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Figure 1: We propose CTRL-Adapter, an efficient and versatile framework for adding diverse
controls to any diffusion model. CTRL-Adapter supports a variety of useful applications.

ABSTRACT

ControlNets are widely used for adding spatial control to text-to-image diffusion
models with different conditions, such as depth maps, scribbles/sketches, and
human poses. However, when it comes to controllable video generation, Con-
trolNets cannot be directly integrated into new backbones due to feature space
mismatches, and training ControlNets for new backbones can be a significant bur-
den for many users. Furthermore, applying ControlNets independently to different
frames cannot effectively maintain object temporal consistency. To address these
challenges, we introduce CTRL-Adapter, an efficient and versatile framework that
adds diverse controls to any image/video diffusion model through the adaptation
of pretrained ControlNets. CTRL-Adapter offers strong and diverse capabilities,
including image and video control, sparse-frame video control, fine-grained patch-
level multi-condition control (via an MoE router), zero-shot adaptation to unseen
conditions, and supports a variety of downstream tasks beyond spatial control,
including video editing, video style transfer, and text-guided motion control. With
six diverse U-Net/DiT-based image/video diffusion models (SDXL, PixArt-↵,
I2VGen-XL, SVD, Latte, Hotshot-XL), CTRL-Adapter matches the performance
of pretrained ControlNets on COCO and achieves the state-of-the-art on DAVIS
2017 with significantly lower computation (< 10 GPU hours).

⇤Equal Contribution
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1 INTRODUCTION

Recent diffusion models have achieved significant progress in generating high-fidelity images (Rom-
bach et al., 2022; Podell et al., 2024; Saharia et al., 2022; Ramesh et al., 2022) and videos (Blattmann
et al., 2023; Girdhar et al., 2023; Chen et al., 2024a; Lin et al., 2023; Long et al., 2024) from text
descriptions. As it is often hard to describe every image/video detail only with text, there have been
many works to control diffusion models in a more fine-grained manner by providing additional condi-
tion inputs such as bounding boxes (Li et al., 2023c; Yang et al., 2023), reference object images (Ruiz
et al., 2023; Gal et al., 2023; Li et al., 2023a), and segmentation maps (Gafni et al., 2022; Avrahami
et al., 2023; Zhang et al., 2023c). Among them, Zhang et al. (Zhang et al., 2023c) have released a
variety of ControlNet checkpoints based on Stable Diffusion (Rombach et al., 2022) v1.5 (SDv1.5),
and the user community has shared many ControlNets trained with different input conditions. Until
now, ControlNet has become one of the most popular methods for controllable image generation.

However, there are challenges when using the existing pretrained image ControlNets for controllable
video generation. First, pretrained ControlNet cannot be directly plugged into new backbone models,
and the cost for training ControlNets for new backbone models is a big burden for many users due to
high computational costs. For example, training a ControlNet for SDv1.5 takes 500-600 A100 GPU
hours (Zhang et al., 2023b;a). Second, ControlNet was originally designed for controllable image
generation; hence, applying pretrained image ControlNets directly to each video frame independently
does not take the temporal consistency across frames into account.

To address this challenge, we design CTRL-Adapter, a novel, flexible framework that enables the
efficient reuse of pretrained ControlNets for diverse controls with any new image/video diffusion
models, by adapting pretrained ControlNets (and improving temporal alignment for videos). We
illustrate the overall capabilities of CTRL-Adapter framework in Fig. 1. As shown in Fig. 3 left (in
Sec. 2), CTRL-Adapter trains adapter layers (Houlsby et al., 2019; Yi-Lin Sung, 2022) to map the
features of a pretrained image ControlNet to a target image/video diffusion model, while keeping the
parameters of the ControlNet and the backbone diffusion model frozen. As shown in Fig. 3 right, each
CTRL-Adapter consists of four modules: spatial convolution, temporal convolution, spatial attention,
and temporal attention. The temporal convolution/attention modules effectively fuse the ControlNet
features into image/video diffusion models for better temporal consistency. Additionally, to ensure
robust adaptation of ControlNets to backbone models of different noise scales and sparse frame
control conditions, we propose skipping the visual latent variable from the ControlNet inputs. We
also introduce inverse timestep sampling to effectively adapt ControlNets to new backbones equipped
with continuous diffusion timestep samplers. For more accurate control beyond a single condition,
we designed a novel and powerful Mixture-of-Experts (MoE) router, which allows fine-grained,
patch-level composition of spatial feature maps from multiple control conditions via CTRL-Adapters.

As shown in Table 5, CTRL-Adapter allows many useful capabilities, including image control, video
control, video control with sparse frames, multi-condition control, and compatibility with different
backbone models, while previous methods only support a small subset of them (see details in Sec. 5).
We demonstrate the effectiveness of CTRL-Adapter through extensive experiments and analyses. It
exhibits strong performance when adapting ControlNets (pretrained with SDv1.5) to various video and
image diffusion backbones, including image-to-video generation – I2VGen-XL (Zhang et al., 2023d)
and Stable Video Diffusion (SVD) (Blattmann et al., 2023), text-to-video generation – Latte (Ma
et al., 2024b) and Hotshot-XL (Mullan et al., 2023), and text-to-image generation – SDXL (Podell
et al., 2024) and PixArt-↵ (Chen et al., 2024c). The ability of CTRL-Adapter to seamlessly adapt
to DiT-based models such as Latte and PixArt-↵, which are structurally different from U-Net based
ControlNets, demonstrates the flexibility of our framework design.

In Sec. 4.1 and Sec. 4.2, we first show that CTRL-Adapter matches the performance of a pretrained im-
age ControlNet on COCO dataset (Lin et al., 2014) and outperforms previous methods in controllable
video generation (achieving state-of-the-art performance on the DAVIS 2017 dataset (Pont-Tuset
et al., 2017)) with significantly lower training costs (less than 10 GPU hours, see Fig. 2). Next, we
demonstrate that CTRL-Adapter enables more accurate video generation with multiple conditions
compared to a single condition. Our fine-grained patch-level MoE router consistently outperforms
both the equal weights baseline and the global weights MoE router (Sec. 4.3). In addition, we show
that skipping the visual latent variable from ControlNet inputs allows video control only with a
few frames of (i.e., sparse) conditions, eliminating the need for dense conditions across all frames
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Figure 2: Training speed of CTRL-Adapter for video (left) and image (right) control with depth
maps, measured on A100 80GB GPUs. For both video and image controls, CTRL-Adapter trained for
10 GPU hours outperforms strong baselines, including SDXL, which is trained for 700 GPU hours.

(Sec. 4.4). We also highlight zero-shot adaption – CTRL-Adapter trained with one condition can easily
adapt to another ControlNet trained with a different condition (Sec. 4.5). In Sec. 4.6 and Sec. 4.7, we
provide comparison of the training efficiency with ControlNet, and comparison between a unified
CTRL-Adapter with individual CTRL-Adapters. Moreover, our CTRL-Adapter can be flexibly applied
to a variety of downstream tasks beyond spatial control, including video editing, video style transfer,
and text-guided object motion control (Appendix H.3). Lastly, we provide comprehensive ablations
for CTRL-Adapter design choices (Appendix E), quantitative analysis including trade-off between
visual quality and spatial control (Appendix F), and qualitative examples (Appendix G).

• We propose an efficient and versatile framework (CTRL-Adapter) that adds diverse controls to any
image/video diffusion model through the adaptation of pretrained ControlNets, which matches the
performance of training ControlNet from scratch with significantly lower training costs.

• We propose fine-grained, patch-level MoE routing to effectively compose ControlNet features,
while previous works fuse the features of different control conditions only at the image level.

• CTRL-Adapter can be seamlessly adapted to both UNet-based and DiT-based image/video back-
bones (e.g., PixArt-↵, Latte), diffusion models with continuous timestep samplers (via inverse
noise sampling), different noise scales and sparse input frames (via latent-skipping).

• Through extensive experiments, we show that CTRL-Adapter matches the performance of pretrained
ControlNets on both image and video generation backbones. In addition, Ctrl-Adapter can be
flexibly applied to a variety of downstream tasks beyond spatial control, including video editing,
video style transfer, and text-guided object motion control.

2 METHOD

2.1 PRELIMINARIES: LATENT DIFFUSION MODELS AND CONTROLNETS

Latent Diffusion Models. Many recent video generation works utilize latent diffusion models
(LDMs) (Rombach et al., 2022) to learn the compact representations of videos. First, given a F -frame
RGB video x 2 RF⇥3⇥H⇥W , a video encoder (of a pretrained autoencoder) provides C-dimensional
latent representation (i.e., latents): z = E(x) 2 RF⇥C⇥H

0⇥W
0
, where height and width are spatially

downsampled (H 0
< H and W

0
< W ). Next, in the forward process, a noise scheduler (e.g.,

DDPM (Ho et al., 2020)) adds noise to the latents z. Then, in the backward pass, a diffusion model
F✓(zt, t, ctext/img) learns to gradually denoise the latents, given a diffusion timestep t, and a text
prompt ctext (i.e., T2V) and/or an initial frame cimg (i.e., I2V) if provided. The diffusion model is
trained with objective:

LLDM = Ez,✏⇠N(0,I),tk✏� ✏✓(zt, t, ctext/img)k22
where ✏ and ✏✓ represent the added noise to latents and the predicted noise by F✓ respectively. We
apply the same objective for CTRL-Adapter training.

ControlNets. ControlNet (Zhang et al., 2023c) is designed to add spatial controls (e.g., depth,
sketch, segmentation maps, etc.) to image diffusion models. Specifically, given a pretrained backbone
image diffusion model F✓ that consists of input/middle/output blocks, ControlNet has a similar
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Figure 3: Left: CTRL-Adapter (colored orange) enables to reuse pretrained image ControlNets
(colored blue) for new image/video diffusion models (colored green). Right: Architecture details of
CTRL-Adapter. Temporal convolution and attention layers are skipped for image diffusion backbones.
architecture F✓0 , where the input/middle blocks parameters of ✓0 are initialized from ✓, and the
output blocks consist of 1⇥1 convolution layers initialized with zeros. ControlNet takes the diffusion
timestep t, text prompt ctext, control image cf (e.g., depth map), and the noisy latents zt as inputs,
and the output features are merged into the backbone model F✓ for final image generation.

2.2 CTRL-ADAPTER

We introduce CTRL-Adapter, a novel framework that enables the efficient reuse of existing image
ControlNets (SDv1.5) for spatial control with new diffusion models. We mainly describe our method
details in the video generation settings, since CTRL-Adapter can be flexibly adapted to image
diffusion models by regarding images as single-frame videos.

Efficient adaptation of pretrained ControlNets. As shown in Fig. 3 (left), we train an adapter
module (colored orange) to map the middle/output blocks of a pretrained ControlNet (colored blue)
to the corresponding middle/output blocks of the target video diffusion model (colored green). If the
target backbone does not have the same number of output blocks, CTRL-Adapter maps the ControlNet
features to the output block that handles the closest height and width of the latents. We keep all
parameters in both the ControlNet and the target video diffusion model frozen. Therefore, training a
CTRL-Adapter can be significantly more efficient than training a new video ControlNet.

CTRL-Adapter architecture. As shown in Fig. 3 (right), each block of CTRL-Adapter consists of
four modules: spatial convolution, temporal convolution, spatial attention, and temporal attention. We
set the values for N1, ..., N4 and N as 1 by default. The temporal convolution and attention modules
effectively fuse the ControlNet features to the video backbone models for better temporal consistency.
Moreover, the spatial/temporal convolution modules incorporate the current denoising timestep t

by adding timestep embeddings into the adapter features and spatial/temporal attention modules
incorporate the conditions (i.e., text prompt/initial frame) ctext/img through cross-attention between
image/text condition embeddings and the adapter features.. This design allows CTRL-Adapter to
dynamically adjust its features according to different denoising stages and the objects generated.
In addition, we skip the temporal convolution/attention modules when adapting to image diffusion
models. See Appendix B.1 for architecture details of the four modules, and Appendix E for detailed
ablation studies on the design choices of CTRL-Adapter.
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Figure 4: Left: Framework for multi-condition video generation by combining multiple ControlNets.
w1, w2, ..., wN are the weights allocated to each ControlNet. Right: Three MoE router variants.
(a) operates globally, while (b) and (c) operate on the fine-grained patch-level. C and N represent
feature dimensions and number of ControlNet experts respectively. wi,j

k
represents the router weights

at position (i, j) of the k
th ControlNet 2D feature map. SM stands for Softmax.

