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Abstract

This paper addresses the challenging and interesting inverse problem of reconstructing the spatially
varying dielectric constant of a medium from phaseless backscattering measurements generated by
single-point illumination. The underlying mathematical model is governed by the three-dimensional
Helmholtz equation, and the available data consist solely of the magnitude of the scattered wave field.
To address the nonlinearity and servere ill-posedness of this phaseless inverse scattering problem, we
introduce a robust, globally convergent numerical framework combining several key regularization
strategies. Our method first employs a phase retrieval step based on the Wentzel-Kramers—Brillouin
(WKB) ansatz, where the lost phase information is reconstructed by solving a nonlinear optimization
problem. Subsequently, we implement a Fourier-based dimension reduction technique, transforming
the original problem into a more stable system of elliptic equations with Cauchy boundary conditions.
To solve this resulting system reliably, we apply the Carleman convexification approach, constructing
a strictly convex weighted cost functional whose global minimizer provides an accurate approximation
of the true solution. Numerical simulations using synthetic data with high noise levels demonstrate the
effectiveness and robustness of the proposed method, confirming its capability to accurately recover
both the geometric location and contrast of hidden scatterers.

Keywords: phaseless inverse scattering, Carleman convexification method, phase retrieval, Fourier ex-
pansion, numerical reconstruction
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1 Introduction

Inverse scattering problems, particularly those involving wave propagation through media with spa-
tially varying dielectric properties, have broad applications in scientific and engineering disciplines. Con-
sider a medium whose dielectric characteristics are represented by a smooth function ¢ : R® — [1,00).
Let Q = (—R, R)? C R?, with R > 0, denote our region of interest. Throughout this study, we assume
that the dielectric constant satisfies

>1, xe€q,
c(x) = { (1.1)

=1, xcR3\Q,
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which implies a vacuum-like medium surrounding €2, and regions of higher dielectric values within
correspond to embedded scatterers. Practical examples of such scatterers include buried explosive de-
vices, underground mineral deposits, tumors in biological tissues, defects within structural materials, and
microscopic or nanoscopic inhomogeneities. These inverse scattering scenarios are fundamental to many
areas, such as remote sensing, non-destructive evaluation, medical imaging, and materials science.
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Figure 1: (a) Illustration of the inverse scattering scenario, showing incident waves interacting with an
unknown object in an inaccessible region €2, producing scattered waves measured on the observation layer
I'z. (b) Real-world example demonstrating remote detection of hidden objects using reflected wave data
collected by a detector array.

To remotely detect and characterize scatterers, one illuminates the domain {2 with an incident wave
originating from a single point source located at xo = (0,0, —d) ¢ Q, where d > R. This wave interacts
with scatterers within (2, creating scattered waves that radiate outward. We measure only the magnitude
(intensity) of the resulting scattered wave field on a three-dimensional measurement layer

Iy =(-R,R)*x (-R,—R+ L),

located immediately at the bottom of the domain €2, with some thickness L > 0. Figure [1| provides
both schematic and practical visualizations of this measurement scenario. The central goal of our phase-
less inverse scattering problem is to reconstruct the dielectric function ¢(x) using these intensity-only
measurements, thereby revealing the position, shape, and dielectric contrasts of the hidden scatterers.

Phaseless inverse scattering problems naturally arise in applications where the phase measurement
is difficult or infeasible, such as in high-frequency regimes with rapid oscillations that preclude accurate
phase detection. In contrast to conventional inverse scattering problems, where both amplitude and
phase are typically available, phaseless measurements lead to greater mathematical complexity due to
increased nonlinearity and limited data. As a consequence, it is generally necessary to collect intensity
data over a three-dimensional measurement volume rather than on a simpler two-dimensional boundary
surface.

The theoretical and practical significance of phaseless inverse scattering has long been recognized. A
classical question posed by Chadan and Sabatier |7, Chapter 10] “How can inverse scattering problems



be solved using only magnitude data?” has driven extensive research. Early theoretical investigations,
such as uniqueness results for the one-dimensional Schréodinger equation [31) (1], laid foundational under-
standing. Subsequently, these uniqueness results have been extended to multi-dimensional Schrédinger
and Helmholtz equations under various assumptions [16] [17, [30L 19} 42].

While analytic reconstruction methods have been proposed [26] 27, 28] [29], these methods often re-
quire measurements across a wide frequency spectrum, limiting their practicality. More computationally
feasible numerical approaches for realistic frequency ranges have thus been developed, demonstrating
successful reconstructions from simulated and experimental data |21} 23] 25]. Further numerical methods
utilizing Kirchhoff migration and Born approximations have been studied in [5, 6], and shape reconstruc-
tion from phaseless data has also received considerable attention [2, 14} [11] [12] [35].

In this paper, we investigate the phaseless inverse scattering problem under single-source illumination
using multi-frequency data. While linearization-based methods can effectively localize scatterers, they
often fail to accurately reconstruct high-contrast variations, see e.g. [25]. To address this limitation,
we propose a novel, globally convergent reconstruction method that combines the Wentzel-Kramers—
Brillouin (WKB) ansatz, a Fourier filtering technique, and the Carleman convexification approach. By
entirely avoiding linearization, our method significantly improves reconstruction accuracy and robustness.
Specifically, our proposed numerical framework consists of three interconnected components. First, we
develop a robust phase retrieval procedure that leverages the WKB ansatz and nonlinear optimization
to accurately recover complex wave fields from phaseless measurements. Next, we apply a Fourier-based
frequency reduction technique, transforming the original inverse problem into a stable elliptic system with
Cauchy boundary conditions. Finally, the Carleman convexification method is employed to construct a
weighted cost functional, ensuring strict convexity and enabling stable global minimization. Numerical
experiments clearly illustrate that our approach effectively recovers both the location and high contrast
of scatterers, even in the presence of noise.

