Computing high-dimensional optimal transport
by flow neural networks

Chen Xu
Georgia Institute of Technology

Abstract

Computing optimal transport (OT) for gen-
eral high-dimensional data has been a long-
standing challenge. Despite much progress,
most of the efforts including neural network
methods have been focused on the static for-
mulation of the OT problem. The current
work proposes to compute the dynamic OT
between two arbitrary distributions P and @
by optimizing a flow model, where both dis-
tributions are only accessible via finite sam-
ples. Our method learns the dynamic OT by
finding an invertible flow that minimizes the
transport cost. The trained optimal trans-
port flow subsequently allows for performing
many downstream tasks, including infinitesi-
mal density ratio estimation (DRE) and do-
main adaptation by interpolating distribu-
tions in the latent space. The effectiveness
of the proposed model on high-dimensional
data is demonstrated by strong empirical per-
formance on OT baselines, image-to-image
translation, and high-dimensional DRE.

1 INTRODUCTION

The problem of finding a transport map between two
general distributions P and @ in high dimension is es-
sential in statistics, optimization, and machine learn-
ing. When both distributions are only accessible via
finite samples, the transport map needs to be learned
from the data. Despite the modeling and computa-
tional challenges, this setting has applications in many
fields. For example, transfer learning in domain adap-
tion aims to obtain a model on the target domain
at a lower cost by making use of an existing pre-
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trained model on the source domain (Courty et al.,
2014, 2017), and this can be achieved by transporting
the source domain samples to the target domain using
the transport map. The (optimal) transport has also
been applied to achieve model fairness (Silvia et al.,
2020). By transporting distributions corresponding
to different sensitive attributes to a common distri-
bution, an unfair model is calibrated to match cer-
tain desired fairness criteria (e.g., demographic par-
ity (Jiang et al., 2020)). Additionally, the transport
map can provide intermediate interpolating distribu-
tions between P and @). In density ratio estimation,
this bridging facilitates the so-called “telescopic” DRE
(Rhodes et al., 2020), which has been shown to be more
accurate when P and (@) significantly differ. Further-
more, learning such a transport map between two sets
of images can help solve problems in computer vision,
such as image-to-image translation (Isola et al., 2017).

This work focuses on a continuous-time formulation of
the problem where we are to find an invertible trans-
port map T} : R* — R? continuously parameterized by
time t € [0, 1] and satisfying that Ty = Id (the identity
map) and (T7)xP = Q. Here we denote by T P the
push-forward of distribution P by a mapping 7', such
that (T P)(-) = P(T*(-)). Suppose P and Q have
densities p and ¢ respectively in R? (we also use the
push-forward notation x on densities), the transport
map T; defines

p(x, 1) =4q.

p(x,t) = (Tp)gp, st p(x,0)=p,

We will adopt the neural Ordinary Differential Equa-
tion (ODE) approach where we represent T; as the
solution map of an ODE, whose velocity field is param-
eterized by a neural network (Chen et al., 2018). The
resulting map 7} is invertible, and the inversion can
be computed by integrating the neural ODE reverse
in time. Our model learns the flow from two sets of
finite samples from P and (). The velocity field is op-
timized to minimize the transport cost to approximate
the optimal velocity in the dynamic OT formulation,
i.e., the Benamou-Brenier equation.

The neural-ODE model has been intensively developed
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in Continuous Normalizing Flows (CNF) (Kobyzev
et al., 2020). In CNF, the continuous-time flow
model, usually parameterized by a neural ODE, trans-
ports from a data distribution P (accessible via finite
samples) to a terminal analytical distribution, which
is typically the normal one N(0,I;), per the name
“normalizing”. The study of normalizing flow dated
back to non-deep models with statistical applications
(Tabak and Vanden-Eijnden, 2010), and deep CNFs
have recently developed into a popular tool for gen-
erative models and likelihood inference of high dimen-
sional data. CNF models rely on the analytical expres-
sion of the terminal distribution in training. Since our
model is also a flow model that transports from data
distribution P to a general (unknown) data distribu-
tion @, both accessible via empirical samples, we name
our model “Q-flow” which is inspired by the CNF lit-
erature. We emphasize that our motivation is to solve
high dimensional OT by a flow model rather than CNF
generative applications.

After developing a general approach to the
Q-flow model, in the second half of the paper,
we focus on the application of telescopic DRE. After
training a Q-flow model (the “flow net”), we leverage
the intermediate densities p(x,t), which is accessed
by finite sampled by pushing the P samples by T},
to train an additional continuous-time classification
network (the “ratio net”) over time ¢ € [0,1]. The
ratio net estimates the infinitesimal change of the
log-density log p(x,t) over time, and its time-integral
from 0 to 1 yields an estimate of the (log) ratio ¢/p.
The efficiency of the proposed Q-flow net and the
infinitesimal DRE net is experimentally demonstrated
on high-dimensional data.

In summary, the contributions of the work include:

o We develop a flow-based model @-flow net to learn
a continuous invertible transport map between arbi-
trary pair of distributions P and @ in R from two sets
of data samples. We propose training a neural ODE
model to minimize the transport cost so that the flow
approximates the optimal transport in dynamic OT.
The end-to-end training of the model refines any ini-
tial flow that may not attain the optimal transport,
e.g., obtained by training two CNF's or other interpo-
lating schemes.

e Leveraging a trained Q-flow net, we propose to
train a separate continuous-time network, called
flow-ratio net, to perform infinitesimal DRE from P
to @ given finite samples. The flow-ratio net is trained
by minimizing a classification loss to distinguish neigh-
boring distributions on a discrete-time grid along the
flow, and it improves the performance over prior mod-
els on high-dimensional mutual information estimation

and energy-based generative models.

e We show the effectiveness of the Q-flow net on sim-
ulated and real data. On public OT benchmarks, we
demonstrate improved performance over popular base-
lines. On the image-to-image translation task, the pro-
posed Q-flow learns a trajectory from an input image
to a target sample that resembles the input in style,
and it also achieves comparable or better quantitative
metrics than the state-of-the-art neural OT model.

1.1 Related Works

Normalizing flows. When the target distribution
@ is an isotropic Gaussian A (0, I;), normalizing flow
models have demonstrated vast empirical successes in
building an invertible transport 7; between P and
N(0,1;) (Kobyzev et al., 2020; Papamakarios et al.,
2021). The transport is parameterized by deep neu-
ral networks, whose parameters are trained via mini-
mizing the Kullback-Leibler (KL)-divergence between
transported distribution (7%)4P and N (0,I4). Vari-
ous continuous (Grathwohl et al., 2019; Finlay et al.,
2020) and discrete (Dinh et al., 2017; Behrmann et al.,
2019) normalizing flow models have been developed,
along with proposed regularization techniques (Onken
et al., 2021; Xu et al., 2022, 2023) that facilitate
the training of such models in practice. Since our
Q-flow can be viewed as a transport-regularized flow
between P and @, we further review related works
on building normalizing flow models with transport
regularization. (Finlay et al., 2020) trained the flow
trajectory with regularization based on ¢y transport
cost and Jacobian norm of the network-parameterized
velocity field. (Onken et al., 2021) proposed to regu-
larize the flow trajectory by f5 transport cost and the
deviation from the Hamilton—Jacobi-Bellman (HJB)
equation. These regularizations have been shown to
improve effectively over un-regularized models at a re-
duced computational cost. Regularized normalizing
flow models have also been used to solve high dimen-
sional Fokker-Planck equations (Liu et al., 2022) and
mean-field games (Huang et al., 2023).

Distribution interpolation by neural networks.
Several works have been done to establish a
continuous-time interpolation between general high-
dimensional distributions.  (Albergo and Vanden-
Eijnden, 2023) proposed to use a stochastic interpolant
map between two arbitrary distributions and train a
neural network parameterized velocity field to trans-
port the distribution along the interpolated trajec-
tory, and the method is also known as Flow Match-
ing. (Neklyudov et al., 2023) proposed an action
matching scheme that leverages a pre-specified trajec-
tory between P and @ to learn the OT map between
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two infinitesimally close distributions along the trajec-
tory. Similar to Flow-Matching methods (Albergo and
Vanden-Eijnden, 2023; Lipman et al., 2023; Liu, 2022),
our approach also computes a deterministic probabil-
ity transport map. However, the interpolant mapping
used in these prior works is generally not the optimal
transport interpolation, while our proposed Q-flow is
optimized to find the optimal velocity in dynamic OT
(see Section 2). Generally, the flow attaining opti-
mal transport can improve model efficiency and gen-
eralization performance (Huang et al., 2023), and in
this work we experimentally show the benefits in high-
dimensional DRE and image-to-image translation.

