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Abstract

Generative models have achieved remarkable success in a wide
range of applications. Training such models using proprietary data
from multiple parties has been studied in the realm of federated
learning. Yet recent studies showed that reconstruction of authentic
training data can be achieved in such settings. On the other hand,
multiparty computation (MPC) guarantees standard data privacy,
yet scales poorly for training generative models. In this paper, we
focus on improving reconstruction hardness during Generative Ad-
versarial Network (GAN) training while keeping the training cost
tractable. To this end, we explore two training protocols that use a
public generator and an MPC discriminator: Protocol 1 (P1) uses a
fully private discriminator, while Protocol 2 (P2) privatizes the first
three discriminator layers. We prove reconstruction hardness for P1
and P2 by showing that (1) a public generator does not allow recov-
ery of authentic training data, as long as the first two layers of the
discriminator are private; and through an existing approximation
hardness result on ReLU networks, (2) a discriminator with at least
three private layers does not allow authentic data reconstruction
with algorithms polynomial in network depth and size. We show
empirically that compared with fully MPC training, P1 reduces the
training time by 2x and P2 further by 4 — 16X. Our implementation
can be found at https://github.com/asu-crypto/ppgan.
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1 Introduction

Background. Generative models have shown significant success
in applications from content generation [34], automated program-
ming [70] to scientific discoveries [21]. To achieve emergent in-
telligence and generalization, these models often rely on large ag-
gregated datasets [47]. While data augmentation has been used
to bootstrap the training [48], there exist industry settings where
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multiple providers of proprietary datasets agree to collaborate on
building a generative model, yet would like to be assured that their
own data is kept private during the training process. In practice,
we expect the resultant generative model, i.e., the generator, to be
public to all participants so that inferences can be done efficiently,
and also to mimic the true data distribution so that it is qualified to
perform downstream tasks. For these reasons, the training of such
generative models does not enjoy standard security definitions that
are rooted in indistinguishability likelihoods (e.g., cryptographic
and differential privacy). Indeed, as shown in [5], targeted extrac-
tion of training data from a public generative model is possible.
Therefore, the focus of this paper is to achieve reconstruction hard-
ness: we design model architectures and training protocols such
that untrusted servers that execute the training protocol cannot
successfully reconstruct sensitive training data during or after the
training even in the worst-case scenarios. Without loss of gener-
ality, we will focus on protocols for solving minimax problems,
i.e., generative adversarial network (GAN), and our method can
be applied to minimization problems, e.g., diffusion models [61],
which we discuss in Sec. B. The research question we address is the
following:

Does there exist a GAN training protocol that achieves both recon-
struction hardness and tractable computation?

Problem formulation. We introduce the following settings to
formalize the problem.

Training protocol: Before training, each data holder sends an
additive secret share [14] of their data to all of the two computing
servers, who then use these shares to together update a generator
and a discriminator following a protocol. Depending on the protocol,
the generator and the discriminator can be either secret-shared (or
“private”), partially private, or public, during the training process.
Regardless of the protocol, the generator will be made public after
the training.

Threat model: We consider a semi-honest model following
[4, 18, 29, 54] wherein servers are incentivized to adhere to the
training protocol but may try to reconstruct authentic data from
public information released during and after the training. This
adversarial goal is similar to the Data Reconstruction attack in [57],
and we refer to their work for further discussion on the relation
between this goal and other types of attack on training, such as
Membership Inference and Attribute Inference.
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Figure 1: Reconstruction hardness (R) versus image generation quality (G) for federated learning (FL), differential privacy (DP), and the
proposed protocols (P2 with 1 to 3 private discriminator layers). The x-axis represents the normalized inverse of CW-SSIM for reconstructed
images (higher means better privacy), and the y-axis represents the normalized inverse of FID for the resultant generators (higher means
better quality). DP-co, DP-1.39¢8, and DP-9.6 are DPs with corresponding e values. On CelebA, our method (P2 with 2 private layers) is 8%
slower than DP GAN training and 6x faster than full MPC training, while preserving reconstruction hardness and image generation quality.

Servers are unable to change their (either private or public)
inputs or outputs. This paper considers a two-server non-colluding
setting. Let training data be X = {X;}!_,, where X; is used for each
training iteration t € [T]. Server i follows a protocol M and gain
information M(X;) at each iteration. M(X;) may include (i) the
parameter trajectories of the public generator and discriminator
layers throughout the training, (ii) the learning rates used for model
updates, and (iii) the public discriminator outputs corresponding to
generated inputs. In the analysis, we consider the worst case that
favors the attacker, where X; € X contains a single data point and
M is deterministic.

Reconstruction hardness: A reconstruction X; is considered
successful if “sensitive” information about X; is revealed. Therefore
reconstruction hardness is a data-dependent notion: A successful
reconstruction could be the recognition of generic data categories,
or the revealing of specific text labels on images. Without a con-
sensus on its definition, this paper defines reconstruction hardness
based on the L2 distance p(-,-) : R% x R% — R as follows:

Definition 1.1. M achieves (¢, §)-reconstruction hardness if there
does not exist an algorithm with polynomial data and computational
complexities that, with probability at least 1— &, computes X, based
on M(X;) such that p(Xt,Xt) < e for some t € [T].

In our empirical evaluation on image generation, we use standard
image quality metrics CW-SSIM [58], PSNR [27], and Feat-MSE [19]
to define and compare hardness. Two images are more similar if
their CW-SSIM and PSNR are high, or Feat-MSE is low. See Sec-
tion 2.6 for definitions of these metrics.

Contributions. Our contributions are three-fold:

(1) We propose two simple (unconditional or traditional) GAN
training protocols that rely on the MPC framework: Protocol
1 (P1) uses a fully private discriminator, and Protocol 2 (P2)
privatizes the first three layers of the discriminator. Both P1 and
P2 use public generators. Additionally, we then extend these
protocols to support conditional GANs, offering an efficient
approach to training data-secured classifiers and addressing
tasks that require data labeling.

45

(2) We provide the first proof on reconstruction hardness for P1 and

P2 by showing that (1) publicizing the generator still achieves
reconstruction hardness, as long as the first two layers of the dis-
criminator are private; and through an existing approximation
hardness result on ReLU networks, (2) a ReLU discriminator
with at least three private layers achieves reconstruction hard-
ness even if its remaining layers are public. This is the primary
contribution of our work.
In general, it is assumed that all computations in ML algorithms
must remain private when implemented using secret-sharing
(via MPC) or encrypted settings (via homomorphic encryption).
However, to the best of our knowledge, no prior work has
specifically explored the security implications of applying MPC
to GAN training. Through our proof, we demonstrate the level
of security guarantees that can be achieved when a few layers
of computation are made public to enhance efficiency.

(3) We show empirically that compared with a full MPC imple-
mentation of our unconditional GAN training, P1 reduces the
training time by 2x and P2 further by 4 to 16X; and compared
with DP implementations, our protocols achieve better recon-
struction hardness. To the authors’ best knowledge, this is one
of the first methods that tractably train GAN models on CelebA
with a reconstruction hardness proof.

For conditional GANS, our primary focus is on classification
accuracy, as their runtime and communication cost is almost
similar to those of the corresponding unconditional protocols.
To evaluate this, we train a multilayer perceptron (MLP) and a
logistic regression (LR) model on downstream classification task
using images generated by our conditional privacy-preserving

GAN models and compare it to state-of-the-art secure GS-WGAN [8],

and show that our solution provide data that help classification
model improve the performance by 2-3% accuracy.

