLe ViT B16 1 ✓ 0 0.1 67.03 ± 0.11 16.54 ± 0.32
MaPLe ViT B16 16 ✓ 0.5 0.1 69.59 ± 0.25 27.74 ± 1.31
MaPLe ViT B16 8 ✓ 0.5 0.1 69.06 ± 0.49 25.25 ± 0.52
MaPLe ViT B16 4 ✓ 0.5 0.1 68.13 ± 0.01 25.25 ± 0.12
MaPLe ViT B16 2 ✓ 0.5 0.1 67.45 ± 0.43 20.14 ± 1.07
MaPLe ViT B16 1 ✓ 0.5 0.1 66.80 ± 0.26 20.62 ± 0.65
MaPLe ViT B16 16 ✓ 1 0.1 69.52 ± 0.71 31.24 ± 1.02
MaPLe ViT B16 8 ✓ 1 0.1 68.48 ± 0.06 26.92 ± 0.42
MaPLe ViT B16 4 ✓ 1 0.1 68.59 ± 0.17 26.28 ± 0.31
MaPLe ViT B16 2 ✓ 1 0.1 67.12 ± 0.11 22.96 ± 0.05
MaPLe ViT B16 1 ✓ 1 0.1 66.16 ± 0.88 20.44 ± 0.77

Table 17. Performance of few-shot MaPLe on ImageNet. Ablations
cover different NCL strengths λ.

Method Encoder K-shot w/ ProTeCt λ β MTA
CoOp ViT B16 16 N/A N/A 46.98
CoOp ViT B16 8 N/A N/A 46.04
CoOp ViT B16 4 N/A N/A 42.57
CoOp ViT B16 2 N/A N/A 44.89
CoOp ViT B16 1 N/A N/A 40.52
CoOp ViT B16 16 ✓ 0.5 0.1 88.61
CoOp ViT B16 8 ✓ 0.5 0.1 87.86
CoOp ViT B16 4 ✓ 0.5 0.1 87.37
CoOp ViT B16 2 ✓ 0.5 0.1 86.14
CoOp ViT B16 1 ✓ 0.5 0.1 86.14

MaPLe ViT B16 16 N/A N/A 48.29
MaPLe ViT B16 8 N/A N/A 45.84
MaPLe ViT B16 4 N/A N/A 51.84
MaPLe ViT B16 2 N/A N/A 48.17
MaPLe ViT B16 1 N/A N/A 48.16
MaPLe ViT B16 16 ✓ 0.5 0.1 87.87
MaPLe ViT B16 8 ✓ 0.5 0.1 87.26
MaPLe ViT B16 4 ✓ 0.5 0.1 86.85
MaPLe ViT B16 2 ✓ 0.5 0.1 85.93
MaPLe ViT B16 1 ✓ 0.5 0.1 85.18

Table 18. Performance of MTA for both few-shot CoOp and MaPLe
on ImageNet.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA MTA
CoOp ViT B16 16 N/A N/A 64.01 2.31 43.74
CoOp ViT B16 8 N/A N/A 62.20 2.62 43.30
CoOp ViT B16 4 N/A N/A 61.51 2.48 40.68
CoOp ViT B16 2 N/A N/A 58.68 1.35 42.84
CoOp ViT B16 1 N/A N/A 56.43 1.51 38.27
CoOp ViT B16 16 ✓ 1 0.1 62.60 32.84 86.66
CoOp ViT B16 8 ✓ 1 0.1 62.15 30.65 85.84
CoOp ViT B16 4 ✓ 1 0.1 61.24 26.85 85.52
CoOp ViT B16 2 ✓ 1 0.1 60.42 23.22 84.38
CoOp ViT B16 1 ✓ 1 0.1 60.16 22.95 84.38

MaPLe ViT B16 16 N/A N/A 64.15 1.97 45.93
MaPLe ViT B16 8 N/A N/A 62.76 1.99 43.98
MaPLe ViT B16 4 N/A N/A 63.45 2.51 49.41
MaPLe ViT B16 2 N/A N/A 61.75 2.81 45.92
MaPLe ViT B16 1 N/A N/A 61.78 2.18 45.50
MaPLe ViT B16 16 ✓ 1 0.1 62.77 27.86 86.14
MaPLe ViT B16 8 ✓ 1 0.1 61.42 23.45 85.51
MaPLe ViT B16 4 ✓ 1 0.1 61.89 22.92 85.17
MaPLe ViT B16 2 ✓ 1 0.1 60.43 20.10 84.23
MaPLe ViT B16 1 ✓ 1 0.1 59.14 17.89 83.27