Computation of OT. Many mathematical theo-
ries and computational tools have been developed to
tackle the OT problem (Villani et al., 2009; Benamou
and Brenier, 2000; Peyré et al., 2019). In this work,
we focus on the Wasserstein-2 distance, which suf-
fices for many applications. Compared to non-deep
approaches, neural network OT methods enjoy scala-
bility to high dimensional data; However, most works
in the literature adopt the static OT formulation (Xie
et al., 2019; Huang et al., 2021; Morel et al., 2023; Fan
et al., 2023; Korotin et al., 2021a, 2023; Amos, 2023).
By static OT, we mean the problem that, in Monge
formulation, looks for a transport 7' that minimizes
E;~pllz — T(z)||? and satisfies Tz P = Q. The con-
cept is versus the dynamic OT problem (the Benamou-
Brenier equation) (Villani et al., 2009; Benamou and
Brenier, 2000), which is less studied computationally,
especially in high dimensions, with a few exceptions:

Trajectorynet (Tong et al., 2020) proposed a regular-
ized CNF approach to learn the OT trajectory from
a reference distribution P — assumed to be Gaussian
(so that the KL can be estimated in the CNF) — to
a data distribution, motivated by the application of
interpolating cellular distributions in single-cell data.
Later, (Tong et al., 2024) proposed to learn the ve-
locity field in the dynamic OT by Flow Matching, as-
suming that the static OT solutions on mini-batches
have been pre-computed. In comparison, we parame-
terize the flow by a neural ODE and directly solve the
Benamou-Brenier equation from finite samples, avoid-
ing any pre-computation of OT couplings. We also
allow the two endpoint distributions P and @ to be
arbitrary, and only finite samples from each distribu-
tion are provided.

Meanwhile, the rectified flow (Liu, 2022), as a form of
Flow Matching, is closely related to the OT; however,
the iterative refining approach in (Liu et al., 2023) may
not guarantee the optimality of the coupling. (Ko-
rnilov et al., 2024) proposed to learn dynamic OT us-
ing Flow Matching, but the framework relied on in-

put convex neural networks which may have limited
expressiveness. In addition, each training step in (Ko-
rnilov et al., 2024) requires costly Hessian inversion of
the parametrized deep network. Recently, (Shi et al.,
2024; Tong et al., 2024) proposed to use diffusion or
flow models to solve the Schrédinger Bridge (SB) prob-
lem as entropy-regularized dynamic OT. We will ex-
perimentally compare with recent neural network OT
baselines, both static and dynamic, and including SB
baselines, in Section 5, where our model shows better
performance e.g., on the image-to-image translation
task.

2 PRELIMINARIES

Neural ODE and CNF. Neural ODE (Chen et al.,
2018) parameterized an ODE in R? by a residual net-
work. Specifically, let x(t) be the solution of

@(t) = f(x(t),:0), 2(0) ~p. (1)
where f(z,t;0) is a velocity field parameterized by the
neural network. Since we impose a distribution P on
the initial value x(0), the value of x(¢) at any ¢ also
observes a distribution p(x,t) (though z(t) is deter-
ministic given x(0)). In other words, p(-,t) = (T})#p,
where T; is the solution map of the ODE, namely
Ti(x) =z + fot f(x(s),s;0)ds, x(0) = x. In the con-
text of CNF (Kobyzev et al., 2020), the training of
the flow network f(z,t;0) is to minimize the KL di-
vergence between the terminal density p(z,T") at some
T and a target density pz which is the normal distri-
bution. The computation of the objective relies on the
expression of normal density and can be estimated on
finite samples of x(0) drawn from p.

Dynamic OT. The Benamou-Brenier equation be-
low provides the dynamic formulation of OT (Villani
et al., 2009; Benamou and Brenier, 2000)

1

inf = Ez Y t,t th
il 7= | Eaop (@, ) o)

st. Op+V-(pv) =0, p(-,0)=p, p(-,1) =g,

where v(z, t) is a velocity field and p(x, t) is the proba-
bility mass at time ¢ satisfying the continuity equation
with v. The action 7T is the transport cost. Under
regularity conditions of p, ¢, the minimum 7 in (2)
equals the squared Wasserstein-2 distance between p
and ¢, and the minimizer v(x,t) can be interpreted as
the optimal control of the transport problem.

3 LEARNING DYNAMIC OT BY
Q-FLOW NETWORK

We first introduce the formulation and training objec-
tive in Section 3.1. The training technique consists of
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Figure 1: The Q-flow model learns the dynamic OT, an invertible transport map Ty (parametrized by the velocity
field v(z,t)) between P and @ over the time interval [0,1] with the least transport cost. The push-forwarded
distribution (T3 )4p (as well as (T7)4q, respectively) is close to the target distribution ¢ (p, respectively).

the end-to-end refinement (Section 3.2) and construct-
ing the initial flow (Section 3.3).

3.1 Formulation and Training Objective

Given two sets of samples X = {X;}¥, and X =
{X }] 1, where X; ~ P and X ~ @ ii.d., we train
a neural ODE model f(z,t;6) (1) to represent v(x,t)
and solve the dynamic OT (2). Our formulation is
symmetric from P to @ and vice versa, and the train-
ing objective is formally

min (£P79(0) +£977(0)), (3)
where we call P — @ the forward direction and @ —
P the reverse direction. The bi-directional training
naturally follows the symmetry of the dynamic OT
problem (Remark 1).

The dynamic OT (2) on time [0, 1] has two terminal
conditions, which we propose to relax by a KL diver-

gence loss (see, e.g., (Ruthotto et al., 2020)). Then
the training loss in the forward direction is
Lr790) = L C(0) + 1L 40), ()

where the first term Lﬁ? ?(6) represents the relaxed
terminal condition and the second term L5 79(0) is
the Wasserstein-2 transport cost to be detailed below;
v > 0 is a weight parameter, and with small v the
terminal condition is enforced. £@7F(f) is similarly
defined, see more below. We now derive the finite-
sample form of each term in (4).

KL loss. We specify the first term ﬁP%Q in loss (4).
We define the solution mapping of (1 ) from stotas

/ fa (5)

which is also parameterized by 6, and we may omit the
dependence below. By the continuity equation in (2),
p(+,t) = (T{)#p. The terminal condition p(-,1) = ¢ is
relaxed by minimizing

KL(p1]lq) = Eonp, log(p1(z)/q(x)), p1:=(T5)%p

TH(x;0) = x(

The expectation E,.,, is estimated by the sample av-
erage over (X7 ); which observes density p; i.i.d., where
(X1)i == T} (X;) is computed by integrating the neural
ODE from time 0 to 1.

It remains to have an estimator of log(p1/q) to com-
pute KL(p1||g). As neither P nor @) is assumed to have
a known density, we cannot use the change-of-variable
technique from normalizing flow to estimate the KL.
We propose to train a logistic classification network
c1(z;0.) : R4 — R with parameters ¢., which resem-
bles the training of discriminators in GAN (Goodfellow
et al., 2014). The inner-loop training of ¢; is by

N

mln— 10 1 + ecl(T (XZ,Q) 990)
iin v 2 log( )

Y (6)
il —e1(Xji0c)
+M§10g(l+e 1Rgiee)y,

The functional optimal c¢j of the population version of
loss (6) equals log(q/p1) by direct computation, and
as a result, KL(p1||q) = —Ez~p, ci(x). Now take the
trained classification network c; with parameter ¢,
we can estimate the finite sample KL loss as

l:P—)Q

Z (T (X0 00). ()

where @, is the computed minimizer of (6) solved by
inner loops. In practice, we will first initialize the flow
such that when minimizing (6), the two densities p; =
(T})4p and q are close, which makes the training of
the classification net more efficient.

Wasserstein (WW5) loss. We specify the second term
E;HQ(G) in the loss (4). To compute the transport
cost T in (2), we use a time grid on [0,1] as 0 = t¢ <
t1 < ... < tg = 1. The choice of the time grid is
algorithmic, see more details in Section 3.2. Defining
hi, =t —tg—1, and X;(t;0) := T, (X;;0), we write the
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W5 loss as

£ 7i Y& || X (1 0)
NZ;

which appears as a finite-difference approxima-
tion of 7 along time. Meanwhile, since (omit-
ting dependence on 0) X;(tx) — X;(tg—1) =
Ttt: (Xi(tr—1)), the population form of (8),
that is,  Sp ) Eoop(unlITH (@102 /hy,,  at
optimum can be interpreted as the discrete-time
summed (square) Wasserstein-2 distance, that is,
Sry Walp(e,ti1), p( t))? /he, see (Xu et al,
2022). The W, loss encourages a smooth flow from
P to @@ with a small transport cost, which also
guarantees the invertibility of the model in practice

when the trained flow approximates the optimal flow
in (2).

