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A Riemannian metric g on a smooth four manifold X is hyperkdhler if its holonomy
group is contained in SU(2)CSO(4). The latter condition is equivalent to saying that we
can choose an orientation so that the bundle A™X of self-dual 2-forms is trivialized by

parallel sections. In particular, on a hyperkahler 4-manifold, there is a triple of closed

1. Introduction

self-dual 2-forms w={w1,ws, w3} satisfying

WaAwg =203 dvol, for all a, fe{1,2,3}.
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Such a triple is called a hyperkdhler triple. Notice that conversely a hyperkahler triple
uniquely determines a hyperkéhler Riemannian metric. It is an important fact that
hyperkahler 4-manifolds have vanishing Ricci curvature; indeed they form the simplest
non-trivial class of Ricci-flat metrics. In this paper we systematically study degenerations
of hyperkahler 4-manifolds, focusing on the case when the volume is collapsing. Below
we describe two main geometric applications.

The first application of our study is to the moduli compactification of hyperkahler
metrics on the K3 manifold. Here, the K3 manifold K is by definition the oriented
smooth 4-manifold underlying a complex K3 surface. We know the intersection form
on H%(K;Z) has signature (3,19). Denote by 90 the set of equivalence classes of all
unit-diameter hyperkéhler metrics on K modulo the natural action of Diff(KC), endowed
with the Gromov-Hausdorff topology. This space has an explicit description in terms of
the period map. Recall that a hyperkahler metric g has a period, which is the element
in the Grassmannian of oriented maximal positive subspaces in H?(K;R) given by the
space H' (g) of self-dual harmonic forms. Taking into account of Diff(KC) action we have

a well-defined period map (see [53])
P D=T\0(3,19)/(0(3) x O(19)), (1.1)

where T' is the automorphism group of H?(K;Z) preserving the intersection form. By
the global Torelli theorem, P is injective and maps onto an open dense subset of D.
Moreover, P extends to a bijection P: ' —D, where 9 is the partial compactification
of M obtained by adding the volume-non-collapsing Gromov—Hausdorff limits of smooth
hyperkahler triples ; the latter are known to be hyperkahler orbifolds, and their periods
are maximal positive subspaces in H?(K; R) which annihilate at least one homology class
with self-intersection —2 (see for example [68, Chapter 6]).

We are interested in understanding the full Gromov-Hausdorff compactification 9.
The elements in M\M' are volume collapsing Gromov-Hausdorff limits of hyperkiihler
metrics whose periods diverge to infinity in D. We prove the following structural results
for these limit spaces, and hence confirm a folklore conjecture (see for example [68,
Proposition IV]).

THEOREM 1.1. Any collapsed limit in IM\M' is isometric to one of the following:

e (dimension 3) a flat orbifold T3/Zs;

e (dimension 2) a singular special Kdihler metric on S with local integral mon-
odromy;

e (dimension 1) a 1-dimensional unit interval.

In this paper will actually consider the more refined notion of measured Gromov—

Hausdorff convergence, which includes the extra structure of a renormalized limit measure
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on the limit spaces (cf. §2.2). From the proof we know that in the first two cases the
limit measure is proportional to the Hausdorff measure, while in the third case the limit
measure may be non-trivial and it encodes interesting topological information of the
collapsing family (cf. [46], [78], [50], see also §3.3). Notice that in the more general context
of collapsing 4-dimensional Ricci-flat metrics, Lott [58] has obtained some classification
results of limit spaces under certain technical assumptions on the limit spaces.

There have been extensive recent work on constructing special examples of collapsing
sequences in 9, which can be viewed as partial converses to Theorem 1.1. See for
instance [41], [32], [22], [46], [68], [24], [23]. In particular, any flat orbifold T?/Zs is in
I\ M; further work is needed in order to classify all 2-dimensional limit spaces in 9\ 9/
explicitly. We also mention that Odaka—Oshima [68] proposed an interesting conjecture
relating the Gromov-Hausdorff compactification 9 to certain Satake compactification
of D as a locally symmetric space, and [68] made some progress toward the conjecture.

The second application of our study is concerned with the asymptotic structure of
gravitational instantons. The latter are by definition complete non-compact hyperkéhler
4-manifolds (X, g) with

/X |Rm,|? dvol, < oco.

These spaces originated from physics, but they also involve very rich geometry and
analysis. There are a variety of constructions in the literature, such as hyperkahler
quotients, twistor theory, gauge theory, complex Monge—-Ampere equation, etc. Gravita-
tional instantons are important in understanding the singularity formation of collapsing
of hyperkahler metrics, since they may arise as rescaled limits around points where cur-
vature blows up. The next theorem gives a classification of the asymptotic geometry of

gravitational instantons.

THEOREM 1.2. A non-flat gravitational instanton (X,g) has a unique asymptotic
cone (Y,dy,p.) which is a flat metric cone of dimension de{1,2,3,4}. Moreover, the
following classification holds:

o (d=4) (X,g) is ALE;

e (d=3) (X,g) is ALF;

o (d=2) (X,g) is ALG or ALG*;

e (d=1) (X,g) is ALH or ALH*.

The precise definition of these spaces will be given in §6.4. The above classification
result has been long sought. The most recent result is due to Chen—Chen [20] building
upon ideas from earlier work of Minerbe [63], where one assumes the extra condition
[Rm|=0(r=27¢) for some £>0, and obtains a classification into only the four classes
above without the superscript *. This weaker result is proved by studying the behavior of
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“short geodesic loops” at infinity using ODE comparison, and the asymptotic fibration is
constructed using these short loops; the hyperkéhler property mainly enters as a control
on the holonomy. Our proof is based on a completely different approach. First, we
make essential use of the Cheeger-Fukaya—Gromov theory on N-structures, which has
the advantage of incorporating multi-scale collapsing phenomenon at infinity. Secondly,
we manifest the role of the hyperkéhler equation itself as an elliptic PDE. These ideas
could potentially apply to more general situation.

It is also worth pointing out that there have been numerous works on the construc-
tion and classification of gravitational instantons with given asymptotics at infinity, see
for example [21]-[24], [27], [33], [44], [46], [47], [54], [55], [64] and the references therein.
In particular, it is known that all the families of gravitational instantons listed in Theo-
rem 1.2 can be compactified in the complex-analytic sense. Together with these results,
Theorem 1.2 has the following corollary, which confirms the compactification conjecture
of S.-T. Yau [83] in our setting.

COROLLARY 1.3. Given any gravitational instanton (X, g), there is a choice of a
complex structure J such that (X, J) is bi-holomorphic to X\ D, where X is an algebraic

surface and D is an anti-canonical divisor.