The remainder of the paper is organized as follows. In Section [2| we outline the problem statement
and our WKB-based phase retrieval procedure. Section [3| describes the frequency dimension reduction
approach. Section [4] introduces the Carleman convexification method, including rigorous convexity anal-
ysis. Numerical simulations validating the proposed method are provided in Section [5, and concluding
remarks are offered in Section [6l

2 Problem statement and phase reconstruction via the Wentzel-Kramers—
Brillouin ansatz

Consider an inverse scattering scenario governed by the Helmholtz equation in three-dimensional
space. Let [k, k] denote an interval of wave numbers and xo = (0,0, —d), with d > R, represent a fixed
point source outside the domain 2. The incident wave generated by this source at wave number k is
given explicitly by

eik|x—x0|

(x,k) € R® x [k, k]. (2.1)

tine 0O R) = G Tl

When this incident wave interacts with the scatterers embedded in the domain €2, characterized by the
spatially varying dielectric constant ¢(x), it generates the total wave field u(x, k), which satisfies the
following problem:

Au+ k2 e(x)u = 0, x € R3,
(2.2)

Oxuse — ikuse = o(|x|71), [x] = oo,



where the scattered wave ug is defined as the difference between the total and incident waves, i.e.,
Uge(%, k) = w(x, k) — uine(x, k),  (x,k) € R3 x [k, k]. (2.3)

In many practical situations, only the intensity (modulus) of the scattered wave can be measured.
Thus, we consider the following inverse problem:

Problem 2.1 (Inverse scattering without phase information). Given the phaseless measurements

f(x, k) = u(x, k), (x,k) € T x [k, k], (2.4)
reconstruct the dielectric constant c¢(x) within the domain ).

Addressing this phaseless inverse scattering problem presents significant challenges due to its inherent
nonlinearity and ill-posedness. To reconstruct the lost phase information, we utilize the classical Wentzel—
Kramers-Brillouin (WKB) ansatz, which approximates the wave field:

u(x, k) = A(x)e* ™™ L O(1/k) as k — . (2.5)

This asymptotic form is well-established in the literature. For the stationary Schrédinger equation, its
validity under the Born approximation has been demonstrated in foundational studies such as [9} 10, 136],
and analogous reasoning extends naturally to the Helmholtz equation. Beyond the Born approximation,
the first rigorous justification was presented in [41, Theorem 17], with a more refined analysis appearing
much later in [28]. For clarity, we summarize below the key conditions provided in [28] under which the
ansatz is valid:

1. The coefficient ¢(x) is assumed to belong to the class C''5.

2. For every x € (), there exists a unique geodesic line connecting the source xy and x with respect
to the Riemannian metric /c(x)|dx|, where |dx| = \/dz? + dy? + dz2.

Although these conditions rigorously justify the ansatz (2.5, they may not be practical to verify
for finite k& or in real-world applications. Therefore, we adopt the ansatz heuristically as a physically

informed starting point for phase reconstruction. To estimate 7, we differentiate the ansatz, neglecting
the O(1/k) term:

Vu(x, k) = (VA(X) + ikV7(x)) e,
Au(x, k) = (AA(x) + 2ikVA(x) - V7(x) + ik A(x) AT(x) — K2 A(x)|V7(x)[?) 769,
Substituting into the Helmholtz equation, we obtain:
Au(x, k) + k2e(x)u(x, k) = (AA(X) + 2ikVA(x) - V7 (x)
+ ik A(x)AT(x) — K2A(x)|VT |2 + k%(x)A(x))e“”(x) =0, (2.6)
for all (x,k) € Ty x [k, k]. In the high-frequency limit, the leading-order term,
— kK2 AX) VT + ke(x) A(x),
must vanish, which yields the eikonal equation:
V72 =c(x) =1 forxeTly, (2.7)

using the assumption ¢ = 11in (R*\ Q) UTy.



Remark 2.1. Alternatively, the eikonal equation can be heuristically derived by viewing (2.6) as a
quadratic equation in k. Enforcing that the equation holds for all k implies that the coefficient of the
dominant term (and the other two lower order terms) must vanish, once again yielding (2.7)).

Since 7 denotes the travel time from x( to x, the natural choice of solution to (2.7)) is:
T(x) =|x —x¢| forallxely. (2.8)

Using this phase, we define the initial guess:

uO(x, k) = f(x, k)e*>ol forallx ey, ke [k k] (2.9)

as an approximation to the true wave field u(x, k).

The ansatz provides a mathematically grounded approximation of wave fields in the high-
frequency regime. However, the constructed initial guess u(%) (x, k) may not exactly satisfy the Helmholtz
equation, nor perfectly match the observed modulus data due to noise. To refine this estimate, we recover
an improved approximation Uphase(X, k) by minimizing its deviation from both the Helmholtz operator
and the intensity constraint. Specifically, for each k € [k, k], we solve the following variational problem:

Te(©) = [|Av + K0 Lo + 10 = 2058 |2 r, (2.10)

where the minimization is over v € H?(I'r). Among the local minimizers, we select the one closest to
w0 (x,k), and denote it by uphase(X, k).

The functional Ji(v) in captures two complementary objectives: adherence to the PDE model
in I'z, and conformity with the observed intensity. The first term, ||Av + k%v|)2, (r, ) benalizes deviation
from the Helmholtz equation, while the second term, [|[v]* — f2(x, k)%, (r, ) ensures alignment with the
modulus data. This dual-objective formulation is standard and widely used in scientific and engineering
communities. Restricting to the Sobolev space H?(I'y) ensures well-posedness and the necessary regu-
larity to evaluate Laplacians and traces. This framework is particularly advantageous for mitigating the
ill-posedness introduced by noise in the measured data. Initializing the optimization at 1), which incor-
porates travel-time-informed phase information, increases the likelihood of convergence to a physically
relevant solution in this non-convex landscape.

Observe that I'r, C €2, and its bottom boundary coincides with:

I'=(—R,R)* x {z = —R}, (2.11)

which corresponds to the lower face of 9€2. Thus, both uppase and its normal derivative 0,uphase can be
extracted on I', enabling the reformulation of the original phaseless inverse problem as follows:

Problem 2.2 (The inverse scattering problem with phase information). Given the functions
g(x, k) =u(x,k) and h(x, k)= 0u(x,k) (2.12)
for all x € T x [k, k], reconstruct c(x) for all x € €.

