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Abstract

Posterior sampling in high-dimensional spaces using gen-
erative models holds significant promise for various appli-
cations, including but not limited to inverse problems and
guided generation tasks. Generating diverse posterior sam-
ples remains expensive, as existing methods require restart-
ing the entire generative process for each new sample. In this
work, we propose a posterior sampling approach that simu-
lates Langevin dynamics in the noise space of a pre-trained
generative model. By exploiting the mapping between the
noise and data spaces which can be provided by distilled
flows or consistency models, our method enables seamless
exploration of the posterior without the need to re-run the
full sampling chain, drastically reducing computational over-
head. Theoretically, we prove a guarantee for the proposed
noise-space Langevin dynamics to approximate the posterior,
assuming that the generative model sufficiently approximates
the prior distribution. Our framework is experimentally vali-
dated on image restoration tasks involving noisy linear and
nonlinear forward operators applied to LSUN-Bedroom (256
⇥ 256) and ImageNet (64⇥ 64) datasets. The results demon-
strate that our approach generates high-fidelity samples with
enhanced semantic diversity even under a limited number
of function evaluations, offering superior efficiency and per-
formance compared to existing diffusion-based posterior
sampling techniques.

1. Introduction
Generative models that approximate complex data priors
have been widely used for guided generation [12, 14]. While
early approaches relied on GANs [4, 18, 27, 28, 39, 43], dif-
fusion models have since outperformed them, becoming the
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Figure 1. (Top): Posterior samples generated by our method and
DPS-DM [12]. Our approach exhibits higher perceptual diversity,
capturing variations in high-level features such as lighting, window
style, and wall patterns. Red boxes highlight uncertain semantic
features, while green boxes show persistent properties. (Bottom)
: A schematic representation of posterior sampling via Langevin
dynamics in our proposed framework. The sampling process begins
with an initial sample x(0)

1 from the noise space and maps to data
space as x(0)

0 using a deterministic mapper � and progressively
updates the noise space input to obtain diverse posterior samples.

state-of-the-art for conditional generation [9, 14, 22, 23, 47].
Posterior sampling methods have gained traction for in-
verse problems, where the goal is to sample from p(x | y) /
p(y |x)p(x)[12, 30, 31]. Although these posteriors are often
intractable, generative models enable efficient approxima-
tions. Earlier diffusion-based solutions required task-specific
training[34, 38, 44–46], while recent works use pre-trained
diffusion priors in a training-free manner [10, 11, 30, 31, 53],
with extensions to nonlinear tasks [12, 21, 48, 49].

Inverse problem solvers are typically grouped into point
estimate or multiple estimate approaches. Most recent meth-
ods focus on the former [12, 21, 48, 49] and face chal-
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lenges in generating diverse samples efficiently. For example,
DPS [12] requires full denoising for each sample, increasing
computational cost. While EBMs offer progressive sam-
pling via MCMC [56, 57] and recent works explore HMC
in generative noise spaces [25, 40, 55], such techniques are
largely unexplored for inverse problems. We bridge this gap
by introducing a measurement-guided posterior sampler in
noise space.

We propose a posterior sampling method that performs
exploration directly in the noise space of a pre-trained gener-
ative model. By leveraging measurements from the inverse
problem to initialize the noise space, our approach enables
targeted and efficient exploration. We employ Langevin
dynamics in noise space, taking advantage of the determin-
istic, one-to-one mapping between noise and data provided
by models like consistency models [51]. This eliminates
the need to approximate the measurement likelihood and
allows us to derive a theoretical bound on the approximation
error of our posterior samples. Sampling in noise space en-
ables progressive accumulation of diverse reconstructions
without repeated full denoising runs. As demonstrated in
Figure 1, our method yields high-quality, diverse solutions.
Furthermore, as shown in Figure A.1, unlike DPS, whose
runtime scales poorly with the number of posterior samples,
our method incurs only a negligible increase in reconstruc-
tion time, highlighting its computational efficiency. The key
contributions of this work are summarized as follows:
• We present a posterior sampling method defined by

Langevin dynamics in the noise space of a pre-trained
generative model, enabling the accumulation of posterior
samples.

