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Abstract

With the massive growth of multi-modal infor-

mation such as text, images, and other data,

how should we analyze and align these data

becomes very important. In our work, we intro-

duce a new framework based on Reinforcement

Learning Guided Graph Diffusion to address

the complexity of multi-modal graphs and en-

hance the interpretability, making it clearer to

understand the alignment of multi-modal in-

formation. Our approach leverages pre-trained

models to encode multi-modal data into scene

graphs and combines them into a cross-modal

graph (CMG). We design a reinforcement learn-

ing agent to filter nodes and modify edges

based on the observation of the graph state

to dynamically adjust the graph structure, pro-

viding coarse-grained refinement. Then we

will iteratively optimize edge weights and node

selection to achieve fine-grained adjustment.

We conduct extensive experimental results on

multi-modal relation extraction task datasets

and show that our model significantly outper-

forms existing multi-modal methods such as

MEGA and MKGFormer. We also conduct

an ablation study to demonstrate the impor-

tance of each key component, showing that

performance drops significantly when any key

element is removed. Our method uses rein-

forcement learning methods to better mine po-

tential multi-modal information relevance, and

adjustments based on graph structure make our

method more interpretable.

1 Introduction

In recent years, the field of cross-modal relation ex-

traction has gained significant attention due to the

increasing availability of multi-modal data, such

as text and images. Traditional relation extraction

methods mainly focus on single-modal data, which

limits their use in real-world situations where data

often comes from multiple modalities (Devlin et al.,

2019; Soares et al., 2019; Yu et al., 2020). Combin-

ing multi-modal data can provide a more complete

understanding and improve the accuracy of relation

extraction tasks. However, integrating different

types of data sources poses challenges (Radford

et al., 2021; He et al., 2023).Cross-modal relation

extraction requires capturing semantic information

from text and extracting visual cues from images,

then merging these to infer relationships between

entities (Lu et al., 2019; Li et al., 2019). Current

methods often assume that all input information is

useful, but in reality, some information might be

irrelevant noise, which can negatively affect perfor-

mance (Zeng et al., 2015). However, single-modal

information alone might not be enough to infer the

correct relationship, sometimes needing additional

knowledge to supplement and enrich the context

(Chen et al., 2022a).

To illustrate the complexity of cross-modal re-

lation extraction, consider the example shown in

Figure 1. The text mentions “2 Win Abel Prize

for Work That Bridged Math and Computer Sci-

ence,” and relates it to two individuals shown in

the images (Chen et al., 2022b). The task is to

correctly identify the relationship between the text

entity “Abel Prize” and the visual entities (the two

individuals) based on both textual and visual infor-

mation. This scenario exemplifies the challenges of

integrating text and image data to accurately extract

meaningful relationships. Additionally, identifying

the entities referred to by “2” in the text and linking

them to the multiple entities in the images presents

a significant challenge (Zheng et al., 2021a).

"Text: "2 Win Abel Prize for Work That 

Bridged Math and Computer Science=

"Text head Entity: Abel Prize 

"Visual tail Entity:

Relation label: /per/misc/awarded

Relation label: /per/misc/awarded

Figure 1: Multi-Modal Data Scenario: Text Mentions

“Abel Prize” and Images Show the Recipients.

We find that reinforcement learning-based meth-

ods (Xu et al., 2022; Zhu et al., 2017; Mnih et al.,
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Figure 2: Our Proposed Framework.

2015; Bellemare et al., 2017; Caicedo and Lazeb-

nik, 2015; Ren et al., 2018; Sharma et al., 2018) can

uncover potential information in computer vision

and natural language processing. These works mo-

tivate the proposal of our reinforcement learning-

guided graph diffusion framework, which signif-

icantly enhances multi-modal relation extraction

by addressing the potential relation and improving

interpretability.

The concept of "graph diffusion" has drawn in-

spiration from pixel-based diffusion models (Ho

et al., 2020; Song et al., 2020). Recent work has

extended these ideas to graph-structured data (Niu

et al., 2020; Hoogeboom et al., 2022). Our work is

inspired by recent advancements in diffusion mod-

els. The work by (Black et al., 2024) explores the

training of diffusion models with reinforcement

learning, offering valuable insights into the inte-

gration of RL within diffusion processes. And the

study by (Chen et al., 2023) introduces a discrete

diffusion modeling framework for efficient and

degree-guided graph generation, further informing

our methodology.These works show the potential

of diffusion processes in capturing complex rela-

tional information.

