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Figure 1: Sample 3D visualization of the MMCOWS multimodal sensing and four camera views.

Abstract

Precision livestock farming (PLF) has been transformed by machine learning
(ML), enabling more precise and timely interventions that enhance overall farm
productivity, animal welfare, and environmental sustainability. However, despite
the availability of various sensing technologies, few datasets leverage multiple
modalities, which are crucial for developing more accurate and efficient monitoring
devices and ML models. To address this gap, we present MMCOWS, a multimodal
dataset for dairy cattle monitoring. This dataset comprises a large amount of
synchronized, high-quality measurement data on behavioral, physiological, and
environmental factors. It includes two weeks of data collected using wearable and
implantable sensors deployed on ten milking Holstein cows, such as ultra-wideband
(UWB) sensors, inertial sensors, and body temperature sensors. In addition, it
features 4.8 million frames of high-resolution image sequences from four isometric
view cameras, as well as temperature and humidity data from environmental
sensors. We also gathered milk yield data and outdoor weather conditions. One
full day’s worth of image data is annotated as ground truth, totaling 20,000 frames
with 213,000 bounding boxes of 16 cows, along with their 3D locations and
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behavior labels. An extensive analysis of MMCOWS is provided to evaluate the
modalities individually and their complementary benefits. The release of MMCOWS

and its benchmarks will facilitate research on multimodal monitoring of dairy
cattle, thereby promoting sustainable dairy farming. The dataset and the code for
benchmarks are available at https://github.com/neis-lab/mmcows.

1 Introduction

The dairy industry around the world is under strong sustainability pressure—environmentally, socially,
and economically. Environmentally, massive consumption of clean water and energy and the waste
produced by cattle threaten the environmental sustainability of the industry [1]. At the same time,
strong social pressure is placed on farmers to raise cattle in a more humane way [2]. However, due to
the low economic margin of the dairy industry, dairy farms tend to house more cows in large-scale
facilities often with inadequate living conditions [3], making it even more challenging to carry out
environment- and animal-friendly farming. These compounded problems also result in significant
production losses which have been estimated at several billions of US dollars annually, along with
excessive costs in energy and water usage, that increasingly and negatively affect dairy producers
worldwide [4, 5, 6]. In short, the sustainability of the dairy industry depends on the maintenance
of larger herds at minimal labor costs with low water and energy consumption, while keeping them
healthy and stress-free.

Precision agriculture, or precision livestock farming (PLF) more specifically, has emerged as an
effective solution to address these sustainability challenges in dairy farming [4]. Powered by advances
in sensing, computing, and communication technologies [7], PLF enables the monitoring of individual
animals’ behavior, physiology, and their social interaction in real time to quickly detect health
problems and better track their diet, growth, and productivity [8, 5], allowing fine-grained monitoring
and control of facilities [9]. More recently, similar to many other application domains, PLF has seen a
remarkable transformation with the advent of machine learning (ML) techniques [10, 11]. Combined
with various sensing and computer vision techniques, several ML approaches have been proposed
to monitor livestock animals. Examples include computer vision-based measurement of cow body
weight [12] and detection of bovine respiratory diseases using wearable inertial measurement units
(IMUs) [13].

With the rapid rise in the popularity of ML approaches and enabled by the increasing availability
of low-cost high-quality sensors, a number of datasets of dairy cattle have been introduced. Each
modality has different pros and cons in terms of accuracy, cost, animal friendliness, etc., and to
determine the optimal modality or complementary modalities for a target application, a high-quality
multimodal dataset is crucial. Unfortunately, existing dairy cattle datasets with only one or two
sensing modalities do not meet the needs of recent ML research.

In this work, we present the MMCOWS dataset that leverages the complementary benefits of syn-
chronized data from multiple modalities for accurate and efficient monitoring of dairy cattle. The
dataset was collected from Holstein cows, which is the dominant breed of dairy cattle worldwide [14].
MMCOWS also includes data related to the environment and milk yield, which can be used to provide
a comprehensive understanding of behavior and physiological changes of the cattle over time. The
contributions and unique aspects of the MMCOWS dataset are as follows:

• Multiple sensing modalities: MMCOWS is a large-scale fine-grained dataset of dairy cattle
collected over a two-week period featuring multiple sensing modalities. The variety of modalities
ranges from physiological and behavioral sensing to visual, environmental, and milk yield data.
As ground truth, MMCOWS contains one day’s worth of annotated visual data of 16 cows, including
20,000 isometric-view images with IDs and behavior labels.

