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Abstract. We present unconditionally perfectly secure protocols in the semi-honest
setting for several functionalities: (1) private elementwise equality; (2) private bitwise
integer comparison; and (3) bit-decomposition. These protocols are built upon a new
concept called Shared Oblivious Transfer (Shared OT). Shared OT extends the one-
out-of-N String OT by replacing strings with integers modulo M and allowing additive
secret-sharing of all inputs and outputs. These extensions can be implemented by
simple local computations without incurring additional OT invocations. We believe
our Shared OT may be of independent interest.

Our protocols demonstrate the best round, communication, and computational
complexities compared to all other protocols secure in a similar setting. Moreover,
all of our protocols involve either 2 or 3 rounds.

Keywords: unconditional security - secure comparison - equality test - OT.

1 Introduction

Secure two-party computation enables two parties, typically denoted as Alice and Bob, to
compute a function f using their individual private inputs x4 and z g, while ensuring that
only the function output f(x4,xp) is revealed, without disclosing any further information.
Garbled circuits offer a generic method for implementing secure two-party computation,
allowing the evaluation of any Boolean circuit securely with a constant number of com-
munication rounds, without revealing any intermediate information beyond the output.
Initially introduced by Yao [Yao86] and extended to the multi-party scenario by Beaver,
Micali, and Rogaway [BMRI0], garbled circuits have since seen improvements in efficiency
through various garbling schemes, with several implementations available in the literature.
General solutions for secure two-party (and multiparty) computation can often be
inefficient. Thus, the research community has focused on finding efficient methods to
evaluate specific functions. In this work, we propose customized protocols for three
popular functions: integer equality test, integer comparison and bit-decomposition. We
consider the unconditionally perfectly secure setting, which has received less attention
recently [GLS19, YNKM24] compared to the computationally/probabilistic one [Yao82,
DSZ15, RR21, DILO22, DDG'23, HKN24]. With the advent of quantum computing,
however, the importance of this model is growing. Unlike computational models, it
does not rely on assumptions about the adversary’s computational limitations, ensuring
protocols remain secure against both current and future technological advancements.
Our work has significant practical applications in scenarios requiring long-term secu-
rity and resistance to adversaries with unlimited computational power. These include
privacy-preserving genomic analysis of sensitive DNA data, secure e-voting systems that
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guarantee tamper-proof elections, and financial systems supporting sealed-bid auctions
and private transactions resilient to quantum attacks. Additionally, critical domains such
as healthcare and national security can leverage these protocols for collaborative analysis
of sensitive inputs, such as patient records or strategic intelligence, without compromising
confidentiality. Applications like private information retrieval (PIR) and secure IoT data
aggregation further highlight the value of unconditional security in protecting privacy and
data integrity in highly sensitive environments.

1.1 Contribution

This paper introduces novel approaches for evaluating functions for integer equality tests,
integer comparisons, and bit-decomposition. The context involves two parties, Alice and
Bob, along with an adversary possessing unconditional computational power but behaving
in a semi-honest manner. All the proposed protocols require only a small constant number
of rounds (either 2 or 3) to execute, are perfectly correct, and offer perfect security against
any computationally unbounded semi-honest adversaries, assuming a trusted third party
generates the correlated randomness required by the protocols.

Compared to existing protocols in the same setting, our proposed protocols demonstrate
better efficiency, as shown in Table 1. For example, we reduce the complexity of the secure
integer equality from O(¢?) in existing protocols [LT13, Yull, NOO07] to O(¢log(f)), where
¢ denotes the bit-length of the protocol inputs.

To construct these protocols, we introduce a new variation of the widely known OT
protocol, termed Shared OT (SOT). We show that SOT can be easily implemented utilizing
a single instance of 1-out-of-N OT over elements modulo M. Our SOT takes one round to
execute, is perfectly correct, and is perfectly secure against any computationally unbounded
malicious adversaries.

1. Secure Integer Equality. The functionality takes two additively shared f¢-bit
elements as input and outputs an additively shared element modulo 2, which indicates
if the two elements are the same. To implement this functionality, we propose two
protocols: Ilgsq and Hfm. Both require 2 online rounds for execution. However,
Ilggq has online computation and communication complexity of O(€log(¢)), whereas
I}, has complexity of O(¢), making it more efficient. Nevertheless, ITf;, requires a
pre-processing round with computation and communication complexity of O(¢log(¥)),
while Ilggq does not require pre-processing.

2. Secure Integer Comparison. The functionality takes the binary representation of
two £-bit elements, a and b, additively shared modulo 2 as input, and outputs an addi-
tively shared element modulo 2 indicating whether a < b. We propose two protocols:
IIgrr and Hg’LT. Both protocols require 3 online rounds to be executed. However, Il 1
has online computational and communication complexity of O(¢log(¥¢)log(log(¥))),
whereas 11} has complexity of O(¢log(¢)), making it more efficient. Nonetheless,
I1}; . necessitates a pre-processing round with computational and communication
complexity of O(¢log(¢) log(log(¥))), whereas IIg;r does not require pre-processing.

3. Secure bit-Decomposition. The functionality takes a single additively shared
£-bit element 3 as input and outputs the binary representation of § additively shared
modulo 2. We propose two protocols for this purpose: Ilgp and II},. Protocol Ilgp
requires 2 overall rounds and has computational and communication complexity
of O(£3). Protocol Iy, necessitates 3 overall rounds and has computational and
communication complexity of O(¢?log(¥)).
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1.2 Related Work

Private integer equality, comparison, and bit-decomposition protocols have garnered
significant interest due to their wide applications such as privacy preserving machine
learning [BIK 17, NWKT24] and secure advertising [vBP24, MMT*24]. These protocols
can be categorized based on two criteria: whether the computational power is available
to the adversary considered in the security proofs and whether the protocol ensures
perfect correctness. Perfect correctness denotes that a protocol returns the correct result
with a probability equal to one. Regarding the computational power of the adversary,
it means whether the adversary has unbounded computational power or is limited to a
polynomial-time algorithm.

Several works, such as [Yao82, BK04, Veul2, DSZ15, DDG'23, HKN24], present
constructions that assume the adversary has polynomial computational power, resulting in
computationally secure solutions. Additionally, constructions with non-perfect correctness
(also known as probabilistic correctness) have been proposed in [SCJ13, YY12, LT13]. In
this paper, for the sake of comparison, we solely consider related works that fulfill specific
criteria: they must be secure against unconditional adversaries, provide perfect correctness,
require only O(1) communication rounds between the parties, and work in the two-party
setting. Protocols ensuring unconditional security typically assume the existence of an
ideal functionality or primitive that enables the computation of non-trivial functions. For
instance, [DFKT06, Rei09, NO07] assume the existence of an unconditional secret shared
multiplication protocol. Alternatively, [LT13, RT10, Yull] relies on the existence of an
arithmetic black-box (ABB) [DN03] or OT. The complexity of such protocols is typically
assessed in terms of the number of invocations to the cryptographic primitive. For example,
the count may include invocations to a secret shared multiplication functionality, and the
round complexity is measured by the number of sequential invocations. Additionally, some
protocols are divided into two phases, termed offline and online.

Unconditional Secure Equality. The first relevant work to our study is [DFK106].
Later, [NOO7] improved this by achieving O(¢) multiplications and reducing communication
rounds to 8. The state-of-the-art protocols are [LT13] and [Yull], both requiring O(¥)
shared multiplications in total and O(1) shared multiplications with 2 online rounds. Their
difference lies in offline rounds: [Yull] requires 9, while [LT13] achieves O(1).

Unconditional Secure Comparison. The first solution to the private comparison
problem relevant to our scenario is presented in [DFK™06], which requires a linear number
of shared multiplications. Nishide and Ohta later reduced the round complexity to 2 offline
and 6 online rounds in [NOOQ7], while still requiring a linear number of shared multiplications.
Reistad [Rei09] proposed a solution with similar efficiency to [NOO7]. Subsequently, [Yull]
introduced a protocol using a sublinear number of shared multiplications, achieving
O(£log(?)) shared multiplications with a total of 7 rounds, including 3 offline and 4 online.

Unconditional Secure Bit-decomposition. The initial solution to the bit-decomposition
problem satisfying our previously stated requirements was also introduced in [DFK'06].
Subsequently, a protocol outlined in [NO07] enhanced the expected number of rounds
needed for bit-decomposition while maintaining the same asymptotic number of shared
multiplication executions as in [DFK™06]. Toft later introduced a new protocol in [Tof09],
which improved upon every efficiency aspect of prior results. This protocol requires an
almost-linear amount of shared multiplications and 23 + ¢ expected communication rounds,
where ¢ > 1 can be adjusted to achieve a trade-off between communication and round
efficiency (increasing c results in fewer data being transferred but requires more rounds).
Additionally, Toft and Reistat proposed an even more efficient bit-decomposition proto-
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col in [RT10], requiring a linear number of shared multiplications and 12 rounds to be
performed. However, unlike previous results, this protocol does not offer perfect security.

2 Preliminaries

2.1 Notation

In all proposed protocols, the input and output are “subtractively" shared elements modulo
M, where M € Z22. Let M € Z=? and a € Zj;. We use [a]as to denote the subtractive
sharing modulo M of a. Alice’s and Bob’s respective shares of [a]as are denoted as
[ald; € Zas and [a]¥; € Zas, and we have [a] ¥, — [a]4; = a (mod M). Although we use
the term additive secret sharing interchangeably with “subtractively" shared elements, as
the two schemes are fundamentally equivalent, we opted for subtractive shares because
they resulted in cleaner functionality and protocol definitions. However, there is no reason
why the protocols presented could not be adapted to use additive secret shares.

Since this work focuses exclusively on two-party protocols, with the parties consistently
referred to as Alice and Bob, we only need notation to represent the shares of these two
parties.