Now we outline some ideas involved in the proof of the above results. As men-
tioned before the central goal is to understand the collapsing geometry of hyperkahler
4-manifolds with bounded L?-energy. The result of Cheeger-Tian [19] provides an e-
regularity theorem in our context, and as a consequence we know that the collapsing is
with bounded curvature away from finitely many singularities. However, due to the lack
of a suitable monotonicity formula, there has been no progress so far in understanding
the structure of these singularities. This issue is unique compared to other geometric

analytic problems. Our study depends on three key ingredients:

e Geometric structures over the regular region (§3): we analyze the structure on the
regular region of the limit space coming from the hyperkahler structure. The analysis
depends on the dimension d of the limit space; when d=1, this was already done previ-
ously in [50]. A byproduct of this analysis is a new and simple proof of the e-regularity

theorem in our context (see §3.4).

e Singularity structure of the limit space (§4, 5): we study in detail the singularity
structure in the cases d=3 and d=2. In particular we show that there is always a
unique tangent cone which is a metric cone. Theorem 1.1 follows from Theorem 4.3 and

Theorem 5.2. Notice again that the case d=1 in Theorem 1.1 is easy (see [50]).

e Perturbation to invariant hyperkéhler metrics (§3.5 and §6): The classical theory
of nilpotent Killing structures due to Cheeger—Fukaya—Gromov [17] asserts that, over
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the regular region, the collapsing sequence inherits an approzimate nilpotent symme-
try along the collapsing directions. We combine this with the perturbation theory of
hyperkahler metrics to obtain nearby hyperkahler metrics with genuine nilpotent sym-
metry. This is performed at both the local and global level. The local result improves
our understanding of the collapsing fibers (§3.5), whereas the global result yields that a
gravitational instanton with non-maximal volume growth at infinity must be asymptotic
to a model end which admits a continuous symmetry (§6.3). These allow us to prove
Theorem 1.2 in §6.4. The techniques needed here are closely related to those used in the
gluing constructions in [32], [46].

Notation

e Given a metric space (M, d) and a closed subset EC M, we denote

B.(E)={¢qe M :d(q,E)<r},
Sy(E)={qeM:d(q,E)=r},
A (B)Y={qgeM:r1<d(¢q, E) <rs}.

e We have various notations for Gromov—Hausdorff convergence:

GH .

—— : (pointed) Gromov-Hausdorff convergence,
eqGH . .
S, . equivariant Gromov-Hausdorff convergence,
mGH

—— :  measured Gromov-Hausdorff convergence.

e For a group G, we denote by 3(G) the center of G.
e R,=[0,00)CR.
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2. Premilinaries
2.1. Pointed Gromov—Hausdorff distance

The concept of pointed Gromov—Hausdorff convergence has been extensively used in the
literature. For our purpose in this paper, it is convenient to exploit a metric space
structure, which is likely well known, and we briefly recall the relevant notions. We
refer the readers to [73], [48] for more details. Denote by Met the collection of isometry
classes of all pointed complete length spaces (M, d,p) such that every closed ball in M

is compact.

Definition 2.1. Let (M;,dy1,p1), (Ma,da, p2) € Met. The pointed Gromov—Hausdorff

distance bwtween them is defined to be

deu((My,dy, p1), (Ma,dy, p2)) =min{e, 5 },

where £9>0 is the infimum of all e€ [O, %) such that there is a metric d on M;UM,
extending d; on M;, with d(p1,p2)<e, By/c(p1) CB:(Ma2) and By /. (p2) C B-(My).

It is straightforward to verify that dqp defines a metric on Met. One can prove that
(Met,dgn) is a complete metric space. The convergence in this metric topology is the
pointed Gromov-Hausdorff convergence. For simplicity of notation, in this paper we will
omit the word pointed and simply refer to this as the Gromov-Hausdorff convergence.
In the applications, one can also use the notion of e-Gromov—Hausdorff approximation
(see [73]), which gives essentially the same topology.

Let (X7, g;,p;) be a sequence of n-dimensional Riemannian manifolds with

Ric,, > Kg;

for some K €R and for all j. Given a sequence of numbers R; >0, with BRjTj) compact,
from Gromov’s compactness theorem, by passing to a subsequence we may assume that
(BRJ'TJ)’ 95> D) G—H> (Xoo,doos Poc)
for a complete length space (Xoo, doo, Poo)- If the sequence {R;} is unbounded, then X
is non-compact. Fix such a limit space (Xoo,doo, Poo). We consider the rescaled spaces
(Xoos Moo, Poo) and let A—o00. Any Gromov-Hausdorff limit (Y, p*) for a subsequence
{Ai}— o0 is called a tangent cone at po. Recall that a tangent cone is known to be a
metric cone under a volume-non-collapsing situation; but this is not always true in the
volume-collapsing case. We will denote by 7, CMet the collection of isometry classes
of all tangent cones at po.
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We now fix the above convergent subsequence (Br;(p;),g;,pj). Given any subse-

quence {\;}— o0, there is a further subsequence {\,,,} such that

Y GH _
(Bij (pmj )7 )‘%1] 9m; 7pmj) — (Za dz,p)-

We call the space (Z,dz,p) a bubble limit at p, associated to the original convergent
sequence. Denote by B, the collection of isometry classes of all bubble limits at po.
Immediately, T, CBp.. .

Geometrically speaking, tangent cones describe the first order information of the
singular behavior of the space X, itself at po,, whereas bubble limits characterize more
refined behavior for the singularity formation. The terminology should remind the readers
the notion of a bubble tree structure in many geometric analytic problems. The following

is a simple fact whose proof we leave as an exercise for the readers.

LEMMA 2.2. For any poc € Xoo, both Tp  and B, are compact in Met. Moreover,

Tp.. 1s connected.

oo

Later we will also use an analogous result for asymptotic cones. Let (X, dx,p) be
a complete Gromov-Hausdorff limit of a sequence of Riemannian manifolds with non-
negative Ricci curvature. An asymptotic cone of X is, by definition, a complete metric
space (Y, d, p,) arising as the Gromov—Hausdorff limit of (X, )\j_ld x, p) for some sequence
Aj—00. Clearly, this does not depend on the choice of the base point p. Denote by 7o (X)
the collection of isometry classes of asymptotic cones X. Similar to above, we have the

following result.

LEMMA 2.3. Too(X) is connected and compact in Met. Moreover, it is invariant
under rescaling, i.e., if (Y,dy,ps) is in Too(X), so is (Y, Ady, ps) for all A>0.

We also mention that in this paper various other notions of convergence will also be
used, such as Cheeger—Gromov convergence, equivariant Gromov—Hausdorff convergence,
etc., and the mixture of them. For definitions of these notions we refer the readers to

standard references.