Table 19. Domain generalization on ImageNetv2 dataset using
CoOp and MaPLe.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA MTA
CoOp ViT B16 16 N/A N/A 47.82 1.39 38.58
CoOp ViT B16 8 N/A N/A 45.93 2.10 42.56
CoOp ViT B16 4 N/A N/A 44.60 1.41 36.52
CoOp ViT B16 2 N/A N/A 42.17 0.96 36.01
CoOp ViT B16 1 N/A N/A 41.38 1.11 33.61
CoOp ViT B16 16 ✓ 1 0.1 46.80 20.73 82.60
CoOp ViT B16 8 ✓ 1 0.1 46.91 19.71 82.11
CoOp ViT B16 4 ✓ 1 0.1 46.53 17.69 82.07
CoOp ViT B16 2 ✓ 1 0.1 45.40 15.49 80.82
CoOp ViT B16 1 ✓ 1 0.1 44.75 13.88 80.64

MaPLe ViT B16 16 N/A N/A 48.97 1.58 43.37
MaPLe ViT B16 8 N/A N/A 47.55 1.66 45.26
MaPLe ViT B16 4 N/A N/A 48.20 2.45 53.31
MaPLe ViT B16 2 N/A N/A 46.86 1.01 42.55
MaPLe ViT B16 1 N/A N/A 46.79 1.70 45.26
MaPLe ViT B16 16 ✓ 1 0.1 47.47 17.77 82.52
MaPLe ViT B16 8 ✓ 1 0.1 46.60 15.31 82.04
MaPLe ViT B16 4 ✓ 1 0.1 47.23 14.95 81.67
MaPLe ViT B16 2 ✓ 1 0.1 45.95 13.32 80.87
MaPLe ViT B16 1 ✓ 1 0.1 44.92 11.24 79.94

Table 20. Domain generalization on ImageNet-sketch dataset using
CoOp and MaPLe.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA MTA
CoOp ViT B16 16 N/A N/A 50.28 2.97 52.56
CoOp ViT B16 8 N/A N/A 48.08 4.19 45.05
CoOp ViT B16 4 N/A N/A 48.43 2.97 41.20
CoOp ViT B16 2 N/A N/A 46.56 1.95 52.47
CoOp ViT B16 1 N/A N/A 45.92 1.76 47.54
CoOp ViT B16 16 ✓ 1 0.1 49.08 22.45 78.21
CoOp ViT B16 8 ✓ 1 0.1 49.29 24.00 79.47
CoOp ViT B16 4 ✓ 1 0.1 48.39 18.11 76.95
CoOp ViT B16 2 ✓ 1 0.1 48.81 20.00 78.11
CoOp ViT B16 1 ✓ 1 0.1 48.95 20.52 76.95

MaPLe ViT B16 16 N/A N/A 50.61 2.31 54.88
MaPLe ViT B16 8 N/A N/A 48.41 5.31 55.97
MaPLe ViT B16 4 N/A N/A 50.23 4.95 57.07
MaPLe ViT B16 2 N/A N/A 48.49 9.80 59.90
MaPLe ViT B16 1 N/A N/A 47.55 3.52 55.48
MaPLe ViT B16 16 ✓ 1 0.1 47.41 19.75 77.46
MaPLe ViT B16 8 ✓ 1 0.1 46.15 16.49 75.88
MaPLe ViT B16 4 ✓ 1 0.1 47.35 17.39 77.64
MaPLe ViT B16 2 ✓ 1 0.1 49.15 16.23 77.71
MaPLe ViT B16 1 ✓ 1 0.1 47.15 16.03 76.81