• Real-world data: The data was collected from actual milking cows housed in the Agricultural
Research Station at the University of Wisconsin–Madison. The deployment was carefully planned
and executed without disrupting the cows’ daily routine or negatively affecting their comfort to
obtain physiological and behavioral data that is as natural as possible, similar to what can be
observed at commercial dairy farms.

• Comprehensive data and extensive benchmarks: MMCOWS not only contains primary mea-
surement data, but also various secondary processed data derived from it. We also present
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a comprehensive set of benchmarks that utilize both primary and secondary data for various
applications of cattle monitoring.

2 Related Work

In this section, we discuss advanced sensing technologies that enable the collection of various data
required for PLF, and the lack of suitable multimodal datasets required for ML research.

2.1 Health monitoring of dairy cattle

Behavioral and physiological responses in dairy cattle are widely utilized in both research and practice
for detecting health issues, and the monitoring of such responses is critical for the timely detection of
various health conditions including heat stress, lameness, ketosis, mastitis, estrus, and calving.

Heat stress occurs when a cow’s core body temperature exceeds the upper critical threshold of the
thermal neutral zone, leading to behavioral changes [15]. Cows experiencing heat stress tend to
stand more to increase surface area for better cooling through convection [16, 17, 18]. They also
reduce the number of meals per day to lower metabolic heat production [19, 20, 21, 22], and their
milk production decreases as a result [23, 24, 25]. Additionally, cows under heat stress drink more
frequently but in smaller amounts [26].

Lameness in dairy cattle is characterized by abnormal gait or movement due to pain or injury in the
limbs or feet that significantly impacts well-being and productivity [27]. Lame cows typically exhibit
reduced daily feeding time and fewer feeding visits, coupled with an increased feeding rate [28, 29].
Accurate prediction of lameness was achieved by combining data on neck acceleration and milk
production [30].

Ketosis is a metabolic disorder where energy demands exceed intake, that results in a negative energy
balance, leading to rapid reductions in daily milk yield, feeding time, and feeding rate in affected
cows [28, 31].

Mastitis, an inflammatory condition of the udder, is one of the most economically significant diseases
in dairy cattle. Cows with mastitis show decreased feeding and ruminating time, alongside increased
idle standing time [32].

Estrus and calving can be detected early through behavioral monitoring. Indicators of estrus include
standing heat, intense physical activity, and mounting behaviors [33, 34]. Before calving, cows
typically increase their daily step count and reduce lying and feeding time within the 24 hours leading
up to calving [35, 36].

2.2 Behavioral and physiological sensing of dairy cattle

Behavioral and physiological responses of dairy cattle have been widely used to detect health issues
in research and practice. For behavior monitoring, the most common methods involve measuring
cows’ movements and locations. An accelerometer mounted on the neck or ankle provides useful
information about a cow’s body movements and postures [37, 38, 39, 40]. While this approach allows
for accurate behavior inference, wearable devices can be relatively costly to deploy and maintain at
scale. Cow location data also offers insights into their activities (such as feeding and drinking) and
social interactions, typically using UWB or GPS for localization [41, 42, 43]. UWB provides precise
locations but requires an infrastructure of stationary anchor devices, whereas GPS functions without
such infrastructure but has relatively low accuracy, especially indoors. High-power consumption and
the need for wearable sensors are drawbacks of both localization methods.

An increasingly popular solution for tracking cattle movement and location is ML-based vision
processing. Various vision models have been proposed to identify individual cows [44, 45, 46] and to
recognize behavior and posture [47]. Vision models can also be applied for localization [48]. The
primary advantage of vision-based approaches is that they eliminate the need for wearable devices,
which simplifies deployment and improves animal comfort. However, these methods are susceptible
to changes in lighting conditions and physical obstructions.

One of the most critical physiological data is core body temperature (CBT) due to its relevance to
animal behavior and health conditions, particularly heat stress [17, 49, 8, 50]. CBT can be measured
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Table 1: Comparison of related datasets.

Datasets # of
modal.

Main modalities # of
cams.