2.2. Renormalized limit measure

As above, we let (X]”, gj,p;) be a sequence of n-dimensional Riemannian manifolds with

Ricy, > Kgj, such that By(p;) is compact. Suppose that

n GH
(Xj ’gjvpj) — (Xomdompoo)

for some length space (X, ds). We denote by

dvolgj

dv, = ————~L—
7 Voly, (Bi(p;))
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the renormalized measure density on X7'. Then, by the work of Cheeger-Colding (see
[15, Theorem 1.10]), we know that by passing to a further subsequence, there is a Radon
measure Vo, on X, called the renormalized limit measure, such that for any converging
sequence of points ¢;—¢s and for all R>0, we have v;(Br(g;)) — Voo (Br(¢so))- The
metric measure space (Xoo, doo, Voo, Poo) 18 called a Ricci limit space, and we have the

measured Gromov-Hausdorff convergence

GH
(X_jnugjayjapj)m—>(XOO,dOO7VOO7pOO) (21)
It is known that v, satisfies the relative volume comparison, and the following volume

estimate
Voo (Br(2)) < C-r for all z € X and all r € (0, 1]. (2.2)

See [15, Theorem 1.10 and Proposition 1.22], respectively.

Definition 2.4. Let (Xoo, doo, Voo, Poo) be a (connected) Ricci limit space of
(Xjn7gj7yjapj)

(1) We define the regular set R to be the set of points g€ X, such that there exist

constants r9>0 and Cp>0, and a sequence of points ¢; € X" converging to ¢ with

sup |Rmy,|<Cy for all j.
BTO (g5)

(2) We define the smooth set GCR to be the set of points g such that X is a
smooth Riemannian manifold in a neighborhood of q. We denote by g, the Riemannian
metric on G.

(3) We define the singular set S=X\G.

Notice that these definitions depend on the convergent sequence X7'. Clearly, R
is open. By Colding-Naber [28], there exist a subset R* C X, and an integer d€Z,
such that o, (Xoo \R#)=0 and every point in R¥ has a unique tangent cone which is
isometric to RZ. We call the integer d the essential dimension of X, and we denote it
by dimegs(Xoo). It is obvious that G=RNR#, so dimegs(Xoo)=dimG.

In this paper we are mainly interested in the collapsing situation so from now on
we assume d<n. It is worth noting that neither R#” CR nor RCR¥ necessarily holds
in general. Nevertheless, in §3.1, we will show that RCR¥ in our setting of collapsing
4-dimensional hyperkéhler metrics.
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Fukaya [35] showed that on G the measure v, has an explicit expression, namely,

its density is
dve = x-dvolg__

for a smooth function x determined as follows. Given ¢€G, we can find g;€X; con-
verging to ¢ and >0 such that the universal cover (B/(;—E;]J/»),gj, q¢;,G;) converges in the
equivariant Cheeger—Gromov sense, to a smooth limit (EOO, Joo» Goos Goo). Here, G is the
fundamental group of B;(g;), and the identity component of G is a nilpotent Lie group.
Moreover, a neighborhood of ¢ in X, is isometric to the quotient BOOEEOO/GOO. In this
context, we can identify the fiber Fi, over any ¢'€ By, of the projection map Eoo—>Boo
locally with an open neighborhood in G4,. Then, up to constant multiplication, y is
given by the ratio between the vertical Riemannian volume form on Fj, (of the induced
Riemannian metric from §,) and a fixed left-invariant volume form on G.

We often write x=e~/. As observed by Lott (see [57, Theorem 2]), using O’Neill’s
formula, the BakrnymeryfRicci curvature lower bound is preserved on the limit, i.e.,

on G we have

1
s n—d - 2
Rlcgoo :Rlcgm +Vgoof_mdf®df>[(goo

Although not needed in this paper, we notice the fact that globally one can say that
(X oo, doo, Voo ) has Ricci bounded below by K in the RCD sense, i.e., it is an RCD(K, n)
space. See [1], [39] for details.

2.3. Harmonic functions

In this subsection, we introduce some standard concepts and basic results about harmonic
functions. For our purpose, we only state them on Ricci limit spaces, and we list the
references in the general RCD setting. To begin with, let (X7, g;,dv;, p;) be a sequence

of n-dimensional Riemannian manifolds with Ricy, >0 and
dv; = Vol,, (B (p;)) " dvol,,

such that

GH
(Xjnag]a Vjvp]) m—> (XOO7dOOaVOOapOO)'

A key ingredient in the definition of harmonic functions on a metric measure space
is the following notion of minimal weak upper gradient, which plays the role of |Vu| in
the smooth case. To define this, let us first introduce the notation of the 2-modulus of
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a family of curves. Let I' be a family of curves on X,,. Then we define the 2-modulus
Mody(T) of T by

Mody(T') = inf{/ 2 dvag 11p >0 is measurable and / Yds>1 for all v € I‘}.
X ¥

Now, we are ready to define the minimal weak upper gradient.

Definition 2.5. (Minimal weak upper gradient) Let w be a measurable function
on X.. A non-negative measurable function g on X, is said to be a 2-weak upper
gradient of a function w if, for any z1, 20€ X and every rectifiable curve ~: [0, £] = X
parameterized by arc length with v(0)=z; and ~y(¢)=z2, with the exception in a family
of curves I' with Mody(I")=0, one has

¢
|U(22)—U(Z1)|</0 g(v(s)) ds.

The minimal weak upper gradient |Vu| of a function u is the 2-weak upper gradient such
that, for all 2-weak upper gradient g, one has |Vu|<|g| a.e. on X.
Based on the notion of minimal weak upper gradient, the Cheeger energy of u is

defined by

Ch(u) E/ |Vl dve,

oo

and the W12-Sobolev space is defined by
Wh2(Xo)={u€ L*(Xo): Ch(u) < oo}

It is known that the Cheeger energy is quadratic on a Ricci limit space (see [1] and [39]).

This enables us to define the following Dirichlet form

(Ch(u+v)—Ch(u—v)),

DN | =

E(u,v) :/ (Vu, Vo) dve =
Koo
where u,veW12(X,,). Note that (Vu, Vv) is a well-defined L!-function, but Vu itself
is not defined in general. We also point out that £(u,v) coincides with the standard

Dirichlet form in the smooth case.

Definition 2.6. (Harmonic function) Let QC X, be an open set. A function ue
Wh2(Q) is said to be harmonic if &(u, p)=0 for all Lipschitz functions ¢ with compact
support in Q.