This formulation pertains to the phased inverse scattering problem, where both the modulus and phase
of the backscattered wave are known on the measurement surface. Our research group has developed two
distinct approaches, both leveraging Carleman estimates, to address this problem:

1. The Carleman convexification method |13} [14] 15} [33];



2. The Carleman contraction mapping method [40].

In this work, we adopt the first approach to solve the problem numerically. The primary motivation
for this choice is that the Carleman convexification method has been validated with both simulated and
experimental datasets. The contraction mapping method will be applied in future research.

3 The frequency dimension reduction model

Following the phase retrieval procedure described in Section [2, Problem [2.1|is reduced to reconstruct-
ing the coefficient ¢(x) from boundary measurements of u(x, k) and d,u(x,k) on I' x [k, k], as defined
in Problem This inverse scattering problem is highly ill-posed, meaning that even minor pertur-
bations in the input data, such as measurement noise, can result in substantial reconstruction errors.
To mitigate this instability, we employ a frequency filtering technique using Fourier truncation, which
suppresses high-frequency oscillations in the data. This process yields a system of elliptic equations with
Cauchy boundary conditions, which is notably more stable and amenable to numerical computation.
The formulation of this system also naturally aligns Problem with the framework of the Carleman
convexification method.

3.1 The logarithmic transformation

For the reader’s convenience, we provide an overview of the Fourier truncation procedure in this sec-
tion. The process begins with an algebraic transformaticln, following the algorithmic approach developed
n |14}, 15, [24] 133]. Specifically, for each (x,k) € Q X [k, k], we define the logarithmic transformation

u(x, k)

7Uinc(xy % (3.1)

Remark 3.1. Although taking the logarithm of the complex-valued function uu(’zﬁc) in (3.1) may ini-

tially appear problematic, it is well-defined based on the definition of the complex logarithm presented

in [24, Section 4.2]. The WKB ansatz . further supports this definition by ensuring that ui(c(x af)

remains nonzero for all (x,k) € Q x [k, k|. In numerical implementations, evaluating this logarithm is
straightforward and poses no practical difficulties.

By standard rules in differentiation, we have for all (x, k) € Q x [k, k]

Vu(x,k)  Vuine(x, /‘C)}

1
VU(X, k) = ﬁ[ ’LL(X, k') B Uinc(xa k)

and

Av(x, k) =

Au(x, k) Vu(x,k)\2  Auine(X, k) Vine(x, k) \ 2
[ u(x, k) (u(x,k) > C Uine(x, k) (uinc(x,k) ) ]
el —eo - (G - Smy) Clony ey )
QVUinC(X, k:)

uinc(x,k) )

=1-c¢(x)— Vo(x,k)- <k2Vv(x, k) + (3.2)



By a direct algebra, using the explicit formula of uj,e in (2.1) gives

Vine(x, k) . 1 X — X _
— = k- k) e Qx [k, k| ,
UinC(X k?) <1 ’X — XO’> ‘X _ XO‘ (X7 ) € X [7, ] (3 3)
Combining (3.2) and (| gives
Al ’“Q[V“(X’ O+ 2(ik = =) Vel k) - = = 1= efx) (.4)

for all (x,k) € Q x [k, k]. To eliminate the unknown c, we differentiate (3.4) with respect to k to obtain

Adyv(x, k) + 2k[Vo(x, k)]? + 2k*Vo(x, k) - VOpo(x, k)

_XO

+ Z(ik - )V@kv(x k) - +2iVu(x, k) - —0 (3.5)

|x — X0 |X X0| |x — x|

for x € Q, k € [k, k].

Solving is challenging because it does not take the form of a standard partial differential equation,
and a theoretical framework for it has not yet been developed. As a result, we approach this problem
using a frequency dimension reduction technique.

3.2 The frequency dimension reduction using Fourier expansion

We next apply a “Fourier filter” to eliminate the high-frequency oscillatory components of the function
v. This process involves truncating the Fourier expansion of v using the polynomial-exponential basis
{¥,,}n>1 of L?(k, k). This basis was originally constructed in [18] via the Gram-Schmidt orthonormaliza-
tion of the complete system {¢,(k) = k""1eF},>1 in [k, k]. A higher-dimensional extension of this basis
was later developed in [39]. The rationale behind this choice will be further discussed in Remark
For x € 2, the Fourier expansion of v is approximated as

00 N
v, k) =Y v (X)Un(k) ~ D va(x) U (k) (3.6)
n=1 n=1

where the cutoff number N will be chosen later by a trial-error procedure, and the Fourier coefficient v,
is given by

k
vn(x):/k v(x, k)W, (k)dk. (3.7)

Remark 3.2. The truncation in acts as a filtering step, effectively regularizing any noise in the
measured data by completely removing the high-frequency oscillatory components of v. Additionally, it
significantly reduces computational costs by eliminating the frequency dimension. Specifically, instead of
computing the function v : Q x [k, k] — C, which involves 3 + 1 dimensions, we compute a finite number
N of Fourier coefficients v, : Q — C, reducing the problem to only three dimensions.

