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Abstract

This paper addresses the challenging and interesting inverse problem of reconstructing the spatially
varying dielectric constant of a medium from phaseless backscattering measurements generated by
single-point illumination. The underlying mathematical model is governed by the three-dimensional
Helmholtz equation, and the available data consist solely of the magnitude of the scattered wave field.
To address the nonlinearity and servere ill-posedness of this phaseless inverse scattering problem, we
introduce a robust, globally convergent numerical framework combining several key regularization
strategies. Our method first employs a phase retrieval step based on the Wentzel–Kramers–Brillouin
(WKB) ansatz, where the lost phase information is reconstructed by solving a nonlinear optimization
problem. Subsequently, we implement a Fourier-based dimension reduction technique, transforming
the original problem into a more stable system of elliptic equations with Cauchy boundary conditions.
To solve this resulting system reliably, we apply the Carleman convexification approach, constructing
a strictly convex weighted cost functional whose global minimizer provides an accurate approximation
of the true solution. Numerical simulations using synthetic data with high noise levels demonstrate the
e!ectiveness and robustness of the proposed method, confirming its capability to accurately recover
both the geometric location and contrast of hidden scatterers.

Keywords: phaseless inverse scattering, Carleman convexification method, phase retrieval, Fourier ex-
pansion, numerical reconstruction
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1 Introduction

Inverse scattering problems, particularly those involving wave propagation through media with spa-
tially varying dielectric properties, have broad applications in scientific and engineering disciplines. Con-
sider a medium whose dielectric characteristics are represented by a smooth function c : R3

→ [1,↑).
Let ” = (↓R,R)3 ↔ R3, with R > 0, denote our region of interest. Throughout this study, we assume
that the dielectric constant satisfies

c(x) =

{
↗ 1, x ↘ ”,

= 1, x ↘ R3
\ ”,

(1.1)
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which implies a vacuum-like medium surrounding ”, and regions of higher dielectric values within ”
correspond to embedded scatterers. Practical examples of such scatterers include buried explosive de-
vices, underground mineral deposits, tumors in biological tissues, defects within structural materials, and
microscopic or nanoscopic inhomogeneities. These inverse scattering scenarios are fundamental to many
areas, such as remote sensing, non-destructive evaluation, medical imaging, and materials science.

Incident wave

Scattered wave

Unknown object

Explored region !

Measurement layer ”L

(a) Schematic illustration of inverse scatter-
ing

Unknown object

Backscattered wave

Incident wave

Detector array

(b) Remote sensing example

Figure 1: (a) Illustration of the inverse scattering scenario, showing incident waves interacting with an
unknown object in an inaccessible region ”, producing scattered waves measured on the observation layer
#L. (b) Real-world example demonstrating remote detection of hidden objects using reflected wave data
collected by a detector array.

To remotely detect and characterize scatterers, one illuminates the domain ” with an incident wave
originating from a single point source located at x0 = (0, 0,↓d) /↘ ”, where d > R. This wave interacts
with scatterers within ”, creating scattered waves that radiate outward. We measure only the magnitude
(intensity) of the resulting scattered wave field on a three-dimensional measurement layer

#L = (↓R,R)2 ≃ (↓R,↓R+ L),

located immediately at the bottom of the domain ”, with some thickness L > 0. Figure 1 provides
both schematic and practical visualizations of this measurement scenario. The central goal of our phase-
less inverse scattering problem is to reconstruct the dielectric function c(x) using these intensity-only
measurements, thereby revealing the position, shape, and dielectric contrasts of the hidden scatterers.

Phaseless inverse scattering problems naturally arise in applications where the phase measurement
is di$cult or infeasible, such as in high-frequency regimes with rapid oscillations that preclude accurate
phase detection. In contrast to conventional inverse scattering problems, where both amplitude and
phase are typically available, phaseless measurements lead to greater mathematical complexity due to
increased nonlinearity and limited data. As a consequence, it is generally necessary to collect intensity
data over a three-dimensional measurement volume rather than on a simpler two-dimensional boundary
surface.

The theoretical and practical significance of phaseless inverse scattering has long been recognized. A
classical question posed by Chadan and Sabatier [7, Chapter 10] “How can inverse scattering problems
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be solved using only magnitude data?” has driven extensive research. Early theoretical investigations,
such as uniqueness results for the one-dimensional Schrödinger equation [31, 1], laid foundational under-
standing. Subsequently, these uniqueness results have been extended to multi-dimensional Schrödinger
and Helmholtz equations under various assumptions [16, 17, 30, 19, 42].

While analytic reconstruction methods have been proposed [26, 27, 28, 29], these methods often re-
quire measurements across a wide frequency spectrum, limiting their practicality. More computationally
feasible numerical approaches for realistic frequency ranges have thus been developed, demonstrating
successful reconstructions from simulated and experimental data [21, 23, 25]. Further numerical methods
utilizing Kirchho! migration and Born approximations have been studied in [5, 6], and shape reconstruc-
tion from phaseless data has also received considerable attention [2, 4, 11, 12, 35].

In this paper, we investigate the phaseless inverse scattering problem under single-source illumination
using multi-frequency data. While linearization-based methods can e!ectively localize scatterers, they
often fail to accurately reconstruct high-contrast variations, see e.g. [25]. To address this limitation,
we propose a novel, globally convergent reconstruction method that combines the Wentzel–Kramers–
Brillouin (WKB) ansatz, a Fourier filtering technique, and the Carleman convexification approach. By
entirely avoiding linearization, our method significantly improves reconstruction accuracy and robustness.
Specifically, our proposed numerical framework consists of three interconnected components. First, we
develop a robust phase retrieval procedure that leverages the WKB ansatz and nonlinear optimization
to accurately recover complex wave fields from phaseless measurements. Next, we apply a Fourier-based
frequency reduction technique, transforming the original inverse problem into a stable elliptic system with
Cauchy boundary conditions. Finally, the Carleman convexification method is employed to construct a
weighted cost functional, ensuring strict convexity and enabling stable global minimization. Numerical
experiments clearly illustrate that our approach e!ectively recovers both the location and high contrast
of scatterers, even in the presence of noise.

The remainder of the paper is organized as follows. In Section 2, we outline the problem statement
and our WKB-based phase retrieval procedure. Section 3 describes the frequency dimension reduction
approach. Section 4 introduces the Carleman convexification method, including rigorous convexity anal-
ysis. Numerical simulations validating the proposed method are provided in Section 5, and concluding
remarks are o!ered in Section 6.