• We provide a theoretical guarantee on the posterior sam-
pling approximation error, which is bounded by the ap-
proximation error of the prior by the pre-trained generative
model.

Notation. We use / to stand for the expression of a proba-
bility density up to a normalizing constant to enforce integral
one, e.g. p(x) / F (x) means that p(x) = F (x)/Z where
Z =

R
F (x)dx. For a mapping T : Rd ! Rd and a distribu-

tion P , T#P stands for the push-forwarded distribution, that
is T#P (A) = P (T�1A) for any measurable set A. When
both P and T#P has density, dP = pdx, we also use T#p
to denote the density of T#P .

2. Background
Diffusion models. Sampling from diffusion models (DMs)
is performed by simulating the reverse process of a forward-
time noising stochastic differential equation (SDE) dxt =
µ(xt, t)dt + �(t)dWt [50], where Wt denotes Brownian
motion, and t 2 [0, 1]. This forward SDE transforms data
from pdata into a Gaussian distribution �. The marginal
densities pt are shared with the probability flow ODE (PF-

ODE):

dxt =


µ(xt, t)�

1

2
�(t)2r log pt(xt)

�
dt. (1)

Score-based generative models use neural networks to ap-
proximater log pt(xt), enabling reverse-time integration of
(1) using numerical techniques [29, 47].

Deterministic diffusion solvers. Unlike stochastic sam-
plers [23, 50], deterministic solvers simulate the PF-ODE (1).
DDIM [47] introduces an implicit, deterministic mapping
from noise to data, while higher-order solvers [29] further
reduce function evaluations needed for quality samples.

Flow models. Continuous normalizing flows (CNFs) use
neural networks to define continuous ODE dynamics map-
ping noise to data [6]. Recent advancements have improved
trajectory efficiency [37] and training methods [35]. Similar
to PF-ODE-based diffusion solvers, these methods require
ODE simulation.

Consistency models. To improve DM sampling efficiency,
score model distillation techniques, like Consistency Models
(CMs), enable few-step sampling [51]. CMs learn a mapping
f✓ from a PF-ODE trajectory point xt back to the initial state:

x0 = f✓(xt, t), t 2 [0, 1], (2)

where x0 is drawn from pdata. This allows for single-step
sampling by drawing x1 ⇠ � and applying f✓, or multi-step
sampling with a balance between efficiency and fidelity.

3. Methodology
Assume that a pre-trained generative model is given, which
provides a one-to-one mapping � from the noise space to
the data space. The data x0 and noise x1 both belong to Rd,
and x0 = �(x1). The observation is y, and the goal is to
sample the data x0 from the posterior distribution p(x0|y).
We derive the posterior sampling of the data vector x0 via
that of the noise vector x1, making use of the mapping �.
Likelihood and posterior. We consider a general observa-
tion model where the conditional law p(y|x0) is known and
differentiable. Define the negative log conditional likelihood
as Ly(x0) := � log p(y|x0), which is differentiable with re-
spect to x0 for fixed y. A typical case is the inverse problem
setting: the forward model is

y = A(x0) + n, (3)

where A : Rd ! Rd is the (possibly nonlinear) measure-
ment operator, and n is the additive noise. For fixed y, we
aim to sample x0 from p(x0|y) = p(y|x0)p(x0)/p(y) /
p(y|x0)p(x0), where p(x0) is the true prior distribution of
all data x0, which we now denote as pdata. We also call
p(x0|y) the true posterior of x0, donated as

p0,y(x0) := p(x0|y) / p(y|x0)pdata(x0). (4)
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Posterior approximated via generative model. The true
data prior pdata is nonlinear and complicated. Let pmodel

denote the prior distribution approximated by a pre-trained
generative model x0 = �(x1), where x1 ⇠ �. A distribu-
tion from which samples are easily generated, such as the
standard multi-variate Gaussian, is typically chosen for �;
we choose � = N (0, I). In other words,

pdata ⇡ pmodel = �#�. (5)

