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ABSTRACT

A two-party fuzzy private set intersection (PSI) protocol between
Alice and Bob with input sets A and B allows Alice to learn noth-
ing more than the points of Bob that are “§-close” to its points in
some metric space dist. More formally, Alice learns only the set
{b|dist(a,b) < ,a € A, b € B} for a predefined threshold § and
distance metric dist, while Bob learns nothing about Alice’s set.
Fuzzy PSl is a valuable privacy tool in scenarios where private set
intersection needs to be computed over imprecise or measurement-
based data, such as GPS coordinates or healthcare data. Previous
approaches to fuzzy PSI rely on asymmetric cryptographic primi-
tives, generic two-party computation (2PC) techniques like garbled
circuits, or function secret sharing methods, all of which are com-
putationally intensive and lead to poor concrete efficiency.

This work introduces a new modular framework for fuzzy PSI,
primarily built on efficient symmetric key primitives. Our frame-
work reduces the design of efficient fuzzy PSI to a novel variant of
oblivious transfer (OT), which we term distance-aware random OT
(da-ROT). This variant enables the sender to obtain two random
strings (ro, r1), while the receiver obtains one of these values r, de-
pending on whether the receiver’s input keyword a and the sender’s
input keyword b are close in some metric space i.e., dist(a, b) < 4.
The da-ROT can be viewed as a natural extension of traditional
OT, where the condition (choice bit) is known to the receiver. We
propose efficient constructions for da-ROT based on standard OT
techniques tailored for small domains, supporting distance met-
rics such as the Chebyshev norm, the Euclidean norm, and the
Manhattan norm.

By integrating these da-ROT constructions, our fuzzy PSI frame-
work achieves up to a 14X reduction in communication cost and
up to a 54x reduction in computation cost compared to previous
state-of-the-art protocols, across input set sizes ranging from 28
to 21°. Additionally, we extend our framework to compute fuzzy
PSI cardinality and fuzzy join from traditional PSI-related func-
tionalities. All proposed protocols are secure in the semi-honest
model.
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1 INTRODUCTION

Private Set Intersection (PSI) is a cryptographic primitive that al-
lows two parties to compute the intersection of their sets without
revealing any information. Traditional PSI protocols focus on exact
matching of elements, with many efficient and practical imple-
mentations [19, 22, 25, 27, 34]. However, these approaches are not
well-suited for cases requiring approximate matches or similarity-
based comparisons, such as biometric identification, DNA sequence
alignment, or location-based services. In this work, we focus on
fuzzy PSI, where the goal is to compute intersections based on
proximity or similarity, rather than strict equality.

In recent years, fuzzy PSI protocols have been the focus of active
research. However, they still face practical limitations. For example,
Garimella et al. [14, 15] introduced structure-aware PSI, which is
designed for scenarios where the receiver has geometric objects
(e.g., balls or regions) and the sender possesses points, with the aim
of identifying which points fall within these regions. This variant
can implement fuzzy PSI; however, their protocols are based on
function secret sharing (FSS), and thus, mainly focus on Le and
L, distance metrics. While they achieve relative communication
efficiency, their computational efficiency remains limited, especially
when applied to more general distance metrics or arbitrary shapes.
Recent work by [11] improves the computational limitations of the
prior protocols, but still supports only Le, metric due to its reliance
on the same foundational building block of FSS.

In certain applications, such as location-based services for car
sharing, the Ly norm is often required. To address this, Baarsen and
Pu [37] presented a novel protocol that supports arbitrary distance
metrics. However, their protocol is based on public-key operations
and has a computational complexity of 0(824dn + m), where the
receiver holds n hyperballs of radius § and the sender holds m points
in Zg4. Thus, their protocol is still computationally expensive due to
the high number of public key computations required. Furthermore,
their protocol only works under a disjoint assumption, meaning
that each receiver’s point has at least one dimension in which its
component maintains a distance greater than 2§ from the other.

Gao et al. [9] improved upon [37] by presenting the first pro-
tocol that achieves linear complexity with respect to input sizes,
dimensions, and radius §. However, unlike [37], their protocol is
based on a different and unrealistic disjoint projection assumption;
each sender’s or receiver’s point is separated from other points in
the same set by at least one dimension. Most recently, [31] general-
izes the PSI approach of [6] to the fuzzy PSI setting by combining
that approach with Gabled Circuits and spatial hashing techniques,
leading to a general framework that supports L, and Lo metrics.
They propose the use of arithmetic garbling for the Ly, while other
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metrics like L; and Ly are instantiated using regular boolean-based
Garbled Circuits. Although it is based on symmetric primitives,
the use of generic two-party computation leads to poor concrete
efficiency for fuzzy PSL

1.1 Our Contribution

Distance-aware OT. We introduce the notion of a distance-aware
random OT (da-ROT) parameterized by a distance metric (dist)
and threshold distance (& > 0). This variant enables the sender to
obtain two random strings (ro, r1), while the receiver obtains one of
these values r., depending on whether the receiver’s input keyword
a and the sender’s input keyword b are §-close, i.e., dist(a,b) < 6.
We then present new concretely efficient da-ROT protocols for
Chebyshev norm (L), Manhattan norm (L;), and Euclidian norm
(Ly) for small domains based on oblivious transfer (OT).

We also introduce a “sparse variant” of the da-ROT functionality,
which informally allows the sender and receiver to execute multiple
instances of da-ROT (each labeled with an index), while also hiding
from each party which indexes are in the other party’s input. We
present a sparse compiler (sparse-comp) that converts a class of
da-ROT protocols into their sparse variants using sparse OT [26],
shared OT [28], and oblivious key-value store (OKVS) [13].

New Fuzzy PSI Framework. One of our key contributions is a
new modular fuzzy PSI framework for any arbitrary L, norm
(p € N U {co}) based on spatial hashing introduced by Garimella
et al. [14] and the newly introduced sparse da-ROT primitive for
the same distance metric. Our framework reduces the design of
fuzzy PSI protocols to the design of efficient da-ROT protocols for
small domains. A comparison with previous works is presented
in Table 1. Previous works either use expensive public-key crypto
or have very poor computational complexity - given their use of
generic two-party computation or FSS-based methods. To the best
of our knowledge, we present the first efficient fuzzy PSI protocol
primarily based on symmetric key techniques !. The only assump-
tion in our construction is that the sender input set has, at max, one
input point per grid cell (where we assume the entire d-dimensional
input space is partitioned into grid cells of side length 25). This is a
weaker assumption than most other previous works based on FSS
and asymmetric crypto techniques, which require some form of
disjointness of input points.

Other Related Fuzzy Functionalities. In addition to our primary
contributions, we demonstrate how our framework can be adapted
to support other related fuzzy PSI functionalities. Specifically, we
show that our framework reduces the problem of fuzzy PSI cardi-
nality (which computes only the cardinality of the fuzzy intersec-
tion) to the well-established problem of traditional PSI cardinality,
which has been extensively studied and optimized in the literature
[8, 12, 16, 24]. Our framework also reduces the fuzzy join prob-
lem—where the join of two input databases is based on a fuzzy met-
ric, and the result is secret-shared—into its non-fuzzy variant [5, 20].
To the best of our knowledge, we provide the first concrete protocol
for privacy-preserving fuzzy database join for various norms. We

10ur proposed protocol relies on a small number of base OTs, which are implemented
using public-key techniques. Since generating a batch of base OTs typically takes only
a few hundred milliseconds per party under reasonable network conditions [23], this
overhead is negligible compared to the overall protocol execution time.
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believe that this modular approach offers a useful framework that
can aid future research focused on designing protocols for fuzzy
PSI-related functionalities.

Fuzzy PSI Implementation. We developed a prototype implemen-
tation of our fuzzy PSI framework using the newly proposed da-
ROT protocols. Our evaluation shows that the framework achieves
up to a 14X reduction in communication cost and up to a 54X re-
duction in computation cost compared to previous state-of-the-art
protocols, across input set sizes ranging from 28 to 21°.

1.2 Technical Overview

Gao et al. [9] highlight that most fuzzy PSI protocols [11, 14, 15, 37]
rely on a batched fuzzy matching approach to determine whether a
receiver’s point a; and a sender’s point b; satisfy dist(a;, bj) < 6.
The result is then revealed to the receiver. This process typically
involves two distinct phases: coarse mapping and refined filtering.
In the coarse mapping phase, identifiers are assigned to points from
both the sender and receiver, establishing initial pairings between
a receiver point @; and a sender point b; if they share the same
identifier. In the refined filtering phase, fuzzy matching is applied
to each pair formed during the coarse mapping phase, yielding the
final results.

This work introduces a new random OT variant, termed distance-
aware random OT (da-ROT), alongside a scheme for compiling
da-ROT protocols into sparse versions. This innovation effectively
bridges the gap between fuzzy PSI protocols’ refined filtering and
coarse mapping phases. Leveraging these two building blocks with
existing sparse hashing techniques, we present an efficient and
scalable fuzzy PSI protocol and computation on fuzzy PSI The
technical overview of our framework is presented in Figure 1, which
illustrates the various components and their interdependencies.

Sect. 2.2 Sect. 2.2 Sect. 2.2

7:fuzzyPSI 7_?’uzzyjoin

L

Sect. 4.1 | Fsp-daROT

Sect. 3.2

7_Y’uzzyCard

Sect. 3.1

Fsor [28]

Figure 1: Technical Overview of Our Fuzzy PSI Framework.
The new functionalities are marked with rectangles.

Our da-ROT protocol for distance metric p € {oo, 1,2} starts
by obliviously evaluating z; = p(l)(ai) for every 0 < i < d. The
definition of the function f depends on b;, §, and the metric p. For
example, for Le, the function f (i) is defined as

; 1 ifxe[bj-0,b;+6],
ng) (x) _ [ i i ]
0 otherwise.

As a result of every evaluation, the two parties receive additive

shares of h;, which are then homomorphically summed to obtain
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Table 1: Asymptotic Complexities of Fuzzy PSI Protocols, where the receiver and sender hold n and m hyperballs of radius § in
74, respectively. All multiplicative factors of the computational security parameter x and statistical security parameter 1 are

ignored.
‘ Dist. ‘ Prot. ‘ Assumption Communication Computation . ‘ Symmetric
Sender Receiver Crypto

[11] R lpin > 28 o (m+ (4log6)dn) 0((210g§)dm) 0((25)%) v

L (7] R.lnin > 28 O (29m + 8dn 0 (24dm O (29m + 8dn X

~ R. disj. proj. O (m+ (6d)%n) 0 (@m) O (m+ (6d)%n) X

[9] R A S. disj. proj. O(6dm + 5dn) O(6dm +n) O(m + 8dn) X

B31] dis]. hash 0(d 1og(d)(n - 2% +m - 297)) 0(d5 - m2%) 0(d5 - n2°) 7

Ours disj,hash,pff:l O(d-(n-294m-9)) O(d-m-95) O(d-n-29+m) v

7y || B e > 2 ar +1) 0 (s°m + 624dn) O ((d+8%) m) 0 (m+ 52%dn) x

L R Inin > %b‘ O ((8Pn” log n) m + 5dnP*T) O (((d+5P) nPlogn) m) O ((n”logn) m + 8dnP™T) X

[9] R A S. disj. proj. O((6d +plogd)m + 5dn) |0O((6d +plogd)m +n)| O(plog ém + &dn) X

B31] dis]. hash O(d - log(dd)(n- 2% +m - 29-%)) O(log(dd)d - m2%—> +d - m2%7) O(log(dd)d - n2° +d - nZ*) 7

Ours disj,hash,p,,zl O(d-(n-29+m-9)) O(d-m-95) Od-n-29+m) v

7 || R e > 26 dp +1 0 (6m + 52dn) 0((d+5%) m) 0 (m+52an) x

L, R lpin > %6 O ((8Pn” log n) m + 5dnP*T) O (((d+8P) nPlogn) m) O ((n”logn) m + 8dnP™T) X

[9] R A S. disj. proj. O((6d +plogd)m + 5dn) |0((6d +plogd)ym +n)]| O(plog dm + ddn) X

B31] dis]. hash O (ndz" log(dd) + m2?=> (log(dd)d + log(dd)®)) | O((log(d8%)d +d + log(dd?))® - m2?—) | O((log(dd?)d +d +log(d?))” - n2°) 7

Ours disj.hash,pfle Od-(n-27+m-9)) Oo(d-m-96) Od-n-29+m) v

- R.Inin > I, means that the minimum distance between the receiver’s points is greater than I,.