2 Problem statement and phase reconstruction via the Wentzel–Kramers–
Brillouin ansatz

Consider an inverse scattering scenario governed by the Helmholtz equation in three-dimensional
space. Let [k, k] denote an interval of wave numbers and x0 = (0, 0,↓d), with d > R, represent a fixed
point source outside the domain ”. The incident wave generated by this source at wave number k is
given explicitly by

uinc(x, k) =
eik|x→x0|

4ω|x↓ x0|
, (x, k) ↘ R3

≃ [k, k]. (2.1)

When this incident wave interacts with the scatterers embedded in the domain ”, characterized by the
spatially varying dielectric constant c(x), it generates the total wave field u(x, k), which satisfies the
following problem: {

%u+ k2c(x)u = 0, x ↘ R3,

ε|x|usc ↓ ikusc = o(|x|→1), |x| → ↑,
(2.2)
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where the scattered wave usc is defined as the di!erence between the total and incident waves, i.e.,

usc(x, k) = u(x, k)↓ uinc(x, k), (x, k) ↘ R3
≃ [k, k]. (2.3)

In many practical situations, only the intensity (modulus) of the scattered wave can be measured.
Thus, we consider the following inverse problem:

Problem 2.1 (Inverse scattering without phase information). Given the phaseless measurements

f(x, k) = |u(x, k)|, (x, k) ↘ #L ≃ [k, k], (2.4)

reconstruct the dielectric constant c(x) within the domain ”.

Addressing this phaseless inverse scattering problem presents significant challenges due to its inherent
nonlinearity and ill-posedness. To reconstruct the lost phase information, we utilize the classical Wentzel–
Kramers–Brillouin (WKB) ansatz, which approximates the wave field:

u(x, k) = A(x)eikω(x) +O(1/k) as k → ↑. (2.5)

This asymptotic form is well-established in the literature. For the stationary Schrödinger equation, its
validity under the Born approximation has been demonstrated in foundational studies such as [9, 10, 36],
and analogous reasoning extends naturally to the Helmholtz equation. Beyond the Born approximation,
the first rigorous justification was presented in [41, Theorem 17], with a more refined analysis appearing
much later in [28]. For clarity, we summarize below the key conditions provided in [28] under which the
ansatz is valid:

1. The coe$cient c(x) is assumed to belong to the class C15.

2. For every x ↘ ”, there exists a unique geodesic line connecting the source x0 and x with respect
to the Riemannian metric

√
c(x)|dx|, where |dx| =

√
dx2 + dy2 + dz2.

Although these conditions rigorously justify the ansatz (2.5), they may not be practical to verify
for finite k or in real-world applications. Therefore, we adopt the ansatz heuristically as a physically
informed starting point for phase reconstruction. To estimate ϑ , we di!erentiate the ansatz, neglecting
the O(1/k) term:

⇐u(x, k) = (⇐A(x) + ik⇐ϑ(x)) eikω(x),

%u(x, k) =
(
%A(x) + 2ik⇐A(x) ·⇐ϑ(x) + ikA(x)%ϑ(x)↓ k2A(x)|⇐ϑ(x)|2

)
eikω(x).

Substituting into the Helmholtz equation, we obtain:

%u(x, k) + k2c(x)u(x, k) =
(
%A(x) + 2ik⇐A(x) ·⇐ϑ(x)

+ ikA(x)%ϑ(x)↓ k2A(x)|⇐ϑ |2 + k2c(x)A(x)
)
eikω(x) = 0, (2.6)

for all (x, k) ↘ #L ≃ [k, k]. In the high-frequency limit, the leading-order term,

↓k2A(x)|⇐ϑ |2 + k2c(x)A(x),

must vanish, which yields the eikonal equation:

|⇐ϑ |2 = c(x) = 1 for x ↘ #L, (2.7)

using the assumption c = 1 in (R3
\ ”) ⇒ #L.
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Remark 2.1. Alternatively, the eikonal equation can be heuristically derived by viewing (2.6) as a

quadratic equation in k. Enforcing that the equation holds for all k implies that the coe!cient of the

dominant term (and the other two lower order terms) must vanish, once again yielding (2.7).

Since ϑ denotes the travel time from x0 to x, the natural choice of solution to (2.7) is:

ϑ(x) = |x↓ x0| for all x ↘ #L. (2.8)

Using this phase, we define the initial guess:

u(0)(x, k) = f(x, k)eik|x→x0| for all x ↘ #L, k ↘ [k, k], (2.9)

as an approximation to the true wave field u(x, k).
The ansatz (2.5) provides a mathematically grounded approximation of wave fields in the high-

frequency regime. However, the constructed initial guess u(0)(x, k) may not exactly satisfy the Helmholtz
equation, nor perfectly match the observed modulus data due to noise. To refine this estimate, we recover
an improved approximation uphase(x, k) by minimizing its deviation from both the Helmholtz operator
and the intensity constraint. Specifically, for each k ↘ [k, k], we solve the following variational problem:

Jk(v) =
∥∥%v + k2v

∥∥2
L2(!L)

+
∥∥|v|2 ↓ f2(x, k)

∥∥2
L2(!L)

, (2.10)

where the minimization is over v ↘ H2(#L). Among the local minimizers, we select the one closest to
u(0)(x, k), and denote it by uphase(x, k).

The functional Jk(v) in (2.10) captures two complementary objectives: adherence to the PDE model
in #L, and conformity with the observed intensity. The first term, ⇑%v+ k2v⇑2

L2(!L)
, penalizes deviation

from the Helmholtz equation, while the second term, ⇑|v|2 ↓ f2(x, k)⇑2
L2(!L)

, ensures alignment with the
modulus data. This dual-objective formulation is standard and widely used in scientific and engineering
communities. Restricting to the Sobolev space H2(#L) ensures well-posedness and the necessary regu-
larity to evaluate Laplacians and traces. This framework is particularly advantageous for mitigating the
ill-posedness introduced by noise in the measured data. Initializing the optimization at u(0), which incor-
porates travel-time-informed phase information, increases the likelihood of convergence to a physically
relevant solution in this non-convex landscape.

Observe that #L ↔ ”, and its bottom boundary coincides with:

# = (↓R,R)2 ≃ {z = ↓R}, (2.11)

which corresponds to the lower face of ε”. Thus, both uphase and its normal derivative εzuphase can be
extracted on #, enabling the reformulation of the original phaseless inverse problem as follows:

Problem 2.2 (The inverse scattering problem with phase information). Given the functions

g(x, k) = u(x, k) and h(x, k) = εzu(x, k) (2.12)

for all x ↘ #≃ [k, k], reconstruct c(x) for all x ↘ ”.

This formulation pertains to the phased inverse scattering problem, where both the modulus and phase
of the backscattered wave are known on the measurement surface. Our research group has developed two
distinct approaches, both leveraging Carleman estimates, to address this problem:

1. The Carleman convexification method [13, 14, 15, 33];
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2. The Carleman contraction mapping method [40].

In this work, we adopt the first approach to solve the problem numerically. The primary motivation
for this choice is that the Carleman convexification method has been validated with both simulated and
experimental datasets. The contraction mapping method will be applied in future research.