So our approach introduces a novel coarse-

grained + fine-grained graph diffusion method.

At the coarse-grained level, we simulate the noise

addition and removal process, akin to traditional

diffusion models, through a reinforcement learning

agent that dynamically manages graph edge dele-

tion and addition. Meanwhile, at the fine-grained

level, we achieve feature propagation by transmit-

ting node features through their surrounding neigh-

bors.

Our research aims to use reinforcement learning-

guided graph diffusion to explore latent potential re-

lationships between entities in cross-modal graphs

that may not be discoverable through existing rules

and algorithms. Our framework shown in Fig 2

that leverages the strengths of both text and im-

age data for relation extraction as follows. First,

we construct visual scene graphs and textual scene

graphs to capture the detailed semantic structures

of the input images and text, respectively (Radford

et al., 2021). These graphs are then combined into

a unified cross-modal graph (CMG). Next, we use

the reinforcement learning-based graph diffusion

process to refine the graph at coarse-grained and

fine-grained level. This helps identify potential en-

tity relationships and improves the effectiveness of

multi-modal relation extraction.

2 Related Work

For single-modal data the relation extraction task,

researchers have done a lot of work (Devlin et al.,

2019; Zeng et al., 2015).And for multi- modal data,

some works like VisualBERT (Li et al., 2019) and

ViLBERT (Lu et al., 2019) as the base of vision

language pretrain models combing visual and tex-

tual information for various vision-and-language

tasks. And hybrid models like the Hybrid Trans-

former (Chen et al., 2022a) improve multi-modal

knowledge graph completion via multi-level fusion.

These works provide a foundatino for multi modal

data task. However, these methods lack of explain-

ability that researchers can not find the reasoning

abilities inside of it.

The multi-modal data has led to the develop-

ment of specialized datasets and benchmarks. The

dataset from (Zheng et al., 2021b) is widely used

in this task. And recently for exploring the bridge

from text and vision the MORE dataset (He et al.,

2023) is published. This dataset provides a multi-

modal object-entity relation extraction benchmark.

It highlights the importance of evaluating models

in diverse and real with more complex relation.

To enhance interpretability, some graph-based

methods have been proposed for multi-modal rela-

tion extraction. Using common graph embedding

methods such as graph attention networks (GAT)

(Velickovic et al., 2018) and graph convolutional
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networks (GCN) (Marcheggiani and Titov, 2017),

researchers can develop better graph representa-

tions. Studies such as MNRE (Zheng et al., 2021b)

have demonstrated the effectiveness of using graph

alignment on multi-modal datasets, achieving bet-

ter results in multi-modal relation extraction tasks.

In addition, reinforcement learning has been in-

creasingly applied to refine and compress graphs,

showing significant improvements in various tasks

such as graph alignment and entity recognition

(Velickovic et al., 2018; Wu et al., 2020). Tech-

niques such as graph diffusion have shown the po-

tential to improve the efficiency of graph-based

processes by intelligently reducing complexity

while retaining essential information (Zheng et al.,

2021a). However, the integration of reinforcement

learning with multi-modal relation extraction re-

mains relatively unexplored. This gap highlights

the need for further research to combine the advan-

tages of reinforcement learning and multi-modal

data processing to improve relation extraction re-

sults (Marcheggiani and Titov, 2017; Velickovic

et al., 2018; Wu et al., 2020; Zheng et al., 2021a;

Chen et al., 2022a; Kim et al., 2022).

3 Our Framework

In this section, we present our method for cross-

modal relation extraction based on the Reinforce-

ment Learning Guided Graph Diffusion process.

Our framework constructs a Cross-Modal Graph

(CMG) from multi-modal data and refines it using

a reinforcement learning guided diffusion process

to output relationships between multi-modal enti-

ties. The framework, summarized in Algorithm 1,

has the following key components.

Constructing the Cross-Modal Graph (CMG)

(Algorithm 1, line 3): We integrate data from dif-

ferent modalities, such as text and images, to build

the initial cross-modal graph G(V,E). Each node

in the graph represents an entity with multi-modal

features, and edges represent the relationships be-

tween these entities.