- R. disj. proj. means that for every pair of receiver points (u, v), there must be at least one dimension i where the components u; and v; are further apart than 2.
- R A S. disj. proj. means that the disj. proj. assumption should hold for both the sender’s input set and the receiver’s input set.

- disj. hash means the spatial hashing scheme used by the construction maps at most one point to every possible target grid cell/sparse index.

- p§ represents the maximum number of receiver points in neighboring cells for any grid cell; for pfl_" > 1 our protocol complexity has an additional multiplicative factor pfl_"

additive shares of z = hy + - - - + hy_1. Assuming the modulo of
the additive shares is large enough to prevent wrap-around dur-
ing the computation of z, this value z has a property that enables
determining whether dist(a,b) < §. In the case of Le,, we have

z=d Vie[d] aj € [bi—5,bi+5]

Now, to ensure the correct OT messages are sent to the corre-
sponding parties, the parties obliviously evaluate y = gp(z), receiv-
ing additive shares of the result. The function g depends on d, 6,
and the metric p. For example, with the sender’s chosen random
value r, the function for the Ly, can be defined as:

0 ifx=d,

x) =
geo () r otherwise.

Clearly, y = 0 if dist(a,b) < &, and r otherwise. If we denote
the sender’s and receiver’s additive shares of y as y® and y5, re-
spectively, the receiver outputs r. = yR, while the sender defines
ro = —y° and r{ = r —y°. Thus, we have if y = 0, . = ro, otherwise,
re = r1. This ensures that the OT messages are correctly routed
based on whether dist(a,b) < §

An important aspect that we previously overlooked is that the
functions f and g must remain hidden from the receiver. Addi-
tionally, all outputs of the function evaluations are represented as
additive shares, as described earlier. To achieve this, we rely on the
Share OT (SOT) primitive introduced in [28]. The SOT primitive
extends the functionality of 1-out-of-v OT by supporting additively
secret-shared modulo-N choice indices and producing additive se-
cret shares modulo-M of the v sender’s messages as output. In our
fuzzy PSI application, we work with a small value v such as v = 28,
which allows us to implement this primitive efficiently. Concretely,
the sender can prepare all possible values of the function f such as

mj = fog,i) (j), for example, and act as the OT sender. Meanwhile,
the receiver begins by secret-sharing the index a; to the sender.
This setup then allows the parties to use the SOT protocol to obtain

the share offo(oi) (aj) for each j.
As a building block, we introduce a second OT variant called
Sparse SOT. As input, the Sparse SOT functionality Fspsot takes

a set of tuples (i, [[c(i)]]i) from the receiver and a set of tuples

3, [[c(j)]]]s\],m(j)) from the sender, where the first tuple compo-
nents are indexes, the second are secret shares mod-N, and the
third component of the sender’s tuple is a vector of messages. The
functionality pairs up the two parties’ inputs based on their asso-
()
O
Jj = i. For their respective non-paired inputs, the parties get random
mod-M elements. Our protocol for F5,507 is a natural combination
of the Sparse OT Extension first introduced in [26], and the SOT
protocol introduced in [28], changing the OKVS scheme used by
the Sparse OT for a more efficient one.

We then use da-ROT and SpSOT to construct the sparse variant
of the F4,-roT functionality, which serves as the main component
of our fuzzy PSI protocol. The Fsp qaror functionality takes as
input a set of pairs (i, a;) from the receiver and a set of pairs (j, b;)
from the sender, where the first component of each pair is an index
and the second component is a point. The functionality matches
points between the parties based on their associated indexes. For
each matched pair, it performs a da-ROT operation on the points,
providing the resulting outputs to the respective parties. The parties
receive random outputs for points that do not have a matching
counterpart (i.e., points with no index alignment). These outputs
are indistinguishable from “real” da-ROT outputs, preserving the
security and correctness guarantees of the da-ROT functionality.

ciated indexes and outputs secret shares mod-M of m*//, where



ACM CCS °25, October 2025, Taipei, Taiwan

Finally, using Fs,-daroT, spatial hashing techniques, and an
OKVS, we construct protocols for fuzzy PSI, fuzzy cardinality, and
computation on fuzzy matching for the metrics Loo, L1 and Ly.

For the fuzzy PSI protocol, the receiver and sender start by map-
ping their respective input points into indexes of an index set 1
using spatial hashing. After mapping its input point set B, the sender
holds a set B” of pairs (i, b), where i is the mapped index and b is an
input original point. Next, they invoke the #s},-4aroT functionality,
providing their points and associated indexes as inputs. After re-
ceiving its output message pairs r( = (rél), rl(l)) from Fsp-daroT
the sender constructs an OKVS D to send to the receiver. The OKVS
D is defined as:

D — OKVS.Encode(Y), where Y = {(i, Enc(r\", b)) | (i,b) € B'}.

Here, Enc is a symmetric encryption algorithm. After receiving
D, the receiver queries it at a position j, using r) from FSp-daROT
to decrypt, where j is an index the receiver mapped one of its
points to using spatial hashing. If the receiver successfully decrypts
a queried index, it implies the associated point matches one of the
sender’s input points.

The fuzzy cardinality protocols start very similarly. It maps the
two parties’ input points into indexes of set 7 using spatial hashing,
and they invoke the Fspdarot functionality, providing the mapped
indexes and associated points as input. After that, however, the
sender computes the set Y and the receiver computes the receiver
X, where Y = {rél) |ieBY}and X = {rU) | j € A’}. Here, B’ and
A’ are the set of mapped indexes the sender and receiver got from
spatial hashing their input points, respectively. At the same time,
rél) and r(/) are the outputs the sender and receiver got from the
Fsp-daroT for every respective index, respectively. After assembling
these sets, the two parties invoke a regular PSI cardinality protocol
using sets X and Y as input and output the result they receive from
this protocol. Our fuzzy join follows the same structure as our fuzzy
cardinality protocol, only replacing the PSI cardinality protocol for
a private join protocol.

2 PRELIMINARIES
2.1 Notation

In this work, the computational and statistical security parameters
are denoted by «, A, respectively. We use [.] notation to refer to a
set. For example, [m] implies the set {1, ..., m}. Additionally, we
use [i, j] to denote the set {i,..., j}. We denote the concatenation
of two bit strings x and y by x||y. The symbol Zys represents the
set of all elements modulo M, and Z% is used to represent the set
of all vectors of length N and components in Zy,.

We represent a 2-out-of-2 additive sharing of x modulo M as
[x]a- In this sharing scheme, the shares held by parties A and B

are denoted as [[x}]?/j € Zp and [[x}]ﬁ € Zp, respectively. These
shares satisfy the relation [[x]]f/l + [[x]]f/[ =x (mod M).

For any set A C [24]9, we define two density parameters - cell
density and neighborhood density. For any grid parameter §, we
can partition the input domain [24]¢ in grid cells each of side
length 26 or into disjoint Ly balls each of radius 8. The cell density
parameter p‘é 5 represents the maximum number of points in A

contained within any grid cell, and neighborhood density p? 5 to
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be the maximum number of points in A within any neighborhood
of a grid cell. For simplicity, the § parameter in the subscript is
omitted when it is clear from the context.

We define the function cshifty : GN x Zy — GN for a group G
and N € N in the following way:

v’ = cshifty (9,X) = 0] = Vi1 (mod N) foralli € [N].

Letu,v € ZAN/I and s € Zy for a modulo M € N22 and vector length
N e N.Weusev =u+s (mod M) to denotev =u +1 - s, where
1e ZAN/I contains the element 1 in all its components.

All protocols in this work are secure in the semi-honest model,

as defined in Appendix B.1.

2.2 Fuzzy PSI Functionalities

We formally define fuzzy PSI and its related functionalities as:

Fuzzy PSI Ideal Functionalities

Parameters: Input set sizes n, m, input length ¢, D = Zgu for some
u e N,dist: D x D — R and radius § € R, and associated length
size o for Fruzzyjoin-
Behavior:

e The two parties receiver Alice and sender Bob input sets
A,B C D withn =|A| and m = |B|
Only for Ff,72yj0in: the sender and receiver also input associ-

ated data dictionaries ADS, ADR respectively with key sets

A, B and values in {0,1},

Define outputs for each functionality as follows:

= Ffuzzypsi: output set {a € A | dist(a,b) < 6,b € B} to
the receiver Alice

= FfuzzyCard: output |[{a € A | dist(a,b) < ,b € B}| to
the receiver Alice

- ﬁuzzy}oin:
* Initialize ¢ = 0.
« For every (a,b) € A X Bwhere dist(a,b) < 6:
- sample u; g {0,1}%°
- set v, such that u; ® v, = AD®(a)||ADR(b)
cte—t+1
- Shuffle both i and 3 with the same random permutation
- Output vectors # to sender and 3 to receiver

2.3 Oblivious Key-Value Store (OKVS)

An Oblivious Key-Value Store (OKVS) allows a sender S to en-
code a set of key-value pairs (k;, v;) into a data structure D, us-
ing uniformly random values, via the encoding function D «
OKVS.Encode((kj,v;)). A receiver R, upon receiving D, does not
learn the encoded keys k;, but can retrieve the corresponding
value v when querying the store for a key k. The decoding process
v « OKVS.Decode(D, k) will return v; if k = k;j, and a random
value otherwise. The detailed definition and its obliviousness prop-
erty are provided in Appendix B.2.

2.4 Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol where a sender, S, holds a key
k for a PRF, and a receiver queries the function with an input x.
The receiver learns only the output F(x) and nothing about k.
Meanwhile, S learns nothing about x. We formally define the ideal
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functionality (Foprr) for the batch OPRF used in our protocol in
Appendix B.3, which includes a detailed discussion of OPRF.

2.5 Oblivious Transfer (OT) and Its Variants

Oblivious Transfer (OT) [29] is a fundamental cryptographic prim-
itive involving a sender with two input strings (mg,m;) and a
receiver with a choice bit c¢. As a result of OT, the receiver obtains
the string m. without learning any information about the other
string mj_., while the sender learns nothing about the choice bit
c. [3] introduced the 1-out-of-N OT variant, which extends the
1-out-of-2 OT to support a message vector of length N € N2 (i.e.,
the sender’s input is (my, ..., my). [17] introduces the k-out-of-N
OT variant which allows the receiver choose k vectors from the N
sender vectors. In [26], the concept of sparse OT was introduced,
where N is exponentially larger than k.

The 1-out-of-N Shared OT (SOT) was formally defined in [28],
extending the 1-out-of-N OT variant to support an additively secret-
shared choice index ¢ and to output additive secret shares of the
selected message. Below, we present the 1-out-of-N SOT function-
ality defined in [28].