3 The frequency dimension reduction model

Following the phase retrieval procedure described in Section 2, Problem 2.1 is reduced to reconstruct-
ing the coe$cient c(x) from boundary measurements of u(x, k) and εzu(x, k) on # ≃ [k, k], as defined
in Problem 2.2. This inverse scattering problem is highly ill-posed, meaning that even minor pertur-
bations in the input data, such as measurement noise, can result in substantial reconstruction errors.
To mitigate this instability, we employ a frequency filtering technique using Fourier truncation, which
suppresses high-frequency oscillations in the data. This process yields a system of elliptic equations with
Cauchy boundary conditions, which is notably more stable and amenable to numerical computation.
The formulation of this system also naturally aligns Problem 2.2 with the framework of the Carleman
convexification method.

3.1 The logarithmic transformation

For the reader’s convenience, we provide an overview of the Fourier truncation procedure in this sec-
tion. The process begins with an algebraic transformation, following the algorithmic approach developed
in [14, 15, 24, 33]. Specifically, for each (x, k) ↘ ”≃ [k, k], we define the logarithmic transformation

v(x, k) =
1

k2
log

u(x, k)

uinc(x, k)
. (3.1)

Remark 3.1. Although taking the logarithm of the complex-valued function
u(x,k)

uinc(x,k)
in (3.1) may ini-

tially appear problematic, it is well-defined based on the definition of the complex logarithm presented

in [24, Section 4.2]. The WKB ansatz (2.5) further supports this definition by ensuring that
u(x,k)

uinc(x,k)

remains nonzero for all (x, k) ↘ ” ≃ [k, k]. In numerical implementations, evaluating this logarithm is

straightforward and poses no practical di!culties.

By standard rules in di!erentiation, we have for all (x, k) ↘ ”≃ [k, k]

⇐v(x, k) =
1

k2

[
⇐u(x, k)

u(x, k)
↓

⇐uinc(x, k)

uinc(x, k)

]
,

and

%v(x, k) =
1

k2

[%u(x, k)

u(x, k)
↓

(
⇐u(x, k)

u(x, k)

)2
↓

%uinc(x, k)

uinc(x, k)
+
(
⇐uinc(x, k)

uinc(x, k)

)2]

=
1

k2

[
k2(1↓ c(x))↓

(
⇐u(x, k)

u(x, k)
↓

⇐uinc(x, k)

uinc(x, k)

)
·

(
⇐u(x, k)

u(x, k)
+

⇐uinc(x, k)

uinc(x, k)

)]

= 1↓ c(x)↓⇐v(x, k) ·
(
k2⇐v(x, k) +

2⇐uinc(x, k)

uinc(x, k)

)
. (3.2)
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By a direct algebra, using the explicit formula of uinc in (2.1) gives

⇐uinc(x, k)

uinc(x, k)
=

(
ik ↓

1

|x↓ x0|

) x↓ x0

|x↓ x0|
, (x, k) ↘ ”≃ [k, k]. (3.3)

Combining (3.2) and (3.3) gives

%v(x, k) + k2[⇐v(x, k)]2 + 2
(
ik ↓

1

|x↓ x0|

)
⇐v(x, k) ·

x↓ x0

|x↓ x0|
= 1↓ c(x) (3.4)

for all (x, k) ↘ ”≃ [k, k]. To eliminate the unknown c, we di!erentiate (3.4) with respect to k to obtain

%εkv(x, k) + 2k[⇐v(x, k)]2 + 2k2⇐v(x, k) ·⇐εkv(x, k)

+ 2
(
ik ↓

1

|x↓ x0|

)
⇐εkv(x, k) ·

x↓ x0

|x↓ x0|
+ 2i⇐v(x, k) ·

x↓ x0

|x↓ x0|
= 0 (3.5)

for x ↘ ”, k ↘ [k, k].
Solving (3.5) is challenging because it does not take the form of a standard partial di!erential equation,

and a theoretical framework for it has not yet been developed. As a result, we approach this problem
using a frequency dimension reduction technique.

3.2 The frequency dimension reduction using Fourier expansion

We next apply a “Fourier filter” to eliminate the high-frequency oscillatory components of the function
v. This process involves truncating the Fourier expansion of v using the polynomial-exponential basis
{&n}n↑1 of L2(k, k). This basis was originally constructed in [18] via the Gram-Schmidt orthonormaliza-
tion of the complete system {ϖn(k) = kn→1ek}n↑1 in [k, k]. A higher-dimensional extension of this basis
was later developed in [39]. The rationale behind this choice will be further discussed in Remark 4.1.

For x ↘ ”, the Fourier expansion of v is approximated as

v(x, k) =
↓∑

n=1

vn(x)&n(k) ⇓
N∑

n=1

vn(x)&n(k) (3.6)

where the cuto! number N will be chosen later by a trial-error procedure, and the Fourier coe$cient vn
is given by

vn(x) =

∫
k

k

v(x, k)&n(k)dk. (3.7)

Remark 3.2. The truncation in (3.6) acts as a filtering step, e”ectively regularizing any noise in the

measured data by completely removing the high-frequency oscillatory components of v. Additionally, it

significantly reduces computational costs by eliminating the frequency dimension. Specifically, instead of

computing the function v : ”≃ [k, k] → C, which involves 3 + 1 dimensions, we compute a finite number

N of Fourier coe!cients vn : ” → C, reducing the problem to only three dimensions.

Plugging the approximation (3.6) into (3.5) gives

N∑

n=1

%vn(x)&
↔
n(k) + 2k

[ N∑

n=1

⇐vn(x)&n(k)
]2

+ 2k2
N∑

n=1

⇐vn(x)&n(k) ·
N∑

n=1

⇐vn(x)&
↔
n(k)

+ 2
(
ik ↓

1

|x↓ x0|

) N∑

n=1

⇐vn(x)&
↔
n(k) ·

x↓ x0

|x↓ x0|
+ 2i

N∑

n=1

⇐vn(x)&n(k) ·
x↓ x0

|x↓ x0|
= 0 (3.8)
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for all (x, k) ↘ ” ≃ [k, k]. For each m ↘ {1, 2, . . . , N}, multiplying &m(k) to both sides of (3.8) and
integrating the resulting equation, we obtain

N∑

n=1

smn%vn(x) +
N∑

n=1

N∑

l=1

amnl⇐vn(x) ·⇐vl(x) +
N∑

n=1

bmn ·⇐vn(x) = 0 (3.9)

for all x ↘ ”, where

smn =

∫
k

k

&↔
n(k)&m(k)dk, (3.10)

amnl =

∫
k

k

2k&n(k)&m(k)
(
&l(k) + k&↔

l
(k)

)
dk, (3.11)

bmn(x) =
x↓ x0

|x↓ x0|

∫
k

k

2
[(

ik ↓
1

|x↓ x0|

)
&↔

n(k) + i&n(k)
]
&m(k)dk

=
2i(x↓ x0)

|x↓ x0|

∫
k

k

k&↔
n(k)&m(k)dk ↓

2(x↓ x0)smn

|x↓ x0|
2

+
2i(x↓ x0)

|x↓ x0|
ϱ(m,n). (3.12)

Here, ϱ(m,n) is the Kronecker delta

ϱ(m,n) =

{
1 if m = n,

0 if m ⇔= n.