— Xilte130)]?
lc

Y (8)

Training in both directions. The formulation in
the reverse direction is similar, where we transport
@-samples Xj from time 1 to 0 using the same neu-
ral ODE integrated in reverse time. Specifically,
EQ—”D(G) L27F(0) +4L27F(9), and L2577 (0) =

MZ] L60(TY(X;0); pz), where ¢z is obtained
by inner-loop training of another classification net
¢o(x, pz) with parameters ¢z via

— 1 ]_ + CO(Tl (X],O) vz)
n;lcn jzl og(l+e )
N )

1 ~
—C (Xi; 5)
+—N§ log(1 + e ol Riiwe)),

i=1
The reverse-time W5 loss is

£27F(0) le <Z 1% (tk-156) — X;(tx; 0)]| )

where we define X (t;6) := Tt(X; 0).

Remark 1 (Symmetry of dynamic OT and bi-direc-
tional training). The Benamou-Brenier formula (2) is
“symmetric” with respect to P and @, in the sense
that either setting P to be at time 0 and @ at time 1,
or the other way, one will obtain the same solution —
transport with the same velocity field v(z,t) that only
differs in the direction of time — under generic condi-
tions (e.g. both P and @ have densities). This means
that training in the forward or the reversed direction,
although having different objectives in appearance, is
aiming at the same flow solution at optimum. Thus,
the proposed bi-directional training naturally captures
the symmetry of the dynamic OT, and can potentially
improve the accuracy when training with finitely many
samples. We empirically verify the advantage over uni-
directional training in Section 5.3.3.

3.2 End-to-end Training of Q-flow

Assuming that the Q-flow net has already been ini-
tiated (see more in Section 3.3), we minimize £F~%
and £97F in an alternative fashion per iteration, and
the procedure is summarized in Algorithm 1. We call
this the “refinement” of the flow, namely to refine the
flow trajectory towards the OT one from some initial-
ization. The computational complexity is analyzed in
Appendix C.1, where the computational cost is shown
to scale with the size of the time grid along the flow
and the sample sizes (and number of iterations).

Time integration of flow. In the losses (7) and (8),
one need to compute the transported samples X;(¢;6)
and X;(t;0) on time grid points {t;}/~,. This calls
for integrating the neural ODE on [0, 1], which we con-
duct on a fine time grid ¢ s that divides each subin-
terval [tg_1,tx] into S mini-intervals (S is usually 3-5
in our experiments). We compute the time integra-
tion of f(z,t;0) using four-stage Runge-Kutta on each
mini-interval. The fine grid is used to ensure the nu-
merical accuracy of ODE integration and the numer-
ical invertibility of the Q-flow net, i.e., the error of
using reverse-time integration as the inverse map (see
inversion errors in Table A.2). To further improve effi-
ciency, it is possible to first train the flow f(z,¢;6) on
a coarse time grid to warm-start the later training on
a refined grid. One can also adopt an adaptive time
grid, e.g., by enforcing equal W5 movement on each
subinterval [t;_1, tx], so that the representative points
are more evenly distributed along the flow trajectory
and the learning of the flow model may be improved
(Xu et al., 2023).

Algorithm 1 Q-flow refinement

input Pre-trained initial flow network f(z(t),t;0);
training data X ~ P and X ~ Q; hyperparame-
ters: {v,{tx}f_,,Tot, E, By, Ein}.
output Refined flow network f(x(t),¢;6)
1: for Iter = 1,...,Tot do
2:  (If Tter = 1) Train ¢; by minimizing (6) for Ey

epochs.
3: forepoch=1,...,Edo {> P — Q refinement}
4 Update 6 of f(z(t),t;0) by minimizing L@,
5: Update ¢; by minimizing (6) for Ej, epochs.
6: end for
7 (If Iter = 1) Train ¢ by minimizing (9) for Ey
epochs.
8 forepoch=1,...,Edo{>Q — P refinement}
9: Update 6 of f(z(t),t; ) by minimizing £LO~F.
10: Update ¢y by minimizing (9) for Ej, epochs.
11:  end for
12: end for
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Inner-loop training of ¢; and ¢;. Given a warm-
started initialization of the flow, the transported dis-
tributions (7))4P ~ Q and (T7)xQ ~ P. The two
classification nets are first trained for Ey epochs be-
fore the loops of training the flow model and then up-
dated for Fj, inner-loop epochs in each outer-loop it-
eration. We empirically find that frequently updating
c1 and ¢p in lines 5 and 10 of Algorithm 1 are cru-
cial for successful end-to-end training of Q-flow net.
Specifically, as we update the flow model f(x,¢;6), the
push-forwarded distributions (T3 )4 P and (T7)xQ are
consequently changed. Then one will need to retrain
¢1 and ¢ timely (e.g., once every several steps of train-
ing ) to ensure an accurate estimate of the log-density
ratio and consequently the KL loss. Compared with
training the flow parameter 8, the computational cost
of the two classification nets is light which allows po-
tentially a large number of inner-loop iterations (i.e.,
frequent updates) if needed.

3.3 Flow Initialization

We propose to initialize the Q-flow net by a flow model
that approximately matches the transported distribu-
tions with the target distributions in both directions
(and may not necessarily minimize the transport cost).
The proposed end-to-end training can be viewed as a
refinement of the initial flow. The initial flow f(z,¢;0)
may be specified using prior knowledge of the problem
is available. Generally, when only two data sets X, X
are given, one can adopt various existing generative
flows to obtain an initial flow. In this work, we con-
sider two approaches: (i) by a concatenation of two
CNF models, and (ii) by distribution interpolant neu-
ral networks. See Appendix C.2 for details. Any other
initialization scheme is compatible with the proposed
end-to-end training.

4 INFINITESIMAL DENSITY
RATIO ESTIMATION (DRE)

The DRE problem, namely estimating log(q(x)/p(z))
is a fundamental task in statistical inference. (Rhodes
et al., 2020; Choi et al., 2022) showed that an inter-
polated sequence of distributions from P to ) can be
used to compute the DRE (reviewed in more detail
in Appendix A). Following the same idea, we pro-
pose to train an additional continuous-time neural net-
work, called flow-ratio net, by minimizing a classifica-
tion loss to distinguish distributions on neighboring
time stamps along the trained Q-flow net trajectory.
We will show in Section 5.3 that using the OT tra-
jectory provided by the trained Q-flow net can benefit
the accuracy of DRE.

Let p(z,t) = (Tt)xp and T} is the transport induced

by the trained Q-flow net. By the relation (A.2), we
propose to parametrize the time score d; log p(z,t) by
a neural network r(z,t;0,) with parameter 6,., which
we call the flow-ratio net, and the network r(z,¢;6,) is
to perform DRE given the OT trajectory from a pre-
trained Q-flow net. The training is by logistic classi-
fication applied to transported data distributions on
consecutive time grid points: Given a deterministic
time grid 0 = tp < t; < ... < t;, = 1 (which again
is an algorithmic choice; see Section A.3), we expect
that the integral

tr
Ry (x;0,) : = / r(x,t;0,)dt

tp—1

tr 1
~ O logp(z,t)dt (10)

— log(p(z, ) /p(z t4-1)).

Since logistic classification can reveal the log density
ratio as has been used in Section 3.1, this suggests the

loss on interval [t;_1,tx] as follows, for k=1,--- | L,
P 1 o
BL00) = D tos(1 4 e )
+ 1 ilo (14 e~ Fe(Xaltn)ir)y (17
N - g )

where X;(t) := T¢(X;) and T{ is computed by inte-
grating the trained Q-flow net. When k& = L, the dis-
tribution of X;(tz) may slightly differ from that of
@ due to the error in matching the terminal densi-
ties in Q-flow net, and then replacing the second term
in (11) with an empirical average over the Q-samples
Xj may be beneficial. In the reverse direction, de-
fine X;(t) := T¢(X;), we similarly have Lg_}P(HT) =
ﬁZJM:l log(1 + efr(Xitk-1)ifr)) 4 ﬁzjlvil log(1 +
e~ Be(X5(t6):0)) " and when k = 1, we replace the 1st
term with an empirical average over the P-samples X;.
The training of the flow-ratio net is by

L
“éi“kzjff “90) + LT (6,). (12)
When trained successfully, the integral f : r(z,t';0,)dt
provides an estimate of log(p(z,t)/p(x, s)) for any s <
t on [0,1], and in particular, the integral over [0,1]
yields the desired log density ratio log(q/p) as shown
n (A.2). See Algorithm A.2 for more details.