Reinforcement Learning Guided Diffusion Pro-

cess (Algorithm 1, lines 4-14): This involves dy-

namically refining the structure of the CMG to

extract meaningful relationships. The reinforce-

ment learning agent observes the current state of

the graph and decides on actions to modify it, such

as deleting nodes, deleting or adding edges. The

agent is trained to optimize a reward function that

evaluates the quality of graph’s relation extraction

accuracy. This process is coarse-grained, making

significant adjustments to graph structure.

Diffusion Process for Edge Weight Adjustment

(Algorithm 1, line 15-16): After the reinforcement

learning agent adjusts the graph structure, we ap-

ply a diffusion process to further refine the edge

weights based on the node features. This iterative

process ensures that the most relevant connections

are emphasized while irrelevant ones are weak-

ened. This process is fine-grained, providing subtle

adjustments to the graph to enhance the overall

quality and accuracy of relation extraction.

Relation Extraction using Graph Neural Net-

works (GNN) (Algorithm 1, lines 17-18): Fi-

nally, a Graph Neural Network is used to extract

relation labels from the refined graph G′(V ′, E′).
The GNN processes the simplified graph to identify

and classify the relationships between nodes, lever-

aging the enhanced feature representations and op-

timized structure provided by the previous steps.

Algorithm 1 Overview of Framework

1: Input: Cross-modal graph G(V,E), Text fea-

tures vt, Image features vi

2: Output: Refined graph G′(V ′, E′), Relation

labels vo

3: Construct initial Cross-Modal Graph G(V,E)
4: Initialize reinforcement learning agent A with

policy Ã(a|s)
5: Define reward function R(s, a)
6: while termination condition not met do

7: Observe current state st of the graph G

8: Encode features vto, v
i
o ←

GAT-Encoder(G, vt, vi)
9: at ← A(st) ▷ Agent selects action based

on current state

10: Execute action at, update graph G and ob-

serve new state st+1

11: R(st, at) ← ¼ · Accuracy(G′) − µ ·
Complexity(G′)

12: Update value function V (st) ← V (st) +
³ [R(st, at) + µV (st+1)− V (st)]

13: Update policy Ã(a|s) based on the updated

value function

14: end while

15: Gd ← ApplyDiffusion(G, v′o, ³, Ä,max_iter)
16: G′ ← ObtainRefinedGraph(Gd, Ä)
17: Extract relation labels vo ← GNN(G′)
18: return Refined graph G′(V ′, E′) and Relation

labels vo
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Next, we discuss the key components of our

framework in detail.

3.1 Cross-Modal Graph (CMG) Construction

To construct the CMG, we follow these steps.

(i) Extract Features: We extract features from

both text and images using the CLIP encoder (Rad-

ford et al., 2021). This ensures that both visual

object features and text token representations are

in a unified embedding space.

(ii) Construct Visual and Textual Scene

Graphs: For each modality, we construct scene

graphs where:

• Visual Scene Graph: Nodes represent visual

objects detected in the images, and edges rep-

resent spatial or semantic relationships be-

tween these objects.

• Textual Scene Graph: Nodes represent entities

mentioned in the text, and edges represent

syntactic or semantic relationships between

these entities.

(iii) Combine Scene Graphs into CMG: We

combine the visual and textual scene graphs into

a unified cross-modal graph (CMG). Nodes in

the CMG represent entities from both modalities

and edges represent both intra-modal relationships

(within the same modality) and inter-modal rela-

tionships (across different modalities). The inter-

modal edges are created based on co-occurrence

and contextual similarity between textual and vi-

sual entities.

(iv) Graph Attention Networks (GAT): We

use Graph Attention Networks (GAT) to encode

the features of nodes in the CMG. For each node

pair (i, j), GAT computes its attention coefficients

³ij is follows:

exp(LeakyReLU(aT [Whi∥Whj ]))∑
k∈Ni

exp(LeakyReLU(aT [Whi∥Whk]))
(1)

where W is a weight matrix, a is a weight vector,

hi and hj are the features of nodes i and j, and ∥
denotes concatenation. This allows us to effectively

integrate multi-modal data in the CMG.