3.3 Data complementation

The values of v(x) =
[
v1(x), . . . , vN (x)

]T
for x ↘ # can be explicitly computed as follows. From

equations (2.12), (3.1), and (3.7), we derive

gm(x) := vm(x) =

∫
k

k

&m(k)

k2
log

g(x, k)

uinc(x, k)
dk, m ↘ {1, 2, . . . , N}, (3.13)

and

hm(x) := εzvm(x) =

∫
k

k

&m(k)

k2

[
h(x)

g(x)
↓

(
ik ↓

1

|x↓ x0|


z + d

|x↓ x0|


dk, (3.14)

for all x = (x, y, z) ↘ # and m ↘ {1, 2, . . . , N}, where x0 = (0, 0,↓d). While these expressions allow
for the direct computation of v and its normal derivative on #, they are not su$cient to determine v
throughout the entire domain ” because solving second-order equations such as (3.9) requires knowledge
of the solution on a surface enclosing ”. However, the data in (3.13) and (3.14) is well-defined only on #,
which is located at the bottom ”. This indicates that the information of {vm}

N

m=1 on ε” \ # is crucial
but missing. To achieve a stable computation of {vm}

N

m=1, it is necessary to compensate for this missing
data. Since the scattering wave weakens when the receivers are far from the source, we can approximate
the scattered wave usc(x, k) as zero on ε” \ #. Consequently, v(x, k) vanishes on ε” \ # ≃ [k, k]. As a
result, for m = 1, 2, . . . , N , we obtain

vm(x) = 0 for all x ↘ ε” \ #. (3.15)
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Remark 3.3. The data supplementation described above is not rigorous but rather an approximation

based on the fact that the scattering wave on # is stronger than that on ε” \ #. This observation holds

because the source location x0 = (0, 0,↓d) is closer to # compared to ε”\#. This supplementation strategy

has been successfully applied in our previous works on inverse scattering problems, such as [13, 15, 33].

Therefore, we continue to employ this approach.

Combining (3.9), (3.13), and (3.15) gives





N∑

n=1

smn%vn(x) +
N∑

n=1

N∑

l=1

amnl⇐vn(x) ·⇐vl(x) +
N∑

n=1

bmn ·⇐vn(x) = 0 x ↘ ”,

vm(x) = gm(x) x ↘ #,
εzvm(x) = hm(x) x ↘ #,
vm(x) = 0 x ↘ ε” \ #.

(3.16)

Remark 3.4. The system composed of all N equations in (3.16), for m ↘ {1, . . . , N}, provides an

approximate model for addressing the inverse scattering problem. This approximation arises from the

truncation of high-frequency components in (3.6) and the data complementation procedure described in

(3.15). Although these steps introduce inaccuracy, we view them as a deliberate and necessary regular-

ization strategy. This trade-o” substantially mitigates the inherent ill-posedness of the inverse problem,

enabling a more stable and feasible numerical solution.

4 The Carleman convexification method

To solve (3.16), we employed the Carleman convexification method originally developed in [20] and
further advanced in subsequent works [13, 14, 15, 33].

Recall the matrix S = (smn)Nm,n=1 as the N ≃N matrix whose (m,n)-entry is given by (3.10). From

[18], it is known that S is invertible. We denote its inverse by S→1 = (smn)Nm,n=1. Define

bmn =
N∑

i=1

smibin, amnl =
N∑

i=1

smiainl, for m,n, l ↘ {1, . . . , N}.

Using (3.9), we obtain the equation

%vm(x) +
N∑

n=1

⇐vn(x) · bmn +
N∑

n=1

N∑

l=1

amnl⇐vn(x) ·⇐vl(x) = 0, (4.1)

for x ↘ ”. Equation (4.1), combined with (3.13), forms an elliptic system:





%vm(x) +
N∑

n=1

⇐vn(x) · bmn +
N∑

n=1

N∑

l=1

amnl⇐vn(x) ·⇐vl(x) = 0, x ↘ ”,

vm(x) = gm(x), x ↘ #,
εzvm(x) = hm(x), x ↘ #,
vm(x) = 0 x ↘ ε” \ #.

(4.2)

Remark 4.1. The system defined in (4.2) for m ↘ {1, 2, . . . , N} plays a key role to place Problem 2.2

into the framework of the convexification method, and the choice of the basis {&n}n↑1 is crucial to its

formulation. For a given N ↘ N, recall the matrix S ↘ RN↗N
whose (m,n)-entry is given by (3.10). It

was shown in [18] that:
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1. The matrix S is invertible;

2. For all n ↗ 1, the derivative &↔
n is not identically zero on the interval [k, k].

The first property is essential, as the invertibility of S is necessary to define the coe!cients in (4.2);
without knowledge of S→1

, the formulation would be incomplete. The second property is equally significant.

If &↔
n = 0 for some n, then important information about %vn in the first term of (3.16) would be lost.

For example, consider replacing the exponential-polynomial basis with more commonly used alternatives

such as the Legendre polynomials or the trigonometric basis {ϖn}n↑1. In these cases, ϖ1 is a constant

function, and thus ϖ↔
1 ↖ 0. As a result, the principal term %v1 would be absent from (3.16), leading

to potentially large errors in computing v1, and consequently a”ecting the accuracy of the reconstructed

function v(x, k) via (3.6). This issue is particularly critical because the first term in the truncated series

often contributes significantly to the overall reconstruction.

Let s ↗ 4 be an integer. Note that s is set to be larger than or equal to 4 to ensure that Hs(”) is
continuously embedded into C2(”). For theoretical purposes, we assume that the target function c is
su$ciently smooth so that the true solution to the forward problem u satisfies

⇑u(·, k)⇑Hs(”) < ↑, uniformly for k ↘ [k, k].

Additionally, we assume that |u(x, k)| is uniformly bounded below by a positive constant u0. Due to the
change of variables in (3.1), the function v(x, k) belongs to Hs(”), with its Hs norm uniformly bounded
for all k ↘ [k, k]. Thus, there exists a constant M , depending on the upper bound of ⇑u(·, k)⇑Hs(”) for

k ↘ [k, k] and the set {&n}
N

n=1, such that

⇑v↘
⇑Hs(”)N < M,

where v↘ is the true solution to (4.2). We seek the “best fit” solution to (4.2) in the set of admissible
solutions

B(0,M) =

ω ↘ Hs(”)N : ⇑ω⇑Hs(”)N < M


, (4.3)

which is the ball centered at the origin with radius M . For positive numbers ς and φ, define the Carleman
weighted functional Jε,ϑ : B(0,M) → R

Jε,ϑ(ω) =
N∑

m=1

[ ∫

”
e2ε(z→r)2

%↼m(x) +
N∑

n=1

⇐↼n(x) · bmn +
N∑

n=1

N∑

l=1

amnl⇐↼n(x) ·⇐↼l(x)

2
dx

+ ς4e2ε(R+r)2
∫

!