The first convention we introduce is to only explicitly display an expression’s modulo if
it is not explicit from the context. For example, if a,b € Zy;, then a+b, a—b, a-b are meant
to be interpreted as a + b (mod M), a —b (mod M), and a-b (mod M), respectively.

Another convention is how we index vectors and binary expansions. Let a € Zj,; and
ae Z£10g2(Mﬂ, where @ is the binary expansion of a. We index the vectors in this paper
starting from 0, and the least significant bit (LSB) of a binary expansion @ is dp. Also,

Z o200 75521 is the binary

when a € is the binary expansion of a € Z); and be
expansion of b € Zys, we use a@ < b to denote a < b.

Additionally, when adding a scalar modulo M to a vector of elements modulo M, let
u € Zy and T € Z5;, where N € Z=!. In this paper, when we write ¥ = ¥ + u, we mean
that 7, = ¥; + u (mod M), fori€0,1,...,N — 1.

We define One,,(i,a), where 0 < i <n—1and 0 < a < n — i, as a function which
outputs a vector v € Z4 containing a number of one, starting from position ¢, and
containing zero in all the remaining positions. For example, Ones(2,3) = (0,0,1,1,1) and

Oney(0,1) = (1,0,0,0). Formally, if & = One,,(i,a), then

1,ifi<j<i .
Uj—{ Hisy<tita ,for j€{0,1,...,N —1}

0, otherwise

We define cshifty (¥, z), where © € ZV and x € Zy, as a function which outputs a
vector ¥, where ¢ is the vector ¥ with its values shifted x positions, from position 0
towards position N — 1. For example, if ¥ = (1,2,3,4), then cshifty(7,3) = (2,3,4,1).
More precisely, if ¥ = cshift(?, z), then @} = T;_; (moa n), for i € {0,1,..., N —1}.

2.2 Unconditional Security

Unconditional security refers to a level of security that remains secure regardless of
the computational power of an adversary. Unlike computational security, which relies
on assumptions about computational limitations, unconditional security ensures defense
against all possible attacks, including those involving unlimited computational resources.
This becomes particularly relevant in the context of quantum computing.

In this work, we achieve unconditional security because our protocols rely solely on
Oblivious Transfer (OT) as the cryptographic primitive. As demonstrated in [Riv], OT
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can be performed with unconditional security, provided a trusted third party generates
and distributes correlated randomness to both parties involved in the protocol.

2.3 Commodity-Based Cryptography

First introduced by Beaver in [Bea97], Commodity-Based Cryptography is a paradigm used
to design efficient secure multi-party computation protocols. In this paradigm, there are
both servers and clients, with servers assisting clients in executing cryptographic primitives.
The level of corruption tolerated within a subset of servers may differ between protocols,
and the same is true for the clients.

The Commodity-Based paradigm not only defines the set of players but also restricts
what information these players have about each other and how they interact. This is
what sets this paradigm apart from other client-server models. First, a server should not
have any information about any other server, including whether other servers exist or
not. Second, any server-client pair must interact in a request-response manner where the
client sends the request. Third, any response sent to the client must be independent of the
client’s input and of any previous communication between the client and the server.

By imposing these restrictions, the paradigm offers several advantageous properties.
Clients are not required to provide sensitive data to servers, minimizing the trust that
clients need to have in servers. Additionally, the paradigm is scalable since multiple servers
can be employed simultaneously. Utilizing many servers also enhances confidence that at
least a portion of the material provided by the servers is secure and correct.

In this work, we assume that a single trusted server generates random oblivious transfers
locally and distributes them to the parties that will execute the desired protocol. By
working in the Commodity-Based Cryptography paradigm and assuming the existence of
this trusted third party, the two other parties can execute the proposed protocols with
perfect security against any computationally unbounded semi-honest adversaries.

2.4 Oblivious Transfer (OT)

OT is a widely used cryptographic primitive essential for secure computation, first in-
troduced by Rabin [Rab81], and later modified into another widely used variant called
1-out-of-2 Oblivious Transfer in [EGL85]. In 1-out-of-2 OT, a sender having two input
strings (g, z1) interacts with a receiver who has an input choice bit b. The receiver securely
learns x, without gaining any information about x;_j, ensuring privacy. Simultaneously,
the sender remains oblivious to the value of b.

In this paper, we work with a slightly different variant of OT, called 1-out-of-N
OT (OT) over elements modulo M. In l-out-of-N OT over elements modulo M, we
have a party named Bob providing a choice index ¢ modulo N as input, while a party
named Alice provides an options vector m € ZAN4. Bob receives m. as output, while Alice
receives nothing. In this work, the vector m consists of elements modulo M. While
an OT variant [KK13, KKRT16], where the sender transmits messages as bit-strings, is
popular in the literature, we found it more convenient to work with messages modulo M
when constructing our new proposed protocols. We formally present the functionality for
1-out-of-N OT over elements modulo M as below.

Functionality Fmﬁ

o Upon receiving a message (choose,c) from Bob: Ignore any subsequent (choose,c)
messages. If ¢ € Zy, then send (invalid input) to both parties and halt. Otherwise,
store ¢ internally and send the public delayed message (chosen) to Alice.
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o Upon receiving a message (propose, 1) from Alice: Ignore any subsequent (propose, 1)
messages. If it isn’t the case that m € Z%; and c is currently internally stored, send
(invalid input) to both parties and halt. Otherwise, send . € Zy to Bob.

By generalizing the OT protocol proposed by Rivest, in [Riv], in a straightforward
manner, it is possible to implement a protocol that fulfills the description for fDT% while
providing perfect security in the malicious setting, when assuming the existence of a trusted
initializer. Thus, our protocol can be performed in one single round and the amount of
bits transferred between the two parties and the computation required to be performed by
the two parties are both equal to O(logy(N) + N - logy(M)). Consequently, this yields an
equivalent amount of transferred bits and computation to be performed by the Trusted
Initializer.

3 Shared OT

3.1 Functionality

We now present a novel variant of Oblivious Transfer (OT), termed Shared OT, which
extends the 1-out-of-N OT [KK13, KKRT16] to operate over elements modulo M, enabling
the receiver to select one of the sender’s inputs within this modular domain. Our extension
introduces two significant differences from traditional OT: (1) the selection index input
is additively shared between the two parties, Alice and Bob, and (2) the output is also
additively secret shared between them.

c€Zy h € Ziy
B Fory A
T eczn | L
([l ([l e € Z3y
B Feoryy A
([772c]] 3¢ [[7e]l 3

Figure 1: Difference between input and output structure of 1-out-of-N binary OT and
1-out-of-N SOT over elements modulo M.

Figure 1 illustrates the differences in input and output structures between 1-out-of-N
Bit OT and 1-out-of-N Shared OT (SOT) over elements modulo M. In Shared OT,
Alice inputs an options vector 7, which contains N elements modulo M. Alice and Bob
also input their respective shares of an index ¢ modulo N. The output of SOT is the
additive shares modulo M of mi. to both Alice and Bob, ensuring that neither party learns
additional information. Note that the options vector m is not shared between the parties;
only Alice knows its value. We formally present the functionality of SOT as follows.

Functionality Fyg,n
M
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o Upon receiving a message (choose,[c]5) from Bob: Ignore any subsequent
(choose, [c] %) messages. If [c]5 ¢ Zn, then send (invalid input) to both parties and
halt. Store [¢]5 and send the public delayed message (chosen) to Alice.

o Upon receiving a message (sample share) from Alice: Ignore any subsequent messages
(sample share). Sample [[rﬁcﬂ}ef €r Zw, store it internally and send it to Alice.

« Upon receiving a message (propose, [c]4,) from Alice: Ignore any subsequent
(propose, [c]4, ) messages. If it is not the case that m € Z%, [c]& € Zn and
[fc]4; is currently stored, send (invalid input) to both parties and halt. If it is the
case, reconstruct ¢ € Zy from shares ([c]4, [c]X), and send [7.]5 = 1 + [me]y
(mod M) to Bob.

3.2 Protocol

We implement the IIggr protocol for Shared Oblivious Transfer (SOT) using a single
instance of ]'-OTAN4 and performing only basic local operations (such as cyclic shifts of the
vector m, sampling, and addition modulo an integer) on the protocol’s inputs. In more
detail, the protocol proceeds as follows:

 Alice and Bob execute an instance of Fory . Bob provides [c] R as the choice index,

while Alice provides the input vector 7/, defined as 173/ = cshifty (173, [c]4) +u, where
u € Zys is randomly sampled by Alice.

o As a result of executing ]:onl , Bob receives m/ []? and Alice retains u, since she
sampled it.

e These two values, m []B and u, serve as the respective outputs for Alice and Bob in
the IlIggr protocol.

From this brief description, we can explain the main arguments behind the correctness
and security of Ilggr.

Correctness. Given the inputs provided to Fgr, during the execution of Ilggr, Bob
receive m/ []5 - Based on the definition of cshifty and the construction of 7/, this implies
that Bob receives

M [e]8 = e —[c]g  (mod N) +U = TTe +u  (mod M)

Since Bob receives M. + u (mod M) as the output of Fyr and Alice sampled u in Step
1 of the protocol, both Bob and Alice end up with an additive share modulo M of m.
when they finish executing Ilsgr.

Security. Assuming the existence of a protocol that successfully implements Fgr in
the malicious security setting, we now explain why the protocol Ilggr implements the
functionality Fggr in the malicious setting. The security of Fggr comes from the ability of
the simulator to read the inputs provided by the adversary to Fgr and its other ability
to map these inputs into Fggr inputs that make Fggr behave as an Fgr that received the
inputs chosen by the adversary. A description of how the mapping between the two types
of inputs can be performed is found in the security proof for Ilggr further along in this
section, along with the corresponding security theorem.
Now, we present the complete and formal description for the protocol Ilggr.



8 Shared OT and Its Applications

Protocol Hsmﬁ

Parameters:
o The ideal functionality }_orﬁ described in Section 2.4
e The function cshift in Section 2.1
Inputs:
+ Bob inputs [¢]%.
« Alice inputs m € Z; and [¢]%.
Protocol Steps:
1. Alice locally samples u €Er Z.

