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ABSTRACT

In aggregation queries, predicate parameters often reveal user in-
tent. Protecting these parameters is critical for user privacy, re-
gardless of whether the database is public or private. While most
existing works focus on private data settings, we address a public
data setting where the server has access to the database. Current
solutions for this setting either require additional setups (e.g., non-
colluding servers, hardware enclaves) or are inefficient for practical
workloads. Furthermore, they often do not support range predicates
or boolean combinations commonly seen in real-world use cases.
To address these limitations, we built HADES, a fully homo-
morphic encryption (FHE) based private aggregation system for
public data that supports point, range predicates, and boolean com-
binations. Our one-round HADES protocol efficiently generates
predicate indicators by leveraging the plaintext form of public
data records. It introduces a novel elementwise-mapping operation
and an optimized reduction algorithm, achieving latency efficiency
within a limited noise budget. Our highly scalable, multi-threaded
implementation improves performance over previous one-round
FHE solutions by 204x to 6574x on end-to-end TPC-H queries, re-
ducing aggregation time on 1M records from 15 hours to 38 seconds.

1 INTRODUCTION

Typically, when a user queries a database, the database is expected
to know what the user is asking. Besides, the database may log the
query for future analysis. However, privacy-sensitive applications
can require stronger protections that allow the server to execute
queries without knowing their content. For instance, in the medical
field, a doctor might search for patient records based on specific
symptoms to determine the best course of treatment. The doctor
may want to keep the symptoms hidden from the data service
provider to protect patient privacy, especially if a set of symptoms
are related to an uncommon disease. Similarly, in the financial
sector, an outside investigator may evaluate whether a financial
institution’s loan approvals are biased toward certain demographic
groups. To ensure the integrity of the investigation, specific demo-
graphic details and personally identifiable information must not be
disclosed to the financial institution.

In existing database solutions, both the infrastructure owner,
such as cloud platforms, and the data provider have direct access
to user queries. An honest-but-curious data provider might enable
database logging to trace user access, while the infrastructure owner
could monitor storage access to database entries. Developing a
database that supports privacy-preserving query processing would
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significantly improve privacy protection in sensitive applications
by ensuring that only the user can access the query and its results.

There are existing works approaching this problem with different
techniques. Homomorphic Encryption (HE) allows arbitrary com-
putation under encryption. HE-based solutions, such as HEDA [21],
HE3DB [4], use ciphertext and homomorphic operations for the
complete computation procedure. While providing strong protec-
tion under cryptographic assumptions, existing solutions raise per-
formance concerns in practice due to slow homomorphic operations.
Multi-Party Computation(MPC)-based solutions [25] are in general
faster, but they usually assume non-colluding servers in deploy-
ment. There have also been works utilizing secure hardware [26],
but those solutions require trust in hardware manufacturers and
need extra considerations about memory access pattern leakage.

In this work, we focus on an HE-based solution for simplicity
of setup. Specifically, we consider supporting aggregation queries
in a public data setting, as aggregation is a common query type
that reveals data statistics to support decision-making. In a public
data setting, the database content is visible and typically owned
by the server, which we refer to as the data provider. Our problem
definition can be seen as an extension to the well-known private
information retrieval (PIR) [7] problem in two dimensions. First,
instead of selecting a single record, we compute the aggregated
value from multiple relevant records. Second, instead of accessing
values using index or keys (Keyword-PIR [6]), we support various
query predicates for data filtering to satisfy various application
needs. A similar setting has also been discussed by Hafiz et al.[12]

To enable such private aggregations, we built HADES, a database
for efficient private aggregation queries on public data with rich
predicate support. The HE-based HADES protocol is single-round,
and supports both point and range query predicates, as well as
their boolean combinations. During the protocol execution, the
query parameters, such as equality-checking targets or ranges to
be matched, are completely hidden from the data provider. HADES
mainly faces two challenges: the query latency optimization under
limited HE noise budget, and parallelization. Existing HE-based
solutions [4, 21] process queries completely under ciphertext, and
there hasn’t been a discussion on how to design and optimize
the query protocol in a public data setting. Additionally, existing
protocols haven’t sufficiently considered design on scalability and
optimizations for queries on larger databases.

HADES protocol proposes two major optimizations in algorithm
design. First, for point and range queries, to fully utilize the public
data setting, we combine PIR-style retrieval and logical circuit to
build a novel and flexible building block. The building block ef-

ficiently conducts elementwise mapping for public values in the



database records while consuming a limited noise budget, acceler-
ating up to 786x compared with a baseline approach. Second, we
design a ciphertext aggregation algorithm specifically optimized
for larger databases. By adjusting the execution order and maxi-
mizing the utilization rate for the homomorphic SIMD operations,
the new algorithm reduces computation and communication costs
simultaneously. As a result, multiple query results can be encoded
in a single ciphertext, and the new aggregation algorithm outper-
forms its baseline by up to 4.5x. Besides the protocol design, the
implementation of HADES particularly focuses on parallelization.
We design a separate intermediate representation as the execution
plan. It sorts out the dependency relations between different stages
of parallel tasks before executing the homomorphic operations. As
a result, HADES achieves a high thread utilization rate and reduces
761s of single-thread workload to 17s with multi-threading.

Combining the novel protocol designs and efficient implemen-
tations, with a clear single-round SQL query interface, HADES
achieves up to 6574x latency reduction compared with the best
of existing HE-based solutions. Prior to this work, there was no
discussion on how to efficiently support private aggregations in
public data setting with filtering. HADES is the first work that
shows the feasibility of running private aggregations on a million-
record database in seconds, rather than hours. Besides, HADES
advances the state-of-the-art on extending PIR functionality. It pro-
poses novel building blocks enables more complicated queries as
well as efficient value aggregations.

2 PROBLEM OVERVIEW

2.1 Scenario

To explain the problem, let us follow an example scenario from
the standard database benchmark TPC-H [24] (Q6) for supporting
business decisions. A data provider manages a database that con-
tains detailed information on orders, items, and the supply chain
which models real-world business operations. An analyst plans
to forecast the revenue change after eliminating certain existing
product discounts. To explore the change, the analyst writes a SQL
query as shown in Figure 1 top left. The query calculates the sum
of revenue lost due to discounts for items shipped in 1994, where
the discount is between 5% and 7%, and the quantity is less than
24 units. As shown in the "SELECT" clause, the query calculates
the sum of the product between two columns. The aggregation is
applied to all data records in the "lineitem" table that matches the
predicates in the "WHERE" clause.

Private aggregation query protects the privacy of the analyst by
hiding the query parameters from the data provider. As shown in
the bottom half of Figure 1, the data provider processes the data
filtering and aggregation without knowing either the selection of
data records or the final aggregation result.

2.2 Query Functionality

For simplicity, we use a SQL interface to express the functionality
supported in a private aggregation query. A common private aggre-
gation query involves three clause: SELECT, FROM, and WHERE.
The SELECT clause includes the names of columns wrapped by ag-
gregation operators such as COUNT, SUM, and AVG. The FROM
clause specifies the table in the database to be accessed.
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The key in the private aggregation problem is the support for
WHERE clause with encrypted query parameters. The WHERE
statement specifies predicates which match a subset of the records
in the table. Given a data record, the WHERE statement can be seen
as a boolean function that outputs true for matched records and
false for unmatched ones. Some predicates contain values that affect
the outcome of the boolean function. We refer to these values as
predicate parameters. For example, the ship date attribute "1994-01-
01" and the numbers 0.05, 0.07, 24 in the query are the parameters
that need to be hidden.

Based on the filtering operation type, predicates can be grouped
into point predicates, range predicates, and combined predicates. A
point predicate checks whether a specific column in a table matches
a particular value, facilitating an equality check on a single point.
A range predicate, on the other hand, tests whether the column
in a table falls within a specific continuous range of values. The
combined predicates apply logical operators, such as AND, OR,
NOT, to filter the records based on the result of other predicates.
The example query in Figure 1 can be seen as a combined predicate
applied to multiple range predicates.

There are also other commonly seen query keywords such as
GROUP BY and ORDER BY that also extend the functionality of the
private aggregation query. We discuss these operators in Section 6.

2.3 System Design Goals

Considering functionality and real-world deployment requirements,
here we summarize our system design goals.