5 EXPERIMENTS

We demonstrate the effectiveness of the proposed
method on several downstream tasks: OT base-
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Table 1: OT benchmarks using Gaussian mixtures (left) and CelebA64 images (right). Metric values (L2-UVP,
cos) are shown in cells, with lower £2-UVP and higher cos being better. Results of MM, MMv1, MMv2, MM:R,
and W2 are quoted from (Korotin et al., 2021b) for comparisons.

(a) Gaussian mixtures

(b) CelebA64 images

Dimension 64 128 256

Q-flow (Ours) | (4.00, 0.98) (2.12, 0.99) (1.97, 0.99) Q-flow (Ours)|(0.87, 0.99) (0.27, 0.97) (0.12, 0.97)

OTCFM | (4.64,097) (2.78,0.99)  (3.02, 0.98)
MMv1 (8.1,097)  (22,099)  (2.6,0.99)
MMv2 (10.1,0.96)  (3.2,099) (2.7, 0.99)

W2 (72,097)  (20,1.00) (2.7, 1.00)

Ckpt Early Mid Late
NOT (0.99,0.99)  (0.34,0.96)  (0.12, 0.96)
OTCFM (1.2, 0.99) (0.39, 0.96)  (0.16, 0.95)
MM (2.2, 0.98) (0.9, 0.90) (0.53, 0.87)
MM:R (1.4, 0.99) (0.4, 0.96) (0.22, 0.94)
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Figure 2: Image-to-image translation: the trajectory
of samples (in rows) from intermediate distributions of
the Q-flow in the VAE latent space, as it pushes for-
ward the base distribution (leftmost column) to the
target distribution (rightmost column). Figure (a)
shows the transition from handbag to shoe. Figure
(b) shows the transition from CelebA male to female.

lines (Section 5.1), image-to-image translation (Sec-
tion 5.2), high dimensional DRE (Section 5.3). Ad-
ditional details, including hyperparameter choices and
sensitivity, are provided in Appendix B. Code can be
found at https://github.com/hamrel-cxu/FlowOT.

5.1 High-dimensional OT Baselines

We compare our Q-flow with popular OT base-
lines on the OT benchmark (Korotin et al., 2021b).
Competing methods are MM (Dam et al., 2019),
MMv1 (Taghvaei and Jalali, 2019), MM:R (Makkuva
et al., 2020), MMv2 (Fan et al., 2021), W2 (Ko-

rotin et al., 2021c), NOT (Korotin et al., 2023), and
OTCFM (Tong et al., 2024). The goal is to match
outputs from a trained OT map as closely as possible
with those from the ground truth in the benchmark.
Two metrics, £L2-UVP in (A.3) and cos in (A.4), are
used to evaluate performance, where lower £2-UVP
and higher cos values indicate better performance. De-
tails of the setup are provided in Appendix B.1. Table
A.1 reports the training time of each method, where
Q-flow is computationally competitive.

High-dimensional Gaussian mixtures. The goal
is to transport between high-dimensional Gaussian
mixtures optimally. We vary dimension d €
{64,128,256}, and in each dimension, the distribu-
tion P is a mixture with three components, and @
is a weighted average of two 10-component Gaussian
mixtures. Table 1a shows that our Q-flow consistently
reaches lower £2-UVP and higher or equal cos than
OT baselines, indicating comparable or better perfor-
mance on this example.

CelebA64 images. The goal is to align CelebA64
faces (Liu et al., 2015) (denoted as @) with faces gen-
erated by a pre-trained WGAN-QC (Liu et al., 2019)
generator (denoted as Pcypt for different checkpoints).
In particular, three checkpoints (Ckpt) of the WGAN-
QC are considered (i.e., Ckpt € {Early, Mid, Late}),
where Prgary contains generated faces that are the
most blurry and faces from Pt are closest to true
faces among the three. Quantitatively, results in Table
1b show that Q-flow outperforms other OT baselines.
Figure A.1 in the appendix further shows high-quality
faces as a result of using the trained Q-flow net on
samples from Pcypt for different Ckpt.

5.2 Image-to-image Translation

We use Q-flow to learn the continuous-time OT be-
tween distributions of two sets of RGB images and
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Table 2: Image-to-image translation: FID on the test sets, lower is better. FIDs of Disco GAN, Cycle GAN, and

NOT are quoted from (Korotin et al., 2023).

Q-flow (ours) OTCFM Re-flow SBCFM DSBM W2GN MM:R Disco GAN Cycle GAN NOT

12.34 15.96
9.66 9.76

25.92
20.24

Handbag — shoes

CelebA male — female

17.22
11.32

25.71
25.82

34.23  33.04
1523 12.34

22.42
35.64

16.00
17.74

13.77
13.23

(a) Trajectory from P (two-moon) to @ (checkerboard)

(b) Estimated log-ratio between P;, , and P;, by the trained flow-ratio net.

Figure 3:

Q-flow trajectory and corresponding log-ratio estimation.

Top: intermediate distributions by

Q-flow net. Bottom: corresponding log-ratio estimated by flow-ratio net. Blue color indicates negative es-
timates of the difference log(p(x, tx)/p(x, trx—1)) evaluated at the common support of the neighboring densities.

compare with Disco GAN (Kim et al., 2017), Cycle
GAN (Zhu et al., 2017), W2GN (Korotin et al., 2021a),
MM:R, NOT, Re-flow (Liu et al., 2023), OTCFM,
SBCFM (Tong et al., 2024), and DSBM (Shi et al.,
2024). The first set contains handbags (Zhu et al.,
2016) and shoes (Yu and Grauman, 2014), and the
second set contains CelebA male and female images.
We denote handbags/males as P and shoes/females
as Q. We follow the setup in (Korotin et al., 2023),
where the goal of the image-to-image translation task
is to conditionally generate shoe/female images by
mapping images of handbag/male through our trained
Q-flow model. We train Q-flow in the latent space of a
pre-trained variational auto-encoder (VAE) on P and
Q. For a fair comparison, we train OTCFM, Re-flow,
SBCFM, DSBM, W2GN, and MM:R in the same la-
tent space for the same number of mini-batches as
Q-flow net, and all methods use models of the same
size. Additional details are in Appendix B.2.

Figure 2 visualizes continuous trajectories from
handbags/males to shoes/females generated by the
Q-flow model.  We find that Q-flow can capture
the style and color nuances of corresponding hand-
bags/males in the generated shoes/females as the
flow model continuously transforms handbag/male im-
ages. Figure A.2 and A.3 in the appendix show addi-
tional generated shoes/females from handbags/males,
respectively. Quantitatively, FIDs between generated
and true images in the test set, as shown in Ta-
ble 2 indicate Q-flow performs better than all base-

lines. Meanwhile, as our Q-flow model learns a con-
tinuous transport map from source to target domains,
it directly provides the gradual interpolation between
source and target samples along the dynamic OT tra-
jectory (Figure 2).

5.3 High-dimensional DRE

We show the benefits of our flow-ratio net proposed in
Section 4 on various DRE tasks, where flow-ratio net
leverages the flow trajectory of a trained Q-flow net.
In the experiments below, we denote our method as
“Ours”, and compare against three baselines of DRE
in high dimensions. The baseline methods are: 1 ra-
tio (by training a single classification network using
samples from P and @), TRE (Rhodes et al., 2020),
and DRE-oo (Choi et al., 2022). We denote P,, with
density p(-, tx) as the pushforward distribution of P by
the Q-flow transport over the interval [0,¢x]. The set
of distributions {P;, } for k = 1,..., L builds a bridge
between P and Q.

5.3.1 Toy Data in Two-dimension

Gaussian mixtures. We simulate P and @ as two
Gaussian mixture models with three and two compo-
nents, respectively, see additional details in Appendix
B.3.1. We compare ratio estimates 7(z) with the true
values r(z). The results are shown in Figure A.4. We
see from the top panel that the mean absolute error
(MAE) of Ours is the smallest, and Ours also incurs a
smaller max,, |7(z) — r(x)|. This is consistent with the
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Table 3: BPD on the energy-based modeling of MNIST (lower is better). Results for DRE-oco are from (Choi
et al., 2022), and results for one-ratio and TRE are from (Rhodes et al., 2020).