We will use the following weak Harnack inequality.
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THEOREM 2.7. (Weak Harnack inequality) Let (Xoo,doo, Voo, Poo) be a Ricci limit
space. For any p>0, there exists some constant C=C,>0 depending only on p such

that, if u is a non-negative harmonic function on Ba(peo), then

1/p
</ u”duoo) < C-essinfu.
Bs(peo) Bi(poo)

This theorem indeed holds in the very general context of metric measure spaces under
appropriate assumptions; see [10, Theorem 4.21, Corollary 4.24 and Theorem 9.7]. For
completeness, we briefly explain the crucial technical ingredients involved in the proof
of Theorem 2.7. First, the space is required to support the (1,p)-Poincaré inequality,
i.e., there exists some constant Cp;>0 depending on p such that, for any function ue
LY(B,(x)) with 2€ X, and r>0, and for all upper gradients g of u, it holds that

1/p
/ |u—1y p|dvee < Cpr-r- (/ g° duoo> )
B, (x) B..(z)

Ug,r = ][ UdVse.
B ()

In the context of Ricci limit spaces, the above (1,p)-Poincaré inequality (for all p>1)

where

follows from Cheeger—Colding’s segment inequality; see [16, Theorem 2.15]. Secondly,
one needs to apply the technique of Moser’s iteration, which requires a uniform Sobolev
inequality. This follows from the Poincaré inequality and the volume comparison for the
renormalized limit measure; see of [10, Theorem 4.21].

Now we consider the setting of §2.2. On the smooth set G we have a Riemann-
ian metric goo, and a measure density dve,=ef dvoly . Suppose Bs(pso)CG, then a
function v on Bs(peo) is harmonic if and only if A, _u=0 on Bs(ps), where

Ay u=0Ag u— (Vg [, Vg u

Voo

is the Bakrnymery Laplace operator. Locally, if we pull-back to Eoo, then it is easy to
see that A, _u=A;_u. We have the following Cheng-Yau-type gradient estimate (see
[71, Theorem 2.1])

THEOREM 2.8. (Gradient estimate) Suppose that (G, geo, Vo) satisfies Ricg;dQO.
Then, there exists a constant Co=Cy(n)>0 such that any positive harmonic function u
defined on Ba,(x)CG satisfies

sup |Vlogu| < Cor™.
B, (x)
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2.4. Deformation of definite triples

Here we review [29], [32], [46]. Let X be an oriented smooth 4-manifold, possibly non-
compact or with boundary, and fix a volume form dvoly. Let w={w1,ws,ws} be a triple
of closed 2-forms on X. Write w, Awg=2Q g dvoly for 1<a, 3.

Definition 2.9. w is called a definite triple if the matrix-valued function Q=(Qus)

is positive definite everywhere on X.

A definite triple w uniquely determines a Riemannian metric g, such that each w,, is
self-dual with respect to g,, and the volume form is given by dvol,_=(det(Q))'/? dvoly.
Denote by QF the space of self-dual 2-forms (with respect to g,) on X. Below we
will often identify an element in Q" ®R? (i.e., a triple of self-dual 2-forms) with a 3x3
matrix-valued function: n€Q*®@R3 corresponds to (A.p) if Na=2)_35 Aapwp-

Definition 2.10. A definite triple w is called hyperkdhler if the metric g, is hy-
perkihler, or equivalently, if the normalized determinant Q. = (det(Q))~/3Q is the iden-

tity matrix.

Fix a definite triple w. Consider a deformation w’=w+80 for a triple 8 of closed 2-
forms. Decompose =07 +60", where 07 is self-dual and 6~ is anti-self-dual with respect
to go. Then, as above, we may identify % with a matrix-valued function A=(Aqg).

Define the matrix-valued function Sg- =(Sap) via
0, N5 =2S,pdvolg,, 1<a,B<3.
If W' is definite, then the hyperkahler condition on w’ can be expressed as
tf(QuwAT +AQuw+AQuAT) =tf(—Qu —Se-), (2.3)

where we denote by tf(B)=B— 1 Tr(B)Id the trace-free part of a matrix B. Let /(R?)

be the space of trace-free symmetric 3 x3 matrices, and consider the non-linear map

@: yo(Rg) — yo(RS),
Ar—tf(QuAT + AQ, +AQLAT).

Then, & is a local diffeomorphism near zero, and we denote by F: U —.%(R3?) its local
inverse, where U is a small neighborhood of zero. A sufficient condition for (2.3) to
hold is

A=F(tH(—Qu—S0-)). (2.4)

Notice this is only a necessary condition, if we assume a priori that the matrix A above

is symmetric and trace-free.
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We now impose the ansatz
ga = dd* (Z faﬁwﬁ) y
B

where f=(fnp) is a 3x3 matrix-valued function, and the Hodge *-operator is defined

with respect to the metric g,,. We can write this concisely as
0=dd*(f w).
Define the non-linear operator
F: TR — QT eR?,
Fr—=2(F)+M(F),

where Z(f)=d*d* (f-w) and Ao(f)=—F(tf(—Qw —Sa-a*(£-w)))- Strictly speaking, 7 (f)
is only well defined when |f|cz is small (so that tf(—Qu —Sg- ¢+ (f.w)(2)) is in U for all
zeX). Clearly, (2.4) follows if .Z(f)=0.

If w is hyperkéhler, then V,_ w=0. In this case, we have Z=—A,,, where A, is the

(2.5)

analyst’s Laplace operator. In general, we have
d+d*(f'w):_(Aw.f)'w+vwf*vwwa (2.6)
where x denotes a general tensor contraction. This follows from the following lemma.

LEMMA 2.11. (See also [47]) Given a closed self-dual 2-form ~ and a function f,

we have
d+d*(f7) = (AL )7+ V[V

Proof. Given a point pg. We choose a local oriented orthonormal frame {e;} with
dual co-frame {e'}, such that V,e;(p)=0 and, in a neighborhood of pg, the bundle
AT (X) of self-dual 2-forms on X is spanned by e!?+e34, el34e%? and e'*+€23, where
eif=e'Ae’. Since v is closed and self-dual, we have d*d*(fvy)=d"*(df \y). We write
7:Zi<j 'yijeij, with vy12="34, Y13=—"724 and 7y14=723. Then, the conclusion follows

from straightforward computation, using the fact that

4
Awf:—Zeieif at po. O
i=1
We also notice that algebraically we have the pointwise estimate

[ A6(f) = A(9)| < C (Ve Flo+IVEglw) IVE(F~g)lw, (2.7)

as long as f and g are in the domain of definition of .%#.

We now assume that 7 (f)=2(f)+-A4(f), where .Z is a linear operator. In our
applications .Z will be a slight modification of —A,,. The following is an application of
the standard quantitative implicit function theorem on Banach spaces.
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PROPOSITION 2.12. Suppose that we have two Banach spaces (2, -|) and (B, |-,
and numbers n>0 and L>0, such that the following statements hold:

(1) ACC?*(QT®R3) and BCCO(QTRR3);

(2) for all feB,(0)C, the triple w+dd*(f -w) is definite, and

tH(Quw () +S4- g+ (f.w) () €U for all x€ X;

3) £ and AN are both differentiable maps from B,(0)C2 to B;

4) there exists a bounded linear map ZP:B—A with L P=Id and || 2| <L;
5) |V ()= (@I<BL) " f—gll for all f,g€B,(0)C;

6) |7 (0)]|<n(3L)~".

Then, we can find an feA that solves F(f)=0 and satisfies

—~ o~ —~

£l <2L[|.Z(0)]].