1-out-of-N SOT Ideal Functionality ¥ ~
M

Parameters: Two parties Alice and Bob.
Behavior:

e Upon receiving a message (choose, [Ic]]ﬁ) from Bob: Ignore
any subsequent (choose, [c]B,) messages. If [c]§, ¢ Zx, then
send (invalid input) to both parties and halt. Store [[c]]g
and send the public delayed message (chosen) to Alice.

e Upon receiving a message (sample share) from Alice: Ig-
nore any subsequent messages (sample share). Sample
[[r?zc]]]’éf €R Zpy, store it internally and send it to Alice.

e Upon receiving a message (propose, [c]4, ) from Alice:
Ignore any subsequent (propose, [c[4, /i) messages. If it is
not the case that m € ZJ, [c]4 € Zn and [ic]4) is currently
stored, send (invalid input) to both parties and halt. If it is
the case, send [mc] 5 = e + [mc]4; (mod M) to Bob.

2.6 Spatial Hashing

For domain U? and grid parameter &, the spatial hashing scheme
is defined using two functions (cellhash, sphash), where each func-
tion takes as input a subset of T4 and outputs a dictionary. For any
x € UYL, let cells(x) = (|x1/28],...,xq4/268]) and truncs(x) = (x
mod 2%). Here, the function cell intuitively maps any point in the
domain to the unique grid cell or tile if the entire domain is tiled by
d-dimensional hypercubes of side length 26. Let the set of all grid
cells be represented by C and let neigh(x € Uud) output the set of
all cells € C which neighbor point x. The function trunc; truncates
the input number x to its last ¢ bits. In our construction, we use the
truncate to round number to their last ¢* = [log(65)] bits. Hence,
throughout any invocation of trunc refers to trunc;«. Now we can
present the spatial hashing functions for rid parameter J:
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e Dx « cellhash(X, p): outputs a dictionary, where for each
x € X dictionary Dx contains key-value pairs (cell(x), j)
and trunc(x) for j € [p].

e Dy « sphash(Y): Outputs a dictionary Dy which is con-
structed as follows:

— Initialize dictionary D’ with D’[c¢] = 1forc € C
— For each y € Y, for each ¢ € neigh(y):

Dy.insert((c, D’ [c] + +), trunc(y))
This function outputs a dictionary, where for each element
y € Y, it inserts multiple key-value pairs, one for each neigh-
boring cell of y.

Previous works, including [14] and [37], employ these hashing
functions (or their minor modifications) for the coarse mapping of
input sets X and Y in their fuzzy PSI protocols. Specifically, they
prove a version of Theorem 2 (in Appendix), which we also use in
this paper. The theorem essentially implies that all fuzzy matches
between the two sets X and Y will have matching cell indexes in
the dictionaries output by sphash and cellhash. Further, even if
two non-close elements in X and Y have matching cell indexes
in sphash and cellhash, then their truncated values will have a
distance greater than § as well. This second case arises when points
in X and Y are in neighboring cells, but they aren’t 5-close.

3 BUILDING BLOCKS

3.1 Distance-aware Random OT (da-ROT)

We present the da-ROT functionality as below, which supports fuzzy
PSI and can be seamlessly applied towards “refined filtering” of [9]
in a straightforward way. Specifically, the two parties execute the da-
ROT protocol such that the sender obtains {ro, 1 } and the receiver
obtains ry if their input points are close. The sender then obliviously
transfers ry to the receiver using OKVS, enabling the receiver to
check whether their point belongs to the fuzzy intersection.

da-ROT Ideal Functionality ﬁa-ROTP
Parameters: Input domain D = Z¢ with v € N2, output group Z,,
threshold distance § € R, and distance metric dist, : D x D —» R
Input: Sender S inputs a € D, and receiver R inputs b € D.
Behavior:
e Sample ro, 11 ¢ Zy
?
0 ifdisty(a,b) <4
1 if otherwise
e Output (ro, 1) to sender and r, to receiver

e Setc=

We designed da-ROT protocols for the distance metrics Lo, L1,
and Ly, with the Ly protocol specifically restricted to dimension
d = 2. These protocols follow a common framework, differing only
slightly in the formulas used in Step 2 and Step 5. Therefore, we
present them as a unified protocol in Figure 2, highlighting the
specific differences when applicable. Our da-ROT protocol takes
advantage of the relatively small input domain (v), dimension (d),
and threshold (8) values (e.g., v = 28, d € 2,6,10, and § € 10, 30)
when applied to our fuzzy PSI protocol. As a result, the protocol
remains efficient even though its communication and computational
complexity scale linearly with the size of the set ZZ. Next, we
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present the correctness and security proofs for our da-ROT protocol
along with an explanation of the protocol. The asymptotic efficiency
of the protocol is presented in Appendix C.1.

THEOREM 1. Protocol 114, got securely realizes the da-ROT func-
tionality Fy,-rot for distance metrics p € {co,1,2} and domain
D = Z‘g, whered € N and v € N22 against a PPT semi-honest
adversary in the Fsor-hybrid model.

Proor. We begin the proof by showing that the output distribu-
tion of the functionality and the joint output distribution of the two
parties in the protocol are computationally indistinguishable. To
establish this, we divide the proof into three cases, corresponding
to each metric p € {00, 1,2}. We then proceed to show that our
protocol can be simulated.

Infinity norm. When p = oo, the protocol defines modulo M =
d + 1, ensuring that no wrap-around occurs during the execution of
protocol operations. The protocol starts by having the two parties’
non-interactively additive secret share vector @ mod-v. In the second
step, R and S run d instances of FsoT, where for each instance
i € [d], they provide shares [a;], as input and S also provides
vector mg) as defined in the first part of Eq (1). As output, for each
instance i € [d], the two parties receive their respective shares of
[hi] m- Based on the definition of Fsor and how S constructs mc(xl;),
we have the following equations governing the h; values:

B o 1 ifa; € [b; —6,b; +6],
! 0 otherwise.

In Step 3, the two parties homomorphically compute additive
shares mod-M of z = }};¢ 4] hi- The following equation holds based
on the previously presented definition of A;.

z=d Vie[d] aj € [bi—5,bi+5]

In Steps 4-5, S samples and outputs r €g Z, and then executes a
single instance of Fsot1. The two parties provide the shares [z]|ar
to this final Fsot instance, and S also provides a message vector
Wo as defined in the first part of Eq (3). As output, the parties
get 2-out-of-2 additive shares mod-u of y. Based on the previously
described equation for z and how S builds we., we get the following
equation describing y:

{0, ifz=d, {0, if Vierq) ai € [bi = 6,bi + 6],
y = =

r, otherwise. r, otherwise.

~ {o, if distpy(a,b) <6,

r, otherwise.

Finally, R outputs [y]¥ and S outputs (=[y]3, r — [y]3). Clearly,
[yIR = —[y]5 if distp(a,b) < &, and [y]X = r - [y]$ otherwise.
Therefore, we can conclude that the protocol and functionality have
indistinguishable output distributions when p = co.

L1 norm. When p = 1, the protocol defines modulo M =d - (§ +
1) + 1. Similar to the first case, after the initial two steps, the parties
receive [h;]p from each Fsot, with h; being described by
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B, = 1 = bil.iflai = bif <6,
s+ 1, otherwise.

After homomorphically computing additive secret shares mod-M
of z = ¥ (4] hi, we have:

2<8 = Z lai—bi] <8
ie[d]

First, suppose that z < §. Assuming this implies that h; = |a; —b;|
for all i € [d], otherwise we would have z > §. In turn, this implies
that z = Zie[d] lai — bi| < . Now, suppose ZiE[d] lai = bi| < 6.
Since ;e [q] lai — bi| < 6, it must be true that |a; — b;| < 6 for all
i € [d], implying that h; = |a; — b;| for all i € [d]. Thus, we have
z=Yie[d) hi = Zie[ay lai — bil < 6.

In Step 4-5, S samples r € Z,,, and then the two parties execute
an Fsot instance where S provides message vector w; as input and
the two parties provide shares [z] a as input. As output, the parties
get shares [y], such that y is governed by

{0, ifz <6, {0, if Yiera) lai — bil <6,
y = =

r, otherwise. r, otherwise.

_]o, ifdisti(a,b) <4,
r, otherwise.
The remaining proof steps follow similarly to the previous case.

Lz norm. When p = 2, the protocol defines modulo M = d -
(6 +1) +1 and sets dimension d = 2. The first proof steps for this
case follow as in the previous two cases, with the only difference

being the message vectors mgi) provided by S to the firstd = 2
Fsor instances. The parties receive [ho]ar and [h1]ar as output,
one from each Fsot instance, where ho and h; are described by

ho = min {(5+1) — x | Vx2 + (ag — bo)? > &}
x€Z20

B = Jla bl iflar = b <0,
' 5+1 otherwise.

The value z = hg + hy satisfies the following.

2<8 & V(a1 —b1)?+(ap—bp)? <&

First, suppose v/(a; — b1)? + (ag — bp)? < §. This supposition
implies that hy = |a; — b1], and

hi1 < min {x | Vx%+ (ap— bg)2 > 6}

x€Z>0

& hy— min {x|Vx2+(ag—bo)2 >} <0
x€Z>0

& hi+(5+1)— min {x | Vx2+ (ag—bg)2>6} <d+1

x€Z>0

& hi+ min {(6+1)—x | Vx2+(ap-bp)2>5}<5+1

x€Z>0

S hi+hy<d+1

& hi+hyg <6

Now, suppose v/ (a; — b1)2 + (ag — bo)2 > 8. This supposition
implies the following:
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Parameters:

e Dimensiond =2 if p =2, and d € N otherwise.
o The SOT functionality as described in Section 2.5.

sender and receiver, respectively.
(1) For each i € [d], R set [a;]4 = a; and S sets [a;]5 = 0.

(2)
M

_{1 if j € [b; — 8,b; + 6],

0 otherwise.

o _ . x| VET G by)?
myy = min {(G+1) = x [ Vxt+(J = bo)* > 8}

(3) The parties compute [z]p = Xe(q [hilm-
(4) S samples and outputs r €g Z,,.

0 ifj=d,
Woo,j = . and
r otherwise.

(6) R outputs [y]R and S outputs (=[y]3, 7 — [y]3).

o p € {o0,1,2}; Radius § € N; Domain D = Z‘j with o € NZ2; Group Z,,.

Inputs: Receiver R and sender S input points a € ZZ and b € Zg, respectively.

Protocol: Let M =d + 1ifp=co,and M =d - (§ + 1) + 1 otherwise. For all the instances of SOT executed in this protocol, S and R play the roles of

(2) Both parties invoke a 1-00-v SOT for every i € [d], where they input [a;]», and S also inputs the message vector m;,i) € Z3,, which is

computed using Eq (1) or Eq (2), depending on the metric p . As a result, each party obtains [A;] s as output.

(5) Both parties execute a single 1-00-M SOT for which they input [z] a1, and S also inputs the message vector wy, € ZM  which is computed
using Eq (3), depending on the metric p . As a result, the parties obtain [y],, as output.

Wik {

ifj <6,

otherwise.

@ ={|j—bi| if 1) - bl <6, 0

LJ S+1 otherwise.

@

j—bil if]j-bi] <6,
ind mm:{u il i1~ <

2 S+1 otherwise.

0 ifj<éd,
and i = 3
2 {r otherwise. )

Figure 2: Our da-ROT Protocol Il4, roT

hy > min {x | Vx2+ (a9 — bg)2 > 6}
x€Z>0
& hi+(5+1)— min {x | Vx2+(ag—bg)2>6}>5+1
x€Z20

= h1+h0>5

Proving that indeed z < § &= /(a1 — b1)? + (ap — bg)? < 6.
The remaining proof steps for this case follow as for case p = 1.

Based on the proofs for these three individual cases, we conclude
that the output distribution of this protocol is indistinguishable
from the functionality’s output distribution for all p € {0, 1, 2}. We
now proceed to describe the simulators. For this part of the proof,
we omit detailed discussion for each distance metric and instead
provide a sketch of the simulators, as the simulation process is
essentially trivial.

