ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

é;uSEnIX fusenlx
ASSOCIATION ASSOCIATION

AVAILABLE

Quantum Virtual Machines

Runzhou Tao
University of Maryland, College Park

Jason Nieh
Columbia University

Abstract

Cloud computing services offer time on quantum computers,
but users are forced to each use the entire quantum computer
to run their programs as there is no way to multiplex a quan-
tum computer among multiple programs at the same time. We
present HyperQ, a system that introduces virtual machines for
quantum computers to provide fault isolation, better resource
utilization, and lower latency for quantum cloud computing.
A quantum virtual machine is defined in terms of quantum
computer hardware, specifically its quantum gates and qubits
arranged in a hardware-specific topology. HyperQ enables
quantum virtual machines to be simultaneously executed to-
gether on a quantum computer by multiplexing them in time
and space on the hardware and ensuring that they are iso-
lated from one another. HyperQ works with existing quantum
programs and compiler frameworks; programs are simply
compiled to run in virtual machines without the programs or
compilers needing to know what else might be executed at the
same time. We have implemented HyperQ for the IBM quan-
tum computing service, the largest quantum computing fleet
in the world. Our experimental results running quantum pro-
grams in virtual machines using the IBM service demonstrate
that HyperQ can increase utilization and throughput while
reducing program latency, by up to an order of magnitude,
without sacrificing, and in some cases improving, fidelity in
the results of quantum program execution.

1 Introduction

Quantum cloud computing now makes it possible to obtain on-
demand access to quantum computers through cloud-based
platforms. These first-generation quantum computers from
cloud providers in the form of Noisy Intermediate-Scale Quan-
tum (NISQ) [49] devices heralds the initial shift from classical
to quantum computing and the potential realization of prac-
tical quantum applications [23]. While classical computers
consist of circuits made up of gates that process bits, NISQ
devices consist of quantum circuits made up of quantum gates
that process quantum bits (qubits). Given their high cost and
complexity, cloud computing providers typically only have
a few quantum computers available. Nevertheless, they are

Jianan Yao
University of Toronto

Hongzheng Zhu
University of Maryland, College Park

Ronghui Gu
Columbia University

in high demand by users and IBM recently ran its 3 trillionth
quantum program [35].

While cloud computing provides robust software infras-
tructure that leverages virtual machines (VM) to enable effi-
cient, scalable, and flexible multi-tenant utilization of classical
computing resources, the software infrastructure for quantum
cloud computing is primitive at best. Users of cloud-based
quantum computers submit the quantum programs they want
to run to as batch processing jobs, and the cloud service runs
the quantum programs on the quantum computer one after
another and returns the results. There is no virtualization of
quantum computing resources, so each program, no matter
how big or small, runs by itself on the quantum computer
until it completes, at which point another program is run. This
is extremely inefficient given that most programs can only uti-
lize a small number of the qubits available on existing NISQ
devices, leaving much of the quantum computer unused. Pro-
grams can only utilize a small number of qubits because as
the number of qubits used increases, the complexity of the
underlying quantum circuit being executed also increases,
leading to propagation errors due to hardware noise and loss
of fidelity in the results. The utilization problem is exacer-
bated by the limited number of quantum computers available.
Users can end up waiting days for a quantum computing ser-
vice to return the results of their programs given the high
demand for quantum computing resources and the inability of
the quantum computer to run more than one program at a time.
Cloud services often further limit the number of outstanding
program submissions from a user at any given time to only a
few, adding further delays to obtaining results from running
multiple quantum programs.

Addressing this inefficiency requires enabling multiple
quantum programs to share the underlying hardware. While
some research efforts have proposed methods for quantum
multiprogramming, they rely on custom quantum compilers
to combine multiple programs at compile time [15,34,43-45].
This static approach requires knowing precisely which pro-
grams will execute together during compilation, preventing
independent compilation and execution—a stark contrast to
the flexibility enjoyed in classical computing. Many exist-
ing techniques struggle with scalability, either limiting the
number of co-executing programs or relying on algorithms

with poor complexity for larger machines. Furthermore, these
specialized compilers often lack the optimizations found in
standard compilation tools like Qiskit.

Inspired by the success of VMs in improving the utilization
of classical cloud computing services, we present HyperQ, a
run-time management system for cloud-based quantum com-
puting based on a new quantum virtual machine (QVM) ab-
straction for quantum computers. It virtualizes quantum hard-
ware, i.e., exposes the same interface as a standalone quan-
tum computer, supports multiprogramming dynamically and
enables fault isolation. It significantly improves resource uti-
lization and reduces latency while mitigating the impact of
hardware noise to preserve, and even improve, the fidelity of
program execution, all with minimal virtualization overhead.

HyperQ defines a qVM in terms of quantum computing
hardware as a quantum circuit abstraction for running quan-
tum programs with a well-defined set of quantum gates and a
fixed number of qubits arranged in a specific topology. To en-
able direct execution of qVMs, the VM qubit topology must
be matched to the qubit topology of the underlying quantum
computer hardware. However, qubits can in theory be con-
nected in arbitrary topologies, making it difficult to match the
topology of a VM with that of the quantum computer. Our
insight is that we observe that all real quantum computers de-
fine a qubit region in which qubits are connected together in a
fixed topology, and that region is replicated in a grid-like man-
ner to constitute the overall quantum computer. We leverage
this insight to define qVMs in a architecture-specific manner
such that the qVMs for a quantum computer are some fixed
multiple of its qubit region and thus can be easily mapped
to the computer to execute. HyperQ also leverages the natu-
ral separation of qubits in the hardware topology to isolate
different qVMs and mitigate crosstalk noise when multiple
quantum programs are executed simultaneously.

HyperQ virtualizes and manages quantum hardware in a
manner that is compatible with existing quantum cloud com-
puting services. Since quantum computer hardware does not
yet have quantum memory (QRAM), it lacks context switch-
ing capabilities. To support qVMs without being able to save
and restore quantum execution state, HyperQ interposes on
how quantum programs are submitted to cloud computing
services. Users locally compile their quantum programs and
submit them in the same manner as they do with existing
infrastructure, but the compiler backend transparently targets
a qVM instead of a quantum computer. HyperQ encapsu-
lates the compiled executables in their respective qVMs, then
schedules qVMs for execution by binpacking them into com-
posite quantum circuits, each of which fits into the qubits of
the actual quantum computer. Each composite quantum cir-
cuit appears to the cloud service like any other other job, and
hence can be submitted to, and executed by, existing quantum
computing cloud services. Running a composite quantum cir-
cuit enables its qVMs to execute in parallel and in isolation
on different qubits of the quantum computer.

qubit q[3];

h q[0];

cx q[0], ql2];
cx qle], ql1];

Van)
A\

9—

10)

0) {#]
0) ——

Figure 1: A simple GHZ circuit. $ denotes a CX gate.

To construct the composite quantum circuits, HyperQ op-
timizes the allocation of quantum hardware resources and
partitions resources among qVMs to provide fault isolation.
HyperQ uses a simple scheduling algorithm that can guar-
antee better resource utilization and lower latency for every
quantum program compared to the service it would receive
without HyperQ on an existing quantum cloud computing
service. The algorithm solves a three-dimensional binpack-
ing problem across both space and time while accounting for
quantum-specific resource constraints including noise and
measurement. It can further tradeoff utilization for improved
fidelity of results of quantum program execution.

HyperQ is compatible with existing quantum compilers
such as Qiskit [22], enabling quantum programs to leverage
its many compiler optimizations. A qVM appears as a back-
end compilation target similar to actual quantum hardware.
Quantum compilers need not know what else will run with
the program being compiled, but can simply compile quan-
tum programs to their respective VMs independently of one
another. This is in contrast to existing quantum multiprogram-
ming methods [15,34,43-45] that require custom compilers
and knowing the exact circuits to be co-executed to combine
them at compile time. Since programs are compiled to qVMs
instead of the larger underlying quantum computer, they com-
pile faster as compilation time is proportional to the number
of qubits of the compilation target, irrespective of whether the
program actually uses the number of qubits available.

We have implemented HyperQ and demonstrate that it can
be easily used by existing quantum programs and compiler
infrastructure, and deployed with existing quantum cloud com-
puting services. Our experimental results with the IBM Quan-
tum cloud computing service and its 127-qubit Eagle quantum
computer [50] show that, compared to IBM Quantum, HyperQ
can increase resource utilization and reduce latency in obtain-
ing results by up to an order of magnitude for a wide range of
quantum programs. We show that VMs are isolated from one
another during execution so that these performance gains can
be achieved without compromising fidelity in the program
results. Surprisingly, we also show that HyperQ can schedule
qVMs in a noise-aware manner that can even improve fidelity
in the program results compared to IBM Quantum, while still
providing much better utilization and latency.

2 Background

We first provide some background about quantum programs,
computers and compilers. For further details, see [21,42].

0-0-0-0-0-0-0-0-0 0-0-0-0-0
¢ ? ¢ ?
0 ¢ 0-0-0-0-9-0-0-0 O 0-0-0-0
® ¢ ¢ ¢
9-0-0-0-9-0-0-0-0-0-0-0-0-0-0
¢ ¢ ¢ @
©-0-0-0-0-0-0-0-0-0-0-0-0-0-0
¢ ¢ ¢ ¢
9-0-0-0-9-0-0-0-0-0-0-0-9-0-0
¢ ¢ ¢ ¢
0-0-0-0-0-0-0-0-0-0-0-5-0-0-0
¢ ? ¢ ¢

Figure 2: IBM 127-qubit Eagle machine [50].

oo__0o0__00__00_ _00

o 00 00 6060 00 O
Oo oO 0° °0 0° °0 °° °° Oc oO
0000 000® 0000 0000 °00°
¢ o0 006 00 00 _O

e 00 00 o 00

Figure 3: Rigetti 80-qubit Aspen M-3 machine [1].