2. Alice locally computes 1 = cshifty (1, [c] &) + u, where cshifty (171, 2) denotes a cyclic
shift of x positions of m’s elements.

3. The parties execute M. + u, L Fory (', []%)

4. Output [m.]4r = u to Alice and [7.]5 = 7. + u to Bob.

By analyzing the description of this protocol and assuming the correctness of its security
proof in Theorem 1, we can conclude that, despite being a more flexible primitive, Shared
OT is as efficient as OT while also being secure in the malicious setting. The protocol Ilggr
requires the same number of rounds and transfers the same amount of bits between the
two parties as the protocol implementing fngjf , with negligible computational overhead.
Additionally, note that our primitive can be pre-computed in the trusted initializer model
as proposed by Rivest [Riv].

Theorem 1. Protocol HSOTANI is correct and securely implements the functionality ]:sngI
against malicious adversaries in the For-hybrid model.

Proof. We formally present the security of our SOT protocol in Theorem 1. We prove it
by showing that in a hybrid world, where the parties have access to Fqr, the execution of
IIggr perfectly simulates the ideal functionality Fggr, even in the presence of a malicious
adversary A. Mathematically,

VA 38 V€: HYBRID{" , . =IDEALr, se

where S is the simulator and &£ is the environment. From now on, the variables in the
simulated scenario will be written with a prime symbol ().

Simulation: Alice Corrupted and Bob Honest. In this scenario, Alice is corrupted,
meaning the simulator S can read her inputs ([c]4 and 7 € Z}) and her internal state.
The simulator S runs an internal copy A’ of the hybrid-world adversary A, where all
interactions between S and A’ replicate those that Alice has with other parties (e.g., For
and the environment £). The behavior of the simulator is described as follows:

Simulation Description

1. The environment & delivers the inputs [¢]4 and 7 to the simulator S, this action
activates S. Upon its activation, S performs two actions. First, S delivers [c]4 and
m to A’. Second, S sends a message (sample share) to Fsgr, awaits for the response
[7c]4; and stores it internally.
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2. Upon receiving a message (chosen) or (invalid input) from Fgsor, relay the message
to A’ as if Fyr had sent it.

3. Upon receiving a message (propose, @) from A, where ¥ ¢ Z%), send (propose, 0, 7)
to Fsor, causing Fspr to send (invalid input) messages to both parties and halt.

4. Upon receiving a message (propose, 7) from A’, where ¥ € ZY;, S computes 7' =
7 — [me]4; (mod M) and sends (propose, 0,7") to Fsor. Note that this causes Bob
to receive Uﬂcm as output from Fggr, which is the behaviour of Fyr.

5. Upon receiving Alice’s output from Fggr, S doesn’t deliver it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal
executions. We divide this proof in two parts. First, we show that the simulator succeeds
in simulating the protocol, and second, we show that the messages exchanged during the
hybrid and ideal executions are indistinguishable.

Part I: On the Simulation

o The adversary A’ can misbehave in three ways. The first one is to send a message
(propose, ¥) before receiving a message (chosen), which causes poth parties to receive
(invalid input) messages in both worlds (hybrid and ideal). The second one is to
send a message (propose, 7)) after receiving a message (chosen), but where @ ¢ Z%},
which again causes poth parties to receive (invalid input) messages in both worlds.
The third is to send a message that does not follows the template (propose, ¥), which
simply does not cause any effect in both worlds.

o The adversary can also interact with the Fpr as expected that is, by sending a
message (propose, ) after receiving a message (chosen), where @ € Z%;. In the
hybrid world, this will cause Alice and Bob to execute an Fyr where the selection
index is [¢]% and the options vector is @. But in the ideal world, S maps ¥ to # and
executes Fgor over the inputs [c]%, [c]4 := 0 and . This input mapping is made
in order to make the Fgor behave as the Fypr does in the hybrid world.

Part II: On the Probability Distributions

o First, we demonstrate that the (chosen) message is delivered to Alice if and only
if Bob has sent the message (choose,u), where u € Zy. This obviously happens,
because S relays the message (chosen) if and only if it received (chosen) from Fgor.

e Second, we demonstrate that Bob’s output follows the same distribution regardless
of the world in question (hybrid or ideal). Let it be the case that Bob and Alice
sent the messages (choose,u) and (propose,¥), respectively, where u € Zy and
¥ € ZY,. This means that in the hybrid world, Bob will receive the output #, of
For(u, @). This also means that in the ideal world, Bob receives the output [".]%; of
Fsor([c]w, ), where [c]4 =0, [c]¥ = v and & = ¥ — [¢.]4; (mod M). But based
on how the shares of ¢ and the vector ¢/ are constructed, we know that ¢ = u and
[#.]5, = ., which implies that Bob also receives @, in the ideal world.

Simulation: Alice Honest and Bob Corrupted. In this scenario, Bob is corrupted,
which means that the simulator S can read his input [¢]¥ and his internal state. Like
in the last simulation case, S runs an internal copy A’ of the hybrid-world adversary A,
where all the interactions between S and A’ are those that Bob has with other parties(For
and &). The behaviour of S is described next.
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Simulation Description

. The environment & delivers the input [¢]% to the simulator S, this action activates

S. Upon its activation, S delivers [¢]% to A’.

. Upon receiving a message (invalid input) from Fggr, relay the message to A’ as if

JFor had sent it.

. Upon receiving a message (choose,u) from A’, relay the message to Fgor.

. Upon receiving the output [1.]§; from Fsor, relay the message to A’ as if For had

sent it.

Indistinguishability

We now prove that no environment is able to distinguish between hybrid and ideal
executions in this simulation case. We structure the proof for this simulation case like we
did for the last one.

4

Part I: On the Simulation

e The adversary A’ can misbehave in two ways. The first one is by sending messages

that do not match the pattern (choose,u), which in both worlds (hybrid and ideal)
does not cause any effect. The second one is by sending a message (choose,u)
where u € Zp, which in both worlds causes both parties to receive (invalid input)
messages.

The adversary can also interact with JFgr as expected, by sending a message
(choose,u) where v € Zy. By simply relaying (choose,u) to Fsgr, the simula-
tor S makes the ideal execution behave exactly the same as the hybrid one.

Part II: On the Probability Distributions

In the case where the adversary A’ sends a message (choose,u), where u € Zy,
the behaviour of the protocol will be the same as if A’ had acted honestly and the
environment & had given A’ the input u. By simply relaying the message (choose, u)
to Fgor, the simulator S is simulating the behavior of £ delivering u to A’ and
A’ acting honestly. Based on this, we can see that S simulates all the probability
distributions perfectly.

O

Applications

In this section, we start by introducing a relaxed variant of equality test, called Element
Equality* and denoted as EEQ*. Utilizing this concept as a building block, we construct
secure protocols for integer equality, comparison, and bit-decomposition.

4.1 Element Equality*

In this section, we define two slightly different cryptography functionalities for determining
equality Fgrqy  and Feeq,, and their respective protocols. Intuitively speaking, it is
useful to think of these functionalities as privately computing the following functions:

lifa=10
0Oifa#b

Oifa=1b

EEQN(a,b)={ i£0ifa#b

and EEQy /(a,b) = {
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Here, a,b € Zy and i is an integer such that 0 < ¢ < M, where M is a protocol
parameter. Our functionalities, however, will be taking subtractive shares of a and b as
input and outputting subtractive secret shares of the result. The functionalities will be
formally defined in the coming subsections.

We first introduce a protocol for evaluating EEQ}; 5, and in the subsequent subsection,
we demonstrate how a protocol for EEQu can be derived straightforwardly from the previous
one for EEQ}Y ;. Below, we present the functionality corresponding to computing the
function EEQ}y ,,. The shared input and output moduli can be different.

Functionality: ¢ = Ferqy | (a,b) with a,b € Zn,c € Zu

Let N > 2 and M > [logy(N)]| be integers. The functionality Fegey,  ~runs with the parties
Alice (A) and Bob (B), and is parameterized by N and M.

o Input: Upon receiving a message from a party containing its shares of [a]n and [b]w,
check if both shares belong to Zy. If one of them does not belong, abort. Otherwise,
record the shares, ignore any subsequent message from that party and inform the other
parties about the receival.

e Output: Upon receiving the shares of both parties, compute [d]~, where [d]n =
[a]~ — [b]~. After computing [d] v, set c as the Hamming distance between [d] % and
[d]%. Then, return to Alice and Bob their respective shares of [c]ar. Note that ¢ =0
ifa=band 1 <c< [logy(N)], otherwise.

We implement a protocol for Frexgy, ,, using Shared OTs and elementary local operation
over shared elements. At the high-level idea, let [d]y = [a]n — [b]y. Since d = 0
iff [d]4 = [d]%, we can just privately compute h, the Hamming distance between the
binary representations of [d]4 and [d]% to obtain the desired output as specified by the
functionality, given that d = 0 iff @ = b and that h = 0 iff [d]4 = [d]5. The value of h
can be obtained by computing the weight of the bitwise XOR of [d]4; and [d]%, which
implies that the underlying modulus must be changed from 2 to M > log, N to perform
this addition. We rely on SOT for the modulus conversion.