Adaptation to DiT-based image/video backbones. Our CTRL-Adapter can also adapt U-Net based
ControlNets to DiT-based image/video generation backbones. One important observation we made
is that the spatial features encoded in the U-Net of ControlNets and the DiT blocks are structurally
different (see Fig. 22). Specifically, the representation from U-Net blocks exhibits coarse-to-fine,
hierarchical patterns (e.g., earlier blocks output smaller size feature maps and control high-level
information such as object presence, while later blocks output larger feature maps and control lower-
level details like textures), while all DiT blocks handle the feature maps of same sizes. This indicates
that mapping all middle/output blocks of ControlNet to DiT blocks might not be the optimal solution.
Therefore, we choose to map the feature maps of the largest size in ControlNet (i.e., block A) to the
DiT blocks via CTRL-Adapters, which are followed by zero-convolutions for channel dimension
matching. To improve computational efficiency for DiT-based video generation models (i.e., Latte Ma
et al. (2024b)), we only insert CTRL-Adapters into every other DiT block (i.e., blocks 2, 4, 6..., 28,
see (a) in Fig. 16). See Appendix E.2 for more discussion on CTRL-Adapter designs for DiT.

Skipping the latent from ControlNet inputs: robust adaption to different noise scales & sparse

frame conditions. Although the original ControlNets take the latent zt as part of their inputs, we
find that skipping zt from ControlNet inputs is effective for CTRL-Adapter in certain settings, as
illustrated in Fig. 12. (1) Different noise scales: while SDv1.5 samples noise ✏ from N(0, I), some
recent diffusion models Hoogeboom et al. (2023); Esser et al. (2024); Blattmann et al. (2023) sample
noise ✏ of much bigger scale (e.g. SVD Blattmann et al. (2023) sample noise from � ⇤N(0, I), where
� ⇠ LogNormal(0.7, 1.6); � 2 [0,+1] and E[�] = 7.24). We find that adding larger-scale zt from
the new backbone models to image conditions cf dilutes the cf and makes the ControlNet outputs less
informative, whereas skipping zt enables the adaptation of such new backbone models. (2) Sparse

frame conditions: when the image conditions are provided only for the subset of video frames
(i.e., cf = ; for most frames f ), ControlNet could rely on the information from zt and ignore cf
during training. Skipping zt from ControlNet inputs also helps the CTRL-Adapter to more effectively
handle such sparse frame conditions (see Table 10). With latent-skipping, the input to ControlNet
F✓ becomes cf instead of cf + zt (i.e., ControlNet outputs F✓(cf ) instead of F✓(cf + zt)).

Inverse timestep sampling: robust adaptation to continuous diffusion timestep samplers. While
SDv1.5 samples discrete timesteps t uniformly from {0, 1, ...1000}, some recent diffusion mod-
els Esser et al. (2024); Ma et al. (2024a); Rombach et al. (2021) sample timesteps from continuous
distributions, e.g., SVD Blattmann et al. (2023) samples timesteps from a LogNormal distribution.
This gap between discrete and continuous distributions means that we cannot assign the same timestep
t to both the video diffusion model and the ControlNet. Therefore, we propose inverse timestep
sampling, an algorithm that creates a timestep mapping between the continuous and discrete time dis-
tributions (see Algorithm 1 for PyTorch Ansel et al. (2024) code). The high-level idea of this algorithm
is inspired by inverse transform sampling Estimation lemma (2010). Given the cumulative distribution
functions (CDFs) of the continuous timestep distribution Fcont. and the ControlNet timestep distribu-
tion FCNet, we first uniformly sample a value u between [0, 1], and then returns the smallest timesteps
tcont. 2 [0,1] ✓ R, tCNet 2 {0, 1, ..., 1000} ✓ N, such that Fcont.(tcont.) � u, FCNet(tCNet) � u. This
procedure naturally creates a mapping between two distributions. See Appendix B.2 for details.
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Table 1: Evaluation of video generation with single control condition on DAVIS 2017 dataset. The
best number in each column is bolded, and the second best is underscored.

Method Depth Map Canny Edge

FID (#) Optical Flow Error (#) FID (#) Optical Flow Error (#)

Text2Video-Zero (Khachatryan et al., 2023) 19.46 4.09 17.80 3.77
ControlVideo (Zhang et al., 2024) 27.84 4.03 25.58 3.73
Control-A-Video (Chen et al., 2023) 22.16 3.61 22.82 3.44
VideoComposer (Wang et al., 2024) 22.09 4.55 - -

Hotshot-XL backbone
SDXL ControlNet (von Platen et al., 2022) 45.35 4.21 25.40 4.43
SDv1.5 ControlNet + CTRL-Adapter (Ours) 14.63 3.94 20.83 4.15

Latte backbone (DiT-Based)
SDv1.5 ControlNet + CTRL-Adapter (Ours) 16.92 3.98 17.87 2.73

I2VGen-XL backbone
SDv1.5 ControlNet + CTRL-Adapter (Ours) 7.43 3.20 6.42 3.37

SVD backbone
SVD Temporal ControlNet (Rowles, 2023) 4.91 4.84 - -
SDv1.5 ControlNet + CTRL-Adapter (Ours) 3.82 2.96 3.96 2.39

Table 2: Evaluation of image generation with single control condition on COCO val2017 split. The
best number in each column is bolded, and the second best is underscored.

Method Depth Map Canny Edge Soft Edge / HED

FID (#) MSE (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (")

SDv1.4 or v1.5 backbone
SDv1.5 ControlNet (Zhang et al., 2023c) 21.25 87.57 - 18.90 0.4828 26.59 0.4719
T2I-Adapter (Mou et al., 2023) 21.35 89.82 - 18.98 0.4422 - -
GLIGEN (Li et al., 2023c) 21.46 88.22 - 24.74 0.4226 28.57 0.4015
Uni-ControlNet (Zhao et al., 2024) 21.20 91.05 - 17.79 0.4911 17.86 0.5197

SDXL backbone
SDXL ControlNet (von Platen et al., 2022) 17.91 86.95 0.8363 17.21 0.4458 - -
SDv1.5 ControlNet + X-Adapter (Ran et al., 2024) 20.71 90.08 0.7885 19.71 0.3002 - -
SDv1.5 ControlNet + CTRL-Adapter (Ours) 19.26 87.54 0.8534 21.04 0.5806 18.08 0.6454

PixArt-↵ backbone (DiT-Based)
PixArt-� ControlNet (Chen et al., 2024b) - - - - - 20.41 0.6938

SDv1.5 ControlNet + CTRL-Adapter (Ours) 22.54 84.78 0.8496 18.75 0.6359 17.52 0.6812

2.3 MULTI-CONDITION GENERATION VIA CTRL-ADAPTER COMPOSITION

Multi-ControlNet (Zhang et al., 2023c) is proposed for spatial control beyond a single condition.
However, this method naively combines different conditions with equal weights during inference time
without training. For more effective control composition, we experiment with the following. For each
variant, we randomly select K 2 {1, 2, 3, 4} control conditions to train CTRL-Adapter and the router
in each training step. Comparisons of different variants are discussed in Sec. 4.3 and Appendix E.4.

• (a) Unconditional Global Weights: This variant replaces these fixed weights with unconditional
global learnable weights via a lightweight MoE (Shazeer et al., 2017) router. Specifically, this
router is a simple linear layer with an input dimension of 1 and an output dimension equal to the
number of conditions. Each output dimension represents the weight allocated to a certain condition,
with the constraint that the sum of all weights equals 1.

• (b) Patch-Level MLP Weights: This variant processes the patch-level features of each ControlNet
into a scalar value independently, then uses softmax to assign ControlNet weights for each patch.
Specifically, the router computes the weighted average of the feature maps from different control
conditions associated with the same patch, with the weights learned by a 3-layer MLP. The input
dimension is equal to the feature map embedding dimension, and the output dimension is equal to
1, producing a scalar value that represents the weight of each patch’s feature map.

• (c) Patch-Level Q-Former Weights: This variant takes in all N ControlNet features associated
with a patch, using an architecture design inspired by Q-Former (Li et al., 2023b) to output expert
weights. Compared with variant (b), where the weights allocated to each patch are independent,
variant (c) operates in a more holistic way that allows the router to see all patches of a feature map
and then determine the weights allocated to each patch.
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3 EXPERIMENTAL SETUP

ControlNets and Target Diffusion Models. We use ControlNets trained with SD v1.5. For target
diffusion models, we experiment with two I2V models – I2VGen-XL (Zhang et al., 2023d) and
SVD (Blattmann et al., 2023), two T2V models – Latte (Ma et al., 2024b) and Hotshot-XL (Mullan
et al., 2023), and two T2I models – SDXL (Podell et al., 2024) and PixArt-↵ (Chen et al., 2024c).

Training and Evaluation Datasets. We use 200K videos sampled from Panda-70M training set (Chen
et al., 2024d) and 300K images from the LAION POP (Schuhmann & Bevan, 2023) dataset for
video and image CTRL-Adapters training respectively. During training, we extract various control
conditions (e.g., depth map) on-the-fly to simplify the data-preparation process. Following previous
works (Hu & Xu, 2023; Zhang et al., 2024), we evaluate video CTRL-Adapters on DAVIS 2017 (Pont-
Tuset et al., 2017), and image CTRL-Adapters on COCO val2017 split (Lin et al., 2014). Detailed
training and inference setups for the experiments are provided in Appendix C and Appendix D.

Evaluation Metrics. We perform evaluation on two folds: visual quality and spatial control. Fol-
lowing previous works (Qin et al., 2023; Hu & Xu, 2023), we use FID (Heusel et al., 2017) to measure
the visual quality of generated images/videos. For video datasets, following previous works (Hu
& Xu, 2023; Li et al., 2024), we report the L2 distance between the optical flow error (Ranjan &
Black, 2017) between the conditions extracted from input and generated videos. For image datasets,
following Uni-ControlNet (Zhao et al., 2024), we report the Structural Similarity (SSIM) (Wang
et al., 2004) and mean squared error (MSE) between generated images and ground truth images.

4 RESULTS AND ANALYSIS

4.1 VIDEO GENERATION WITH SINGLE CONDITION

We compare SDv1.5 ControlNet + CTRL-Adapter built on Hotshot-XL, I2VGen-XL, SVD, and
Latte with video control methods including Text2Video-Zero (Khachatryan et al., 2023), Control-
A-Video (Chen et al., 2023), ControlVideo (Zhang et al., 2024), and VideoComposer (Wang et al.,
2024). As the spatial layers of Hotshot-XL are initialized with SDXL and remain frozen, the SDXL
ControlNets are directly compatible with Hotshot-XL, so we include Hotshot-XL + SDXL ControlNet
as a baseline. We also experiment with a temporal ControlNet (Rowles, 2023) trained with SVD.

Table 1 shows that in both depth map and canny edge input conditions, CTRL-Adapters on I2VGen-
XL and SVD outperforms all previous strong video control methods in visual quality (FID) and
spatial control (optical flow error) metrics. Note that it takes < 10 GPU hours for CTRL-Adapter
to outperform the baselines (see Fig. 2). In Appendix H.1, we visualize the comparison between
CTRL-Adapter and other baselines. We study visual quality-spatial control trade-off in Appendix F.1.