Qubits, quantum gates and quantum programs In quan-
tum computing, each quantum program is represented as a
quantum circuit. The basic unit of a quantum circuit is a qubit,
analogous to a register in classical computing. While a bit in
classical computing can only be O or 1, a qubit can have many
more states, specifically any state that is a superposition of
0 and 1. The basic operation on qubits is through a quantum
gate, analogous to an instruction in classical computing. A
typical quantum gate operates on either one or two qubits.
On a quantum machine, two single-qubit gates can run si-
multaneously on two qubits, as can two two-qubit gates on
two disjoint pairs of qubits. Quantum gates manipulate qubits
to cause interference, whereby certain qubit states construc-
tively combine and others are eliminated, and entanglement,
whereby a qubit’s state is correlated with other qubits. Qubits
can be measured to get classical bits as result, where the result
of a measurement is probabilistic and will collapse the qubit
to the state that agrees with the measurement, which will be
either O or 1. A typical quantum program will perform mea-
surements at the end to produce output of the same number of
classical bits as it has qubits. Figure 1 shows a simple GHZ
circuit [20] represented by graph and by code.

Quantum computers A quantum computer has a quantum
processing unit (QPU) that supports a fixed set of quantum
gates, known as its gate set, and arranges its qubits in a par-
ticular topology, the latter being described by a coupling map.
Similar to classical logic where a set of AND, OR, and NOT
gates are sufficient, in quantum computing, there is also a
universal gate set. A common universal gate set is the sin-
gle qubit rotation and an entangled two-qubit gate such as
the Controlled-NOT (CX) gate, shown in Figure 1. Different
quantum computers may support different gate sets, or instruc-

q0 {H U(n/2,0,m) ——D D

gl Pary D oD oD oD
N7 NPAR SENVAS G VAR GNPV

q2 7 7

(a) After routing. (b) After nativization.

Figure 4: Compilation of GHZ circuit. In the routing stage, if qubit
40 is not connected to g2 in the coupling map, it is not possible to
have a CX gate between them. Instead, two SWAP gates between g0
and g1 will be inserted and the CX gate will be applied between g1
and ¢2. In the nativization stage, with the instruction set {U,Cx}, H
is translated into U(n/2,0,7) and SWAP is expanded into three CX
gates.

tion sets, and qubit topologies. For example, Figures 2 and 3
shows the coupling maps of the IBM Eagle and AWS Rigetti
Aspen M-3, which are quite different. Quantum computers
are also equipped with classical registers to store the results of
measurements. Note that quantum computers currently lack
QRAM, so there is no mechanism to save qubit states outside
of the QPU. The only option is to reduce qubits to classical
bits by measuring them so the results can stored in classical
RAM, with the resulting loss of quantum superposition.

Quantum compilation Quantum compilation transforms a
quantum program into a quantum circuit that satisfies the
topology and gate constraints specified by a quantum com-
puter. This includes mapping the qubits used by the program
to actual qubits available in the quantum computer. A routing
stage [26,36,57] inserts SWAP gates into the circuit, to swap
qubits, so that two-qubit gates are only applied to qubit pairs
that are actually connected in the coupling map. A nativiza-
tion stage [33] decomposes all quantum gates into those in
the instruction set of the target quantum hardware. Figure 4
shows an example for compiling the GHZ circuit. Because
compilation is based on the constraints of the target quantum
hardware, the resulting compiled quantum circuit is only for
the target hardware and is generally incompatible with other
hardware with different instruction sets and qubit topologies.
For example, a quantum program compiled for the IBM Eagle
will not run on the AWS Rigetti.

Noise A significant challenge in near-term quantum com-
puting is the presence of noise. Noise arises from unwanted
interactions between the qubits and their surrounding environ-
ment, such as thermal fluctuations or electromagnetic interfer-
ence when performing quantum operations and measurements.
Noise introduces errors into quantum operations, leading to
a decrease in the fidelity of quantum states and ultimately
causing the execution of quantum programs to yield incorrect
results. Noise can occur from quantum gates and measure-
ments, as well as crosstalk between qubits. Crosstalk occurs
when operations on one qubit unintentionally affect the states
of neighboring qubits. It is typically caused by unintended
electromagnetic coupling or leakage of control signals be-

local machine A

— -I. -
compile

circuita compiled circuits for a
local machine B space
® ; scheduling
&~ compile
circuit b compiled circuits for b

more local machines .
o queue

HyperQ
" o

I

time T—

result of a

time quantum result of b
—_

result of ¢ |

-
scheduling execution

result of d -

Figure 5: HyperQ workflow.

tween nearby qubits on the quantum chip, and its effects are
strongest between qubits that are directly connected with one
another. Crosstalk is a major source of noise for NISQ devices
and its impact can be an order of magnitude greater than gate
errors; mitigating crosstalk is critical to achieve reliable and
accurate quantum computation on NISQ devices [37,45].

3 Design

HyperQ is designed to be compatible with existing quantum
programs, computers, and compilers. It accomplishes this
based on the observation that quantum computers are struc-
tured using a basic repeating region of qubits. For example,
the IBM Eagle in Figure 2 is structured around a repeating
I-shaped region of qubits, while the Rigetti in Figure 3 is struc-
tured around a repeating octagonal-shaped region of qubits.
By leveraging this repeating structure, HyperQ can provide
qVMs such that programs can be independently compiled to
run in qVMs, which are in turn placed into these regions on
the machine and executed correctly because the topology and
gate set of the qVM matches that of the real machine.

Figure 5 shows the workflow of HyperQ. First, users write
and compile their quantum programs on their local machines,
where the compiler target is a qVM instead of the actual
quantum hardware. Second, the resulting compiled quantum
circuits are sent to HyperQ to schedule and run in qVMs on
the actual quantum computer. Because current quantum com-
puters do not support context switching, HyperQ schedules
and multiplexes qVMs on the hardware by binpacking them
in space and time into batch jobs of some estimated execution
duration. Each job is created by composing the qVMs in the
batch together into one big composite quantum circuit. The
batch jobs are then submitted to the cloud quantum computing
service to be executed on the quantum machine. After a batch
job is completed, HyperQ will receive the measurement result
of the combined quantum circuit, which contains results for
all qVMs. HyperQ will postprocess the measurement result
to identify the part that belongs to each VM, and return the
separated results to the users.

Like VMs on classical computers as originally described by
Popek and Goldberg [47], HyperQ ensures that qVMs meet
three virtualization properties of interest whenever a quantum
program is run in a qVM: efficiency, resource control, and

equivalence. The efficiency property states that all innocuous
instructions of the program are executed by the hardware di-
rectly, where an innocuous instruction is one that does not
depend on its location in physical memory or the privilege
mode of the CPU running the instruction. This implies that
HyperQ ensures that the execution speed of a quantum pro-
gram in a VM is at worst a modest decrease versus running
directly on the underlying hardware. Furthermore, since quan-
tum computers lack QRAM and QPUs lack privilege modes,
all quantum instructions are innocuous. The resource con-
trol property states that the program cannot affect the system
resources available to it. This means that HyperQ retains con-
trol of the hardware and ensures that qVMs are isolated from
one another. The equivalence property states that any pro-
gram executing in a virtualized environment should exhibit
the same behavior as if the program had run directly on the un-
derlying hardware, with the possible exception of differences
caused by timing or availability of resources. This implies
that HyperQ retains compatibility with existing hardware and
software so that it can run unmodified quantum programs in
qVMs and have them execute correctly.

qVMs have other similarities and differences with VMs
on modern classical computers. For example, qVMs are
architecture-specific, such that a VM for an IBM Eagle will
not work on a Rigetti quantum computer, just as an x86 VM
will not run an Arm VM. A key difference is that given the
absence of quantum context switching capabilities, HyperQ
does not rely on trap-and-emulate virtualization or hardware
virtualization extensions to support it.

3.1 qVM Interface

HyperQ provides a qVM interface that is the same as that pro-
vided by a quantum machine backend such as IBM Quantum
or Amazon Braket. A qVM provides a virtual coupling map
and instruction set, much like a quantum machine provides a
coupling map and instruction set, also known as its gate set. It
is architecture-specific, just like classical VMs. For example,
just like a VM for an x86 machine will not run directly on an
Arm machine, a qVM for an IBM Eagle machine will not run
on an AWS Rigetti machine. Users can construct their quan-
tum programs using any quantum programming frameworks
like Qiskit. A user can then compile the developed program

into an executable that can run in a qVM, which means it con-
forms to the topology constraint of the given coupling map of
the qVM and only uses the gates provided by the gate set. The
compiled executable for the qVM will include information
regarding how the program’s qubits map to the virtual qubits
of the VM, and identification of the set of classical bits the
program uses for output.

Basic VM configuration A ba- 0 0—0

sic QVM is defined based on the I

repeating structure of a specific o

physical machine. Its coupling I

map is a shape that is repeated 0—0—0

in horizontal and vertical direc- Figure 6: IBM’s
tions in the target physical ma- 7-Qubit Falcon ma-
chine. For example, for the IBM’s chine [50].

Eagle machine, we define the ba-
sic qVM’s coupling map to be an I-shape with seven qubits,
which is not only the repeating region for the Eagle machine,
but also serves as the entire machine configuration for IBM’s
smaller 7-qubit Falcon machine, shown in Figure 6. In other
words, the I-shape is an architecture-specific region for this
family of IBM quantum machines. For the Rigetti Aspen M-3,
the coupling map is defined as an octagon shape.

HyperQ splits the physical machine’s coupling map into
a grid of regions, with each region in the grid have the same
shape of the coupling map of a basic qVM, together with
some optional connecting qubits between two adjacent re-
gions. For example, the I-shaped region pattern appears in
the Eagle machine multiple times. We can split the machine
into 9 non-overlapping "Falcons", which form a 3x3 grid, as
shown in Figure 7. The instruction set of a qVM is the same
as that of the physical machine that will be used to execute
the qVM. This is similar to how classical VMs reflect the
instruction set of the hardware that they virtualize, except that
the VM instruction set is defined in terms of quantum gates.
For the family of IBM quantum machines, the VM inter-
face is identical to that of the IBM Falcon, and therefore the
qVMs can run quantum programs compiled for the IBM Fal-
con without modification, satisfying the equivalence property.
Furthermore, an IBM Eagle machine can run the same qVMs
as an IBM Falcon since they have a common architecture
that is being virtualized in terms of their instruction set and
repeating structure.