Protocol HEEQ}},M
Set £ = [log, NT.
1. Party X € {A, B} locally computes [d]x = [a]x — [b]& (mod N)
2. Alice locally computes the binary expansion @ € Z§ of [d]4.
3. Bob locally computes the binary expansion @ € Z4 of [[d}]ﬁ.
4. Alice sets [[:E',]]é4 =, for 0 <i<l—1.
5. Bob sets [[:E’Z]]QB =T, for0<i<l—1. (T =u; D)
6. Execute [Z;]m < }—SOT?M((O’ 1), [%:]2), for 0 < i < £—1. (This converts [#;]2 to [Z:]ar)

7. Party X € {A, B} locally computes [c]3; = Zf;é [z:]3; (mod M). (Here, c is the
Hamming distance between [d]4 and [d]5)

Theorem 2. Protocol Ugsqy, | s correct and securely implements the functionality Frray, ,,
against semi-honest adversaries in the commodity-based model. ’
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Proof. Correctness: From the definition of HEEQ?V,M7 we know that @ and ¢/ are the binary
expansion of [d]4 and [d]4, respectively, and that 7; = i; © ¥; for 0 < i < £ — 1. Based
on this, we have that the value of ¢, computed on step 7, is the Hamming distance between
[d]% and [d]%. Thus, eggy, s correct.

Security: The simulation is very simple and proceeds as follows. The simulator &
runs internally a copy of the adversary A and reproduces the real world protocol execution
perfectly for A. In order to do this, S simulates the protocol execution with dummy inputs
for the uncorrupted parties. The simulator’s leverage over A and £ is the fact that S
can perfectly simulate the outputs of a fsmg] , since its output distributions are always
known. Note that this holds true regardless of the distribution of the input secret shares
provided to .FSUTII& , which in this case are represented by the values #; and v;, as the SOT
functionality does not impose any assumptions on the distribution of these shares.

Considering this, it is clear that we can simulate the message exchanges that happen
during the protocol for any of the two parties. Now regarding the protocol’s output, by
the end of the protocol’s simulation, & will have the corrupted party’s shares of [a]
and [b] n, which means S can fix these values in ]:EEQE,M' This will make the protocol’s
output compatible with the inputs chosen by £. Based on this, we can conclude that no
enviroment £ can distinguish the real and ideal worlds. O

HEEq;V o with Pre-processing Phase. We observe that the only interaction in HEEQ}‘V, o

oceurs in Step 6. Therefore, we can replace this interaction with another one that can be
performed in advance during a preprocessing phase by implementing a randomized S0T3,.
However, in doing so, we must take additional care to use the random values computed
during the preprocessing phase to convert [Z;]2 to [Z;]ar. This conversion is carried out
in steps 8 through 10 of the following protocol.

P
Protocol HEEQ;FV)M

1. Party X € {A, B} locally samples [;]5 €r Z2, for 0 <i < £ —1.

2. Execute [Fi]amr < ]:sonw((O» 1), [7i]2), for 0 < ¢ < £ —1. (Convert [7;]2 to [i]ar)
Party X € {A, B} locally computes [d]%x = [a] % — [b]% (mod N)

Alice locally computes the binary expansion @ € Z5 of [[dﬂﬁ.

Bob locally computes the binary expansion ¥ € Z§ of [d]%.

Alice sets [:EZ]]? =, for0<i<l—1.

Bob sets [[:E,]]gB =7, for0<i</f—1.

© N o ov o W

Party X € {A, B} locally computes and reveals [3;]3 = [#:]3 ®[7]5, for 0 < i < £—1.

(Reveals §; = T, & 1)

9. Alice locally computes [#:]4; = [Fi]ar — 2 §i - [Fi]ar (mod M), for 0 < i < £ — 1.
([Z:]% = [@: ® w:]a)

10. Bob locally computes [#:]5; = §: + [7i]5 — 2+ §: - [7:]5 (mod M), for 0 <i < £ — 1.
([#:]5r = [ & Tl

11. Party X € {A, B} locally computes [c]3; = Zf;; [#:]%; (mod M). (cis the hamming

distance between [d]4 and [d]5)

Theorem 3. Protocol HE:Q;V y is correct and securely implements the functionality Fexqy, |
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against semi-honest adversaries in the commodity-based model.

Proof. Correctness: From step 3 through 5 of the protocol’s definition, we can see that i
and ¥ are the binary expasion of [d]4 and [d]4;, respectively. From step 6 through 8, we
can also see that [Z;]2 = [@; ® U;]2 and [Gi]2 = [Z; B 7i]2, for 0 < i < ¢ —1. Based on this
and step 9 through 10, we have that [Z;]a = [ + 7 — 2 Gi - T =[5 © 7l = [Zi]
for 0 < i < /¢ —1. Given this and step 11, we can see that ¢ is the Hamming distance
between [d]4 and [d]%. Thus, protocol Ifeq; s correct.

Security: The reasoning behind the securfty proof for this protocol is very similar to
the previous proof. The only difference is the levarage that the simulator has over A and
E. In the case of HEEQ}‘V,M’ the leverage the simulator has over A and & is its capacity to
perfectly simulate the fsmﬁ ’s outputs, because the distribution of the outputs is always

the same. In the case of HEEQTV o the simulator is also capable of perfectly simulating the
outputs of the fsmﬁ s, also for the same reasoning, but in this case, the simulator can

leverage the fact that it will always know the distribution for the values of g, the vector
revealed in the 8th step. O

4.2 Element-wise Equality

Below is the ideal functionality Fgeq, of Element-wise Equality. We observe that the
output modulus M always equals 2 and is therefore omitted from the notation.

Functionality Fegq,

The functionality Feeq, runs with the parties Alice and Bob, and is parameterized by an
integer N > 2.

o Input: Upon receiving a message from a party containing its shares of [a]x and [b]w,
check if both shares belong to Zy. If one of them does not belong, abort. Otherwise,
record the shares, ignore any subsequent message from that party and inform the other
parties about the receival.

e Output: Upon receiving both parties shares, reconstruct a and b. After reconstruction,
set ¢ = 1 if a = b, otherwise set ¢ = 0. Then, return to Alice and Bob their respective
shares of [c]2.

It is easy to see that the function EEQy can be derived from EEQ} ,, by remapping the
possible outputs as follows: 0 maps to 1, while any value greater than 0 maps to 0.

This remapping can be implemented by employing a randomized 1-out-of-N OT with
the choice vector . = (1,0,...,0) and the choice value ¢. In our notation, this corresponds
to a call to SOT2! with inputs Onej;(0,1) and [h], where M = ¢+ 1 and [h] represents
substractive shares outputted by Ferqy, , (a,b).

We use this strategy to construct two protocols: Ilggq, and HQ:QN. The only difference
between these two constructions is that while Ilggq, uses Ilggg~ as a subprotocol, HEEQN

uses Hgm* as a subprotocol. The full description of Ilggq, together with its correctness and
security proofs can be found below. The description of HEQN with its respective proofs
can be found in Appendix A.

Protocol Igeqy

Set £ = [log, NT.
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L [AJetr = Tlgggy, £+1([[aﬂN’ [b]~). (This means h =0 <= a =b)

2. Execute [c]2 = Fyye+1(Oneet1(0, 1), [A]et1). (e=1if h =0, 0o.w., c=0)

0T,

Theorem 4. Protocol llggq,, is correct and securely implements the functionality Feeq,
against semi-honest adversaries in the commodity-based model.

Proof. Correctness: The correctness of this protocol follows directly from the correctness
of Hggqr, . and the fact that we will have ¢ = 1 iff h = 0.

Secﬁrity: By making some small alterations to the security proof of HEEQ}‘V, o We
can also prove the security of the protocol Ilggq, . In the case of HEEQ?].M, the leverage
the simulator has over A and £ is its capacity to perfectly simulate the .7-"SDTNI ’s outputs,
because the distribution of the outputs is always the same. In the case of Ilggq, , the
simulator has higher leverage over the A4 and &, because it cannot only perfectly simulate
the outputs of fSDTANJ s but also perfectly simulate the output of the protocol used to
instantiate ..FEEQ;‘VYIW, since the distribution of the output values is always known. O

4.3 Bitwise Integer Comparison

The bitwise integer comparison of two secret shared elements (a and b) is defined as follows:

1 ifa<b

BLT(a,b) = {0 ifa>b

Note that a and b b can be shared either as elements modulo an integer N or by sharing the
bits of their binary representation modulo 2. In this context, we consider the latter approach.
This leads to the following definition for the private bitwise comparison functionality Fgrr,.

Functionality Fgrr,

Frur, runs with the parties Alice and Bob, and is parametrized by the length ¢ of the bit
arrays being compared.

o Input: Upon receiving a message from a party with its shares of [@]2 and [[l_)]g, check
if the shares of @ and b are both in Z5. If one of them is not, abort. Otherwise, record
the shares, ignore any subsequent message from that party and inform the other parties
about the receipt.

e Output: Upon receiving the shares of both parties, reconstruct @ and b. After
reconstruction, perform the bitwise comparison of @ and b, and set ¢ = 1 if @ < b,
otherwise set ¢ = 0. Then, return shares of [c]2 to Alice and Bob.

Using Shared OTs and the previously described protocols Hgggy, ,, and HEEQR; o we

present two protocols that implement Fgrr,, denoted by Il r, and HQT .- First, we provide
an intuitive explanation of the idea behind these protocols, which is to use Shared OTs to
compute the following boolean expression privately:

-1 {—

C:( bl/\gl)@( bi/\§i+1)

1=

no

o
I
o

-1
§'i: \/E[J@I_)'J,forze{o,L,f_l}

j=i
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which we arrived at by interpreting the “algorithm being privately evaluated” through the
private comparison protocol proposed in [DFKT06], and further adapted to leverage our
SOT primitive. To intuitively understand why the previously described Boolean expression
computes the desired comparison, we start by analyzing s and understanding its behavior
when @ = b and when @ # b.

When a = 5, the behavior of §'is straightforward to predict because in this case, a; ob; =
0 for i €{0,1,...,¢£—1}. This implies that if @ = b, then §; = 0 for i € {0,1,...,£—1}.
Now, let’s consider the scenario where @ # b. Since @ #+ l_;, there exists exactly one most
significant bit position k where a; ® b =1 (where bits d@; and bi differ). By using k, we
can understand the behavior of § when a # b by dividing the vector into three sections:
the section between 0 and k& — 1, the section between k 4+ 1 and £ — 1, and the section that
only contains s;. Now, we can analyze each section separately.