4.2 IMAGE GENERATION WITH SINGLE CONDITION
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Figure 5: Images generated with single condition.

We compare SDv1.5 ControlNet + CTRL-
Adapter with controllable image generation
methods that use SDv1.4, SDv1.5, SDXL,
and PixArt-↵ as backbones, including pre-
trained SDv1.5/SDXL ControlNets (Zhang
et al., 2023c; von Platen et al., 2022), T2I-
Adapter (Mou et al., 2023), GLIGEN (Li
et al., 2023c), Uni-ControlNet (Zhao et al.,
2024), X-Adapter (Ran et al., 2024), and
PixArt-� ControlNet (Chen et al., 2024b).

As shown in Table 2, CTRL-Adapter outperforms baselines with SDv1.4/v1.5 backbones in almost
all metrics. When compared to the baselines with SDXL backbones, CTRL-Adapter outperforms
X-Adapter in most metrics, and matches (in FID/MSE with depth map inputs) or outperforms SDXL
ControlNet (in SSIM with depth map and canny edge inputs). Note that SDXL ControlNet was trained
for much longer than CTRL-Adapter (700 vs. 44 A100 GPU hours) and it takes less than 10 GPU
hours for CTRL-Adapter to outperform the SDXL depth ControlNet in SSIM (see Fig. 2). In addition,
when applied to DiT-based backbone (i.e., PixArt-↵), CTRL-Adapter achieves good improvement
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Table 3: Comparison of different weighting methods (see Fig. 4 right part for details) for multi-
condition video generation. The control sources are abbreviated as D (depth map), C (canny edge), N
(surface normal), S (softedge), Seg (semantic segmentation map), L (line art), and P (human pose).

D+C D+P D+C+N+S D+C+N+S+Seg+L+P

FID (#) Flow Error (#) FID (#) Flow Error (#) FID (#) Flow Error (#) FID (#) Flow Error (#)

Baseline: Equal Weights 8.50 2.84 11.32 3.48 8.75 2.40 9.48 2.93

(a) Unconditional Global Weights 9.14 2.89 10.98 3.32 8.39 2.36 8.18 2.48
(b) Patch-Level MLP Weights 8.40 2.34 9.37 3.17 7.87 2.11 8.26 2.00

(c) Patch-Level Q-Former Weights 7.54 2.39 9.22 3.22 7.72 2.31 8.00 2.08

in FID (17.52 ours vs. 20.41 PixArt-� ControlNet on soft edge) and competitive SSIM score. In
Fig. 5, we visualize the comparison between CTRL-Adapter and other image control baselines. See
Appendix H.2 for more visualizations.

4.3 VIDEO GENERATION WITH MULTIPLE CONTROL CONDITIONS

As described in Sec. 2.3, users can achieve multi-source control by simply combining the control
features of multiple ControlNets via our CTRL-Adapter. Table 3 shows the result in two folds:
firstly, patch-level MoE routers (i.e., variants b and c in Fig. 4) consistently outperforms the equal
weights baseline as well as the unconditional global weights (i.e., variant a in Fig. 4), which proves
the effectiveness of patch-level fine-grained control composition. Secondly, as shown in (b) and
(c), control with more conditions almost always yields better spatial control and visual quality than
control with a single condition. Fig. 28 and Fig. 29 show that multi-condition composition provides
more accurate control compared to a single condition. Table 9 extends (a) by conditioning on
image/text/timestep embeddings.

Fly through tour of a 
museum with many 

paintings and 
sculptures and 

beautiful works of art 
in all styles

Reflections in the 
window of a train 

traveling through the 
Tokyo suburbs

Input Image/Prompt

No
Condition

No
Condition

No
Condition

No
Condition

Input Sparse Conditions (User Scribble, Depth Map) I2VGen-XL + CTRL-Adapter

Figure 6: Video generation from sparse frame conditions with CTRL-Adapter on I2VGen-XL (which
generates 16 frames in total). We only provide controls for the 1st, 6th, 11th, and 16th frames.

4.4 VIDEO GENERATION WITH SPARSE FRAMES AS CONTROL CONDITION

We experiment CTRL-Adapter with providing sparse frame conditions using I2VGen-XL as backbone.
During each training step, we first randomly select an integer k 2 {1, ..., N}, where N is equal to
the total number of output frames (e.g., N = 16 for I2VGen-XL). Next, we randomly select k key
frames from N total frames. We then extract these key frames’ depth maps and user scribbles as
control conditions. we do not give the latents z and only give the k frames to ControlNet. In Fig. 6,
we can see that I2VGen-XL with our CTRL-Adapter can correctly generate videos that follow the
control conditions for the given 4 sparse key frames and make reasonable interpolations on the frames
without conditions. In Appendix E.3, we show that skipping the latent from ControlNet inputs is
important in improving the sparse control capability.

4.5 ZERO-SHOT GENERALIZATION ON UNSEEN CONDITIONS

ControlNet can be understood as an image feature extractor that maps different types of controls
to the unified representation space of backbone generation models. This begs an interesting ques-
tion: “Does CTRL-Adapter learn general feature mapping from one (smaller) backbone to another
(larger) backbone?”. To answer this question, we experiment by directly plugging CTRL-Adapter to
ControlNets that are not seen during training. In Fig. 7, we observe the CTRL-Adapter trained on
depth maps can adapt to normal map and soft edge ControlNets in a zero-shot manner. Quantitative
analysis of different training strategies based on such observation is illustrated in Sec. 4.7.
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Input Image Depth Map ➡ Video Normal Map ➡ Video Soft Edge ➡ Video

Training condition Zero-shot inference with other conditions

Figure 7: Zero-shot transfer of CTRL-Adapter trained only on depth maps to unseen conditions.

Figure 9: CTRL-Adapters are trained much faster than training ControlNets from scratch.

4.6 TRAINING EFFICIENCY
100 steps 
(~1 min)

300 steps
(~3 mins)

100 steps 
(~1 min)

300 steps
(~3 mins)

PixArt ControlNet
2000 steps
(~20 mins)

PixArt + Ctrl-Adapter (Ours)

Figure 8: CTRL-Adapter achieves faster con-
vergence than training ControlNet from scratch

As a complement to Fig. 2, we present training
efficiency comparison of our CTRL-Adapter and
ControlNet trained from scratch under different con-
trol conditions, using the same hyperparameter set-
tings for a fair comparison. Fig. 9 shows that our
CTRL-Adapter achieves significantly faster training
and higher final performance in different backbones
and tasks. Additionally, the clock time per train-
ing step for our method is faster than that of Con-
trolNet (CTRL-Adapter: 0.48s/step v.s. Control-
Net: 0.60s/step for depth; CTRL-Adapter: 0.57s/step
v.s. ControlNet: 0.68s/step for segmentation; CTRL-
Adapter: 0.82s/step v.s. ControlNet: 0.95s/step for openpose). Lastly, Fig. 8 shows that it takes only
3 mins for CTRL-Adapter to provide a model that accurately follows the edge condition, while it
takes 20 mins for ControlNet.

4.7 A UNIFIED MULTI-TASK ADAPTER V.S. INDIVIDUAL TASK-SPECIFIC ADAPTERS

In our main results from the above sections, we train CTRL-Adapter for each control conditions. An
interesting question to ask is: can we have a single unified CTRL-Adapter that works for all control
conditions? We conduct an experiment comparing (1) training a single unified CTRL-Adapter (single
adapter for all control conditions) v.s. (2) training an individual adapter for each control condition.
Specifically, we use the same training settings with the only difference being that for individual
CTRL-Adapter, we only extract one control condition (e.g. depth) from the input images, while for
each training step of unified CTRL-Adapter, we randomly select one control condition from depth,
canny, softedge, normal, openpose, lineart, segmentation with equal probability. For evaluation, we
compare the generated image quality and control quality on 1000 randomly selected images from
the COCO val2017 dataset. As shown in Table 4, unified CTRL-Adapter achieves comparable FID
and SSIM scores. Such a result is consistent with the strong zero-shot transferability as observed
in Sec. 4.5. Therefore, when a user has limited computational resource but still needs to work on
multiple control conditions, we suggest training a unified CTRL-Adapter. Extended version of Table 4
is shown in Appendix F.4.
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Table 4: Training a unified CTRL-Adapter with SDXL backbone achieves comparable FID/SSIM to
training individual CTRL-Adapters; evaluated on 1K samples from COCO val2017.

Method Depth Canny Softedge Lineart Segmentation Normal

FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (")

Individual CTRL-Adapters 14.87 0.8398 14.00 0.5600 14.13 0.5123 11.26 0.5216 16.03 0.6732 14.94 0.8182
Unified CTRL-Adapter 15.13 0.8358 13.97 0.5454 14.25 0.4934 12.99 0.5117 15.68 0.6682 14.94 0.8143

5 RELATED WORKS: ADDING CONTROL TO DIFFUSION MODELS

There have been many works using different types of additional inputs to control the image/video
diffusion models, such as bounding boxes (Li et al., 2023c; Yang et al., 2023), reference object
image (Ruiz et al., 2023; Gal et al., 2023; Li et al., 2023a), segmentation map (Gafni et al., 2022;
Avrahami et al., 2023; Zhang et al., 2023c), sketch (Zhang et al., 2023c), etc., and combinations of
multiple conditions (Kim et al., 2023; Qin et al., 2023; Zhao et al., 2024; Wang et al., 2024). As
finetuning all the parameters of such image/video diffusion models is computationally expensive,
several methods, such as ControlNet (Zhang et al., 2023c), have been proposed to add conditional
control capability via parameter-efficient training (Zhang et al., 2023c; Ryu, 2022; Mou et al., 2023).

Image
ControlNets

Image/Video 
UNet

CTRL-Adapter

(a) CTRL-Adapter (Ours)

SDv1.5 UNetSDXL UNet

X-Adapter

(b) X-Adapter

SDv1.5 
ControlNet

Figure 10: Comparison of giving differ-
ent inputs to ControlNet, where zt, cf, and
t represent latents, input control features,
and timesteps respectively. (a): Default
CTRL-Adapter design. (b): X-Adapter (Ran
et al., 2024) needs SDv1.5 U-Net as well as
SDv1.5 ControlNet during training and infer-
ence, whereas CTRL-Adapter doesn’t need
SDv1.5 U-Net at all.

X-Adapter (Ran et al., 2024) learns an adapter mod-
ule to reuse ControlNets pretrained with a smaller
image diffusion model (e.g., SDv1.5) for a bigger
image diffusion model (e.g., SDXL). While they fo-
cus solely on learning an adapter for image control,
CTRL-Adapter features architectural designs (e.g.,
temporal convolution/attention layers) for video gen-
eration as well. In addition, as shown in Fig. 10 (b),
X-Adapter needs to be used with the source image
diffusion model (SDv1.5) during both training and
inference, whereas CTRL-Adapter does not require
the smaller diffusion model for image or video gen-
eration, making it more memory and computation-
ally efficient. SparseCtrl (Guo et al., 2023) guides
a video diffusion model with conditional inputs of
few frames (instead of full frames), to alleviate the
cost of collecting video conditions. Since SparseCtrl
involves augmenting ControlNet with an additional
channel for frame masks, it requires training a new
variant of ControlNet from scratch. In contrast, we
leverage existing image ControlNets more efficiently by propagating information through temporal
layers in adapters and enabling sparse frame control via skipping the latents from ControlNet inputs.

Furthermore, compared with previous works that are specially designed for specific condition controls
on a single modality (image (Zhang et al., 2023c; Qin et al., 2023) or video (Hu & Xu, 2023; Zhang
et al., 2024)), our work presents a unified and versatile framework that supports diverse controls,
including image control, video control, sparse frame control, with significantly lower computational
costs by reusing pretrained ControlNets (outperforms strong baselines in less than 10 GPU hours,
see Fig. 2). To the best of our knowledge, we are also the first work that extends multi-condition
video control into fine-grained patch-level composition. Table 5 compares CTRL-Adapter with other
relevant methods. See Appendix A.1 for extended related works.