Plugging the approximation (3.6]) into (3.5)) gives

N N
Z Avn(x) W, (k) + 2k [ Z Vo (W (F)] + 282 Vo ()W () -3 V() ()
n=1 n=1

|x — x| |x — g

N
+ 2(ik: - |X1XO|) Z Von(x) U (k) - 420 Vo, () U (k) - ol =0 (3.8)
=1 =1



for all (x,k) € Q x [k, k]. For each m € {1,2,..., N}, multiplying ¥,,(k) to both sides of (3.8) and
integrating the resulting equation, we obtain

N N N N
Z SmnAvy (Xx) + Z Z Al VUn (x) - Vo (x) + Z byn - Vo (x) =0 (3.9)
n=1 n=1[=1 n=1
for all x € €2, where
k
Smn = / W (k)W (k)dk, (3.10)
k
k
- / W (k) W () (W3 () + KT} (k)) b, (3.11)
b (%) = 0 k2[(1<: ! )qﬂ (k) + 10 (k)}xy (k)dk
mn\X _|X—X0| A 1 |X—X0| n 1%¥n m
2 - k 2 - mn 2i —
_ Akx = xo) / B ()W ()l — 2 XO)‘Z (X = X0) 50 ). (3.12)
Ix —xo| Ji |x — x| |x — xp
Here, (m,n) is the Kronecker delta
1 ifm=
5(m. n) if m=n,
0 if m#n.
3.3 Data complementation
The values of v(x) = [ vi(x),...,vn(x) }T for x € I" can be explicitly computed as follows. From
equations (2.12)), (3.1), and (3.7)), we derive
k
Yin(k), 9% k)
(%) i= (%) = 1 : 1,2,..., N}, 1
Im(X) = v (%) /k 2 log tine (%, ) dk, me{ } (3.13)
and

o (%) = D0 () :/: Wi (k) [h(x) _ <ik— ‘ ! ) |”d }dk, (3.14)

k2 | g(x) x —xo| ) |x — %0

for all x = (z,y,2) € ' and m € {1,2,..., N}, where xg = (0,0, —d). While these expressions allow
for the direct computation of v and its normal derivative on I', they are not sufficient to determine v
throughout the entire domain 2 because solving second-order equations such as requires knowledge
of the solution on a surface enclosing 2. However, the data in and is well-defined only on I,
which is located at the bottom €. This indicates that the information of {v,,}N_; on 9Q\ T is crucial
but missing. To achieve a stable computation of {v,,}¥_;, it is necessary to compensate for this missing
data. Since the scattering wave weakens when the receivers are far from the source, we can approximate

the scattered wave us(x, k) as zero on 992 \ I'. Consequently, v(x, k) vanishes on 02\ I" x [k, k]. As a
result, for m =1,2,..., N, we obtain

Um(x) =0 forall x € 9Q\T. (3.15)



Remark 3.3. The data supplementation described above is mot rigorous but rather an approximation
based on the fact that the scattering wave on I' is stronger than that on OQ\ I'. This observation holds
because the source location xg = (0,0, —d) is closer toT' compared to OQ\I'. This supplementation strategy
has been successfully applied in our previous works on inverse scattering problems, such as [13, 115, |33].
Therefore, we continue to employ this approach.

Combining (3.9)), (3.13), and (3.15]) gives

N N N N

Z SmnA'Un(X) + Z Z amnlvvn(x) : VUZ(X) + Z by - V'Un(x) =0 xe€,

n=1 n=1 =1 n=1

Um(x) = gm(x) xel, (3'16)
azvm(x) - hm(x) xel,

om(x) = 0 x € OO\ T.

Remark 3.4. The system composed of all N equations in , for m € {1,...,N}, provides an
approrimate model for addressing the inverse scattering problem. This approrimation arises from the
truncation of high-frequency components in and the data complementation procedure described in
. Although these steps introduce inaccuracy, we view them as a deliberate and necessary reqular-
ization strategy. This trade-off substantially mitigates the inherent ill-posedness of the inverse problem,
enabling a more stable and feasible numerical solution.

4 The Carleman convexification method

To solve , we employed the Carleman convexification method originally developed in [20] and
further advanced in subsequent works [13] [14] [15] 33].

Recall the matrix S = (smn),]\,fm:1 as the N x N matrix whose (m,n)-entry is given by (3.10). From
[18], it is known that S is invertible. We denote its inverse by S—! = (§mn)%,n:1. Define

N N
bimn = ngz’bm, Ayl = Zé}maml, for m,n,l e {1,...,N}.
i=1 i=1

Using (3.9), we obtain the equation

N N N
Avn (%) + > V(%) by + DD Gt V(%) - Vy(x) = 0, (4.1)
n=1 n=1 [=1
for x € 2. Equation (4.1)), combined with (3.13), forms an elliptic system:
N N N N
Avm(x) + Y V0r(%) by + DD Gt V(%) - Voy(x) =0, x € Q,
n=1 n=1 [=1
Um(X) = gm(%), x €T, (4.2)
azvm(x) = hm(x)7 xel,
Um(x) =0 x € 0N\ T.

Remark 4.1. The system defined in form € {1,2,...,N} plays a key role to place Problem
into the framework of the convezification method, and the choice of the basis {Wy}n>1 is crucial to its
formulation. For a given N € N, recall the matriz S € RN*N whose (m,n)-entry is given by . It
was shown in [18] that:



1. The matriz S is invertible;

2. For alln > 1, the derivative W/, is not identically zero on the interval [k, k.

The first property is essential, as the invertibility of S is necessary to define the coefficients in ;
without knowledge of S™1, the formulation would be incomplete. The second property is equally significant.
If W), =0 for some n, then important information about Av, in the first term of would be lost.
For example, consider replacing the exponential-polynomial basis with more commonly used alternatives
such as the Legendre polynomials or the trigonometric basis {¢n}tn>1. In these cases, ¢1 is a constant
function, and thus ¢} = 0. As a result, the principal term Avy would be absent from , leading
to potentially large errors in computing vi, and consequently affecting the accuracy of the reconstructed
function v(x, k) via (3.6). This issue is particularly critical because the first term in the truncated series
often contributes significantly to the overall reconstruction.

Let s > 4 be an integer. Note that s is set to be larger than or equal to 4 to ensure that H*(2) is
continuously embedded into C2?(Q2). For theoretical purposes, we assume that the target function c is
sufficiently smooth so that the true solution to the forward problem u satisfies

Ju(-, k)l (o) < 0o, uniformly for k € [k, k].