# of
frames

Dura-
tion

# of
subj.

Annotation classes
UWB IMU RGB ID Behavior

H
um

an
Stanford-ECM [58] 3 - ↭ ↭ 1 - 31h 10 - 24
ActionSense [59] 8 - ↭ ↭ 7 512k 13h 10 - 20
mRI [60] 4 - ↭ ↭ 1 160k 0.3h 20 - 12
SALSA [61] 5 - - ↭ 4 - 1h 18 - -

C
at

tle
an

d
sw

in
e

PBVD-5 [62] 1 - - ↭ 1 - 8d 9 9 5
Zhang et al. [63] 1 - - ↭ 1 - 1.5h 12 - 5
Bergamini et al. [64] 2 - - ↭ 1 3.4M 23d 8 8 5
FriesianCattle2015 [65] 1 - - ↭ 1 764 - 92 - -
FriesianCattle2017 [48] 1 - - ↭ 1 940 2h 89 - -
AerialCattle2017 [48] 1 - - ↭ 1 16k 0.2h 23 23 -
Ter-Sarkisov et al. [66] 1 - - ↭ - - 14d 10 - -
DSCOW [42] 1 ↭ - - - - 123d 190 - -
Rodriguez et al. [67] 1 - ↭ - - - 28d 20 - 7
OpenCows2020 [14] 1 - - ↭ 1 3.7k - 46 - -
Cows2021 [68] 1 - - ↭ 1 10k - 186 - -
Koskela et al. [69] 1 - - ↭ 1 1.7M 19h - - 7
CowScreeningDB [70] 1 - ↭ - - - 7h 43 - -

MMCOWS (ours) 9 ↭ ↭ ↭ 4 4.8M 14d 16 16 7

using commercial temperature sensors inserted in the vagina or rectum, which is considered the
conventional “gold standard” method [51, 52]. However, the insertion and retrieval process is
very costly and stressful for both farmers and cows, and due to the depth of implantation, real-
time measurement is not feasible. Ingestible boluses have been used to measure the reticulum
temperature [53], but their measurement results can be affected by water and feed intake, making
them unsuitable for precise CBT measurement. More recent studies have shown that subcutaneously
injected temperature sensors can be used for real-time CBT measurement [54, 55, 56, 57], though
they are not yet commercially available.

2.3 Related datasets

As seen in Section 2.2, each sensing modality has different pros and cons in terms of accuracy, cost,
animal friendliness, etc. To develop cattle monitoring devices and ML models that are accurate,
cost-effective, and animal-friendly, a careful evaluation of different modalities or combinations of
modalities must be performed, which requires an appropriate dataset. Table 1 compares various
datasets developed for animal (cattle or swine) and human subjects.

For the monitoring of human subjects, which have been relatively well studied, several datasets are
available for multimodal ML, including [58, 59, 60]. In these datasets, RGB images are the most
common, and IMUs are also widely used to record joint movements. Other sensing modalities found
in human datasets include heart rate, audio, depth, mmWave, etc. [58, 60, 61].

On the other hand, although many animal datasets are available for ML research, none of them
were developed mainly for multimodal ML. As shown in Table 1, most datasets consist of RGB
images, usually close-up top-view images that are useful for identification of the animals [65, 48,
66, 14, 68, 69, 62, 63, 64]. Other datasets contain IMU data for motion detection and behavior
classification [67, 70] or UWB data for localization [42], but not both. Only one dataset [64] includes
an additional modality, depth images, alongside traditional RGB images; however, both fall into the
category of image sensing. As a result, these datasets are only suitable for developing and evaluating
ML models for a certain modality and do not provide a way to compare different modalities and their
combinations.
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Figure 2: Overview of the MMCOWS dataset consisting of nine sensing modalities and records.

Table 2: Properties of nine modalities in MMCOWS.

Name Sensor Interval # of sensors Primary data produced

uwb UWB 15 s 10 Location in 3D
immu IMMU 100 ms 10 Head movement and direction
pressure Pressure sensor 100 ms 10 Air pressure
cbt Vaginal temp. sensor 1 min 10 CBT
ankle Ankle sensor 1 min 10 Ankle direction
rgb Camera 1 s 4 RGB image sequences
thi Microclimate sensor 1 min 6 Indoor temperature and RH
weather Weather information 5 min - Outdoor weather condition
milk Milk yield record 1 day 1 Total milk weight

3 The MMCOWS Dataset

MMCOWS is the most comprehensive cattle monitoring dataset, consisting of the largest number
of sensing modalities. To achieve this, we designed, implemented, and deployed a multimodal
sensor system composed of various wearable and stationary sensors for long-term synchronized
measurement. This section describes how the data in MMCOWS is collected, processed, and annotated.