Replacing pdata with pmodel in (4) gives the model posterior
of x0, denoted p̃0,y , which approximates the true posterior:

p0,y(x0) ⇡ p̃0,y(x0) / p(y|x0)�#�(x0). (6)

Because x0 = �(x1), we have that p̃0,y = �#p̃1,y, where,
by a change of variable from (6),

p̃1,y(x1) / p(y|�(x1))�(x1). (7)

The distribution p̃1,y(x1) approximates the posterior distri-
bution p(x1|y) in the noise space. When pdata = �#�, we
have p0,y = p̃0,y and p(·|y) = p̃1,y. When the generative
model prior is inexact, the error in approximating the poste-
rior can be bounded by that in approximating the data prior;
see more in Section 4.

Posterior sampling by Langevin dynamics. It is direct to
sample the approximated posterior (7) in the noise space us-
ing Langevin dynamics. Specifically, since we have �(x1) /
exp(�kx1k2/2) and log p(y|�(x1)) = �Ly(�(x1)), the
following SDE of x1 will have p̃1,y as its equilibrium distri-
bution (proved in Lemma A.1):

dx1 = �(x1 +rx1Ly(�(x1)))dt+
p
2dWt. (8)

The sampling in the noise space gives the sampling in the
data space by the one-to-one mapping of the generative
model, namely x0 = �(x1).
Example 3.1 (Inverse problem with Gaussian noise). For (3)
with white noise, i.e., n ⇠ N (0,�2I), we have that, with a
constant c depending on (�, d),

Ly(x0) = � log p(y|x0) =
1

2�2
ky �A(x0)k22 + c.

The noise-space SDE (8) can be written as

dx1 = �
✓
x1 +rx1

ky �A(x0)k22
2�2

◆
dt+

p
2dWt.

Given Ly(x0), standard techniques can be used to sample
(overdamped) Langevin dynamics (8). Evaluation of the
gradientrx1Ly(x0) is the major computational cost, requir-
ing differentiation through the model �. One technique to
improve sampling efficiency is to employ a warm-start of the
SDE integration by letting the minimization-only dynamics
(using rx1Ly(x0)) to converge to a minimum first, espe-
cially when the posterior concentrates around a particular
point. We postpone the algorithmic details to Section 5.

4. Theory
In this section, we derive the theoretical guarantee of the
model posterior p̃0,y in (6) to the true posterior p0,y in (4),
and also extend to the computed posterior p̃S0,y by discrete-
time SDE integration. The analysis reveals a conditional
number which indicates the intrinsic difficulty of the poste-
rior sampling problem. All proofs are in Appendix A.

4.1. Total Variation (TV) guarantee and condition
number

Consider the approximation (5), that is, the pre-trained
model generates a data prior distribution �#� that approxi-
mates the true data prior pdata. We quantify the approxima-
tion in TV distance, namely

TV(pdata,�#�)  ". (9)

Generation guarantee in terms of TV bound has been derived
in several flow-based generative model works, such as [7,
26, 33] on the PF-ODE of a trained score-based diffusion
model [50], and [8] on the JKO-type flow model [58]. The
following theorem proved in Appendix A shows that the
TV distance between the model and true posteriors can be
bounded proportional to that between the priors.

Theorem 4.1 (TV guarantee). Assuming (9), then
TV(p0,y, p̃0,y)  2y", where

y :=
supx0

p(y|x0)R
p(y|x)pdata(x)dx

. (10)

Remark 4.1 (y as a condition number). The constant factor
y is determined by the true data prior pdata and the condi-
tional likelihood p(y|x0) of the observation, and is indepen-
dent of the flow model and the posterior sampling method.
Thus y quantifies an intrinsic “difficulty” of the posterior
sampling, which can be viewed as a condition number of the
problem.