Privacy. The system should protect the privacy of the analyst by
hiding all the information related to the query parameters. Con-
cretely, consider a data provider who chooses two queries with
differences only in their query parameters. When provided with
the original hidden version of one of these two queries, the data
provider should not be able to determine which hidden query cor-
responds to which original query, with a probability significantly
better than random guessing. Such a guarantee ensures no informa-
tion leakage on the query parameters. In terms of the threat model,
we assume a strong adversary who may arbitrarily compromise the
data provider or the network. The adversary may have access to
network packets, or the requests received and the responses sent
by the data provider. We assume the adversary cannot compromise
standard cryptographic primitives. We also assume that the adver-
sary does not compromise the device of the analyst and cannot
access its storage content such as secret keys.

SQL Support and Interoperability. Our goal is to build a private
query system that is simple to use and understand. A key idea
to improve interoperability and reduce the learning effort is to
make it similar to existing relational database management systems
(RDBMS). Supporting commonly used SQL interfaces and data
formats facilitates standardized use and testing.

One-round protocol with two parties. We want to preserve a
similar query pattern as a regular non-private database, where in
a single round an analyst sends a query to the database, and the
database sends the results of the query after processing it. That is,
we do not want more than one round of interaction. We also do
not want to introduce additional parties on the database side, for
example, multiple databases that are assumed not to collude.
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Figure 1: Example of private aggregation query. The top half displays the view from the analyst, while the bottom half displays
the view from the data provider. Query parameters, intermediate values, and final results are all hidden from the data provider.

Latency efficiency. We want the system to provide a user experi-
ence similar to a non-private DBMS for interactive data analysis
with a query latency within a minute, ideally a few seconds. As
the privacy requirement indicates that all data records need to
be accessed equally to guarantee indistinguishability, the protocol
operations should be highly data-parallelized to be efficient.

Scalability. Real-world aggregation often involves a large number
of records. The default-scale TPC-H benchmark contains millions of
records in its "lineitem" table. The protocol should support scalable
design, that by providing more computation resources, the system
should increase its processing speed and handle a larger workload.

2.4 Challenges

With the design goals, we revisit why existing works failed to
meet our requirements and list out the potential challenges. First, a
straightforward method is to run the complete query under HE. Al-
though HEDA [21] and HE3DB [4] explored efficient FHE protocol
designs for query processing, they assume both encrypted query
and database and do not discuss optimizations when the database
is non-private. As a result, their solutions require more than 15
hours to process one million records and cannot match practical
efficiency needs in this setting. Second, existing MPC-based solu-
tions [16, 25] require more than two parties. Last, previous works
such as keyword-PIR [6] and recent works in VLDB such as Pan-
theon [1] focus on improving PIR with specific types of queries,
but still have limited functionalities (e.g. only equality check) and
does not support richer predicates. We provide more comparison
details in Section 8.

To meet the design goals in Section 2.3, HADES employs HE
to provide strong privacy protection through a new two-party
one-round aggregation protocol. At its core, HADES borrows an in-
dexing design from PIR and builds efficient homomorphic operators
between encrypted query and public dataset for SQL operations.
In this way, HADES avoids the high-depth homomorphic circuits
which harm efficiency and scalability, and achieves practical per-
formance on a larger workload.

3 HADES WORKFLOW

HADES leverages HE to enable a simple one-round private query
processing. Specifically, the analyst handles the encryption of the
query and the decryption of the result. The data provider takes
two inputs: its own database in cleartext and the encrypted ana-
lyst query, and outputs the encrypted aggregation result. Figure 2
illustrates the HADES workflow that executes a five-stage proto-
col. We provide more details on how each operation is done under
encryption in Section 4.

(1) Query encryption. After deciding on a specific query to
run, the analyst first encrypts all query parameters into a
ciphertext, then sends that ciphertext along with the query
template (query without parameters) to the data provider.

(2) Indicator calculation. The data provider starts by comput-
ing encrypted values that indicate which records in the data-
base match the specific point or range predicates. Specifi-
cally, it generates encryption of 1’s for selected records and
encryption of 0’s for unselected records for each point or
range predicate. The resulting encrypted indicator vectors
are inputs for the next stage.

(3) Boolean circuit evaluation. Following the boolean oper-
ations specified in the query template, which forms a tree-
structured circuit, the data provider merges the encrypted
indicator vectors with logical operations and generates a
final indicator vector with 1’s and 0’s that represents the
final predicate matching result.

(4) Record aggregation. In the aggregation stage, the protocol
conducts multiplications between the indicator vectors and
the target table columns. While the unselected records are
masked out by the encryption of 0’s, the selected records are
preserved and carried into the ciphertext. Then the protocol
aggregates all ciphertexts to compute the final result.

(5) Query decryption. The analyst decrypts the response and
gets the final result. Because the data provider does not
have the corresponding encryption key, it cannot learn any
information related to the query parameter.
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Figure 2: HADES workflow (details simplified). Text on a black background represents encrypted values hidden from the data
provider. During indicator calculations, the protocol outputs encrypted 1 for selected records and 0 for unselected.

The use of encrypted indicator vectors in HADES resembles
that of existing PIR solutions, such as XPIR [19], that select one
record from a set of records. Additionally, to support the combined
predicates, HADES introduces HE operations between predicates to
compute the logical combinations. The key techniques of HADES
are in its protocol design to (1) efficiently generate encrypted indi-
cator vectors for point and range predicates during the indicator
calculation stage (stage 2), and (2) efficiently aggregate encrypted
records in the record aggregation stage (stage 4). We discuss details
about these two protocols in Section 4.

4 HADES BASE PROTOCOL

In this section, we describe the basic HADES protocol to support
private aggregation query, which serves as a strawman to provide
required functionalities but may not be performant. We explain
how it can be further optimized for practical efficiency in Section 5.
We start with the necessary background in HE and the use of indi-
cators. Then we explain the basic protocol of indicator generations
for point and range predicates. Last, we cover the aggregation.

4.1 Background

4.1.1 BFV Homomorphic Encryption. Homomorphic encryption
(HE) is the major cryptographic tool used to process private queries
in HADES. The complicated query functionalities call for Fully
Homomorphic Encryption (FHE) that supports both addition and
multiplication operations under encryption. Among existing FHE
schemes, the BFV scheme [3, 10] provides the required function-
ality based on the hardness of Ring Learning with Errors (RLWE),
while being more efficient than most traditional number-theoretic

schemes. Specifically, we use the SEAL variant [15] of BFV for the
implementation. To efficiently process large databases in a SIMD
manner, we also leverage the CRT batching technique [22] that
packs a matrix of integers into a single ciphertext.

The basic BFV scheme takes polynomials of limited degrees
as its plaintext space. Since all the polynomials in our protocol
use the encoding of CRT Batching, we assume all data takes the
form of vectors during the homomorphic operations to simplify the
discussion. Under this view, we organize the definition of the BFV
scheme as follows.

Let A be the security parameter and let n be the batching size of
the vector. The BFV scheme includes the following algorithms:

(1) KeyGen(d) — (pk(pk + ek + rk), sk): takes the security
parameter A and generates a public key pk, a secret key
sk, evaluation keys ek for relinearizations, and Galois ro-
tation keys rk. For simplicity, we use pk to refer to the
combination of (pk, ek, rk) from now on.

(2) Encrypt(pk,m) — ct: takes the security parameter A and
a plaintext m representing a vector of size n, computes
the ciphertext ct. For simplicity, from now on we denote
"Encrypt(pk, [...])" as"Enc([...])", where "[...]" is the plain-
text vector.

(3) Decrypt(sk,ct) — m: takes the secret key sk and the ci-
phertext ct, and recovers the plaintext m.

(4) Negate(pk,cty) — ct;: takes a ciphertext cty and returns
cty that satisfies Decrypt(sk, ct1) = —Decrypt(sk, ctp).

(5) AddPlain(pk, cty, m1) — cty: takes a ciphertext ctp and a
vector mj of size n, outputs the sum cty. Decrypt(sk, ctz) =
Decrypt(sk, ctg) + mj.
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(6) Add(pk,cty,ct;) — cty: takes two ciphertexts and calcu-
lates the sum cty such that Decrypt(sk, ctz) = Decrypt(sk, ctp)
+ Decrypt(sk, ct1).

(7) MultiplyPlain(pk, ctg, m1) — cty: takes a ciphertext cty
and a vector m of size n, calculates the elementwise prod-
uct cty that Decrypt(sk, ctz) = Decrypt(sk, cty) © m;.