3.2 Reinforcement Learning Agent

The reinforcement learning agent A which is

shown in Algorithm 2, is used to dynamically ad-

just the graph structure. The agent interacts with

the constructed Cross-Modal Graph (CMG) envi-

ronment by observing the current state st of the

graph and selecting actions at from the action space

A. The action space includes node deletion, edge

deletion, and edge addition.

3.2.1 State and Action Representation

The state st represents the current structure and

features of the CMG at time step t (Algorithm 2,

line 3). It includes node features, edge features, and

the overall graph topology. The actions at that the

agent can take are defined as follows (Algorithm 2,

lines 6-13):

Algorithm 2 Reinforcement Learning Agent for

Graph Diffusion

1: procedure RL-AGENT(G,A, µ, ³, ¼, µ)

2: Initialize state s0 with graph G

3: Initialize RL agent A with policy Ã(a|s)
4: while termination condition not met do

5: Observe current state st (current graph

structure)

6: at ← A(st) ▷ Agent selects action

based on current state

7: if at is node deletion then

8: Select node v for deletion based on

node importance scores

9: V ← V \ {v} ▷ Remove node

10: else if at is edge deletion then

11: Select edge e for deletion based on

edge weights

12: E ← E \ {e} ▷ Remove edge

13: else if at is edge addition then

14: Select nodes v1, v2 for new edge

based on node similarity

15: E ← E ∪ {(v1, v2)} ▷ Add edge

16: end if

17: Execute action at, observe new state

st+1 and receive reward R(st, at)
18: R(st, at) ← ¼ · Accuracy(G′) − µ ·

Complexity(G′)
19: Update value function V (st) ←

V (st) + ³ [R(st, at) + µV (st+1)− V (st)]
20: Update policy Ã(a|s) based on the up-

dated value function

21: end while

22: return refined graph G(V,E)
23: end procedure

• Node Deletion: Removing node v from graph,

i.e., V ← V \ {v} (Algorithm 2, line 8).

• Edge Deletion: Removing edge eij between

nodes i and j, i.e., E ← E \ {eij} (Algo-
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rithm 2, line 11).

• Edge Addition: Adding a new edge eij be-

tween nodes i and j, i.e., E ← E∪{(v1, v2)}
(Algorithm 2, line 14).

3.2.2 Reward Function

The reward function R(st, at) evaluates the quality

of the graph after performing action at in state

st. The reward function is designed to balance

the trade-off between graph simplification and the

accuracy of relation extraction. It is expressed as:

R(st, at) = ¼·Accuracy(G′)−µ·Complexity(G′)
(2)

where ¼ and µ are hyperparameters that control

the importance of accuracy and complexity, respec-

tively. Accuracy(G′) measures the performance

of relation extraction on the refined graph G′, and

Complexity(G′) measures the structural complex-

ity of the graph (Algorithm 2, line 16).

3.2.3 Optimization Process

The agent’s goal is to maximize the cumulative

reward over time. The cumulative reward Gt is

defined as the sum of discounted future rewards:

Gt =
∞∑

k=0

µkR(st+k, at+k) (3)

where µ is the discount factor, representing the

importance of future rewards.

The agent uses a policy Ã(at|st) to decide which

action to take in a given state. The policy is op-

timized using reinforcement learning algorithms,

such as Q-learning or policy gradient methods. The

value function V (st), which estimates the expected

cumulative reward from state st, is updated as

shown below, where ³ is the learning rate.

V (st)← V (st)+³ [R(st, at) + µV (st+1)− V (st)]
(4)

3.3 Diffusion Process

After the reinforcement learning agent dynamically

adjusts the graph structure by performing actions

such as node deletion, edge deletion, and edge ad-

dition, we apply a diffusion process to refine the

graph further which is shown in Algorithm 3. This

process adjusts the edge weights based on the up-

dated node features, helping to emphasize impor-

tant connections while minimizing the impact of

less relevant ones.

The diffusion process iteratively updates the

node features to smooth out the information across

the graph (lines 4 to 6). After completing the diffu-

sion iterations, we adjust the edge weights based on

the updated node features. The weight of an edge

is computed as the average of the feature values of

its two nodes (line 9). Edges with weights below

a threshold Ä are pruned from the graph, giving a

refined graph Gd (lines 10 to 11).