Additionally, we assume that |u(x, k)| is uniformly bounded below by a positive constant ug. Due to the
change of variables in (3.1)), the function v(x, k) belongs to H*(£), with its H* norm uniformly bounded
for all k € [k, k]. Thus, there exists a constant M, depending on the upper bound of [Ju(-, k)| s (q) for
k € [k, k] and the set {¥,}V | such that

IV s v < M,

where v* is the true solution to . We seek the “best fit” solution to in the set of admissible
solutions

B0,M) = {p € H'@Q : ol oy < M}, (4.3)
which is the ball centered at the origin with radius M. For positive numbers A and ¢, define the Carleman
weighted functional Jy . : B(0, M) — R

N
JA,E(‘P) = Z

N N N
[ / AG—r)? ‘A@m(x) + > Veou(X) bun+ > G Veen(x) - Ve (x) ]2dx
1 -J/Q n=1

n=1 [=1

+ AP / (I¢m = gm|* + 10=0m — hn *) dor(x) + X* / P o, do (x)
r OO\T

+ ellemliey] (44)

for all ¢ € B(0, M), where r > R is a fixed number and \ is a Carleman parameter.

Remark 4.2. In the absence of the Carleman weight function 62)‘(3_’")2, the functional above reduces to

the standard least-squares mismatch functional associated with . Howewver, in this unweighted form,
this cost functional may possess multiple local minima, making its minimization particularly difficult.
Conventional optimization techniques, such as the gradient descent method, are prone to becoming trapped
in local minima that are far from the global solution. The core idea of the convexification method is to
incorporate the Carleman weight function, which transforms the cost functional into a globally convex
form, thereby facilitating the application of standard optimization methods and improving convergence to
the true solution.
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The theoretical foundation of the convexification method is built upon a rigorous theorem that guar-
antees J) ¢ is strictly convex within the ball B(0, M), and that its global minimizer in this set provides
a reliable approximation to the true solution v* of . This convexification theorem is fundamentally
derived from the following Carleman estimate.

Lemma 4.1 (Carleman Estimate). There exist constants A\g = A\o(2,7) > 1 and C = C(Q,r) > 0 such
that

/962)\(z—r)2|A(p|2,dX > C/QeQ’\(z_T)Q(A3|<P|2 + | Vy|?)dx
x| B pdotx) — O [ P Vo). (45)

for all functions ¢ € C%(Q).

The Carleman estimate stated in Lemma is structurally similar to the one presented in [22|
Theorem 4.1]. The key distinction lies in the boundary conditions imposed on the function ¢. Specifically,
[22, Theorem 4.1] assumes that ¢|pq = 0 and 9,¢|r = 0, whereas Lemma [4.1| omits the these conditions.
To compensate for this relaxation, two negative terms are added to the right-hand side of the Carleman
estimate in . Despite this difference, the proof technique used in [22] remains applicable to Lemma
with only minor modifications. The main adjustment involves deferring the integration process. Instead
of integrating mid-proof, as done in [22, Theorem 4.1], we maintain the Carleman estimate locally at each
point in €, deriving a pointwise estimate first and performing the integration only at the final stage. This
postponed integration strategy aligns with the approach in [32, Theorem 3.1 and Corollary 3.2]. Given
the similarity in methodology and the minor nature of the required modifications, we omit the proof of
Lemma here. For a more general version of the Carleman estimate, applicable when the Laplacian is
replaced by a general elliptic operator, we refer the reader to [3§].

We have the theorem.

Theorem 4.1 (Carleman Convexification Theorem). Let Ay be as given in Lemma . The following
statements hold:

1. For all X > 1 and € > 0, the functional Jy . is Fréchet differentiable, and its derivative DJ) . is
Lipschitz continuous. That is, there exists a constant L, depending only on Q, M, and N, such
that

1D Ixe(va) = DIxe(vi)ll grayn < Lllve = villgs(oyn
for all vi,vo € B(0, M).
2. There exists a constant Ay = A\ (M, N,r,Q) > Ao such that for all e > 0 and X\ > A1, the functional
Iy 18 strictly convex in B(0,M). Specifically,

Ine(a) = Iy e(v) = DIy (v)(u—v) > (C1A — Cs) /Q 2Az=r)? (\u —v|* 4+ |V(u— v)]2) dx

+(03A4—04A3)/e”<2—7">2(|u—v|2+az(u—v)\Q)da(x)+e||u—v\|§ls(9)N, (4.6)
N

for allu,v € H, where Cy,C5,Cs and Cy are positive constants depending only on M, N, r, and
Q. As a result, Jy has a unique minimizer in B(0, M), denoted by Vmin.
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3. Let A > A1 and define A = C1 )\ — Cy > 0. Fiz an initial guess v ¢ B(0, M) and assume
(o € BOM) : ko~ Vainll ey < VO ~ Vil + € B0, ).
Define ng = min{2A/L?, 1} and fir a step size n € (0,19). For each m > 0, set the iteration
vimtl) = y(m) _ T]JS\76(V(m)) (4.7)
where J} Hs ()N — H*(Q)N is the Rietz representation of DJy .. That means,

<J§\,e(v)7 @)HS(Q)N = DJ)\,E(V)(LP) fOT all V,p € HS(Q)N
Then, there exists a constant q € (0,1) such that for all m >0,
vim e B(0,M) and |v™ — Vinin || s (@) < ¢ v O — Vnin || s (@) -

Consequently, the sequence {v(m)}mzo converges to the unique minimizer Viin S M — 00.

The main ideas to establish convexification theorems were originally introduced in [20] and later
applied to inverse scattering problems in [15 [33]. In those works, some versions of the convexification
theorem were formulated for corresponding versions of the cost functional Jy . that does not include an
integral term over the measurement surface I' and the complementary surfaces 92\ I'. In the absence of
these terms, the cost functional is defined on the set

T s
{(’0 = [901 ce (PN} €H (Q)N : HQOHHS(Q)N < M7 (th—‘ = Gm, 8z90m\r - hmv
mlao\r =0, m = 1,...,N}.

However, it is nontrivial to verify whether this set is nonempty, whereas the nonemptiness of the set H
defined earlier is straightforward. To circumvent this difficulty, we incorporate the integral over I' and
0Q\ I into the cost functional J) ..