(8) Multiply(pk(+ek),cto,ct;) — cty: takes two ciphertexts
and calculates the elementwise product ctz, which satis-
fies Decrypt(sk, ct2) = Decrypt(sk, cty) © Decrypt(sk, ct1).
Evaluation keys are used to relinearize the output and main-
tain the same format as the input ciphertexts.

(9) Rotate(pk(+rk),cty,s) — ct; uses Galois keys to cyclically
rotate the vector encrypted in the input by an offset s, i.e.,
the ((k +s) mod n)’th element in the vector encrypted in
input ciphertext cty becomes the k’th element in the new
vector encrypted by ct;. For simplicity, from now on we
denote "Rotate(pk, ...)" as "Rot(...)".

In BFV, noise is deliberately added during encryption to secure
the scheme. This initial noise ensures that the ciphertext masks
the plaintext effectively. However, most HE operations—such as
addition or multiplication—on the ciphertext increase the noise.
Over time, the accumulated noise can exceed a critical threshold,
making decryption impossible. The noise budget represents the
remaining capacity before this threshold is reached, indicating how
many more computations can be safely performed on the encrypted
data without harming correctness. Designing efficient HE protocols
with a limited noise budget poses additional challenges.

4.1.2  Encrypted Indicator. HADES takes an approach similar to
PIR which generates indicators representing whether the record
is selected. Here we provide an example to explain the basic idea
of PIR. Assume a simple case that the data provider has 8 records
09, 01, ..., 07 and assume a batching vector size n = 1 to discuss a
non-batched version. To retrieve vs, the analyst sends 8 ciphertexts
Q = [Enc([0]), Enc([0]), Enc([0]), Enc([0]), Enc([0]), Enc([1]),
Enc([0]), Enc([0])]. To get the encryption of the target record, the
data provider calculates ZZ:O Q[i] * v; which equals to Enc([o5])
and returns it to the analyst. After decryption, the analyst learns
the value it requested.

To see how batching works in a SIMD manner, assume a batch-
ing vector of size n = 4, by chunking the database into vectors,
we can reorganize the above procedure. The analyst sends Q =
[Enc([0,0,0,0]),Enc([0,1,0,0])] and the data providers calculates
Q[0]*[vg, v1,v2, v3]+Q[ 1] *[v4, v5, v, v7] with MultiplyPlain. The
vectors "[0, 0, 0, 0]", "[0, 1, 0, 0]" represent the selection of relevant
records, which we address as indicator vectors. The encryption of
such vectors are further denoted as encrypted indicator vectors.

To extend PIR to aggregation query processing, we need to (1)
extend indexing to filtering, and (2) add an aggregation step. How-
ever, such extension brings new challenges. Different from indexing,
filtering requires designs to process point and range predicates, and
boolean combinations between multiple predicates. Unlike PIR,
aggregation requires addition between records under encryption,
which may result in potential value overflow. The small field size
used by HE makes overflow prevention even more challenging. The
rest of the section explains our design to tackle these challenges.

4.1.3 Logical Operations. As mentioned in Figure 2, in stage three
we process boolean combinations on encrypted indicator vectors.
In practice, we use arithmetic operations to express boolean opera-
tions, specifically, for ciphertext a and b:

(1) NOT(a)=1-a
(2) AND(a,b) = a = b where "+" uses ciphertext Multiply.
(3) OR(a,b) = NOT(AND(NOT(a),NOT(b))) =a+b—ax*b,

where "+", "—", and "x" are all homomorphic operations.

Note that, in the "OR" operation, if we know in advance that
both terms will not be true simultaneously, we can omit the term
“a*b” (OR(a, b) = a+b). This normally happens when processing
predicates like “x = 42 OR x > 42”, “x < 16 OR x > 32”. In practice,
this helps improve query efficiency and save noise budget.

4.2 Supporting Point Predicates

Point predicate checks the equality between records and a certain
value. In general, it takes the form WHERE coly = v. For a database
column coly, depending on its data type, the point query difficulty
varies. Here we first discuss the simple case, where coly is an 8-
bit unsigned integer. Specifically, we discuss two general types of
methods as baselines. As we will see later, to efficiently process
more bits, we need to combine the core idea of these two methods.

Protocol 1: Batched 8-bit Point Query

Assume a batching size n = 28 = 256 to be the same as the size of
the range of the value, and a database with N = n = 256 records.
For query WHERE coly = v:

e The analyst sends mapping = Enc(m), where m is a vector
of size 256 with m[v] =1, m[i] = 0Vi € [0, 256) \ {ov}.

o The data provider initiates a full-zero encrypted vector of size
256 result = [0,0,...,0] and applies the following procedure
to each record in the database, for I’th record with value r:
(1) Rotate the required indicator to the first slot in the vector

according to the record value r:

current «— Rot(mapping,r)
Use multiplication to mask out irrelevant indicators and

@

-

only keep the first slot:
current « current = [1,0,0,... ]
(3) Rotate the encrypted indicator of the record back to its
original location [ in the database
current < Rot(current, —1)
(4) Add the indicator to the result ciphertext
result « result + current

The result satisfies result = Enc(ind), where ind[l] = m[r] for
all records, i.e., ind[l] = 1iff r = v, o/w ind[l] = 0.

Method A: PIR-style retrieval. The basic version of PIR can be
directly used when processing equality checks in a small range
(e.g. 8-bit unsigned integers). The key idea is to consider values
in the database as indexes on encrypted 1s’” and 0s’. For simplicity,
we first consider a non-batched version (i.e. n = 1). Specifically,
instead of directly encrypting the query parameter, the analyst
prepares a “mapping” vector of size equal to the range. For 8-bit
unsigned integers, the analyst prepares a vector of size 256. All
values in the mapping are zero except for the slot with an offset
equals to the query parameter, which is set to one. The analyst



encrypts this mapping and sends it to the data provider (i.e. for a
point query colyx = v, the analyst prepares mapping[v] = Enc([1]),
mapping|i] = Enc([0])Vi € [0,28 = 256) \ {0}). The data provider,
upon receiving this mapping, picks the corresponding ciphertext
according to the values in its database. Specifically, for a data-
base with a list of value dy, di, da, ..., the data provider generates
mapping|dy|, mapping|di], mapping[dz], ..., which is the required
encrypted indicator vector.

Extending this simple method to a batched version requires
homomorphic rotation operations. Protocol 1 provides an overview
of the procedure. Compared with the non-batched version, because
the indicators are batched together, it takes the data provider more
steps to index them. The data provider needs to first rotate the
input ciphertext, then apply masking via multiplications to remove
irrelevant indicators, rotate the ciphertext back so that the indicator
appears in the correct location!, and add all collected indicators up
to form the result indicator also in the batched form.

While Protocol 1 assumes both batch size n and database size N
are equal to the mapping size 28 = 256, in practice, it is convenient
to extend it to arbitrary batch size and database size We provide
more details on how it is supported in Appendix A.

Method B: Bitwise circuit. Instead of checking equality by “index-
ing” or “mapping”, an alternative method is to check each of the 8
bits then merge the result. Specifically, for checking where colx = v
without batching, we can write v in the binary representation as
0 = 0920 +01 *21 +...+07 %27, where vg..07 are binary values. Then
for each bit, we conduct bitwise checking EQ(a, b) = 14+2xaxb—a—b,
then combine the result with the boolean “AND” operation.

Compared with method A, method B is easier to batch and re-
quires fewer encrypted values for the input. However, it requires
more multiplication operations which are linear to the bit width of
the column, resulting in huge HE noise growth.

Combined: Point query on more bits. Real-world queries often
involve point queries on data types with more bits. However, both
methods mentioned above become impractical when there are more
bits to be checked. For example, for a 64-bit equality check, For
method A, the client needs to send 24 encrypted values to represent
the mapping, which is communication inefficient. For method B,
the server needs to process 6 layers of multiplications, which leaves
few bits of noise budget for other predicates and other query stages.

HADES protocol combines two methods to form a practical so-
lution. The idea is to conduct multiple 8-bit equality checks in
method A and use “AND” operations to combine them similar to
method B. For example, for a 32-bit value |ABCD| representing
the value A # 28%3 + B« 28%2 4 €« 28%1 4 D 4« 28%0 where A, B,C, D
are all 8-bit values, and similarly another value |[EFGH|. To verify
|ABCD| = |EFGH|, it is equivalent to check (A = E) AND (B =
F) AND (C = G) AND (D = H). In this way, we break one 32-bit
equality check into four 8-bit equality checks and three AND opera-
tions. We solve both problems: (1) As only four mappings of length
28 are required, the communication is still efficient. (2) As only
three AND operations are involved (two layers of multiplications),
the noise budget is still sufficient. Similarly, we can support equality
checks for 16 bits, 64 bits, and more.