Let’s begin with the section between k+1 and £—1, which represents the most significant
section. Since k is the position of the most significant pair of bits where a; ® Ez =1, it
follows that d; & Ej =0forje{k+1,...,£—1}. Given this observation and the definition
of §, we find that 5; =0 for i € {k+1,...,£—1}, indicating that all positions of § between
k+1 and £ —1 contain only 0’s. Now, let’s turn our attention to the section containing
only §j. Since ay ® by = 1, according to the definition of &, we have 5, = 1.

Next, let’s examine the behavior of the final section of the vector s, spanning from 0 to

k — 1. To better understand this section, let’s rewrite the definition of § as follows, for
1€{0,1,...,k—1}:

k—1 -1
=0 i=k+1

Since @y, @ by, = 1, we can observe that §; =1 for i € {0,1,...,k — 1}. Based on the
behavior of these three sections, we know that vector § appears as follows when a@ # b:

S0 k1 S Skat .1

s A N 8 )

3=

o e o]l ]

index 0 1 k-1 k k+1 £—21-1

Figure 2: Three Sections of the Vector §.

Now, still assuming that @ # E’ let’s examine how this behavior of § ensures the
correctness of the Boolean expression defining ¢. To do this, we first need to define four
additional vectors: 5,7, %, 7 € Z5. These vectors are formally defined as follows:

5271:0;§;=§i+1,fOI‘iE{O,l,...,g—2}

Ji = 8 Nby, fori € {0,1,...,0—1}
7 =& Ab;, fori e {0,1,...,0 -1}
Z =7 ey, foric{0,1,....0—1}
Furthermore, the vector 2’ contains the value of l;k in exactly one of its positions and 0’s
in all others. This can be understood by visualizing the vectors 5,5, 4, %". In the following

diagram, we illustrate these four vectors along with the vector Z’ to make the reasoning
completely clear.
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Figure 3: Relationship between Vectors 5,5 ,7,7 and Zz.

Based on this crucial fact about z, we can also conclude that @ffé Z; = Ek This
implies that if @ # b, then P, _é Z = by,. Since k is the position of the most significant pair
of bits where @; ® b; = 1 (where a@; # bj)’ Wf know that if @ # b, then bk = @fzé Z=1if
and only if b > a. Thus, assuming a # b, @2;3 Z=11if and only if b > a. It turns out that
if we simply expand the equation EBf;é Z; and rearrange this expanded equation, we have:

-1 -1 -1 -1
D - Do - Do D 0
=0 =0 =0 =0
-1 -1
= (@5 b)) o (@5 nb) (2)
i=0 i=0
-1 -2
= (@5 nb) o (@5 Ab) (3)
i=0 i=0
-1 (-2
=((Psinb)e(PsitiAb)=c (4)
i=0 i=0

Thus, if @ # g, then ¢ =1 if and only if b > a. Moreover, since we have §; =0 if @ = b for
i1€{0,1,...,¢— 1}, it is straightforward to analyze the Boolean expression defining ¢ and
realize that ¢ = 0 if @ = b.

The protocols presented in this section leverage SOTs to compute the Boolean expression
defining ¢. Comments have been incorporated into the protocol descriptions to clarify
the relationship between each step and the target Boolean expression. Two protocols are
provided: one without preprocessing and one with preprocessing. The sole distinction lies
in their instantiation of the functionality Fggq+, with one utilizing HEEQ*NYM and the other

employing Hg_:% y
The full description of Ilg;r, and its correctness and security proofs can be found below,
while the description of T1} ; , and its respective proofs can be found in Appendix B.

Protocol Igr,
Let A = 2(¢ + 1), where £’ is the amount of bits necessary to represent an element of Zy 1.
1. Execute [Tifer1 ¢ Foorz ((0,1), [@ + bill2), for 0 <i <€ —1. (% = @ & b;)
2. Execute [Bi]x ¢ Feorz ((0,3), [Bil2), for 0 < i < £~ 1. (B; € {0,3}; Bi = bi - 3)
3. Locally compute [3;]e+1 = Zf: [Zi]e+1, for 0<i<{€—-1. (0<5 <43 >0 <
-1
\/j:i ‘TJ')

4. Execute [h;]x Tgeg;, ([5i]es1, [0]ern), for 0 < i <=1 (0 < hy €5 hi >0 <=

§>0 = V%)
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5. Locally compute [£]x = [Ri]x 4 [Bi]a, for 0 < i <£—1. (0 < hy <
E:Ei+,@>% == ﬁi>0A§¢:% = b /\\/Z 1_‘

EL
S
w\y

6. Locally compute @] = [Ris1]a + [Bi]r, for 0 <i < £—2. (G = hiv1 + Bi > 3 =
b AL T
Jj= z+1

7. Execute [d;]2 < fSGTé(One,\(% +1,3 —1),[ti]x), for 0<i<l—1. (d; = [t; > 3] =
b /\\/2 1—»

8. Execute [[é’i]]g « Foor (Onex(3 +1,3 —1),[G]a), for 0<i<(—2. (&i=[g>3]=
b /\VJ 'L+1

9. Locally compute [c]2 = Zf;; [di]2 + Zf;§ [€i]2- (c= @ Yd; @ EBZ ’E;

Theorem 5. Protocol lgir, is correct and securely implements the functionality Ferr,
against semi-honest adversaries in the commodity-based model.

-

Proof. Correctness: First, it is important to note the behavior of variables Z, ﬁ, d, € and
c. It is straightforward to see that they respect the following equations:

r;=a;Pb,for0<i<l—1
A .
Bi:blwi,forogzgﬂfl

- 1 ift; > 241
g=t et o hci<i
0 otherwise

1 ifg>2+41
g, = e =5+ yfor0<e</l—2
0 otherwise

~
|

—_

[\v]

0—
i D é;

%

I
<}
Il
<

K2

Now, suppose that a = b. This means s; = 0, for 0 < ¢ < £ — 1. This implies that

t; < %—I—landqj < %—I—l, for 0 <i</f—1and 0<j <¢—2. This leads to the fact that
di=0ande; =0,for 0 <i</¢—1and 0<j < -2 Therefore, c=0if a =b.

Next, suppose that a # b. This implies the existence of a pair of most significant bits

ay and [_)'k, where dy # I_;k For i > k, we have t;,§;, < % +1 and J; =¢; =0, since §; = 0.

For i < k, we have §;, 5,41 > 1, since ay # by, which implies that ¢; > % — f=3

and ¢; > % — [ = % This leads to the fact that J; = ¢;, for ¢ < k. Based on this,

c= Jk depif k<l—2andc= d_;.c, otherwise. But, since sy = 1 and d # gk, ifk<tl-—2,
we will have 541 = 0, which leads to €, = 0. Thus, ¢ = J;g for 0<k</l—1,ifa#0b.
Suppose that a < b. Since a # b, we have ¢ = d; Because b > a, we have gk. =1,d; =0
and S, = 1, implying that dj, = 1. This means that ¢ = 1,if a < 0.
Suppose that a > b. Since a # b, we have ¢ = J;g Because b < a, we have Bk =0,dr =1
and S = 1, implying that di, = 0. This means that ¢ = 0, if a > b.
This demonstrates that the described protocol will output 1, if a < b and 0, otherwise.
Security: The same rationale used to prove the security of Ilggg, can also be used to
prove the security of Ilgpr,. O
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4.4 Bit-Decomposition Protocol

In the context of private two-party computations involving a shared element 8 € Zy, it
might be beneficial to access the binary expansion of the value 5. This process, commonly
referred to as Bit-Decomposition, is crucial for various cryptographic tasks.

Here, we formally define a Bit-Decomposition functionality Fgp, where the input is an
element /3 that is additively shared modulo 2¢. The output consists of a sequence of shared
bits, where ¢ > 2, and the sequence’s length is £. Note that this functionality can also be
utilized in a black-box manner to conduct the Bit-Decomposition of integer-secret-shared
values. This is achievable by reducing both shares modulo 2¢ before presenting them as
input to Fpp,, where £ = [(log,(m2")], m denotes the upper bound for the value being
secret shared, and k represents the statistical security parameter employed by the integer
secret sharing scheme.

Functionality Fgp,

Fep, runs with the parties Alice and Bob, and is parametrized by £ > 2.

e Input: Upon receiving a message from a party with its share of [[Bj]yz, check if its share
is contained in Z,¢. If it’s not, then abort. Otherwise, record the share, ignore any
subsequent message from that party and inform the other parties about the receival.

¢ Output: Upon receiving both parties shares, reconstruct 8. After reconstruction,
compute the binary expansion by_1bs—_2...bo of 8 and return to Alice and Bob there
respective shares of [be—1]2, [be—2]2 - - - [bo]2-

We propose two protocols Ilgp, and ITg;, that efficiently implement Fgp,. These protocols
offer a tradeoff between the number of bits transferred and the number of communication
rounds required for execution.

The underlying concept of both protocols is the same: they take the binary expansions
u and v from Z§ of ﬂﬂ]]f@ and —ﬂﬁ]]g‘e, respectively. Then, they perform binary addition
over 4 and v, disregarding the last carry bit generated during the addition. This omission
ensures that the result of the binary addition is equivalent to computing binary addition
modulo 2¢. Since the output of the binary addition modulo 2¢ is a sequence of shared bits,
and 3 = [B]5 — [8]5 (mod 2%), the output of the addition serves as the desired output
for the Bit-Decomposition protocol.