The proof of Theorem closely follows the methodology presented in [32, Theorem 4.1]. The
first part is derived through straightforward algebraic manipulations. The second part builds upon
earlier results from [3], [L5, Theorem 5.1], and [32, Theorem 4.1, part 2], with a minor but important
modification: in contrast to these prior works, where expressions such as (C1\ — Cq) and (C3A* — Cy)\?)
are replaced with a generic constant C, we preserve the explicit dependence on A to emphasize the crucial
role played by the Carleman parameter in the convexity inequality . This modification is justified by
adapting the proof technique in [32, Theorem 4.1], with the key difference being the use of the Carleman
estimate in in place of the one used in that reference. The third part of Theorem [4.1|follows directly
from [33 Theorem 2].

We next discuss how close the minimizer of J) . is to the true solution of . Let

*}T

denote the exact solution to (4.2)) corresponding to the noiseless boundary data ¢, and h},, which are
idealized versions of the measured data g, and h,,, respectively. That is, for each m € {1,..., N}, the
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functions v}, satisfy the following boundary value problem:

N ~ N N
Avl (%) 4+ > Vui(x) - bomn + D D amu Vi (x) - Vi (x) =0, x€Q,
n=1 n=1[=1
U5 (%) = g5, (%), xeT, (4.8)
Buvty(x) = hit, (%), cer,
v (x) =0, x € 00\ T.

Additionally, we assume the noise level in the measured data is bounded by § in the following sense

N
(lgm = g™ 110y + Nhm = i ll2e)) <6, (4.9)

m=1

for some small constant 0 < 1. Then, using the same arguments of [32, Theorem 4.2], we have
[Vinin = V¥ [ g1y < C (8 + Vellv [l s yv) (4.10)

for some constant C' depending only on Q, M, r, A\, and N. In , we employ the standard Sobolev
norm instead of incorporating a Carleman-weighted functional, as was done in our previous work on
convexification. This formulation remains valid under the assumption that A is fixed and the constant
C may depend on A. A direct implication of is that the global minimizer of Jy . provides an
approximation to the true solution of (4.2)), with an error bounded by O(8 + V/e).

The WKB method for phase retrieval presented in Section [2] the derivation of the frequency dimen-
sional reduction model in Section [3] the convexification result in Theorem and the error estimate in
collectively motivate the design of Algorithm [1|for solving the phaseless inverse scattering problem.

5 Numerical study

In this section, we highlight key aspects of Algorithm [Is implementation and present several numerical
examples to demonstrate its performance.

To generate the simulated data, we set R = 1, placing the source at xo = (0,0, —4) and using the
wave number interval [r, 27]. To generate simulated data, the domain = (—1,1)? is discretized using
a uniform grid defined as

G={(wi=—1+(i—1)dy,yj = —1+(— Dy, 2 = —1 + (t — 1)dy) : 1 <4, j,t < Ny},

where Nx = 21 and dx = 2/(Nx — 1). The wave number is interval set to be [m,27] and is uniformly
discretized into B
K={ki =k, ko, ..., kn, = k},

with k; = k+ (i — 1)% and N = 121. The forward problem is addressed by reformulating the
Helmholtz model into the Lippmann-Schwinger integral equation, following the approach in [§].
This integral equation is then numerically solved using the volume integral equation method developed
in 34, 137]. Let u*(x, k), with x € G and k € KC, denote the exact solution. We define the noisy data as

f(x,k) = [u*(x,k)|[(1 4+ drand),

for (x,k) € (I' NG) x K, where § = 10% and rand represents a uniformly distributed random variable in
the interval [—1,1]. In this section, we set L = 0.28. For the artificial parameters involved in solving the

13



Algorithm 1 The Carleman convexification method to compute the numerical solution to the phaseless
inverse scattering problem

1: Having the data f in hand, for each k, we minimize the mismatch functional Jj defined in (|2.10)
using the initial guess wuinic(x, k) = f(x, k)e** %ol as in (2.9). The obtained minimizer u(x,k),
(x,k) € T, x [k, k] is the desired wave function including the phase information.

2: Compute u(x, k) and 0,u(x, k) on I', which is the bottom portion of 0f2.

3: Choose a cut-off number N, a Carleman parameter A\, and a regularization parameter e. Choose
Carleman parameters xg, 8, and A and a regularization parameter e.

4: Minimize the strictly convex Carleman weighted functional Jy . defined in (4.4). The minimizer is

denoted by Veomp(x) = [ L N ¥ VA ]T, x € Q.
5. By (3.6]), we compute v°°™P(x, k) using
N
VO (x, k) = ) o (x) U (k) (5.1)
n=1

for x € Q, k € [k, k].
6: Due to (3.4), a numerical solution to Problem can be computed via

1 k
cOMP(x)=1—=—— [ Re

AvP(x k) + k2 [VoomP(x, k)}Z
k—kJg

1

|x — o]

+2 (ikz - )vucomp(x, k) 2720 ixdp

|x — x|

for all x € Q.

inverse problem, we select N = 7, A = 1.1, and € = 107°7%. These values are determined through a trial-
and-error process. They are consistent with the corresponding set of parameters in [33]. Specifically, we
use Test 1 as a reference case to manually identify a suitable set of parameters, which are then consistently
applied across all subsequent tests.

5.1 Numerical implementation of phase retrieval

In Step [I]of Algorithm [1] the cost functional Jj, is approximated using a Riemann sum over the spatial
grid 'y NG and the frequency partition K. To minimize Ji, we use MATLAB’s built-in optimization
routine fminunc, which proves to be both efficient and effective in practice. As a representative example,
we demonstrate the recovery of the lost phase. Starting from the noisy data f in Test 1, the optimization
is initialized with uin, = f(x, k:)eik|x—x0‘, and fminunc is applied to minimize the cost. The resulting
reconstruction of the complex-valued wave function wu, including both its real and imaginary parts, is
presented in Figure

The numerical results in Figure[2|demonstrate the effectiveness of the phase retrieval strategy. Despite
the presence of 10% noise in the measured data (Figure , the reconstructed wave field (Figures
and closely approximates the true solution (Figures and in both the real and imaginary
components. The method successfully preserves key structural features, such as spatial distribution and
amplitude. In particular, the real part of the reconstruction captures the peak profile with good accuracy,
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Figure 2: Reconstruction of the wave function u(x, k) on I with k = k, showing both real and imaginary
parts from magnitude-only data. The data in (a) corresponds to Test 1 with a noise level of 10%.

while the imaginary part accurately recovers the expected dip pattern.