Corrupt Receiver. By inspecting the protocol, it is straightfor-
ward to see that both sender S and receiver R only receive messages
from Fsot instances, where these messages are the output 2-out-of-
2 secret additive secret shares. We simulate the output for the SOT
instances executed at step 2 by uniformly sampling elements mod-
M, since these SOT instances output shares mod-M. This leaves
us the last SOT executed at step 5. For this last SOT, we output r,
as the output share, where r¢ is the receiver’s output sent by the
functionality Fy,-roT-

Corrupt Sender. The simulation proceeds similarly for the
sender. We simulate the output for the SOT instances executed

pe{eo,1,2}

at step 2 by uniformly sampling elements mod-M, and then sim-
ulate the final SOT instance’s output at step 5 using the sender’s
functionality output. Let (rg, r1) be the sender’s output received
from ¥y, rot- For the last SOT instance, we output —r¢ (mod u)
as the output share.

O

3.2 Sparse SOT

This section introduces the new ideal functionality called Sparse
SOT (Fspsot), which generalizes the 1-out-of-N Sparse Oblivious
Transfer (SOT) framework. This primitive builds upon the concepts
proposed in [13, 26, 28].

The Fspsot functionality involves two parties. The receiver, R,
inputs a sparse index set IR C D of size nX and an additive share of
the choice index, [[c(i) ﬂﬁ for each index in IX. The sender, S, inputs
its own sparse index set IS C D of size n%, along with an additive
share of the choice index, [[c(i ) ﬂ}s\p and an associated message vector,
m{) ¢ Zﬁ. Upon completing the Sparse SOT functionality, the
receiver R and the sender S will each obtain n® and nS additive
secret shares, denoted as yR and ys, respectively. Each share is
associated with a sparse index within their respective sets, IX and I°.
The relationships governing these secret share values are outlined
in the equations below.

R nR s nS
Y ERZy Y ERZy

(i)

(i)

for every if e IR and ii € IS, such that i = if = ii.

R, S _
Yityy=m g
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In other words, if both parties share a common index i in their
sparse index sets, they execute a 1-out-of-N SOT using their re-
spective choice index shares and the sender’s message vector as
inputs. Otherwise, the output share associated with i is a uniformly
random element sampled from Zy;. We formally define the Sparse
SOT ideal functionality as follows.

Sparse SOT Ideal Functionality Fspsot
Parameters:
o Sparse index domain 7.
e Moduli N,M € N2,
o Input set sizes nR, n® € N.
Inputs:

e R: An ordered set IR = {i{f, A i,I:R,l} C T of size nR and a

vector additive secret shares ([[c(i)]] N)ielg-

e S: An ordered set IS = {ig,l. i° s l} C T of size n® and a
vector of pairs of additive secret shares and message vectors
([[c“ﬂ]i,, m )ieIg, Where m ¢ Z/\N/t'

Behavior:
o Let yR er\‘f and y° GZX:.
e Forevery i € IR nIs:
— Reconstruct ¢ using [[c(i)}]ﬁ and [[c(i)]]SN
- Sample 2-out-of-2 additive secret shares

(OB N () 1R (@)
(I oy Ingo [[m_cu) )ofm -
- Set yf — [[mil()l) , where i = tf.
(1)
c(i)
e Foreveryie IS\ IR:

- Sample y}? €R Zpm, where i = 15’

- Set y}? —[m , where i = 1]5.

e For every i e IR\ 15
- Sample y €R Zpm, where i = 1f
e Send yR and y° to R and S, respectively.

To construct a protocol for Fs,s0T, We leverage concepts from
[28] and the well-known reduction from ROT to OT. These are
combined with the OPRF and the OKVS scheme to satisfy the
necessary sparsity requirements. Figure 3 presents our sparse OT
protocol.

A good starting point for understanding our Sparse SOT protocol
is to examine how the sender S builds the OKVS D, which is sent
to the receiver R at protocol step 6. Specifically, party S encodes
the following key-value pair set E into the OKVS D:

E={(G ). wi) | (L)) € I x Zy}
wi e ug® ~ O3~ Fo(i,j) ~
After receiving D, party R evaluates the OKVS to obtain q(i)

OKVS.Decode(D, (i, [[c(i)]]i)). It then outputs shares [[z(i)]]ﬁ as

[[Z(l)]]M — qﬂc(l)]]R +f(l) +H¢( ) for everyl € IR

This implies that the following relationship will hold for every
i € I N IR, based on the definition of () and h(9).

[ZOTE = D

[eOE ™ [[z(i)ﬂi,l for every i € IR

R «—
[[C(L>]]1§[
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By the definition of cshift provided in Section 2.1 and its appli-
cation in protocol step 4, we have:

[[z<’)]]R = m P )]]S for every i € IR

Since [[z(’)]]i/l is umformly sampled by S at Step 3, and S outputs
[[z(i)]]s as its own share, both parties receive additive shares mod-

M of m(()) ,Vi € IR IS Note that R only learns [[z<i)]]§4, because
in the first protocol step, R obliviously queried Fg(i, j) only for
j= [[c(i)ﬂfll, and learning any other information about m(?) would
require querying Fy for different j values.

Next, we consider the case where i € IS \ IX. We show that S
outputs [[z(i)]]% €R Zp such that R does not learn anything about
it. The fact that [[z(i)]]i/l €R Zy is uniformly sampled from Z is
evident from protocol step 3. Now, party S does send the vector
w() ¢ Zﬁ as part of OKVS D to R, where

w](.i) = uj(.i) - [[z(i)ﬂi,l — Fp(i,j) — R,
However, the receiver does not hold Fy(i, j) for any j, since
i € IS N IR This implies that the receiver does not learn anything
about [[z(i)ﬂ]s\/r.
Now, we consider the final case where i € IR \ IS. We know that
R computes its shares [[z(i) ]]534 according to the following equation:

[eD7R q[[ e +F® + Hy (i)

Because Hy (i) is pseudorandom and unknown to S, and f(i) is

pseudorandom to R, we can conclude that [Z(i)ﬂﬁ is indistinguish-
able from an element uniformly sampled from Zy; and S does not
learn any information about it.

We formally define the security of our Sparse SOT protocol
(ITspsot) in Theorem 3 and provide the proof in Appendix D.1. At
a high level, the security of our protocol follows from the security
of OKVS and the way we use two FoprF instances, where the two
parties reverse roles between the two instances. The asymptotic
efficiency of Ilspsor is detailed in Appendix C.2.

4 FUZZY PSI FRAMEWORK

The key building block of our PSI framework is the FspqaroT
functionality, introduced in the next subsection. This functionality
can be seen as a sparse variant of the 7y,-ror functionality. In
Section 4.1, we also present a black-box compiler that constructs a
protocol for Fsp,daroT using Fga-rot and Fspsot. Subsequently, in
Section 4.2, we introduce our Fuzzy PSI framework, which supports
Loo and Ly, (p € N) norms. The framework can be easily adapted to
support other fuzzy PSI-related functionalities.

4.1 Sparse distance-aware random OT

(Sp-daROT) Functionality and Its Compiler

7~Z) u,dist,é
Sp-daROT
put group Z,,, distance metric dist, threshold §(> 0) defines the

Functionality with parameters input domain D, out-

sparse variant of the 7:2;_";’ dist.d functionality in a natural way -
where each party has multiple da-ROT inputs (€ D), each with a
corresponding index (€ T'). Hence, each party inputs a dictionary
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Parameters:

e Set size n° and nR
e TwoPRFs F: T XZN — Zpy,and H: I — Zpg

Inputs:

vectors ([[c(i)ﬂlsv,m(i))iels, where m() € Z%.
e The R’s input: An ordered set R = {iOR, el

f=Foli [eDIR)) ez

3) S samples [[z(i)]]i/l €R Z, for every i € IS,
J

1%

(8) R computes [[z(i)]]ﬁ — q[([i)(i)]]ﬁ]

e The OPRF functionality, OKVS scheme, and cshift function described Section 2.4, Section 2.3, and Section 2.1, respectively.

e The S’s input: An ordered set IS = {ig, e iis—l} C T of size n° and a vector of pairs of additive secret shares and message

iﬁR_l} C T of size nR and a vector additive secret shares ([[C(i)]]ﬁ)ieln
Protocol: Assume every arithmetic operation is done modulo M.

(1) S and R run Fopgr for PRF F, with R querying points (i, [[c(i)]]ﬁ)iepe. As output, S receives an PRF key 6, and R receives vector

Let f() = f;, where j is the position of vector f for which f; = Fy(i, [[c(i)]]fl)).
(2) S and R run Foprr for PRF H, with S querying points I°. As output, R receives key ¢, and S receives vector h = (Hp (1));eps-
Let h() = hj, where j is the position of vector h for which h; = Hy (i).

4) S computes u(?) « cshift (m(?), [[c(i)}]f\]) for every i € IS.

6) S sends D < OKVS.Encode(E) to R, where E = {((i, j),wj(.i)) | (i, j) € IS X Zn ).

®3)
(4) A 4
(5) S computes wl) u](.l) - [[z(i)]]i/l — Fp(i, j) — D for every pair (i, j) € IS X Z.
(6)
(7) R computes q(i) «— OKVS.Decode(D, (i, [[c(")]]ﬁr)) for every i € IR.

+f(i) + Hy (i) for every i € IR,

, iR . s
(9) Rand S output yR and 5, respectively, where yR = ([[z(’g?)]]f,f, ey [[z(lnR—l)]]ﬁ) andy® = ([[z(lﬁg)]]if, ey [[z(lns—l)]]i/l).

Figure 3: Our Sparse SOT Protocol IIs,sor

€ I'xD of some public size. The functionality outputs two dictionar-
ies (same size as respective inputs), for each party. The Sp-daROT
sender’s output dictionary and receiver’s output dictionary have
elements as defined by the Fj, roTt functionality for each index
present in both input parties’ dictionaries. More formally, if the
sender and receiver have inputs (i, x) and (i,y) in their input dic-
tionaries, respectively, then their output dictionaries have elements

N
(i, (ro, 1)) and (i, ;) respectively where ¢ = [dist(x,y) < §].

For non-intersecting indexes, the parties receive random values
in the output dictionary - ensuring no party can learn the inter-
secting indexes given just their outputs of Sp-daROT functionality.
The formal description is provided below.

D,u,dist, s
7:Sp-daRO'I'

Parameters: Input domain 9, index set 7, output group Z,,, thresh-
old distance § € R, distance metric dist : D x D — R, sender and
receiver set sizes ny and ny respectively

Sparse Distance-Aware Random OT

Input: Sender S and Receiver R input dictionaries X € I X D,
Y € T X D of sizes ng and ny, respectively.
Behavior:
o Initialize empty dictionaries Xout, Yout
e For each (i,x) € X:
- Sample r, 71 <3 Zy,
- Xout.insert(i, (ro,r1))

e Foreach (i,y) € Y:
- If X[i] I Yout.insert(i,r) where r «g Z,,
- Else
?
+ Compute ¢ = 0 ifdist(X[il.y) <é
1 if otherwise
% Yout.insert(i, re)
o Output X, to Sender S and Yyt to Receiver R.

0-round SOT Hybrid Protocols. Our design of the Sp-daROT
compiler builds on the observation that all the da-ROT protocols
proposed in Subsection 3.1 operate in the shared OT hybrid model.
Moreover, in these constructions, the sender and receiver interact
solely through a constant number of calls to the SOT functionality
with fixed parameters. This property is formalized in the following
definition.