In particular, @=w+dd*(f-w) is a hyperkdihler triple.

In practice, condition (2) will be achieved by making sure that |dd*(f-w)l., is small
for all feB,(0), which in particular guarantees that w is equivalent to w. The above
strategy was used for example by Foscolo [32] (see also [46]) to construct degeneration
families of hyperkéhler metrics on the K3 manifold with precise geometric information.
The main technical issue, there, is to find a right inverse £ with uniform estimates on
suitable weighted spaces. In the setting of a K3 manifold due to topological reasons
A, can not be surjective; this is circumvented by the extra freedom of adding a finite-
dimensional space of self-dual harmonic forms.

For our purpose in this paper, we will work on manifolds with boundary (and possibly
non-compact), so we do not encounter the topological obstruction to the surjectivity
of A,. We also make the trivial observation that, assuming that we have a compact
group G acting on X preserving w, if the assumptions (1)—(6) of Proposition 2.12 hold
for G-invariant objects, then we can find a nearby hyperkahler triple @ which is also
G-invariant.

Another remark is that the ansatz used in [32], [46] is slightly different from what
is used above. Namely, in those situations, one would write 8=dn+§£ for a triple of d*-
closed 1-forms 1 and a triple of self-dual harmonic forms £. The corresponding linearized
operator involves the Dirac operator d*+d" acting on 1-forms. In our formulation above,
we have further specified n=d*(f-w). This provides some technical simplifications, since
it allows us to only deal with elliptic operator on functions. To our knowledge this trick
goes back to Biquard [7] (see also [47]).
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3. Geometric structures over the regular region

In this section, we consider a measured collapsed Gromov-Hausdorff limit

(Xgo?doo7poo7yoo)

of a sequence of hyperkahler 4-manifolds (X;", 9j,p;,v;) with

d=dimes(XL) < 4.

We will always fix a choice of hyperkahler triple w; on X;-L. Our goal is to understand the
refined geometric structure on the regular region RC X< inherited from the hyperkihler
structure on X;-l. Notice that, due to volume collapsing, one cannot make obvious sense
of convergence of the hyperkahler triples w;. Instead, we will take the limit of w; on local
universal covers, which descends to a local structure on R, then gluing them together
yields certain global structure on R. The precise structure we obtain on R depends on
its dimension d.

Now, we make the above description rigorous. Without loss of generality, we always
assume Po, €R in this section. Then, there exists some d >0 independent of j such that
the universal cover Ej of B;=Bs(p;) is volume-non-collapsing as j—o0c. Let G; be the
deck transformation group and w; be the pullback of w; to Ej. The isometry action of
G preserves w;. Passing to a subsequence, we have the equivariant Gromov-Hausdorff

convergence

~ - GH ~ - -
(Bj7gjanvpj) L) (BOO7gOOaGOO7pOO)

5 Too

(Bj, gj) —— 2 (Bs(pec), 9o

where Googlsom(éoo) is a closed subgroup such that B(;(poo)zéoc/Goo. We refer the
reader to [37, Definition 3.3] for the detailed definition of equivariant Gromov—Hausdorff
convergence. Also, the standard regularity theory for non-collapsing Einstein metrics
implies that the convergence of éj can be improved to the C*-convergence for any k€Z, .
Then, we obtain a smooth limit hyperkéhler triple ws, on Eoo which is preserved by G-

In the following proposition, we make the observation that any point in the regular
set R is a manifold point.
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PROPOSITION 3.1. In our setting, RNS=@. In particular, RCR*.

Proof. To prove the proposition, we claim that G, acts freely on EOO. To see this,
suppose otherwise that ps is a fixed point of some non-trivial element ¢ € G, such that
there exists a sequence of ¢;€G; that converges to ¢; equivariantly.

Now, using the exponential map at p.,, we may identify the action of ¢ with the
linear action L=d¢ on Tj__ Eoo. As G preserves W, we may identify Tj_ EOO with the
quaternions H, so that d¢ acts by left multiplication by a unit quaternion. In particular,
1 is not an eigenvalue of L. Now for any sufficiently large j, we may write ¢;€G; as

¢j=L+E;j,

where ||Ej||c2 is small. By a simple application of the implicit function theorem, we see
that, for j large, ¢; must also have a nearby fixed point. This contradicts the fact that

the G; action is free. O

Remark 3.2. Here, we used crucially the property that SU(2)(=Sp(1)) acts freely on
the unit sphere S3. This proposition was also implicitly proved in [20] using a different

argument.
Using similar arguments, we also obtain the following result.
PROPOSITION 3.3. The Lie group G s connected.

Proof. Notice that the projection map Boo— Boo has connected fibers, on which
Goo acts transitively. Then, the conclusion follows from the fact that the G, action
is free. 0

We now divide the discussion into three cases, depending on the dimension d. The
case d=1 was studied in detail in [50]. So our main focus below is in the other two cases
d=2 and d=3.

3.1. Case d=3
3.1.1. Geometric structure on R

In this case Go=R. Choosing a generator of G, gives a Killing field 0; on B.. which
preserves the hyperkéhler triple @o,. Shrinking Eoo if necessary, we may assume that

there is a triple of moment maps for 9; with respect to ws, given by
Too = (2,4, 2): Boo — R®.
These serve as local coordinates on R, and the Riemannian metric g, can be written as

Goo =V (da® +dy? +dz?),
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where V' =|0;|~2 satisfies Ay -1

metrics with an R symmetry, i.e., the Gibbons—Hawking ansatz; see [?], [49] for details

g, V' =0. This is the well-known description of hyperkéhler

of the construction. We can write the hyperkahler triple on B, as

Woo,1 =V dxANdy+dz N0,
Woo,2 =V dyNdz+dx N0,
Woo,3 =V dzNdx+dyNb,

where 0 is the 1-form dual to ;. See [41, §2] or [46, §2] for more details. By the discussion

in §2.2, the renormalized limit measure v, has the expression
dves=c-e T dvol,, f=1logV, ceR.. (3.1)
Moreover, the Bakrny’lmeryfRicci tensor is non-negative:

Ric, =Ricy+V._f—df®df >0.

An immediate consequence of (3.1) is that the function V is well defined, up to a global
multiplicative constant on each connected component of R. Fixing a choice of V' deter-
mines the Killing field 9, and hence the exact frame {dz,dy,dz}, up to multiplication
by +1. In particular, R is endowed with an affine structure with monodromy contained
in R?xZy CAfF(R?). Tt is easy to see that V is a harmonic function on Boo. Therefore,
on R, we have A, V=0.

Definition 3.4. A special affine structure on a 3-manifold Y3 is an affine structure

with monodromy contained in R3 x Zs.