Although the input data in Figure 2a] appears heavily degraded, the reconstructed real and imaginary
parts (Figuresand exhibit a clear improvement in quality. This enhancement is primarily attributed
to the structure of the cost functional Ji, which incorporates a regularization term involving the Laplacian
of the wave field (see the first term on the right-hand side of (2.10)). This term promotes smoothness
by penalizing irregular or non-differentiable behavior, resulting in reconstructions that are inherently
smoother than the raw, noisy magnitude data. Despite this regularization, some residual noise persists in
the reconstructed fields. This is due to the high noise level (10%) in the input and the effect of the data
fidelity term in , which constrains the solution to remain close to the measured data f, thereby
preserving some of its noise features. To address this, a Fourier filtering procedure (see (3.6))) is employed
in a subsequent step to suppress remaining high-frequency components, further improving the stability
and accuracy of the final reconstruction.

5.2 Numerical implementation of the convexification method

The Carleman convexification framework is implemented in Step [4] of Algorithm [1. The goal of this
step is to compute the vector veomp, whose components represent the Fourier coefficients of the function
v defined in (3.1)). This vector corresponds to the solution of problem , which is equivalent to (4.2)).
However, it is important to note that involves the inverse matrix S~!, and numerical observations
indicate that some of its entries can attain large magnitudes, potentially degrading the accuracy of the
final reconstruction. To mitigate this issue and avoid unnecessary numerical errors, we opt to solve (|3.16))

15



directly rather than (4.2)).
In this case, we reformulate the cost functional J) . as follows:

N 5 N N N
INGEDS [/Q P s Bpn(x) + 3 Y i Vioa(x) - Vipr(x)
n=1

m=1 n=1 [=1

N
2
+ Z bn - Vg@n(x)’ dx + Ne2AB+r)? /F (|<,0m - gm|2 + |020m — hm|2)d0(x)

n=1
z—1)2
it [ B g o) + lemlay | (52
OOQ\I'

for all ¢ € H. Without confusion, we continue to denote this functional by Jy .. We also note that, unlike
in the theoretical part, which requests s > 4, we use the regularization norm H?(£2). This significantly
simplifies the implementation without reducing the quality of the final reconstruction.

Minimizing the functional J) . in requires an initial guess v(?). According to the convexification
theorem, this initial guess does not need to be close to the global minimizer of J) (; the only requirement
is that v(?0) € H. Following the approach in [33], we simplify the construction of v(®) by omitting the
nonlinear term Zﬁle El]\il A1V n(x) - Vi (x) from . That means, we define v(?) as the minimizer
of the simplified strictly convex cost functional:

N
YHOEDY [ /Q P’

N N 9
D smnlon(x) + > by, - Vson(X)‘ dx + M\ / 2?0 Pdo(x)
m=1 n=1 g

n=1 Q\I'
2
+ N2ARAT) /F (‘Spm - gm‘2 + 1020m — hm|2)d‘7(x) + GHSDmH?'{?(Q)] (5.3)
for all ¢ € B(0,M). Having the initialized vector v(® in hand, we compute the minimizer by the
gradient descent method using the formula (4.7)). This requires us to compute the derivative of Jy .. In
the implementation, we compute the derivative in finite difference by regarding Jy . as a function of N3N

variables. The discretized version of ¢ € H?(Q)V is

¢ = {om(xi,yj,20) 1 1 <i,j,t <N;,1<m < N}
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and that of Jy  is

N Nx—1 N
J)\ . Z [ Z eQ)\(Zt—T’)Z Z SmnAdeOn(xi; Yj, Zt)

m=1 1,7,t=2 n=1
N N N 9
Y A V>0 (i, 5, 21) - V0u(i, 5, 20) + Y oan - V00 (0,9, Zt)‘
n=1[=1 n=1
Nx
2
+ A462)\(R+T) d}2c Z (‘Som(.%'z,yj, Zl) - gm(xuij Zl)‘z + ’agx(Pm(xu ij Zl) - hm(xl')yjﬂ Zl)‘2)
i,j=1
Nx Nx
2 2
+ NS PN o (w5, 2v, ) Pdo(x) + Xy > Y e o (w0, 5, 20) o (x)

1,5=1 1,j€{1,Nx} t=1

Ny—1
tedd N Jom(@iyj 20 + [V om(@i vy, 2)? + \Adwmui,yj,zt)f]' (5.4)
i t=2
In (5,
So(xz yYj,2 ) (Iif sYj,% )
8;[’(90 x’uyjazt) S thx L
de (1'17 Yj, Zt 35"@ Liy Y, Zt) = Lp(xi7yj+l7Zt)2df(xi7yj717Zt) 5
0% (x5, Yj, 2t) Sﬂ(xivijthrl)Zd‘P(miayj77Jt—1)
1
Adx (:Clu Yj, Zt B |:SO xl-i—l Yj, Zt + QO(.’EZ'_:[, Yj,s Zt) + ‘P(ffw Yj+1, Zt)

(xla Yj—1, Zt) =+ Sp(l"n Yj, Zt+1) + 4,0(1‘1, Y5, Zt— 1) - 6(10('%17 Yj, Zt)]
We can interpret the discretized form in (5.4]) as a polynomial in the variables
{om(zi,yj,20) 11 <0,5,t < Ny, 1 <m <N},

allowing us to compute its derivative explicitly.