3.1 Data collection and processing

We present various types of sensors used to build the dataset, selected for their effectiveness in
measuring the chosen behavioral and physiological factors. Here, we discuss our custom-built sensors
alongside widely used, practical, commercial-off-the-shelf sensors for measuring location, posture,
movement, body temperature, etc. We also collect microclimate, weather, and milk production
data, as these also play a critical role in monitoring dairy cattle health. We discuss in detail the
configuration, calibration, and synchronization of each sensor.

Sensing modalities. In cattle monitoring, identification, localization, behavior classification, and
CBT monitoring are commonly required. For this, we have chosen five wearable and implantable
sensors for behavioral and physiological sensing: UWB, inertial and magnetic measurement unit
(IMMU), pressure sensor, vaginal temperature sensor, and ankle sensor, as shown in Figure 2. The
IMMU contains a magnetic sensor in addition to the conventional IMU. For image data collection, we
use wall-mounted RGB cameras. Finally, since dairy cattle behavior and milk yield are closely related
to weather conditions, we deploy indoor microclimate sensors, record outdoor weather information,
and collect logs of daily milk yield. Table 2 lists these nine modalities.

Experimental settings. The data were collected at the Arlington Agricultural Research Station of
the University of Wisconsin–Madison, Wisconsin, United States, for two weeks from July 21st to
August 4th, 2023. We selected a duration with predicted heat waves to observe heat stress-related
data. Figure 4 shows the top-view map of a 20→12 m pen and the installation locations of UWB
anchors, cameras, and microclimate sensors, as well as a view from Camera 4. The pen houses 16
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(a) Tag PCB top view (b) Tag PCB bottom view (d) Mounted on the neck
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Figure 3: (a) Top and (b) bottom view of the wearable neck-mount tag with UWB, IMMU, and
pressure sensor. (c) Water-proof enclosure with a battery. (d) The tag is mounted at the top of the
neck using a neck halter.
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Figure 4: Top-view map of the pen with installation locations of the UWB anchors, cameras, and
microclimate sensors.

Holstein cows, ten of which are equipped with wearable sensors, described next. The cattle stay in the
pen most of the time except for milking twice per day for approximately 30 minutes each time. All
procedures were performed with the approval of the Institutional Animal Care and Use Committee
(IACUC) of the University of Wisconsin–Madison (Protocol #A006606).

Neck-mount tag (uwb, immu, pressure). We designed a wearable neck-mount tag to measure
individual cows’ locations and behavior. Figure 3 shows the tag’s PCB and how it is mounted on
the cow. The tag consists of (1) the Qorvo DW3000 UWB module for measuring distances from
the tag to eight stationary UWB anchors, which are used to derive 3D neck location of the cow,
(2) the TDK ICM-20984 IMMU that measures acceleration and magnetic field, and (3) the Bosch
BMP390 air pressure sensor for measuring elevation. To minimize measurement noise, the UWB, the
accelerometer inside the IMMU, and the pressure sensor are configured to perform oversampling
at rates of 5x, 16x, and 8x, respectively. Refer to Table 2 for the sampling configurations. The tag,
along with a 1.9-Ah lithium battery, is enclosed in a water-proof casing with an air-permeable hole
for air pressure measurement. As shown in Figure 4, eight UWB anchors are installed at a height of
5 m to enable 3D spatial measurements. Ten of these tags are attached to ten cows (Cow 1 through
Cow 10) out of a group of 16. Two additional tags are mounted in stationary positions around the pen
to record data as reference points.

Vaginal temperature sensor (cbt). Each of the same ten cows is equipped with an Onset HOBO
U12-15 temperature logger, inserted in their vagina to measure the vaginal temperature, which is
considered the CBT of the cows.

Ankle sensor (ankle). As a common approach to detecting lying behavior, we attached an Onset
HOBO Pendant G ankle sensor to the left hind leg of the same cows. This sensor measures the
direction of gravity, which allows us to infer the orientation of the leg.