(
|↼m ↓ gm|

2 + |εz↼m ↓ hm|
2
)
d↽(x) + ς4

∫

ϖ”\!
e2ε(z→r)2

|↼m|
2d↽(x)

+ φ⇑↼m⇑
2
Hs(”)

]
(4.4)

for all ω ↘ B(0,M), where r > R is a fixed number and ς is a Carleman parameter.

Remark 4.2. In the absence of the Carleman weight function e2ε(z→r)2
, the functional above reduces to

the standard least-squares mismatch functional associated with (4.2). However, in this unweighted form,

this cost functional may possess multiple local minima, making its minimization particularly di!cult.

Conventional optimization techniques, such as the gradient descent method, are prone to becoming trapped

in local minima that are far from the global solution. The core idea of the convexification method is to

incorporate the Carleman weight function, which transforms the cost functional into a globally convex

form, thereby facilitating the application of standard optimization methods and improving convergence to

the true solution.
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The theoretical foundation of the convexification method is built upon a rigorous theorem that guar-
antees Jε,ϑ is strictly convex within the ball B(0,M), and that its global minimizer in this set provides
a reliable approximation to the true solution v↘ of (4.2). This convexification theorem is fundamentally
derived from the following Carleman estimate.

Lemma 4.1 (Carleman Estimate). There exist constants ς0 = ς0(”, r) ↗ 1 and C = C(”, r) > 0 such

that

∫

”
e2ε(z→r)2

|%↼|2, dx ↗ C

∫

”
e2ε(z→r)2(ς3

|↼|2 + ς|⇐↼|2)dx

↓ Cς3
∫

ϖ”
e2ε(z→r)2

|↼|2d↽(x)↓ Cς

∫

!
e2ε(z→r)2

|⇐↼|2d↽(x). (4.5)

for all functions ↼ ↘ C2(”).

The Carleman estimate stated in Lemma 4.1 is structurally similar to the one presented in [22,
Theorem 4.1]. The key distinction lies in the boundary conditions imposed on the function ↼. Specifically,
[22, Theorem 4.1] assumes that ↼|ϖ” = 0 and εz↼|! = 0, whereas Lemma 4.1 omits the these conditions.
To compensate for this relaxation, two negative terms are added to the right-hand side of the Carleman
estimate in (4.5). Despite this di!erence, the proof technique used in [22] remains applicable to Lemma 4.1
with only minor modifications. The main adjustment involves deferring the integration process. Instead
of integrating mid-proof, as done in [22, Theorem 4.1], we maintain the Carleman estimate locally at each
point in ”, deriving a pointwise estimate first and performing the integration only at the final stage. This
postponed integration strategy aligns with the approach in [32, Theorem 3.1 and Corollary 3.2]. Given
the similarity in methodology and the minor nature of the required modifications, we omit the proof of
Lemma 4.1 here. For a more general version of the Carleman estimate, applicable when the Laplacian is
replaced by a general elliptic operator, we refer the reader to [38].

We have the theorem.

Theorem 4.1 (Carleman Convexification Theorem). Let ς0 be as given in Lemma 4.1. The following

statements hold:

1. For all ς > 1 and φ > 0, the functional Jε,ϑ is Fréchet di”erentiable, and its derivative DJε,ϑ is

Lipschitz continuous. That is, there exists a constant L, depending only on ”, M , and N , such

that

⇑DJε,ϑ(v2)↓DJε,ϑ(v1)⇑Hs(”)N → ↙ L⇑v2 ↓ v1⇑Hs(”)N

for all v1,v2 ↘ B(0,M).

2. There exists a constant ς1 = ς1(M,N, r,”) ↗ ς0 such that for all φ > 0 and ς ↗ ς1, the functional

Jε,ϑ is strictly convex in B(0,M). Specifically,

Jε,ϑ(u)↓ Jε,ϑ(v)↓DJε,ϑ(v)(u↓ v) ↗ (C1ς↓ C2)

∫

”
e2ε(z→r)2

(
|u↓ v|2 + |⇐(u↓ v)|2

)
dx

+ (C3ς
4
↓ C4ς

3)

∫

!
e2ε(z→r)2(|u↓ v|2 + |εz(u↓ v)|2) d↽(x) + φ⇑u↓ v⇑2

Hs(”)N , (4.6)

for all u,v ↘ H, where C1, C2, C3 and C4 are positive constants depending only on M , N , r, and
”. As a result, Jε,ϑ has a unique minimizer in B(0,M), denoted by vmin.
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3. Let ς > ς1 and define ’ = C1ς↓ C2 > 0. Fix an initial guess v(0)
↘ B(0,M) and assume


ω ↘ B(0,M) : ⇑ω↓ vmin⇑Hs(”)N < ⇑v(0)

↓ vmin⇑Hs(”)N


↔ B(0,M).

Define ⇀0 = min{2’/L2, 1} and fix a step size ⇀ ↘ (0, ⇀0). For each m ↗ 0, set the iteration

v(m+1) = v(m)
↓ ⇀J ↔

ε,ϑ
(v(m)) (4.7)

where J ↔
ε,ϑ

: Hs(”)N → Hs(”)N is the Rietz representation of DJε,ϑ. That means,

∝J ↔
ε,ϑ

(v),ω′Hs(”)N = DJε,ϑ(v)(ω) for all v,ω ↘ Hs(”)N .

Then, there exists a constant q ↘ (0, 1) such that for all m ↗ 0,

v(m)
↘ B(0,M) and ⇑v(m)

↓ vmin⇑Hs(”)N ↙ qm→1
⇑v(0)

↓ vmin⇑Hs(”)N .

Consequently, the sequence {v(m)
}m↑0 converges to the unique minimizer vmin as m → ↑.

The main ideas to establish convexification theorems were originally introduced in [20] and later
applied to inverse scattering problems in [15, 33]. In those works, some versions of the convexification
theorem were formulated for corresponding versions of the cost functional Jε,ϑ that does not include an
integral term over the measurement surface # and the complementary surfaces ε” \#. In the absence of
these terms, the cost functional is defined on the set


ω =

[
↼1 . . . ↼N

]T
↘ Hs(”)N : ⇑ω⇑Hs(”)N < M, ↼m|! = gm, εz↼m|! = hm,

↼m|ϖ”\! = 0, m = 1, . . . , N

.

However, it is nontrivial to verify whether this set is nonempty, whereas the nonemptiness of the set H
defined earlier is straightforward. To circumvent this di$culty, we incorporate the integral over # and
ε” \ # into the cost functional Jε,ϑ.