To compute the binary addition modulo 2¢, we start by calculating the carry bit vector
¢, which stores the carry bits generated during the binary addition of ¥ and . Then,
we compute l_;l =u; ®U; B¢ for 0 < i < /¢ —1, forming the vector that represents the
binary expansion of 5. By initially defining the expressions for the least significant bits of
¢, we can derive the expression for ¢ as a whole. The expressions defining the four least
significant bits of ¢ are as follows:

=0

—

C1 ﬁo N ’170

—

2 = (U1 AT1) @ (T ® 1) A (g ATp))
C3 = (ﬁg A 172) D ((dz D ’(72) A (17:1 A 771)) D ((62 D 172) A\ (17:1 D 171) A (ﬁo A\ 170))

As mentioned earlier, we can analyze these expressions and derive the following set
of Boolean equations that define the carry bit vector ¢. A formal proof showing the
correctness of these equations can be found in appendix D.
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i—1
E’ozoandé’i:@t_;,j,forlgigZ—l
§=0
i—1
Li=gin \ &rfor0<j<i<i—1
k=j+1

Ti=uU; @0, for0<i</l—1

Both these protocols privately compute the vector ¢ by using SOTs to evaluate the
previously described Boolean equations, and then finish by computing the vector b. The
only difference between the two protocols is found in their fourth step. However, the values
of fi,j, computed in the fourth step, will be the same in both protocols, as they differ only
in how these values are computed. Specifically, IIgp uses SOTs to compute the values of
£;.j, while TTj, uses the functionality Fegg,-

The description of Ilgp, can be found below together with its correctness and security
proofs, while the description of Ilg,, and its respective proofs can be found in Appendix D.

Protocol Ilgp,

Let ¥ € Z5 and @ € Z5 be the binary expansions of (—[[[3]]5‘@ (mod 2°
1. Execute [gi]e + ‘FSGT?((()’ 0,1),[@; + vi]3), for 0 <i < £—1

) and [[ﬁ]]ng, respectively.

~

Gi = @ N T).

2. Execute [Z;]¢ + fsofj((ov 1), [@ + vi]2), for 0 < i <l —1. (T = U; B Us)

3. Locally compute [[Ei,j]]g +~ [gile + Z;;ljﬂ[[fk}]g, for0 <j<i</{-—1. (ﬁw =
i—j == G AN T

4. Perform [fi ;]2  Fone (Onee(i — 5, 1), [Riglle), for 0 < j <i < €—1. (fiy =1 <=
hig=i—7 <= G AN @ G = G ANy Tr)

5. Let ¢ = 0. Locally compute [c;]2 = @;;;[[t_;]]]g, for1<i<{—1. (¢ = @;;E ti.)

6. Locally compute [b;]2 = [ui]2 + [vi]2 + [eci]2, for 0 <i < £ —1. (l_)’Z =U®U; BG)

Theorem 6. Protocol Ilgp, is correct and securely implements the functionality Fgp,
against semi-honest adversaries in the commodity-based model.

Proof. Correctness: Let ¥ € Z§ and @ € Z% be the binary expansions of (—[3]%
(mod 2¢)) and [B]%, respectively, and & € 75T be the carry bit vector generated when
computing a = [B]Z + (—[B]5 (mod 2)). Based on this, we have o = &, - 2° + Zf;ol (u; ®
T; @ ¢;) - 2¢, where clearly & € {0,1} and 0 < Zf;é (i; ® v; © ;) - 28 < 2¢, which implies
that a = 8 = Zf;é(ﬁi @ U; ® ) - 2" (mod 2). This means that l;i = u; ®U; ® G, for
0 <i < £—1, is the binary expansion of 5. Thus, if the vector ¢ computed by the protocol
is equal to ¢, from position 0 to position £ — 1, then based on step 6 of IIgp, we can see
that the protocol’s output would in fact be the desired one. Because of this, we proceed to
prove that ¢; =&, for 0 <i < /¢ —1.
The set of Boolean equations that define the value of & are the following:

i—1
gonandgiz@ﬁi,j,forlgigf—l
=0
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1—1
tij=g;n ]\ @rfor0<j<i<t—1
k=j+1

Q

5
/ .

=a; Ad;, for0<i<(—1

3
Pi=addy, for 0<i<l—1

After quickly analyzing the protocol, we can see that Ilgp, computes the bit vector &
according to the following equations:

i—1
Eozoand@=®ﬂ7j,for1§i§€—1
§=0

o Ry =i -
t; ;= “d Z j,f0r0§j<2§€71
’ 0, otherwise
i—1
hij=Gi+ Y, & for0<j<i<l-1
k=j+1

Ti=a @dd, for0<i<l—1
Gi=da; Ndy, for0<i<(—1

Looking at these equations we can see that #;,g; € {0,1} for 0 < i < ¢ — 1, which
implies that 0 < h;; < i—j and hy; =i — j iff §j A Np_jq @r, for 0 < j < i < £—1.
Based on this, we can see that t_;j =g; A /\L_:lj+1 Zy for 0 < j < i < ¢ —1. Thus, looking
at the equation that dictates the value of ¢ we can conclude that ¢ = ¢, for 0 <7 < ¢ —1.
Therefore, we have that Ilgp, is correct.

Security: The rationale used in HEEQTV,M ’s security proof can be used to prove Ilgp,’s
security. O

5 Results and Comparison

To ensure a fair comparison with existing works, we limit our analysis to those with the
following characteristics:

e We consider only two-party protocols.
e We exclusively examine protocols that offer unconditional security.

e The protocols must exhibit perfect correctness, guaranteeing a probability of 1 for
returning the correct output.

e The protocols must have constant round complexity.

Due to these limitations, works such as [DSZ15, Coul8, RRK 20, EGK™20], are not
included in our comparisons. Specifically, the protocols proposed in these papers do not
feature a constant number of rounds. For instance, the secure comparison protocol in
[EGK™20] exhibits logarithmic round complexity with respect to the input size. Note that
protocols with a constant number of rounds that are information-theoretically secure are
relatively rare in the literature.

We also restrict our comparison to the three most efficient protocols that meet our
previously outlined criteria for each protocol type. As a result, works like [DFKT06] are
excluded from our comparison, as more efficient alternatives [NOO7, LT13, Yull] to the
protocols proposed in that paper are already covered.
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Table 1: Protocol Efficiency Comparison

Feeq Protocol  [LT13] [Yull] [NOO07] geq %,
Preprocessing Phase

Communication O (£2) o(6?) o(e?) L O(£log(¢))
Computation o63) o63) o(63) 1 O(tlog(?))

Rounds o(1) 9 2 L 1

Online Phase

Communication o) o(0) o?) O(L1og(¢)) o(0)

Computation o(?) o(6?) o3 O(Llog(¢)) o(0)

Rounds 2 2 6 2 2

Feir Protocol  [Rei09] [NO07] [Yull] Tgr jute
Preprocessing Phase

Communication o(?) o(6?) O(£?/log(0)) L O(flog(¢) log(log(¥)))
Computation o63) o63) O(£3/log(£)) L O(L1og(¢)log(log(?)))
Rounds 6 2 3 € 1

Online Phase

Communication o(?) o(£?) O(£2/log(£))  O(flog(¢)log(log(¢))) O(Llog(¢))
Computation O(63) o63) O(£3/1og(£))  O(£log(£) log(log(£)))  O(£log(£))

Rounds 3 6 4 3 3

Fa Protocol  [NOO7] [Tof09)] [RT10] s oy

Overall

Communication — O(¢%-log(¢)) O(c-£-1log"?(€))  O(2) O(£?) O(£% log(¢) log(log(£)))
Computation O(63 - 1og(£))  O(c-£%-1og* @ (0))  O(f3) O(£?) O(£2 log(¢) log(log(£)))
Rounds (E) 25 (E) 23+¢ (E) 12 2 3

(E) Specifies that a protocol only runs in expected constant rounds.

To compare the efficiency of the protocols that match the previously described criteria
with our constructions, we analyze and compare the number of communication rounds
required to execute the protocol, their computational complexity, and communication com-
plexity (complexity class of the number of bits transferred during the protocol’s execution).
All previously published works considered in our comparisons measure computational
complexity and the number of bits transferred by the number of times a multiplication
protocol is invoked. However, since we use our SOT functionality as a primitive instead of
a private multiplication protocol as previous works do, we cannot use the same comparison
methodology.

To deal with this difference in primitives, we measure the communication complexity
in the number of bits transmitted by the two parties, and we measure the computational
complexity of the protocols in the same way the computational complexity of algorithms is
measured. To do this we start by assuming that adding and multiplying to elements modulo
N have computational complexity O(¢) and O(£?), respectively, where ¢ = [log,(N)].
Next, we analyze the complexities of the private multiplication protocol and our SOT
construction.

For private multiplication, we assume the two parties A and B already hold a Beaver
triple generated by a trusted initializer, and they use this beaver triple in a straightforward
manner to execute private multiplication and receive an additively secret-shared output.
Assuming the two parties are performing a private multiplication modulo M, they need
to transmit a constant amount of elements modulo M and execute a constant amount
of local multiplications modulo M. This gets us computational complexity of O(¢2) and
communication complexity of O(¢), where ¢ = [log,(M)].

Running HSUT%I requires sampling a single element modulo M, adding N elements
modulo M, performing a cyclic shift over a vector length N and running a single instance of
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Fory . Assuming the OT protocol proposed in [Riv] is used to implement Forx , sampling is
done in constant time and cshifty has computational complexity of O(N), we can conclude
that Ilgory has computational complexity of O(N -log(M) + log(N)) and communication
complexity of O(N - log(M)).

Using the complexity analysis of the two primitives and the assumptions made about
the complexity of addition and multiplication mod N, we can then inspect the existing
protocols and ours, and arrive in the complexity classes presented in Table 1. We would
like to note that when inspecting previously protocols that are secure against malicious
adversaries, we considered straightforward changes that could improve their performance
when considering only semi-honest adversaries. However, we did not find any optimization
that improved performance asymptotically.

We believe our asymptotic improvements do not come from the fact we are considering
only semi-honest adversaries but actually from a combination of our setting having exactly
two parties and the ways we use our new SOT functionality to implement the newly
proposed protocols, especially when it comes to using SOTs to convert secret shared values
between different modulo.