Cameras (rgb). Four GoPro HERO11 Black cameras are mounted at four corners of the pen, directed
toward the center, as shown in Figure 4. The cameras record 4480→2800 (4.5K) videos at 1 fps,
providing isometric views of the pen instead of top views, which are more common in many datasets.
Detection and identification tasks become much more challenging with isometric-view images, but
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Figure 5: The data processing and benchmarking pipeline of MMCOWS in this paper. MMCOWS can be
used in different processing pipelines for different applications.

this setup is more common in commercial barns as it provides wider visibility. We do not add any
additional lighting to reduce motion blur, in order to maintain the same barn environment.

Indoor microclimate (thi) and outdoor weather (weather). The ambient temperature and relative
humidity (RH) are used to infer the Temperature-Humidity Index (THI) [71], and are measured
by six Onset HOBO Pro v2 temperature/RH loggers deployed as shown in Figure 4. The outdoor
weather conditions are recorded every 5 minutes by a weather station located 950 m northeast of
the experimental site, which includes dew point, precipitation, sunlight intensity, wind speed and
direction, etc.

Milk yield record (milk). The dataset also contains the daily milk yield in kg and the health checkup
records of all 16 cows prior to and after the experiment, which are recorded by the barn staff.

Secondary data. We generate secondary data based on the collected primary data. Secondary data in
MMCOWS includes head direction (hd) from IMMU, and lying/non-lying classification (lnl) using
the ankle sensor data. The processing pipeline for secondary data generation is illustrated in Figure 5.
Note that this pipeline is only an example used in this paper, and the dataset can be used in different
processing pipelines for various applications.

Sensor calibration. Ten UWB modules in the tags and eight UWB anchors are pairwise calibrated
from 0 to 18 m using a linear calibration model. The accelerometer in the IMMU is also separately
calibrated using linear offset, and the magnetometer is calibrated for hard and soft iron biases [72].
The MCU stores the calibration parameters and corrects the measurements of the IMMU in real time,
while the pressure sensor is programmed to perform self-calibration upon powering on.

Sensor synchronization. Each neck tag is equipped with the Analog Devices DS3231 real-time
clock to maintain its local time. The local time of all neck-mounted tags is synchronized with Internet
time every 30 minutes through a stationary hub using UWB communication. The hub contains a
Raspberry Pi 4 connected to the Internet to retrieve and retain the Internet time. In other words, the
timestamps of all data collected by different sensors in the tags are synchronized with Internet time.
Every 15 seconds, the tags synchronously perform distance measurements one by one in succession
to prevent packet collisions when using the same wireless channel.

3.2 Ground truth

3.2.1 Ground truth for cow identification and behavior classification

The ground truth of cow IDs and behaviors is manually created using the vision data. The UWB-
synced RGB frames from July 25th are used for the annotation. We manually annotated 20,000
images to produce 213,000 bounding boxes for all 16 cows. When the cows are lying in the stalls,
their bodies are often heavily occluded by one another, making identification more challenging. Thus,
we separate the bounding box labels of cows into three sets: lying, non-lying, and combined labels.
The annotators were trained to follow our comprehensive annotation rules to ensure consistency.
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The correctness of cow ID annotation was automatically verified using visual localization, which is
elaborated in Section 3.2.2, and was also manually verified during the process of behavior labeling.
Details of the annotation rules are provided on the dataset website.

We manually created the behavior ground truth of 16 cows at the granularity of one-second intervals,
where each behavior label of the cow is associated with a timestamp. The synchronization of
RGB frames from four cameras ensures that for each given timestamp, each cow performs the same
behavior in all camera views. We use seven behaviors of individual cows, including walking, standing,
feeding head up, feeding head down, licking, drinking, and lying, which are commonly used in
various cattle behavior monitoring studies discussed in Section 2.1. Details of behavior definitions
and visual examples are available in the supplementary document.

3.2.2 Visual localization and location ground truth

To provide reliable ground truth for cows’ locations, we propose a new optimization-based approach
to calculate body location using the annotated bounding boxes from multiple views. We first project
the bounding box centers of the same cow across multiple views into the world coordinate system as
3D lines that inherently converge in space. We then apply AdaGrad [73] to find the optimal location
that is nearest to the lines, which serves as the cow’s location in 3D. This location can be used
as ground truth for developing vision-based localization models. More details are provided in the
supplementary document.