Table 21. Domain generalization on ImageNet-A dataset using
CoOp and MaPLe.
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Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA MTA
CoOp ViT B16 16 N/A N/A 75.83 18.49 64.13
CoOp ViT B16 8 N/A N/A 74.79 5.91 49.56
CoOp ViT B16 4 N/A N/A 73.99 14.85 61.40
CoOp ViT B16 2 N/A N/A 70.94 16.32 56.67
CoOp ViT B16 1 N/A N/A 69.84 11.74 55.31
CoOp ViT B16 16 ✓ 1 0.1 74.94 31.18 75.59
CoOp ViT B16 8 ✓ 1 0.1 75.51 37.96 81.11
CoOp ViT B16 4 ✓ 1 0.1 74.23 29.69 75.54
CoOp ViT B16 2 ✓ 1 0.1 74.86 28.67 78.17
CoOp ViT B16 1 ✓ 1 0.1 74.26 27.46 76.48

MaPLe ViT B16 16 N/A N/A 76.61 20.67 63.06
MaPLe ViT B16 8 N/A N/A 76.48 18.92 67.30
MaPLe ViT B16 4 N/A N/A 76.83 21.06 64.30
MaPLe ViT B16 2 N/A N/A 75.85 19.84 60.86
MaPLe ViT B16 1 N/A N/A 74.55 18.85 62.48
MaPLe ViT B16 16 ✓ 1 0.1 75.70 32.58 77.99
MaPLe ViT B16 8 ✓ 1 0.1 75.98 30.97 77.57
MaPLe ViT B16 4 ✓ 1 0.1 76.31 29.28 78.52
MaPLe ViT B16 2 ✓ 1 0.1 75.01 23.94 72.73
MaPLe ViT B16 1 ✓ 1 0.1 74.60 25.20 75.72

Table 22. Domain generalization on ImageNet-R dataset using
CoOp and MaPLe.

14. Additional Taxonomies
To investigate the robustness of ProTeCt across hierarchies,
we consider the FGVC Aircraft [29] dataset and the RSI-
CB [22] satellite dataset. These datasets have their built-in
hierarchies, which beyond differing from those of SUN [42]
and WordNet [11], are a technical hierarchy of fine-grained
aircraft classes and satellite image classes, respectively. Ta-
ble 23 and Table 24 summarize the CoOp results for these
experiments, showing that ProTeCt improves performance
under all metrics. This illustrates its taxonomy robustness.

K-shot w/ ProTeCt Accleaf HCA MTA (25)
16 41.88 17.82 21.11
16 ✓ 42.00 29.94 32.95

(+0.12) (+12.12) (+11.84)
1 23.61 11.55 16.77
1 ✓ 27.30 16.47 24.67

(+3.69) (+4.92) (+7.90)

Table 23. Comparison of CoOp with/without ProTeCt on FGVC
Aircraft [29] dataset.

K-shot w/ ProTeCt Accleaf HCA MTA (25)
16 91.79 43.50 64.49
16 ✓ 93.21 85.21 91.44

(+1.42) (+41.71) (+26.95)
1 63.93 32.29 52.17
1 ✓ 65.00 48.36 67.05

(+1.07) (+16.07) (+14.88)

Table 24. Comparison of CoOp with/without ProTeCt on RSI-
CB [22] satellite dataset.

15. Complete Ablation Results
This section complements Figure 4(a) and 4(b) in the main
paper with the error bar. Table 25 and Table 26 show how the
NCL strength λ and tree dropout rates β affect the Accleaf

and HCA. Please refer to Section 6.3 of the main paper for
more discussion.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B16 1 ✓ 0 0.1 64.77 ± 1.37 32.93 ± 0.42
CoOp ViT B16 1 ✓ 0.1 0.1 66.18 ± 0.51 39.41 ± 0.78
CoOp ViT B16 1 ✓ 0.3 0.1 67.13 ± 0.66 40.82 ± 0.33
CoOp ViT B16 1 ✓ 0.5 0.1 66.88 ± 0.21 41.01 ± 1.18
CoOp ViT B16 1 ✓ 0.7 0.1 66.50 ± 0.71 40.39 ± 0.37
CoOp ViT B16 1 ✓ 1 0.1 63.84 ± 1.51 40.05 ± 1.48

Table 25. Ablation of different NCL strength λ on Cifar100 using
CoOp 1 shot setting.