Difference from standard privacy. It is necessary to clarify the
differences between our privacy definition, i.e., (¢, §)-reconstruction
hardness, and existing ones. First, standard definitions are rooted
in distinguishability of likelihoods, where privacy is considered
achieved when the difference between the likelihoods of M(X) and
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M(X’) is within some threshold. For example, (¢, §)-DP uses the
divergence of the likelihood between two adjacent datasets [16].
As is discussed in [64], limited likelihood difference alone does not
explain how much of the training set X can be reconstructed by
an adversary either during or after the training. To this end, [64]
introduced probably approximately correct (PAC) privacy, which
follows Def. 1.1. Our threat model for hardness analysis, however, is
critically different from that of PAC privacy: PAC privacy assumes
M to be known to the attacker so that the output distribution of
M(X) can be computed; in this study, M, e.g., the computation
of discriminator and generator gradients, is at least partially un-
known due to the private layers of the discriminator. We rule out
two potential attempts to circumvent this difficulty for an attacker:
First, one may consider these private layers as part of the input
data to be reconstructed, yet their prior distribution at an arbitrary
training step ¢ is unknown, which is a prerequisite for PAC privacy.
Second, one may attempt to approximate the distribution of M(X)
by passing a large batch X through a blackbox M. Yet this can
be prevented by the training protocol that constrains the size and
content of X processed by the servers. To summarize, our privacy
definition focuses on reconstruction hardness of a specific training
setting rather than distinguishability of likelihoods, and is thus
different from DP variants; and our threat mode takes into account
the practical reconstruction challenges introduced by private layers
and the training protocol, and is thus different from PAC privacy.
Essentially, we exchange one type of tradeoff for privacy, namely,
the lack of generation quality caused by gradient noise introduced
in DP and PAC privacy, for another type of tradeoff, namely, the
additional cost of secure computation on private layers. Fig. 1 sum-
marizes the performance tradeoffs of all training protocols.

Notations. We will use D; (resp. G;) as the discriminator (resp.
generator) at training iteration ¢, and use p, € Hp (resp. 0g, €
Hg) as its parameters, with Hp and Hg being the hypothesis
spaces. We use a; (resp. ;) as the learning rate of the discrimina-
tor (resp. generator) updates, and VyD (resp. VyG) as the model
gradient with respect to its parameters.

2 Related Work
2.1 Generative Adversarial Network (GAN)

GAN s [24] represent a class of minimax algorithms for training
generative models, i.e., models that approximate the mapping of
random samples z from a standard distributions p, to a data distri-
bution py. A GAN is composed of a generator G : R%* — R% that
synthesizes data and a discriminator D : R% — [0, 1] that assesses
the authenticity of the generated data. The training solves a Nash
equilibrium between G and D:
L(D,G) = Ey-p, [log D(¥)] + E.-p, [log(1 ~ DGE))] .
1
This adversarial interplay between the generator and discrimina-
tor constitutes the core dynamics of GANS, enabling the matching
between pg and p,. Recent advancements of GANs [25, 30, 59]
have propelled the development of various privacy sensitive ap-
plications such as medical imaging [35, 60, 67], networking and
server traces [37] and facial image generation [33, 46]. The de-
ployment of these applications has raised concerns over private

min max
G D
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information leakage since the generated samples of a GAN can
reflect its underlying training dataset’s property and potentially
disclose privacy-sensitive data. Our paper is not concerned about
post-hoc treatments of generative models to prevent the accidental
generation of authentic data, but rather about the training proto-
cols to prevent reconstruction of sensitive data during multiparty
training.

There is a variant of traditional GAN which is Conditional GAN
(CGAN) [41]. Unlike GAN, CGAN allows user to specify the con-
straint in which the generated image should reflect. For example, a
CGAN on MNIST dataset allows users to specify which digit that
the generated image is classified as. Thus, CGAN provides an effec-
tive way to generate synthetic data for downstream task such as
training a data-secured classifier.

2.2 Secure and Decentralized GAN Training

Federated Learning (FL) has been used to train GANs with multi-
ple clients for the sake of data privacy. For example, FedGAN [53]
achieves image generation quality comparable to normal GANs.
[2, 8] take differential privacy (DP) into account by adding random
noises to the training gradients, which causes slow convergence in
solving the minimax problem. AsyncGAN [6] introduces a secure
training protocol for conditional GANs where multiple data holders
train their own discriminators and a centralized server trains a gen-
erator by querying gradient information from the discriminators.
This protocol assumes that the data distributions of all data holders
are known to the central server. Using MNIST as an example, the
server knows that a particular data holder holds images of “0”s, and
will only send “0”-labeled images to its discriminator. We do not use
this assumption since it leaks data type information to the server.
Instead, our protocols train a single generator and a discriminator
without any knowledge about the training dataset.

In addition to existed approach, there is a naive approach apply-
ing MPC [31, 44] in a straightforward manner, similar to the ways
MPC is applied in training machine learning model [31]. We refer
to this approach as Protocol P0 in our paper, and try to optimize
the performance of it using some weaker security assumption of
reconstruction hardness.

Finally, one can also implement normal GAN training augmented
by defenses against data reconstruction attack. [39] proposes and
tests several defense mechanism against data reconstruction attack.
Their paper finds that Gradient Pruning, with high probability
of weight being pruned, achieves the best defense against data
reconstruction. However, the reconstructed image quality shown
in their work still shows limitation of the defense, as the structure
of the real input is still being preserved. We show a comparison
with such a defense later in Section 5.3 where our protocol achieves
a far better reconstruction defense compared to [39].

2.3 Multiparty Computation

We review multiparty computation (MPC) as it plays a central
role in our solution. MPC is a method for parties to evaluate any
arbitrary functions without revealing any information about the
input data. MPC can have any number of data holders as long as
they secretly share their data to a specific number of servers who
later do the computation. A conventional MPC framework consists



Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training

n servers and m data holders participating in a two-stage process
to compute a function f:

o Step 1: Data-holder breaks the data x into additive pieces
[x];e(n)- The pieces sum up to the original data: 37" | [x]; = x.
Then, they distribute the shares one piece per server, i.e. [x];
to server S;.

o Step 2: Servers use the additive shares to perform secure
computation to get f(x) = C([x],, ..., [x],) where C(:) is an
interactive computation process on the additive shares.

We note that if the training is executed fully in MPC, then stan-
dard security is achieved in the sense no information about the
training data is leaked to the servers since each only hold a random
shares of the data, unless all servers collude. In order to securely
evaluate any functions using additive piece of the user data, MPC
often relies on three core operations: Addition, Multiplication, and
Comparison. We show the details of how each operation works in
Section 2.5. In this paper, private layers of the discriminator will
use MPC for training. As a result, no servers have any knowledge
about the weights and biases of these layers, nor do they know the
input to and outputs from these layers.

Multiparty computation in machine learning. Privacy-preserving
machine learning (PPML) [15, 17, 28, 36, 42, 43, 45, 49, 51, 55] allows
different entities to collaboratively and privately train and evaluate
machine learning models using their collective data. The existing
body of literature on PPML has applications to linear regression, lo-
gistic regression, neural networks, and transformers [36, 38, 50, 56].
Most PPML schemes operate in a server-aided setting, where data
owners delegate the computation to a small number of servers that
are neither trusted nor colluding. [45] introduced the first practical
PPML system based on a two-server setting. Designs employing
three servers [42] and four servers [51] offer a weaker security
guarantee, as collusion between any pair of these servers can reveal
the private data of the data owners. Consequently, the two-server
PPML model remains preferable. Despite satisfying standard cryp-
tographic security, MPC leads to significantly higher training cost.
This paper follows the server-aided framework using two non-
trusted and non-colluding servers. But instead of following the
standard security/privacy definition, we use reconstruction hard-
ness as a data-dependent privacy interpretation, which allows us
to hybridize private and public layers to achieve more tractable
training.

2.4 Vertical Federated Learning (VFL)

Works such as VFL-GAN [68] leverages federation of clients
to jointly train a GAN model. In such a scheme, clients pass the
data through a local model, then send the intermediate output to a
central server to combine and do further computation. Even though
the results of such a model is promising, the use cases of VFL-GAN
and MPC-GAN are different. VFL-GAN having clients participate
in training process has a bottleneck on low power client or client
with poor communication and goes offline often. The probability
of having this kind of client increases when the number of clients
increase. Thus, in use cases where there are many clients, VFL
might not be optimal. MPC, on the other hand, does not require
clients to be involved in the training process and is competitive
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in that use case. The main focus of this paper is on improving the
performance of secure GAN in the MPC use case.

2.5 MPC Implementation

We implement training protocols using Crypten [31], a PyTorch
framework for multi-party computation. Here we describe in de-
tail some of the core operations that we extensively used. MPC
hyperparameters are chosen as Crypten default values, which are
results of their extensive experiments for values with good effi-
ciency/accuracy trade-off [32].