6 CONCLUSION

We propose CTRL-Adapter, an efficient, powerful, and versatile framework that adds diverse controls
to any image/video diffusion model. Training an CTRL-Adapter is significantly more efficient than
training a ControlNet for a new backbone, and it can outperform or match strong baselines in visual
quality and spatial control. CTRL-Adapter not only provides many useful capabilities including
image/video control, sparse frame control, multi-condition control, and zero-shot adaption to unseen
conditions, but also can be easily and flexibly integrated into a variety of downstream tasks.
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A BACKGROUND

A.1 EXTENDED RELATED WORKS

Text-to-video and image-to-video generation models. Generating videos from text descriptions
or images (e.g., initial video frames) based on deep learning and has increasingly gained much
attention. Early works for this task (Li et al., 2017; 2019; Zhao et al., 2018; Skorokhodov et al., 2022)
have commonly used variational autoencoders (VAEs) (Kingma & Welling, 2014) and generative
adversarial networks (GANs) (Goodfellow et al., 2020), while most of recent video generation works
are based on denoising diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015). Powered by
large-scale training, recent video diffusion models demonstrate impressive performance in generating
highly realistic videos from text descriptions (He et al., 2022; Ho et al., 2022; Singer et al., 2023;
Zhou et al., 2022; Khachatryan et al., 2023; Wang et al., 2023a; Yin et al., 2023; Wang et al., 2023b;
Mullan et al., 2023; OpenAI, 2024; Gupta et al., 2023; Menapace et al., 2024) or initial video frames
(i.e., images) (Blattmann et al., 2023; Zhang et al., 2023d; Guo et al., 2024; Xing et al., 2023).

Adding control to image/video diffusion models. While recent image/video diffusion models
demonstrate impressive performance in generating highly realistic images/videos from text descrip-
tions, it is hard to describe every detail of images/videos only with text or first frame image. Instead,
there have been many works using different types of additional inputs to control the image/video
diffusion models, such as bounding boxes (Li et al., 2023c; Yang et al., 2023), reference object
image (Ruiz et al., 2023; Gal et al., 2023; Li et al., 2023a), segmentation map (Gafni et al., 2022;
Avrahami et al., 2023; Zhang et al., 2023c), sketch (Zhang et al., 2023c), etc., and combinations of
multiple conditions (Kim et al., 2023; Qin et al., 2023; Zhao et al., 2024; Wang et al., 2024). As
finetuning all the parameters of such image/video diffusion models is computationally expensive,
several methods, such as ControlNet (Zhang et al., 2023c), have been proposed to add conditional
control capability via parameter-efficient training (Zhang et al., 2023c; Ryu, 2022; Mou et al., 2023).
X-Adapter (Ran et al., 2024) learns an adapter module to reuse ControlNets pretrained with a smaller
image diffusion model (e.g., SDv1.5) for a bigger image diffusion model (e.g., SDXL). While they fo-
cus solely on learning an adapter for image control, CTRL-Adapter features architectural designs (e.g.,
temporal convolution/attention layers) for video generation as well. In addition, X-Adapter needs
the smaller image diffusion model (SDv1.5) during training and inference, whereas CTRL-Adapter
doesn’t need the smaller diffusion model at all (for image/video generation), hence being more
memory and computationally efficient (see Fig. 10 for details). SparseCtrl (Guo et al., 2023) guides
a video diffusion model with conditional inputs of few frames (instead of full frames), to alleviate
the cost of collecting video conditions. Since SparseCtrl involves augmenting ControlNet with an
additional channel for frame masks, it requires training a new variant of ControlNet from scratch.
In contrast, we leverage existing image ControlNets more efficiently by propagating information
through temporal layers in adapters and enabling sparse frame control via skipping the latents from
ControlNet inputs (see Sec. 2.2 for details). Furthermore, compared with previous works that are
specially designed for specific condition controls on a single modality (image (Zhang et al., 2023c;
Qin et al., 2023) or video (Hu & Xu, 2023; Zhang et al., 2024)), our work presents a unified and
versatile framework that supports diverse controls, including image control, video control, sparse
frame control, and multi-source control, with significantly lower computational costs by reusing
pretrained ControlNets (e.g., CTRL-Adapter outperforms baselines in less than 10 GPU hours).
Table 5 summarizes the comparison of CTRL-Adapter with related works.
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Table 5: Overview of the capabilities supported by controllable image/video generation methods.
Method Image Video Video Control Multi-Condition Compatible w/

Control Control w/ Sparse Frames Control Different Backbones

Image Control Methods
ControlNet (Zhang et al., 2023c) 4 8 8 8 8
Multi-ControlNet (Zhang et al., 2023c) 4 8 8 4 8
T2I-Adapter (Mou et al., 2023) 4 8 8 4 8
Uni-ControlNet (Zhao et al., 2024) 4 8 8 4 8
X-Adapter (Ran et al., 2024) 4 8 8 8 4

Video Control Methods
ControlVideo (Zhang et al., 2024) 8 4 8 8 8
VideoComposer (Wang et al., 2024) 8 4 8 4 8
SparseCtrl (Guo et al., 2023) 8 4 4 8 8

CTRL-Adapter (Ours) 4 4 4 4 4
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Figure 11: Detailed architecture of CTRL-Adapter blocks.

A.2 EXTENDED PRELIMINARIES: LDM AND CONTROLNET

Latent Diffusion Models. Many recent video generation works are based on latent diffusion
models (LDMs) (Rombach et al., 2022), where a diffusion model learns the temporal dynamics
of compact latent representations of videos. First, given a F -frame RGB video x 2 RF⇥3⇥H⇥W ,
a video encoder (of a pretrained autoencoder) provides C-dimensional latent representation (i.e.,
latents): z = E(x) 2 RF⇥C⇥H

0⇥W
0
, where height and width are spatially downsampled (H 0

< H

and W
0
< W ). Next, in the forward process, a noise scheduler such as DDPM (Ho et al., 2020)

gradually adds noise to the latents z: q(zt|zt�1) = N(zt;
p
1� �tzt�1,�tI), where �t 2 (0, 1) is

the variance schedule with t 2 {1, ..., T}. Then, in the backward pass, a diffusion model (usually
a U-Net architecture) F✓(zt, t, ctext/img) learns to gradually denoise the latents, given a diffusion
timestep t, and a text prompt ctext (i.e., T2V) or an initial frame cimg (i.e., I2V) if provided. The
diffusion model is trained with following objective: LLDM = Ez,✏⇠N(0,I),tk✏� ✏✓(zt, t, ctext/img)k22,
where ✏ and ✏✓ represent the added noise to latents and the predicted noise by F✓ respectively. We
apply the same objective for CTRL-Adapter training.

ControlNets. ControlNet (Zhang et al., 2023c) is designed to add spatial controls to image diffusion
models in the form of different guidance images (e.g., depth, sketch, segmentation maps, etc.). Specif-
ically, given a pretrained backbone image diffusion model F✓ that consists of input/middle/output
blocks, ControlNet has a similar architecture F✓0 , where the input/middle blocks parameters of ✓0

are initialized from ✓, and the output blocks consist of 1x1 convolution layers initialized with zeros.
ControlNet takes the diffusion timestep t, text prompt ctext, control image cf (e.g., depth image), and
the noisy latents zt as inputs, and provides the features that are merged into middle/output blocks of
backbone image model F✓ to generate the final image. The authors of ControlNet have released a
variety of ControlNet checkpoints based on Stable Diffusion (Rombach et al., 2022) v1.5 (SDv1.5)
and the user community have also shared many ControlNets trained with different input conditions
based on SDv1.5. However, these ControlNets cannot be used with more recently released bigger and
stronger image/video diffusion models, such as SDXL (Podell et al., 2024) and I2VGen-XL (Zhang
et al., 2023d). Moreover, the input/middle blocks of the ControlNet are in the same size with those of
the diffusion backbones (i.e., if the backbone model gets bigger, ControlNet also gets bigger). Due to
this, it becomes increasingly difficult to train new ControlNets for each bigger and newer model that
is released over time. To address this, we introduce CTRL-Adapter for efficient adaption of existing
ControlNets for new diffusion models.
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ControlNetsVideo UNet

CTRL-Adapter

ControlNetsVideo UNet

CTRL-Adapter

Latents      given to ControlNet Latents      not given to ControlNet

Figure 12: Left (default): latent zt is given to ControlNet. Right: latent zt not given to ControlNet.

B CTRL-ADAPTER METHOD AND ARCHITECTURE DETAILS

B.1 CTRL-ADAPTER ARCHITECTURE DETAILS

In Fig. 11, we illustrate the detailed architecture of CTRL-Adapter blocks. See Fig. 3 for how the
CTRL-Adapter blocks are used to adapt ControlNets to image/video diffusion models. Fig. 11 is an
extended version of Fig. 3 (right) with more detailed visualizations, including skip connections, nor-
malization layers in each module, and the linear projection layers (i.e., FFN) in each spatial/temporal
attention modules.

B.2 INVERSE TIMESTEP SAMPLING: ROBUST ADAPTATION TO CONTINUOUS DIFFUSION
TIMESTEP SAMPLERS

While SDv1.5 samples discrete timesteps t uniformly from {0, 1, ...1000}, some recent diffusion
models (Esser et al., 2024; Ma et al., 2024a; Rombach et al., 2021) sample timesteps from continuous
distributions, e.g., SVD (Blattmann et al., 2023) samples timesteps from a LogNormal distribution.
This gap between discrete and continuous distributions means that we cannot assign the same timestep
t to both the video diffusion model and the ControlNet. Therefore, we propose inverse timestep
sampling, an algorithm that creates a timestep mapping between the continuous and discrete time dis-
tributions The high-level idea of this algorithm is inspired by inverse transform sampling (Estimation
lemma, 2010). Given the cumulative distribution functions (CDFs) of the continuous timestep distribu-
tion Fcont. and the ControlNet timestep distribution FCNet, we first uniformly sample a value u between
[0, 1], and then returns the smallest timesteps tcont. 2 [0,1] ✓ R, tCNet 2 {0, 1, ..., 1000} ✓ N, such
that Fcont.(tcont.) � u, FCNet(tCNet) � u. This procedure naturally creates a mapping between two
distributions. In Algorithm 1, we provide the PyTorch (Ansel et al., 2024) implementation of in-
verse timestep sampling, described in Sec. 2.2. In the example, inverse time stamping adapts to the
SVD (Blattmann et al., 2023) backbone.

During each training step, the procedure for this algorithm can be summarized as follows:

• Sample a variable u from Uniform[0, 1]. See line 19 in function
inverse_timestamp_sample.

• Sample noise scale �cont. via inverse transform sampling (Estimation lemma, 2010); i.e., we derive
the inverse cumulative density function of �cont. and sample �cont. by sampling u: �cont. = F

�1
cont.(u).

See function sample_sigma and line 21 in function inverse_timestamp_sample.
• Given a preconditioning function gcont. that maps noise scale to timestep (typically associated

with the continuous-time noise sampler), we can compute tcont. = gcont.(�cont.). See function
sigma_to_timestep and line 23 in inverse_timestamp_sample.

• Set the timesteps and noise scales for both ControlNet and our CTRL-Adapter as tCNet =
round(1000u) and �CNet = u respectively, where 1000 represents the denoising timestep range
over which the ControlNet is trained. See line 25 in inverse_timestamp_sample.

During inference, we follow the similar sampling strategy, with the only change in the first step.
Instead of uniformly sample a single value for u, we uniformly sample k equidistant values for u
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within [0, 1] and derive corresponding tcont./CNet and �cont./CNet as inputs for denoising steps, where k

here is the number of denoising steps during inference.