1A simple optimization is to construct different masks to select slots and only rotate
once by location offset. We discuss an optimization covering this idea in Section 5.
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Note that we select the 8-bit equality check as it works well
in most cases under our default HE parameters. In practice, for a
specific type of query, one might select a method-A building block
with different bit widths to achieve the best trade-offs between
latency and noise growth.

4.3 Supporting Range Predicates

Range predicate checks if the record is within a given range, which
in general takes the form of WHERE coly > v;, WHERE coly >= v},
WHERE coly < vy, or WHERE coly <= v,. The basic protocol
for an 8-bit range query is similar to the one for a point query.
The only difference is in the number of encrypted 1s’ used in the
query ciphertext. Again, we first explain how to support 8-bit range
queries, and then we discuss its extension to wider ranges.

8-bit range query. To support 8-bit range query, we can still use
the indexing-based protocol. To cover a range instead of a single
point, we set all values that match the predicate in the mapping
vector to be 1s’. Consider WHERE col, > v; as an example, where
v € [0,255). The only change we need to make to Protocol 1 is
for analyst to define m as m[i] = 1Vi € (v}, 256), o/w m[i] = 0.
Then with the same protocol, the data provider can calculate the
indicator for the specified range predicate. For I'th record of value
r in the database, the protocol returns result = Enc(ind), where
ind[l] = m[r]. ind[l] = 1iff r € (v}, 256), as desired.

Similar to method B for 8-bit point query, we can also construct
a comparator boolean circuit for 8-bit range queries. Because of the
similar HE noise growth drawback, here we omit the details.

Range query on more bits. Supporting range queries on more bits
is similar to supporting point queries for more bits. The key idea is to
combine 8-bit building blocks using boolean operations to construct
equivalence. However, different from more-bit point queries which
only uses 8-bit point queries, more-bit range queries not only use
8-bit range queries but also 8-bit point queries. Concretely, consider
16-bit comparison between the value |AB| where both A and B are
8-bit values and |AB| = A * 28*1 + B+ 28*0_ and similarly value |CD],
we have |[AB| < |CD| & A < COR (A =C AND B < D). It would
require two 8-bit range queries, one 8-bit point query, one “OR”
operation, and one “AND” operation.

Similarly, one can construct range queries on more bits. The
conversion takes multiple steps and in each step, an 8-bit range
query is made on more significant bits, then a point query to cover
the other case. In Appendix B, we provide a 32-bit comparison
example to further illustrate the procedure.

Because all comparisons are made under encryption, boolean
short-circuiting cannot be applied here to save operations. How-
ever, as discussed in Section 4.1.3, we can apply the optimized OR
operation as we know in advance A < C and A = C cannot hold
simultaneously, even if we don’t know the query parameter value.

4.4 Supporting Aggregation

After indicator calculation with methods mentioned in Section
4.2 & 4.3, and boolean circuit evaluation using boolean operators
described in Section 4.1.3, in the record aggregation stage, the data
provider takes the input of the database and the final encrypted
indicator vector that represent which database records are selected,
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and outputs the aggregated values according to the query. Here we
first discuss two types of queries: “COUNT” and “SUM”.

Note that the aggregation under encryption presents a chal-
lenge due to the field used for homomorphic operations. With
CRT-batching, each slot in the encrypted vector can only preserve
a limited number of bits. In practice, for an encrypted message
Enc(m) used in HADES with our default parameter, for n = 214,
we have 0 < m[i] < 163841 where i € [0, 2'*). This suggests each
slot can hold 17 bits of information. While in the earlier stages it is
fine to have a smaller field as indicators are only 0s” and 1s’, in the
aggregation stage, we introduce new protocol designs to overcome
the limitations in the aggregated data type.

COUNT query. In a COUNT query, the data provider adds up
the encrypted indicators to see how many values are selected. For
batched indicators, the goal is to merge the indicators into a single
value in one slot. Such merging is important when the database is
large and multiple encrypted indicator vectors for different chunks
need to be merged before sent back. To support this operation, we
use rotation operations along with multiplications for masking.
Consider an example with batch size n = 8, for an encrypted indica-
tor vector I = Enc(ind) with value ind = [100 10 0 1 0], the data
provider calculates result = (I + Rot(I,1) + Rot(,2) + Rot(I,3) +
Rot(I, 4) + Rot(L,5) + Rot(I,6) + Rot(1,7)) * [100000 0 0] and
gets the desired merged result with value [30000 00 0].

Then, for multiple indicator ciphertexts computed from different
chunks of the database, the data provider merges them into a single
ciphertext before returning to the analyst. A naive approach is
to directly add up the ciphertext. However, this causes potential
overflow when there are many chunks. Concretely: (1) It is fine
to add up values in the same ciphertext in one slot because we
have 2! binary values in one ciphertext, and the size of the field
is larger than 217, 214 < 217 (2) It is fine to add up 2% aggregated
ciphertexts as 214 # 23 < 217, and the field size is larger than 217.
However, when there are more than 23 chunks, we need overflow
prevention. To solve this, in HADES, instead of directly adding up
the chunk results in the same slot, we use rotations and additions
to put them in different slots to make use of all 214 available slots.
Then the analyst can decrypt the returned ciphertext and add it
up in cleartext to get the final sum. In this way, we can support
COUNT for up to 23! records within one ciphertext.

SUM query. To sum the selected values for the given list of records
in the database, the simplest solution is to run plaintext multiplica-
tions between the plaintext database and the ciphertext encrypted
indicator vector, the same as in PIR, then add up inside each ci-
phertext. For example, for the database [11 22 33 44 55 66 77 88]
and the encrypted indicator [10 0100 1 0], we first run plaintext
multiplication, then similar to the COUNT query, we use rotations
to merge the results into a single slot to get [132000 0 0 0 0].
However, different from the COUNT which adds up binary indica-
tor values, the SUM query needs to consider the database column
being processed. For example, the decimal in TPC-H takes 42 bits
while our HE scheme can only handle 17 bits in one ciphertext slot.
If we use the COUNT algorithm, there will be overflows that make
the final result unrecoverable.

To address this challenge, HADES decomposes the 42-bit data-
base values into its octal representation, handling 3 bits each time.

Since 23 x 2% < 217, we can guarantee no overflow when ag-
gregating within a single ciphertext. To recover the original sum,
HADES runs multiple octal SUM queries simultaneously and marks
the order of the results in the returned ciphertext. The analyst
can recover the original sum by treating the results as the oc-
tal decomposition. To explain with a concrete example summing
up three 8-bit values 4219 = 052, 15119 = 227, 1919 = 023,
HADES breaks the record into 3 pieces, then run 3 SUM queries
separately and mark the result order. The data provider calculates
0+2+0=254+2+2=92+7+3 = lZunderencryption,then
the analyst recovers the sum 2 % 82 + 9 + 8! + 12 » 8 — 212, which
equals 42 + 151 + 19. The protocol guarantees no overflow and thus
the aggregation results are always recoverable.

5 HADES OPTIMIZATIONS

While Section 4 explains the baseline protocol that supports pri-
vate aggregation queries, latency efficiency still requires careful
algorithm design. In this section, we explain two major optimized
algorithms to accelerate the two most time-consuming stages in
HADES: indicator calculation and record aggregation.

5.1 Batched Elementwise Mapping

In Section 4, we explained how we can use PIR-style retrieval for
8-bit predicates. Here we extend this building block to have a more
general functionality. Specifically, assuming batched ciphertext
with n = 28, consider a list of 8-bit record values from the data
provider: db = [rg, r1, ...], and consider a mapping of size 256 sent
by the analyst with 8-bit keys: mapping = Enc(v), where v =
[v0, 91, ...]. Following the same procedure in Protocol 1, the data
provider can compute result = Enc([v[ro],v[r1], ...]), where v[r;]
is the r;’th value in the mapping being encrypted. The functionality
of the building block can be formalized as below.

e MappingGen(pk, f) — cts: takes a mapping f from do-
main [0, 2d) to any integers, generates a ciphertext cty that

stores the mapping. We need M = 24 slots in the cipher-
text to store the mapping. If 24 < n, where n is the size
of the vector, the mapping only occupies 24 slots in all n
slots inside cty, otherwise, the operation generates a list of
ciphertexts to store a single mapping.
o ApplyElementwiseMapping(pk, m,ctr,d) — ct: takes
the domain size bit-width d, an encrypted mapping ctf, and
a plaintext vector m with all elements in domain [0, 24), ap-
plies elementwise mapping for all elements in m to compute
an encrypted ct satisfying that Vk : Decrypt(sk, ct)[k] =
f(m[k]). For simplicity, we omit the pk argument and de-
note the function as "Emap(|[...])"
Following Protocol 1, for a database with N = 214 records, the
required amount of multiplications and rotations needed for Emap
is huge, resulting in slow computation. Specifically, it requires 214
multiplications, 2'* rotations, and 2!4 — 1 additions after apply-
ing the location offset-based rotation. Because HE operations are
usually time-consuming, making the solution practical requires
avoiding an operation number that is linear to the database size.