Addition. To compute [x + y]|, each parties compute [x]; + [y];
and the share is [x + y[J; = [x]; + [y];-

Multiplication. To compute [[x * y], all parties pre-exchange shares
of a Beaver triple (a, b, ¢) such that ab = c. Then they reveal value of
€ = x+a,8 = y+b. Then the final output [xy] = ex[y];,—é=[a];+[c];-

Comparison. To compute [x < y], the parties either implement
a garbled circuit [66] or convert [x — y]| = [x] — [y] to a “binary”
version (x — y) such that &(x — y) = x — y and evaluate the first
bit of ®((x — y)) [32].

Data type conversion. Crypten uses integer in a group Z, for
secure computation. Thus, it uses a scale-and-round algorithm for
converting floating-point numbers to integers. In particular, to
convert a floating-point number x € R to an integer x, € Zg,
Crypten multiplies x by a large number B and round it to the
nearest integer:

xc = | Bx].
In order to convert x, back to x, Crypten simply divides it by B:
— xc
-5

In our implementation, we set B = 216 and q = 2.

Additive sharing. We define [x] as the sharing of a private value
x. In the two-server setting, to securely distribute an ¢-bit secret
value x, the data owner randomly chooses [x], in the arithmetic
field Z,¢, computes [x], = x — [x];, and sends each [x]; to a server
Sic(z]- To reconstruct a secret x, each server sends its shared [x]; to
the data owner who computes x = [[x]], + [x],. When sharing a set
of values {xi, ..., x,}, the data owner can employ Pseudorandom
Generator (PRG) to generate [x;], from a PRG seed s. Consequently,
only the PRG seed s needs to be transmitted to Sy instead of all [x;]; .
This approach significantly enhances communication efficiency. In
our implementation, [ = 64.

Multiplication. Crypten uses Beaver’s trick to perform secure
multiplication. This is described in Section 2.5.

Comparison. Crypten first let servers compute [x — y] = [x] —
[y] and convert it to the binary share version (x — y) which has
the property: ®@(x — y) = x — y. The share of comparison [x > y] is
then just the first bit of (x — y)

Exponentiation and Sigmoid. Sigmoid is calculated easily if we
have exp approximation. In Crypten, exp approximation can be
done in several ways. In our implementation, we use the approach
using iterations which is based on the equation:

. X (on
lim (1 + 2_")

n—oo
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Figure 2: Schematics of the Proposed Protocols

In our implementation, we set n = 8.

Logarithm. Similar to exponentiation, Crypten has many meth-
ods for approximating log function. We choose the approach based
on high-order modified Householder method, which to compute
log(x) it has the update rules as:

hn, =1 - xexp(-yy,)

ord

1
Yn+1 = Yn — Z Ehﬁ
k=1

In our experiment, we choose n = 2, ord = 8 and number of itera-
tions for calculating exp is 8.

Leaky-ReLU. To enable secret-shared computation of Leaky ReLU,
we rewrite its standard formula max(0, x) + a min(0, x) as an MPC-
friendly formula x(sign(x) + a — sign(x)a) which is a combination of
one addition, one multiplication-by-a-constant (which can be done
locally without any communication), one secure comparison, and
one secure multiplication.

2.6 Image Reconstruction Metrics

CW-SSIM. [58] The Complex-Wavelet Structural Similarity func-
tion is defined as:

2|Zf_‘:]1 Cx,iC’;!i|+K

2 Zfi1|cx,icz’i|+K

2 Z{il |Cx,i||cy,i|+K

Zé\il('cx,ilzﬂcy,i'z) +K

CW-SSIM(cy, cy) =

5

where cy, ¢, represent complex wavelet transform of the images x
and y respectively; K be small positive number, ideally set to 0.

PSNR. [27] Peak signal-to-noise ratio (PSNR) function is defined
as:

PSNR(x, y) = 20log,,(max(x)) — 10log,,(MSE(x, y)),

where MSE represents the mean square error function.
Feat-MSE. [20] Given a model M, the feat MSE is defined as the
mean square error between two outputs, formally:

Feat-MSE(x, y) = MSE(M(x), M(y)),

In our paper, we use the Discriminator D as the model M.
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3 Proposed Learning Architecture and Protocols

This section presents two GAN architectures and training proto-
cols, each comprising four phases, see Alg. 3. In Phase I, every
data owner secretly shares their private dataset X¥) among servers.
Phase I is communication-optimized using a pseudorandom gen-
erator (PRG) [22] (details in Section 2.5). Since P1 and P2 use the
same Phase I implementation, we only report computational cost of
Phases Il to IV. Figure 2 shows the high-level design of our protocols.

3.1 Protocol 0 (P0): Fully-secure MPC

A vanilla solution is to directly apply MPC to GAN training, in
which case all intermediate values, such as layer-wise forward and
backward outputs, are secret-shared among the servers. P0 enjoys
standard security, assuming the security of MPC, and serves as the
baseline for comparisons on computational cost and generation
quality. PO is implemented using Crypten [31].

3.2 Protocol 1 (P1): Private Discriminator

Based on the observation that generator training only involves
random samples rather than authentic training data, we propose P1
where only the discriminator is kept private. We prove in Sec. 4.3
that reconstruction hardness is achieved in P1.

At a high level, our protocol P1 assumes that the generator
model G is a public and common model to all the servers, while
the discriminator model D is kept secret by the MPC mechanism.
Our P1 first begins with Data Sharing step, similar to P0, where
data holder D; additively shares his data to all the servers. Second,
each of the servers samples a random noise vector z, and computes
X = G(z). Then, the server additively shares X to n — 1 other
servers. With secret shares of )~(, X, D, n servers use MPC protocol
to compute the binary cross entropy loss as dloss = —E[log D(X)] -
E[log(1—D(X)] and get the gradient Vg, dloss to update the weights
Op of discriminator. Then, S; computes X = G(2), broadcasts that
value to all servers. Now, all server compute and reveal the value
of grad = VX(—]E[log(D(f( ))]. This gradient value will be then used
to calculate Vg gloss = grad - VQGX. Note that VQGX is public to
all servers as G and X are public.

3.3 Protocol 2 (P2): Partially-private
Discriminator

We propose P2 to further reduce training cost. Here only the first
few layers of the discriminator are private, after which, the private
outputs from both servers are combined and made public. The
remainder of the discriminator forward pass is done locally on an
individual server without the need for communication or secure
computation. We prove in Sec. 4.4 that reconstruction hardness can
still be achieved for a ReLU network.

At a high level, protocol P2 differs from P1 in the third step:
Discriminator Pass. In P2’s Discriminator Pass, we divide D
into two parts: Dy,; which is kept as additive shares across servers,
and D,,,;, which is publicly shared to all servers. The servers after
use MPC to compute [§] = [Dpri(X)] and [y] = [Dpri(X)], will
then reveal these intermediate values. Later, the discriminator loss
and the corresponding gradient is publicly computed. We need
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PARAMETERS: m data holders { Dy, ..
Discriminator model D
ProToCOL:

L Data Sharing

(2) D; sends [[X(i)]]je[n] to computing server S;
For each training iteration, n servers {Sy, ..

1L Generator Forward

Illa. Discriminator Pass (Private Discriminator, P1)
(1) n server use MPC to

(a) Calculate dloss = —E[log D(X)] — E[log(1 — D(X))]

(2) S; compute X = G(z), broadcasts X to all S;
(3) n servers use MPC to calculate grad = V 4 (=E[log(D(X)])

IILb. Discriminator Pass (Partially Private Discriminator, P2)

(1) n servers together reveal § = Dp”-()N(), y = Dpri(X)
(2) Each server S; locally do:

(3) Sy compute X = G(z), broadcasts X to all S;

Iv. Generator Update
(1) Each server S; do:
(a) Receive [grad]; from (IILa) or (IILb)
(b) Calculate [V gloss], = ne - [grad]; - VgG)N(

(2) n servers together get true updated value G = % 21, Gi

., D, } with corresponding data {X(l), .. .,X(’">}; n computing servers {S;, ..., Sn}; Generator model G;

(1) Each data-holder D; secretly break their data X into n additive shares [[X(i)]] el
., Sp} together perform the following:

(1) Each Sjc[n] chooses a random noise vector z, compute X =G(2)
(2) Each Sie[n) locally breaks X into n pieces and sends [X]; to S;