6 Conclusion and Future Work

In this work, we studied a natural extension of the OT functionality, which we termed
Shared OT. We utilized this new primitive to develop protocols for private equality
(Feeq), private comparison (Fgrr), and bit-decomposition (Fgp) functionalities. All these
protocols satisfy the following properties: unconditional security in the two-party semi-
honest setting, perfect correctness, and constant round complexity. Our constructions
demonstrate superior performance compared to previous protocols that share these same
properties. Three interesting questions remained unexplored:

e Can the protocols presented in this work be modified to be secure in the malicious
adversary model while maintaining their efficiency advantages?

e Can the ideas proposed in this paper be adapted to the computational security
setting in a way that leads to improvements compared to other works in that setting?

e Can the proposed protocols be adapted to the multi-party setting such that they
provide performance improvements compared to other protocols in that setting?

Malicious Protocols. To achieve security in the malicious setting, a natural starting
point is to replace our additive secret shares with committed additive secret shares. Note
that unconditionally secure linear homomorphic commitment schemes have been proposed
in the past, such as in [NMO™T03, Riv]. By using committed additive secret shares, the
two parties can prove to each other that linear operations over the committed shares
were performed correctly. This verification covers virtually all operations in our protocols,
except for executing the Fggr primitive.

While our Fgor is secure in the malicious setting, it does not support committed
inputs or output committed secret shares. Therefore, a new committed variant of the
primitive would need to be introduced. A promising solution is to study the already
proposed Committed Oblivious Transfer [CvT95]. However, our protocols work with
values of different moduli, a setting not addressed by previously proposed unconditional
commitment schemes, adding a layer of complexity.

Aside from this main challenge, the use of commitment schemes adds performance
overhead. We would need to study how this overhead impacts the efficiency of our protocols
compared to other previously malicious-secure solutions. Due to these complexities, we
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decided to focus only on the semi-honest setting in this work and leave the task of securing
these protocols against malicious adversaries for future research.

Protocols in the Computational Security Setting. Given the extensive body of
work in this setting that has been published, we believe that investigating this question
might lead to fruitful results given the promising outcomes presented in Section 5. In
addition, our protocols rely on such an efficient primitive as OT, support this belief. Many
works, such as [IKNP03, PRTY19, Roy22, BCGT22, RRT23] have proposed methods to
pre-compute the OT primitive in a batched manner with very good runtimes and rate-1
communication.

Multi-party Setting. The equality, comparison, and bit-decomposition protocols intro-
duced in this paper all rely on the newly proposed SharedOT primitive, which currently
supports only two parties: a sender and a receiver. An interesting direction for future
research would be to explore how this functionality could be extended to accommodate
multiple parties, while still preserving the necessary behavior to implement the protocols
presented in this work.

Acknowledgments.

Lucas Piske and Ni Trieu were partially supported by NSF award #2115075, and ARPA-H
SP4701-23-C-0074. Portions of this work were conducted while Nascimento was affiliated
with University of Washington, Tacoma.

References

[BCG'22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. Cryptology ePrint Archive, Report 2022/1014, 2022.
https://eprint.iacr.org/2022/1014.

[Bea97] Donald Beaver. Commodity-based cryptography (extended abstract). In 29th
ACM STOC, pages 446-455. ACM Press, May 1997. doi:10.1145/258533.2
58637.

[BIKT17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
Practical secure aggregation for privacy-preserving machine learning. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 1175-1191. ACM Press, October / November 2017.
doi:10.1145/3133956.3133982.

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer
and computing on intervals. In Pil Joong Lee, editor, Advances in Cryptology
- ASTACRYPT 200/, pages 515-529, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC), pages 503513, 1990.

[Coulg] Geoffroy Couteau. New protocols for secure equality test and comparison. In
Applied Cryptography and Network Security: 16th International Conference,


https://eprint.iacr.org/2022/1014
https://doi.org/10.1145/258533.258637
https://doi.org/10.1145/258533.258637
https://doi.org/10.1145/3133956.3133982

24

Shared OT and Its Applications

[CvT95]

[DDG+23]

[DFK+06]

[DILO22]

[DN03]

[DSZ15]

[EGK*20]

[EGLS5]

[GLS19]

[HKN24]

[IKNP03]

ACNS 2018, Leuwven, Belgium, July 2-4, 2018, Proceedings, page 303-320,
Berlin, Heidelberg, 2018. Springer-Verlag. doi:10.1007/978-3-319-93387
-0_186.

Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious
transfer and private multi-party computation. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 110-123. Springer, Heidelberg,
August 1995. doi:10.1007/3-540-44750-4_9.

Bernardo David, Giovanni Deligios, Aarushi Goel, Yuval Ishai, Anders Konring,
Eyal Kushilevitz, Chen-Da Liu-Zhang, and Varun Narayanan. Perfect MPC
over layered graphs. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 360-392. Springer,
Heidelberg, August 2023. doi:10.1007/978-3-031-38557-5_12.

Ivan Damgéard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation. In Shai Halevi and Tal Rabin,
editors, Theory of Cryptography, pages 285-304, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated
garbling from simple correlations. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 57-87. Springer,
Heidelberg, August 2022. doi:10.1007/978-3-031-15985-5_3.

Ivan Damgard and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 247-264, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework
for efficient mixed-protocol secure two-party computation. In NDSS, 2015.

Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter
Scholl. Improved primitives for MPC over mixed arithmetic-binary circuits. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part 11,
volume 12171 of LNCS, pages 823-852. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56880-1_29.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637-647, June 1985. doi:10.114
5/3812.3818.

Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient uncondi-
tional mpc with guaranteed output delivery. In Annual International Cryptology
Conference, pages 85—114. Springer, 2019.

David Heath, Vladimir Kolesnikov, and Lucien K. L. Ng. Garbled circuit
lookup tables with logarithmic number of ciphertexts. EUROCRYPT, 2024.
https://eprint.iacr.org/2024/369. URL: https://eprint.iacr.org/
2024/369.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 145-161. Springer, Heidelberg, August 2003. doi:10.1007/97
8-3-540-45146-4_9.


https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/978-3-319-93387-0_16
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/978-3-031-38557-5_12
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://eprint.iacr.org/2024/369
https://eprint.iacr.org/2024/369
https://eprint.iacr.org/2024/369
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9

Lucas Piske, Jeroen van de Graaf, Anderson C. A. Nascimento, Ni Trieu 25

[KK13]

[KKRT16]

[LT13]

[MMT+24]

[NMO*03]

[NOO7]

[NWKT24]

[PRTY19]

[Rab81]

[Rei09)]

[Riv]

[Roy22]

Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for
transferring short secrets. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 54—70. Springer, Heidel-
berg, August 2013. doi:10.1007/978-3-642-40084-1_4.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 818-829. ACM Press, October
2016. doi:10.1145/2976749.2978381.

Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with
sublinear online complexity. In Fedor V. Fomin, Rusins Freivalds, Marta
Kwiatkowska, and David Peleg, editors, Automata, Languages, and Program-
ming, pages 645-656, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Bud-
dhavarapu, and Benjamin Case. Delegated private matching for com-
pute. Proceedings on Privacy Enhancing Technologies (PoPETs), 2024(2):49—
72, 2024. Also available at Cryptology ePrint Archive, Paper 2023/012,
https://eprint.iacr.org/2023/012. URL: https://petsymposium.org
/popets/2024/popets—-2024-0040.php, doi:10.56553/popets—2024-0040.

Anderson C. A. Nascimento, Jorn Miiller-Quade, Akira Otsuka, Goichiro
Hanaoka, and Hideki Imai. Unconditionally secure homomorphic pre-
distributed bit commitment and secure two-party computations. In Colin Boyd
and Wenbo Mao, editors, ISC 2003, volume 2851 of LNCS, pages 151-164.
Springer, Heidelberg, October 2003.

Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, Public Key Cryptography — PKC 2007, pages
343-360, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Truong Son Nguyen, Lun Wang, Evgenios M. Kornaropoulos, and Ni Trieu.
Aitia: Efficient secure computation of bivariate causal discovery. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS),
2024.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light:
Lightweight private set intersection from sparse OT extension. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 401-431. Springer, Heidelberg, August 2019. doi:
10.1007/978-3-030-26954-8_13.

Michael Rabin. How to exchange secrets by oblivious transfer, 1981.

Tord Ingolf Reistad. Multiparty comparison-an improved multiparty protocol
for comparison of secret-shared values. In International Conference on Security
and Cryptography, volume 1, pages 325-330. SCITEPRESS, 2009.

Ronald L. Rivest. Unconditionally secure commitment and oblivious transfer
schemes using private channels and a trusted initializer. unpublished.

Lawrence Roy. SoftSpokenOT: Communication—computation tradeoffs in
OT extension. Cryptology ePrint Archive, Report 2022/192, 2022. https:
//eprint.iacr.org/2022/192.


https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1145/2976749.2978381
https://eprint.iacr.org/2023/012
https://petsymposium.org/popets/2024/popets-2024-0040.php
https://petsymposium.org/popets/2024/popets-2024-0040.php
https://doi.org/10.56553/popets-2024-0040
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://eprint.iacr.org/2022/192
https://eprint.iacr.org/2022/192

26

Shared OT and Its Applications

[RR21]

[RRK*20]

[RRT23)

[RT10]

[SCI13]

[Tof09)]

[vBP24]

[Veul2]

[Yao82]

[Ya086]

[YNKM24]

Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the
half-gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology — CRYPTO 2021, pages 94-124, Cham, 2021.
Springer International Publishing.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran,
Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2: Practical
2-party secure inference. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, page 325-342, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3372297 .3417274.

Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute
codes for pseudorandom correlation generators from LPN. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of
LNCS, pages 602-632. Springer, Heidelberg, August 2023. doi:10.1007/97
8-3-031-38551-3_19.