Definition 4.1 (0-round protocol in SOT hybrid model). A two-
party protocol IT = (SOTInp, UpdState , Out, param,k € N) is
termed a 0-round protocol in Fsot hybrid model if it has the fol-
lowing form:

Inputs: Sender S inputs x, and Receiver R inputs y.
Behavior:

e Rand S initialize states og «— {x}, os < {y}, respectively
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e For j € [k]:
- R executes ir < SOTInp(R,0R, j); S executes is «
SOTInp(S, os, j)
— R acts as receiver and S as sender, and they execute
(oRr,0s5) — ng?mm(ik, is)
— Rexecutes og < UpdState(R, oR, j, 0r); S executes os «—
UpdState(S, os, j, 0s)
e R outputs Out(R, og) and S outputs Out(S, os)

We define these 0-round protocols using three algorithms SOTInp,
UpdState and Out, a parameter vector param and an integer k rep-
resenting the total number of iterations or SOT calls in the protocol.
In these protocols, the sender and receiver maintain a local state
os and og, which is updated after each SOT call. The protocol has
the following structure: for iteration j € [k]: each party runs the
SOTInp algorithm to generate the SOT input for j iteration. The
output of this algorithm is input to FsoT with parameters param{[j].
The output of this SOT call is further used to update the local state
of each party using the UpdState function. At the end of the k iter-
ations, each party can use the Out function to generate the output
of their protocol.

For each of our da-ROT protocols in Section 3.1, we do not
explicitly present them in the aforementioned form; however, they
clearly adhere to this structure, i.e., in all our protocols, the sender
and receiver only invoke the SOT primitive a constant number of
times, and they do not interact other than through these SOT calls.

A Sparse Compiler for 0-round SOT da-ROT Protocols.
In Figure 4, we present a compiler that, given a 0-round da-ROT
protocol in the Fsot hybrid model, can generate a corresponding
Sp-daROT protocol in SpSOT hybrid model. The key idea behind the
design of this sparse compiler is to run multiple parallel instances
of da-ROT protocols (proportional to the input set size), where each
set of parallel invocations of Fsor is replaced by a single call to
FspsoT- More formally, in the jth iteration, let the sender run o’ «
SOTInp(S, ok, j) algorithm on state Ué, for each index i in its input
set. Then the sender input in the corresponding iteration of Fspsor
primitive call in the compiler is {(i, 0?)| for index i in input set X}.
The security of this compiler for Sp-daROT follows directly from
the underlying da-ROT protocol. A formal security theorem, along
with a proof sketch, is in Appendix D.2, with asymptotic efficiency
detailed in Appendix C.3.

4.2 Our Fuzzy PSI Framework

Figure 5 illustrates our fuzzy PSI framework, which combines spatial
hashing with sparse distance-aware OT (Sp-daROT). While the da-
ROT protocols in Section 3.1 are restricted to specific norms and
dimensions, this framework generalizes to any dimension d and any
norm Ly (p € N U oo). Its flexibility makes it a valuable foundation
for future fuzzy PSI protocol designs.

High-level Outline of Fuzzy PSI Framework. Alice (the re-
ceiver) and Bob (the sender) input sets A and B, respectively, such
that the cell density of A with grid parameter § is 1.

In the protocol, Alice and Bob first run local algorithms A’ «
sphash(A) and cellhash(B) respectively, where the spatial hashing

10

Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

Parameters: Given a da-ROT protocol IT = (SOTInp, UpdState
,Out, param, k € N)

Inputs: Sender S inputs X and Receiver R inputs Y.
Behavior:
e S initializes states o-é «— {x} for each (i,x) € X
e Rinitializes states cf}i2 «— {y} foreach (i,y) € Y
e For j € [k]:
- Rcomputes X’ « {(i,SOTInp(R, Jé,j)) | where (i,x) €
X}
- Scomputes Y’ « {(i, SOTInp(S, cr;,j)) | where (i,y) €
Y}
- R acts as receiver and S as sender, and they execute
(O 0s) — Tl (x",v")
- For each (i,x) € X: R updates state Ulie —
UpdState(R, oy, j, Or|[i])
- For each (i,y) € Y: S updates state
UpdState(S, U_é,j, Osli])
o Routputs Yout = { (i, Out(R, crliq)) | where (i,x) € X}
o Soutputs Xout = { (i, Out(S, o)) | where (i, y) € Y}

i
~ «—
Os

Figure 4: sparse-comp: Compiler for Sp-daROT

is done with grid parameter §. By correctness of spatial hashing, for
each a € A and b € B that are in the same grid cells or neighboring
ones, there exists some index i such that (i, trunc(a)) € A’ and
(i, trunc(b)) € B’. Here, the trunc function outputs only the last
t* = [log(60)] input bits (as discussed in Subsection 2.6) - reducing
the problem of fuzzy PSI over exponentially large domain [24]¢ to
sparse matching over smaller domain of size 24" = 0(89). Alice
and Bob now execute the Fs, darot functionality as receiver and
sender, respectively, on dictionaries A’ and B’, and they receive as
output dictionaries Aoyt and Boyt. By correctness of Sp-daROT, for
each a € A, b € B that are §-close in the underlying metric space
dist, there exist (i, r9) and (i, (ro, r1)) in the output sets Aoyt and
Bout where i was the index of cell containing both a and b.

To complete the fuzzy PSI protocol, we want Alice to learn the
elements from Bob that are §-close to its input set A. Specifically,
Alice should learn the elements from Bob that share the same "r-
value" output by both dictionaries Aoyt and Boyt for corresponding
indexes. To achieve this, Bob first encrypts each of his points b
using a one-time pad authenticated encryption with key ro, where
(i, trunc(b)) € B and (i, (ro,71)) € Bout, and adds the encrypted
points to an OKVS D, which he then sends to Alice.

Upon receiving D, Alice performs the following steps: for each
element (i,rg) € Aout, Alice checks if Dec(rg, OKVS.Decode(D, i))
does not result in an error. If the decryption is successful, Alice
adds the corresponding element to the output set Z. Due to the
obliviousness property of the OKVS, Alice cannot learn any key-
value pairs that were added by Bob to OKVS D, except for those
that are revealed through the output set Z.

Extending to Other Fuzzy Variants. Another advantage of
our modular framework is its flexibility in adapting to other fuzzy
PSI functionalities, such as Ffyzzycard and Fruzzyjoin, as depicted in
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Parameters:

and m respectively

(OKVS.Encode, OKVS.Decode) be an OKVS scheme
(Enc, Dec) be a one-time pad authenticated encryption scheme

Inputs:

Protocol:

7_~D,u,dist,(‘5

Sp-daROT protocol where:

(2) The parties invoke

o Alice and Bob receive outputs Aoyt and Boyt, respectively

For Fryzzypsi functionality:

e For each (i, (rg,r1)) € Bout:
Find b € B such that (i,b) € B’
Y.insert(i, Enc(rg, b))
(4) Bob sends D « OKVS.Encode(Y)
(5) Alice initializes the output set Z = {}. For Y (i, ry) € Aout:
o Compute ciphertext ¢ < OKVS.Decode(D, i)
o If b « Dec(rg,c) #+ L: Z «— Z U {b}

For Ffuzzycard functionality:

functionality is Alice’s output

For Ffuzzyjoin functionality:

functionality is Alice’s output

e Input domain D = U4, threshold distance § € R, distance metric dist : D X D — R for norm p € [0, 0], sender and receiver set sizes n

(cellhash, sphash) is a spatial hashing construction for domain U< and grid parameter &
8 g

The functionalities for traditional PSI Cardinality, psicard, and traditional PSI Join, Fpsjjoin, as described in Appendix E.
The function trunc, truncates the input number x to its last ¢ bits, where ¢ = [log(65) ] bits.

e The receiver Alice inputs a set A ¢ U? of size n. The sender Bob inputs a set B ¢ U of size m with pB =
e For Ffuzzyjoin functionality, Alice and Bob have additional input dictionaries ADR and AD®

(1) Alice computes A’ « sphash(A). Bob computes B’ « cellhash (B, p?)

o Alice acts as receiver with input A’; and Bob acts as sender with input B’

(3) Bob initializes an empty dictionary Y, which is updated as follows:

(6) Bob computes Y « {ro|(i, (ro,71)) € Bout}; and Alice computes X « {ro|(i,ro)} € Aout}
(7) Parties invoke Fpsicard Where Alice acts as receiver, and Bob acts as sender with inputs sets X and Y respectively; the output from this

(8) Bob computes Y «— {(ro, AD® ()| (i, (ro, 1)) € Bout, (i, trunc(b)) € B’}
(9) Alice computes X «— {(ro, ADS (a)|(i,ry) € Aout, (i, trunc(a)) € A’}
(10) Parties invoke Fpsjjoin Where Alice acts as the receiver and Bob acts as the sender with inputs sets X and Y respectively; the output from this
) p p y p

B=1

Figure 5: Our Fuzzy PSI Framework

Figure 5. As discussed earlier, for each a € A and b € B that are §-
close in the underlying metric space dist, there exist corresponding
(i, 7o) and (i, (ro, 1)) in the output sets Aoyt and Byt for some index
i. Therefore, for the fuzzyCard functionality, the parties can simply
check how many ry values in the two sets Agyt and Boyt match.
This matching can be efficiently performed using a traditional PSI
cardinality protocol, as outlined in Step 7 of Figure 5.

Similarly, we show in Steps 8-10 how the Ff,;;yjoin can be re-
duced to the traditional join functionality Fpsjjoin. In this case, the
approach is to perform the standard join operation on the matching
ro values from the sets Agyt and Boyt.

Theorem 5, which formalizes our fuzzy PSI protocol, is stated in
Appendix D.3, where its correctness and security are also formally
established. We also get Theorem 6 for other fuzzy PSI related
functionalities in Appendix D.3. The asymptotic efficiency of the
protocols is detailed in Appendix C.4.
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5 PERFORMANCE EVALUATION

We provide experimental details and compare the performance of
our fuzzy PSI protocol with previous works in the low-dimensional
balanced setting.

Implementation. Our end-to-end implementation? is written in
C++ and utilizes the 1ibOTe library [33] for performing OT Exten-
sion, the volePSI library [30] for instantiating the required OKVS
scheme, and the cryptoTools library [32] to implement symmetric
cryptographic primitives, e.g., PRNG. To instantiate the required
OPREF primitive, we implement the construction of [18], replacing
the polynomial interpolation technique with the same (state-of-the-
art) OKVS scheme provided by the volePSI library. For security,
we selected x = 128 as the security parameter and A = 40 as the
statistical parameter, in line with standard practices in the literature.

Environment. We ran our benchmarks over a single thread on
our server with the following hardware configuration: AMD EPYC
74F3 (3.2 GHz base clock, up to 4.0 GHz) and 256 GB RAM. As

Zhttps://github.com/asu-crypto/daOT-fuzzyPSI


https://github.com/asu-crypto/daOT-fuzzyPSI

ACM CCS °25, October 2025, Taipei, Taiwan

Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

Table 2: Performance Comparison of Fuzzy PSI Protocols: The set size m = n, the dimension d, and threshold §. GC refers to garbled circuit.
(ERROR) indicates an error occurred when executing the benchmark for the specific parameter setting. (-) indicates no implementation was
provided for the specific parameter setting or, in the case of GC, the experiment took more than 1 hour. (*) indicates parameter settings for the
L, metric we did not measure, given that our protocol does not support it.