The diffusion process for edge weight adjust-

ment is a finer-grained process based on the coarse-

grained pruning of the graph structure performed

by the reinforcement learning agent. This ensures

that the overall simplification of the graph struc-

ture is maintained while preserving key relational

information.

Algorithm 3 Diffusion Process for Edge Weight

Adjustment

1: function APPLYDIFFU-

SION(G, v′o, ³, Ä,max_iter)

2: A← adjacency matrix of graph G ▷ Get

the adjacency matrix of graph G

3: v ← v′o ▷ Initialize node features

4: for iter = 1 to max_iter do ▷ Perform

multiple iterations

5: v ← ³Av + (1− ³)v′o ▷ Update node

features

6: end for

7: Ed ← ∅ ▷ Initialize the refined edge set

8: for each edge eij ∈ G.E do ▷ Iterate over

each edge in the graph

9: wij ←
vi+vj

2
▷ Compute edge weight

10: if wij g Ä then ▷ Check if the weight

is above the threshold

11: Ed ← Ed ∪ {eij} ▷ Retain edges

that meet the condition

12: end if

13: end for

14: Gd ← (G.V,Ed) ▷ Generate refined

graph

15: return Gd

16: end function

3.4 Relation Extraction using Refined Graph

A Graph Neural Network (GNN) extracts relation

labels from the refined graph G′(V ′, E′). The

GNN processes the simplified graph to classify

relationships between nodes using enhanced fea-

ture representations and optimized structure. It ag-

gregates features from neighboring nodes through

message passing, updating each node’s embedding

by combining its feature vector with aggregated fea-
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tures. A classification layer then outputs relation la-

bels and a probability distribution over possible la-

bels for each node pair. These results are integrated

into the reinforcement learning agent’s reward cal-

culation, incorporating the accuracy of relation ex-

traction (Accuracy(G′)) into the reward function

R(st, at) = ¼·Accuracy(G′)−µ·Complexity(G′)
(Algorithm 1, lines 11-12).

The final node embeddings capture comprehen-

sive graph information, enabling accurate relation

extraction. The GNN leverages enhanced feature

representations and optimized graph structure from

the reinforcement learning and diffusion processes,

improving multi-modal relation extraction.

4 Experiment

4.1 Dataset

Our experiments use two different datasets shown

in Table 1 for multi-modal relation extraction. The

first is the multi-modal Relation Extraction (MRE)

dataset (Zheng et al., 2021b). The MRE dataset

provides a large number of image-text pairs and

is widely used for multi-modal relation extraction

tasks. However, it has some limitations, especially

when it comes to capturing complex relations. This

is because the dataset does not offer rich informa-

tion for visual entities in the images. To address

this, the MORE (He et al., 2023)dataset was in-

troduced. The MORE dataset has 13,520 visual

objects, and although it has fewer images, these

images are more content-rich. The ratio of facts

to images is high, and it provides a solid visual

foundation with greater complexity. These charac-

teristics make MORE dataset more suitable for de-

veloping and evaluating advanced multi-modal re-

lation extraction models. Note:Img: images, Sent:

sentences, VO: visual objects, Rel: relations

Dataset Img Sent VO Fact Rel

MRE 9,201 9,201 - 15,485 23

MORE 3,559 3,559 13,520 20,264 21

Table 1: Comparison of MRE and MORE dataset

4.2 Setting

In our experiments, we employ CLIP (vit-base-

patch32) pre-trained model for multi-modal encod-

ing. We set both node and GAT representations to

768 dimensions, which we find effective for our

purposes. The CMG refinement process considers

the 2-hop context, helping us capture more com-

prehensive relationships in the data. All our experi-

ments runs on NVIDIA A100 GPU. We carefully

tune several key parameters:

• Reward Function Weights (¼ and µ): These

weights help us strike a balance between ac-

curacy and graph complexity. We found that

the optimal ¼/µ ratio typically falls between 2

and 5. We recommend using higher values in

the 4-5 range for more complex datasets like

MORE

• Discount Factor (µ): We tested µ values from

0.9 to 0.99. Higher values (around 0.98-0.99)

tend to favor long-term rewards, which we

found particularly useful for modeling com-

plex relationships. For the MORE and MRE

datasets, µ = 0.98 worked best.