As an additional step to ensure the correctness of the ID annotation process, for each location,
we calculate the distance from that location to its corresponding projection lines. Any line that is
irregularly far from the visual location is flagged as an outlier, indicating that the cow’s ID has been
incorrectly annotated, which is subsequently corrected until all projection lines converge.

4 Evaluation and Benchmarks

For the evaluation of MMCOWS, we conduct a two-stage benchmarking process. In the first stage, to
show how the multimodal dataset can be used for system design, we compare different modalities for
the behavior classification task. In the second stage, we perform a high-level behavior analysis to
show how MMCOWS can be used for automated dairy barn management. As this section only briefly
introduces the results, we discuss them in more detail in the supplementary document.

4.1 Modality comparison for behavior classification

Setting. To avoid data leakage, we consider two data split settings: object-wise split (OS) and
temporal split (TS). The OS setting evaluates cross-cow generalization, while the TS setting assesses
robustness on unseen data. For uwb and immu, data from ten cows with tags is used, and both OS and
TS settings are applied. For rgb, data from all 16 cows is used, and only the TS setting is applied
since data from all cows is required to train the identification models.

In the OS setting, we use 5-fold cross-validation to train models, with the ratio of cows for training,
validation, and testing set to [6:2:2]. The selection of cows is rotated so that each cow appears in the
test set exactly once.

In the TS setting, data from each modality is separated into two groups based on the lighting
conditions. The first group contains data with artificial light, recorded between 3am–6am and 6pm–
12am. The second group contains data with natural light, recorded between 6am–6pm. Each group
is divided equally and temporally into five segments, resulting in ten segments. We apply 5-fold
cross-validation, where from each group, the ratio of segments for training, validation, and testing is
set to [3:1:1]. The two groups are concatenated in the configuration [6:2:2]. Validation is performed
until each segment has been tested once.

Metric. Cows often spend substantial amounts of time lying, feeding, and standing, but only seldom
engaging in walking, drinking, or licking. Since the behavior classes are heavily imbalanced and the
minority classes are also important, we use the F1 score to evaluate the results. An average F1 score
is reported for each setting.

Methods. We perform behavior classification using uwb, immu, rgb, and some combinations of them
with hd and ankle. We selected three specific combinations of modalities to demonstrate the benefits
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Table 3: Performance comparison of behavior classification using different modalities.

Modality Set-
ting

F1 score ↑
Walking Standing Feeding↑ Feeding↓ Licking Drinking Lying Average

UWB OS .078±.027 .855±.023 .704±.077 .834±.049 .884±.054 .644±.112 .953±.017 .707±.051

TS .103±.040 .860±.041 .738±.026 .835±.029 .868±.066 .656±.059 .961±.008 .717±.038

IMMU OS .000±.000 .065±.127 .067±.084 .098±.135 .000±.000 .000±.000 .700±.760 .133±.060

TS .000±.000 .052±.053 .000±.000 .051±.048 .000±.000 .000±.000 .742±.126 .141±.038

RGBs TS .143±.036 .814±.048 .634±.063 .715±.051 .484±.193 .409±.116 .681±.032 .554±.077

UWB+HD OS .032±.030 .908±.015 .731±.059 .843±.046 .812±.154 .645±.136 .980±.006 .707±.064

TS .074±.036 .917±.022 .766±.030 .853±.026 .863±.057 .699±.049 .986±.003 .737±.032

UWB+HD+Akl OS .048±.040 .937±.014 .730±.057 .842±.044 .800±.183 .643±.132 .996±.001 .714±.067

TS .055±.026 .938±.014 .768±.032 .854±.023 .863±.060 .684±.041 .997±.001 .737±.028

RGBm TS .127±.053 .815±.030 .741±.044 .805±.046 .578±.172 .478±.154 .883±.027 .632±.075

of incorporating multiple modalities to enhance the robustness of behavior monitoring. While UWB
alone is sufficient for detecting most behaviors, it lacks the precision needed to distinguish some
similar behaviors, such as whether a cow is merely standing or engaging in other activities at the
same location. Adding head direction helps differentiate between behaviors like standing versus
drinking, standing versus licking, and feeding head up versus feeding head down. Additionally, since
cows often stand in the stalls where their head direction can change over time, integrating ankle
acceleration provides a clear distinction between standing and lying.