(b) Update Discriminator parameters using Gradient Descent on gradient Vg, dloss

(a) Update Dy, parameters using Gradient Descent on gradient VQDP . dloss = (VgDP by E[log Dpup(y)] — E[log(1 — Dpus(5))])
U U
(b) Update D,,,; parameters using Gradient Descent on gradient (VQDP”_ y-Vy+ VgDpn_ g - Vy)dloss

(4) n servers use MPC to calculate grad = V 4 (=E[log(Dpup © Dpri(f())])

(c) Update G using Gradient Descent to G; using [[VgG(—E[log(D(f()])]]i

n]

Figure 3: Our Unconditional Privacy Preserving Generative Adversarial Network (PPGAN )

to compute the gradient of the private weight VgDpri using MPC
based on the value of V,dloss and V zdloss

3.4 Conditional GAN Training

Conditional GAN [41] provides an effective way to train a data
secured classifier and tasks that require data label. We provide a
protocol, which adapt from unconditional GAN, but with an addi-
tional MPC component: label encoding. First, in the Data Sharing
step, the data holder D; embeds the label y® into an embedding
yiir)nb = embed(y?) where embed is an embedding function such as
one hot encoding. Then, he breaks that embedding into n additive
shares and sends them to n servers. In Generator Forward step,
each server S;c[,) samples a fake label § uniformly along with the
random noise vector z sampled from a Normal distribution, then
from [z : Jemp] (Where [- : -] indicates concatenation) the server S;
generates a fake image X corresponding to the fake label §. The
server S; then converts the fake image X and fake embeded label §
into n additive shares and distributes the shares to all servers. Next,
in Discriminator Pass step, n servers use MPC to calculate the
share of the loss and the share of the gradient, as well as update
the weight of the discriminator using the gradient. n servers also
use MPC to compute the gradient with respect to generator output
grad = Vy;gloss. All servers finally reconstruct the value of grad
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and use it in Gradient Update step to update the weight of the
generator using gradient descent. We show the detail of Conditional
GAN training algorithm in Figure 4.

3.5 Correctness of Our protocols

We note that P1 and P2 update the generator based on secret shares
of the discriminator. Let a; be the generator learning rate, and [0, ] ;
follows a gradient descent update: [A6g]; = [-a:Vg,L];. Then
since the secret shares are additive, it is easy to show that 0g,,, =
Y [0c,]; + [Abc] ;- Note that in practice, secret shares introduce
small numerical errors, which affect the training convergence.

4 Reconstruction Hardness

In this section, we first lay out our assumption on the threat model.
Second, we introduce Proposition 1, which justifies the generality
of Def. 1.1 when applied to image generation, i.e., reconstruction
hardness defined on all these metrics can be alternatively defined
through p (the proof in Section 4.2). Therefore, our hardness analy-
ses will be based on Def. 1.1. Finally, we provide a detail analysis
on the security of our protocol P1 and P2 for unconditional im-
age generation, the security proofs for corresponding conditional
generation protocols can be similarly derived.
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function emb that maps the label y € [10] to a 10 x 1 vector.
ProToCOL
L Data Sharing
(1) For eachi € [m] do
(a) Data holder D; embed all the label y® to y(i)

emb

1L Generator Forward
(1) Foreach S; € {S4,..S,} do
(a) Choose a random noise vector z, and a label §
(b) Get the embedded label vector fe;,p = emb(7)

(d) Break X® and Q(ei’)nb to n pieces [[X(i)]]je[n] and [[Q(eir)nb
(e) Send [XD],, [Fems]; to S;
1L Discriminator Pass (Private Discriminator GAN, Protocol 1)
(1) Update discriminator: The n servers use MPC to

(2) Calculate Generator loss:
(a) Use only 1 party S; to getX =G([z : Yemp))
(b) n servers use MPC to calculate gloss = —E[log D(X)]
(c) n servers use MPC to calculate grad = a%gloss
1ILb.

(1) Update discriminator: The n servers use MPC to

(b) Calculate dloss = —E[log Dpys(t)] — E[log(1 - Dpub(f))]

(2) Calculate Generator loss:
(a) Use only 1 party S; to get X = G([z : Jemp))

(c) nservers use MPC to calculate grad = a%gloss
Iv. Generator Update
(1) Each S; receives [grad]; from PPGAN.DiscriminatorPass
(2) S; calculates [Vgggloss], = ny - [grad]; - Voo X

(4) n parties together get true updated value G = % 21, Gi

(3) S updates G using Gradient Descent to G; using [Vggloss];

PARAMETERS: m data holders { Dy, .., Dy, }, n computing server {Si, .., Sn}, a generator network G, a discriminator network D, an Embedding

= emb(y")
(b) Data holder D; breaks their data X, y(e")n , into n additive secret shares [X @]
©) D; sends [X?P] ., [y ] to computing server S; for j € [m
(©) D; sends [x]; (e'jnb] S; f [m]

(c) Get fake data X0 = G([z : Yemp]) where [ : -] indicates concatenation of 2 vectors.

(a) Calculate dloss = —E[log D([X : Yems])] — E[log(1 — D([X : Gemp]))]
(b) Update Discriminator parameters using Gradient Descent on gradient Vg, dloss

Discriminator Pass (Partially-private Discriminator GAN, Protocol 2)

(a) n servers together reveal f = Dpri([X : Jemb])s t = Dpri([X : Yemsp))

(c) Update Dy, parameters using Gradient Descent on gradient Vg, Y dloss
pu

(d) Update D,,; parameters using Gradient Descent on gradient (VgDp t-V+ V9Dp - V;)dloss

(b) n servers locally calculate gloss = —E[log Dpub(f)] where = reveaI(Dpri([f( : Yemb]))

je[n) Such that 3%, ﬂX(i)]]j = X, =, Hy(el:nb ;= yilr)nb'

Figure 4: Our Conditional Privacy Preserving Generative Adversarial Network (Conditional PPGAN )

4.1 Threat Model

To justify the protocol design, we consider the following worst-case
assumptions that favor an attacker: (1) The attacker has access
to all public information during and after the training, including
the terminal generator and its distribution pg;; (2) pg, matches
the true training data distribution py; (3) the discriminator uses
a sigmoid output activation and the discriminator loss is a cross-
entropy function; (4) a single data point x; ~ py is drawn at iteration
t and used to update D, via gradient descent, where the learning rate
a; is public. For private layers of the discriminator, Assumptions
(3) and (4) lead to the following update:

[0p,] = [0p,.,] — @ [VoDi-1(x")/Dy—1(x")]. (2)

We assume updates on one data point. As shown empirically in
[20], reconstructing one data point is easier for an attacker than a
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batch. Then with an artificial sample x := G;_1(z) where z ~ p(z),
the generator is updated based on D;. In P1 where D; is private, an
aggregation of secret shares of D;(X) and V,D;(x) is needed before
computing the following update:

NG, = —ar(1 = Dy(%) ™' VxDi(X)VGr-1(2). ®)

Since Z is known, Eq. (2) and Eq. (3) together define a deterministic
mechanism from (0p,_,, x*) to Abg,, which we denote by M(, ) :
Hp x X — Hg.

We examine reconstruction hardness of the proposed architec-
ture and training protocol in this section. To overview, we consider
two types of attacks that exploit the public information in these
protocols: The first type (Sec. 4.3) uses the fact that the public up-
date of the generator is based on that of the discriminator, which
is in turn based on the authentic data. We show that the public
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update of the generator achieves reconstruction hardness as long
as the discriminator has at least two private layers. The second type
(Sec. 4.4) concerns data reconstruction through public outputs of
the discriminator when only the first few discriminator layers are
private. Here we leverage existing approximation hardness results
to show that with at least three private layers, authentic training
data cannot be recovered with polynomial data and computational
complexity.

4.2 Connection between Reconstruction
Hardness and Image Reconstruction

The following Proposition (Proposition 1) gives a connection be-
tween L2 distance and image similarity distance metrics such as
CW-SSIM, PSNR, FMSE. This connection shows that we can use a
bound in terms of the L2 distance to conservatively satisfy bounds
in terms of these three similarity metrics. Therefore our theoret-
ical analysis uses the L2 distance only. For empirical results in
Section 5.3, we report results using all three similarity metric.

Proposition 1. Let py, py, and p3 : R% x R% — R be CW-SSIM,
PSNR, and FMSE metrics. For any x and y € R% such that p(x,y) <
€, there exist c1, ¢z, c3 > 0, such that pi(x,y) > max{l — c;€, 0},
p2(x,y) = 20(c, — logy, €), and p3(x,y) < cse.