Fault isolation HyperQ ensures that qVMs are isolated from
one another by also leveraging the structure of the phys-
ical machine being virtualized. A key issue that HyperQ
must address in this context is that quantum hardware has
crosstalk noise, where the state of one qubit can be affected
by an instruction applied simultaneously on an adjacent qubit.
Crosstalk noise could potentially result in the execution of
one qVM affecting the execution of another. HyperQ isolates
qVMs from one another by enforcing that qubits from differ-
ent qVMs are not directly connected to each other. An easy

Figure 7: VM basic unit mapping grid.

way of doing that is including unused qubits between qVMs
to mitigate crosstalk noise. For example, Figure 7 shows that
the 9 non-overlapping qVMs have unused qubits between
them so that no VM has a qubit that is directly connected to
the qubit of another qVM. As discussed in Section 4.2, our
experimental results demonstrate that this simple approach is
effective in ensuring fault isolation.

Scaled qVM sizes HyperQ provides different sizes of qVMs
so that quantum computing resources can be elastically al-
located according to computation needs. All the qVM sizes
are a multiple of the basic qVM, which we refer to as scaled
qVMs. Specifically, HyperQ provides m x n qVMs, which
have the same instruction set as that of the basic qVM, and
a coupling map with the shape of an m x n array of basic
qVM shape, together with all the connecting qubits connect-
ing adjacent basic shapes. For example, a 1 X 2 qVM on the
IBM Eagle has 16 qubits and a coupling map of two I-shapes
connected horizontally with two connecting qubits.

There are two principles to choose connections for scaled
qVMs. First, they need to have the same shape so that we can
easily assign the scaled qVMs anywhere on the real machine.
For example, we would like to assign scaled qVMs anywhere
within the 3x3 grid for the IBM Eagle. Unfortunately, the cou-
pling map is not 90-degree rotational symmetric so we cannot
make all connections to be the same. To work around this is-
sue, we define horizontal and vertical connections separately,
as shown in Figure 8 for the IBM Eagle. By making sure all
horizontal connections and all vertical ones have the same
shape respectively, we can still achieve the grid abstraction.
We just need to be careful that now a nxm VM and mxn VM
are different when n#m. Second, connections within a scaled
qVM should not overlap with connections that can possibly
be used by other scaled qVMs. In other words, if we remove
a scaled qVM from the grid of regions, adjacent basic regions
in the remaining grid should still be able to connect. This
does not mean all connections must be completely distinct.
We can have overlapping connections within a scaled qVM.

Each scaled qVM of a different size also needs a defined
coupling map, built from the basic I-shaped unit, horizontal,
and vertical connections. For a connection, we use negative
qubit number and add corresponding edges, as shown in Fig-

0-0:0-0-01070-0-07010-0-0 0-0-0-0-0:070-0-0:010-0-0
® & o @ e | & | o || @
Ly 3 © Ly Ly o ® Ly
0-010-0-0/0610-0-0{610-0-0 01010-0-0{0{0-0-01010-0-0

(-]
(<]
=]
[
-]
[
(=)
(<]
(<]
=]
[
-]

o
@
o
P
O
o
@
o

D=-0-0|
hd
Y
©-0|
o
L4

[(] (] (] @] (]
(] [@ (] (] (-]] (]

@

e
(=]
(-]
(=)
(-]
=]
[]

Py
©

(<]
(]
[]
(]
(]
(<]
(-]

ey
@

B, Py O Py Py

Figure 8: Physical connections for scaled qVMs.

ure 9b. Negative numbered qubits represents qubits inside of
connection and positive numbered qubits represent the qubit
in the adjacent basic unit. For example, qubit -2 in a horizon-
tal connection should connect to qubit O of the basic block on
its right, and qubit 2 of the basic block on its left. Each qubit
in a scaled VM needs its own unique number in the coupling
map, which we provide by translating the numberings in Fig-
ures 6 and 9b based on their relative position. Basic units,
horizontal connections and vertical connections are added in
row-major order which each component having an assigned
qubit number offset. The numbering of a qubit is its compo-
nent offset plus its number within the component. We ensure
that we avoid renumbering the same qubit if horizontal and
vertical connections overlap.

HyperQ also scales using fractional multiples of a basic
qVM, which we refer to as a fractional VM. For example, a
half qVM for the IBM Eagle would be top or bottom 3-qubit
shape in the I-formation, dividing the basic 7-qubit VM into
two fractional 3-qubit qVMs. Fractional qVMs allow multiple
small quantum programs to be executed simultaneously in
isolation in a region normally taken up by one basic VM.

For scaled qVMs, HyperQ maintains fault isolation in a sim-
ilar manner as for basic qVMs. Scaled qVMs that are larger
than basic qVMs inherent the same unused qubits between
basic qVMs for fault isolation. Fractional qVMs utilizes the
unused qubit in the middle of the I-formation between the top
and bottom 3-qubit shapes to provide a similar fault isolation
mechanism.

Adaptive qVM size selection Unlike classical VMs, a qVM
does not have an operating system to multiplex multiple quan-
tum programs because such operating systems are not avail-
able, so each VM runs a single quantum program. Instead of
manually selecting the size of a qVM, HyperQ automatically
adapts the qVM size to the needs of the quantum program
it will run, starting with the compilation process. Quantum
programs define the number of qubits used in its quantum
circuit, so it is straightforward for HyperQ to rightsize the
qVM required. There is no reason to choose a smaller gVM
because it will not be able to run the program, and there is
no reason to choose a larger qVM because it will occupy
additional qubits that it does not need.

For a given qVM size, multiple shapes may be possible.

2@ @-®
@

@D-©

(b) Vertical connection

©O--®

(a) Horizontal connection

Figure 9: VM connection coupling map for scaled qVMs.

For example, a 4 basic unit qVM could be a 1x4 qVM, a
2x2 qVM, or a 4x1 qVM. HyperQ aims to choose the shape
that uses the minimal number of basic regions and the best
connectivity. By default, HyperQ iterates through all possible
(m, n) combinations and chooses the one that can satisfy
desired qubit count with the smallest mxn. When multiple
configurations have the same mxn, HyperQ chooses the ones
with the smallest |m — n|. For example, HyperQ would prefer
2x2 over 1x4 since the former has better connectivity. In the
default case, HyperQ generates at most 2 versions of qVMs,
which can occur when there are two qVMs with the smallest
|m — n|. For example HyperQ would generate both 1x3 and
3x1 qVMs if 3 basic units are required. In the scheduling
step, HyperQ can adaptively select the best gVM shape to use
given real-time traffic on the system.

3.2 Compilation

Users compile their quantum programs for qVMs in the same
manner as they do for real hardware. There is no difference
from the perspective of the user’s workflow. Like classical
computers, there is no need for the compiler to know what
else will be running on the quantum computer as part of
compilation. HyperQ works with existing quantum compiler
frameworks to automatically select the right size qVM for
the program based on the number of required qubits defined
in the program. However, a compiler requires a backend to
target for compilation. From the perspective of the compiler,
each qVM of different dimension is considered a different
backend with its own coupling map, just like IBM Falcon and
Eagle machines are also considered different backends for
existing quantum compilers. To utilize existing compilers, we
provide a virtual backend object matched to the respective
qVM’s coupling map. When compiling a quantum program
for a qVM, HyperQ determines the right size qVM based on
program information, then selects that virtual backend for the
compiler to use to generate the executable quantum circuit. A
virtual backend appears just like a backend for real hardware,
so existing compilers can work with qVMs without modifi-
cation. For example, the compiler can perform optimizations
on the virtual backend just like it does for a hardware back-
end. Although this provides broad compatibility with existing
compilers, one limitation can be if the virtual backend does
not provide the same degree of hardware specificity. In this
case, certain highly specialized hardware-specific optimiza-
tions that rely on the full knowledge of the physical machine’s
low-level properties might not be fully exploited during com-
pilation targeting a qVM.

We implemented virtual backends for the Qiskit compiler
framework, which is widely used and is the default compiler
infrastructure for the IBM Quantum Platform. A Qiskit back-
end also includes run instructions for how to run the compiled
executable. In the case of qVMs, the run instruction calls Hy-
perQ, which in turn performs scheduling before submitting
the VM to quantum hardware for execution. The virtual
backend interface has equivalent behavior as real backends
provided by IBM.

3.3 Scheduling

Users submit their qVMs with compiled executables to Hy-
perQ. They are analogous to classical virtual appliances,
which are VMs prepopulated with the program they will
execute. HyperQ provides hypervisor-like functionality by
scheduling when to run the qVM, allocating the necessary
quantum hardware resources, and isolating qVMs from one
another. To be compatible with existing quantum cloud com-
puting services, HyperQ introduces a scheduling algorithm
that is guaranteed to perform at least as good as the current
approach of running programs sequentially one after another
in FIFO order. The idea for HyperQ’s scheduler is to con-
sider qVMs for scheduling in FIFO order, but group qVMs in
batches where they can run simultaneously by space and time
multiplexing the quantum hardware. Each batch is then sent
to the real hardware for real execution.

The scheduling algorithm solves a three-dimensional bin-
packing problem of how to pack qVMs in space and time
to run on a quantum machine. An important constraint with
existing cloud quantum computing services is that each pro-
gram runs to completion and is not preemptible. To fit into
this framework, HyperQ essentially packs qVMs together in
a batch so the batch appears to the cloud service as one big
quantum program that uses some number of qubits and runs
for some amount of time.

The scheduling algorithm divides this binpacking problem
into two stages. First, HyperQ performs a space scheduling
algorithm that partitions the quantum hardware resources
into basic regions and assigns those regions to qVMs so they
can run at the same time. Second, HyperQ performs a time
scheduling algorithm that appends some qVMs into the batch
created by space scheduling to even out the amount of ex-
ecution time required across basic regions. Once a batch is
completed and sent to the hardware, the scheduling algorithm
will repeat the process again on the remaining qVMs that
have been queued but not yet scheduled for execution.