Example 4.1 (Well-conditioned problem). Suppose
p(y|x0)  c1 for any x0, and on a domain ⌦y of the data
space,

Pdata(⌦y) � ↵ > 0, and p(y|x0) � c0 > 0, 8x0 2 ⌦y,

then we have
R
p(y|x)pdata(x)dx �R

⌦y
p(y|x)pdata(x)dx � ↵c0, and then

y 
1

↵

c1
c0

.

This shows that if the observation y can be induced from
some cohort of x0 and this cohort is well-sampled by the
data prior pdata (the concentration of pdata on this cohort is
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lower bounded by ↵), plus that the most likely x0 is not too
peaked compared to the likelihood of any other x0 within
this cohort (the ratio is upper bounded by c1/c0), then the
posterior sampling is well-conditioned.
Example 4.2 (Ill-conditioned problem). Suppose p(y|x0) is
peaked at one data value x0

0 and almost zero at other places,
and this x0

0 lies on the tail of the data prior density pdata.
This means that the integral

R
p(y|x0)pdata(x0)dx0 has all

the contribution on a nearby neighborhood of x0
0 on which

pdata is small, resulting in a small value on the denominator
of (10). Meanwhile, the value of p(y|x0

0) is large. In this
case, y will take a large value, indicating an intrinsic diffi-
culty of the problem. Intuitively, the desired data value x0

0

for this observation y is barely represented within the (uncon-
ditional) data distribution pdata, while the generative model
can only learn from pdata. Since the pre-trained uncondi-
tional generative model does not have enough knowledge
of such x0

0, it is hard for the conditional generative model
(based on the unconditional model) to find such a data value.

4.2. TV guarantee of the sampled posterior
Theorem 4.1 captures the approximation error of p̃0,y to
the true posterior, where p̃0,y is the distribution of data x0

when the noise x1 in noise space achieves the equilibrium
p̃1,y of the SDE (8). In practice, we use a numerical solver
to sample the SDE in discrete time. The convergence of
discrete-time SDE samplers to its equilibrium distribution
has been established under various settings in the literature.
Here, we assume that the discrete-time algorithm to sample
the Langevin dynamics of x1 outputs x1 ⇠ p̃S1,y , which may
differ from but is close to the equilibrium p̃1,y . Specifically,
suppose TV(p̃1,y, p̃S1,y) is bounded by some "S .

Lemma 4.2 (Sampling error). If TV(p̃1,y, p̃S1,y)  "S , then
TV(p̃0,y, p̃S0,y)  "S .

The lemma is by Data Processing Inequality, and together
with Theorem 4.1 it directly leads to the following corollary
on the TV guarantee of the sampled posterior.

Corollary 4.3 (TV of sampled posterior). Assuming (9) and
TV(p̃1,y, p̃S1,y)  "S , then

TV(p0,y, p̃
S
0,y)  2y"+ "S .

5. Algorithm
Numerical integration of the Langevin dynamics. To
numerically integrate the noise-space SDE (8), one can use
standard SDE solvers. We adopt the Euler-Maruyama (EM)
scheme. Let ⌧ > 0 be the time step, and denote the discrete
sequence of x1 as zi, i = 0, 1, · · · . The EM scheme gives,
with ⇠i ⇠ N (0, I) and gi := rx1Ly(x0)|x1=zi ,

zi+1 = (1� ⌧)zi � ⌧gi +
p
2⌧⇠i. (11)

See Algorithm 1 for an outline of our approach using EM.
However, any general numerical scheme for solving SDEs
can be applied; see Table A.4 in Appendix C for a com-
parison between our method using EM discretization and
exponential integrator (EI) [24]. An initial value of z0 in the
noise space is required. We adopt a warm-start procedure to
initialize sampling; additional details are provided below.