The proof of Theorem 4.1 closely follows the methodology presented in [32, Theorem 4.1]. The
first part is derived through straightforward algebraic manipulations. The second part builds upon
earlier results from [3], [15, Theorem 5.1], and [32, Theorem 4.1, part 2], with a minor but important
modification: in contrast to these prior works, where expressions such as (C1ς↓C2) and (C3ς4

↓C4ς3)
are replaced with a generic constant C, we preserve the explicit dependence on ς to emphasize the crucial
role played by the Carleman parameter in the convexity inequality (4.2). This modification is justified by
adapting the proof technique in [32, Theorem 4.1], with the key di!erence being the use of the Carleman
estimate in (4.5) in place of the one used in that reference. The third part of Theorem 4.1 follows directly
from [33, Theorem 2].

We next discuss how close the minimizer of Jε,ϑ is to the true solution of (4.2). Let

v↘ =
[
v↘1 . . . v↘

N

]T

denote the exact solution to (4.2) corresponding to the noiseless boundary data g↘m and h↘m, which are
idealized versions of the measured data gm and hm, respectively. That is, for each m ↘ {1, . . . , N}, the
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functions v↘m satisfy the following boundary value problem:






%v↘m(x) +
N

n=1
⇐v↘n(x) · bmn +

N
n=1

N
l=1

amnl⇐v↘n(x) ·⇐v↘
l
(x) = 0, x ↘ ”,

v↘m(x) = g↘m(x), x ↘ #,
εzv↘m(x) = h↘m(x), x ↘ #,
v↘m(x) = 0, x ↘ ε” \ #.

(4.8)

Additionally, we assume the noise level in the measured data is bounded by ϱ in the following sense

N∑

m=1

(
⇑gm ↓ g↘⇑H1(!) + ⇑hm ↓ h↘m⇑L2(”)

)
< ϱ, (4.9)

for some small constant ϱ ∞ 1. Then, using the same arguments of [32, Theorem 4.2], we have

⇑vmin ↓ v↘
⇑H1(”)N ↙ C

(
ϱ +

∈
φ⇑v↘

⇑Hs(”)N
)

(4.10)

for some constant C depending only on ”,M , r, ς, and N . In (4.10), we employ the standard Sobolev
norm instead of incorporating a Carleman-weighted functional, as was done in our previous work on
convexification. This formulation remains valid under the assumption that ς is fixed and the constant
C may depend on ς. A direct implication of (4.10) is that the global minimizer of Jε,ϑ provides an
approximation to the true solution of (4.2), with an error bounded by O(ϱ +

∈
φ).

The WKB method for phase retrieval presented in Section 2, the derivation of the frequency dimen-
sional reduction model in Section 3, the convexification result in Theorem 4.1, and the error estimate in
(4.10) collectively motivate the design of Algorithm 1 for solving the phaseless inverse scattering problem.

5 Numerical study

In this section, we highlight key aspects of Algorithm 1’s implementation and present several numerical
examples to demonstrate its performance.

To generate the simulated data, we set R = 1, placing the source at x0 = (0, 0,↓4) and using the
wave number interval [ω, 2ω]. To generate simulated data, the domain ” = (↓1, 1)3 is discretized using
a uniform grid defined as

G = {(xi = ↓1 + (i↓ 1)dx, yj = ↓1 + (j ↓ 1)dx, zt = ↓1 + (t↓ 1)dx) : 1 ↙ i, j, t ↙ Nx} ,

where Nx = 21 and dx = 2/(Nx ↓ 1). The wave number is interval set to be [ω, 2ω] and is uniformly
discretized into

K = {k1 = k, k2, . . . , kNk = k},

with ki = k + (i ↓ 1) k→k

Nk→1 and Nk = 121. The forward problem is addressed by reformulating the
Helmholtz model (2.2) into the Lippmann-Schwinger integral equation, following the approach in [8].
This integral equation is then numerically solved using the volume integral equation method developed
in [34, 37]. Let u↘(x, k), with x ↘ G and k ↘ K, denote the exact solution. We define the noisy data as

f(x, k) = |u↘(x, k)|(1 + ϱ rand),

for (x, k) ↘ (#L ∋G)≃K, where ϱ = 10% and rand represents a uniformly distributed random variable in
the interval [↓1, 1]. In this section, we set L = 0.28. For the artificial parameters involved in solving the
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Algorithm 1 The Carleman convexification method to compute the numerical solution to the phaseless
inverse scattering problem

1: Having the data f in hand, for each k, we minimize the mismatch functional Jk defined in (2.10)
using the initial guess uinit(x, k) = f(x, k)eik|x→x0| as in (2.9). The obtained minimizer u(x, k),
(x, k) ↘ #L ≃ [k, k] is the desired wave function including the phase information.

2: Compute u(x, k) and εzu(x, k) on #, which is the bottom portion of ε”.
3: Choose a cut-o! number N , a Carleman parameter ς, and a regularization parameter φ. Choose

Carleman parameters x0, ⇁, and ς and a regularization parameter φ.
4: Minimize the strictly convex Carleman weighted functional Jε,ϑ defined in (4.4). The minimizer is

denoted by vcomp(x) =
[
vcomp
1 vcomp

2 . . . vcomp
N

]T
, x ↘ ”.

5: By (3.6), we compute vcomp(x, k) using

vcomp(x, k) =
N∑

n=1

vcomp
n (x)&n(k), (5.1)

for x ↘ ”, k ↘ [k, k].
6: Due to (3.4), a numerical solution to Problem 2.1 can be computed via

ccomp(x) = 1↓
1

k ↓ k

∫
k

k

△e


%vcomp(x, k) + k2[⇐vcomp(x, k)]2

+ 2
(
ik ↓

1

|x↓ x0|

)
⇐vcomp(x, k) ·

x↓ x0

|x↓ x0|


dxdθ

for all x ↘ ”.

inverse problem, we select N = 7, ς = 1.1, and φ = 10→5.75. These values are determined through a trial-
and-error process. They are consistent with the corresponding set of parameters in [33]. Specifically, we
use Test 1 as a reference case to manually identify a suitable set of parameters, which are then consistently
applied across all subsequent tests.

5.1 Numerical implementation of phase retrieval

In Step 1 of Algorithm 1, the cost functional Jk is approximated using a Riemann sum over the spatial
grid #L ∋ G and the frequency partition K. To minimize Jk, we use MATLAB’s built-in optimization
routine fminunc, which proves to be both e$cient and e!ective in practice. As a representative example,
we demonstrate the recovery of the lost phase. Starting from the noisy data f in Test 1, the optimization
is initialized with uinit = f(x, k)eik|x→x0|, and fminunc is applied to minimize the cost. The resulting
reconstruction of the complex-valued wave function u, including both its real and imaginary parts, is
presented in Figure 2.