Communication Cost (MBs) ‘ Runtime (Seconds)
n Prot. (d,5)
(2,10) (6,10) (10, 10) (2,30) (6,30) (10,30) (2,10) [ (6,10) [ (10,10) [ (2,30) | (6,30) | (10,30)
Naive GC 330.14 994.14 1658.14 330.14 994.14 1658.14 2.48 7.33 12.27 2.45 7.36 12.54
[38] 2.77 132 3520 8.27 396 > 10% 2.15 102.46 | 2831.27 6.27 299.29 | 8464.17
28 [10] 7.52 22.1 36.8 21.4 63.9 106 2.20 6.24 10.32 5.36 15.9 26.56
[31] 1.77 21.2 142 1.77 21.2 142 - - - - - -
Ours 0.17 2.46 54.50 0.17 2.46 54.50 0.12 0.43 7.07 0.12 0.43 7.03
Naive GC | 84512.01 | 254496.01 - 84512.01 | 254496.01 - 636.72 | 2666.47 - 711.63 | 2006.82 -
[38] 443 2112 > 107 132 > 6000 > 10° 3477 | 1682.01 | ERROR | 100.63 | 5003.74 | ERROR
Lo | 212 [10] 120 354 922 343 1022 1702 37.84 108.42 175.92 89.17 271.75 448.05
[31] 28.3 340 2265 28.3 340 2265 - - - - - -
Ours 2.21 38.46 869.63 2.21 38.46 869.63 1.76 9.29 129.17 1.78 9.37 125.02
Naive GC - - - - - - - - - - -
[38] 708 > 107 > 10° 2116 > 10? > 10° 563.89 | ERROR | ERROR | 1655.61 | ERROR | ERROR
216 [10] 1924 5665 9408 5488 16358 27228 635.124 | 1772.58 | 2915.02 | 1509.90 | ERROR | ERROR
[31] 453 5436 36239 453 5436 36239 - = - - - -
Ours 34.24 612.87 13906.80 34.24 612.87 13906.80 | 31.75 171.14 | 244131 | 32.18 | 169.35 | 2482.36
Naive GC 457.54 1377.25 2293.74 457.58 1377.34 2293.65 3.18 11.08 18.35 3.12 10.94 17.97
[38] 2.85 132 3520 8.51 396 > 107 2.15 = - 6.29 - -
28 [10] 7.5 21.8 36.4 21.3 63.2 105 2.44 6.48 10.69 5.80 16.63 26.97
[31] 1.78 21.3 142 1.78 21.3 142 - - - - - -
Ours 0.33 2.99 55.27 0.54 3.63 56.43 0.12 0.43 7.05 0.13 0.44 7.11
Naive GC | 117135.53 | 352566.74 - 117144.29 | 352557.29 - 1207.55 | 3081.34 - 1381.35 | 3225.4 -
[38] 45.6 2113 > 107 132 > 6000 >10° 34.97 - - 101.64 - -
Ly | 2% [10] 120 351 589 340 1024 1703 40.87 111.91 181.98 94.93 281.14 464.05
[31] 28.4 341 2274 28.4 341 2274 - - - - - -
Ours 4.67 46.74 881.89 8.05 56.86 900.27 1.83 9.36 147.94 1.9 9.73 126.94
Naive GC - - - - - - - - - - -
[38] 730 > 10% > 10° 2179 > 10% > 10° 564.26 - - 1659.55 - -
216 [10] 1919 5685 9427 5513 16382 27253 706.08 | 1902.36 | 3055.09 | 1660.61 | ERROR | ERROR
[31] 455 5457 36390 455 5457 36390 - - - - - -
Ours 73.44 745.08 14102.6 127.30 906.58 14396.2 32.84 | 173.19 | 2393.49 | 35.08 | 180.27 | 2481.96
Naive GC | 17281.73 * * 17281.69 * 54.45 * * 54.36 * *
[38] 3.55 * * 153 * 2.14 * * 6.23 * *
28 [10] 7.59 * * 21.4 * 2.63 * * 5.82 * *
[31] 4.63 * * 4.63 * - * * - * *
Ours 0.33 * * 0.54 * 0.12 * * 0.12 * *
Naive GC - * * - * - * * - * *
[38] 56.9 * * 245 * 34.47 * * 99.86 * *
L, | 2% [10] 122 * * 347 * 43.76 * * 99.17 * *
[31] 73.8 * * 73.8 * - * * - * *
Ours 4.67 * * 8.05 * 1.84 * * 1.82 * *
Naive GC - * * - * - * * - * * -
[38] 911 * * 3919 * 560.01 * * 1649.77 * *
216 [10] 1964 * * 5549 * 748.30 * * 1735.24 * *
[31] 1191 * * 1181 * - * * - * *
Ours 73.44 * * 127.30 * 33.2 * * 35.3 * *

in [37], we did not account for network latency when measuring
the runtime of our implementations. This should not be an issue, as
measurements show that our protocol has a significant advantage
in communication cost compared to the others.

Concrete Performance and Comparison. We evaluate fuzzy-PSI
protocols for all three distance metrics (i.e., Lo, L1, L2) and report
their performance in Table 2. For a fair comparison with the most
recent work [31], we adopt their parameters. Additionally, to facil-
itate comparisons with [9, 31, 37], we assume that Alice’s points
are separated by at least 46. In all comparisons (similar to [31]),
we assume that both parties have sets of equal size, evaluating
performance across set sizes {28, 212 216}. Beyond input set sizes,
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we examine these constructions under varying dimensions d and
distance threshold 8. Specifically, for both Lo, and L; based fuzzy
PSI, we evaluate the protocols with d € {2, 6,10} and § € {10, 30},
while for metric Ly, our comparisons focus on dimension d = 2
and § € {10,30}. To enable a comprehensive comparison, we also
included the performance of naive garbled-circuit-based solution,
implemented using the EMP-sh2pc library [1]. In this solution, we
use standard garbled circuits to perform pair-wise distance compar-
ison between all points of the sender and the receiver to compute
the output, leading to quadratic complexity.

We also used the reported numbers from [31] to compare con-
crete communication costs for all other protocols. For compu-
tational costs, we evaluated open-source implementations from
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[9, 37]. We did not include [31] in the computational cost com-
parison, as the authors provided no concrete implementation. Our
solution significantly outperforms prior work, achieving better run-
time performance for all the parameters included in our comparison
and, in some cases, achieving a 54X improvement. Regarding com-
munication costs, our solution improves on previous works for all
settings except for the case where we have d = 10, § = 10. In this
case, however, our solution requires less 2X communication than
the best solution. For the settings where our solution is the better
option communication-wise, we can sometimes achieve up to an
14X improvement.
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A CONCLUSION

This work introduces a new modular framework for fuzzy PSI, pri-
marily constructed using efficient symmetric-key primitives. At its
core is a novel OT variant called Distance-aware Random OT (da-
ROT). Compared to prior approaches based on FSS or asymmetric
cryptographic techniques, our protocol achieves a 14X improve-
ment in communication cost and a 54X in computation cost for
input sets of size from 28 to 216, Furthermore, it operates under
weaker cryptographic assumptions than existing solutions.

While our presented solution is in the unique grid cell assump-
tion, they can be extended to support arbitrary sender inputs as well.
In the assumption-free setting, if the sender holds at most t > 1
points per grid cell, it can decompose its input set S into ¢ disjoint
sets S; (for i € [t]) such that each point of S is randomly mapped
to one set S; conditioned on each S; containing at most one point
per grid cell. Further the sender and receiver can run ¢ instances of
our fuzzy PSI protocol based on unique grid cell assumption, where
receiver inputs its original set and the sender inputs set S; (padded
with dummy elements to make set size |S|) in the ith fuzzy PSI call.
The security of this scheme directly follows from our proposed
fuzzy PSI construction and the leakage of the additional parameter
t. We leave it as future work to optimize our construction for the
assumption-free case where the multiplicative t overhead can be
avoided.

B PRELIMINARIES: DETAILS
B.1 Secure Semi-Honest Model

We use the standard notion of security in the presence of semi-
honest adversaries. Let 7 be a protocol for computing the a (proba-

bilistic) polynomial time functionality f(x1, x2) = (f1(x1, x2), f2(x1, x2)),

where party P; has input x; and it receives as output fi (x1, x2). For
party P;, let view; (1%, x1, x2) denote the view of party P; during an
honest execution of 7 on inputs x1, x2 and security parameter «,
and out; (1%, x1, x2) denote the output received by P; from protocol
7. We also use out(1%, x1, x2) = (outy (1%, x1, x2), outz (1%, x1, x2))
as shorthand to denote the protocol’s joint output of both parties.
We have the formal definition of semi-honest security (see Defi-
nition B.1) as defined by [21]. Given the nature of the functionalities
presented in this work, we use the more general definition, which
supports non-deterministic functionalities.
Definition B.1. [21] Let x denote a computational security param-
eter and =, denote computational indistinguishability. A 2-party
protocol 7 securely realizes a probabilistic polynomial time func-
tionality f against static semi-honest adversaries if there exists a
probabilistic polynomial-time simulator Sim such that, for all input
pairs x1, x2 and all i € {1, 2}:

(Sim(1%, i, x;, f; (1, x2)), f (1, x2)) =k (view; (1%, x1, x2), out (1%, x1, x2))

THEOREM 2. For domain U, grid parameter §, any X,Y C u4
where pi( = 1. Let Dx « cellhash(X, p};) and Dy « sphash(Y).
Then the following holds for any x € X,y € Y and p € [0, o]

o Ifdist,(x,y) < 6 :thereexistc € C such that (c, trunc(x)) €
Dx and (c, trunc(y)) € Dy

14

Lucas Piske, Jaspal Singh, Ni Trieu, Vladimir Kolesnikov, and Vassilis Zikas

e Ifdist,(x,y) > & :either there exist noc such that (c, trunc(x)) €

Dx and (c,trunc(y)) € Dy, ordisty(trunc(x), trunc(y)) >
é

B.2 Oblivious Key-Value Store (OKVS)

Definition B.2. [13] An OKVS is parameterized by a set K of keys,
a set V of values, and a set of functions H, and consists of two
algorithms:
— OKVS.Encodeyy takes as input a set of (kj, v;) key-value pairs
and outputs an object D (or, with statistically small probabil-
ity, an error indicator L).
- OKVS.Decodep takes as input an object D, a key k, and
outputs a value v.

An OKVS is correct if, for all A € K x V with distinct keys:

((k,v) € A)A({L,D} « OKVS.Encodef(A)) = OKVS.Decodey (D, k) = v

An OKVS is oblivious if, for all distinct {ko, e, kg} and all dis-
tinct {kl, el k,ll}, if OKVS.Encode does not output L for (ko, o kg)
or (k1,... kL), then the output of R(K?, ..., kQ) is computationally
indistinguishable to that of R(kL, ..., k,ll), where:

fori € [n]:dov; «— V
return OKVS.Encode({(ky,v1),..., (kn,on)})

In our proofs, we assume a more general obliviousness property:
the OKVS output reveals only the identities of keys whose corre-
sponding values are not randomly chosen. For a formal definition
of this generalized obliviousness property, we refer the reader to
[31].

In this paper, we will omit the underlying parameter H whenever
the context is clear and unambiguous.

B.3 Oblivious Pseudorandom Function (OPRF)

Definition B.3. A Pseudorandom Function (PRF) consists of the
following two PPT algorithms for a domain O and a range R:

e KeyGen(1¥) — k: Given a security parameter «, this algo-
rithm generates a PRF key k. We often omit the security
parameter argument when it is clear from context.

e Fi (x) — y: Evaluates the PRF on input x € D using the key
k, giving output y € R.

A PREF is secure if, for all, PPT distinguishes A, there is a negli-
gible function negl such that:

Pr[AfC) (1)) = Pr[Af ) (1)]] < negl(x),

where both probabilities are taken over the randomness of k «
‘KeyGen(1¥) and A, and the second one is also taken over the
uniform choice of f from the family of functions f: D — R.