Algorithm 1 Posterior Sampling in Noise Space
Require: Forward model A, measurement y, loss function

Ly , pre-trained noise-to-data map �, number of steps N ,
step size ⌧ , and initial x0

1

for i = 0, . . . , N do
xi
0  �(xi

1)
gi  rxi

1
Ly(xi

0)

⇠i ⇠ N (0, I)
xi+1
1  xi

1 � ⌧(xi
1 + gi) +

p
2⌧⇠i

end for
return x1

0, x
2
0, . . . , x

N
0

Computation ofrx1Ly(x0). The computation of the loss
gradient depends on the type of generative model represent-
ing the mapping �. For instance, if � is computed by solving
an ODE driven by a normalizing flow, then its gradient can
be computed using the adjoint sensitivity method [6]. If � is
a DM or CM sampler, one can backpropagate through the
nested function calls to the generative model. Since we use
one- or few-step CM sampling to represent � in the experi-
ments, we take the latter approach to computerx1Ly(x0).

Choice of initial value and warm-start. A natural ini-
tialization for the noise variable z0 is a random sample z0

⇠ �, which aligns with the data prior but may lie far from
the posterior. To address this, we warm-start the sampler
by optimizing Ly(x0) w.r.t. x1 using standard optimizers
(e.g., Adam). We use K Adam steps and set z0 to the result-
ing output before starting EM sampling. Further details are
provided in Appendix B.1.

Computational requirements. The main computational
burden arises from computing the loss gradient rx1Ly(x0),
which requires differentiating through the mapping �. This
burden can be reduced by selecting a � with a small number
of function evaluations (NFEs). Additional overhead comes
from the burn-in or warm start needed to initialize EM simu-
lation with z0. Consequently, the total NFEs for simulating
N steps of EM to generate N samples is ⌘ · (K+N), where
⌘ represents the NFEs required to evaluate �. However, this
cost diminishes over time, as EM simulation progressively
reduces the NFEs per sample, asymptotically approaching ⌘.
We use CM sampling to represent �, achievable with ⌘ = 1
or 2. Although multi-step (⌘ > 1) CM sampling is typically
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stochastic [51], we fix the noise to create a deterministic
mapping. Further details are in Appendix B.1.

Role of EM step size ⌧ . The step size of EM, ⌧ , controls
the time scales over which the Langevin dynamics are sim-
ulated with respect to the number of EM steps. Larger ⌧
results in more rapid exploration of the posterior, potentially
leading to more diverse samples over shorter timescales.
However, ⌧ must also be kept small enough to ensure the
stability of EM sampling. Thus, this hyper-parameter pro-
vides control over sample diversity. Choosing large ⌧ while
maintaining stability can yield diverse samples, potentially
revealing uncertain semantic features within the posterior.

6. Experiments
Baselines. We group baselines into two categories. (1)
DM-based methods: DPS [12], LGD [49], and MPGD [21]
use stronger priors than our method, making them strong but
backbone-incompatible baselines. To ensure fairer compari-
son, we introduce (2) CM-based variants: where each DM
method is adapted to a consistency model (CM) backbone.
We also include CMEdit, a CM-based sampler from [51], for
linear tasks. All DM baselines use the EDM model from [51],
and CM baselines use the corresponding LPIPS-distilled CM.
Full details and hyperparameters are in Appendix B.2.

Datasets. We conduct experiments on LSUN-Bedroom
(256×256)[60] and ImageNet (64×64)[13], using 100 vali-
dation images each. All experiments use pre-trained Con-
sistency Models (CMs) from [51], distilled with the LPIPS
objective from EDM models [29]. Further method and hy-
perparameter details are in Appendix B.1. For linear inverse
problems, we consider: (i) random mask inpainting; (ii)
super-resolution via adaptive average pooling; and (iii) Gaus-
sian deblurring with a 61×61 kernel standard deviation of 3.0.
Nonlinear tasks include: (i) neural network-based deblur-
ring [52]; (ii) phase retrieval via Fourier magnitude; and (iii)
HDR reconstruction via clipping scaled intensities. Gaussian
noise with � = 0.1 is added to all tasks except phase retrieval
where � = 0.05. See Appendix B.3 for operator details, and
Appendices C, D for more results.