In particular, a special affine structure determines a flat Riemannian metric g” on Y3,

up to constant multiplication. In local special affine coordinates (z,y, z) we have that
¢’ = C(dz?+dy?+dz?).
Definition 3.5. A function w on a special affine 3-manifold is harmonic if
Agpu=0.

Definition 3.6. A special affine metric on a 3-manifold Y2 consists of a special affine
structure together with a smooth Riemannian metric ¢ such that g=V ¢, for a positive

harmonic function V on Y?3.

Here V is well defined, up to constant multiplication. A choice of V' determines
the flat metric ¢>=V ~'g, which we call the flat background geometry; it also yields a
measure v with density dv=V"1/2 dvoly, so as a metric measure space we have Ric; =>0.

Our discussion above shows the following result.
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PROPOSITION 3.7. In case d=3, R is endowed with a special affine metric structure.

Notice that, if we perform hyperkéhler rotations, i.e., changing the choice of hy-
perkahler triples on each X;-‘, then the resulting metric is unchanged but the affine
structure undergoes a rotation in SO(3).

3.1.2. Convergence of special affine metrics

Now, we discuss the convergence of special affine metrics. Suppose that we are given a

sequence of special affine metrics (Y}, g;,p;) such that Ba(p;) is compact. We can first
normalize the harmonic function V; on Y; by requiring V;(p;)=1. This fixes the measure
dl/i:Vi_l/Q dvolg,. As Ricflh >0, by Theorem 2.8, we have 0<C~!<V; <C uniformly on
Bs/o(pi). Hence, the diameter of By (p;) with respect to the flat background metric g’ is

also uniformly bounded above and below. Then, by passing to a subsequence, we have
GH
(Bl(pz)vgg7pz) I (2007 dooapoo)

If dimegs Zoo =3, then it is a flat 3-manifold. Since AQEVZ-:O, the uniform L bound
on V; gives uniform interior bounds on all derivatives. In particular, passing to a further
subsequence, we may assume that the local frames {dz;, dy;, dz;} converge smoothly to a
limit, giving a special affine structure on Z.,, and the function V; converges smoothly to
a limit harmonic function V... Globally it follows that in this case Y2 is also a smooth
3-manifold with a special affine metric, and the convergence of Y;3 to Y2 is smooth.

If dimegs Zoo <3, then the flat metrics gf collapse. Using the fact that the monodromy
is contained in R3 xZ,, it is easy to see that, for 7 large, gE is locally isometric to a product
TFxR37F, k=1,2, for some flat torus T* and Euclidean space R>~*. Passing to local
universal covers, we may assume that V; still converges smoothly. Notice that, through
each point in Bi(p;) CY;?, there is a unique flat totally geodesic T* with respect to g?,
which are all isometric as the point varies.

The upshot of the above discussion is that we have a good understanding of conver-
gence of special affine metrics. In particular, we always have a-priori interior curvature

bound and its covariant derivatives.

3.2. Case d=2
3.2.1. Geometric structure on R

In this case, we have Go,=R?. Fixing a basis of G, yields two Killing fields {d;,,d;,}

on Eoo, which preserve the limit triple ws,. Choose moment maps x,; for the vector
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field 9;, with respect to the symplectic form @/ . Since [d;,,0;,]=0, we have
d(ﬁatl :Egj) = £3t1 dxgj = 0,

so O, x2; is a constant. It then follows that there is a unit vector a:(al,ag,a3)€R3
such that 0y, Zj a;x2;=0. Rotating the hyperkéahler triple by an element in SO(3), we
may assume a=(1,0,0). Then, we have &L (9;,,0,)=0; in other words, the G, orbit is
Lagrangian with respect to @l . Notice the choice of @ (hence of &!.) is only unique up
to SO(2) rotation, but we will fix a choice in the following discussion. Then, we obtain
local moment maps 7=(x1, z2): EOO%IW for the G, action with respect to &l . We can
view (z1,z2) as local coordinates on R which depend on the choice of the basis of G,
so are well defined, up to R?xGL(2;R) action. We set

Wa'ezgoo(atmatﬁ)» 1<a,B<2,

and let (W,3) be the inverse matrix of (W#). Clearly these descend to Boo/GsoCR. As
in 78, §2.5], it is easy to see, using the hyperkéahler equation, that on EOO/GOO we have

{det(Wa5)=C>O, (3.2)
O Wap=0:,Way, 1<a,8,7<2. ’
Moreover, the metric go, is given by

Goo = Wap dzo dzg+WP0,05, (3.3)

where 60, is the dual 1-form of the Killing field 0.

The second equation in (3.2) implies that locally we can write (W,3) as the Hessian
(¢ap) of a convex function ¢. We can rescale the coordinates {z1,z2} simultaneously
by a constant, so that C'=1 in (3.2). In terms of the normalized local coordinates, we
obtain an affine structure on R with monodromy group contained in R? xSL(2;R), and
a Riemannian metric goo=0dap dro dzg, with det(¢qp)=1.

The discussion in §2 implies that in this case the renormalized limit measure
Voo = dx1 Adxo

is simply the volume measure of g.. Also, we have Ricy  >0. As R has real dimension 2,

the metric g, defines a complex structure J on R via the Hodge star operator:
Jdx, =—¢ 2de +¢tdrs and  Jdre = —¢*?dai + ¢ 2das.

The corresponding Kéhler form is w=dz; Adzs. Let V be the flat connection defined by
the affine structure. Then, we have Vw=0 and dV¥J=0, where

d¥ (&)= (Ved) ()= (VyJ)(©).

We now recall the following definition.
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Definition 3.8. ([34]) A special Kéihler manifold is a Kéhler manifold (M,w,I) to-

gether with a torsion-free flat symplectic connection V satisfying d¥ I=0.
Therefore, we have proved the following result.
ProOPOSITION 3.9. If d=2, then R is endowed with a special Kdhler structure.

Remark 3.10. Notice that the construction depends on the symplectic form @, that
we choose at the beginning.

By [34], once we fix the choice of local affine coordinates 1 and o, there i+s a pair

of conjugate special holomorphic coordinates z and w, such that
Re(z)=z1 and Re(w)=—xs.

They are unique, up to transformations z+z+c¢ and w—w+c for ¢, €v/—1R. With
respect to these special holomorphic coordinates, the monodromy is then contained in
V—1R?xSL(2;R). Moreover, the Kihler form can be written as

w= g Im(7) dzAdZ, (3.4)

where the local holomorphic function 7=0w/0z satisfies Im(7)>0. We can view 7 as a
multi-valued holomorphic map from Z to the upper half-plane H.
If we go around a loop =, then we obtain new local special holomorphic coordinates

(2, w), with affine transformation given by
Z b
(2)-( DG)-C) @
w c d w Co

dr+c
br+a’

In particular,

7~':

For notational convenience, we call the following matrix the monodromy matriz along ~:

AWE(Z C) €SL(2;R)

a

So we have a monodromy representation

p:m(R) — SL(2;R),

YA,
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which is well defined up to conjugation, i.e., up to the choice of the base point and the
local special holomorphic coordinates around the base point.