Space scheduling Without HyperQ, a single quantum pro-
gram running on the physical machine will occupy the whole
machine, even if it only uses a small portion of qubits in the
machine. HyperQ solves this problem via space multiplexing
by dynamically partitioning the machine into multiple regions
matched to the sizes of the qVMs that need to be executed.
The scheduling algorithm selects a set of qVMs from the job

Algorithm 1: Space Scheduling

Input: L: a list of executables
Output: a list of compiled circuits with their location
selection + {}
occupied[r][c] + false, ¥V 0 < r < maxrow,0 < ¢ < maxcol
for e in L do
for v in all versions of e do
for (7, ¢) in all positions do
if regions in [r, r+v.width) X [c, c+v.height) are
all unoccupied then
add (v,r,c) into selection
mark all regions used by v occupied

if all regions occupied then
| return selection

break

return selection

queue and assigns them to regions on the real hardware.

Algorithm 1 shows the spatial scheduling algorithm. It em-
ploys a greedy approach. The algorithm scans through the job
queue of qVMs in arrival order. For each qVM, the algorithm
checks whether it is possible to assign that VM to one (or
an array of) unoccupied regions on the hardware. If so, the
qVM is assigned to those regions and removed from the job
queue. Otherwise, the qVM is left unchanged and will be
considered for the next batch. If there are multiple possible
assignments, the algorithm will always use the topmost left-
most assignment. If there are multiple shapes of VMs for a
given quantum program, the algorithm will try them in order.

A key feature of HyperQ’s approach is that the regions
assigned have the same shape as the coupling map of the qVM.
This enables mapping a VM and its compiled executable to
run on the real machine without the need for the program to be
recompiled. Recall that compilation assigns program qubits
to qubits for the target machine, which in the case of a qVM,
are virtual qubits of the qVM. Once a qVM is scheduled to
a specific region of the real machine, each virtual qubit of
the VM is assigned to a physical qubit of the real machine.
HyperQ simply replaces the virtual qubits in the instructions
of the executable with the physical qubits that will be actually
used for execution. This can be thought of as just changing
the qubit labels. This process is easy and fast, and allows a
qVM to be placed in any region on the real machine.

Noise-aware scheduling In addition to space scheduling, Hy-
perQ offers a noise-aware variant of its scheduling algorithm,
designed to leverage up-to-date machine noise information
and improve the fidelity of program execution. For instance,
on IBM Quantum’s Eagle device, noise calibration data for
each pair of qubits is refreshed daily as their noise character-
istics vary over time. HyperQ aggregates this data to compute
an average noise level for each basic qVM region. It then
ranks these regions by noise quality and designates the worst
n as “low-quality.” By avoiding these low-quality regions
during scheduling, HyperQ can improve the fidelity of quan-
tum program results. The parameter n is tunable, allowing

the system to balance throughput against fidelity; our experi-
ments show that excluding the three lowest-quality regions
yields a measurable fidelity improvement while sustaining
good performance.

Beyond machine-level noise considerations, HyperQ also
estimates the noise sensitivity of a qVM based on the program
it will run. This could be done in several ways. One approach
would be for the qVM to have a configuration option that its
user can set to indicate whether its program is noise resilient.
For example, a user that is using a VM could indicate that it
is noise resilient if it is running a variational quantum algo-
rithm which can handle high levels of noise versus a Fourier
transform which is more brittle to noise. Another approach
would be to designate certain qVMs as not noise sensitive
using a simple heuristic of their gate count exceeding some
threshold because then they are likely to have highly noisy
results. During scheduling, these high-noise or noise-resilient
qVMs are preferentially placed onto the low-quality regions,
thus conserving the high-quality ones for more noise-sensitive
workloads. To enable this, we add a single condition to the
space scheduling algorithm: if the next job in the queue is
a normal qVM, it is assigned to regions of higher quality,
whereas a high-noise or noise-resilient gVM is placed in low-
quality regions. As with basic space scheduling, the jobs are
processed in FIFO order, ensuring fairness while accommo-
dating varying noise characteristics.

Time scheduling Besides space-multiplexing to run multi-
ple quantum programs in parallel, HyperQ also uses time-
multiplexing to fill in gaps caused by differences in how long
different qVMs need to run, which would otherwise leave
machine resources idle. When a qVM with a long running
program runs in parallel with a qVM with a shorter program,
the time scheduling algorithm appends another VM to the
end of the VM with the shorter program. After executing
the VM with the shorter program, the qubits it used do not
need to stay idle while waiting for the qVM with the longer
program to finish, but can be used by another qVM.

Algorithm 2 shows the time scheduling algorithm. It starts
from the job batch created by space scheduling. It scans the
job queue of qVMs by arrival order. For each qVM, the al-
gorithm will try to append it to a region after an already
scheduled qVM, or to an array of regions with qVMs of sim-
ilar execution time. This appending is valid only when the
total execution times of qVMs on that region does not exceed
the VM with the longest execution time scheduled in the
previous space scheduling step. If there are multiple possible
assignments, the algorithm uses the topmost leftmost assign-
ment. After time scheduling, the overall execution time of the
whole batch will remain the same.

A requirement of the time scheduling algorithm is esti-
mating how long each VM needs to run. While in classical
computing, estimating the execution time of arbitrary pro-
grams is problematic, this is much easier to do accurately for

Algorithm 2: Time Scheduling

Input: L: a list of executables
S: a list of compiled circuits with their location selected by
space scheduling
Output: a list of selected compiled circuits with their
location
selection < §
length[r][c] < O, reuse[r][c] < O,
V 0 < r < maxrow,0 < ¢ < maxcol
for vin S do
for (7, ¢) in positions used by v do
| length[r][c] < v.length
for e in L do
for (7, ¢) in all positions do
for v in all versions of e do
if putting v at [r, r+v.width) X [c, c+v.height)
does not increase max length and does not
exceed reuse limit then
add (v, r,c) into selection
update length and reuse of all regions used
by v
break

return selection

quantum programs. Near-term quantum programs have no
loops and no variable memory access times due to caching
behavior. Their execution time is entirely determined by the
instructions used, which are the quantum gates. Each quan-
tum gate has a known processing time, so HyperQ uses the
circuit critical path length to estimate execution time, where
path length is weighted by each gate’s processing time. Since
quantum compilers such as Qiskit account for gate delay as
part of compiler optimization, we can obtain gate processing
times from Qiskit’s backend properties interface. For exam-
ple, we found that on the IBM Eagle, a single-qubit gate takes
6e-8 seconds (s) and a two-qubit ECR gate takes about 6e-7 s.
HyperQ then uses this information to binpack qVMs in time.
Future quantum hardware supporting newer dynamic circuits
that can incorporate conditional gate execution may make
estimating running time harder; we leave this as future work.

Appending a qVM after another qVM to time multiplex the
same set of physical qubits requires first resetting the state of
the qubits so that the appended qVM can be executed without
being entangled with the state of the previous VM. Before
the reset, the previous qVM needs to perform a measurement
of the qubits to obtain its results. The time scheduling algo-
rithm accounts for the potential delay caused by mid-circuit
measurement and reset and will leave gaps unfilled if the costs
of measurement and reset in the middle of the execution of
some circuits would outweigh the benefit of running another
qVM. We use Qiskit’s backend properties interface to obtain
measurement and reset operation execution times. For the
IBM Eagle, the measurement and reset operation times are
1.3e-6s and 1.8e-6 s, respectively.

HyperQ’s scheduling provides performance guarantees
with respect to the serialized FIFO approach used currently by

cloud quantum computing services. That serialized approach
runs programs to completion in arrival order and has each
program take up the entire machine when it runs. We refer
to the time interval in which a program is executed as a time
quantum, and can view the operation of a quantum computer
as executing programs in sequentially numbered time quanta.
HyperQ guarantees that it will always run a quantum program
in a time quanta numbered no higher than the time quanta
from using the serialized approach. In other words, any quan-
tum program will be scheduled for execution at least as early
as the serialized approach. Furthermore, by enabling multiple
quantum programs to run in qVMs simultaneously, HyperQ
guarantees that the overall utilization of the quantum machine
is always at least as good as the serialized approach.

3.4 Executing with Quantum Hardware

After grouping qVMs into batches, HyperQ submits the
batches to the actual quantum hardware for execution. Since
current cloud services provide no direct instructional-level
support for qVMs, we use existing interfaces to run qVMs by
aggregating all qVMs in a batch into a big program that can
directly run on real hardware. Then, HyperQ submits the big
job to cloud platforms, and gets the measurement result which
contains results of all qVMs in the batch. Finally, HyperQ
splits the result into results of each program. Note that Hy-
perQ is designed to be a fully dynamic runtime system, so the
qVM abstraction can be dynamically supported once online
runtime control of quantum hardware becomes available.

qVM aggregation To aggregate the qVMs into a big job,
HyperQ combines them all into a single composite quantum
circuit. This preprocessing involves qubit translation, gate
direction adjustment, and insertion of reset instructions.

For space multiplexing, HyperQ translates all instructions
on virtual qubits in the programs compiled to qVMs into
instructions on physical qubits. HyperQ maintains a qubit
mapping between qVM qubits and physical qubits for all
shapes of qVMs and all possible allocation positions of the
qVMs onto the hardware. Because qVMs map to the hardware
in rectangular grid regions, it is straightforward to maintain
this mapping by translating qVM grid coordinates. HyperQ
uses this mapping to translate all programs in qVMs by chang-
ing their virtual qubits into hardware qubits according to the
qubit mapping. For example, if a program is using a virtual
qubit 1 which is mapped by scheduling to physical qubit 20,
HyperQ will translate the instructions with virtual qubit 1 to
instructions with physical qubit 20. Using the mapping, trans-
lation is quick and easy to do as a linear scan of the compiled
executable. The translated instructions will be executed by
the hardware directly and have the same execution speed as
the original instructions, because the same instruction has the
same execution time on different qubits. HyperQ’s use of di-
rect execution ensures that it satisfies the efficiency property.

HyperQ must also perform gate direction adjustment.

Qubits are connected by edges, and edges can be directional
on real hardware. In a two-qubit gate, the two qubits perform
different roles. For instance, in a CX gate, one qubit is the con-
trol bit and the other is the operand bit. If the edge between the
qubits is directed, one qubit can only be the control bit and the
other can only be the operand bit. The IBM Eagle machine
uses ECR gates as qubit links and they are directed. Even
though it uses a repeating I-shaped region, the gate direction
for different I-shaped regions may be different. To account for
this, HyperQ uses a qVM coupling map with undirected edges.
Once a qVM has been scheduled to an actual region on the
hardware, HyperQ translates all instructions with undirected
edges to directed edges matching the actual regions. Like
qubit translation, this is straightforward to do via a simple
linear scan of the compiled executable.