Rotation caching. Observe that all the rotations are applied to
the masked mapping, because there are only M slots used in the



mapping, there are only M different possible rotations rather than
the batch size n. If we can preprocess to cache these different rota-
tions and reuse them for different database records, we can reduce
the required rotations from n to M (in practice, from 214 = 16384
to 28 = 256). Also observe that, it is possible to apply masking for
multiple records together in a batched way. Then, the number of
multiplication operations is also reduced.

Following the above idea, we describe the algorithm for efficient
batched elementwise mapping in the HADES protocol. Algorithm
1 shows the optimized algorithm and Figure 3 illustrates the pro-
cedure. By expanding the mapping to occupy the full ciphertext
(assuming n can be divided by M) and calculate all M possible ro-
tations, we cache all possible rotation forms. Then, we construct
proper masks to select slots from the rotations that reflect the
database value, multiply to apply the masks, and sum the masked
rotations to get the final results.

Algorithm 1 Our efficient elementwise mapping algorithm
ApplyElementwiseMapping(pk, m, ctf,d) — ct

1: [step 1]: Repeat the mapping to fill up the ciphertext

2: while i « [d,log,(n)) do

3: cty «— Add(pk, ctr, Rotate(pk, gk, ctr, 21))

4: end while

5: [step 2]: Prepare all possible rotations

6: r_cty « list of 24 vectors of ciphertexts > “r_" for “rotated"
7: r_ctp[0] « cty

8: while i — [1,29) do

9: r_ctg[i] < Rotate(pk,gk,r_cts[i—1],1)
10: end while
11: [step 3]: Construct mask vectors in batch
12: b_ind « list of 2¢ vectors of plaintext zeros > “b_" for “batched"
13: while i « [0,n) do
14:  b_ind[(m[i] —i) mod 29][i] « 1
15: end while
16: [step 4]: Index values with correct locations

17: b_rot « list of 2¢ vectors of ciphertexts > “b_" for “batched"
18: while i « [0,29) do

19: b_rot[i] « Multiply (pk, ek, r_ctr[i],b_ind[i])
20: end while
21: return Z%:()’l b_rot[i]

Performance analysis. For the unoptimized protocol, we dis-
cussed earlier that for 8-bit elementwise mapping with n = 214,
M = 28, the data provider needs to process 2! multiplications, 24
rotations, and 2% —1 additions. For the optimized protocol, consider
each step: (1) Repeating the mapping requires log, (n/M) additions.
(2) Preparing rotations requires M — 1 rotations. (3) Construct plain-
text masks only require plaintext operations. (4) Applying masks
requires M plaintext multiplications. (5) Sum across masked ro-
tations requires M — 1 additions. Table 1 summarizes both the
theoretical and concrete savings in the number of operations.

Algorithm Addition | Rotation | Multiplication
Unoptimized n-1 n n
withn =214 M =28 16,383 16,384 16,384
Optimized logy(n/M) +M -1 M-1 M
withn =214 M =28 261 (1.59%) | 255 (1.56%) 256 (1.56%)

Table 1: Single-chunk elementwise mapping analysis
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Figure 3: Illustration of the elementwise mapping algorithm.
The steps are explained in Algorithm 1. The example uses
d = 2, n = 8 for illustration. The ciphertext output applies
elementwise mapping to values in message m as required.

Saving across database chunks. The rotation caching not only
saves the number of operations required for processing a single
database chunk, but also improve performance when the database
size is larger than the batching size. Consider a database size N =
k *n, as discussed in earlier sections, to apply elementwise mapping
to such a database, we need to first chunk the database then run
protocol on each chunk. While for the basic protocol, the cost grows
linearly with k, with rotation caching, the first two steps in the
algorithm can be reused across different chunks as long as the
mapping is the same, resulting in huge computation savings for
large databases. To demonstrate the saving, in Table 2 we provide
theoretical cost analysis along with a concrete example of a database
with 220, around 1 million records. Consider in practice the rotation
operation often takes more time than the plaintext multiplication,
the optimized protocol results in huge savings.

Algorithm Addition | Rotation | Multiplication
Unoptimized kxn-k kxn kxn
with N = 220, M = 28 1,048,512 | 1,048,576 1,048,576
Optimized log,(n/M) +k M -k M-1 kM
with N = 220, M = 28 16,326 (1.56%) | 255 (0.02%) 16,384 (1.56%)

Table 2: Multi-chunk elementwise mapping analysis

5.2 Hybrid Multi-Cipher Reduction

Simple aggregation via looping. While in Section 4.4, we ex-
plain how to ensure the correctness of aggregation by preventing
overflow, here we describe a new merging algorithm that improves
efficiency. When using HE to process aggregations of ciphertexts,
a common practice involves two steps: (1) summing up the values
in one ciphertext using rotations and additions, and (2) reduce the
aggregated multiple ciphertexts into a single ciphertext for return
while keeping the sum value for each original ciphertext separate.
While sequential executing these two steps is direct and natural,
we show by carefully designing an algorithm that merges two steps
together, we can save around 80% total computation time.
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Concretely, assume for input we have k = 2° ciphertexts, each
encrypts a vector V; that contains n = 2¢ slots, with s <= ¢. This
usually represents a input database with N = 25 % 2 entries in 2°
chunks. The goal is to get a single ciphertext encrypting vector
Vans with slots containing the sum of V;, such that Vyps[i] = ZV;.
Using a simple looping algorithm, we need k plaintext-ciphertext
multiplications, k * t rotations, and k * (¢ + 1) additions. We explain
how this is calculated in Appendix C.

Combining self-reduction and multi-cipher reduction. How-
ever, while it is natural to separate two steps, there is a significant
waste of computation during the self-addition of the single cipher-
text in the first step. Particularly, during the j’th iteration of the
second-level loop, the addition between 2(t=7=1) yalues inside the
ciphertext are actually repeated 2/ times. To avoid such waste,
we propose a new algorithm to reduce the overall computation
cost. The new algorithm combines two steps by merging cipher-
texts and values inside the ciphertext simultaneously, avoiding the
repetition mentioned earlier. As a result, it requires around 2 * k
plaintext-ciphertext multiplications, 2 * k rotations, and 4 * k addi-
tions. Compared with the simple solution, this avoids a factor of ¢
in both the rotations and additions. We provide the pseudo-code of
the algorithm in Appendix D.

While the complexity for rotations and additions has been signif-
icantly reduced, the number of multiplications required is doubled
compared with the simple looping algorithm. In practice, the rota-
tion is often as time-consuming as plaintext multiplication, thus
the overall saving is still huge. In practice, for n = 214t = 14, the
time consumption ratio between plaintext multiplication, rotation,
and addition is around 13.8 : 32.8 : 1. Omitting the common factor
k, the optimization leads to about 80% saving.

Noise budget tradeoff. While the new algorithm overall improves
the efficiency, it is worth noting that the consecutive multiplications
consume significantly more noise budget than the naive approach.
In practice, one may combine the naive algorithm and the optimized
algorithm by running the optimized algorithm for the first few steps,
and then the naive algorithm to make sure the noise budget is not
used up in the end. In such a hybrid solution, because the first few
steps can exponentially reduced the number of ciphertexts, the
overall saving is still significant.

6 IMPLEMENTATION

Real-world database applications often demand high performance
and rich functionalities to support complex query semantics. The
HE algorithms introduced in Sections 4 and 5 present complex
data dependencies, challenging the implementation of highly par-
allelized systems. Moreover, the basic protocol discussed thus far
only covers limited query keywords and preliminary data types,
such as unsigned integers.