• Edge Weight Threshold (Ä ): This parameter

controls how sparse our graph becomes during

the diffusion process. After some experimen-

tation, we settled on Ä = 0.05 as the opti-

mal value, as it nicely balances maintaining

important relationships and managing graph

complexity.

4.3 Evaluation Metrics

We evaluate the performance using the following

metrics:

• Accuracy: The proportion of correctly classi-

fied instances.

• Precision: The proportion of true positive

predictions among all positive predictions.

• Recall: The proportion of true positive predic-

tions among all actual positives.

• F1 Score: The harmonic mean of Precision

and Recall.

These metrics helped us get a comprehensive

view of how well our model was performing across

different aspects.

4.4 Main Results

We compare the performance of various methods

on the test sets. This comparison includes several

multi-modal RE methods, such as BERT+SG+Att

(Zheng et al., 2021a), MEGA (Zheng et al., 2021b),

MKGformer (Chen et al., 2022a), ISE (Wu et al.,

2023), VisualBERT (Li et al., 2019), ViLBERT (Lu
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Dataset Method Acc. Pre. Rec. F1

MRE

BERT+SG+Att 0.75 0.61 0.67 0.64
MEGA 0.76 0.65 0.68 0.66
MKGformer 0.92 0.83 0.81 0.82
ISE 0.94 0.85 0.83 0.84
MOREformer 0.94 0.84 0.83 0.83
Our Method 0.95 0.85 0.84 0.85

MORE

BERT+SG+Att 0.64 0.31 0.39 0.35
MEGA 0.66 0.33 0.38 0.36
MKGformer 0.80 0.56 0.54 0.55
ISE 0.82 0.59 0.56 0.58
VisualBERT 0.83 0.58 0.61 0.60
ViLBERT 0.84 0.63 0.60 0.61
MOREformer 0.84 0.62 0.63 0.63
Our Method 0.91 0.72 0.74 0.73

Table 2: Experimental Results on MRE and MORE

Datasets

et al., 2019), and MORE (He et al., 2023). The

results of these comparisons are given in Table 2.

Our method outperforms existing multi-modal

approaches such as MEGA, MKGformer and

MOREformer. We use reinforcement learning to

perform coarse-grained edge pruning and addition

on CMG, which is beneficial for retaining edges

that are important for relation extraction, remov-

ing unfavorable edge connections that introduce

noise, and discovering potential edges to enhance

relation extraction. At the same time, fine-grained

graph information propagation ensures the stabil-

ity of training and enhances the fusion of image

and text information. Especially, when we need to

deal with the more complex relation extraction task

including the visual objects in the MORE dataset,

our method can uncover more information with the

CMG.

4.5 Training Trends Analysis

Figure 3 and Figure 4 show the trends of node

filtering ratio, edge adjusting ratio, and F1 score

throughout the training process.

The node filtering and edge adjusting ratios in

Figure 3 start at high values. And at first the agent

will try to make more edge addition actions. This

reflects that the reinforcement learning agent is

making exploration of the graph structure. As the

training going on, both ratios will have decreas-

ing trend because the reinforcement learning agent

becomes more selective in filtering nodes and ad-

justing edges.

The F1 score trend in Figure 4 shows a signif-

icant improvement early in the training and will

reach its peak around the mid-point of the training

steps. This peak coincides with a balance between
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Figure 4: F1 Score Trend During Training.

the node filtering and edge adjusting ratios. With

the training continues, the F1 score stabilizes which

means that the model maintains its performance

even with further refinement and selectivity in the

graph structure.

These trends validate the effectiveness of our re-

inforcement learning-guided graph diffusion frame-

work. The initial exploration allows the model

to gather comprehensive information with more

edges addition, while the subsequent selective ad-

justments ensure the preservation of essential re-

lational information in a simplified graph format.

The steady improvement and stabilization of the

F1 score highlight the robustness and accuracy of

our method in handling complex multi-modal data.

This process ensures that the CMG is continuously

refined to highlight the most relevant relationships

while eliminating noise, leading to more accurate

relation extraction.