Conversely, suppose that we are given a Riemann surface Z with a Kéhler metric w.
If we can find local conjugate holomorphic coordinates (z,w) with 7=0w/dz satisfying
Im(7) >0, such that (3.4) holds and the monodromy for (z,w) along any loop is contained
in SL(2;R). Then, there is a unique special Kéhler structure on Z associated to the
metric w, so that Re(dz) and Re(dw) are parallel with respect to the associated torsion-

free connection V.

Definition 3.11. Let M be a special K&hler Riemann surface. We say that

e M has integral monodromy if the monodromy representation p: 1 (M)—SL(2; R)
is conjugate to a representation in SL(2;Z);

e M has local integral monodromy if the monodromy matrix associated to each loop

v in M is conjugate to an element in SL(2;7Z).

In general, the two notions are not equivalent; see Remark 3.18. Now we give some

singularity models.

Example 3.12. A flat metric cone

/1 B _
w="C B RACNdC, B (0,1)
on C* induces a natural special Kahler structure, with local special holomorphic coordi-
nates given by z=(” and w=+/—1z, so that 7=+v/—1. The monodromy matrix around

the generator of 71 (C*) is

_ [cos(2mf3) —sin(2mf)
Re= (Sin(27rﬁ) cos(27f) >

We denote by Cps such a special Kahler cone. By [34], the cotangent bundle T*Cg admits

a canonical flat hyperkahler metric.

Remark 3.13. [34] showed that, on a special Kiahler manifold, there is a globally

defined holomorphic cubic differential, given in local special holomorphic coordinates by

or
O =—dz®3.
0z
Moreover, the scalar curvature satisfies S=4|0|%. In particular, ©=0 if and only if the
metric is flat. Using this, one can see that, if a special Kéhler metric is flat, then the flat
symplectic connection V agrees with the Levi-Civita connection. So, the special Kahler

structure is uniquely determined by the flat Kahler metric itself.
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Ezample 3.14. Consider the metric on the punctured unit disk (D*, () given by

YL log ) dc .

This has a global special holomorphic coordinate z=(, and local conjugate coordinate

V-1 v—1
zlog z+
21 27

w=—

w=— z.

The period map is
VA
log (.
27

The monodromy around the generator of 71 (ID*) is given by

1 1
I = .
' <0 1)

The tangent cone is the flat space R? with standard special Kihler structure.

T=—

Ezample 3.15. Consider the metric on (D*, () given by

V=1

=—~|¢I™11 C.
w=—%—I¢| " log ldC AdC
1 . . . . .
We can use z=4/5( to be a local special holomorphic coordinate. The period map is
v—1
T=— log (.
27

The monodromy is given by
-1 -1
I = .
' ( 0 —1>
The tangent cone is the flat cone R?/Zy, with monodromy R 1 Indeed, the metric here
is a Zo quotient of the metric in the previous example.
We will need the following elementary results on the classification of conjugacy
classes in SL(2;R) and in SL(2;Z).
LEMMA 3.16. Let A be an element in SL(2;R). Then, the following holds:
(1) #f A is parabolic, i.e., |Tr(A)|=2, then A is SL(2;R) conjugate to Id, —1d, I,
ITh LT, or ()7
(2) if A is elliptic, i.e., |Tr(A)|<2, then A is SL(2;R) conjugate to Rg for some
B0, )\{3};
(3) if A is hyperbolic, i.e., |Tr(A)|>2, then A is SL(2;R) conjugate to

DT:<7“ 0 >
0 rt

for some r¢{0,1,—1}.
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LEMMA 3.17. Let A be an element in SL(2;7Z). Then, the following holds:
o if A is elliptic, then A is SL(2;Z) conjugate to one of the following:

~ 0 -1 ~ 0 1 ~ 1 -1
Ryjy= , Rgnu= , Ri= ,
v= (] ) Re=( ) Re=() )
~ 0 -1 ~ -1 1 ~ 0 1
Ry/;3= , Ro;3= , Rsie= .
= (0 ) Re=(T) o) Be=( )
e if A is parabolic, then A is SL(2;Z) conjugate to one of the following:

In=<(1) ’;) (nez), I;;:<_01 :?) (nez),

R, =1d, El/QE—Id.

Notice that each R[g is SL(2;R) conjugate to Rg, so it is a rotation of R? that
preserves a lattice.

3.2.2. Convergence of special Kahler structures

Let (M;, p;) be a sequence of 2-dimensional manifolds with special K&hler metrics (w;, J;),

where Bs(p;) is compact. Since the curvature is non-negative, passing to a subsequence
we first obtain a Gromov—Haudorff limit (M, doo, Poo)- For our purpose, we may assume
that M is not a single point.

Let (71' be the universal cover of m , endowed with the induced special Kahler
structure. Then, it has trivial monodromy representation. Let p; be a lift of p;, and let
(zi,w;) be a choice of special holomorphic coordinates on [71 Then, we can write

_ /-1

Ww; = T Im(TZ) le/\dil

for some holomorphic function 7;. Applying a linear transformation to (z;,w;) by an

element in SL(2;Z) we may assume that
- 11 -
Re(7i(p;)) € ~33 and Im(7;(p;)) =
Then, replacing (z;, w;) by (A\; 'z, \iw;) for a suitable \; >0, we may further assume that
3
V3, 1} .

t(ri) € |
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Notice that Im(7;) is a positive harmonic function on l’?i, so by Theorem 2.8 we have
[log Im(7;)|<C uniformly on Bs/5(p;). Then, on this ball, the metric w; is uniformly
equivalent to the flat metric &2 =Im(r;)~'@;. Then, clearly, we have local smooth con-
vergence of @} by identifying each ball (Bj(p;), z;) holomorphically with a domain in
(C, 2). Then, passing to a subsequence, we may assume that Im(7;) converges smoothly,
and hence we obtain a smooth limit Kéhler metric (B (Poo), Woo)-

Since Im(7;) is harmonic and bounded, its derivative is uniformly bounded on By (p;).
Using the Cauchy-Riemann equation and the assumption that Re(r;(p;)) € [~ 3, 3], one
can show that Re(7;) is also uniformly bounded on Bi(p;), so, passing to a further
subsequence, we may assume that 7; converges smoothly to a limit 7,. At the same
time, since 7, =0w;/0z;, we may ensure the holomorphic function w; also converges to a

limit ws,. Then, we can write

Woo = —— Im(7o0) d2oo ANdZ oo

In particular, there is a special Kéhler structure on the limit space Bi(Poo)-

A consequence of the above discussion is that, for a special Kahler metric, we have a-
priori interior curvature bound, as well as its covariant derivatives. It is worth mentioning
that, even though not needed in this paper, the above arguments hold for special Kéhler
metrics in any dimension.