To address these challenges and achieve the goals of SQL sup-
port, latency efficiency, and scalability outlined in Section 2.3, we
developed HADES in 3.6k lines of C++ and 1.2k lines of Python
using multi-thread programming. We utilized Microsoft SEAL [22]
for BFV homomorphic operations, selecting a polynomial-size of
2% and using CRT to encode 2!7 bits in each slot. The parameters
are selected to achieve the best trade-off between per-slot operation
speed and adequately sufficient noise budget. Next, we detail our

approach. First, we discuss our staged multi-thread design, which
accommodates the data dependency topology. Then, we explore
protocol extensions that broaden the coverage of SQL keywords
and data types.

Multi-thread scheduling. In Section 3, we introduce the five
stages of the HADES protocol, with the middle three stages ex-
ecuted on the data provider side. While parallelization is critical
for efficiency and scalability, the complicated data dependencies in
HADES present significant implementation challenges. Specifically,
each stage involves unique dependency structures and thus requires
synchronization and task regrouping. In the indicator calculation
stage, the rotation preparation in Algorithm 3 for each encrypted
value is only processed once and then used for multiple database
trucks. In the boolean circuit evaluation stage, indicators generated
in the earlier stage for the same chunk of the database are grouped
together following the logical operations specified in the query
template. In the record aggregation stage, indicators from different
chunks across different subqueries are merged.

To properly organize the execution order, in HADES we explic-
itly construct a CSV-formatted intermediate representation (IR)
to describe task dependencies across different stages. Each line of
the CSV contains a parallelizable task with a unique task ID, the
task parameters (e.g. which database truck to access, what boolean
operation to compute), and describes its dependent IDs for cross-
referencing during execution. To reduce communication between
tasks and efficiently share dependent task objects, we choose thread-
level parallelization and maintain read-only access for dependent
objects. Our separation of stages guarantees that all cross-task de-
pendencies are crossing stages, significantly reducing unnecessary
synchronizations and avoiding all dependent task status checks.

To implement the above mechanism, in practice we built a query
compiler in Python that pre-fetches table statistics and generates
execution IR based on the input query template. We built a multi-
thread C++ execution engine that interprets the generated IR and
accesses the database to complete the query processing. The C++
execution engine maintains a thread pool to execute tasks from the
IR in the same stage utilizing SEAL, goes through all three stages
sequentially, and finally generates the result ciphertexts.

Support more keywords and data types. HADES supports oper-
ators like AVG, GROUP BY, ORDER BY, and formulas in SELECT
statements through multi-subquery merging and preprocessing. It
optimizes execution by computing a shared encrypted indicator
vector for subqueries and merging aggregation results to minimize
communication. AVG is supported by combining SUM and COUNT
operations, allowing the analyst to compute averages locally. For
GROUP BY, the server preprocesses data into groups and applies
queries to each, sending separate results back. Formulas in SELECT
statements are precomputed by creating new columns, and OR-
DER BY is processed locally by the analyst. HADES also supports
signed values, fixed-point numbers, and strings by applying value
conversions and hashing. We provide more details in Appendix E

7 EVALUATION

We evaluate the performance of HADES, focusing on its query
processing latency, scalability, and comparison with state-of-the-
art baseline systems. Furthermore, we explore the reasons for the



system performance improvement by analyzing the effectiveness
of our algorithm optimizations in Section 5. Here we summarize
our main results.

e For three TPC-H SQL queries on one million records, HADES
effectively reduces the query latency compared with the
best previous results from HE3DB and HEDA. Specifically,
with the public data setting, it reduces the latency from
14h (Q1), 27h (Q4), and 5h (Q6), to 17.2s, 14.9s, and 80.5s,
achieving 2981x, 6574x, and 204x speedup respectively.

e Despite the complicated internal data dependencies, the
query processing performance of HADES sufficiently scales
when the thread number increases. With 128 threads, the la-
tency to run Q1 on one million records significantly reduces
from 760.8s, the single-thread results, to 17.2s.

o Both optimized algorithms demonstrate significant advan-
tages in time consumption and noise budget saving, con-
tributing to the speedup of HADES query protocol.

Experiment setups. TPC-H [24] is a decision support benchmark
for SQL queries on large databases, which provides query specifica-
tions and table generation utilities. For comparison with previous
work, we mainly focus on three queries from TPC-H, Q1, Q4, and
Q6 in the experiment. Q1 aggregates eight columns of values in
four groups with a predicate on a date column. Q4 aggregates a
single column in five groups with multiple predicates that contain
a sub-query, which could be pre-processed. Q6 also aggregates a
single column without any grouping but has more complicated
predicates. While Q1 and Q6 target the main table “lineitem” from
the benchmark, which has a directly adjustable size, Q4 targets a
different table “orders”. To align the table size for Q4, we tune the
generation factor from the TPC-H tool so that the generated table
size is just over the required size (12K for 10K experiment, 102K
for 100K experiment, and 1.002M for 1M experiment). We run all
end-to-end experiments with 128 threads on an AMD EPYC 9654
platform. For micro-benchmarks on system components, we report
the single-thread performance for clearer comparison.

Baselines. For end-to-end experiments, we mainly compare our
results with two previous works, HEDA [21] (192 threads) and
HE3DB [4] (96 cores?), as our baselines. For HEDA Q1, we cite the
performance number for their simplified query (GROUP BY, ORDER
BY, AVG removed). For HE3DB, we cite the estimated used time
for processing 1M-record, as the actual time is not provided in the
paper. HEDA does not provide evaluations in Q4. HEDA-(Q1,Q6)-
1M, HE3DB-(Q1,0Q6)-100K, HE3DB-Q4 numbers are obtained by
interpolation. For micro-benchmarks on system components, the
baseline methods used for comparisons are discussed in Section 4.

7.1 TPC-H Latency Comparison

We first focus on the end-to-end query latency comparison with
baseline systems for the TPC-H queries. Figure 4 presents com-
parison results for various queries with different database sizes.
For the smallest 10K workload size, HADES takes 2.9s, 3.3s, and
11.2s respectively to execute each of these three queries. As the first
work to report actual latency measured on one million scale work-
load, HADES reduces the processing time to 17.2s, 14.9s, and 80.5s,

“Whether hyper-threading is enabled is not mentioned from the reference.
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Figure 4: TPC-H latency comparison between HADES, HEDA, and
HE3DB. HEDA does not report numbers on Q4.

achieving 2981x, 6574x, and 204x speedup on three queries com-
pared with the best previous results between HEDA and HE3DB in
the public data setting. In terms of the communication cost, for all
end-to-end experiments, HADES uses a single ciphertext to encrypt
and encode all the query parameters, which takes around 1.74MB.
The query results are also encoded in a single ciphertext of the
same size.

Comparing different scales of the workload, we observe that as
the workload becomes larger, the improvement factor, which is
reflected in the bar height difference, also grows. For example in
Q1, we improve from HEDA by 187x for 10K records, 1288x for
100K records, and 2981x for 1M records. The reason is that the 10k
workload is too small for parallelization, as it cannot even fill one
ciphertext, which provides 16k slots. The strength of BFV SIMD
operations and multi-threading are not fully exploited compared
with baseline solutions that use TFHE.

Comparing different queries, the improvement for Q1 and Q4
is more significant than Q6. This is because Q6 is more predicate-
focused and only asks for a single aggregation, while Q1 and Q4
require multiple aggregation columns across different groups of
records, resulting in more database chunks reusing the same map-
ping, and more indicators to merge. Consequently, Q1 and Q4 ben-
efit more from the rotation caching and optimized aggregation
algorithms proposed in this paper.

Q4 Time used (s) Q6 Time used (s)

Q1 - 10K Q1-1M Q4-1M
Stages T[Ts] N| T]T%] N T[T%| N
IC - rotation caching 1.20 42% 27 119 7% 28 129 9% 27
IC - mask & index 047 16% 27 731 42% 27 12.28 84% 25
Boolean Circuit Eval 0.17 6% 80 023 1% 79 050 3% 112
Record Agg 1.03 36% 144 852 49% 163 056 4% 115

Table 3: HADES performance breakdown in different query pro-
cessing stages. “IC” on left stands for the indicator calculation stage
and two corresponding rows are the two steps in the IC stage. “T”
columns provide time used in seconds and “T%” columns show cor-
responding percentages. “N” columns measures the bits of noise
budget consumed by the stage (total budget: around 366 bits).

To further analyze the bottleneck of the solution, we profile the
protocol execution on TPC-H queries to obtain its performance
breakdown in different stages. In addition, we pause the protocol
between stages and temporarily reveal the private key to measure
the remaining noise budget. In this way, by calculating the differ-
ence, we can learn the noise budget consumption in different stages.
Table 3 presents a detailed breakdown for the time consumption
and the noise growth.