Proor. For CW-SSIM: We start by considering two signals
x and y € R% that lead to complex wavelet coefficients Cyi =
cxi + Ac; € Cfor i = [M] where M is the number of discrete
wavelet coefficients. Let o = [|cx,,»|]§‘f1 and f = [|Ac,-|]?i[1 where
|| is the modulus. Since @ and f are vectors with non-negative
elements, we have f = Aa where A = diag([/;]) is positive definite.
Let A = max; A;. Note that A is bounded if a; # 0 for all i € [M]
which is a reasonable assumption to make for e.g., a natural image
x. CW-SIMM for ¢, and cy is then

2| X exicy [+ K
Silexil?+leyil?+K
2|3 lexil*+ex, Aci|+K
- i 2lexil?+|Aci|2+2Re(cx i Act) + K
2 (Zilexil*=lex; 1Aci])
T i 2lex il 2+ Aci 242 ex il Aci]

S(eyscx) =

©)

2a"(a - p)
alo+(a+ P (a+ P)
20-2)
T 1+ (1M

Since this lower bound of CW-SSIM monotonically decreases with
respect to A, we need to find an upper bound of A to lower bound S.
To do so, we first denote the Fourier transform of x and y as X(w)
and Y(w) with frequency w, respectively; A(w) = Y(w) —X(w); G(w)
the Fourier transform of the wavelet filter; w, the center frequency;
and (s;, p;) the ith discrete scaling and translation factors. Here we
use j as the imaginary unit. Then we have

S(eyscx) =

[ AIG(siw = wo)e i
A = ma_x =
l U_m X(wW)G(siw — we)e/wpi dw|

< kl|A| (©)
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”iom G(sjw— wc)ejwpidw|
7, X(wW)G(si w—we)e/ WPidw]|
Lastly, let Ax(u) = y(u) — x(u) be the spatial domain difference.
We have

where |A|= max,,|A(w)| and k = max; i

2
|A]? = max
w

J Ax(u)e—iZIl'wu

- 2
<2 (I Ax(u)du)

< 4p’(x,y).

Therefore if p(x, y) < €, S(cy, cx) >
S(cy, cx) = 1 — 4dke.

For PSNR: Given x and y € R% and p(x,y) < €, we have the
following upper bound on PSNR:

(6)

2(1-2ke)

Trar2ke? For small €, we have

pa(x, y) = 20log,, max x—10log,, p?(x, y) < 20log,, max x—20 loge.
7
For FMSE: Given x and y € R and let ¢ : R% — R be the
mapping from inputs to discriminator features at the /th hidden
layer. FMSE measures the L2 distance between ¢D(x) and c(l)(y).
Notice that ¢ is Lipschitz continuous with constant L; [63]. Thus
p3(x,y) < Lie. o

4.3 Privacy under a Public Generator

We now examine if M(, -) allows reconstruction of authentic data.
First, Proposition 2 shows that for small enough D learning rate
and for D with two private layers, (e, §)-reconstruction hardness
can be achieved.

Proposition 2. Given any Afg, attained by M(-, ) for someOp,_, €
Hp and x* € X, consider D with two private linear layers and
a public sigmoid output: D;(x) = a(a[Tth), where a; € R! and
B; € R4 (¢, §)-reconstruction hardness can be achieved if a; <
ce~164x  where the constant c is problem independent.

Proor. First, recall that the generator update follows:

NG, = Pr(1 = Dy(%) ™' VxDi(X)VGy-1(2), 8)

where X = G;_1(2) is a generated data point and z ~ p,. Recall that

for both P1 and P2, the vector (1 — D;(%))~!V,.D;(¥) is public to the

servers. We now consider the worst case where D;(x) and V,D;(x)

are known to the attacker. This is true for P2. For P1, this is also

reasonable for a successful training as D,(X) approaches 0.5.
Given D;(x) = a(atTth), we have

V.Dy(%) = =Dy(%)(1 — Dy(¥))a; By. )

Hence, w! := a! B; can be computed by the attacker given Afg, for
any t € [T].

Since M(-, -) assumes that the update of D is performed based
on a single authentic data point x*, we have the following updates
from a;_; and B;_;:

Aa = a;_1Dy_1(x*)(1 - Dt—l(X*))VaatT—lBt—lx*

* * * (10)
= a;-1Dp—1(x")(1 = Dy—1(x"))B;1x7,
and
AB = a;_1Dy_1(x*)(1 - D,_l(x*))VBatT_lB,_lx*

11
= -1 Dy—1 (x*)(1 = Dyy (a1 (x*)" v
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Let Aw = w; — w;_q, then
AwT =(a,_q + Aa)T(B,,l +AB) — atT_lBt,l

=Aa"B,_; + a}LIAB +Aa’AB (12)

=(x cllai-1|l3+¢"wW;_1 X" +cB;_1Bs-1),
()" (ellaril3+c*w/_yx" + By, B

where ¢ = a;_1Dy—1(x*)(1 — D;—1(x*)) is known.

For brevity, we will omit time dependence in the following dis-
cussion. Let g = Aw/c, we have the following system of equations
with respect to unknown quantities a € R/, B € R4, and the
reconstruction £ € R% | where g€ R% ¢ e R, w € R% are known
parameters:

g= (diag (||a||§+c(fc)TBTa) + BTB) x
w=Bla.

We need to show that there exists an infinite number of x, for
each of which there exists some (a, B) that, together with the corre-
sponding %, satisfies Eq. (13).

To do so, we propose the following synthesis process. First, let
N = QAQT € R%*%x be a symmetric matrix with randomly sam-
pled orthogonal matrix Q € R% >4 and positive-definite diagonal
matrix A = diag(4s, ..., Ag,). Let A = min;{A;}. Then introduce

M := Ny := diag(]|a||2+c(%)" B a) + BT B,

(13)

(14)

with some y > 0. Since M is positive-definite, we can get £ = M™1g
from Eq. (13). From Eq. (14) we also have

B"B = Qdiag(Aiy — cw” % — ||a]|3)Q". (15)

Let ||al|2= 27||w]| where 7 € (0,0.5]. Then we have the following
constraint on y for BT B to be positive semi-definite:

ml_incri2 1= miin)tiy—chfc—ZTHWHzZ 0. (16)
Solve Eq. (16) to have
tllwllz+ /2l w2 +AcgT N~ 1w
Y= T . (17)
Then we can rewrite BTB = 032Q7, where 3% = diag(d?, ..., cr;x).

Therefore, B can be constructed as B = UEQT with some orthogonal
matrix U € R™! and 3 € R™*% with diagonal elements from those
of 3.

We still need to show that there exists 7 € (0,0.5] such that B
constructed in the above satisfies the second equation in Eq. (13):
w = a’ B. To do so, we first note that a’ U = wTQiT, where 3t €
R/*dx is the pseudo-inverse of 5. Now we show that there exists 7
such that the following satisfies:

2t|lwll= llall*= la" U= [lw" Q=TI (18)
Lety = QTwand A; = 4;y — cw’ %, we have
lw"Q3T|1? = y"5 7%y
(19)

= DA - 2t]lwl) 'y
i

Let A = min;{A;}. For 7 to exist, we need to show that the

following function have a root in [0, A/2]:

y?
f0 =3

i

- X. (20)

X
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Note that f(0) = >; yf/A,- > 0 and f(A/2) < 2||w||?/A — A/2. Since
A = 2||lwll, f(A/2) < 0. Since f is continuous in [0, A/2], f(x) has a
root in [0, A/2].

To summarize the synthesis process: with some arbitrary orthog-
onal matrices Q and U, positive diagonal matrix A, y satisfying
Eq. (17), and 7 satisfying f(2z||w||) = 0, we can compute M, ¥, and
5 then = M~1g, B = USQT, and a = UE")T QT w satisfy Eq. (13).

Since both the transformation (Q) and scaling (A) can be chosen
freely, the above result suggests that we can choose arbitrary x
within a ball of some radius R to satisfy Eq. (13). We now derive
the lower bound on R:

2 9 OAT*QTg
lI%]13 = —
(g/)TA—zg/
-
(g (21)
- ==
DA
< .
(||w||z+\/||w||§+Ac2 Sig A
The lower bound of the RHS of Eq. (21) is
dx ( _1\2
RHS > =10/ cH1+V2) 2 > Loz;z. (22)
(1 + V2)2||wl|2 (1+V2)?