Choice of @ RQ-NSF

Copula Gaussian

Method

BPD () [1.05 1.09 1.09 109 |1.14

Ours DRE-oo TRE 1 ratio| Ours DRE-co TRE 1 ratio| Ours DRE-co TRE 1 ratio

121 124 133 |1.31 133 139 1.96

closest resemblance of Ours to the ground truth (first
column) in the bottom panel. In comparison, DRE-0co
tends to over-estimate r(x) on the support of @, while
TRE and one ratio under-estimate r(x) on the support
of P. As both the DRE-co and TRE models use the
linear interpolant scheme (A.8), the result suggests the
benefit of using Q-flow trajectory for DRE.

Two-moon to and from checkerboard. We de-
sign two densities in R? where P represents the shape
of two moons, and @ represents a checkerboard; see
additional details in Appendix B.3.1. For this more
challenging case, the linear interpolation scheme (A.8)
creates a bridge between P and () as shown in Fig-
ure A.9. The flow visually differs from the one ob-
tained by the trained Q-flow net, as shown in Figure
3(a), and the latter is trained to minimize the trans-
port cost. The result of flow-ratio net is shown in Fig-
ure 3(b). The corresponding density ratio estimates of
logp(x,tx) — logp(x,tg—1) visually reflect the actual
differences in the two neighboring densities. Figure
A5 additionally shows the estimates log ¢(z) —log p(x)
using flow-ratio net.

5.3.2 High-dimensional Mutual Information

We estimate the mutual information (MI) between
two correlated random variables in dimensions d €
{40, 80, 160, 320}, following the setup in (Rhodes et al.,
2020). Additional details can be found in Appendix
B.3.2. As shown in Figure A.6, the estimated MI by
our method aligns well with the ground truth MI val-
ues, reaching nearly identical performance as DRE-co
and outperforming the other two baselines.

5.3.3 Energy-based Modeling of MNIST

We apply our approach in evaluating and improving
an energy-base model (EBM) on the MNIST dataset
(LeCun and Cortes, 2005). We follow the prior setup
in (Rhodes et al., 2020; Choi et al., 2022), where P is
the empirical distribution of MNIST images, and @ is
the generated image distributions by three pre-trained
energy-based generative models: Gaussian, Copula,
and RQ-NSF (Durkan et al., 2019). The performance
of DRE is measured using the “bits per dimension”
(BPD) metric in (A.7). Additional details are in Ap-
pendix B.3.3. The results show that Ours reaches

the improved performance in Table 3 against base-
lines: it consistently reaches the smallest BPD across
all choices of (). Meanwhile, we also note computa-
tional benefits in training: on one A100 GPU, Ours
took approximately 8 hours to converge while DRE-0o
took approximately 33 hours. In addition, we show the
trajectory of improved samples from @ to Q for RQ-
NSF using the trained Q-flow in Figure A.7. Figure
A.8 shows additional improved digits for all three spec-
ifications of Q. Lastly, Table A.3 shows the empirical
benefit of bi-directional over uni-directional training of
Q-flow for this task.

6 DISCUSSION

The Q-flow model developed in this work is optimized
to find the dynamic OT transport between two distri-
butions to learn from data samples. One limitation
is the computational cost associated with the neural
ODE training. To save computation, one can explore
more advanced time discretization schemes, such as
adaptive time grids, as well as customized neural ODE
solvers (Shaul et al., 2024). One can try to develop a
simulation-free approach under the proposed frame-
work; more efficient computation can also be achieved
via progressive distillation (Salimans and Ho, 2022)
from the trained OT trajectory. Meanwhile, there re-
main open theoretical questions, such as the theoreti-
cal guarantee of learning the OT trajectory. In partic-
ular, the boundary condition in the Benamou-Brenier
equation is handled by KL divergences in the current
model, and it would be helpful to analyze the consis-
tency of such an approach, especially under a finite-
sample scenario. It would also be interesting to ex-
plore alternative distribution divergences (other than
KL) to handle the two endpoint distributions and an-
alyze them under a more general framework. For the
empirical results, extending to a broader class of ap-
plications and additional real datasets will be useful.
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A Infinitesimal density ratio estimation

We first introduce related works of DRE (Section A.1) and DRE preliminaries (Section A.2). We then present
the complete algorithm for our proposed flow-ratio net in Section A.3.

A.1 DRE literature

Density ratio estimation between distributions P and @ is a fundamental problem in statistics and machine
learning (Meng and Wong, 1996; Sugiyama et al., 2012; Choi et al., 2021). It has direct applications in impor-
tant fields such as importance sampling (Neal, 2001), change-point detection (Kawahara and Sugiyama, 2009),
outlier detection (Kato and Teshima, 2021), mutual information estimation (Belghazi et al., 2018), etc. Various
techniques have been developed, including probabilistic classification (Qin, 1998; Bickel et al., 2009), moment
matching (Gretton et al., 2009), density matching (Sugiyama et al., 2008), etc. Deep NN models have been
leveraged in classification approach (Moustakides and Basioti, 2019) due to their expressive power. However, as
has been pointed out in (Rhodes et al., 2020), the estimation accuracy by a single classification may degrade
when P and @ differ significantly.

To overcome this issue, (Rhodes et al., 2020) introduced a telescopic DRE approach by constructing interme-
diate distributions to bridge between P and Q. (Choi et al., 2022) further proposed to train an infinitesimal,
continuous-time ratio net via the so-called time score matching. Despite their improvement over the prior classi-
fication methods, both approaches rely on an unoptimal construction of the intermediate distributions between
P and Q. In contrast, our proposed Q-flow network leverages the expressiveness of deep networks to construct
the intermediate distributions by the continuous-time flow transport, and the flow trajectory is regularized to
minimize the transport cost in dynamic OT. The model empirically improves the DRE accuracy (see Section 5).
In computation, (Choi et al., 2022) applies score matching to compute the infinitesimal change of log-density.
The proposed flow-ratio net is based on classification loss training using a fixed time grid which avoids score
matching and is computationally lighter (Section A.3).

A.2 Telescopic and infinitesimal DRE preliminaries

To circumvent the problem of DRE distinctly different p and g, the telescopic DRE (Rhodes et al., 2020) proposes
to “bridge” the two densities by a sequence of intermediate densities pg, k =0,--- , L, where py = p and p;, = q.
The consecutive pairs of (pg,pr+1) are chosen to be close so that the DRE can be computed more accurately,
and then by

L-1
log(g(z)/p(x)) = log pr(x) — log po(z) = Z log pi+1(z) — log pi(z), (A1)
k=0

the log-density ratio between ¢ and p can be computed with improved accuracy than a one-step DRE. The
infinitesmal DRE (Choi et al., 2022) considers a time continuity version of (A.l). Specifically, suppose the
time-parameterized density p(x,t) is differentiable on ¢ € [0, 1] with p(x,0) = p and p(x,1) = ¢, then

log(q(x)/p(z)) = log p(z, 1) — log p(, 0) = / & log p(z, t)dt. (A-2)

The quantity 0 log p(x,t) was called the “time score” and can be parameterized by a neural network.

We use a trained Q-flow network f(x,t;6) for infinitesimal DRE as a focused application.

A.3 Algorithm and computational complexity

Algorithm A.2 presents the complete flow-ratio algorithm. We use an evenly spaced time grid ¢, = k/L in all
experiments. In practice, one can also progressively refine the time grid in training, starting from a coarse grid
to train a flow-ratio net r(z,t;6,) and use it as a warm start for training the network parameter 6, on a refined
grid. When the time grid is fixed, it allows us to compute the transported samples {X;(tx)}Y ,, {Xj(tk) ;Vil
on all ¢, once before the training loops of flow-ratio net (line 1-3). This part takes O(8K S(M + N)) function
evaluations of the pre-trained Q-flow net f(x,¢;6). Suppose the training loops of lines 4-6 conduct E epochs in
total. Assume each time integral in Ry (10) is computed by a fixed-grid four-stage Runge-Kutta method, then
O(4LE(M + N)) function evaluations of r(x,t;6,) is needed to compute the overall loss (12).
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Algorithm A.2 Infinitesimal DRE training via flow-ratio net

input Training samples X ~ P and X ~ Q; pre-trained Q-flow net f(z(t),;0); hyperparameters: {{t;}F_,,
Tot_iter}
output Trained network r(x,t;0,).
1: fork=1,...,L—1do
2:  Obtain {X;(t) Y, {X'j(tk) j”il by transporting all training samples {X, X} using the given Q-flow net

flz,t;0)
3: end for
4: for Iter = 1,...,Tot_iter do
5. Draw mini-batches of samples from {X;(tx)}X,, {X;(t) §Vi1
6:  Train 6, upon minimizing (12).
7: end for

B Additional experimental details

When training all networks, we use the Adam optimizer (Kingma and Ba, 2015). Unless otherwise specified, we
use an initial learning rate of 0.001.