Algorithm 1 PyTorch Implementation for Inverse Timestep Sampling
1 import torch
2
3 def sample_sigma(u, loc=0., scale=1.):
4 """Draw a noise scale (sigma) following Karras et al. (2022)"""

5 sigma_min, sigma_max, rho = 0.002, 700, 7 # values used in the paper

6 min_inv_rho, max_inv_rho = sigma_min ** (1 / rho), sigma_max ** (1 / rho)
7 sigma = (max_inv_rho + (1-u) * (min_inv_rho - max_inv_rho)) ** rho
8 return sigma
9

10 def sigma_to_timestep(sigma):
11 """Map noise scale to timestep. Here we use the function used in SVD."""

12 timestep = 0.25 * sigma.log()
13 return timestep
14
15 def inverse_timestamp_sample():
16 """Sample noise scales and timesteps for ControlNet and diffusion models

17 trained with continuous noise sampler. Here we use the setting used for SVD."""

18 # 1) sample u from Uniform[0,1]

19 u = torch.rand(1)
20 # 2) calculate sigma_svd from pre-defined log-normal distribution

21 sigma_svd = sample_sigma(u, loc=0.7, scale=1.6)
22 # 3) calculate timestep_svd from sigma_svd via pre-defined mapping function

23 timestep_svd = sigma_to_timestep(sigma_svd)
24 # 4) calculate timestep and sigma for controlnet

25 sigma_cnet, timestep_cnet = u, round(1000 * u)
26 return sigma_svd, timestep_svd, sigma_cnet, timestep_cnet

C TRAINING AND INFERENCE DETAILS

Model architectures. Detailed illustration of our CTRL-Adapter architecture has been provided
across several parts of our paper, including Sec. 2, Appendix B.1, Appendix E, and Appendix F. In
addition, for all the backbone models used in this paper, we kept all their parameters frozen and made
no modifications.

Training details. We use a learning rate of 5⇥e
�5; AdamW (Loshchilov & Hutter, 2018) optimizer

with values for �1, �2, ✏, and weight decay as 0.9, 0.999, 1⇥ e
�8, and 1⇥ e

�2 respectively. We set
the max gradient norm as 1. All our experiments are trained on 4 A100 80GB GPUs with batch size
of 1. Please note that other than mixed-precision training with data type bfloat16, we didn’t use
any additional methods to speed up the training/inference clock time, or to save GPU memory. To be
more specific, we didn’t use any of the following methods: xformers (Lefaudeux et al., 2022),
gradient checkpointing, 8bit Adam optimizer, and DeepSpeed (Rasley et al., 2020). In addition,
to make our framework easy to use directly from raw input images/videos, we extract all control
condition images/frames on-the-fly during training. We train the image and video CTRL-Adapters
for 80k and 40k steps respectively, which can be finished in 24 hours measured by training clock
time. The fast convergence of our method is shown in Fig. 2.

Inference details. All inference can be done on a single A6000 GPU with 48GB memory. During
inference, we use the default hyper-parameters for each backbone model, including the number of
frames to generate, the number of denoising steps, and classifier-free guidance scale, etc..

Safeguards. When we generate images during inference, we also activate the NSFW filter of the
backbone models. This ensures that users are protected from unnecessary exposure to explicit or
objectionable materials. For training, the datasets we used (Chen et al., 2024d; Schuhmann & Bevan,
2023) both filter out the image/video samples with harmful contents. For example, as stated in the
“Risk mitigation” section of Panda70M paper, they used the internal automatic pipeline to filter out
the video samples with harmful or violent language and texts that include drugs or hateful speech.
They also use the NLTK framework to replace all people’s names with "person". LAION-POP dataset
is also created by filtering out samples based on the safety tags (using a customized trained NSFW
classifier that they built).
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D EXPERIMENTAL SETUP

D.1 CONTROLNETS AND TARGET DIFFUSION MODELS

ControlNets. We use ControlNets trained with SDv1.5.1 SDv1.5 has the most number of publicly
released ControlNets and has a much smaller training cost compared to recent image/video diffusion
models. Note that unlike X-Adapter (Ran et al., 2024), CTRL-Adapter does not need to load the
source diffusion model (SDv1.5) during training or inference (see (a) and (b) in Fig. 10 for model
architecture comparison).

Target diffusion models (where ControlNets are to be adapted). For video generation models,
we experiment with two text-to-video generation models – Latte (Ma et al., 2024b) and Hotshot-
XL (Mullan et al., 2023), and two image-to-video generation models – I2VGen-XL (Zhang et al.,
2023d) and Stable Video Diffusion (SVD) (Blattmann et al., 2023). For image generation model, we
experiment with PixArt-↵ (Chen et al., 2024c) and the base model in SDXL (Podell et al., 2024). For
all models, we use their default settings during training and inference (e.g., number of output frames,
resolution, number of denoising steps, classifier-free guidance scale, etc.).

D.2 TRAINING DATASETS FOR CTRL-ADAPTER

Video datasets. For training CTRL-Adapter for video diffusion models, we download around 1.5M
videos randomly sampled from the Panda-70M training set (Chen et al., 2024d). Following recent
works (Blattmann et al., 2023; Dai et al., 2023), we filter out videos of static scenes by removing
videos whose average optical flow (Farnebäck, 2003b; Bradski, 2000) magnitude is below a certain
threshold. Concretely, we use the Gunnar Farneback’s algorithm2 (Farnebäck, 2003a) at 2FPS,
calculate the averaged the optical flow for each video and re-scale it between 0 and 1, and filter out
videos whose average optical flow error is below a threshold of 0.25. This process gives us a total of
200K remaining videos.

Image datasets. For training CTRL-Adapter for image diffusion models, we use 300K images
randomly sampled from LAION POP,3 which is a subset of LAION 5B (Schuhmann et al., 2022)
dataset and contains 600K images in total with aesthetic values of at least 0.5 and a minimum
resolution of 768 pixels on the shortest side. As suggested by the authors, we use the image captions
generated with CogVLM (Wang et al., 2023c).

D.3 INPUT CONDITIONS

We extract various input conditions from the video and image datasets described above.

• Depth map: As recommended in Midas4 (Ranftl et al., 2020), we employ
dpt_swin2_large_384 for the best speed-performance trade-off.

• Canny edge, surface normal, line art, softedge, and user sketching/scribbles: Follow-
ing ControlNet (Zhang et al., 2023c), we utilize the same annotator implemented in the
controlnet_aux5 library.

• Semantic segmentation map: To obtain higher-quality segmentation maps than UPer-
Net (Xiao et al., 2018) used in ControlNet, we employ SegFormer (Xie et al., 2021)
segformer-b5-finetuned-ade-640-640 finetuned on ADE20k dataset at 640⇥640
resolution.

• Human pose: We employ ViTPose (Xie et al., 2021) ViTPose_huge_simple_coco to
improve both processing speed and estimation quality, compared to OpenPose (Cao et al., 2017)
used in ControlNet.

1https://huggingface.co/lllyasviel/ControlNet
2https://docs.opencv.org/4.x/d4/dee/tutorial_optical_flow.html
3https://laion.ai/blog/laion-pop/
4https://github.com/isl-org/MiDaS
5https://github.com/huggingface/controlnet_aux
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Table 6: Comparison of different architecture of CTRL-Adapter for image and video control,
measured with visual quality (FID) and spatial control (MSE/optical flow error) metrics. The metrics
are calculated from 1000 randomly selected COCO val2017 images and 150 videos from DAVIS
2017 dataset respectively. Top: image control on SDXL backbone. Bottom: video control on
I2VGen-XL backbone. SC, TC, SA, and TA: Spatial Convolution, Temporal Convolution, Spatial
Attention, and Temporal Attention. ⇤

N : the number of blocks in CTRL-Adapter. We denote the
default configurations (SC+SA for image / SC+TC+SA+TA for video) with bold font.

SDXL SC SA SC+SA SC*2 SA*2 (SC+SA)*2 SC*3 SA*3 (SC+SA)*3

FID (#) 12.15 11.52 11.57 11.74 12.36 10.91 11.66 12.11 12.07
MSE (#) 88.37 89.60 87.97 88.59 88.14 89.62 88.22 88.39 90.26

I2VGen-XL SC+SA SA+TA SC+TA SC+TC TC+TA SA+TA*2 SC+TA*2 (TC+TA)*2 SC+TC+SA+TA

FID (#) 13.15 13.91 13.52 12.87 13.58 13.53 13.73 13.88 13.49
Optical Flow Err. (#) 3.27 3.33 3.30 3.29 3.26 3.37 3.25 3.23 3.22

D.4 EVALUATION DATASETS

Video datasets. Following previous works (Hu & Xu, 2023; Zhang et al., 2024), we evaluate our
video ControlNet adapters on DAVIS 2017 (Pont-Tuset et al., 2017), a public benchmark dataset
also used in other controllable video generation works (Hu & Xu, 2023). We first combine all video
sequences from TrainVal, Test-Dev 2017 and Test-Challenge 2017. Then, we chunk
each video into smaller clips, with the number of frames in each clip being the same as the default
number of frames generated by each video backbone (e.g., 8 frames for Hotshot-XL, 16 frames for
I2VGen-XL, and 14 frames for SVD). This process results in a total of 1281 video clips of 8 frames,
697 clips of 14 frames, and 608 video clips of 16 frames.

Image datasets. We evaluate our image ControlNet adapters on COCO val2017 split (Lin et al.,
2014), which contains 5k images that cover diverse range of daily objects. We resize and center crop
the images to 1024 by 1024 for SDXL evaluation.

D.5 EVALUATION METRICS

Visual quality. Following previous works (Qin et al., 2023; Hu & Xu, 2023), we use Frechet
Inception Distance (FID) (Heusel et al., 2017) to measure the distribution distance between our
generated images/videos and input images/videos.6

Spatial control. For video datasets, following VideoControlNet (Hu & Xu, 2023), we report the
L2 distance between the optical flow (Ranjan & Black, 2017) of the input video and the generated
video (Optical Flow Error). For image datasets, following Uni-ControlNet (Zhao et al., 2024), we
report the Structural Similarity (SSIM) (Wang et al., 2004)7 and mean squared error (MSE)8 between
generated images and ground truth images.

E VARIANTS OF CTRL-ADAPTER ARCHITECTURE DESIGN

E.1 CTRL-ADAPTER DESIGN ABLATIONS

E.1.1 DIFFERENT COMBINATIONS OF CTRL-ADAPTER COMPONENTS

As described in Sec. 2.2, each CTRL-Adapter module consists of four components: spatial convolution
(SC), temporal convolution (TC), spatial attention (SA), and temporal attention (TA). We experiment

6To be consistent with the numbers reported in Uni-ControlNet (Zhao et al., 2024), we use pytorch-fid
(https://github.com/mseitzer/pytorch-fid) in Table 2. For other results, we use clean-fid (Par-
mar et al., 2022) (https://github.com/GaParmar/clean-fid) which is more robust to aliasing
artifacts.

7https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.
html

8https://scikit-learn.org/stable/modules/classes.html#module-sklearn.
metrics
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Figure 13: Comparison of inserting CTRL-Adapter to different U-Net blocks. ‘Mid’ represents
the middle block, whereas ‘Out ABCD’ represents output blocks A, B, C, and D. The metrics are
calculated from 150 videos from DAVIS 2017 dataset.
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Figure 14: Comparison of inserting different numbers of CTRL-Adapters to the backbone diffusion
U-Net’s output blocks. We use output block D here for illustration. We insert three CTRL-Adapters
to the output blocks of the same feature map size by default.

with different architecture combinations of the adapter components for image and video control,
and show the results in Table 6. Compared to X-Adapter (Ran et al., 2024), which uses a stack of
three spatial convolution modules (i.e., ResNet (He et al., 2016) blocks) for adapters, and VideoCom-
poser (Wang et al., 2024), which employs spatial convolution + temporal attention for spatiotemporal
condition encoder, we explore a richer combination that enhances global understanding of spatial
information through spatial attention and improves temporal ability via a combination of temporal
convolution and temporal attention. For image control (Table 6 top), we find that the combining of
SC+SA is more effective than stacking SC or SA layers only. Stacking SC+SA twice further improves
the visual quality (FID) slightly but hurts the spatial control (MSE) as a tradeoff. Stacking SC+SA
three times hurts the performance due to insufficient training. We use the single SC+SA layer for
image CTRL-Adapter by default. For video control (Table 6 bottom), we find that SC+TC+SA+TA
shows the best balance of visual quality (FID) and spatial control (optical flow error). Notably, we
find that the combinations with both temporal layers, SC+TC+SA+TA and (TC+TA)*2, achieve the
lowest optical flow error. We use SC+TC+SA+TA for video CTRL-Adapter by default.