Let B,(x) C R% be a ball centered at x with radius r. Then % can
. . . . . _ 4
be arbitrarily chosen in Bg(0) with radius R = PATRYE
Lastly, let X € B¢(x") be successful reconstructions of x*, and
assume that X is uniformly chosen from Bg(0), then to achieve
(e, §)-reconstruction hardness, we need

Pr(% ¢ B(x*)) = 1 - (f)d" >1-6
< — = §ldx,
a= (1+V2)e

RemarKks. Since dy is usually large in real-world applications,
reconstruction hardness can be achieved almost surely provided
that a; < ce™!. The proposition reveals a reasonable tradeoff: For
a stronger hardness definition (larger €), the training of D has to
be slower. Since more private layers will further increase the diffi-
culty of reconstruction, we conjecture that hardness is preserved
for deeper private discriminators. The above result justifies the
introduction of public Gs in secure GAN training, which is critical
for training cost reduction due to the large sizes of generators. We
reiterate that our analysis is different from PAC privacy [64]. In
our setting, the attacker only observes a single gradient update
Afg within a training iteration as is specified by the protocol. PAC
privacy assumes that the attacker knows the output distribution of

M.



Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training

4.4 Privacy under a Partially Private
Discriminator

Now we study hardness of reconstructing x* based on public out-

puts from a discriminator where only the first few layers are pri-

vate. Specifically, we consider fully-connected ReLU networks D :

R% — [0, 1] of the following form:

¢ = whgl=0 450 vi=1,.,1,
a® = ReLU(®), VI =1,..,.L -1,
a%=xe Rdx, D(x) = c(L),

where W € R4*41-1 and b € R¥ are the weights and biases of
layer I. di, = 1. We use Gg) = (WO, b®) for | € [L] to denote layer
parameters. Let the first M layers be private and the rest public, i.e.,
¢ is public only for > M. The attack follows Prop. 3 [20] (details
in Appendix A.2):

Proposition 3. IfD and its gradient updates Vo, L are public, the
data x* used to compute the gradient can be reconstructed.

ProoF. Recall that the discriminator update follows:
Op, = Op, , = —a:Ve, L(x"), (24)

where L(-) is the discriminator training objective. Using chain rule,
we can get

AW = —g, Lp(x*)5W (x*)T
AW = —a, L (x*)8W,
where
5O = (WENT 50D & ReLU’ (2V)
86D = (WINT @ ReLU’ (z27Y),

Lp(x*) := VpL(x*), © is element-wise product and ReLU’(x) = 1 if
x > 0 and 0 otherwise. It is easy to see that if Afp is known, x* can
be derived exactly from AW® and Ab(. O

Since D is partially private in our case, we study a two-step
attack where the attacker first reverse engineer the private layers
of D using public outputs ¢™ based on artificial inputs, and then
uses the approximation D along with Vg, L to reconstruct x*. Re-
construction hardness comes from existing studies regarding the
first step. Specifically, Prop. 4 (Theorem 1.2 of [11]) states that for a
fully-connected ReLU D, a function approximation algorithm exists
where its data and computational complexities grow exponentially
with respect to model size:

Proposition4. Letx ~ N(0,]),S = Z?fl dy(d;_1+1), and ™ (x) be a
size-S ReLU network with depth M, Lipschitz constant at most A, rank
of W k, and the spectral norm of W forl € [M] at most B. There is
an algorithm that draws d log(1/8) exp(poly(k, S, A/€))BOMK) sqm-
ples, runs in time O(d? log(1/6)) exp(poly(k, S, A/s))BO(Mksz), and
outputs a ReLU network é™ such that B[(c™(x) — éM(x))?] < ¢
with probability at least 1 — 6.

Remarks. Note that even for spectral normalized architectures
(B < 1), the exponential complexity with respect to model size S
(and thus depth M) still holds. More recent studies showed that for
M = 2, polynomial approximation algorithms exist [9, 12]. Yet for
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M = 3, Prop. 5 (Theorem 4.1 in [10]) showed that polynomial ap-
proximation cannot be achieved. Informally, the proposition states
that if a 3-layer ReLU network can be learned in polynomial time,
then the Learning With Rounding (LWR) problem would be solved
in polynomial time. A contradiction is reached assuming hardness
of LWR. We conjecture that this approximation hardness result
holds for M > 3.

Proposition 5. Let n be the security parameter, and fix moduli
p.q = 1 such that p,q = poly(n) and p/q = poly(n). Letd = n.
Letc > 0,m = m(d) = log®(d) and d’ = d™. Suppose there exists a
poly(d’)-time algorithm capable of learning poly(d”)-sized depth-2
(M = 3) ReLU networks under N(0, Idy) up to squared loss 1/poly(d’).
Then there exists a poly(d’) = 29081 time algorithm for LW Ry, 5 4

For non-ReLU activation functions, we use Prop. 6 (Theorem
15 in [1]), which states that the the number of samples needed
for learning a general neural network is at least exponential in M.
Formally,

Proposition 6. Fix any nonlinear activation o with the coefficient of
non-linearity p that satisfies the sub-gaussianity assumption. Let fiy

be M-layer neural network with width m = Q(M’(;—i) taking inputs of
dimension d with weights randomly initialized to standard Gaussians.
Any algorithm that makes at most p(d, M) statistical queries with
tolerance 1/poly(d, M) and outputs a function that is 1/poly(d, M)-
correlated with sgn(fi) must satisfy p(d, M) > exp(Q(M)).

Lastly, we note that the above results are concerned about ap-
proximation hardness. Yet parameter recovery, as is needed for
the first attack step, is a stronger requirement, and has not been
achieved through polynomial solutions even for M = 2 [3].

4.5 Relation between Our P2 and Federated
Learning

In P2, we assume servers have access to partial information of the
training discriminator. We note that this mechanism of publicizing
the model instead of the data is not new. In Federated Learning,
the parties participating in the training process send the whole
models to the central server, meaning the whole model are being
made public to the servers. In our case, the servers know a part
of the model. Thus, the information being made public are less
in P2 compared to federated training, yet the type of information
being shared is quite similar. We further quantify this difference in
Section 5.3.

5 Experiment
We answer the following questions through experiments:
(1) Can P1 and P2 provide acceptable generation quality for im-
age generation task? If so, how much faster are their learning
than P0? (Sec. 5.1)
(2) How much performance boost do the proposed protocols
bring to PPGAN ? (Sec. 5.1)
(3) Can P1 and P2 provide acceptable conditional generation
quality for downstream task? (Sec. 5.2)
(4) How does P2 fare against Federated Learning and Differential
Privacy in terms of reconstruction hardness? (Sec. 5.3)
To answer the first two questions, we did two experiments: one
on FCGAN model on MNIST dataset, and one on DCGAN model
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(a) standard

(c) P2 3-layer

(d) P2 2-layer (e) P2 1-layer

Figure 6: Generated images from models trained on CelebA with image size 64 X 64.

on CelebA dataset with image size 64 X 64. Detail of the models’
architecture can be found in Appendix A.3.

To answer the third question, we conduct another experiment on
conditional generation task on MNIST dataset. After training the
conditional PPGAN, we generate 60000 images with similar class
distributions as the MNIST training dataset and test if a classifier
can be trained well on the generated dataset.

To answer the last question, we conduct a practical attack on both
Federated Learning model and PPGAN to see if the set up in Protocol
2 can provide better protection.

Experiment settings. In all GAN training, we use 50k training
iterations, a batch size of 32, and SGD with a learning rate of 0.1 for
MNIST and 0.002 for CelebA 1. Due to the overhead cost of secret-
sharing the data, we do not use data augmentation. All data values
are normalized to [—1, 1] before training. We train 5 unconditional
models respectively using standard GAN, P0, P2, and P2 with 1 to
3 private layers, and we train 3 conditional models respectively
using standard GAN, P1, and P2 with 3 private layers. We run all
experiment on local machine with 11th Gen Intel(R) Core(TM) i9-
11900KF Processor with an all-core CPU frequency of 3.50GHz, 16
vCPU, 32GB RAM.