Method Encoder K-shot w/ ProTeCt λ β Leaf Acc. HCA
CoOp ViT B16 16 ✓ 1 0 70.86 ± 0.59 54.39 ± 0.68
CoOp ViT B16 16 ✓ 1 0.1 73.26 ± 0.66 58.01 ± 0.43
CoOp ViT B16 16 ✓ 1 0.2 72.48 ± 0.57 59.32 ± 0.21
CoOp ViT B16 16 ✓ 1 0.3 71.49 ± 0.36 58.82 ± 0.12
CoOp ViT B16 16 ✓ 1 0.4 70.15 ± 0.75 57.93 ± 0.50
CoOp ViT B16 16 ✓ 1 0.5 69.22 ± 0.32 56.66 ± 0.41
CoOp ViT B16 16 ✓ 1 0.6 68.35 ± 0.78 53.75 ± 0.85
CoOp ViT B16 16 ✓ 1 0.7 66.58 ± 0.45 53.27 ± 0.42
CoOp ViT B16 16 ✓ 1 0.8 66.62 ± 0.38 50.74 ± 1.05
CoOp ViT B16 16 ✓ 1 0.9 66.77 ± 0.38 49.76 ± 1.02

Table 26. Ablation of different tree dropout rates β on Cifar100
using CoOp 16 shot setting.

16. Visualizations
This section illustrates some misclassified examples of prior
prompt tuning methods in ImageNet and its variants (i.e.
ImageNetv2, ImageNet-S, ImageNet-A, ImageNet-R). Note
that the hierarchy of these variants may differ from the one
of ImageNet. The misclassification can occur in both coarse
or fine-grained levels of the hierarchy. Note that ProTeCt
can successfully classify all the illustrated examples at ev-
ery hierarchy level in the examples shown in Figure 9-13.
Figure 9 presents the correct/incorrect predictions of CoOp
and its ProTeCt counterpart at multiple tree levels on Ima-
geNet. CoOp [48] fails to generate consistent predictions at
different hierarchy levels, and even predicts incorrectly at
coarser hierarchy levels when the predictions at the leaf level
are correct. More examples of the predictions on ImageNet
variants are shown in Figure 10-13, where [GT, Prediction]
shows the groundtruth and incorrect prediction by vanilla
prompt tuning.

w/o ProTeCt 
L=1          person
L=4 scoreboard
𝑙𝑒𝑎𝑓  school bus

w/ ProTeCt 
L=1 object
L=4  instrumentality
𝑙𝑒𝑎𝑓  school bus

w/o ProTeCt 
L=6        marsupial
L=7 leporid
𝑙𝑒𝑎𝑓     chihuahua

w/ ProTeCt 
L=6        placental
L=7   carnivore
𝑙𝑒𝑎𝑓  chihuahua

w/o ProTeCt 
L=1          matter
L=4 invertebrate
𝑙𝑒𝑎𝑓 goldfish

w/ ProTeCt 
L=1 object
L=4  vertebrate
𝑙𝑒𝑎𝑓  goldfish

w/o ProTeCt 
L=0       abstraction
L=3 natural object
𝑙𝑒𝑎𝑓 broom

w/ ProTeCt 
L=0 physical entity
L=3  artifact
𝑙𝑒𝑎𝑓  mop

Figure 9. ImageNet visual examples at multiple hierarchy levels.
Correct/incorrect model predictions (green/red) of CoOp w/ and
w/o ProTeCt, respectively. L denotes the tree level.
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(a) (b) (c)

Figure 10. ImageNetv2 visual examples: (a): [Taxicab, Teddy bear],
(b): [Washing machine, Bath towel], (c):[Grey fox, Marsupial].

(a) (b) (c) (d)

Figure 11. ImageNet-S visual examples: (a): [Water bottle, Soap
dispenser], (b): [Umbrella, Lampshade], (c):[Folding chair, Baby
bed], (d):[Pembroke Welsh Corgi, Marsupial].

(a) (b) (c)

Figure 12. ImageNet-A visual examples: (a): [Chihuahua, Cot-
tontail rabbit], (b): [Fox squirrel, Bird], (c):[American black bear,
Koala].

(a) (b) (c)

Figure 13. ImageNet-R visual examples: (a): [Killer whale, Per-
son], (b): [Wine bottle, Fruit], (c):[Cheeseburger, Ice cream].
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