Comparing different queries, the bottleneck stage varies accord-
ing to the query focus. Q4 asks for the aggregation of fewer columns
than Q1 and has more complicated predicates. As a result, the indi-
cator calculation stage for Q4 takes more time.
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Comparing the breakdown for the same query (Q1) with differ-
ent workload scales, we observe major time consumption growth
in indexing and aggregation, as both steps are highly paralleliz-
able and are already fully utilizing multi-threading. Contrarily, the
boolean circuit evaluation, which is less parallelizable, shows less
time growth as a larger workload helps improve the utilization rate
of multi-threading. The top region in Figure 5 directly illustrates
such a difference. The time needed for rotation caching keeps the
same for Q1 with different workload scale. The reason is that the
computation required by the rotation caching step is only affected
by the predicate, and is irrelevant to the size of the database. Such
a design in our optimized algorithm also contributes to the overall
savings, especially for larger workloads.

In terms of noise growth, we observe the latter two stages con-
sume more noise budget in general. When the number of records
increases, the noise budget required by aggregation also increases.
This is because more steps of merging are required for more records,
indicating more layers of ciphertext multiplications for masking.

7.2 Scalability
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Figure 5: TPC-H Q1 profiling with different number of threads for
10K/1M records. The top region shows the thread utilization rate.
The middle region shows for all stages, the accumulative latency
decreases as the number of threads increases. The bottom region
shows the time consumption percentage for each stage.

To achieve practical performance for large tables, HADES achieves
scalability by performing multi-threading in each query processing
stage as mentioned in Section 6. Here we investigate the scaling
characteristic of HADES and Figure 5 shows how the processing
time decreases as more threads are used. We observe that in general,
all stages benefit from multi-threading. With an increasing number
of used threads, the overall time significantly reduced from minutes
to seconds.

By comparing with the single-thread performance, we calculate
the utilization rate of each thread by its relevant slowdown and illus-
trate it on the top region of Figure 5. For the most time-consuming
“mask & index” step (red) and record aggregation stage (green), the
utilization rate keeps above 50% before reaching 32 cores. Also, the
utilization rate is generally higher for the larger 1M workload. We
also verified that as discussed earlier, the boolean circuit evaluation
stage is less parallelizable compared with other stages. We envi-
sion that to further reduce query processing time to the sub-second
level, a future direction is to further decompose basic HE operations
via multi-threading or specific hardware acceleration, as a single
ciphertext multiplication is already taking around 70 ms.

7.3 Micro-benchmark

To further investigate the source of acceleration for HADES, we
run micro-benchmarks to measure the performance gain from the
optimizations mentioned in Section 5.

Time used (s) 8-bit 16-bit 32-bit 48-bit 64-bit
1761.67 1767.11 * * *
(1.74MB) (6.97MB) (457 GB)  (29PB) (2 ZB)

PIR-style retrieval (method A)

Bitwise circuit (method B) 2780.04 5591.73 11159.98 16705.79 22394.79
8-bit retrieval + emap (ours) 8.19 15.08 30.88 45.64 61.47
1-bit (bitwise) + emap 3.49 7.24 13.84 20.65 29.11

Table 4: Point query algorithm comparison on 2!* records. For PIR-
style retrieval experiment skipped and marked *, while theoretically
the computation time remains the same for different bits, the com-
munication cost is far from practical.

Indicator generation algorithm comparison. First, we evaluate
the indicator generation procedure for different algorithms by their
time consumption, communication cost, and introduced noise. The
algorithm starts with the encrypted point predicates and 2'* records,
and outputs the ciphertext indicators for whether the records are
selected. We choose four algorithms as our comparison targets. We
describe the basic PIR-style retrieval and bitwise circuit methods
in Section 4. In addition to our combined method that uses an 8-bit
retrieval building block with elementwise mapping, we also add
an optimized version of bitwise circuit leveraging the elementwise-
mapping operator we designed, which can be treated as a variant
that uses a 1-bit retrieval building block. Table 4 summarizes the
performance comparison between different algorithms for point
predicates with varying bit length.

Comparing with baseline methods, we observe that the element-
wise mapping algorithm significantly accelerate point query speed.
Additionally, we find that most algorithms scale nearly linearly
with the bit-number to be compared, the only exception is PIR-style
retrieval but its communication cost becomes impractical when
there are more than 16 bits. When selecting the mapping size for
the elementwise mapping algorithm, the 8-bit building block avoids
3 levels of ciphertext multiplications at the cost of doubling the
computation time. Because ciphertext multiplication is the domi-
nant factor for noise growth, avoiding these 3 levels helps greatly in
saving the noise budget. Considering the end-to-end performance,
the noise budget saved from here can be used to significantly reduce
record aggregation time, by incorporating more optimized merging
steps as we discuss next. Similarly, range queries also benefit from
elementwise mapping, as the underlying building block is exactly
the same as point queries.



Time used (s) 2% records 2" records 2% records
Naive emap 1794.04 14352.31%  114818.47*
Opt emap w/o rot caching 8.17 60.84 478.33
Opt emap 8.18 23.25 146.08

Table 5: Ablation study on the elementwise mapping operator for
rotation caching in 8-bit point predicate indicator generation. Values
marked * are estimated.

Elementwise mapping operation optimization. Here we also take a
deeper look into the elementwise mapping step in the point query to
verify the theoretical saving discussed in Section 5. Table 5 provides
an ablation study for the optimizations used on 8-bit point query
indicator generations.

We first observe that the naive protocol is completely impractical
even for a slightly larger database. Processing a single 8-bit map-
ping on 1m records takes 1.3 days. From the “21* records” column
that only processes a single ciphertext, compared with the naive
protocol, we observe a huge saving from our optimized algorithm,
down to 0.46%. We also notice that the actual saving in the experi-
ment is even more significant than our theoretical analysis from
operation number estimation in Section 5 (1.56%). This is because
in practice, the rotation operation does not have a constant cost. Its
cost is influenced by the rotation offset and is minimal when the
offset is 1. While our optimized method always uses an offset of 1
to generate all possible rotations, the naive method uses a dynamic
offset, resulting in many times of extra cost.

To verify the effectiveness of rotation caching across different
database chunks, Table 5 also provides an ablation study without
caching the rotation across different database chunks. We observe
that when applying the same mapping to more database chunks,
rotation caching significantly saves the computation time, which
is aligned with our discussion in Section 5, reducing the cost to
process each additional 2 records from 7.5s to 2.2s.

Time used (s)
# Record 214 17 920 923 | ol pl7 20 523
Simple aggregation 0.3 24 192 153.6 1 1 1 1
Opt aggregation 03 07 43 342 1 4 7 10
Hybrid - 2 step 03 09 74 590 1 3 3 3
Hybrid - 4 step 03 07 48 391 1 4 5 5

Table 6: Record aggregation algorithm comparison.

# Mul layer

—
<

Record aggregation optimization. In addition to indicator gen-
eration, we also measure the performance of record aggregation.
Specifically, we compare the simple aggregation, optimized aggre-
gation and the hybrid solution with different numbers of optimized
steps. We use the layer number of multiplication needed to esti-
mate the noise growth. Table 6 provides the comparison details. We
observe that the fully optimized aggregation is the fastest among
all methods, at the cost of huge noise growth. Besides, all three
methods with optimized steps significantly improve from the sim-
ple aggregation, providing up to 4.5x speedup, which matches our
analysis in Section 5.2. Among them, the 4-step hybrid algorithm
achieves performance close to the fully optimized version, while
maintaining a controllable noise consumption. This is because in
the first four steps, the number of ciphertexts needed to be pro-
cessed has already been significantly reduced.
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To summarize, all proposed optimized algorithms significantly
outperform their baseline methods, which leads to the overall la-
tency reduction in the end-to-end HADES query processing.

8 RELATED WORK

FHE-based encrypted database. There are several closest relevant
recent works [4, 14, 21, 23] that have explored efficient FHE-based
protocol design for query processing with private query and private
database. HEDA [21] designs a conversion protocol between two
types of FHE ciphertext, allowing the use of both the numerical
and binary forms of the data to be used during the query process-
ing. HE3DB [4] proposes new HE operators to further improve
the performance and support more query functionalities. Kim et
al. [14], compared with the other two works, focuses on the opti-
mization of the equality predicate operators rather than the full
query, discussing the construction for both conjunctive and dis-
junctive queries. Tan et al. [23] further explore range predicates
for record retrieval rather than aggregation, with proposed VFE en-
coding groups the bits to be compared for efficiency. All the above
works focus on protocol design for private databases. In compari-
son, our work explores the PIR-style HE protocol design for public
databases, thus achieving order-of-magnitude better performance
in more specific use cases as shown in Section 7.