5.1 Uncoditional PPGAN on MNIST and CelebA

Generation quality and cost on MNIST. We train an FCGAN [23]
on MNIST and report generation quality in Fig. 5) and Tab. 1. P1
and P2 achieve significantly lower training costs than P0: The wall-
clock time is 68k seconds (19 hours) for P1, 28k seconds (8 hours) for
P2 3-layer, and 11k seconds (3 hours) for P2 1-layer. Although we
follow the common practice of GAN training to run the experiment

!Crypten only supports SGD currently. We leave MPC implementation of more ad-
vanced training algorithms for future studies.
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Table 1: Runtime and generation quality comparison on MNIST.
Speed-up baseline is PO.

Model | FID | Training Speed up
Time (s)
standard 115 429 235%
PO 124 101000 1.0x
P1 118 68306 1.48X
P2 3-layer | 114 28289 3.57x
P2 2-layer | 115 20588 4.91x
P2 1-layer | 114 10580 9.55X

Table 2: Runtime and generation quality comparison on
CelebA.DP,e: ¢-DP .P2,M: M-layer

Model FID T?‘aining FID<100 F:ID<100
Time (s) #1ter time (s)

standard 48.52 1214 12400 301.07

DP,1.39¢8 445 4920 - -

PO - 238766 - -

P1 94.91 119383 43200 103146

P23 91.34 59348 43200 51276

p2,2 98.86 41607 25200 21001

P2,1 78.84 14002 29800 8345

only once, we note that the runtime performance is (1) not affected
by the randomness of the experiments rooted from sampling, and
(2) measured over 50000 iterations. Thus, the result indicates an
average per iteration runtime that is reliable enough to show P1
and P2 are more efficient than the baseline.
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Figure 7: CGAN on standard training, Protocol 1, and Protocol
2 3-layer.

Generation quality and cost on CelebA. We train a DCGAN [52]
on CelebA. Fig. 6 compares generation quality of models from all
protocols except P0. Since P0 uses full MPC, it fails to converge due
to (i) information loss in secret sharing of data and model weights,
and (ii) the intrinsic lack of convergence of SGD on GAN [7]. The
wall-clock runtime and FID scores are reported in Tab. 2. The com-
parison shows that generation quality of P1 and P2 are visually
comparable to the standard training. However, P1 and P2 still have
a significant quality and training efficiency gap from the standard
GAN, as is reflected through FID and the minimum number of iter-
ations to achieve FID<100. Tab. 2 also shows that having a smaller
number of private layers reduces the training cost: P1 reduces the
cost by 2x from P0 and P2 by up to 16x.

5.2 Classification Performance on
Conditionally Generated MNIST

We examine the generation quality of the proposed protocols with
respect to downstream classification tasks. For each protocol, we
generate a synthetic MNIST dataset of 60k data points from its
trained model. The datasets all consist with the same label distribu-
tion as original MNIST training dataset. The qualitative visualiza-
tion of our protocol and a standard CGAN training are shown in
Figure 7.

For each synthetic dataset, we train a Logistic Regression (LR)
and a Multi-layer Perceptron (MLP) model. We report the Area Un-
der ROC curve (AuROC) for the resultant classifiers on the standard
MNIST 10k test dataset. We compare our protocol with GW-GAN
which has DP guarantee [8]. The results in Tab. 3 show that the
accuracy of models trained on our synthetic dataset outperform
that on [8], while being marginally lower than those trained on
the authentic MNIST training set. In addition, our models achieve
better Inception score yet worse FID than [8]. Note, however, that
FID is defined based on the Inception model trained on ImageNet,
which is not representative for MNIST.
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Table 3: Comparison on classification accuracy (AuROC), In-
ception Score (IS) and FID Score. bold: best of secure protocol

AuROC
Data IR MLP IS FID
real 98.87% | 99.62% | - -
GS-WGAN 94.03% | 94.74% | 9.23 61.34
P1 96.82% | 97.85% | 9.49 114
P2 (3-layer) 97.00% | 98.12% | 9.58 118

Table 4: Reconstruction quality. CW-SSIM (CW) and PSNR: low
value = high privacy; FMSE: high value = high privacy

Dataset Model CW | PSNR FMSE
FL GAN 0.79 32.89 7.06E-07
DP (e =9.6) | 0.27 | 17.94 3.77

CelebA GP (p =0.99) | 0.43 15.30 2.77E-07
l—layer 0.359 11.11 3.34E-4
2-layer 0.20 | 6.24 5.13
3-layer 0.19 6.76 2.36
FL GAN 0.99 36.19 4.45E-05
DP (e = 9.6) 0.359 18.53 1.02E-05

MNIST GP (p =0.99) | 0.78 26.01 0.0026
l-layer 0.54 13.24 7.79E-06
2-layer 0.17 13.11 2.43E-04
3—layer 0.22 12.33 1.91E-04

5.3 Reconstruction Hardness

We follow the method in Sec. 4.4 (and [20]) to test the hardness of
P2, FL, DP, and Gradient Pruning (GP) [39].

Attack settings: The attacker is allowed to use a varying batch
size of 16 to 1024 artificial data points to reconstruct the private
layers of D, and only needs to reconstruct a single authentic data
point based on its output ¢™). These parameters are chosen in
favor of the attacker, while in practice a larger batch-size for the
authentic data will make the reconstruction harder [20]. Note that
the parameters setup is still consistent with our theoretical analysis
provided in Section 4, as batch size of real data, i.e. the real input
that the adversary wants to reconstruct, is always set to 1.
Protocols: We consider P2 with the first 1 to 3 layers being private.
For DP, we use € = 9.6 and § = 107> as in [62]. We follow the setup
in [65] where we clip the gradient by C = 0.01 and add the noise

202 = 32 1
of N(c°C?) where o = 2 fatasetosize \ 20000 log(a)/e. Note that

GS-WGAN [13] uses € = 10.0 which is easier to attack than our
setting.

Metrics: We measure the similarity (or difference) between the
authentic and the reconstructed images using CW-SSIM, PSNR, and
Feat-MSE.

Result: Fig. 8 compares MNIST and CelebA reconstruction results
for all training protocols. Quantitative results are summarized in
Tab. 5. The result is consistent with our analysis: reconstruction
becomes hard when the first 3 layers of D are private. We note that
2 private layers already achieved empirical hardness because while
the SOTA approximation attack on 2-layer fully-connected ReLU
network enjoys a polynomial data complexity [12], the amount of
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Figure 8: Reconstructed images during different training protocols. Left to right: Original training data, Federated Learning,

Differential Privacy (e = 9.6), Protocol 2 1,2,3-layer.

Table 5: Reconstruction quality of diffusion model on MNIST
dataset. CW-SSIM (CW) and PSNR: low value = high privacy; FMSE:
high value = high privacy

Dataset Model CW | PSNR | FMSE
FL Diffusion 0.65 19.26 0.21
GP (p =0.99) | 0.65 19.03 0.21

MNIST 1-layer 0.38 13.34 0.21
2-layer 0.16 13.06 0.20
3—layer 0.21 12.47 0.20

data needed to launch such an attack is still much larger than the
usual batch size allowed for discriminator update. Since the batch
size is controlled by the training protocols, using 2 private layers in
D is practically sufficient. Lastly, we note that while DP achieves
some level of reconstruction hardness, the resultant DP-GAN train-
ing cannot successfully converge due to the gradient noise added
in DP, leading to poor generation quality even in MNIST [62].

5.4 Reconstruction Hardness Beyond GAN
model

Since our protocol P2 partially shares first layers of the network
does not technically limit to GAN training, it is possible to extend
the technique to other image generation model. We proposed one
of such extensionn in Appendix B In this section, we want to test
whether such an extension is secure given the same attack setting
as the previous section.