Metrics. To evaluate reconstruction fidelity, we report
PSNR, SSIM, LPIPS, and Fréchet Inception Distance (FID).
For diversity, we use: (i) Diversity Score (DS), computed as
the ratio of inter- to intra-cluster distances across six-nearest-
neighbor clusters of ResNet-50 features; and (ii) Average
CLIP Cosine Similarity (CS), measuring the mean cosine
similarity between CLIP embeddings of all sample pairs for
a given image.

6.1. Image Restoration Results
Linear inverse problems. We compare our method
against baselines for point estimation under linear forward

models, using 10 samples per method across 100 valida-
tion images. Results for LSUN-Bedroom (256×256) and
ImageNet (64×64) are shown in Table 1 (top and bottom, re-
spectively), with visual comparisons in Figures 2 and 3. Our
approach outperforms CM baselines with higher fidelity and
fewer artifacts and remains competitive with DM baselines
in both visual quality and quantitative metrics.

Nonlinear inverse problems. Quantitative results for non-
linear tasks on 100 LSUN-Bedroom images are reported
in Table 2, using 10 samples per image. Our method per-
forms competitively with CM-based baselines and matches
the quality of DM-based methods. Visual results are shown
in the bottom three rows of Figure 2. While CM variants and
MPGD-DM struggle with artifact removal and noise, our ap-
proach produces clean, detailed reconstructions comparable
to DM outputs. Notably, in challenging settings like phase
retrieval, our method achieves PSNR and SSIM on par with
DM baselines, reflecting strong alignment with the ground
truth.

6.2. Diversity of posterior samples
To assess sample diversity, we compare our method with
strong baselines based on DM, DPS, and LGD. We generate
25 samples per image on 100 LSUN-Bedroom (256×256)
for all six linear and nonlinear tasks. As shown in Table 3,
our method matches or surpasses DM baselines in diversity
metrics. Figure 4 illustrates the visual diversity, especially
in inpainting (top three rows) and nonlinear deblurring (bot-
tom three rows). Our approach captures varying high-level
features like lighting and shading and reveals semantic vari-
ability, e.g., windows and lamps differ significantly across
samples.

7. Ablation Study
Number of warm-start iterations (K). We investigate
how the number of warm-start optimization steps K affects
reconstruction quality and diversity. As shown in the top row
of Figure 5, increasing K leads to consistent improvements
across fidelity metrics, including PSNR and SSIM (left), and
perceptual metrics such as LPIPS and FID (right). Notably,
FID drops significantly from 95 to below 82.5 as K increases
from 200 to 1200. Simultaneously, diversity improves, with
Diversity Score (DS) increasing and CLIP Cosine Similar-
ity (CS) decreasing (middle), indicating that warm-starting
helps explore the posterior more effectively.

Number of EM iterations (N). We analyze the impact
of EM sampling iterations N for both 8× super-resolution
and nonlinear deblurring. As seen in the bottom row of
Figure 5, performance is relatively stable over 50 EM steps,
with minimal variation across PSNR, LPIPS, and FID. This
suggests that a small number of EM steps (e.g., N  10)
suffices for accurate posterior sampling, enabling efficient
generation without sacrificing quality.
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Table 1. Quantitative comparison of linear restoration tasks on LSUN-Bedroom (256 x 256) (top) and ImageNet (64 x 64) (bottom).