E.1.2 WHERE TO FUSE CTRL-ADAPTER OUTPUTS IN BACKBONE DIFFUSION

We compare the integration of CTRL-Adapter outputs at different positions of video diffusion
backbone model. As illustrated in Fig. 3, we experiment with integrating CTRL-Adapter outputs to
different positions of I2VGen-XL’s U-Net: middle block, output block A, output block B, output
block C, and output block D. Specifically, we compared our default design (Mid + Out ABCD) with
four other variants (Out ABCD, Out ABC, Out AB, and Out A) that gradually remove CTRL-Adapters
from the middle block and output blocks at positions from B to D. As shown in Fig. 13, removing the
CTRL-Adapters from the middle block and the output block D does not lead to a noticeable increase in
FID or optical flow error (i.e., the performances of ‘Mid+Out ABCD’, ‘Out ABCD’, and ‘Out ABC’
are similar in both left and right plots). However, Fig. 13 (right) shows that removing CTRL-Adapters
from block C causes a significant increase in optical flow error. Therefore, we recommend users
retain our CTRL-Adapters in the mid and output blocks A/B/C to ensure good performance.
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Figure 15: Comparison of inserting different numbers of CTRL-Adapters to each U-Net output block.
The metrics are calculated from 150 videos from DAVIS 2017 dataset. We insert 3 CTRL-Adapters to
each output block by default.

E.1.3 NUMBER OF CTRL-ADAPTERS IN EACH OUTPUT BLOCK POSITION

As illustrated in Fig. 3, there are three output blocks for each feature map dimension in the video
diffusion model (represented by ⇥3 in each output block). Here, we conduct an ablation study by
adding CTRL-Adapters to only one or two of the three output blocks of the same feature size. The
motivation is that using fewer CTRL-Adapters can almost linearly decrease the number of trainable
parameters, thereby reducing GPU memory usage during training. We visualize the architectural
changes with output block D as an example in Fig. 14. We insert CTRL-Adapters for three blocks as
our default setting. As observed in Fig. 15, reducing the number of CTRL-Adapters increases the
optical flow error. Therefore, we recommend adding CTRL-Adapters to each output block to maintain
optimal performance.

E.2 ADAPTATION TO DIT-BASED BACKBONES

As illustrated in Sec. 2, we have observed that the spatial features encoded in the U-Net of ControlNets
and the DiT blocks are structurally different (see Fig. 22 for visualization of such observation).
Therefore, mapping all middle/output blocks of ControlNet to DiT blocks might not be the optimal
solution. In Fig. 16, we implement three different strategies to insert CTRL-Adapters to the DiT
blocks. Specifically, variant (a) inserts CTRL-Adapters interleavingly into the DiT blocks, while
variant (b) and (c) insert CTRL-Adapters to the first 14 and the last 14 DiT blocks respectively. In
Table 7, we perform quantitative analysis of these three variants on the DiT-based video generation
model, Latte (Ma et al., 2024b), with soft edge as control condition. As we can see, inserting
CTRL-Adapters interleavingly into the DiT blocks gives the best performance. This is consistent with
our finding: since all DiT blocks encode global information of the generated objects, it is optimal to
treat these blocks equally, rather than inserting CTRL-Adapters only at the beginning or end. Between
locations A and B, we use location A as our default setting because its feature map size (64⇥ 64)
directly matches the features of the DiT blocks (also 64⇥ 64) without resizing.

After finalizing where to insert CTRL-Adapters, the next question is which block(s) of the ControlNet
we should create CTRL-Adapters to map from. In Table 8, we implement several variants on the DiT-
based image generation model, PixArt-↵ (Chen et al., 2024c), including mapping from the block(s) at
location A, location B, location C, and location D, respectively (see Fig. 3 for the definitions of these
locations). As we can see, mapping from location A or location B gives the best performance. Again,
this is consistent with our findings in Fig. 22, since feature maps at locations C and D are too coarse
to be informative. Moreover, we implemented two additional variants: (1) combining the ControlNet
features from locations A and B (i.e., Output Blocks A+B), and (2) mapping more blocks from the
same location (i.e., the second and third columns in Table 8). However, neither of these approaches
provides sufficient gain compared to mapping a single block from location A or B. Therefore, we use
mapping one block from location A as our default setting in our main paper.

[Han: add rebuttal table]
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Figure 16: Visualization of different routing methods for combining multiple ControlNet outputs. We
use (a) as our default setting, and show the settings (b) and (c) as ablations.

Table 7: Ablation of inserting CTRL-Adapters to different DiT blocks in Latte (Ma et al., 2024b).
Visualization of the three architecture variants (interleaved, first half, and second half) are shown in
Fig. 16. We use soft edge as control condition here for evaluation.

(a) Interleave (default) (b) First Half (c) Second Half

FID (#) Optical Flow Error (#) FID (#) Optical Flow Error (#) FID (#) Optical Flow Error (#)

18.32 2.98 19.66 3.09 23.18 3.31

E.3 SKIPPING LATENT FROM CONTROLNET INPUTS

We find skipping the latent z from ControlNet inputs can help CTRL-Adapter to more robustly handle
(1) adaption to the backbone with noise scales different from SDv1.5, such as SVD and (2) video
control with sparse frame conditions. For the first scenario, we can see from Table 10 that skipping
latents in SVD leads to better visual quality (lower FID), but slightly worse spatial control (higher
optical flow error). This is reasonable since skipping the noisy latents can avoid introducing large
noise into the ControlNet, but it also risks losing information encoded in the latents. For the second
scenario, skipping latents results in both better visual quality and better spatial control, as adding
dense noisy latents can make the sparse control conditions less informative.

E.4 DIFFERENT WEIGHING MODULES FOR MULTI-CONDITION GENERATION

For multi-condition generation described in Sec. 2.3, in addition to the simple unconditional global
weights, we also experimented with learning a router module that takes additional inputs such
as diffusion time steps and image/text embeddings and outputs weights for different ControlNets.
Specifically, we introduce three variants based on (a.1) unconditional global weights, which are (a.2)
MLP router - taking timestep as inputs; (a.3) MLP router - taking image/text embedding as inputs;
and (a.4) MLP router - taking timestep and image/text embedding as inputs. The MoE router in these
variants are constructed as a 3-layer MLP. We illustrate the five methods in Fig. 17.

Table 9 show that all four global weighting schemes for fusing different ControlNet outputs perform
effectively, and no specific method outperforms other methods with significant margins in all settings.
With no surprise, patch-level MoE router performs consistently better than global MoE router in
all control settings. Testing the effectiveness of incorporating text/image/timestep embeddings to
patch-level MoE routers are left for future work.
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Table 8: Ablation study of mapping ControlNet features from different locations, and mapping
different number of blocks from the same location to the DiT blocks. The best numbers in each row
are bolded, and the best numbers in each column are underscored.

Insert Locations 1 Block (default) 2 Blocks 3 Blocks

FID (#) SSIM (#) FID (#) SSIM (#) FID (#) SSIM (#)

Output Block A (default) 17.90 0.6802 19.08 0.6971 19.28 0.6855
Output Block B 18.23 0.6712 18.61 0.6720 21.47 0.6549

Output Blocks A+B 17.52 0.6812 - - - -
Output Block C 22.22 0.5273 - - - -
Output Block D 34.16 0.3506 - - - -

Table 9: Comparison of global weighting methods for multi-condition video generation (see Fig. 17
for visualization of the additional weighting methods (a.2, a.3, and a.4) developed based on (a.1)
unconditional global weights). The control sources are abbreviated as D (depth map), C (canny edge),
N (surface normal), S (softedge), Seg (semantic segmentation map), L (line art), and P (human pose).

D+C D+P D+C+N+S D+C+N+S+Seg+L+P

FID (#) Flow Error (#) FID (#) Flow Error (#) FID (#) Flow Error (#) FID (#) Flow Error (#)

Baseline
Equal Weights 8.50 2.84 11.32 3.48 8.75 2.40 9.48 2.93

Global MoE Router
(a.1) Unconditional Global Weights 9.14 2.89 10.98 3.32 8.39 2.36 8.18 2.48
(a.2) Timestep Emb. Weights 9.41 3.51 11.13 3.35 9.51 2.78 8.17 2.45
(a.3) Text/Image Emb. Weights 8.73 3.16 11.35 3.37 7.91 2.76 8.83 2.48
(a.4) Timestep + Text/Image Emb. Weights 8.64 3.31 10.69 3.43 8.09 2.69 8.51 2.43

Patch-Level MoE Router
(b) MLP Weights 8.40 2.34 9.37 3.17 7.87 2.11 8.26 2.00

(c) Q-Former Weights 7.54 2.39 9.22 3.22 7.72 2.31 8.00 2.08

Table 10: Skipping latent from ControlNet inputs helps CTRL-Adapter for (1) adaptation to backbone
models with different noise scales and (2) video control with sparse frame conditions. We evaluate
SVD and I2VGen-XL on depth maps and scribbles as control conditions respectively.

Method Latent z is given to ControlNet FID (#) Optical Flow Error (#)

Adaptation to different noise scales
SVD (Blattmann et al., 2023) + CTRL-Adapter 4 4.48 2.77
SVD (Blattmann et al., 2023) + CTRL-Adapter 8 3.82 2.96

Sparse frame conditions
I2VGen-XL (Zhang et al., 2023d) + CTRL-Adapter 4 7.20 5.13
I2VGen-XL (Zhang et al., 2023d) + CTRL-Adapter 8 5.98 4.88
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Figure 17: Visualization of different global MoE routing methods.
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F ADDITIONAL QUANTITATIVE ANALYSIS

F.1 TRADE-OFF BETWEEN VISUAL QUALITY AND SPATIAL CONTROL

In Fig. 18, Fig. 19, and Fig. 20, we show the visual quality (FID) and spatial control (SSIM/optical
flow error) metrics with different numbers of denoising steps with spatial control (with the fusion
of CTRL-Adapter outputs) on SDXL, SVD, and I2VGen-XL backbones respectively. Specifically,
suppose we use N denoising steps during inference, a control guidance level of x% means that we
fuse CTRL-Adapter features to the video diffusion U-Net during the first x%⇥N denoising steps,
followed by (100� x)%⇥N regular denoising steps. In all experiments, we find that increasing the
number of denoising steps with spatial control improves the spatial control accuracies (SSIM/optical
flow error) but hurts visual quality (FID).

Figure 18: Trade-off between generated visual quality (FID) and spatial control accuracy (SSIM) on
SDXL. Control guidance level of x represents that we apply CTRL-Adapter in the first x% of the
denoising steps during inference. A control guidance level between 30% and 60% usually achieves
the best balance between image quality and spatial control accuracy.

Figure 19: Trade-off between generated visual quality (FID) and spatial control accuracy (Optical
Flow Error) on SVD. Control guidance level of x represents that we apply CTRL-Adapter in the first
x% of the denoising steps during inference. A control guidance level between 40% and 60% usually
achieves the best balance between image quality and spatial control accuracy

Figure 20: Trade-off between generated visual quality (FID) and spatial control accuracy (Optical
Flow Error) on I2VGen-XL. Control guidance level of x represents that we apply CTRL-Adapter in
the first x% of the denoising steps during inference. A control guidance level between 40% and 60%
usually achieves the best balance between image quality and spatial control accuracy.
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F.2 CLIPSCORE AS AN EVALUATION METRIC

We also experiment with using CLIPScore on a total of 13 different image control training settings,
since it is a common metric for visual-text alignment. However Fig. 21 shows that CLIPScore
does not change much as the training proceeds, even though there are clear improvements in visual
quality and control accuracy. This indicates that CLIPScore is not a meaningful metric for measuring
accuracy of controlled image/video generation.