• UWB: Random Forest (RF) with balanced weights. The uwb data is used.
• IMMU: Fully connected network. The accelerometer and magnetic sensor data in immu are used.

The discrete wavelet transform is applied to the accelerometer data. The data is segmented using
10-second window with 50% overlap, and the midpoint behavior is selected as the label of each
window.

• RGBs: Three-stage pipeline that consists of YOLOv8 [74] for cow detection and EfficientNet-
B0 [75] for behavior classification and cow identification using single-view images from the rgb
data. Two separate models are trained for identifying lying and non-lying cows.

• UWB+HD: RF with balanced weights. The combination of uwb and hd data is used.
• UWB+HD+Akl: RF with balanced weights. The combination of uwb, hd, and ankle data is used.
• RGBm: Multi-view processing of the rgb data. At each time point, four outputs of the RGBs

method are projected into the world coordinate system as 3D lines, where outliers are detected and
excluded. The remaining projection lines are combined using weighted voting, where each weight
is proportional to the width of its corresponding bounding box.

Results and discussion. Table 3 shows the F1 scores of behavior classification. Overall, all models
achieve the highest F1 scores for lying, followed by standing, licking, feeding head down, and feeding
head up. The F1 scores are slightly higher under TS compared to OS for all models. Walking is
hard to distinguish from standing as we use image frames individually, but this would be greatly
improved if the data were processed as sequences of frames. UWB and RGBs outperform IMMU for
most behaviors except walking. Combining multiple modalities substantially reduces errors. The
best model is UWB+HD+Akl, illustrating the complementary benefits of multimodal ML. RGBm
exhibits a noticeable improvement over RGBs in all behavior classes as knowledge from multiple
views is combined. The results clearly show the varying performance of different modalities for the
same task, which proves the value of our multimodal dataset.

4.2 Behavior analysis

We show how MMCOWS can be used to develop ML models for dairy cattle health monitoring.

Setting. As standing, lying, feeding, and drinking behaviors are strongly correlated with THI, we
analyze changes in these behaviors and correlate them with the thi data. We evaluate the number of
bouts, mean duration of bouts, and total duration of each behavior per day, obtained from behavior
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Table 4: Correlations between daily [frequency of bouts, mean duration of bouts, total duration] of
cows’ behaviors versus the THI for 13 days.

Behavior (|r|> 0) ↑ p-value ↓ R2 ↑

Standing [–.470, .726, .678] [.105, .005, .011] [.221, .527, .459]
Lying [ .476, –.744, –.696] [.158, .004, .008] [.173, .553, .484]
Feeding [ .502, –.581, –.424] [.080, .037, .149] [.252, .338, .180]
Drinking [ .802, .196, .476] [.001, .521, .100] [.643, .038, .227]

classification over 13 days with respect to THI (excluding the first and last days that are shorter than
24 hours).

Metric. We use the Pearson correlation coefficient (r), p-value, and R2 to evaluate the relationship
between variables. The r value helps to identify the strength and direction of the relationship; the
p-value determines the statistical significance, and R2 indicates the proportion of variability explained
by the THI.

Method. We use UWB+HD+Akl to perform inference on 2-week-long data to extract seven behaviors
of ten cows. Feeding head up and head down behaviors are combined as feeding. To obtain an
accurate number of bouts for each behavior, we use a custom filter to remove momentary switching
between classes.

Results and discussion. We confirm significant correlations between the cows’ behavior and THI as
reported in Table 4. All behaviors are strongly affected by THI, indicated by the very small p-values
and high R2 values. The results agree with previous studies on THI-dependent changes in cattle
behavior [16, 17, 18, 76, 77, 78, 79]. The results show the effectiveness of behavior monitoring in
assessing cattle health status, such as heat stress.

5 Conclusion

MMCOWS is the first multimodal dataset for dairy cattle monitoring, comprising nine modalities and
records. It integrates wearable, implantable, visual, and environmental data collected from 16 milking
Holstein cows in a real-world barn over two weeks. This paper describes the creation of this dataset
and demonstrates its potential benefits for developing monitoring devices and ML models. The true
potential of MMCOWS lies in the numerous combinations of modalities that have yet to be explored,
which can contribute to designing high-accuracy, low-cost, and animal-friendly monitoring systems.
We envision MMCOWS being leveraged for a variety of future endeavors, to promote environmentally,
socially, and economically sustainable dairy farming.
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