For time multiplexing, HyperQ inserts reset instructions
and a barrier at the start of each qVM that follows another
qVM using the same qubits. The resets occur in parallel,
and the barrier ensures they begin simultaneously, helping to
minimize reset latency.

As part of its linear scanning, HyperQ detects any mid-
circuit measurement or reset operations and flags any qVMs
with programs in which the number of such operations ex-
ceeds a defined threshold. This rarely if ever occurs. Such
qVMs are removed and placed into separate quantum circuits
to ensure that they cannot affect the execution of other qVMs.

Finally, HyperQ concatenates all the preprocessed pro-
grams into a big quantum circuit, which contains the exe-
cution of all the programs in the batch and is ready to run
on the cloud. HyperQ’s big quantum circuit is designed to
successfully execute on NISQ hardware devices even though
other large quantum circuits compiled from quantum pro-
grams cannot run successfully due to noise. The reason for
this is that HyperQ’s combined qVM circuit does not per-
form quantum operations across the qubits in different qVMs
whereas quantum circuits from quantum programs generally
do and expect their results to be from the entanglement of
all of the qubits being used. As a result, HyperQ’s combined
circuit does not have the high noise behavior resulting from
entanglement across all of the qubits.

HyperQ retains control of the hardware so that any program
failures cannot corrupt the hardware or affect later executions
of other programs. Before submitting the batch to cloud plat-
forms, HyperQ estimates the running time of the batch by
adding up the estimated gate time provided by IBM along the
longest gate sequence in the batch. HyperQ submits the big
job to the cloud with a timeout limit 1.5 of the estimated
running time. If the job fails to finish, it will timeout and con-
trol of the hardware will return to HyperQ. The combination
of timeouts and unused qubits for fault isolation among qVMs
ensures that HyperQ satisfies the resource control property.

Result post-processing After executing the aggregated cir-
cuit, HyperQ extracts each qVM’s results using a maintained

Name_#qubits Description

Name_#qubits Description

1 deutsch_n2 Deutsch algorithm w/ 2 qubits for f(x) = x

2 dnn_n2 3 layer quantum neural network

3 grover_n2 Grover’s algorithm

4 iswap_n2 An entangling swapping gate

5 qwalk_n2 Quantum walks on graphs up to 4 nodes

6 bchange_n3 Transform single-particle basis of a linearly connected
electronic structure

7 fredkin_n3 Controlled-swap gate

8 linsolver_n3 Solver for a linear equation

9 qaoa_n3 Quantum approximate optimization
10 teleport_n3 Quantum teleportation
11 toffoli_n3 Toffoli gate
12 wstate_n3 W-state preparation and assessment

13 adder_n4 Quantum ripple-carry adder
14 trotter_n4 Trotter steps for molecule LiH at equilibrium geometry
15 bell_n4 Circuit equivalent to Bell inequality test

16 cat_state_n4 Superposition of 2 coherent states w/ opposite phase

17 hs4_n4 Hidden subgroup problem
18 gft_n4 Quantum Fourier transform
19 grng_n4 Quantum random number generator

Variational ansatz for Jellium Hamiltonian w/ linear-swap
network

21 vge_n4 Variational quantum eigensolver

22 err_correct_n5 Error correction w/ distance 3 and 5 qubits

20 ansatz_n4

23 lpn_n5 Learning parity with noise

24 gec_en_n5 Quantum repetition code encoder

25 qaoa_n6 Quantum approximate optimization
26 simon_n6 Simon’s algorithm

27 bb84_n8 Quantum key distribution circuit

28 dnn_n8 16-dimension quantum neural network
29 ising_nl0 Ising model simulation via QC

Table 1: Quantum program workloads in the small category.

mapping between qVM classical bits and their positions in
the big circuit’s output. This linear mapping allows HyperQ
to split the cloud’s returned results into separate outputs for
each qVM.

4 Evaluation

To demonstrate the effectiveness of HyperQ, we have im-
plemented it for the IBM Quantum Platform cloud service
and evaluated its performance. From the cloud provider’s
perspective, we evaluate how much HyperQ can improve
both throughput and utilization of quantum computing re-
sources. From the user’s perspective, we evaluate how much
HyperQ can improve latency by reducing delay in program
execution, including accounting for any extra virtualization
overhead from the offline processing required to schedule and
use qVMs. We also evaluate how HyperQ affects fidelity in
program execution, including how much noise HyperQ intro-
duces from multiplexing quantum hardware among qVMs
and how it compares to the current single execution approach
employed by IBM and other cloud services.

4.1 Experimental Design

We use a subset of QASMBench [25], which covers most
types of typical quantum workloads in different sizes. There

30 sat_nll Boolean satisfiability problem
31 seca_nll Shor’s error correction for teleportation
32 gem_nl3 Generator coordinate method

33 multiply_n13 Perform 3x5 in a quantum circuit

34 bv_nl4 Bernstein-Vazirani algorithm

35 multiplier_n15 Quantum multiplier

36 qf21_nl5 Quantum phase estimation to factor 21

37 dnn_nl6 Quantum neural network

38 gec9xz_nl7 Quantum error correction 9-qubit code

39 bigadder_n18 Quantum ripple-carry adder

40 gft_n18 Quantum Fourier transform

41 sq_root_nl8 Compute square root via amplitude amplification

42 bv_nl9 Bernstein-Vazirani algorithm

43 gram_n20 Bucket brigade qRAM prototype circuit

44 cat_state_n22 Superposition of 2 coherent states w/ opposite phase
45 ghz_state_n23 Greenberger-Horne-Zeilinger state for max entanglement
46 knn_n25 Quantum K-nearest neighbor

47 swap_test_n25 Swap test to measure state distance

48 ising_n26 Ising model simulation via QC

49 wstate_n27 W-state preparation and assessment

Table 2: Quantum program workloads in the medium category.

are three categories of workloads in QASMBench: small,
medium and large. The number of qubits in each circuit ranges
from 2 to 10 in the small category, and 11 to 27 in the medium
category. Within the small category’s range, today’s NISQ
machines can compute correct results with relatively high
probability. We do not use the large category, because the cir-
cuits either require hundreds of qubits or millions of gates, and
therefore are not runnable on near-term quantum computers.

We construct two benchmark sets from QASMBench:
small-only and small&med. The small-only benchmark con-
tains circuits from the small category, as listed in Table 1. This
benchmark is particularly useful to evaluate fidelity because
the expected perfect results of the circuits from the small
category can be computed by classical simulators. Therefore,
we ensure that all circuits in the benchmark contain actual
measurements at the end of execution so that we can approxi-
mately reconstruct the resulting statevectors to compare with
the expected ones. The small&med benchmark contains cir-
cuits from both Table | and the medium category, as listed in
Table 2. This benchmark better evaluates scheduling perfor-
mance in the presence of more varied qVM sizes and show-
cases the elasticity of our HyperQ implementation; it is used
for throughput, utilization, and latency measurements.

To use the QASMBench programs to provide an approx-
imation of a real-world workload, we construct an arrival
order among the programs by randomly putting each program
workload into a queue some fixed number of times. Using
the same number of repetitions for each workload facilitates
later average fidelity calculations. For the small-only bench-
mark, there are 29 program workloads and each is repeated 5
times resulting in a job queue of 145 program workloads. For
the small&med benchmark, there are 49 program workloads
and each is repeated 4 times, resulting in a job queue of 196
program workloads.

We run the benchmarks using four platform configurations:

job arrival |configuration small-only small&med
IBM Quantum 456 s 683 s
HyperQ 54's 178 s
improvement factor 8.4x 3.8x
all-at-once | HyperQ space+time 47 s 139s
improvement factor 9.7x 4.9x
HyperQ noise aware 64 s 176s
improvement factor 7.1x 3.9x
IBM Quantum 456's 683 s
HyperQ 143 s 230s
improvement factor 3.2x 3.0x
poisson |HyperQ space+time 143 s 203 s
improvement factor 3.2x 3.4x
HyperQ noise aware 152s 223's
improvement factor 3.0x 3.1x

Table 3: Throughput for HyperQ versus IBM Quantum.

IBM Quantum The current approach used by the IBM
Quantum Platform, and other quantum cloud providers,
to run each program individually on the entire machine.

HyperQ Use HyperQ to run programs in qVMs with space
scheduling.

HyperQ space+time Use HyperQ to run programs in qVMs
with both space and time scheduling.

HyperQ noise aware Use HyperQ to run programs in qVMs
with space and noise-aware scheduling.

To evaluate performance with different submission queues,
we run all experiments using two different arrival models:
1) all jobs arrive at the start in an infinite job queue (all-at-
once); 2) jobs arrive as a Poisson process with rate of 1 job
per second (poisson).

All experiments run on the IBM Quantum Platform, where
each user is limited to at most three jobs in queue. We used
IBM’s Brisbane quantum computer, which features the 127-
qubit Eagle chip and is available for the public. When a pro-
gram is executed on the hardware, it is run 4000 times by
default to get the resulting state distribution. We used a desk-
top PC with a 3.2 GHz Intel Core i9-12900K CPU and 32 GB
of RAM to compile the programs, schedule and aggregate
qVMs into big job quantum circuits, and postprocess results.
Compilation was done using Qiskit v1.0 with default settings.

4.2 Results

Throughput We measured the throughput when running the
benchmarks. This can be quantified by obtaining the actual
run time for each job on the quantum hardware, which is
reported by the IBM platform, then obtaining the total run
time for each configuration by summing the actual run times.
We can then compute the throughput by dividing the number
of programs executed by the total run time. Since the number
of programs executed for each platform is the same, we can
report the total run time as an indirect measure of throughput.

job arrival |configuration small-only small&med
IBM Quantum 3.3% 7.8%
HyperQ 28% 35%
improvement factor 8.6x 4.4x
all-at-once | HyperQ space-+time 35% 46%
improvement factor 11x 5.8x
HyperQ noise aware 23% 35%
improvement factor 7.2x 4.4x
IBM Quantum 3.3% 7.8%
HyperQ 10% 26%
improvement factor 3.2x 3.3x
poisson |HyperQ space+time 10% 28%
improvement factor 3.2x 3.6x
HyperQ noise aware 9.7% 26%
improvement factor 3.0x 3.4x

Table 4: Utilization for HyperQ versus IBM Quantum.