Figure 21: CLIPScore-based evaluation on 13 different image control training settings. CLIPScore
does not change much as the training proceeds, while there are clear improvements in visual quality
and control accuracy.

F.3 COMPARISON WITH CONTROL-LORA

We use the latest Control-LoRA9 (e.g., version 3), and evaluated all their available official checkpoints
for a total of 5 control conditions (canny for SDXL as well as depth, normal, segmentation, openpose
for SDv1.5). We follow the same evaluation setting by randomly sampling 1000 images from
COCO2017 val, and use FID for image quality metric and SSIM/mAP for control quality metrics.
As we can see from Table 11, CTRL-Adapter is strictly better than Control-LoRA on both generated
image quality and control quality. Therefore, compared with Control-LoRA which sacrifices image
quality and control quality for higher efficiency, our CTRL-Adapter achieves efficient training without
trade-off in performance. We would like to point out that the main contribution of our paper is
efficient training without trade-off in performance instead of only focusing on training/inference
efficiency. The lightweight design of Control-LoRA makes it achieves higher efficiency compared
with ControlNet, but suffers from large image quality and control quality drop.

Table 11: Comparison of CTRL-Adapter with Control-LoRA
Method Depth Canny Segmentation Normal Openpose

FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (")

Control-LoRA 21.71 0.747 16.02 0.451 19.95 0.595 24.29 0.775 31.07 0.312
CTRL-Adapter 15.12 0.839 13.97 0.560 15.67 0.673 14.94 0.818 18.74 0.521

9https://huggingface.co/stabilityai/control-lora/tree/main
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F.4 A UNIFIED MULTI-TASK ADAPTER V.S. INDIVIDUAL TASK-SPECIFIC ADAPTERS

In Table 12, we provide an extended version of the results as shown in Sec. 4.7. Specifically, we
added one row that trained solely on depth but applied to other conditions, and a row with plain
diffusion without ControlNet as a baseline for comparison. Following Table 12, we report FID and
SSIM as evaluation metrics for visual quality and spatial control. As we can see from the tables
below, zero-shot results with SDXL+Ctrl-Adapter trained on depth and applied to other conditions
achieve worse performance compared to individual and unified adapters (which is expected), but
are much better than pure SDXL without ControlNet. This proves the effectiveness of zero-shot
transferability of Ctrl-Adapter.

Table 12: Training a unified CTRL-Adapter with SDXL backbone achieves comparable FID/SSIM
to training individual CTRL-Adapters; evaluated on 1K samples from COCO val2017.

Method Depth Canny Softedge Lineart Segmentation Normal

FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (") FID (#) SSIM (")

Individual CTRL-Adapters 14.87 0.8398 14.00 0.5600 14.13 0.5123 11.26 0.5216 16.03 0.6732 14.94 0.8182
Unified CTRL-Adapter 15.13 0.8358 13.97 0.5454 14.25 0.4934 12.99 0.5117 15.68 0.6682 14.94 0.8143

Trained Solely on Depth 14.87 0.8398 16.17 0.3685 15.79 0.3822 15.32 0.4128 16.49 0.5623 15.76 0.7716
Plain SDXL w/o ControlNet 17.49 0.7079 17.49 0.2916 17.49 0.2831 17.49 0.3241 17.49 0.4624 17.49 0.6306
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G ADDITIONAL QUALITATIVE ANALYSIS

G.1 VISUALIZATION OF SPATIAL FEATURE MAPS

As mentioned in Sec. 2 and Appendix E.2, the spatial features encoded in the U-Net of ControlNets
and the DiT blocks are structurally different. We visualize this difference in Fig. 22. For the DiT-
based model, we use PixArt-↵ as a representative. We follow the visualization method mentioned in
Tumanyan et al. (2023). Specifically, we first extract the spatial features from different DiT blocks
and U-Net middle/output blocks at the last denoising step during inference. For each block, we
applied PCA to the extracted features and visualized the top three leading components.

As shown in Fig. 22, almost all 28 DiT blocks capture global and semantic information about the
object "cactus". This observation is consistent with the findings in Guo & Yue (2024). On the other
hand, the U-Net blocks in ControlNet demonstrate a coarse-to-fine pattern as the feature map size
increases. This indicates that mapping output blocks A/B of ControlNet to DiT blocks is a better
option compared to using middle or output blocks C/D of the ControlNet.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Block 8 Block 9 Block 10 Block 11 Block 12 Block 13 Block 14

Block 15 Block 16 Block 17 Block 18 Block 19 Block 20 Block 21

Block 22 Block 23 Block 24 Block 25 Block 26 Block 27 Block 28

Feature Maps Visualization In Each Transformer Block

A small 
cactus with a 
happy face in 

the Sahara 
desert

Input
Prompt

Output
Image

A small 
cactus with a 
happy face in 

the Sahara 
desert

Input
Prompt

Output Blocks D

Output
Image

Canny
Edge

Output Blocks C

Output Blocks B Output Blocks A

Mid Block

Feature Maps Visualization In Each ControlNet U-Net Block

Figure 22: Visualization of spatial feature maps in PixArt-↵ and canny edge ControlNet. We first
extract the spatial features from different DiT blocks and U-Net middle/output blocks at the last
denoising step during inference. For each block, we applied PCA to the extracted features and
visualized the top three leading components. Almost all 28 DiT blocks capture global and semantic
information about the object "cactus", while the U-Net blocks in ControlNet demonstrate a coarse-to-
fine pattern as the feature map size increases.
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G.2 FAST TRAINING CONVERGENCE

In addition to the quantitative results shown in Fig. 2 and Fig. 9, and the qualitative comparison on
PixArt-↵ in Fig. 8, we provide additional visualization for SDXL depth ControlNet + CTRL-Adapter
training. The training speed test is performed on 4 A100 80GB GPUs, with a batch size of 1 per GPU.
As shown in Fig. 23, for relatively easy examples (i.e., bedroom, sandwich, bus), our CTRL-Adapter
training can converge within 4.5 GPU hours (which is equivalent to around 1.125 hours measured in
training clock time). For complex examples and those requiring fine details (i.e., surfing man, group
of kids), our CTRL-Adapter can also converge within around 6 to 7.5 GPU hours (which is equivalent
to 1.5 to 1.875 hours measured in training clock time), which proves the training efficiency of our
CTRL-Adapter.

1.5 h 3.0 h 4.5 h 6.0 h 7.5 h
Train GPU Hours

A bed room 
with a neatly 
made bed a 

window and a 
bookshelf

A bus stops 
to pick up 

some 
passengers

A man 
surfing on a 

large wave in 
the ocean

A group of 
kids posing 
for a picture 
on a tennis 

court

Input 
Prompt

Input
Depth Map

A sandwich 
with a bite 
taken on a 

plate

Figure 23: Training efficiency of CTRL-Adapter on SDXL backbone. Total training GPU hours are
measured on 4 A100 80GB GPUs, with batch size per GPU equal to 1.
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H ADDITIONAL VISUALIZATION EXAMPLES

We provide more qualitative examples in this section.

H.1 VIDEO GENERATION VISUALIZATION EXAMPLES

In Fig. 24, we show video generation results on COCO val2017 split using depth map and canny
edge as control conditions. We visualize baseline methods as well as CTRL-Adapters built on top of
Hotshot-XL (Mullan et al., 2023), SVD (Blattmann et al., 2023), I2VGen-XL (Zhang et al., 2023d),
and Latte (Ma et al., 2024b).

In Fig. 25 and Fig. 26, we show video generation results with I2VGen-XL using depth map and canny
edge extracted from videos from Sora10 and the internet.

In Fig. 27, we show video generation results with Latte using soft edge extracted from videos from
Sora11 and the internet.

Input
Control

Conditions

Hotshot-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter 

SVD
+

CTRL-Adapter 

Prompt:
Camel

Input 
Image/
Prompt Prompt:

Hike

ControlVideo

Control-A-Video

Text2Video-Zero

Prompt:
Ice hockey

Prompt:
Snowboard

Depth Map Canny Edge

Latte
+

CTRL-Adapter 

Figure 24: Videos generated from different video control methods and CTRL-Adapter on DAVIS
2017, using depth map (left) and canny edge (right) conditions.

10https://openai.com/sora
11https://openai.com/sora
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I2VGen-XL
+

CTRL-Adapter

A goldfish swimming

This close-up shot of a Victoria crowned pigeon showcases its striking blue plumage and red chest. Its 
crest is made of delicate, lacy feathers, while its eye is a striking red color. The bird's head is tilted 
slightly to the side, giving the impression of it looking regal and majestic. The background is blurred, 
drawing attention to the bird's striking appearance.

A miniature Christmas village with snow-covered houses, glowing windows, decorated 
trees, festive snowmen, and tiny figurines in a quaint, holiday-themed diorama evoking 
a cozy, celebratory winter atmosphere

I2VGen-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. 
Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves as it walks. 
The path is narrow as it makes its way between all the plants. the scene is captured from a ground-
level angle, following the cat closely, giving a low and intimate perspective. The image is cinematic 
with warm tones and a grainy texture. The scattered daylight between the leaves and plants above 
creates a warm contrast, accentuating the cat's orange fur. The shot is clear and sharp, with a shallow 
depth of field.

Figure 25: Video generation with I2VGen-XL + CTRL-Adapter using depth map as a control
condition.
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This close-up shot of a chameleon showcases its striking color changing capabilities. 
The background is blurred, drawing attention to the animal's striking appearance.

A bird flying over a forest.

Reflections in the window of a train traveling through the Tokyo suburbs.

A woman wearing blue jeans and a white t-shirt taking a pleasant stroll in Mumbai India 
during a beautiful sunset

I2VGen-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter

I2VGen-XL
+

CTRL-Adapter

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

Input 
Image/
Prompt

Input 
Condition

Figure 26: Video generation with I2VGen-XL + CTRL-Adapter using canny edge as control
condition.
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Latte
+

CTRL-Adapter

This close-up shot of a futuristic cybernetic german shepherd showcases its striking brown and black fur. its chest and 
head have robotic modifications while its eye is a striking black color with futuristic digital altercations. the dogs head is 
tilted slightly to the side, giving the impression of it looking regal and majestic. the neon background is blurred, drawing 
attention to the dogs striking appearance

Input 
Prompt

Input 
Condition

Latte
+

CTRL-Adapter

A giant, towering cloud in the shape of a man looms over the earth. The cloud man shoots lighting bolts down to the earth
Input 

Prompt

Input 
Condition

Latte
+

CTRL-Adapter

In an ornate, historical hall, a massive tidal wave peaks and begins to crash. Two surfers, seizing the moment, skillfully 
navigate the face of the wave

Input 
Prompt

Input 
Condition

Latte
+

CTRL-Adapter

A 2d abstract japanese animation where drops of ink in water form into lifelike creatures that swim and interact with each 
other, creating an ethereal underwater world made entirely of flowing, merging colors

Input 
Prompt

Input 
Condition

Latte
+

CTRL-Adapter

A Shiba Inu dog wearing a beret and black turtleneck
Input 

Prompt

Input 
Condition

Figure 27: Video generation with Latte + CTRL-Adapter using soft edge as control condition.
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Fig. 28 shows example videos generated with single and multiple conditions. While all videos
correctly capture the high-level dynamics of ‘a woman wearing purple strolling during sunset’, the
videos generated with more conditions show more robustness in several minor artifacts. For example,
when only depth map is given (Fig. 28 a), the building behind the person is blurred. When depth map
and human pose are given (Fig. 28 b), the color of the purse changes from white to purple. When four
conditions (depth map, canny edge, human pose, and semantic segmentation) are given, such artifacts
are removed (Fig. 28 c). In Fig. 29, we show multi-condition control examples with I2VGen-XL.