Ideal Functionality Foprr
Parameters: Two parties: sender S and receiver R, a PRF
scheme F for domain D and range R, and bound ¢ € N.
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Behavior:
e Wait for input ordered set X = {xo,...,x;—1} € D of
size t from R.
e Sample k using KeyGen and give it to S.

e Give (Fi(xg),...,F(x;—1)) toR.

C ASYMPTOTIC EFFICIENCY OF OUR
PROTOCOLS

C.1 Our da-ROT Protocol

We assume computing the message vectors defined by Equations 1
and 2 of Figure 2 take O(v) time and the ones defined by Equa-
tion 3 takes O(M) time. To instantiate the Fsor functionality we
use the protocol proposed in [28], which, when amortized, takes
O(logy(N) + N -log(M)) time to execute and requires O(log N +
N - log M) bits of communication, where N is the message vector
size and the messages are elements mod-M.

Based on these assumptions, we can conclude that our protocol
[I4a-roT takes O(d - (logo + v - log M) +log M + M - log u) time to
execute and requires O(d - (logv+v-log M) +log M+ M -log u) bits
of communication, where M = d+1ifp =oco,and M =d - (§+1) +1
for p € {1,2}.

C.2 Our SpSOT Protocol

We assume mod-M addition and subtractions can be performed
in constant time, cshifty is done in O(N) time, and that OKVS
encoding and batch decoding take O(n - 1) time, with the encoded
OKVS structure having O(n*¢) bits in size, for n keys and elements
of bit-size ¢.

To instantiate Foprr, we use the protocol proposed in [26], re-
placing the polynomial with an OVKVS scheme. Assuming the PRF
used by this OPRF protocol executes in O(k) time, the resulting
OPRF protocol takes O(n - (k? + 1)) time to perform the oblivi-
ous evaluation of n points, O(n - (k? + 1)) to perform a batch of n
non-oblivious evaluations of the PRF, and requires O(n - k) bits of
communication when amortized.

The protocol ITspsoTt is composed of the following operations:

- 1 Foprr execution for PRF F and nR oblivious evaluations,
where the generated key is 6.

- n° - N Fy non-oblivious evaluations.

- 1 Foprr execution for PRF H and n° oblivious evaluations,
where the generated key is ¢.

- nR Fy non-oblivious evaluations.

- 1S calls to cshifty.

— 1 call to OKVS.Encode with n® - N key-values pairs.

- nR calls to OKVS.Decode.

- 0(n% - N + n®) mod-M addition/subtraction operations.

Based on our previously stated assumptions, the protocol ITspsot
then requires O((n® + n® - N) - (k% + 1)) time to execute, and
O(nS - (N -log M +x) + n® - k)) bits of communication.
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C.3 Our Sp-daROT Protocol

We now describe the asymptotic analysis of the resulting Sparse
da-ROT protocol when our compiler is provided with the da-ROT
protocol defined in Section 3.1 as input and FspsoT is instantiated
by IspsoT-

Independent of metric p, our da-ROT protocol is composed of d
1-00-v SOTs with messages in Zyy, a single 1-oo-M SOT with mes-
sages in Z,, and local computations. The local computations don’t
impact the final asymptotic efficiency, so we will ignore them in
this analysis. Given the previously described asymptotic efficiency
of TlspsoT, our compiler gives us a protocol with computational
efficiency of O(d - (ny +ng - v) - (k2 + A) + (n1 + ng - M) - (k% + 1))
and communication efficiency of O(d - ng - (v-log M+k) +ng - (M -
logu+x)+(d+1)-ny-x)), where M depends on p as described in
Figure 2.

C.4 Our Fuzzy PSI Framework

All three protocols described in Figure 5 share the costs incurred by
executing the first three steps. Based on the asymptotic analysis of
IIsp-darOT presented in Section 4.1, given set sizes |A’| =n-2¢ and
|B’| = m, we know the first three steps will have a computational
costof O(d-(n-29+m-2t") - (12 + ) +(n-29+m-M) - (k2 + 1))
and communication cost of O(d - m - (2! - logM+k)+m-(M-x)+
(d+1)-n-2¢.x)), where M depends on metric p as described in
Figure 2 and t* = [log(69)].

Fuzzy PSI. Aside from the cost of the first three steps, the fuzzy
PSI protocol requires Bob to encrypt |Bout| = m - p? values and to

encode an OKVS structure D with |Boyt| = m- p? items and requires
Alice to query OKVS D |Agyt| = n - pf} - 24 times and to decrypt

|Aout| = n- p?-zd ciphertexts. Assuming the same OKVS asymptotic
efficiency as in Section 3.1 and assuming that encryption/decryption
takes O(k) time, both the total computational and communication
asymptotic costs are dominated by the first three steps. This leaves
us with a fuzzy PSI protocol that has a total computational cost of
OWd-ppt-(n-294m-2"")- (1B + ) +pff - (n-29 4+ m- M) - (k2 + 1))
and a total communication cost of O(d - p‘,? -m- (Zt* -logM +x) +
m-(M-x)+(d+1)-n-pp-29-x)), where 2" € 0(9).

Fuzzy Cardinality. Aside from the first three protocol steps, the
two parties build the sets X and Y and then execute the Fpsicard
using these two sets as input. This gives a total computational cost
ofO(d-pj?~(n~2d+m-2t*)-(K2+A)+(n~p,‘;‘~2d+m-M)-(K2+
A) + cmp-cost,q) and a communication cost of O(d - m -p‘,? (2t
logM+k)+m-(M-x)+(d+1)-n- p;? 29 k) + cmm-costeard),
where cmp-cost .4 and cmm-cost,.q are the computational and
communication costs of the protocol used to instantiate Ffy;zycard
respectively.

Fuzzy Join. In the three protocol steps exclusive to the fuzzy join
protocol, the two parties build two dictionaries and execute the
Ffuzzyjoin functionality, providing these dictionaries as input. This
leaves us with a fuzzy join protocol with a total computational cost
of O(d-pft - (n-294m-21") - (kK + ) +pft - (n-29+m- M) - (k% +

A) + cmp-cost;

join) and a total communication cost of O(d - p;;‘ “m-
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(2t logM+x)+m-(M-k)+(d+1)- n-p‘,’? 24 %) +cmm-costjoin),
where cmp-cost;,;, and cmm-costjoin are the computational and
communication costs of the protocol used to instantiate Ff,7zyjoin
respectively.

D SECURITY PROOF

D.1 Security for Sparse SOT

THEOREM 3. Protocol lspsot securely realizes the Sparse SOT
Sfunctionality Fspsot against a PPT semi-honest adversary in the
Forrr-hybrid model.

ProoF. Denote the inputs provided by R and S to the func-
tionality and the protocol as xg = (IR, ([e¢V]R);;r) and x5 =
(15, (m®, [[C(i)ﬂ}g\/[)iels)’ respectively. Let y¥ € ZX; andyS € ZX;
represent the output vectors returned by the protocol Fs,s01 to R
and S, respectively. Similarly, let g& € ZZ’; and g° € ZX; denote
the output vectors returned by the functionality IIsp,sot to R and
S, respectively.

Corrupt Receiver. From the protocol description, the R’s proto-
col transcript viewg (1%, xg, xs) consists of the following elements

in order: the output vector f € ZX/}; received from FopRr in step 1,
the key ¢ received from Fopgrr at step 3, and the OKVS D received
from S at step 8.

viewg (1%, xg, xs) = (f, ¢, D)

The simulator Sim starts by computing D’ « OKVS.Encode(E")
where E = {((i,0),0D) | i € I’} (here, we include a dummy
value 0 as the second component of the tuple in the keyword for
the OKVS.), with I’S C T being a uniformly sampled set of size n®
and o)) eg Zy for every i € I’S. Next, Sim samples a key ¢’ to
the PRF H. To simulate the output f that R receives at step 1 from
FopRE, Sim waits for the input query-point set and answers with

R
vector f” € Z},, which is computed as follows:

‘R
£} =¥ - OKVS.Decode(D’, (i¥, [ 1R )) - Hy (i)

To simulate the key ¢ that R receives as output from Fopgrr in
step 3 and the OKVS R obtains from S in step 8, Sim sends ¢’ and
D’ at the corresponding steps. Next, we prove that Sim satisfies the
following equation for all possible inputs of the parties.

Sim(1%, R, xR,yR) =, viewg (1%, xg, x5)
From the definition of ¥s,s0T, We have that yR €R Z”R, which

directly implies that f’ €p 7" M, and consequently f/ =, f.
Similarly, from the definition of ¥ OPRF, it follows that ¢’ = ¢.
Next, we prove that D =, D’, beginning with an analysis of the
pseudorandomness of D with respect to R. Considering two cases.

(1) i € B\ IR: Since the value of w(?) € ZX; is given by
w](i) — u](.i) - [[z(i)]]jsw — Fp(i, j) - h®

and R only knows evalugtions f = (Fo(i, [[c(i)]]llf]))iepe of
Fy, it is clear that that w(?) is pseudorandom to R.
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(2) i € 15 NIR: Givenhoww (D is computed and the points queried
during step 1 of TIspsoT, the w](.l)

R for every j # [[cm]]f,. Additionally, w

appears pseudorandom to

(&)

[e®]
dorandom to R because S samples [[z(i)ﬂf\/r uniformly from
Zyp-

Since D « OKVS.Encode(E) where E = {((i, j),w;i)) | (i,j) €

IS xZy}, and given that w(® is pseudorandom to R for every i € I°,
combined with the oblivious property of OKVS schemes, we can
conclude that D’ =, D with respect to R.

Next, we show that the following holds for every possible input.

r is also pseu-
N

(Sim(1%, R xg, ), y%) = (viewr(1%,xg,x5).4%)  (4)
From the description of IIspsoT, We can see that gR is defined by

g% = [zV]% = OKVS.Decode(D, (i, [¢ VTR )+ D+Hy (i), where i = i

By replacing D, f, ¢ for the their simuled counterparts D', f/, ¢,
we have
OKVS.Decode(D’, (i, [c(i)l]i)) +f® +Hy (i) = yf, where i = if.
This completes the proof of Equation (4). Finally, we prove:

(Sim(1%, R, xg, 4%), (4%, 9%)) = (viewr(1%,xz, x5), (g%.9%)) (5)
From the definition of #spsoT, we have that yS eg ZX; and

(1)

iy

R S

y§+y2 =m ., for every if e IR and ig € I°, such that i = i =i

We now proceed to prove the same holds for gR and g°. Let
i € IR N I°. From the protocol description, we have

gf = [[z(lf )]]f,l, \7’15-Q e® and gi = [[Z(lk)]]i,l, Vli er’
Additionally,
i)TR
[[z(l)]]M

- q[([i)ﬁ)ﬂﬁj +f(i) +Hy (i)

= q[([i)(i)]]flsl + Fy(i, [[c(i)ﬂﬁ) +H¢(i)

= OKVS.Decode(i, [[c(i)]]g) + Fy (i, [[c(i)]]};,) +Hy (i)

w e+ Fo(i [P IR) + Hy (i)

i)TR
[«O15

)

= gt~ [Ty = Foi [ VTR) ~ Hy () + Fo i, e TR) + Hy (0

_ 0
[c@]%
_ )

=m_’. "
[V 15+[ 01,

=m0

- [[Z(i)]]jsw

_ D78
(mod N) [[Z ]]M

This implies that ¢° €p ZX; and

(i)

R, S _ :R R :S S :_:R _ .S
g;j+ay, —mc(i),foreverylj €elMandif €1 ,suchthatl—zj =i

R
-
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This concludes our simulation proof for a corrupt receiver.

Corrupt Sender. The S’s protocol transcript views(1%, xg, xs)
consists of the PRF key 0 that S receives at step 1, followed by the

output vector h € Z" that S receives in step 3.