Table 3 shows the throughput results. HyperQ significantly
outperforms the baseline IBM Quantum Platform by up to
almost an order of magnitude. With jobs arriving all at once,
HyperQ has a higher throughput improvement factor for the
small-only benchmark because it can run more qVMs simul-
taneously since the programs require smaller qVMs. Even
when running larger programs in the small&med benchmark,
HyperQ can provide almost five times better throughput than
the baseline IBM Quantum Platform. HyperQ provides bet-
ter throughput when using both space and time scheduling
than using only space scheduling or noise-aware scheduling,
but all HyperQ configurations significantly outperform IBM
Quantum. With a Poisson job arrival, HyperQ’s improvement
over IBM Quantum is less significant than with the jobs all
arriving at once because there are fewer VMs in the queue
that can be scheduled together. However, HyperQ still pro-
vides 3 times or more improvement over IBM Quantum for
all configurations. Note that HyperQ and HyperQ space+time
are the same for the small-only benchmark with Poisson job
arrival because there are not enough additional jobs in the
queue to use time scheduling. HyperQ noise aware only has
6% lower throughput than HyperQ space+time with a Poisson
job arrival because when there are fewer qVMs to schedule,
there are a sufficient number of good regions to run the qVMs.

Utilization We measured the utilization rate when running
the benchmarks. Traditionally, utilization is defined as the
ratio between the number of active qubit seconds and the total
number of qubit seconds. Ideally, the total number of active
qubit seconds should be the sum of the active seconds of each
qubit, however, the IBM platform provides no reporting of
how long each qubit is actually performing operations. We
approximate this measure by assuming that for each program,
all qubits that are used by the program are active for the whole
time the program runs on the quantum hardware. As a result,
we can approximate utilization using the running time of each
program. We estimate that amount by running each program
alone and recording the total time IBM reports. For a HyperQ
generated job, the number of active qubit seconds is calculated

small-only small&med

job arrival |configuration compile schedule queue run total improve |compile schedule queue run total improve
IBM Quantum 0.04 N/A 226 3.2 229 N/A 0.22 N/A 338 3.5 342 N/A
all-at-once HyperQ 0.04 0.14 26 3.6 30 7.6x 0.16 0.40 9 5.1 101 3.4x
HyperQ space+time 0.04 0.26 22 52 28 8.2x 0.16 0.70 76 6.6 83 4.1x

HyperQ noise aware 0.04 0.14 33 36 37 6.2x 0.16 0.49 96 5.0 101 3.4x

IBM Quantum 0.04 N/A 156 3.2 159 N/A 0.22 N/A 244 35 248 N/A

. HyperQ 0.04 004 1225 37 43x 0.16 029 7.050 12 20x
POISSON | o nerQ space+time | 0.04 004 1225 37 43x| 016 034 4450 97 26x
HyperQ noise aware 0.04 004 1426 40 40x 0.16 034 96 47 15 17x

Table 5: Average latency for HyperQ versus IBM Quantum (seconds).

as the sum of the qubit seconds for all qVMs.

Table 4 shows the utilization results. Similar to the through-
put results, HyperQ far outperforms the baseline IBM Quan-
tum Platform, by up to an order of magnitude. With jobs arriv-
ing all at once, HyperQ has a higher utilization improvement
for the small-only benchmark than the small&med benchmark
because it is easier to pack more qVMs together when they
are mostly of similar size. Nevertheless, HyperQ achieves rel-
atively high utilization for both benchmarks, demonstrating
its ability to maintain good utilization independent of what
workloads are executed. With a Poisson job arrival, HyperQ’s
improvement over IBM Quantum is less significant than with
the jobs all arriving at once because there are fewer qVMs in
the queue that can be scheduled together. However, HyperQ
still provides over 3 times improvement over IBM Quantum.

While HyperQ’s utilization is many times higher than cur-
rent practice, its utilization is limited by external fragmenta-
tion: the number of VM qubits that can be used out of the
total number of qubits on the machine. At most 85 of the
127 qubits are used for the 127 qubit IBM Eagle when all 9
qVM regions are in use. If the number of jobs is small, not all
qVMs are used. For example, for the small&med benchmark,
external fragmentation is 59% for all-at-once and 33% for
Poisson arrival.

Latency We measured the latency for running the bench-
marks with each platform configuration. In the baseline IBM
Quantum case, users need to compile the program, submit it
to the cloud service, wait in queue, and finally the program
can be executed. With HyperQ, there is also the added step of
scheduling qVMs and aggregating them into a job that can be
submitted to the cloud service. Time spent waiting in queue is
the most variable component of latency, and depends on how
much work has been submitted to the cloud service across all
users. To provide a conservative measure of queue waiting
time that ignores jobs from other users, we assume that the
queue is initially empty and there are no jobs from other users.
The resulting queue waiting time for a job is then only due
to the latency of running other jobs in the benchmark before
it. With HyperQ, because all programs in a batch job do not
have their results returned by the cloud service until the entire
batch is complete, we use the run time of the entire batch
job as the measure of run time for each program that is run

simultaneously in the batch.

Table 5 shows the latency results on average across all pro-
grams. HyperQ significantly reduces the average latency of
program execution by up to forty times. The key reason for
this is because it reduces the queue waiting time because of
faster consumption of the program workloads for execution
by running them simultaneously. The queue waiting time is
the dominant factor in latency, even with the assumption that
the queue is initially empty, so that is the most crucial compo-
nent of latency to reduce. HyperQ adds scheduling overhead
from having an extra scheduling step, but it is negligible. Hy-
perQ also increases average run time because short programs
running in a batch need to wait for the longer programs in the
same batch to finish. However, our results show that the in-
creased scheduling and running time are negligible compared
to the queue waiting time.

In practice, the waiting time for running the benchmarks
also depends on jobs submitted by other users as well, further
increasing queue waiting time. This waiting time for other
users depends on the highly varying amount of workload be-
ing serviced by the IBM Quantum Platform. There is a real
qualitatively different usage experience with HyperQ versus
directly using IBM Quantum because of waiting time. With
IBM Quantum, running either benchmark takes anywhere
from a day or two to an entire week. In contrast, with HyperQ,
running the benchmarks typically takes a few hours. Specif-
ically, running the small-only and small&med benchmarks
directly with IBM Quantum took 19 and 40 hours, respec-
tively, while using HyperQ typically took 2-3 hours for either
benchmark, though sometimes it took as little as 5 minutes.

Fidelity We measured the fidelity of results for running the
benchmarks with each platform configuration. It is crucial
that HyperQ does not negatively impact fidelity as a result of
multiplexing program execution together such that hardware
noise from nearby qubit usage for one qVM ends up cor-
rupting the results of another qVM. The result of a quantum
circuit can be seen as a probability distribution over states
described by binary strings. We use the L1 distance between
the distribution given by results of the 4000 runs and the
ideal probability distribution on a classically-simulated ideal
quantum computer. We calculate the ideal distribution using

E@ IBM Quantum
LS |nm HyperQ
[0 HyperQ space-+time

I HyperQ noise aware

1 2 3 45

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 avg
#workload

Figure 10: Fidelity for HyperQ versus IBM Quantum per workload with Poisson job arrival.

Qiskit’s Aer simulator. The L1 distance is defined as

Ll= Z |Pideal(s) _preal(s)| (D
seES

where ES is the set of possible results, pjgeq(s) is the prob-
ability of result s in the ideal distribution, and p,., (s) is the
probability of result s in the real result. The value of L1 ranges
from O to 2. L1 = 2 means the result is completely corrupted
by noise, while L1 = 1 means the result has more than half
of the perfect result. If a quantum program generates a de-
terministic result, such as Grover’s algorithm or a quantum
adder, then L1 = 1 is sufficient fidelity to ensure that correct
results are generated by the program. We can therefore use
this threshold as a rough measure of good fidelity.

Table 6 reports the average fidelity results for the small
benchmark. Figure 10 shows the results on a per workload
basis for Poisson job arrival. HyperQ provides similar fidelity
as the baseline IBM Quantum case of running each program
in isolation on the entire machine, adding negligible noise on
average for both the space only and noise-aware scheduling.
However, HyperQ with time scheduling does incur higher
noise for jobs arriving all at once. This is caused by addi-
tional mid-circuit measurement and reset operations intro-
duced by time scheduling. These relatively new operations
are still noisy on current hardware, though they are expected
to improve in future hardware [19,38] which will make time
scheduling more beneficial. Nevertheless, in all cases, Hy-
perQ provides average fidelity that is much better than L1 = 1.
Overall, HyperQ effectively isolates program execution in
qVMs such that space multiplexing them on quantum hard-
ware does not compromise the fidelity of program execution.

Moreover, HyperQ noise-aware scheduling can provide
better average fidelity results than IBM Quantum, improving
averaging fidelity by roughly 10% over IBM Quantum for
Poisson job arrivals. HyperQ noise-aware scheduling does
better for Poisson job arrivals than jobs arriving all at once be-
cause when there are fewer qVMs to schedule together, there
are a sufficient number of good regions to run the qVMs. In
contrast, HyperQ space only scheduling does slightly worse
for Poisson arrivals than jobs arriving all at once because
when not all regions need to be used, inadvertently using a
bad region and leaving out good regions to run qVMs worsens
average fidelity. Figure 10 also shows various workloads in

all-at-once poisson

configuration ave L1 avg Ll
IBM Quantum 0.55 0.55
HyperQ 0.55 0.57
HyperQ space+time 0.64 0.57
HyperQ noise aware 0.54 050

Table 6: Average fidelity for HyperQ versus IBM Quantum.

which HyperQ provides substantially better fidelity results
for certain workloads. A closer investigation finds that, for a
fixed quantum program, the Qiskit compiler will by default
always select the same set of qubits to run the program. If this
selection is bad, the result will have bad fidelity. In contrast,
HyperQ’s space scheduler can assign the program to differ-
ent regions, averaging out bad choices, while its noise-aware
scheduler only puts high noise workloads on qVMs running
in noisy regions. Given the degree of isolation that is already
provided by qVMs, the region selection can have a more sig-
nificant impact on fidelity than any potential crosstalk from
concurrent execution of qVMs. As a result, HyperQ noise-
aware scheduling can surprisingly provide better fidelity re-
sults than directly using IBM Quantum.