MPC-based and Enclave-based private query. There are some
other works [8, 12, 16, 25, 27] that target similar functionalities
with different technical assumptions and deployment requirements.
Splinter [25] also targets private queries on public data. It relies on
function secret sharing to hide query parameters in a non-colluding
server setting. Similarly, Hafiz et al. [12] relies on an improved
IT-PIR protocol to process aggregation queries with multiple non-
colluding servers. While these solutions support the setting and
the functionalities in HADES, they require more communication
rounds, assuming multiple database copies and non-collusion. De-
signed on top of the distributed hardware enclaves, Opaque [27]
uses a threat model mainly focusing on root adversaries from the
cloud provider, and mitigates access pattern attacks. Their solu-
tion relies on the use of specific hardware and assumes that the
adversary cannot compromise the trusted hardware.

Extensions for PIR. While the basic PIR [7, 11, 17] solutions
mainly support retrieval with indexing, there has been efforts
extending this functionality for practical convenience. Keyword
PIR [1, 6, 18, 20] extends the use of index to an identifier, function-
ally introduces an equality check on a single field for retrieving the
record. Cristofaro et al.[9] and Boneh et al.[5] extend the predicate
support to cover disjunctive and conjunctive clauses. Coeus [2]
discusses supporting private document relevance ranking in query.
Hayata et al. [13] discusses the range query for IT-PIR. It claims
the lack of formal insecurity for existing query privacy preserving
schemes and presents an FSS-based multi-round range query proto-
col with a non-colluding server setting. Also targeting to extend PIR
functionality, our solution HADES extends CPIR for data aggrega-
tions, efficiently processing comprehensive boolean combinations
of point and range predicates.
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A UNMATCHED BATCHING, MAPPING, AND
DATABASE SIZE

To work with a batch size larger than 256, the analyst can pad
the mapping with zeros. For a batch size smaller than 256, the
analyst can send multiple ciphertexts similar to the non-batched
version to cover different sub-ranges. For a database smaller than
the mapping size, the data provider can index with arbitrary values
and in the end apply additional masking to make sure a padded
record is never selected. For a database larger than the mapping
size, the data provider can chunk the list and handle each chunk to
get indicators separately.

B 32-BIT RANGE QUERY

Consider an example |ABCD| < |FGHI|, where two values are
defined similar to the example in Section 4.3.

|ABCD| < |EFGH| (1)

& |A<E|OR ()
|A = E| AND 3)

(IB < F| OR 4)

|B = F| AND (5)

(IC < G| OR (6)

|C =G| AND |D < H| ()

) (8)

) )

C LOOP-BASED AGGREGATION

Algorithm 2 Simple aggregation algorithm
SimpleAgg(pk, V) — Vans where input V is a list of k ciphertexts

1: Vans < Enc([0 ... 0])
2: while i < [0,k) do
[step 1]: Self reduction
while j < [0,¢) do
V[i] « Add(pk, V[i],Rot(V[i],27))
end while
[step 2]: Multi-cipher reduction
mask « plaintext vector of zeros, mask[i] « 1
9: Vans < Add(pk, Vs, MultiplyPlain(pk, V[i], mask))
10: end while
11: return Vg,

As shown in Algorithm 2, getting the sum of a single input
ciphertext XV; in step 1 requires ¢ rotations and ¢ additions. Each

slot in the resulting ciphertext V; is equal to the required sum.

Processing k such ciphertexts requires k * t rotations and k * ¢
additions in total. Then to merge multiple ciphertexts into one, the
algorithm below requires k plaintext-ciphertext multiplications for
masking and k additions. Combined together, the direct approach
requires k plaintext-ciphertext multiplications, k * ¢ rotations, and
k = (¢ + 1) additions.

D OPTIMIZED REDUCTION

Algorithm 3 provides the pseudo-code of the algorithm. For time
complexity analysis, in each round the size of ciphertexts is reduced
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by half. 1 rotation, 2 addition, and 1 multiplication are applied to
each ciphertext. In total, the new algorithm requires 2 * k plaintext-
ciphertext multiplications, 2 * k rotations, and 4 * k additions, with
a small constant difference caused by the division remainder.

Algorithm 3 Optimized reduction algorithm
OptAgg(pk,V) — Vans where input V is a list of k ciphertexts

1: while i « [0,¢) do

2 while j < [0,len(V)) do

3 V[j] < Add(pk, V[j],Rot(V[j],2" « (~1)/ mod2))
4 end while

5: initialize both mask;, mask, « vector of zeros

6 while j « [0,n) do

7 masky[j] <« (j&(1 <<i))?0:1

8 mask,[j] «— (j&(1 << i))?1:0

9 end while

10: initialize V’ « new vector of ciphertext with size halved
11: while j < even numbers € [0,len(V)) do

12: Vi < V[j]

13: if j+1=1en(V) then

14: V'j/2l «V;

15: break

16: end if

17: Vi, «VI[j+1]

18: masked_V; < MultiplyPlain(pk, V;, mask;)
19: masked_V, «— MultiplyPlain(pk, V,, mask,)
20: V'[j/2] « Add(pk, masked_V;, masked_V;)
21: end while
22: VeV

23: end while
24: return V|[0]

E EXTENDED SQL SUPPORT

HADES additionally applies multi-subquery merging and prepro-
cessing to support more query keywords such as AVG, GROUP BY,
ORDER BY, and support formulas in the SELECT statement.

To support multiple subqueries, in addition to applying the query
processing protocol to each subquery independently, the overall
protocol execution can be further optimized. Specifically, the pro-
cedure to compute the encrypted indicator vector is the same for
different subqueries, thus the server only needs to do it once. To
minimize communication, it is ideal for the server to return as
few ciphertexts as possible. Thus the result from multiple aggrega-
tion subqueries should be merged. With the query template and
the database schema, both the analyst and the data provider can
determine a starting offset in the ciphertext for each aggregation
query. Note that COUNT aggregation usually takes one slot, while
SUM aggregation usually takes more (e.g. each SUM aggregation
on 42-bit decimal takes 14 slots) because of the octal decomposition
mentioned in Section 4.4.

Consequently, the AVG operator can be supported as it is a
combination of SUM and COUNT, then the analyst can locally
compute the average. For GROUP BY keyword, because the GROUP
BY part is public, the server can preprocess the records to form
new tables for each group. Then the rest of the query is applied to
each of these new tables to get separate results. Then the separate
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results are sent back to the analyst. Note that, when the slots in
the ciphertext might not be used up by the result from one group,
the server can also further merge the ciphertext with additions and
rotations to save communication.

Furthermore, HADES also supports preprocessing for formulas
in the SELECT statement, as the formulas in the SELECT statement
can be precomputed from the data provider side by creating a new
column storing the computation result. The ORDER BY keyword
can be locally processed from the analyst side.

For data types, while the HE scheme only supports unsigned
integer values by default, HADES extends it to support signed
values, fixed-point numbers, and string values with hashing for
equality checks. Specifically, on all constants from both analyst-
side queries and database entries, it applies value conversions such
as shifting the decimal point, adding offsets to remove signs, and
hashing based on the column value type. Note that to remove the
sign offsets from the SUM queries, an additional COUNT is required
to calculate how many times the offset has been applied.



	Abstract
	1 Introduction
	2 Problem Overview
	2.1 Scenario
	2.2 Query Functionality
	2.3 System Design Goals
	2.4 Challenges

	3 HADES Workflow
	4 HADES Base Protocol
	4.1 Background
	4.2 Supporting Point Predicates
	4.3 Supporting Range Predicates
	4.4 Supporting Aggregation

	5 HADES Optimizations
	5.1 Batched Elementwise Mapping
	5.2 Hybrid Multi-Cipher Reduction

	6 Implementation
	7 Evaluation
	7.1 TPC-H Latency Comparison
	7.2 Scalability
	7.3 Micro-benchmark

	8 Related Work
	References
	A Unmatched batching, mapping, and database size
	B 32-bit Range Query
	C Loop-based aggregation
	D Optimized reduction
	E Extended SQL support