The numerical results in Figure 2 demonstrate the e!ectiveness of the phase retrieval strategy. Despite
the presence of 10% noise in the measured data (Figure 2a), the reconstructed wave field (Figures 2c
and 2e) closely approximates the true solution (Figures 2b and 2d) in both the real and imaginary
components. The method successfully preserves key structural features, such as spatial distribution and
amplitude. In particular, the real part of the reconstruction captures the peak profile with good accuracy,
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(a) Noisy data f (b) True function →e(u↑) (c) Reconstructed function →e(u)

(d) True function ↑m(u↑) (e) Reconstructed function ↑m(u)

Figure 2: Reconstruction of the wave function u(x, k) on # with k = k, showing both real and imaginary
parts from magnitude-only data. The data in (a) corresponds to Test 1 with a noise level of 10%.

while the imaginary part accurately recovers the expected dip pattern.
Although the input data in Figure 2a appears heavily degraded, the reconstructed real and imaginary

parts (Figures 2c and 2e) exhibit a clear improvement in quality. This enhancement is primarily attributed
to the structure of the cost functional Jk, which incorporates a regularization term involving the Laplacian
of the wave field (see the first term on the right-hand side of (2.10)). This term promotes smoothness
by penalizing irregular or non-di!erentiable behavior, resulting in reconstructions that are inherently
smoother than the raw, noisy magnitude data. Despite this regularization, some residual noise persists in
the reconstructed fields. This is due to the high noise level (10%) in the input and the e!ect of the data
fidelity term in (2.10), which constrains the solution to remain close to the measured data f , thereby
preserving some of its noise features. To address this, a Fourier filtering procedure (see (3.6)) is employed
in a subsequent step to suppress remaining high-frequency components, further improving the stability
and accuracy of the final reconstruction.

5.2 Numerical implementation of the convexification method

The Carleman convexification framework is implemented in Step 4 of Algorithm 1. The goal of this
step is to compute the vector vcomp, whose components represent the Fourier coe$cients of the function
v defined in (3.1). This vector corresponds to the solution of problem (3.16), which is equivalent to (4.2).
However, it is important to note that (4.2) involves the inverse matrix S→1, and numerical observations
indicate that some of its entries can attain large magnitudes, potentially degrading the accuracy of the
final reconstruction. To mitigate this issue and avoid unnecessary numerical errors, we opt to solve (3.16)
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directly rather than (4.2).
In this case, we reformulate the cost functional Jε,ϑ as follows:

Jε,ϑ(ω) =
N∑

m=1

∫

”
e2ε(z→r)2


N∑

n=1

smn%↼n(x) +
N∑

n=1

N∑

l=1

amnl⇐↼n(x) ·⇐↼l(x)

+
N∑

n=1

bmn ·⇐↼n(x)

2
dx+ ς4e2ε(R+r)2

∫

!

(
|↼m ↓ gm|

2 + |εz↼m ↓ hm|
2
)
d↽(x)

+ ς4
∫

ϖ”\!
e2ε(z→r)2

|↼m|
2d↽(x) + φ⇑↼m⇑

2
H2(”)


(5.2)

for all ω ↘ H. Without confusion, we continue to denote this functional by Jε,ϑ. We also note that, unlike
in the theoretical part, which requests s ↗ 4, we use the regularization norm H2(”). This significantly
simplifies the implementation without reducing the quality of the final reconstruction.

Minimizing the functional Jε,ϑ in (5.2) requires an initial guess v(0). According to the convexification
theorem, this initial guess does not need to be close to the global minimizer of Jε,ϑ; the only requirement
is that v(0)

↘ H. Following the approach in [33], we simplify the construction of v(0) by omitting the
nonlinear term


N

n=1


N

l=1 amnl⇐↼n(x) ·⇐↼l(x) from (5.2). That means, we define v(0) as the minimizer
of the simplified strictly convex cost functional:

J (0)
ε,ϑ

(ω) =
N∑

m=1

∫

”
e2ε(z→r)2


N∑

n=1

smn%↼n(x) +
N∑

n=1

bmn ·⇐↼n(x)

2
dx+ ς4

∫

ϖ”\!
e2ε(z→r)2

|↼m|
2d↽(x)

+ ς4e2ε(R+r)2
∫

!

(
|↼m ↓ gm|

2 + |εz↼m ↓ hm|
2
)
d↽(x) + φ⇑↼m⇑

2
H2(”)


(5.3)

for all ω ↘ B(0,M). Having the initialized vector v(0) in hand, we compute the minimizer by the
gradient descent method using the formula (4.7). This requires us to compute the derivative of Jε,ϑ. In
the implementation, we compute the derivative in finite di!erence by regarding Jε,ϑ as a function of N3

xN
variables. The discretized version of ω ↘ H2(”)N is

ω :=

↼m(xi, yj , zt) : 1 ↙ i, j, t ↙ Nx, 1 ↙ m ↙ N


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and that of Jε,ϑ is

Jε,ϑ(ω) =
N∑

m=1


d3x

Nx→1∑

i,j,t=2

e2ε(zt→r)2


N∑

n=1

smn%
dx↼n(xi, yj , zt)

+
N∑

n=1

N∑

l=1

amnl⇐
dx↼n(xi, yj , zt) ·⇐

dx↼l(xi, yj , zt) +
N∑

n=1

bmn ·⇐
dx↼n(xi, yj , zt)


2

+ ς4e2ε(R+r)2d2x

Nx∑

i,j=1

(
|↼m(xi, yj , z1)↓ gm(xi, yj , z1)|

2 + |εdx
z ↼m(xi, yj , z1)↓ hm(xi, yj , z1)|

2
)

+ ς4d2x

Nx∑

i,j=1

e2ε(zNx→r)2
|↼m(xi, yj , zNx)|

2d↽(x) + ς4d2x
∑

i,j≃{1,Nx}

Nx∑

t=1

e2ε(zt→r)2
|↼m(xi, yj , zt)|

2d↽(x)

+ φd3x

Nx→1∑

i,j,t=2

|↼m(xi, yj , zt)|
2 + |⇐

dx↼m(xi, yj , zt)|
2 + |%dx↼m(xi, yj , zt)|

2


. (5.4)

In (5.4),

⇐
dx↼(xi, yj , zt) =




εdx
x ↼(xi, yj , zt)

εdx
y ↼(xi, yj , zt)

εdx
z ↼(xi, yj , zt)



 =





ϱ(xi+1,yj ,zt)→ϱ(xi↓1,yj ,zt)
2dx

ϱ(xi,yj+1,zt)→ϱ(xi,yj↓1,zt)
2dx

ϱ(xi,yj ,zt+1)→ϱ(xi,yj ,zt↓1)
2dx



 ,

%dx↼(xi, yj , zt) =
1

d2x

[
↼(xi+1, yj , zt) + ↼(xi→1, yj , zt) + ↼(xi, yj+1, zt)

+ ↼(xi, yj→1, zt) + ↼(xi, yj , zt+1) + ↼(xi, yj , zt→1)↓ 6↼(xi, yj , zt)
]
.