HyperQ’s ability to provide good fidelity is due in part to
ensuring that qVMs are not directly connected to one another.
To quantify the impact of using qVMs with no direct connec-
tions, we ran a simple experiment with five two-qubit quantum
programs, each of which consisted of 100 random quantum
X and CX gates. We use two-qubit programs because they
are simple but enough to represent the difference between
interactions between qubits within a program versus crosstalk
between programs. We use 100 gates to have programs that
have deep enough circuits to show the impact of propagation
errors due to noise. We use X and CX gates because they are
deterministic, instead of having their results based on a proba-
bility distribution, so that it is easy to simulate such a program
on a classical computer to determine its correct result without
noise. For each program, we ran it in three configurations on
a line-shaped area of the IBM Eagle: 1) single program by
itself (qubits 4+5), 2) two copies of the program running on
adjacent qubits (qubits 4+5 and 6+7), and 3) two copies of
the program running in regions that are separated from one
another by one qubit (qubits 4+5 and 7+8). The average suc-
cess rate of the three configurations in computing the correct

result was 85%, 81%, and 85%, respectively. In other words,
having concurrently executing quantum programs on directly
connected qubits results in worse fidelity, while using individ-
ual unused qubits between such programs maintains the same
level of fidelity as when running the program by itself. This
result further demonstrates that including individual unused
qubits between qVMs is helpful to maintain fault isolation.

5 Related Work

VMs have been used for classical computing since the 1960s,
directly following the development of multiprogramming,
aiming to ensure noninterference among processes, reduce
system complexity for developers, and make software portable
across different hardware models [2, 8,39]. VMs experienced
a rebirth in the late 1990s and are widely used on classical
computers today [3-6,9-14,24,27-32,40, 41,48, 54]. The
need to effectively utilize quantum computing hardware and
manage multiple circuits running on one machine draws par-
allels to the desire for VMs after multiprogramming, which
inspired our work. HyperQ is the first to introduce qVMs to
run on and multiplex quantum computers. While VMs on
classical computers benefit from hardware support for vir-
tualization [6], HyperQ enables virtualization of quantum
computers and the use of qVMs without additional hardware
virtualization features. Although the term “Quantum Virtual
Machine” has been used previously for classical simulation
of quantum computers [7, 18,51], that usage does not support
any virtualized abstraction on quantum hardware.

The evolving landscape of quantum computing has spurred
significant research into quantum software [16, 46, 52, 53],
including various custom quantum compilers to support mul-
tiprogramming for small-scale quantum machines [15, 34,
43-45]. These custom compilers combine multiple quantum
circuits at compile time and therefore require knowing at com-
pile time which quantum programs will be executed together.
Unlike standard practice on classical computers, they do not
allow programs to be compiled independently and later exe-
cuted in arbitrary combinations. Furthermore, the specialized
compilers are usually less optimized compared to using stan-
dardized compiler tools like Qiskit. Some of the approaches
do not scale to larger quantum machines because they only al-
low two circuits to run in parallel [15]. None of them improve
the fidelity of program execution or consider time multiplex-
ing. HyperQ takes a fundamentally different approach by
introducing a powerful virtualization abstraction and manage
actual multiprogramming at run time by a scheduling algo-
rithm. This preserves independent compilation of programs
while enabling scalable multiprogramming, fault isolation,
efficient resource utilization, and even improved fidelity of
quantum program execution. Furthermore, unlike previous
approaches, HyperQ is seamlessly compatible with existing
quantum cloud services.

Kernel fusion [17,55,56] and program merging [58] have

been proposed to improve the utilization of GPUs and pro-
grammable network switches by using a custom compiler to
merge multiple CUDA or P4 programs into one big program.
In contrast, HyperQ employs a simple scheduler to combine
multiple programs for execution at run time. At compile time,
each program is compiled individually by users with a stan-
dard compiler.

6 Conclusions and Future Work

HyperQ is the first system to introduce quantum virtual ma-
chines and use them to enable better resource utilization and
lower latency for quantum cloud computing. By leveraging
the repeating qubit regions of real quantum machines, Hy-
perQ can define quantum virtual machines in terms of an
architecture-specific quantum instruction set and virtual qubit
topology, then map them to directly execute on real hardware
with no runtime virtualization overhead. Quantum programs
can be compiled for specific-sized virtual machines, and Hy-
perQ will binpack them together in batches in both space
and time then translate them to aggregated machine-sized
quantum circuits so they can be simultaneously executed on
a quantum computer. We have implemented HyperQ for the
IBM Quantum Platform in a manner that is compatible with
the existing cloud service and compilation tools. Our experi-
mental results on real quantum hardware show that HyperQ
can reduce program latency as well as increase utilization
and throughput by an order of magnitude without sacrificing
fidelity in the results of quantum program execution.

HyperQ is designed to virtualize existing quantum com-
puters, but new generations of quantum computers are being
developed that are radically different from previous gener-
ations as quantum hardware technologies improve. We are
exploring how HyperQ can be extended to take advantage of
these advances in quantum hardware for diverse qubit tech-
nologies like ion traps and neutral atoms, and across different
hardware architectures. We also plan to leverage enhanced
mid-circuit measurement and control flow for more flexible
time-multiplexing. These developments will enable HyperQ
to continue to evolve with hardware to provide the system
software and virtualization foundations for future quantum
cloud computing infrastructure.

Acknowledgments

David Tarrab updated HyperQ to use the latest version of the
IBM Quantum Qiskit Runtime API. Gernot Heiser and Henry
Yuen provided helpful comments on earlier drafts. This work
was supported in part by a VMware Systems Research Award,
DARPA contract N66001-21-C-4018, and NSF grants CNS-
2052947, CCF-2124080, CCF-2239484, and CNS-2247370.
Ronghui Gu is a co-founder of and has an equity interest in
CertiK.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

Rigetti Announces Commercial Availability of their 80
Qubit Aspen-M and a Teaming with NASDAQ to Ex-
plore Financial Applications of QC. ICV TA&K, Febru-
ary 2022.

Robin J. Adair, Richard U. Bayles, Les W. Comeau, and
Robert J. Creasy. A Virtual Machine System for the
360/40. Technical Report G320-2007, IBM Cambridge
Scientific Center, May 1966.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP 2003), pages 164—177, Bolton
Landing, NY, October 2003.

Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running Commodity Op-
erating Systems on Scalable Multiprocessors. ACM
Transactions on Computer Systems (TOCS), 15(4):412—
447, November 1997.

Edouard Bugnion, Scott Devine, Mendel Rosenblum,
Jeremy Sugerman, and Edward Y. Wang. Bringing Vir-
tualization to the x86 Architecture with the Original
VMware Workstation. ACM Transactions on Computer
Systems (TOCS), 30(4):1-51, November 2012.

Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hard-
ware and Software Support for Virtualization. Synthesis
Lectures on Computer Architecture. Morgan and Clay-
pool Publishers, February 2017.

Rigetti Computing. The Quantum Virtual Machine
(QVM). https://pyquil-docs.rigetti.com/
en/1.9/qvm.html, June 2018.

Robert J. Creasy. The Origin of the VM/370 Time-
Sharing System. IBM Journal of Research and Devel-
opment, 25(5):483-490, September 1981.

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, and Jason
Nieh. ARM Virtualization: Performance and Architec-
tural Implications. ACM SIGOPS Operating Systems
Review, 52(1):45-56, July 2018.

Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh,
and Georgios Koloventzos. ARM Virtualization: Perfor-
mance and Architectural Implications. In Proceedings
of the 43rd International Symposium on Computer Ar-
chitecture (ISCA 2016), pages 304-316, Seoul, South
Korea, June 2016.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

Christoffer Dall, Shih-Wei Li, and Jason Nieh. Optimiz-
ing the Design and Implementation of the Linux ARM
Hypervisor. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC 2017), pages
221-234, Santa Clara, CA, July 2017.

Christoffer Dall and Jason Nieh. KVM/ARM: Expe-
riences Building the Linux ARM Hypervisor. Tech-
nical Report CUCS-010-13, Department of Computer
Science, Columbia University, June 2013.

Christoffer Dall and Jason Nieh. Supporting KVM on
the ARM Architecture. LWN Weekly Edition, pages
18-22, July 2013.

Christoffer Dall and Jason Niech. KVM/ARM: The De-
sign and Implementation of the Linux ARM Hypervisor.
In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2014), pages 333-347,
Salt Lake City, UT, March 2014.

Poulami Das, Swamit S. Tannu, Prashant J. Nair, and
Moinuddin Qureshi. A Case for Multi-Programming
Quantum Computers. In Proceedings of the 52nd
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2019), pages 291-303, Columbus, OH,
October 2019.

Haowei Deng, Runzhou Tao, Yuxiang Peng, and Xiaodi
Wau. A Case for Synthesis of Recursive Quantum Unitary
Programs. Proceedings of the ACM on Programming
Languages, 8(POPL):1759-1788, 2024.

Jifi Filipovi¢, Matd$§ Madzin, Jan Fousek, and Ludék
Matyska. Optimizing CUDA Code by Kernel Fusion:
Application on BLAS. The Journal of Supercomputing,
71(10):3934-3957, July 2015.

Google. Quantum Virtual Machine, March 2025.
https://quantumai.google/cirqg/simulate/
quantum_virtual_machine.

Luke Govia, Petar Jurcevic, Christopher Wood, Naoki
Kanazawa, Seth Merkel, and David McKay. A Ran-
domized Benchmarking Suite for Mid-Circuit Measure-
ments. New Journal of Physics, 25(12):123016:1-17,
December 2023.

Daniel M. Greenberger, Michael A. Horne, and Anton
Zeilinger. Going Beyond Bell’s Theorem. In Bell’s
Theorem, Quantum Theory and Conceptions of the Uni-
verse, pages 69-72. Springer, October 1989.