Tord Reistad and Tomas Toft. Linear, constant-rounds bit-decomposition. In
Donghoon Lee and Seokhie Hong, editors, Information, Security and Cryptol-
ogy — ICISC 2009, pages 245-257, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

Bharath K. K. Samanthula, Hu Chun, and Wei Jiang. An efficient and
probabilistic secure bit-decomposition. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, ASTA
CCS 13, page 541-546, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2484313.2484386.

Tomas Toft. Constant-rounds, almost-linear bit-decomposition of secret shared
values. In Marc Fischlin, editor, Topics in Cryptology — CT-RSA 2009, pages
357-371, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Aron van Baarsen and Sihang Pu. Fuzzy private set intersection with large
hyperballs. In Advances in Cryptology — EUROCRYPT 2024: 43rd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part V, page
340-369, Berlin, Heidelberg, 2024. Springer-Verlag. doi:10.1007/978-3-031
-58740-5_12.

Thijs Veugen. Improving the dgk comparison protocol. In 2012 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), pages 49-54,
2012. doi:10.1109/WIFS.2012.6412624.

Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), pages 160164, 1982. doi:
10.1109/SFCS.1982.38.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science (FOCS),
pages 162-167, 1986.

Albert Yu, Hai H. Nguyen, Aniket Kate, and Hemanta K. Maji. Unconditional
security using (random) anonymous bulletin board. Cryptology ePrint Archive,
Paper 2024/101, 2024.


https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1007/978-3-031-38551-3_19
https://doi.org/10.1145/2484313.2484386
https://doi.org/10.1007/978-3-031-58740-5_12
https://doi.org/10.1007/978-3-031-58740-5_12
https://doi.org/10.1109/WIFS.2012.6412624
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

Lucas Piske, Jeroen van de Graaf, Anderson C. A. Nascimento, Ni Trieu 27

[Yull] Ching-Hua Yu. Sign modules in secure arithmetic circuits. Cryptology ePrint
Archive, Report 2011/539, 2011. https://ia.cr/2011/539.

[YY12] Ching-Hua Yu and Bo-Yin Yang. Probabilistically correct secure arithmetic
computation for modular conversion, zero test, comparison, mod and expo-
nentiation. In Ivan Visconti and Roberto De Prisco, editors, Security and
Cryptography for Networks, pages 426-444, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

A Element Equality* with Pre-processing Phase

Protocol HE:QN

Let ¢ = [logy(N)] be the minimum amount of bits necessary to represent an element
of ZN

1. [h)es1 < HESQ}(\L[JA([[CLHN, [6]~). (This means h =0 <= a =1b)

2. Execute [c]2 = fSDTgH(OnegH(O), [Ale+1). (e=1if h =0, o.w., c=0)

Theorem 7. Protocol HE:QN is correct and securely implements the functionality Feeq,,
against semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same ideas used prove HEEQ;V o ’s correctness

and security apply to the correctness and security of HE;QN. O

B Bitwise Comparison with Pre-processing Phase

Protocol 117 ; )

Let A =2(¢' + 1), where ¢ is the amount of bits necessary to represent an element of
L.

1. Execute [#[e1 < Feorz,, ((0,1),[@ + b;]2), for 0 < i < - 1. (& =a; © b;)

2. Execute [fi]x Fsorz ((0, 2), [b:]2), for 0 < i <e—1. (B; = 2 if b; = 1 and
B = 0, otherwise)

3. Locally compute [3;]¢+1 = Zf;i [Z;]eq1, for 0 <i < —1.
4. [hilx = T, | ([e+1,[0]e41), for 0<i < €—1 (hi =0 <= § =0 =
-1 '

5. Locally compute [£]x = [hi]x + [Bils, for 0 < i < £—1. (& >
? -1 5
bi AV;Z; T5)

!
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6. Locally compute [G]x = [hisa]s + [Bilx, for 0 < i < €—2. (¢ > 3 =
b /\\/J H1963)

-

7. Execute [d;]s + fSDTg(OneA(% +1,53 —1),[6]n), for 0<i<e—1. (d; = [t; >
3 =bi AV )

8. Execute [€;]2 + ]—'SDTA(OneA( +1,%3 = 1), [@]x), for 0<i<€—2. (& = [q; >
7] - b A v] 1+1 )

9. Locally compute [c]o = X0 [di]e + Yizo[@]e. (e = @'y di & Bizg &)

Theorem 8. Protocool iy, is correct and securely implements the functionality Fyrr,
against semi-honest adversaries in the commodity-based model.

Proof. Correctness and Security: The same arguments used to prove the correctness
and security of Ilgrr, can be used to prove the correctness and security of Iy, . O

C Bit-Decomposition with Pre-processing Phase

Protocol Ilg;,

Let @ € Z and @ € Z4 be the binary expansions of (—[8]5, (mod 2¢)) and [B]Z,
respectively.

1. Execute [gi]¢ < Fsorz((0,0,1), [U@; + #]3), for 0 <i <€ —1. (G; = U N 7)
2. Execute [[fzﬂi — fSOT%((Ov 1), [[ﬁl + ’D}]]Q), for 0 < ) S ?—1. (fl = 1_1:1 D 171)

3. Locally compute [i_i”]]g — [g;le + 22;13'4-1[[516]]2’ for0<j<i</l-1. (Em =
i—j <= g, /\/\k—j+1xk)

4. Perform [[t”ﬂg — ]:EEQZ([[h e i — j]]é) for 0 <j <i<l-1 (t_;’j =1 <=
h,j =i—j & gg/\/\k J+1xk’ ) _gJ/\/\k J+1wk)

5. Let ¢o = 0. Locally compute [¢;]2 = @;;})[[t_;]]]% for1<i<{-1. (¢ =
-
EB;‘:O ti,j)

6. Locally compute [b;]a2 = [ui]l2 + [vi]2 + [ci]2, for 0 < i < £—1. (b; = U; ®V; D)

Theorem 9. The protocol 1’[1/3]3/Z is correct and securely implements the functionality Fgp,
against semi-honest adversaries in the commodity-based model.

Proof. Correctness: By looking at the descriptions for protocols IIg; , and Ilgp,, we can
see that the only difference between the two is 4. So if we prove that the values of 12] in
Igp, and [Ty, respect the same equation, for 0 < j < i < £ — 1, from the correctness proof
of Ilgp,, we have that Ilg,, is also correct. Again by looking at Ilgy,’s description and by
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the formal definition of Fggq we can see that the values of t;, 4, in the description for g, ,
are defined by the following equation:

(1 i
=4 TN gro<j<i<i—1
’ 0, otherwise

This equation also defines the values of t_;] in the description for Ilgp,, for 0 < j < i <
¢ — 1. Thus, we can conclude that ITg;, is correct.
Security: The same ideas used to prove the security of Ilggq can be applied to prove
the security of ITfy.
O

D Correctness Proof for Carry-bit Expression

Theorem 10. Let ¢ € N> a € Zoe,b € Zoe, and ii,7 € Z*+ be the binary expansion of a
and b, respectively. The vector W = U + U + C is the binary expansion of a + b, where ¢ is
defined by the following expressions:

i—1
co=0 andé’i:@tﬁi’j,forlgigﬁ
=0
i—1
Li=gin J\ @ foro<j<i<t
k=j+1

g_]'z:ﬁl/\ﬁz,for()gzgf
T, =U; BT, for0<i </

Proof. We start this proof by rewriting the expression for & and ¢ in a recursive form:

=2 for0<j<i—1<{

i L for1<i</

=0
i—2

=ti-1 DX 1 A @tiq,j
j=0

=11 DT—1 ANCi1
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Now, by further developing the recursive form of ¢ we have:

G = fi,i—l ® Ti—1 A Ci—1
= (Uj—1 NTj—1) ® i1 N Ci—1 yfor 1 <i <4
= (Uj—1 NUj—1) @ (Ui—1 A Ci—1) ® (Ti—1 A Ci—1)

Based on this, we can see by inspection that

(Uim1 + Vi1 +G1)>1 < ¢ =1,for 1 <i</{
Thus, by using the binary addition algorithm, we have that @ = @ + ¥ 4 ¢ is the binary

expansion of a + b when defining ¢ as defined by this theorem.
O

Theorem 11. Let £ € N>, a € Zoe,b € Zoe, and i, v € Z5 be the binary expansion of a
and b, respectively. The vector W = i + ¥ + € is the binary expansion of a + b (mod 2¢),
where ¢ is defined by the following expressions:

i—1

50:0and€i:@ﬂ7j,farlgi§€fl
§=0
i—1
Gin N\ E foro<j<i<i-—1
k=j+1

g‘ziﬁz/\l_fz,fOT‘OS’ngfl
Ti=uU;®U;, for0<i</l—1
Proof. Let f he Z”l be the binary expansions of a and b, respectively, and ¥ € Z”l be
the binary expasion of a + b. We start by noting that from Theorem 10 we know that
Y= f + h+ s the binary expansion of a + b, where c¢ is defined in the following way:

-~
| |

i—1
50:Oandé’i:@t_;7j,for1§i§£
j=0
i—1
ti=gin J\ Frfor0<j<i<e
k=j+1
Gi=fi Nhy, for 0<i</¢
Zi=fi@®h;, for 0 <i</

Next, we also note that the following is true:

0 -1 -1
a+b=> §i-2 =g 24> §-2'=> §-2" (mod?2)
=0 =0 =0

~
|
—
~
|
—

> -2 (mod2f) = g2

=0 7

I
=)

Which means that @ € Z§ is the binary expansion of a + b (mod 2°) if and only if

w; =y = f: + hi+ ¢ for 0 <i < ¢ — 1. Because @ and fare both binary expansions of

a, and ¥ and h are both binary expansions of b, we know that u; = ﬁ and 7U; = i_ii for

0 <i < /{£—1. This, in turn, concludes the proof by implying that @; = ; = u; + U; + &
for 0 <i < ¢ —1, where ¢; is defined as described by the theorem for 0 < i < /¢ — 1.

O
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