5.3 Numerical examples

We present three numerical solutions to the phaseless inverse scattering problem due to Algorithm

5.3.1 Test 1

We define the true profile of the dielectric constant as

5 if 22 +9? < 0.25% and |z + 0.65| < 0.05,
1 otherwise.

ctrue(x’ y,z) — {

The true and reconstructed dielectric profiles are visualized in Figure

Figure 3] illustrates the effectiveness of the proposed reconstruction method in recovering the dielec-
tric constant ¢(x) from phaseless measurements corrupted with 10% noise. The 3D visualizations in
subfigures [3a| and [3b] show that the reconstructed scatterer closely matches the true inclusion in both
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Figure 3: Test 1. Visualization of the true and reconstructed dielectric constant ¢(x), x € €. Subfigures
(a) and (b) show 3D views of the true and reconstructed scatterers, respectively. Subfigures (c¢) and (d)
display cross-sectional slices of the corresponding dielectric profiles. The reconstruction demonstrates
strong agreement with the true target in both shape and amplitude. The dielectric function ¢(x) was
reconstructed from phaseless data containing 10% noise.

position and geometry. Additionally, the cross-sectional views in subfigures [3c| and [3d| demonstrate that
the reconstruction accurately preserves the spatial distribution and peak amplitude of the dielectric pro-
file. The reconstructed function ¢ achieves a maximum value of 4.54, corresponding to a relative error
of 9.17%. These results highlight the robustness and accuracy of the method, confirming its potential to
produce high-quality reconstructions even from limited and noisy phaseless data.
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5.3.2 Test 2

We next test the case of two inclusions. The true dielectric constant function is given by

5 (z—0.5)%+y? < 0.25%and|z + 0.65] < 0.05,
e =14 45 (z+0.5)%+y? < 0.25%and|z + 0.65| < 0.05,

1 otherwise.

The true and reconstructed dielectric profiles are visualized in Figure

(a) 3D view of the true scatterer

(c) Cross-sectional view of the function """

(b) 3D view of the reconstructed scatterer
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(d) Cross-sectional view of the function ¢

Figure 4: Test 2. The true and reconstructed dielectric constant ¢(x), x € Q. Subfigures (a) and (b)
display 3D views of the true and reconstructed scatterers, while (¢) and (d) present cross-sectional views of
their respective dielectric profiles. The reconstructed result successfully captures both the spatial location
and amplitude of the true inclusions, demonstrating strong robustness to noise. The reconstruction was
performed using phaseless data corrupted with 10% noise.

Figure [4] highlights the effectiveness of the proposed method in reconstructing multiple inclusions
from phaseless data corrupted by 10% noise. The 3D isosurface visualizations in subfigures and



demonstrate that the reconstructed scatterers closely replicate the true geometry and spatial distribution
of the targets. Importantly, the method accurately preserves the separation and relative sizes of the
two inclusions. The cross-sectional views in subfigures and further validate the reconstruction
quality, revealing that both the amplitude and localization of the high-contrast regions are well recovered.
Quantitatively, the maximum value of the first inclusion centered at (0.5,0,—0.65) is 4.92, yielding a
relative error of 1.61%, while the second inclusion centered at (—0.5,0, —0.65) attains a maximum of 3.75,
with a relative error of 16.78%. These reconstruction errors are considered acceptable, especially given
the high noise level and the severe ill-posedness of the inverse problem with single-sided measurements.

5.3.3 Test 3

Next, we consider the case of two rectangular inclusions. The true dielectric constant function is
given by
3.2 max{0.25|z|, |y + 0.5/} < 0.2and|z + 0.65| < 0.05,
™ = ¢ 3.2 max{0.25|z|, |y — 0.5|} < 0.2and|z + 0.65| < 0.05,
1 otherwise.

The true and reconstructed dielectric profiles are visualized in Figure

Figure 5| demonstrates the capability of the proposed method to accurately reconstruct elongated
inclusions from noisy phaseless data. The 3D views in subfigures [5aj and [5b| reveal that the reconstructed
scatterers closely resemble the true targets in both shape and orientation, effectively capturing their
elongated geometry and spatial arrangement. The cross-sectional slices in subfigures [5c and confirm
that the reconstructed dielectric profile approximates the correct locations and amplitudes of the in-
clusions. The maximum value of the computed function ¢ is 2.76, corresponding to the relative noise
13.75%. Although some smoothing is visible due to the regularization and the presence of 10% noise,
the method successfully preserves the key features of the underlying structure. These results further
validate the robustness of the algorithm, particularly in recovering complex shapes under limited and
noisy measurement conditions.

6 Concluding Remarks

In this paper, we have developed a comprehensive numerical framework for solving a 3D phaseless
coefficient inverse problem governed by the Helmholtz equation. The method is motivated by both
practical imaging applications and a longstanding open question in inverse scattering theory concerning
the absence of phase information. Our approach combines several key components: a phase retrieval
procedure based on the WKB ansatz, a frequency dimension reduction via truncated Fourier expansion,
and the application of the Carleman convexification method to stably reconstruct the spatially varying
dielectric constant.

Theoretical results guarantee the strict convexity of the proposed cost functional, and the associated
gradient descent method is shown to globally converge to the true solution. Through multiple numerical
experiments using simulated noisy data, we have demonstrated that the method accurately recovers both
the geometry and contrast of embedded scatterers, even in the presence of high noise and under the
challenging constraint of single-sided measurements.

Future research directions include extending this framework to other types of governing equations,
such as the full Maxwell system, and further reducing data requirements by exploring compressive sensing
or machine learning enhancements. Overall, this work offers a globally convergent and computationally
feasible solution to a classically ill-posed and practically relevant inverse problem.
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Figure 5: Test 3. The true and reconstructed dielectric constant ¢(x), x € . Subfigures (a) and (b)
show 3D isosurfaces of the true and reconstructed scatterers, respectively, while (c) and (d) display
cross-sectional slices of their corresponding dielectric profiles. The reconstruction accurately recovers
the elongated shape, spatial separation, and amplitude of both inclusions. These results highlight the
method’s robustness and effectiveness in handling phaseless data with 10% noise.
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