Method 8x Super-resolution Gaussian Deblur 10% Inpainting

PSNR " SSIM " LPIPS # FID # PSNR " SSIM " LPIPS# FID # PSNR " SSIM " LPIPS# FID #

DPS-DM 20.4⇤ 0.538⇤ 0.470⇤ 67.7⇤ 22.1 0.589 0.407 65.3 22.4 0.634 0.417 67.7
MPGD-DM 19.2 0.338 0.689 288 23.6⇤ 0.579 0.438 85.0 15.4 0.176 0.667 221
LGD-DM 20.1 0.529 0.483 69.3 22.2 0.590⇤ 0.371⇤ 60.1⇤ 24.7⇤ 0.742⇤ 0.289⇤ 47.3⇤

DPS-CM 10.7 0.077 0.758 307 11.2 0.092 0.735 279 19.9 0.454 0.517 128
LGD-CM 10.5 0.072 0.764 316 11.1 0.092 0.737 283 19.9 0.475 0.514 134
CMEdit N/A N/A 18.0 0.523 0.548 167
Ours(1-step) 20.4 0.535 0.418 71.1 22.4 0.598 0.368 70.6 23.8 0.682 0.358 72.9
Ours(2-step) 20.5 0.534 0.433 72.2 21.3 0.554 0.421 69.2 22.2 0.611 0.419 75.6

Method 4x Super-resolution Gaussian Deblur 20% Inpainting

PSNR " SSIM " LPIPS # FID # PSNR " SSIM " LPIPS# FID # PSNR " SSIM " LPIPS# FID #

DPS-DM 21.0⇤ 0.531 0.310⇤ 110⇤ 19.2 0.429 0.348⇤ 117⇤ 22.3⇤ 0.664⇤ 0.220⇤ 89.2⇤
LGD-DM 21.0⇤ 0.536⇤ 0.311 114 19.6⇤ 0.432⇤ 0.352 117⇤ 22.1 0.652 0.228 96.2
DPS-CM 12.8 0.168 0.602 267 9.89 0.093 0.650 334 18.9 0.470 0.371 167
LGD-CM 12.8 0.164 0.607 269 10.1 0.097 0.668 363 18.7 0.451 0.380 173
Ours(1-step) 16.9 0.418 0.388 129 18.2 0.413 0.381 134 20.3 0.600 0.304 124
Ours(2-step) 18.1 0.412 0.410 151 17.2 0.347 0.435 150 18.6 0.458 0.439 161
Bold denotes the best CM method, underline denotes the second best CM method, and ⇤ denotes the best DM method.

Figure 2. Image reconstructions for the linear and nonlinear tasks on LSUN-Bedroom (256 x 256).

8. Related works

Posterior sampling with generative models. Diffusion-
based inverse problem solvers include task-specific meth-
ods [34, 38, 45], optimized approaches [36, 44, 46], and
training-free techniques leveraging pre-trained diffusion pri-
ors [10–12, 15, 21, 30, 31, 48, 49, 53]. Early training-free

methods used measurement-space projections [9, 47] or spec-
tral consistency [30, 31, 53], while others enforced manifold
constraints [11, 21]. Recent works approximate the mea-
surement likelihood to address noisy and nonlinear prob-
lems [12, 48, 49]. Diffusion posterior sampling with prov-
able guarantees is emerging [5, 59]: [59] introduce alter-
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Figure 3. Image reconstructions for the linear tasks on ImageNet (64 x 64).

Table 2. Quantitative comparison of nonlinear image restoration tasks on LSUN-Bedroom (256 x 256).