4.6 Case Study

We show a more detailed example of the case study

to show how our method make the multi-modal

relation extraction on the CMG and do coarse-
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grained refinement plus fine-grained adjustment to

enhance important information and remove noise.

See Appendix A.1 for an example of case study.

This case study shows how our framework have

higher explainability and transparency for the rela-

tion extraction task.

4.7 Ablation Study

We conduct ablation experiments to assess the im-

pact of different components of our method. The

results are presented in Table 3.

Ablation Accuracy Precision Recall F1

w/o RL -13.68% -8.05% -9.30% -9.20%

w/o Diffusion -12.63% -6.90% -8.14% -8.05%

w/o GNN -14.74% -9.20% -10.47% -10.34%

Table 3: Ablation Study Results Showing the Impor-

tance of Different Components of Our Method.

The ablation study results illustrate the signifi-

cance of the reinforcement learning (RL), Diffu-

sion process, and GNN components in enhancing

performance. We analyze the impact of different

components by observing their effects when omit-

ted from the model. We present specific examples

to illustrate the significance of each component in

the relationship extraction process.

Without RL (w/o RL): The model’s ability to

discover potential entity relationships is signifi-

cantly impaired, leading to a substantial drop in

accuracy and F1 score. For example, the relation-

ship "/per/org/leader_of" between "Elon Musk"

and "Tesla" was lost in the experiment. This in-

dicates the crucial role of the RL component in

guiding the graph refinement process.

Without Diffusion (w/o Diffusion): The model

lacks fine-grained adjustment of edge weights, re-

sulting in less precise relation extraction. As an

example, this is evidenced by the loss of the re-

lationship "/loc/loc/contain" between "Paris" and

"France". This highlights the importance of the

diffusion process in enhancing the granularity of

information processing within the graph.Also this

will cause the model to not converge.

Without GNN (w/o GNN): The model strug-

gles to learn comprehensive graph structure infor-

mation, further decreasing accuracy and F1 score.

An example of this is the loss of the relation-

ship "/per/per/partner" between "Bill Gates" and

"Melinda Gates". This demonstrates the necessity

of using Graph Neural Networks for effective fea-

ture aggregation and node embedding updates.

4.8 Analysis and Discussion

The analysis of our experimental results reveals

several key insights:

Effectiveness of multi-modal Information Inte-

gration: Our approach achieves the best perfor-

mance across all metrics, indicating its effective-

ness in leveraging multi-modal information. The

integration of textual and visual data gives superior

understanding of relationships among entities.

Importance of RL and Diffusion Components:

Removing the RL or Diffusion components results

in a noticeable drop in performance, validating their

importance. The RL component is essential for

coarse-grained graph refinement, while the diffu-

sion performs fine-grained adjustments.

Enhanced Interpretability: Compared to other

methods, our approach offers better interpretability.

The reinforcement learning-guided graph diffusion

process uncovers more entity relationships. By

refining the graph structure iteratively, the model

ensures that only the most relevant information

is retained, making the extraction process more

transparent and understandable.

Our method improves accuracy and efficiency

and also provides a robust mechanism for discover-

ing hidden relationships within multi-modal data.

It’s ability to filter and refine information through

both coarse- and fine-grained processes ensures

superior performance in complex scenarios.

5 Conclusion

We proposed a novel Reinforcement Learning-

Driven Graph Diffusion Framework for multi-

modal relation extraction. The experimental re-

sults demonstrate that our method outperforms ex-

isting methods across various evaluation metrics,

validating its effectiveness and potential for multi-

modal tasks. Our framework achieves more inter-

pretable multimodal relation extraction by process-

ing coarse-grained and fine-grained cross-modal

graphs. The use of reinforcement learning agent-

based methods helps to mine the potential relation-

ships of multimodal information and explore the

latent space relationship connections of multimodal

alignment. Our method provides a good guide for

the current increasingly complex multimodal in-

formation processing and reinforcement learning’s

ability to explore potential information.
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6 Limitations

While our study shows promising results, there are

also some limitations.

Firstly, although the dataset used in our experi-

ments is comprehensive, it does not encompass all

variations of multi-modal data. Specifically, our

current evaluation does not include tests with video

and other dynamic data types, which are increas-

ingly significant in real-world applications.