Bettina Heim, Mathias Soeken, Sarah Marshall, Chris
Granade, Martin Roetteler, Alan Geller, Matthias Troyer,
and Krysta Svore. Quantum Programming Languages.
Nature Reviews Physics, 2(12):709-722, November
2020.

https://pyquil-docs.rigetti.com/en/1.9/qvm.html
https://pyquil-docs.rigetti.com/en/1.9/qvm.html
https://quantumai.google/cirq/simulate/quantum_virtual_machine
https://quantumai.google/cirq/simulate/quantum_virtual_machine

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich,
Christopher J. Wood, Jake Lishman, Julien Gacon, Si-
mon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. Quan-
tum Computing with Qiskit. https://arxiv.org/
abs/2405.08810, May 2024.

Youngseok Kim, Andrew Eddins, Sajant Anand,
Ken Xuan Wei, Ewout Van Den Berg, Sami Rosenblatt,
Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan
Temme, and Abhinav Kandala. Evidence for the Utility
of Quantum Computing before Fault Tolerance. Nature,
618:500-505, June 2023.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and
Anthony Liguori. KVM: The Linux Virtual Machine
Monitor. In Proceedings of the Linux Symposium, vol-
ume 1, pages 225-230. Ottawa, ON Canada, June 2007.

Ang Li, Samuel Stein, Sriram Krishnamoorthy, and
James Ang. QASMBench: A Low-Level Quantum
Benchmark Suite for NISQ Evaluation and Simula-
tion. ACM Transactions on Quantum Computing (TQC),
4(2):10:1-26, February 2022.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the Qubit
Mapping Problem for NISQ-Era Quantum Devices. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2019), pages 1001-1014,
Providence, RI, April 2019.

Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings of
the 28th USENIX Security Symposium (USENIX Secu-
rity 2019), pages 1357-1374, Santa Clara, CA, August
2019.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified Linux
KVM Hypervisor. In Proceedings of the 2021 IEEE
Symposium on Security and Privacy (IEEE S&P 2021),
pages 1782—1799, San Francisco, CA, May 2021.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Formally Verified Memory Protec-
tion for a Commodity Multiprocessor Hypervisor. In
Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953-3970, Vancouver,
BC Canada, August 2021.

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and Verification of the Arm Confidential Compute Ar-
chitecture. In Proceedings of the 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 2022), pages 465-484, Carlsbad, CA, July 2022.

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh,
and Marc Zyngier. NEVE: Nested Virtualization Ex-
tensions for ARM. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP
2017), pages 201-217, Shanghai, China, October 2017.

Jin Tack Lim and Jason Nieh. Optimizing Nested Virtu-
alization Performance Using Direct Virtual Hardware.
In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2020), pages 557-574,
Lausanne, Switzerland, March 2020.

Sophia Fuhui Lin, Sara Sussman, Casey Duckering,
Pranav S. Mundada, Jonathan M Baker, Rohan S. Ku-
mar, Andrew A. Houck, and Frederic T. Chong. Let
Each Quantum Bit Choose its Basis Gates. In Proceed-
ings of the 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO 2022), pages 1042—1058,
Chicago, IL, October 2022.

Lei Liu and Xinglei Dou. Qucloud: A New Qubit
Mapping Mechanism for Multi-Programming Quantum
Computing in Cloud Environment. In Proceedings
of the 27th IEEE International Symposium on High-
Performance Computer Architecture (HPCA 2021),
pages 167-178, Seoul, South Korea, February 2021.

The Quantum Mechanic. IBM Quantum Hits Milestone
of 3 Trillion Circuits Run. Quantum Zeitgeist, December
2023.

Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari,
Frederic T. Chong, and Margaret Martonosi. Noise-
adaptive Compiler Mappings for Noisy Intermediate-
Scale Quantum Computers. In Proceedings of the 24th
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS 2019), pages 1015-1029, Providence, RI, April
2019.

Prakash Murali, David C. Mckay, Margaret Martonosi,
and Ali Javadi-Abhari. Software Mitigation of Crosstalk
on Noisy Intermediate-Scale Quantum Computers. In
Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2020), page 1001-1016,
Lausanne, Switzerland, March 2020.

Paul Nation. How to Measure and Reset a Qubit in the
Middle of a Circuit Execution. IBM Quantum Research
Blog, February 2021.

Rob A. Nelson. Mapping Devices and the M44 Data
Processing System. Research Report RC-1303, IBM
Thomas J. Watson Research Center, October 1964.

https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2405.08810

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Jason Nieh and Ozgur Can Leonard. Examining
VMware. Dr. Dobb’s Journal, 315:70-76, August 2000.

Jason Nieh and Chris Vaill. Experiences Teaching Op-
erating Systems Using Virtual Platforms and Linux. In
Proceedings of the 36th ACM Technical Symposium on
Computer Science Education (SIGCSE 2005), pages
520-524, St. Louis, MO, February 2005.

Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press, 10th edition, 2010.

Siyuan Niu and Aida Todri-Sanial. How Parallel Cir-
cuit Execution can be Useful for NISQ Computing? In
Proceedings of the 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1065—
1070, May 2022.

Siyuan Niu and Aida Todri-Sanial. Enabling Multi-
Programming Mechanism for Quantum Computing in
the NISQ Era. Quantum, 7:925:1-34, February 2023.

Yasuhiro Ohkura. Crosstalk-Aware NISQ Multi-
Programming. Bachelor’s thesis, Faculty of Policy Man-
agement, Keio University, 2021.

Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li,
Robert Rand, Michael Hicks, and Xiaodi Wu. A For-
mally Certified End-to-End Implementation of Shor’s
Factorization Algorithm. Proceedings of the National
Academy of Sciences, 120(21):€2218775120, 2023.

Gerald J. Popek and Robert P. Goldberg. Formal Re-
quirements for Virtualizable Third Generation Archi-
tectures. Communications of the ACM, 17(7):412-421,
July 1974.

Shaya Potter and Jason Nieh. Improving Virtual Appli-
ance Management through Virtual Layered File Systems.
In Proceedings of the 25th Large Installation System
Administration Conference (LISA 2011), pages 25-38,
Boston, MA, December 2011.

John Preskill. Quantum Computing in the NISQ Era
and Beyond. Quantum, 2:79:1-20, August 2018.

IBM Quantum. Processor Types. https://docs.
quantum.ibm.com/run/processor-types.

Robert S. Smith, Michael J. Curtis, and William J.
Zeng. A Practical Quantum Instruction Set Archi-
tecture. https://arxiv.org/abs/1608.03355,
February 2017.

Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Fred-
eric T Chong, and Ronghui Gu. Gleipnir: Toward Practi-
cal Error Analysis for Quantum Programs. In The 42nd

(53]

[54]

[55]

[56]

[57]

(58]

A

ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2021), Online, June
2021.

Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li, Ali
Javadi-Abhari, Andrew W Cross, Frederic T Chong, and
Ronghui Gu. Giallar: Push-button Verification for the
Qiskit Quantum Compiler. In The 43rd ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI 2022), San Diego, CA, June 2022.

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Ja-
son Nieh, and Ronghui Gu. Formal Verification of a
Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866-881, Virtual Event, Germany, October 2021.

Mohamed Wahib and Naoya Maruyama. Scalable
Kernel Fusion for Memory-Bound GPU Applications.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC 2014), pages 191-202, New Orleans, LA,
November 2014.

Guibin Wang, Yisong Lin, and Wei Yi. Kernel Fu-
sion: An Effective Method for Better Power Efficiency
on Multithreaded GPU. In Proceedings of the 2010
IEEE/ACM International Conference on Green Comput-
ing and Communications & 2010 IEEE/ACM Interna-
tional Conference on Cyber, Physical and Social Com-
puting, pages 344-350, Hangzhou, China, December
2010.

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yan-
hao Chen, and Eddy Z. Zhang. Time-Optimal Qubit
Mapping. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
2021), pages 360-374, April 2021.

Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4visor: Lightweight Virtualization and Composition
Primitives for Building and Testing Modular Programs.
In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technolo-
gies (CoNEXT 2018), pages 98—111, Heraklion, Crete
Greece, December 2018.

Artifact Appendix

Abstract

This artifact provides the source code and scripts to reproduce
the experimental results for HyperQ. The artifact contains
Python scripts to implement the core HyperQ hypervisor, run

https://docs.quantum.ibm.com/run/processor-types
https://docs.quantum.ibm.com/run/processor-types
https://arxiv.org/abs/1608.03355

benchmarks against both a baseline IBM Qiskit configura-
tion and various HyperQ scheduling policies, and scripts to
retrieve and analyze the performance data, including through-
put, utilization, and fidelity. It allows for a comprehensive
validation of the claims made in this paper.

Scope

This artifact is designed to validate the performance claims of
the HyperQ system. Specifically, it allows for the reproduction
of the results in table 3, 4, 6, and figure 10. README.md
provides instructions to run the baseline benchmarks using the
default IBM scheduler and HyperQ benchmarks with three
distinct scheduling policies.

Contents

The artifact consists of Python scripts for core HyperQ
functionalities (such as HypervisorBackend. py) and for
executing the various benchmarks. Scripts dedicated to
data retrieval and result analysis are organized into the
getdata/ and analysis/ directories, respectively. The
benchmark_result/ directory is used for storing bench-
mark workload files and experimental outcomes, and includes
the result_ideal. txt file which provides pre-computed
ideal state vectors.

Hosting

The artifact is hosted on GitHub https://github.com/
1640675651/HyperQ with branch main and commit hash
alc7460. Future updates will be pushed to the main branch,
and we encourage you to use the latest version available.

Requirements

The artifact was developed and tested on a standard Linux
environment. It requires several software dependencies for its
operation: Qiskit, the Qiskit Aer simulator, and the QASM-
Bench benchmark suite. Additionally, a valid IBM Quantum
Account with an API token is essential for submitting jobs to
IBM’s quantum hardware and retrieving results. For complete
and detailed instructions on how to set up these dependencies
and configure the necessary environment, please consult the
README . md file provided in the artifact’s GitHub repository.

https://github.com/1640675651/HyperQ
https://github.com/1640675651/HyperQ

	Introduction
	Background
	Design
	qVM Interface
	Compilation
	Scheduling
	Executing with Quantum Hardware

	Evaluation
	Experimental Design
	Results

	Related Work
	Conclusions and Future Work
	Artifact Appendix