We can interpret the discretized form in (5.4) as a polynomial in the variables

{↼m(xi, yj , zt) : 1 ↙ i, j, t ↙ Nx, 1 ↙ m ↙ N} ,

allowing us to compute its derivative explicitly.

5.3 Numerical examples

We present three numerical solutions to the phaseless inverse scattering problem due to Algorithm 1.

5.3.1 Test 1

We define the true profile of the dielectric constant as

ctrue(x, y, z) =

{
5 if x2 + y2 < 0.252 and |z + 0.65| < 0.05,
1 otherwise.

The true and reconstructed dielectric profiles are visualized in Figure 3.
Figure 3 illustrates the e!ectiveness of the proposed reconstruction method in recovering the dielec-

tric constant c(x) from phaseless measurements corrupted with 10% noise. The 3D visualizations in
subfigures 3a and 3b show that the reconstructed scatterer closely matches the true inclusion in both
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(a) 3D view of the true scatterer (b) 3D view of the reconstructed scatterer

(c) Cross-sectional view of the function ctrue (d) Cross-sectional view of the function ccomp

Figure 3: Test 1. Visualization of the true and reconstructed dielectric constant c(x), x ↘ ”. Subfigures
(a) and (b) show 3D views of the true and reconstructed scatterers, respectively. Subfigures (c) and (d)
display cross-sectional slices of the corresponding dielectric profiles. The reconstruction demonstrates
strong agreement with the true target in both shape and amplitude. The dielectric function c(x) was
reconstructed from phaseless data containing 10% noise.

position and geometry. Additionally, the cross-sectional views in subfigures 3c and 3d demonstrate that
the reconstruction accurately preserves the spatial distribution and peak amplitude of the dielectric pro-
file. The reconstructed function c achieves a maximum value of 4.54, corresponding to a relative error
of 9.17%. These results highlight the robustness and accuracy of the method, confirming its potential to
produce high-quality reconstructions even from limited and noisy phaseless data.
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5.3.2 Test 2

We next test the case of two inclusions. The true dielectric constant function is given by

ctrue =






5 (x↓ 0.5)2 + y2 < 0.252and|z + 0.65| < 0.05,
4.5 (x+ 0.5)2 + y2 < 0.252and|z + 0.65| < 0.05,
1 otherwise.

The true and reconstructed dielectric profiles are visualized in Figure 4.

(a) 3D view of the true scatterer (b) 3D view of the reconstructed scatterer

(c) Cross-sectional view of the function ctrue (d) Cross-sectional view of the function ccomp

Figure 4: Test 2. The true and reconstructed dielectric constant c(x), x ↘ ”. Subfigures (a) and (b)
display 3D views of the true and reconstructed scatterers, while (c) and (d) present cross-sectional views of
their respective dielectric profiles. The reconstructed result successfully captures both the spatial location
and amplitude of the true inclusions, demonstrating strong robustness to noise. The reconstruction was
performed using phaseless data corrupted with 10% noise.

Figure 4 highlights the e!ectiveness of the proposed method in reconstructing multiple inclusions
from phaseless data corrupted by 10% noise. The 3D isosurface visualizations in subfigures 4a and 4b

19



demonstrate that the reconstructed scatterers closely replicate the true geometry and spatial distribution
of the targets. Importantly, the method accurately preserves the separation and relative sizes of the
two inclusions. The cross-sectional views in subfigures 4c and 4d further validate the reconstruction
quality, revealing that both the amplitude and localization of the high-contrast regions are well recovered.
Quantitatively, the maximum value of the first inclusion centered at (0.5, 0,↓0.65) is 4.92, yielding a
relative error of 1.61%, while the second inclusion centered at (↓0.5, 0,↓0.65) attains a maximum of 3.75,
with a relative error of 16.78%. These reconstruction errors are considered acceptable, especially given
the high noise level and the severe ill-posedness of the inverse problem with single-sided measurements.

5.3.3 Test 3

Next, we consider the case of two rectangular inclusions. The true dielectric constant function is
given by

ctrue =






3.2 max{0.25|x|, |y + 0.5|} < 0.2and|z + 0.65| < 0.05,
3.2 max{0.25|x|, |y ↓ 0.5|} < 0.2and|z + 0.65| < 0.05,
1 otherwise.

The true and reconstructed dielectric profiles are visualized in Figure 5.
Figure 5 demonstrates the capability of the proposed method to accurately reconstruct elongated

inclusions from noisy phaseless data. The 3D views in subfigures 5a and 5b reveal that the reconstructed
scatterers closely resemble the true targets in both shape and orientation, e!ectively capturing their
elongated geometry and spatial arrangement. The cross-sectional slices in subfigures 5c and 5d confirm
that the reconstructed dielectric profile approximates the correct locations and amplitudes of the in-
clusions. The maximum value of the computed function c is 2.76, corresponding to the relative noise
13.75%. Although some smoothing is visible due to the regularization and the presence of 10% noise,
the method successfully preserves the key features of the underlying structure. These results further
validate the robustness of the algorithm, particularly in recovering complex shapes under limited and
noisy measurement conditions.

6 Concluding Remarks

In this paper, we have developed a comprehensive numerical framework for solving a 3D phaseless
coe$cient inverse problem governed by the Helmholtz equation. The method is motivated by both
practical imaging applications and a longstanding open question in inverse scattering theory concerning
the absence of phase information. Our approach combines several key components: a phase retrieval
procedure based on the WKB ansatz, a frequency dimension reduction via truncated Fourier expansion,
and the application of the Carleman convexification method to stably reconstruct the spatially varying
dielectric constant.

Theoretical results guarantee the strict convexity of the proposed cost functional, and the associated
gradient descent method is shown to globally converge to the true solution. Through multiple numerical
experiments using simulated noisy data, we have demonstrated that the method accurately recovers both
the geometry and contrast of embedded scatterers, even in the presence of high noise and under the
challenging constraint of single-sided measurements.

Future research directions include extending this framework to other types of governing equations,
such as the full Maxwell system, and further reducing data requirements by exploring compressive sensing
or machine learning enhancements. Overall, this work o!ers a globally convergent and computationally
feasible solution to a classically ill-posed and practically relevant inverse problem.
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(a) 3D view of the true scatterer (b) 3D view of the reconstructed scatterer

(c) Cross-sectional view of the function ctrue (d) Cross-sectional view of the function ccomp

Figure 5: Test 3. The true and reconstructed dielectric constant c(x), x ↘ ”. Subfigures (a) and (b)
show 3D isosurfaces of the true and reconstructed scatterers, respectively, while (c) and (d) display
cross-sectional slices of their corresponding dielectric profiles. The reconstruction accurately recovers
the elongated shape, spatial separation, and amplitude of both inclusions. These results highlight the
method’s robustness and e!ectiveness in handling phaseless data with 10% noise.
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