6 Conclusion

In this paper, we presented two training protocols utilizing MPC
in both unconditional and conditional GAN training. In addition,
we introduced the notion of reconstruction hardness, as well as
proofs and empirical results demonstrating how these protocols
safeguard sensitive user data from potential reconstruction attacks
by untrusted servers used for training on these data. In term of
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effectiveness, the proposed protocols improve the training cost
by 2 — 16X compared with the full MPC training. Plus, we show
a significant improvement on conditional generation that boost
the accuracy of model trained on generated data by 2-3%. Since
our method achieves reconstruction hardness under attacks dur-
ing mini-max training, it can be directly applied to minimization
problems, e.g., training of diffusion models (see Appendix B).
Limitations. Despite the positives, our protocol still has limitations.
First, our protocol only provides protection against the proposed
reconstruction hardness, and provide no guarantees against other
types of attack such as Membership Inference Attack. Second, our
analysis rely mainly on the L2 distance, and justified this choice
based on the fact that commonly used distance metrics between
images (CW-SSIM, PSNR, and FMSE) are contained within large
enough spheres defined by an L2 distance. This raises a limitation
on defense against partial information reconstruction attack: even
though we can protect partial information using a large enough
L2 sphere, as long as the radius is bounded, it may provide an
overly conservative upper bound on the learning rate due to the
conservative translation.

Future work. We will assess potential data-efficient model approx-
imation attacks, e.g., [12] in future work.
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A More details about implementation

A.1 Federated Learning

We follow the Federated Averaging algorithm [40] in our exper-
iment in Section 5. We note that our implementation is for pure
Federated Learning without further defense such as Differential
Privacy (which is separately compared in Section 5) and Secure
Aggregation. The details of the algorithm is shown in Algorithm 1.
We left out Secure Aggregation due to the following two reasons:

o Firstly, the Inverting Gradient attack that we used works
even in the presence of Secure Aggregation when the total
batch size of all clients per round is small. As tested in [20], it
works for up to 100 input images. Since we study worst-case
scenarios with batch size of 1, adding Secure Aggregation
does not help increase security in set up of our experiment.

e Secondly, as pointed out in [69], when the total batch size is
large, Secure Aggregation fails if the central server of fed-
erated learning has the ability to modify the network archi-
tecture. In contrary, under such a threat model, our training
protocols are still robust to inverting gradient attacks be-
cause we do not use a central server, i.e., the semi-honest
servers cannot altogether collude and change the network
architecture. Based on these reasons, we do not consider
secure aggregation in this paper.

Algorithm 1: FederatedAveraging. The K clients are in-
dexed by k; C is the fraction of clients joining each round,
T is the number of training rounds, and ny is the size of
dataset hold by client Ck.

1: Server execute
2: initialize weight of model wy
3: foreachroundt =1,...,T do
4 me« max(C-K,1)
S; « (random set of m clients)
for each client k € S; do
Client Cy, train locally, return wfﬂ to server
end for
my «— 2ikes, Nk
100 We & Skes, pewh,
11: end for
12: return wr

R A

A.2 Inverting gradient attack for reconstruction

Algorithm 2 describes the inverting gradient attack from [20],
whose goal is to reconstruct the training data from the discriminator
gradient computed based on that data.
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Algorithm 2: InvertingGradient. Parameters: Model D
with parameters 6, loss function L, model input x, real input
to reconstruct x*, label y = 1 since x* is authentic. TV is
the total variation.

s x~N (0, I)
: optimizer < LFBGS(x)
: repeat

(VoL(xi,y).VoL(x",y))
oLt VoL yn * 0-1TVR)
Xi+1 < optimizer.step(loss)

1
2
3
4 loss «1-
5
6: until converge

A.3 Model Architecture

Tables 6 to 9 present model architectures used in experiments.

Table 6: FCGAN Generator Architecture

Generator Activation Output shape
Input noise - 1x100

FC Layer LeakyReLU  1x64

FC Layer - 1x128
BatchNorm1d - 1x128

FC Layer - 1x256
BatchNorm1d - 1x256

FC Layer Tanh 1x784

Table 7: FCGAN Discriminator Architecture

Discriminator  Activation Output shape

Input image - 1x784
FC Layer LeakyReLU  1x512
FC Layer LeakyReLU  1x256
FC Layer LeakyReLU  1x128
Fully Connected ~ Sigmoid 1

Table 8: DCGAN Generator Architecture

Generator Activation Output shape
Input noise - 1x100

Fully Connected LeakyReLU  128x256
Upsample - 128x32x32
Conv 3x3 LeakyReLU  128x32x32
Upsample - 128x64x64
Conv 3x3 LeakyReLU  64x64x64
Conv 3x3 Tanh 3x64x64

Table 9: DCGAN Discriminator Architecture

Discriminator  Activation Output shape

Input image - 3x64x64
Conv 3x3 LeakyReLU  16x64x64
Conv 3x3 LeakyReLU  32x64x64
Conv 3x3 LeakyReLU  64x64x64
Conv 3x3 LeakyReLU  128x64x64
Fully Connected  Sigmoid 1
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B Achieving Reconstruction Hardness during
Diffusion Training
B.1 DDPM: Forward Process

The forward process of a diffusion model is structured as a Markov
chain process that gradually injects Gaussian noise to the data
according to a variance scheduler g, ..., fr

q(xs | xp-1) := N(xps V1 = Bexe—1, Bel)
T (25)
qCerr | xo) = [ [ qler | x0-1)
t=1

Where the forward process can be further derived into a closed
form solution that can sample x; at any arbitrary times steps give
Xo, using the notation a := 1 — f;, and @, := Hi:l a:

q(xe | x0) = N (s Vatexo, (1 — a)l) (26)

B.2 DDPM: Backward Process

The reverse process follows the Markov chain assumption given
learned Gaussian transitions starting at p(x;) = N(x;; 0, I):

T
polxo.r) := plx;) I;IPH(XH | x¢) 27)
Po(xr—1 | x¢) = N(xe-1; pg(xr, 1), Zo(xz, )

The reverse process q(x; | x;—1) is tractable when conditioned
on xp [26]:

qOxe—1 | xe,%0) = N(eo—1; fie (xe, %0, Bl (28)
Where,
. Var_1f: Vo (1= @;-1)
Jir(x, x0) := —Xo + - Xt
1- ay 1- ay (29)
51— ét—lﬂ
vE T P

By further reparameterization of eq. 26 as x,(xg, €) = V& xo +
V1 — a;e for e ~ N(0,1), we can get:

. 1 ,
Ho(xe,t) = fir(xr, ——(xr = V1 — ar€9(x1)))
va
1 ﬁ[
—— (xp — ——ep(xs, t
@(Xz mee(m )
B.3 DDPM: Training Procedure
The training objective can be simplified as:
Lsimple(e) = Et,xo,e[”e - 69(\/0_5_1‘3(0 + V1 - aze, t)”Z] (31)

With Eq. (31), Algorithm 3 presents the complete training proce-
dure, and Algorithm 4 presents the sampling procedure based on
Markov chain assumption following Eq. (28):

B.4 Partially-private DDPM

Similar to P2 in Section 4.4, we can design a partially-private DDPM
protocol, see Algorithm 5. We have two remarks at applying P2 to
diffusion:
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Algorithm 3: Training

1:
2
3:
4
5

6:

repeat
xo ~ q(xo)
t ~ Uniform({1,...,T}))
€~ N(0,T)
Take gradient descent step on
Volle = eo(Varxo + V1= are, t)]|?

until converged

Algorithm 4: Sampling

T

x: ~ N(0,1)
fort=T,...,1do
z~N(ODift > 1,elsez=0
Xp-1 = ﬁ(xt - ‘}%eé(xts 1)) + osz
. end for

Remarks 1 In the training process, the share of the random
noise [e] can be locally sampled without any communication
between the servers. This is owing to the fact that the sum
of Gaussian distributed variables is Gaussian.

Remarks 2 In the training process, we need to mask infor-
mation of x;,Vt € {1,...,T}. Because xy = \/%E(x,), the
adversary can learn x, with high probability after it gets
enough samples by calculating the average values.

Algorithm 5: Partially Private DDPM Training

1:
2:

8:

repeat
The servers locally get [x,] from the shared dataset, they
sync to get the same data point by using the same
predefined random seed s
The servers locally sample the same
t ~ Uniform({1,...,T}))
Each server S; locally sample [e] := ¢; ~ N(0,1/n)
n servers use MPC to calculate egjpri(\/d_txo +4/1 = e, t),
and make this value public.
Each server calculate the loss and update epyp, using
gradient descent on
lle — €gpun(€gpri(V@x0 + VI = @ze, 1))
n servers together use MPC to update private €y

Vpriue - ee,pub(eé,pri(\/a_txo + V1 - e, t))”Z

until converged

The reconstruction hardness of this secure training is the same
as that of P2.
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