To provide an initialized flow, we either train a continuous-time flow via (Albergo and Vanden-Eijnden, 2023) in
Sections 5.1-5.2 or concatenate two CNFs (each trained via (Xu et al., 2023)) in Section 5.3.

B.1 High-dimensional OT baselines

We summarize the setup and comparison metrics based on (Korotin et al., 2021b). To assess the quality of a
trained transport map T :R? = R? from P to Q against a ground truth 7% : RY — R? the authors use two
metrics: unezplained variance percentage (L£L2-UVP) (Korotin et al., 2021a) and cosine similarity (cos), which
are defined as

E,~p||T(2) — T*(2)|l3
Var(Q)
E,wp <T($) ) T ($) B ZE>

cos = - Lo . (A.4)
Eonp|[T(2) = 2ll2 - Bonp||T*(z) — 2[2

L2-UVP = 100 -

%. (A.3)

24 random samples from P.

The metrics are evaluated using
High-dimensional Gaussian mixtures. In each dimension d, the distribution P is a mixture of three Gaus-
sians. The distribution @ is constructed as follows: first, the authors construct two Gaussian mixtures )7 and
@2 with 10 components. Then, they train approximate transport maps Vi, #P ~ ();, where 1); is trained via
(Korotin et al., 2021c). The target @ is obtained as @ = %(Vz/;l + Viho)#P.

In Q-flow, the flow architecture f(z(t),t; ) consists of fully connected layers of dimensions 2d —4d —8d — 4d — 2d
with ReLU activation. The initialization of the flow is done by the method of Interflow (Albergo and Vanden-
Eijnden, 2023), where at each step, we draw random batches of 2048 samples from P and . We trained the
initialized flow for 50K steps. To apply Algorithm 1, we let v = 0.1, t,, = k/5 for k =0,...,5, and Tot=1. The
classifiers ¢; and ¢ consist of fully-connected layers of dimensions 4d — 4d — 4d — 4d with ReLLU activation. These
classifiers are initially trained for 10000 batches with batch size 2048. We train flow parameters 6 for 10000
batches in every iteration with a batch size of 2048, and we update the training of ¢; and ¢y every 10 batches of
training 6 to train them for 10 inner-loop batches.

CelebA64 images (Liu et al., 2015) The authors first fit 2 generative models using WGAN-QC (Liu et al.,
2019) on the CelebA dataset. They then pick intermediate training checkpoints to product continuous measures
Py Piias Plage for these 2 models (k = 1,2). Then, for each k € {1,2} and Ckpt € {Early, Mid, Late}, they
use (Korotin et al., 2021c) to fit an approximate transport map Vwékpt such that V’(/Jlékpt#@ = ngpt. The
distributions Pcypt are then obtained as Peypt = %(Vz{;ékpt + Vo) #Q-
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(c) Fitted Q-flow on Prate (top) — @ (bottom).

Figure A.1: Fitted Q-flow between Pyt for Ckpt € {Early, Mid, Late} and Q. In each sub-figure, the first row
contains random x ~ Pcypt, and the second row contains generated faces T'(x) using the trained Q-flow net T'.

In Q-flow, the flow architecture f(z(t),t;6) consists of convolutional layers of dimensions 64-128-128-256-256-
512-512, followed by convolutional transpose layers whose filters mirror the convolutional layers. The kernel
sizes are 3-4-3-4-3-4-3-3-4-3-4-3-4-3 with strides 1-2-1-2-1-2-1-1-2-1-2-1-2-1. We use the ReLU activation. The
initialization of the flow is done by the method of Interflow (Albergo and Vanden-Eijnden, 2023) for 30K steps
with 128 batch size. To apply Algorithm 1, we let v =1, t;, = k/3 for k =0,...,3, and Tot=1. The architecture
of the classifier networks ¢; and ¢y are ResNets used in WGAN-QC (Liu et al., 2019). These classifiers are
initially trained for 5000 batches with batch size 128. We train flow parameters 6 for 10000 batches in every
iteration with a batch size of 128, and we update the training of ¢; and ¢y every 5 batches of training 6 to train
them for 1 inner-loop batch.

Training time. Table A.1 reports the training time of different methods on these examples; for a given method,
the time is consistent across all examples in a given table because of the same training procedure and hyper-
parameters on these examples. The training time of Q-flow does not include the time to pre-train an initialized
flow, which is an input to Algorithm 1. Nevertheless, pre-training is light—on examples in Table 1a, pre-training
takes roughly 7 minutes (9% of Q-flow training time) and on examples in Table A.1, pre-training takes roughly
18 minutes (12% of Q-flow training time). Thus considering the pre-training will not change the comparison
much under this setting.

B.2 Image-to-image translation

The dataset of handbags P has 137K images and the dataset of shoes @ has 50K images, which are (3,64,64)
RGB images. The dataset of CelebA males P has 90K images and the dataset of CelebA females @ has 110K
images, which are (3,64,64) RBG images as well. Following (Korotin et al., 2023), we train on 90% of the total
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Table A.1: Wall-clock training time to reach the performance in Table 1a and Table 1b. The unit is in hours on
a single A100 GPU.

Table 1a time Table 1b time
Q-flow OTCFM MMvl MMv2 W2  Q-flow NOT OTCFM MM MM:R
1.25 1.25 2.5 1.25 1.25 25 275 2.5 2 1.75

data from P and @ and reserve the rest 10% data as the test set. The FIDs are computed between generated
shoe/female images (from the test handbag/male images) and true shoe/female images from the test set.

We first train a single deep VAE on both P and ). We train the deep VAE in an adversarial manner following
(Esser et al., 2021). Specifically, given a raw image input X, the encoder £ of the VAE maps X to (u(X), X(X))
parametrizing a multivariate Gaussian of dimension d. Then, the VAE is trained so that for a random latent
code Xepe ~ N(1(X),X(X)), the decoded image D(Xepe) &~ X. In our case, each latent code X, has shape
(12,8,8), so that d = 768.

The training data for Q-flow are thus sets of random latent codes X,y (obtained from X ~ P) and Yy, (obtained
from Y ~ P), where Q-flow finds the dynamic OT between the marginal distributions of X,,. and Yg,.. We
then obtain the trajectory between P and () by mapping the OT trajectory in latent space by the decoder D

In Q-flow, the flow architecture f(x(¢),t;6) consists of convolutional layers of dimensions 12-64-256-512-512-1024,
followed by convolutional transpose layers whose filters mirror the convolutional layers. The kernel sizes are 3-3-
3-3-3-3-3-4-3-3 with strides 1-1-2-1-1-1-1-2-1-1. We use the softplus activation with 8 = 20. The initialization of
the flow is done by the method of Interflow (Albergo and Vanden-Eijnden, 2023), where at each step, we draw
random batches of 128 X and 128 Y and then obtain 128 random latent codes X,,. and 128 Y,,.. We trained
the initialized flow for 20K steps.

To apply Algorithm 1, we let v = 0.05 (bag-shoe) or v = 0.1 (male-female), ¢, = k/10 for k = 0,...,10, and
Tot=1. The selection of v is based on grid searching -y within le-5 and 1 to find one that leads to the highest
FID on training data. Specifically, we randomly pick two subsets of training images (with the same size as
corresponding test sets) from P and @), obtain the translated images of P images via trained Q-flow net, and

EECRRE S Ad b
v pS e boS s h LS
Sy - Y #@@5“’4
cSAP 2L DB S LS

' BhAS s Lo sad s

(b) Different generated shoe images by Q-flow model

Figure A.2: Additional test images of handbag (in true P, figure (a)) and corresponding generated shoe images
by Q-flow model (in generated @, figure (b)). To generate different shoes for a given handbag, we sample random
latent codes given by the VAE, map them through the trained Q-flow model, and decode them back through the
VAE decoder to visualize different generated shoes in the pixel space.
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(b) Different generated female images by Q-flow model

Figure A.3: Additional test images of males (in true P, figure (a)) and corresponding generated female images
by Q-flow model (in generated @, figure (b)). To generate different females for a given male, we sample random
latent codes given by the VAE, map them through trained Q-flow model, and decode back through the VAE
decoder to visualize different generated females in the pixel space.

compute the FID between translated images and images sampled from (. Meanwhile, the classifiers are initially
trained for 4000 batches with batch size 512 and updated every 10 batches of training 6 for 20 inner-loop batches.
The architecture of the classifier networks ¢; and & is based on (Choi et al., 2022), where the encoding layers
of the classifier are convolutional filters of sizes 12-256-512-512-1024-1024 with kernel size equal to 3 and strides
equal to 1-1-2-1-1. The decoding layers of the classifier resemble the encoding layers, and the final classification
is made by passing the deep decoded feature through a fully connected network with size 768-768-768-1. Lastly,
we train flow parameters 6 for 30K batches (bag-shoe) or for 18K batches (male-female) with a batch size of 256.