Furthermore, while our method offers improve-

ments over existing approaches, it still requires fur-

ther validation in more diverse data environments.

Future work will focus on extending our research

to include video and other emerging dynamic data

types, thereby enhancing the practical applicability

and adaptability of our framework.

These limitations highlight areas for future im-

provement, aiming to increase the robustness and

effectiveness of our approach in real-world multi-

modal relation extraction tasks.
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A Appendix

A.1 Detailed Case Study

We show the Fig 5 about one detailed case study

with our method on the MORE dataset. This sam-

2 Win Abel Prize for Work That Bridged Math and Computer Science

/per/misc/awarded
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Figure 5: Example Use Case Graph.

ple contains multi modal information to identify

relationships between entities, textual content: "2

Win Abel Prize for Work That Bridged Math and

Computer Science" and visual content: 5 visual

objects in the image.

Method Application Steps

1. Construct Cross-Modal Graph (CMG)

First in this step, We make fusion of text and

visual information into a unified cross-modal graph.

In terms of text entity extraction, we extract the

main entity: “Abel Prize”. In terms of vision, we

use 5 different visual objects and label them as

object1 to 5. Then we can construct our initial

CMG with Central node: Abel Prize, Connections:

link between Abel Prize to all 5 visual nodes, edge

weights: According to the “2 Win” information in

the text, some edges may be assigned higher initial

weights

2. Coarse-grained operation of reinforcement

learning

In this stage, the reinforcement learning agent op-

timizes the CMG. The agent can have possible ac-

tions: (1) Delete the nodes of visual objects (object

1, object 3 object 4), because they may not be the

main winners and include noises. (2) Strengthen

the connection between the Abel Prize and object 2

and object 5. (3) Try to add an edge between object

2 and object 5 to indicate the potential relationship.

The agent have the optimization goal to improve

the accuracy of relationship extraction while main-

taining the simplicity of the graph, and mine poten-

tial relationship information.

3. Fine-grained feature diffusion process

After optimizing edges and nodes, we can refine

the edge weights at fine-grained level. We propa-

gate information based on node features (e.g., posi-

tion and size of a person in an image). We adjust

edge weights between the Abel Prize and objects 2

and 5 which means we can potentially strengthen

these connections. Then we can optimize edge

weight if it is added between objects 2 and 5 by

reinforcement learning agent. This process results

in a refined CMG that emphasizes important rela-

tionships (e.g., reward relationships) and reduces

minor or noisy connections.

4. Relationship Extraction Using GNN

Finally, we input the optimized CMG into the

graph neural network (GNN) for final relationship

extraction.We use the refined CMG as input for

GNN. Then GNN considers node features (from

text and images) and edge weights. We will have

the prediction of the possible relationship type and

its probability for entity pairs (e.g., Abel Prize-

object 2, Abel Prize-object5) as output.

Result Analysis We successfully identified the

“/per/misc/awarded” relationship in this case. Our

method extract information from two modal: Text:

“Winning the Abel Prize” clearly indicates the fact

of winning, Visual: The prominent positions of the

two main characters’ images support that they are

winners. And our method strengthens the connec-

tion between Abel Prize and the two main char-

acters’ nodes during the optimization process of

CMG. Due to the high consistency between text

and visual information, we can get high confidence

in this relationship identification.Our framework

effectively removes irrelevant visual information.

And with the fine-grained node feature diffusion

processing, we can further refine node connections

and improve the model’s sensitivity to core links.

Reinforcement learning agent make us try to ex-

plore the potential connection possibilities, such as

cooperation between winners.

This case study explains in detail the effective-

ness of our method in processing complex multi-

modal data, especially in integrating text and visual

information to extract high-quality relationships

through optimization of cross-modal graphs with

higher interpretability and transparency.


	Introduction
	Related Work
	Our Framework
	Cross-Modal Graph (CMG) Construction
	Reinforcement Learning Agent
	State and Action Representation
	Reward Function
	Optimization Process

	Diffusion Process
	Relation Extraction using Refined Graph

	Experiment
	Dataset
	Setting
	Evaluation Metrics
	Main Results
	Training Trends Analysis
	Case Study
	Ablation Study
	Analysis and Discussion

	Conclusion
	Limitations
	Appendix
	Detailed Case Study