Input Conditions: Depth Map, Human Pose, Canny Edge, Segmentation Mask
Prompt:

A woman wearing purple overalls 
and cowboy boots taking a 

pleasant stroll in Johannesburg 
South Africa during a beautiful 

sunset

(c) Depth Map + Human Pose + Canny Edge + 
Semantic Segmentation(b) Depth Map + Human Pose(a) Depth Map

Input Image/Prompt

Figure 28: Video generation from single and multiple conditions with CTRL-Adapter on I2VGen-XL.
(a) single condition: depth map; (b) 2 conditions: depth map + human pose; (c) 4 conditions: depth
map + human pose + canny edge + semantic segmentation. Adding more conditions can help fix
several minor artifacts (e.g., in (a) – building is blurred; in (b) – purse color changes).

I2VGen-XL
+

CTRL-Adapter

Prompt:
A small child and an adult 
standing in shallow ocean 

waters along the beach

Input 
Image/
Prompt Prompt:

A man dancing

Input 
Conditions

Depth Map

Human Pose

Canny Edge

Semantic 
Segmentation

Figure 29: Video generated with I2VGen-XL + CTRL-Adapter from 4 control conditions: depth
map + human pose + canny edge + semantic segmentation map.
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H.2 IMAGE GENERATION VISUALIZATION EXAMPLES

In Fig. 30 and Fig. 31, we show image generation results on COCO val2017 split using depth map
and canny edge as control conditions.

In Fig. 32, Fig. 33, and Fig. 34, we show image generation results on prompts from Lexica12 using
depth map, canny edge, and soft edge as control conditions.

X-Adapter CTRL-Adapter 
(Ours)

A police officer 
on a motorcycle 
drives through a 

parade.

A vegetable 
vendor 

organizing his 
food for sale

A middle aged 
black woman is 
standing behind 

a table full of 
bananas.

Input 
Depth Map

A man sitting in a 
restaurant 

photographs a 
sandwich.

A man in a 
reception hall 
holds a drink

Input 
Prompt

SDXL 
ControlNet

A woman is 
skiing down a 

snowy hill

A pair of children 
stand on a fence 

together

Figure 30: Image generation from different SDXL-based image control methods and CTRL-Adapter
on COCO val2017 split using depth map as control condition.

12https://lexica.art/

39

https://lexica.art/


Published as a conference paper at ICLR 2025

X-Adapter

A man in a wet 
suit is surfing.

A woman tennis 
player getting 

ready to be 
served the ball

Baseball player 
number 22 

holding batting 
gloves and 

wearing helmet

A person who is on 
their motorcycle in 

the air

A vase full of 
irises with a 

pitcher on an end 
table

Input 
Depth Map

Flowers are 
arranged in a 

vase sitting on a 
table

Input 
Prompt

SDXL 
ControlNet

A dog sits on top 
of a bed in a 

room

CTRL-Adapter 
(Ours)

Figure 31: Image generation from different SDXL-based image control methods and CTRL-Adapter
on COCO val2017 split using canny edge as control condition.
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a cute mouse pilot wearing 
aviator goggles, unreal engine 

render, 8k

happy Hulk standing in a beautiful field of 
flowers, colorful flowers everywhere, 

perfect lighting, leica summicron 35mm 
f2.0, Kodak Portra 400, film grain

A cute sheep with rainbow fur, 
photo

a cute, happy hedgehog taking a bite 
from a piece of watermelon, eyes 

closed, cute ink sketch style 
illustration

Figure 32: Image generation with SDXL + CTRL-Adapter using depth map as a control condition.

Astronaut walking on 
water

Cute fluffy corgi dog in 
the city in anime style

Cute lady frog in dress and 
crown dressed in gown in 

cinematic environment

Cute and super adorable mouse in 
black and red chef coat and chef 
hat, holding a steaming entree.

Figure 33: Image generation with SDXL + CTRL-Adapter using canny edge as a control condition.

Darth Vader in a beautiful field 
of flowers, colorful flowers 

everywhere, perfect lighting

A plate of cheesecake, pink 
flowers everywhere, cinematic 

lighting, food photography

A micro-tiny clay pot full of dirt 
with a beautiful daisy planted in 

it, shining in the autumn sun

A raccoon family having a nice 
meal, life-like

Figure 34: Image generation with PixArt-↵ + CTRL-Adapter using soft edge as a control condition.
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H.3 VISUALIZATION EXAMPLES FOR ADDITIONAL DOWNSTREAM TASKS

Here, we describe in detail how our CTRL-Adapter can be seamlessly integrated into a wide variety
of downstream tasks including video editing, video style transfer, and text-guided motion control.

Video editing. Video editing can be achieved by combining image and video CTRL-Adapters. The
procedure is as follows:

• Firstly, given a source video, we first extract the control condition(s). We can either extract a
single control condition (e.g., depth map), or multiple control conditions (e.g., depth map, canny
edge, segmentation, etc.) to enhance performance (as we observe in Tab. 3, Fig. 28 and Fig. 29
that multi-condition control improves spatial control accuracy).

• Next, given a user-provided prompt together with the extracted control condition(s), we can use
image CTRL-Adapter (i.e., SDXL + CTRL-Adapter) to generate the first frame of the video.

• Finally, we can use video CTRL-Adapter (i.e., I2VGen-XL + CTRL-Adapter), with the generated
first frame image, text prompt, and extracted control conditions as inputs for final video generation.

In Fig. 35, we provide additional visualizations of the camel example in our main paper.

SDXL + CTRL-Adapter
Output

I2VGen-XL + CTRL-Adapter
Output

Extracted Control Condition

Source Video
A zebra 
stripped 

camel walking

A camel 
walking, van 
gogh-style

A camel with 
rainbow fur 

walking

Prompt

A camel 
walking, ink 
sketch style

Figure 35: Video editing by combining SDXL and I2VGen-XL, where both models are equipped
with spatial control via CTRL-Adapter. First, we extract conditions (e.g., depth map) from the original
video. Next, we create the initial frame with SDXL + CTRL-Adapter. Lastly, we provide the newly
generated initial frame and frame-wise conditions to I2VGen-XL + CTRL-Adapter to obtain the final
edited video. This video editing framework can edit both object and background.
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Text-Guided Motion Control. This task can be achieved by combining video CTRL-Adapter with
inpainting ControlNet. We train such CTRL-Adapter as follows:

• Firstly, for each training video, we randomly select a random block in the image, with the width
and height of the block uniformly sampled from 0.25 to 0.75 of the image size.

• Next, we color the block area of the video frames as black color (these processed frames can be
regarded as control condition sequences like depth maps).

• Finally, we can train CTRL-Adapter with the frozen inpainting ControlNet similar as other types
of CTRL-Adapters mentioned in our main paper.

In Fig. 36, we provide additional visualizations of text-guided image amination.

A medium sized friendly 
looking dog walks through 

an industrial parking lot

I2VGen-XL + CTRL-AdapterPrompt

A white and orange tabby 
cat is darting through a 

dense garden, as if chasing 
something

An elk with impressive 
antlers grazing on the 
snow-covered ground

Figure 36: Text-guided motion control by combining inpainting ControlNet with I2VGen-XL +

CTRL-Adapter. Specifically, inpainting ControlNet takes the masked frames as well as text prompt
as inputs. The output feature maps of inpainting ControlNet are then given to CTRL-Adapter built on
top of I2VGen-XL to generate the final video. Object(s) in the masked area can follow the motion
described in the text prompt. The unmasked area can be either static or dynamic.
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Video style transfer. This task can be achieved by combining video CTRL-Adapter with shuffle
ControlNet. We train such CTRL-Adapter as follows:

• Firstly, for the first frame of each training video, we apply the content shuffle detector implemented
in the controlnet_aux13 library, to get a shuffled image.

• Next, we repeat this shuffled image N times, with N equal to the number of output frames of the
backbone video diffusion model. These repeated images can be regarded as control condition
sequences like depth maps.

• Finally, we can train CTRL-Adapter with the frozen shuffle ControlNet similar as other types of
CTRL-Adapters mentioned in our main paper.

in Fig. 37, we provide additional visualizations of video style transfer.

Shuffle
A miniature Christmas village with 

snow-covered houses, glowing windows, 
decorated trees, festive snowmen, and 

tiny figurines in a quaint, holiday-themed 
diorama evoking a cozy, celebratory 

winter atmosphere

Prompt Output Video

Stop motion of a colorful paper flower 
blooming

In an ornate, historical hall, a massive 
tidal wave peaks and begins to crash

A meticulously crafted diorama depicting 
a serene scene from Edo-period Japan

Beautiful, snowy Tokyo city is bustling

Figure 37: Video style transfer by combining shuffle ControlNet with Latte + CTRL-Adapter.
Specifically, shuffle ControlNet takes the shuffled image as well as text prompt as inputs. The output
feature maps of shuffle ControlNet are then given to CTRL-Adapter built on top of Latte to generate
the final video. The generated videos maintain similar style as the input image before shuffling.

13https://github.com/huggingface/controlnet_aux
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I ETHICS STATEMENT

CTRL-Adapter is motivated by the fact that training ControlNets for new diffusion models, especially
video diffusion models that need to consider temporal consistency, can be a huge burden for many
users. As shown in Fig. 2, by adopting pretrained ControlNets, training CTRL-Adapter can be
significantly faster than training other controllable image or video generation methods. For example,
with the same type of compute (i.e., A100 80GB GPUs), CTRL-Adapter trained on SDXL depth
ControlNet for 10 GPU hours can outperform SDXL ControlNet trained for 700 GPU hours. This
drastically reduces the carbon emissions footprint by over 70 times. Therefore, we believe that our
work can be a strong contribution to efficient and controllable image and video generation.

While our framework can benefit numerous applications in controllable generation, similar to other
image and video generation frameworks, it can also be used for potentially harmful purposes (e.g.,
creating false information or misleading videos). Therefore, it should be used with caution in
real-world applications.

Note that since CTRL-Adapter is a method to equip current open-source image and video diffusion
models with better control, its performance, quality, and potential visual artifacts largely depend on
the capabilities (e.g., motion styles and video length) of the backbone models used. For example, if a
diffusion model cannot handle complex motions, CTRL-Adapter built on top of this backbone might
lead to non-optimal complex motion control.

J REPRODUCIBILITY STATEMENT

We include our training and inference code in the supplementary materials. We explained in detail
our architecture design in Sec. 2 and Appendix B, experimental setup details in Appendix D, and
training and inference details in Appendix C.

K LICENSE

We use standard licenses from the community and provide the following links to the licenses for the
datasets, codes, and models that we used in this paper. For further information, please refer to the
specific link.

PyTorch (Ansel et al., 2024): BSD-style

HuggingFace Transformers (Wolf et al., 2020): Apache License 2.0

HuggingFace Diffusers (von Platen et al., 2022): Apache License 2.0

ControlNet (Zhang et al., 2023c): Apache License 2.0

SDXL (Podell et al., 2024): MiT License

PixArt-↵ (Chen et al., 2024c): AGPL-3.0 License

I2VGen-XL (Zhang et al., 2023d): MiT License

Stable Video Diffusion (SVD) (Blattmann et al., 2023): MiT License

Latte (Ma et al., 2024b): Apache License 2.0

Hotshot-XL (Mullan et al., 2023): Apache License 2.0

LAION dataset (Schuhmann & Bevan, 2023): MiT License

Panda70M dataset (Chen et al., 2024d): License

COCO dataset (Lin et al., 2014): CC BY 4.0

DAVIS 2017 dataset (Pont-Tuset et al., 2017): CC BY 4.0
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