B.3 High-dimensional density ratio estimation

B.3.1 Toy data in 2d
Gaussian mixtures. Setup: We design the Gaussian mixtures P and @ as follows:

P= % (N( [_22] ,0.7515) + N [_1155} ,0.2515) + N( {_11} ,0.7512))

Q= % <N( [81755} ,0.515) + N ( [:g] ,0.512)> )

Then, 60K training samples and 10K test samples are randomly drawn from P and Q). We intentionally designed
the Gaussian mixtures so that their supports barely overlap. The goal is to estimate the log-density ratio
r(z) = log q(x) — logp(x) on test samples.

Given a trained ratio estimator #(x), we measure its performance based on the MAE
1 & 1 & :
5 D)~ FXD |+ 1 () (K (A5)
i=1 j=1
where we use N’ and M’ test samples from P and @, and r(x) denotes the true density between P and Q.

Q-flow : To initialize the two JKO-iFlow models that consists of the initial Q-flow , we specify the JKO-iFlow
as:
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o The flow network f(z(t),t;0p) and f(xz(t),t;6q) consists of fully-connected layers

3—128—128—2. The Softplus activation with 8 = 20 is used. We concatenate t along = to form an
augmented input into the network.

o We train the initial flow with a batch size of 2000 for 100 epochs along the grid
[0,0.25),]0.25,0.625), [0.625, 1).

To refine the Q-flow , we concatenate the trained f(z(¢),t;0p) and f(x(t),t;6q), where the former flows in
[0,1) to transport P to Z and the latter flows in [1,0) to transport Z to . We then use the time grid
[0,0.25),[0.25,0.625), [0.625, 1), [1,0.625), [0.625, 0.25), [0.25, 0) to train f(z(t),;0) with 6 = {0p,0g}; we note
that the above time grid can be re-scaled to obtain the time grid {t;}%_, over [0,1]. The hyperparameters for
Algorithm 1 are: Tot=2, Ey = 300, F = 50, E;, = 4,7 = 0.5. The classification networks {c;,¢} consists of
fully-connected layers 2—312—312—312—1 with the Softplus activation with 5 = 20, and it is trained with a
batch of 200.

flow-ratio: The network consists of fully-connected layers 3—256—256—256—1 with the Softplus activation
with 8 = 20. The input dimension is 3 because we concatenate time ¢ along the input z € R? to form an
augmented input. Using the trained Q-flow model, we then produce a bridge of 6 intermediate distributions
using the pre-scaled grid [0,0.25),[0.25,0.625),[0.625, 1), [1,0.625),[0.625,0.25),[0.25,0) for the Q-flow . We

then train the network r(x,t;6,) for 100 epochs with a batch size of 1000, corresponding to Tot_iter=6K in
Algorithm A.2.

Two-moon to and from checkerboard. Setup: We generate 2D samples whose marginal distribution has
the shape of two moons and a checkerboard (see Figure 3(a), leftmost and rightmost scatter plots). We randomly
sample 100K samples from P and @ to train the Q-flow and the infinitesimal DRE.

Q-flow : To initialize the two JKO-iFlow models that consists of the initial Q-flow , we specify the JKO-iFlow
as:

=
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(f) Left to right: True ratio r(x), #(z) by Ours, DRE-co, TRE, and 1 ratio.

Figure A.4: Estimated log density ratio between 2D Gaussian mixture distributions P (three components) and
Q@ (two components). Top: (a) training samples from P and Q. (b)-(d) histograms of errors log(|r(x) — #(x)|)
computed at 10K test samples shown in log-scale. The MAE (A.5) are shown in the captions. Bottom: true
and estimated log(g/p) from different models shown under shared color bars.

Table A.2: Inversion error E,.p | TP (T4 (x))—z|3+E o | T4 (T (y)) —yl3 of Q-flow computed via sample average
on the test split of the data set.

moon-to-checkerboard ‘ High-dimensional Gaussians (d = 320) ‘ MNIST (@ by RQ-NSF)
7.24e-7 ‘ 3.44e-5 ‘ 5.23e-5
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Data from P Data from Q Infinitesimal DRE: log q(x) — log p(x)

-4 -2 o 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure A.5: The flow-ratio net estimation of log(g(x)/p(x)) (right figure), evaluated at the union of test data
from P and @ (left and middle figures).

o The flow network f(z(t),t;60p) and f(z(t),t;6q) consists of fully-connected layers

3—256—256—2. The Softplus activation with 8 = 20 is used. We concatenate t along = to form an
augmented input into the network.

e We train the initial flow with a batch size of 2000 for 100 epochs along the grid
[0,0.25),]0.25,0.5), [0.5,0.75), [0.75,1).

To refine the Q-flow , we concatenate the trained f(z(t),t;0p) and f(z(t),t;0¢q), where the former flows
in [0,1] to transport P to Z and the latter flows in [1,0] to transport Z to Q. We then use the grid
[0,0.25),]0.25,0.5),[0.5,0.75),[0.75,1), [1,0.75),[0.75,0.5), [0.5, 0.25), [0.25, 0) (which can be re-scaled to form the
time grid over [0,1)) to train f(z(¢),t;0) with 6 = {0p,0o}. The hyperparameters for Algorithm 1 are: Tot=2,
Ey = 300, E = 50, Fi, = 4,7 = 0.5. The classification networks {c1,¢y} consists of fully-connected layers
2—312—312—312—1 with the Softplus activation with § = 20, and it is trained with a batch of 200.

flow-ratio: The network consists of fully-connected layers 3—256—256—256—1 with the Softplus activation
with 8 = 20. The input dimension is three because we concatenate time ¢ along the input € R? to form an
augmented input. Using the trained Q-flow model, we then produce a bridge of 8 intermediate distributions
using the pre-scaled grid interval [0,0.25),[0.25,0.5),[0.5,0.75), [0.75,1),[1,0.75), [0.75,0.5), [0.5,0.25), [0.25, 0)
for the Q-flow . We then train the network r(x,t;,) for 500 epochs with a batch size of 500, corresponding to
Tot_iter=100K in Algorithm A.2.

B.3.2 High-dimensional Mutual Information estimation

Setup: We follow the same setup as
in (Rhodes et al., 2020; Choi et al.,

2022). The first Gaussian distribution 897 --- ground truth
P = N(0,%), where ¥ is a block-diagonal . g::'_m
covariance matrix with 2 x 2 small blocks s 60 o TRE
having one on the diagonal and 0.8 on the ki —e— 1ratio
off-diagonal. The second Gaussian dis- £ 401

tribution Q@ = N(0, I4) is the isotropic i

Gaussian in R%.  We randomly draw 201

100K samples for each choice of d, which

varies from 40 to 320. ‘ . . . . .
50 100 150 200 250 300

To be more precise, we hereby draw the Number of dimensions

connection of the DRE task with mutual ) ) ) ) )
information (MI) estimation, following (RhoH#U4¢ é&:%@f@ﬁf.ﬂﬁ\ﬁf@M%@M?P@H%éﬁﬁ?ﬁ%%@@%%@ﬂ%
correlated random variables U and V: Gaussian random variables.

RCASN } . (A.6)

V) =By o8 776
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Table A.3: DRE performance on the energy-based modeling task for MNIST, reported in BPD and lower, is
better. We train flow-ratio net using trajectories given by bi-directional and uni-directional Q-flow. The uni-
directional Q-flow only optimizes (4) along the P — @ direction.