Method Nonlinear Deblur Phase Retrieval HDR Reconstruction

PSNR " SSIM " LPIPS # FID # PSNR " SSIM " LPIPS# FID # PSNR " SSIM " LPIPS# FID #

DPS-DM 21.6 0.586 0.413 75.7⇤ 10.7 0.302 0.697⇤ 90.1 21.7⇤ 0.659⇤ 0.396⇤ 69.6⇤

MPGD-DM 17.0 0.194 0.683 259 9.96 0.271 0.728 118 20.5 0.586 0.408 73.2
LGD-DM 22.3⇤ 0.632⇤ 0.408⇤ 106 10.8⇤ 0.351⇤ 0.709 82.0⇤ 12.4 0.459 0.560 172
DPS-CM 17.7 0.303 0.574 137 10.1 0.197 0.726 195 13.5 0.405 0.597 173
MPGD-CM 13.1 0.100 0.762 306 9.39 0.111 0.786 312 11.7 0.296 0.638 223
LGD-CM 21.3 0.519 0.482 163 9.36 0.113 0.767 186 11.2 0.397 0.621 245
Ours(1-step) 20.3 0.566 0.440 76.7 10.3 0.315 0.709 82.9 19.6 0.599 0.436 88.0
Ours(2-step) 18.7 0.501 0.492 73.3 10.2 0.309 0.708 81.4 16.6 0.481 0.532 101
Bold denotes the best CM method, underline denotes the second best CM method, and ⇤ denotes the best DM method.

Figure 4. Posterior samples for the inpainitng (10%) (top three rows) and nonlinear deblur (bottom three rows) tasks on LSUN-Bedroom
(256 x 256). Green boxes highlight low-uncertainty features and red boxes highlight highly uncertain features.
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Table 3. Quantitative comparison of diversity metrics on linear and non-linear image restoration tasks on LSUN-Bedroom (256 x 256).

Method SR(8x) Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DS " CS # DS " CS # DS " CS # DS " CS # DS " CS # DS " CS #

DPS-DM 2.14 0.843 2.10 0.938 2.33 0.876 2.22 0.924 2.42 0.809 2.25 0.873
LGD-DM 2.35 0.881 2.19 0.925 2.28 0.872 2.11 0.923 2.36 0.815 3.14 0.914
Ours(1-step) 3.01 0.879 3.26 0.997 3.15 0.869 2.80 0.912 3.08 0.914 3.09 0.927
Ours(2-step) 2.67 0.919 2.62 0.866 2.48 0.864 2.69 0.885 2.89 0.862 3.23 0.904
Bold denotes the best method, underline denotes the second best method.

Figure 5. Ablation study on warm-start and EM iterations. Top row: Effect of warm-start iterations K on various metrics. Increasing
K improves fidelity (PSNR, SSIM), perceptual quality (LPIPS, FID), and diversity (higher DS, lower CS). Bottom row: Effect of EM
sampling iterations N on PSNR, LPIPS, and FID for 8× super-resolution and nonlinear deblurring. Metrics remain stable across iterations,
indicating fast convergence and efficiency.

nating projection with convergence guarantees, and [5] use
tilted transport for linear cases. Flow models have also been
adapted, e.g., [42] extend ⇧GDM [48] to CNFs. However,
most require full sampling, limiting scalability. In contrast,
our approach samples progressively in the noise space of one-
or few-step mappings, enabling efficient posterior sampling.

Guided generation via noise space iteration. Generative
models with deterministic mappings from latent noise to
data—such as GANs [18], flows [6], and consistency models
(CMs)[51]—enable noise optimization to guide generation
via conditional signals[1–3, 16, 41, 54]. In GANs, this is
used for text-to-image synthesis [16, 41] or task-specific
guidance [3]. Flow-based models have adopted similar strate-
gies for inverse problems [1, 54], for example, D-Flow [2]
optimizes noise inputs to CNFs. Our method also operates in
noise space but simulates Langevin dynamics for posterior
sampling rather than point estimation.

9. Discussion
We have outlined an approach for posterior sampling via
Langevin dynamics in the noise space of a generative model.

Using a CM mapping from noise to data, our posterior sam-
pling provides solutions to general noisy image inverse prob-
lems, demonstrating superior reconstruction fidelity to other
CM methods and competitiveness with diffusion baselines.
A primary limitation of our approach is the low visual qual-
ity in some posterior samples. Fidelity drawbacks can be
attributed to a relatively poor approximation of the prior by
CMs. Future work will focus on improving the fidelity of di-
verse samples, perhaps by using more accurate prior models
and adaptive simulation of the SDE. Regardless, our method
produces highly diverse samples, representing meaningful
semantic uncertainty of data features within the posterior.
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