(6.h)

Sim simulates the output 6 at step 1 by sampling and returning
a key 6’ to PRF F, and simulates the output vector h at step 3

views (1, xg, x5) =

by sampling b’ €g ZX; and returning it. From the definition of
FoPRF. it is straightforward to see the following holds for any
inputs provided by the parties.

Sim(1%, S, x5,3°) =, views (1, xg, x5)
From the protocol description, the party $’s output g° is uni-

formly sampled from ZX; . Thus, the next equation follows in a
straightforward manner for any inputs provided by the parties.

(Sim(1%,5,x5,3°),4°) = (views (1", xg, x5).9°)
Next, we complete our proof by showing the following for any
inputs provided by the parties:

(Sim(1%, 8, x5,4°), R, y%)) = (views (1%, xg, xs5), (g%.9%)) (6)

R
From the definition of Fs,s0T, We have that yR ep Zj, and

(@)

R
yj typ=m o)’

for everyl eRandid i € 1%, such that i = i

Similar to the case of a corrupt receiver, we have that g~ € zy,
and

(1)

R_.S
91+-‘7k =m o

R _ iR S _ S o
for every i; el andlk el ,suchthatz—zj =i

Moreover, g~ ; is pseudorandom to S for every if € IR\ IS. Let

i € IR\ IS. As previously noted, we have that

R i)TR
9; = [[Z(l)]] M=
and from step 3 of Ilspsot, the Hy (i) is pseudorandom to S. This
directly implies that g? is pseudorandom to S for every if e IR\ 5,

and concludes our proof for Equation (6).
m]

D.2 Security for Sp-daROT

THEOREM 4. Let I be a secure 0-round da-ROT protocol in the
Fsor hybrid model. Then sparse-comp(I1) in Figure 4 is a secure
Sp-daROT protocol for the same parameters in the Fspgaror hybrid
model.

ProorF. The correctness of the Sp-daROT is easy to verify. The
key observation is that the output of each invocation of SpSOT
can be replaced by SOT outputs for matching indexes, and with
random elements otherwise. More formally, for any (i,x) € X’,
the receiver’s input to ?;F;)a;rgT [j], the corresponding output OR
contains (i, 7) defined as follows:

S
=i
R

OKVS.Decode(D, (i, [[c<i)]]§))+f(i)+H¢(i), where i
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e If there exists (i,y) € Y’ for some y: Add the element (i,r)
to Og where (r, ) « Tspg;am (x,y)

e Otherwise: Add (i,r) to Og, where r is a random value.

Therefore, the correctness of Sp-daROT follows directly from
the correctness of the underlying da-ROT protocol II.

To complete the privacy proof, we construct a simulator for Sp-
daROT in a natural way: For a corrupt sender with input X and
output Xout, we run the da-ROT simulator Sim((i, X []), Xout [i])
for each index i in X. This outputs a distribution indistinguish-
able from the multiple SOT calls in the underlying da-ROT pro-
tocol. Hence, by construction, concatenating the distributions of
Sim((i, X [i]), Xout[i]) for each index in the input set gives the view
of the sender in Sp-daROT. A similar argument follows for a corrupt
receiver.

m}

D.3 Security for fuzzyPSlI

THEOREM 5. The protocol in Figure 5 securely implements the
Ffuzzypsi functionality in the Fsp_garoT hybrid model.

Proor. Correctness: For any b € B, we consider two cases:

o There exist a € A such that dist(a,b) < §: By correct-
ness of spatial hashing, Bob’s dictionary B’ contains a key-
value pair ((cell(a), j),b) for some j € [p?]. By the cor-
rectness of F5p daroT invoked in Step 2, Alice and Bob’s
out dictionaries, respectively, contain ((cell(a), j), (ro,71))
and ((cell(a), j),ro) for some rg, r1. Hence, set Y contains

((cell(a), j), Enc(ro, b)).In Step 5 for the loop for the ((cell(a), j), 7o)

iteration, Alice computes Dec(ro, ¢) and adds it to Z. This,
by the correctness of the encryption scheme, is precisely b.

e For all a € A, dist(a,b) > J: we complete this proof by
showing b ¢ Z. Assume by contradiction b € Z, which
is the output of Alice. By the correctness of one-time pad
encryption, OKVS D sent by Bob contains a key-value pair
(i, Enc(r, b)) for some i,r where Alice’s set Aoyt contains
(i,r). By the correctness of Fsp garoT, Alice’s input set A’
contains (i, a’) for some a’ € Asuchthatdist(a,b) < § with
all but negligible probability. This gives us a contradiction
since, as assumed, no element in A was J close to b.

Privacy: We divide this proof into two cases:

e Corrupt Bob: Bob’s view in the protocol only contains Boyt
the output of Fs,-daroT from Step 3, an OKVS of fixed size.
Hence, by the OKVS obliviousness property, this OKVS is
indistinguishable from another OKVS with key-value pairs
with arbitrary keys and corresponding random values, which
is simulatable given public parameters.

e Corrupt Alice: Alice view contains Aoyt the output of F5p_qaroT

from Step 2 and an OKVS D from Step 4. We first construct
a hybrid where the OKVS D constructed in Step 3 of the
protocol is modified as follows: for each (i, Enc(rg, b)) in-
serted in Y where b ¢ A N B, we replace it by (i’, ) where
r is a random string of same length as Enc(ro, ) and i’ is
a random index. This hybrid has a computationally indis-
tinguishable distribution compared to the original protocol
since the ciphertexts are pseudorandom for elements not
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in the intersection, and OKVS satisfies the independence
property.

As the final hybrid, we replace the output of FpqaroT from
Step 2 (i.e. Aoyt) with another OKVS with random key-value
pairs for key indexes not corresponding to the intersection.

O

THEOREM 6. The protocol in Figure 5 securely implements the

FtuzzyCard and Ffuzzy)oin functionality in the Fsy-daroT Fpsicard: Fpsijoin

hybrid model.

We omit the proof of Theorem 6, as it follows the same blueprint
as that of Theorem 5.

E PSIIDEAL FUNCTIONALITIES

PSI Ideal Functionalities.
Parameters: Input set sizes n, m, input length ¢, D = {0, 1}".
e The two parties, receiver Alice and sender Bob, provide sets
A, B C D as input, respectively, with n = |A| and m = |B]|.
e Only for Fpsjjoin: the sender and receiver also input associated
data dictionaries AD®, ADR respectively with key sets A, B
and values in {0,1},
o Define outputs for each functionality as follows:
— Fpsicard: output |A N B| to the receiver Alice.
= Fpsijoin:
= Initialize ¢ = 0.
« For every (a,b) € A X B where a = b:
- sample u; g {0,1}%°
- set v; such that u, ® v, = ADS (a)||ADR(b)
cte—t+1
- Shuffle both @ and 3 with the same random permutation
— Output vectors # to sender and o to receiver

F RELATED WORK

In this section, we review advancements in malicious fuzzy PSI
protocols. We begin with the work of Garimella et al. [14], which
introduced the first specialized fuzzy PSI protocols for the L; and
Lo distance metrics in 2022. Their approach introduced novel con-
structions, such as weak FSS, and innovative techniques like spatial
hashing to reduce the communication complexity of these protocols.
Among these contributions, spatial hashing stands out as a signif-
icant innovation and has been adopted in numerous subsequent
fuzzy PSI works.

Building on this foundation, [37] relies on the DDH assumption
to propose new spatial hashing techniques for a fuzzy PSI protocol
that supports metrics Lye[1,c0]- By leveraging the homomorphic
properties of DDH tuples, they enabled efficient evaluation of com-
parison functions across various distance metrics. Additionally,
their spatial hashing techniques exploit the geometric structure
of the space, avoiding the quadratic blowup typically encountered
when comparing all receiver balls to all sender points. However,
their protocol relies heavily on public-key operations.

Gao et al.[9] observed that most fuzzy PSI protocols adhere to
a two-phase paradigm: coarse mapping and refined filtering. The
coarse mapping phase identifies receiver and sender points that
are “close enough,” while the refined filtering phase performs fuzzy
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matching between these paired points. The paper introduced a
new interactive primitive called fuzz-mapping, which abstracts the
coarse mapping phase. By combining fuzzy-mapping with public-
key cryptography, they developed new fuzzy PSI protocols that
support Leo, Lp, and Hamming metrics. However, a major draw-
back to this work is their reliance on a different and unrealistic
disjointness assumption, where each sender’s or receiver’s point is
separated from other points in the same set by at least one dimen-
sion.

In the most recent work considered in this section, Richardson
et al. [31] proposed a general fuzzy-psi protocol framework, which
they use to instantiate protocols for L, and Lo metrics in the same
work. The starting point for the framework is the PSI protocol
presented in [6], which compiles a private equality test (PEQT) pro-
tocol into a PSI protocol. [31] generalizes this protocol to the fuzzy
PSI setting by combining it with garble circuit and spatial hashing
techniques, supporting Ly and Lo metric comparisons. Different
garbling schemes are recommended depending on the metric to
achieve better performance when instantiating their framework.

[36] presents fuzzy PSI protocols for Hamming distance, while [4]
extends this to support both Hamming distance and the L; met-
ric. However, we do not consider these works in our comparisons
due to some major limitations of their protocols. More specifically,
their protocol [4] for hamming distance has a non-negligible false
positive rate, and their protocol for L1 metric only supports one-
dimensional spaces.

A sparse matching functionality was presented in [35] termed
Read-Only Oblivious Maps (ROOMs). In this primitive, the server
holds a dictionary D, and the client holds a set of key values k. As
output the parties hold random secret sharing of vector ¥ such that
9; is some default value g if I_éi is not in D, else 7; = D[I_c',-]. This
can be viewed as a special case of our sparse da-ROT primitive but
only for exact matches. Our work focuses on the fuzzy setting, and
hence, we provide no direct comparison with their constructions.

We note that our proposed da-ROT primitive shares a definition
similar to conditional OT (SCOT) [2] and membership OT [7]. While
membership OT can be viewed as a special case of da-ROT that
focuses solely on equality, previous works on SCOT are restricted
to one-dimensional, interval-based conditions (i.e., L in 1D) and
depends on computationally expensive homomorphic encryption.
In contrast, da-ROT supports a wider range of distance metrics and
leverages standard OT. Combined with our sparse compiler, this
enables efficient implementations of sparse and batched da-ROT
via OT extensions. We believe this advancement will be particularly
valuable to the applied MPC literature, where SCOT is used as a
building block.



	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notation
	2.2 Fuzzy PSI Functionalities
	2.3 Oblivious Key-Value Store (OKVS)
	2.4 Oblivious Pseudorandom Function (OPRF)
	2.5 Oblivious Transfer (OT) and Its Variants
	2.6 Spatial Hashing

	3 Building Blocks
	3.1 Distance-aware Random OT (da-ROT)
	3.2 Sparse SOT

	4 Fuzzy PSI Framework
	4.1 Sparse distance-aware random OT (Sp-daROT) Functionality and Its Compiler
	4.2 Our Fuzzy PSI Framework

	5 Performance Evaluation
	References
	A Conclusion
	B PRELIMINARIES: Details
	B.1 Secure Semi-Honest Model
	B.2 Oblivious Key-Value Store (OKVS)
	B.3 Oblivious Pseudorandom Function (OPRF)

	C Asymptotic Efficiency of Our Protocols
	C.1 Our da-ROT Protocol
	C.2 Our SpSOT Protocol
	C.3 Our Sp-daROT Protocol
	C.4 Our Fuzzy PSI Framework

	D Security Proof
	D.1 Security for Sparse SOT
	D.2 Security for Sp-daROT
	D.3 Security for fuzzyPSI

	E PSI Ideal Functionalities
	F Related Work