RQ-NSF Copula Gaussian
flow-ratio net using bi-directional Q-flow 1.05 1.14 1.31

flow-ratio net using uni-directional Q-flow 1.08 1.19 1.31

Now, given X = (z1,...,24) ~ P =N(0,%), we define U = (x1,23,...,24_1) and V = (22, 24,...,24). By the
construction of X, we thus have p(U)p(V) = Q(X) for Q = N(0,1;). As a result, the MI in (A.6) between U
and V is equivalent to Ex . p[—r(X)], where r(x) = log ggig is the objective of interest in DRE.

Q-flow : We specify the following when training the Q-flow :

e The flow network f(z(t),t;0) consists of fully-connected layers with dimensions

(d+1) —min(4d,1024) —»min(4d,1024) —d. The Softplus activation with 8 = 20 is used. We concatenate t
along x to form an augmented input into each network layer.

o We train the flow network for 100 epochs with a batch size of 500, in both the flow initialization phase and
the end-to-end refinement phase. The flow network is trained along the evenly-spaced time grid [tr_1,tx)
for k=1,...,L4, and we let t, = k/Lg. Lg increases as the dimension d increases. We specify the choices
as
(Lda d) € {(47 40)) (67 80)7 (77 160)a (81 320)}

The hyperparameters for Algorithm 1 are: Tot=2, Ey = 500, F = 100, Fi, = 2,7 = 0.5. The classification
networks {c1,¢p} consists of fully-connected layers d — min(4d, 1024) — min(4d, 1024)— min(4d, 1024) — 1
with the Softplus activation with g = 20, and it is trained with a batch of 200.

flow-ratio: The network consists of fully-connected layers with dimensions

(d+1) —»min(4d,1024) —»min(4d,1024) —»min(4d,1024) —1, using the Softplus activation with 8 = 20. The
input dimension is d 4+ 1 because we concatenate time ¢ along the input x € R? to form an augmented input.
Using the trained Q-flow model, we then produce a bridge of L4 intermediate distributions using the grid [tx_1, tx)
specified above for the Q-flow . We then train the network r(x,¢;6,.) for 1000 epochs with a batch size of 512,
corresponding to Tot_iter=195K in Algorithm A.2.

B.3.3 Energy-based modeling of MNIST

Setup. We discuss how each of the three @ distributions is obtained based on (Rhodes et al., 2020; Choi et al.,
2022) and how we apply Q-flow and flow-ratio nets to the problem. Specifically, the MNIST images are in
dimension d = 282 = 784, and each of the pre-trained models provides an invertible mapping F : RY — R<,
where Q = FuN(0,1;). We train a Q-flow net between (F~1)4P and (F~')4Q, the latter by construction
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Figure A.7: The trajectory of samples (in rows) from intermediate distributions of the Q-flow, as it pushes
forward the base distribution (leftmost column) to the target distribution (rightmost column). The figure shows
the improvement of generated digits using the Q-flow.
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Figure A.8: Improvement in generated samples from @, where @ is given by RQ-NSF, Copula, or Gaussian.
Each of the three choices of @ is defined by a pre-trained invertible model F' that yields @ = FxN (0, I4).

equals NV (0, I;). Using the trained Q-flow net, we go back to the input space and train the flow-ratio net using
the intermediate distributions between P and Q.

The trained flow-ratio r(z, s;6,) provides an estimate of the data density p(z) by p(x) defined as logp(x) =
log g(x) — fol r(x,s; é,»)ds7 where log ¢(x) is given by the change-of-variable formula using the pre-trained model
F and the analytic expression of N'(0,I;). As a by-product, since our Q-flow net provides an invertible mapping
T}, we can use it to obtain an improved generative model on top of F. Specifically, the improved distribution
Q = (F oT?) 4N (0, 1), that is, we first use Q-flow to transport A'(0, 1) and then apply F. The performance
of the improved generative model can be measured using the “bits per dimension” (BPD) metric:

N/
1 R
BPD = — % [~ logp(X;)/(dlog2)], (A7)
i=1
where X; are N'=10K test images drawn from P. BPD has been a widely used metric in evaluating the
performance of generative models (Theis et al., 2016; Papamakarios et al., 2017). In our setting, the BPD can
also be used to compare the performance of the DRE.

Q-flow : We specify the following when training the Q-flow :

e The flow network f(z(t),t;0) consists of fully-connected layers with dimensions

(d+1) —1024—1024—1024—d. The Softplus activation with 8 = 20 is used. We concatenate ¢ along = to
form an augmented input into the network.

e In a block-wise fashion, we train the network with a batch size of 1000 for 100 epochs along the grid
[th_1,tr—1 + hg) for k=1,...,5. We let hy = 0.5-1.1°71,

The hyperparameters for Algorithm 1 are: Tot=2, Ey = 100, F = 500, Fi, = 2,7 = 0.5. The classification
networks {c1,¢o} consists of fully-connected layers 784 — 1024 — 1024— 1024 —1 with the Softplus activation
with 8 = 20, and it is trained with a batch of 200.

flow-ratio: We use the same convolutional U-Net as described in (Choi et al., 2022, Table 2), which consists of
an encoding block and a decoding block comprised of convolutional layers with varying filter sizes. Using the
trained Q-flow model, we then produce a bridge of 5 intermediate distributions using the intervals [t;_1,tx—1+hk)
specified above for the Q-flow . We then train the network r(x,t;6,) for 300 epochs with a batch size of 128,
corresponding to Tot_iter=117K in Algorithm A.2.

B.4 Hyper-parameter sensitivity
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Figure A.9: Bridge construction between P (leftmost) and @ (rightmost) via the linear interpolation scheme
(A.8). Specifically, we choose oy, = k/9 for k =0,...,9.
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Overall, we did not purposely tune the hyperparam-  Taple A.4: BPD on MNIST with RQ-NSF target Q over
eters in Section 5, and found that the Algorithm  combinations of v in Algorithm 1 and time grid {¢;} in
1 and A.2 are not sensitive to hyper-parameter se-  Algorithm A.2.

lections. We conduct additional ablation studies by
varying the combination of  in Algorithm 1 and the

time grid {¢x} in Algorithm A.2. We tested all com- v& {te} | th=k/L | tu = (k/L)* | ts = \/k/L
bi.nations on the MNIST example in Section 5.3.3 0.5 1.046 1.044 1.047
with RQ-NSF target (). Table A.4 below presents

our method’s performance, with the highest BPD 1 1.042 1.041 1.044
(1.062) remaining lower than those by other DRE

baselines in Table 3 (the lowest of which is 1.09). b 1.057 1.055 1.062

Small variations in the table can be attributed to the learned OT trajectory influenced by the choice of ~.
Specifically, smaller v may lead to less smooth trajectories between P and Q. In contrast, larger v may result in
a higher KL-divergence between the pushed and target distributions due to insufficient amount of distribution
transportation by the refined flow, both potentially impacting DRE accuracy.

C Additional methodology details

C.1 Computational complexity of end-to-end training

We measure the computational complexity by the number of function evaluations of f(x(t),t;6) and of the
classification nets {c1,¢y}. Suppose the total number of epochs in outer loop training is O(FE); the dominating
computational cost lies in the neural ODE integration, which takes O(8K S - E(M + N)) function evaluations of
f(z,t;0). We remark that the Wasserstein-2 loss (8) incurs no extra computation, since the samples X (t;6)
and X j(ti; 0) are available when computing the forward and reverse time integration of f(z,t;6). The training
of the two classification nets ¢; and ¢y takes O(4(Fo + EFEi,)(M + N)) additional evaluations of the two network
functions since the samples X;(1;6) and Xj (0;0) are already computed.

C.2 Details of flow initialization

(i) By a concatenation of two CNF models.

Each of the two CNF models flows invertibly between P and Z and Z and @ respectively, where Z ~ N(0, I).
Any existing neural-ODE CNF models may be adopted for this initialization (Grathwohl et al., 2019; Xu et al.,
2023).

(ii) By distribution interpolant neural networks.

Specifically, one can use the linear interpolant mapping in (Rhodes et al., 2020; Choi et al., 2022; Albergo and
Vanden-Eijnden, 2023) as below, and train the neural network velocity field f(z,t;6) to match the interpolation
(Albergo and Vanden-Eijnden, 2023).

The interpolation scheme used in (Rhodes et al., 2020, Eq (5)) states that given a pair of random samples
X(0) ~ P and X(1) ~ @, the interpolated sample X (i) is defined as

X(tg) =1/1— a2 X(0) + . X (1), (A.8)

where oy, forms an increasing sequence from 0 to 1. An illustration of {X (¢x)} is given in Figure A.9.