Now we divide into two cases.

Case 1. Vol(Bz(p;)) >« uniformly for some £>0. In this case, My is a smooth
Riemann surface and the M;’s converge smoothly to M., in the Cheeger—Gromov sense.
We may assume the Kéhler metrics w; converge smoothly to a limit ws, on M.

We claim that, by passing to a further subsequence, My, can be naturally endowed
with a special Kéhler structure. To see this, first we may find a 6 >0 such that Bs(p;) is
diffeomorphic to a ball, for all ¢ large. Then, in the above discussion, we can directly work
with the ball Bs(p;), and find special conjugate holomorphic coordinates (z;, w;) which
converge t0 (Zoo, Woo) 0N Bs(Poo). Now, for any g€ My, which is the limit of ¢; € M;, we
can choose a path v in M., connecting p and ¢. Using the smooth convergence of M;
to My, we may view v as a path ~; in M; (for ¢ large) connecting p; and ¢;. Then,
we can analytically continue the special holomorphic coordinates (z;,w;) along ~; to
obtain special coordinates in a neighborhood of ¢;. Applying the Harnack inequality for
Im(7;) along ~;, we see that |log Im(7;)| is uniformly bounded along -, which implies a
uniform bound of |V, z;| and |V, w;| along 7. Passing to a subsequence, we may assume
that (z;,w;) converges uniformly to (2e0, Weo) along . In particular, (2o, Weo) serve as

local conjugate holomorphic coordinates in a neighborhood of q. Now, these coordinates
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depend on the homotopy class of v. But the fact that M; has monodromy contained
in SL(2; R) implies that the limit special holomorphic coordinates also have monodromy
contained in SL(2;R). So, we obtain a global special Kéhler structure on M.

By the above construction, we also have the convergence of the conjugacy classes of
monodromy representations. More precisely, if we fix a choice of the monodromy rep-
resentation p;: m (M;; p;)—SL(2;R) (for example, by fixing a choice of special conjugate
holomorphic coordinates in a neighborhood of p;), then there exists some P;€SL(2;R)
such that, for every oc€m (Mso; Doo)s

lim PiA, P =As 0, (3.7)
where we denote by A, ; and A, o the monodromy matrix of the special Kéhler structure

on M; and M, along the loop o, respectively. An immediate consequence is that

Tr Ay oo = lim Tr A, ;. (3.8)
1—00

Case 2. Vol(Ba(p;))—0 as i—o00. Then, we know that M; collapses with locally uni-
formly bounded curvature along circle fibrations. Let o; be a loop in M; corresponding to
the collapsing circle fiber. Since on the local universal cover we have smooth convergence
of the special Kéhler metrics, it follows easily that we can find P;eSL(2;R) with

lim P;A,, ;P =1d. (3.9)

1—00
In particular, A,, ; must be conjugate to Id, I; or Il_l, for ¢ large.

Remark 3.18. If M; has integral monodromy for all 4, then in the above Case 1
the limit M., must have local integral monodromy. To see this, we make a choice
of local conjugate special holomorphic coordinates (z;,w;) near p; such that the in-
duced monodromy matrices along all the loops are integral. Then, we look at more
closely the above discussion. First, by a transformation in SL(2;Z), we may assume that
Re(;(p:)) €[~ 3. 3]. Now, if Im(7;(p;) is bounded, then we may take P;=Id in the above,
and it follows that A, o, €SL(2;Z) for all loops ¢ based at poo. In this case, Mo, indeed

has integral monodromy. If Im(7;(p;)) is unbounded, then we may take

-1
0 N

and we must have \; —0. Write

Asi= (ai bi) €SL(2,Z) and A, o= (a

¢ d; c

Z) € SL(2; R).
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Then, (3.7) implies that, for i large, a;=a, d;=d and

lim Mec;=c and lim \;%b; =b.
1—00 100

So, for i large, we must have b;=b=0 and a;=d;==x1. Therefore, we know that A, o is
parabolic, and hence is conjugate to a matrix in SL(2;7Z).

On the other hand, without extra assumptions, one cannot expect M., to have
integral monodromy globally. For example, consider the punctured domain Q=D\ {0, %}

endowed with the special Kéhler metrics

dzNdz.

=)

Winyn = <—mlog |z|—nlog 5

These obviously have integral monodromy. Now, we take a sequence m;,n;—oo such
that the ratio m;/n; converging to an irrational number. Then the limit of mj_lwmjmj

has local integral monodromy but the global monodromy is not integral.

3.2.3. Singular special Kahler metric

We refer the reader to [12], [43] for discussion on local models of more general singularities
of special Kéhler metrics. For the convenience of our later discussion, we introduce the

notion of a singular special Kéhler metric adapted to our context.

Definition 3.19. A singular special Kdhler metric on a 2-dimensional Riemann sur-
face M is a smooth special K&hler metric w on M\{py, ..., px} such that, near each p;,
there exists >0 and a holomorphic embedding Bs(p;)\{p:} into a domain in (C*,()
which extends to a topological embedding of Bs(p;) into C such that one of the following
holds:

e (Typel) z=( is a special holomorphic coordinate on Bs(p;), the local period map

is given by
V-1
7=~ log(+f(C)
for f holomorphic across zero, and
Ve .
w=——(—log|¢|+Im(f)) dCAdC.

47

In thic case, the monodromy matrix around the counterclockwise generator of the group
7m1(Bs(pi)\{pi}) is given by I;.
e (Type II) z=(¢'/? is local special holomorphic coordinate, the local period map is

of the form
as)

=T 4

logC+f
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for f holomorphic across zero, and

V-1

_ V-1 » )
= 53, (~log[¢|+Tm(f))[¢]™" dCAdC.

w

In this case, the monodromy matrix around the counterclockwise generator of the group

m1(Bs(pi) \{p:}) is given by I7.
e (Type III) ¢=(z—+/—1w)"/? for local conjugate special holomorphic coordinates
1121315

(z,w) (for some ﬁe{g, 5571050 ¢ 4)> and we may locally write

w=gV=1(1-[¢*) B¢~ dC A,

where £ is a multi-valued holomorphic function and is related to the local period map 7
by the formula
VT
= T+yV/—1
Moreover,
— if B:%, then ¢ is a holomorphic function of (;
— if Be{%, 3}, then {&=F(¢)'/? for a holomorphic function F with F(0)=0;

— if Be{%, %, %, %}, then £=F(¢)!/3 for a holomorphic function F with F(0)=0.

In particular, a singular special Kahler metric is asymptotic to one of the model
singularities in Examples 3.12, and has local integral monodromy. It is also easy to check
that there is always a unique tangent cone at the singularity given by a flat cone of
angle in (0, 27]. More general examples of singular special Kiéhler metrics satisfying the
above conditions are given by the base of an elliptic fibration with singular fibers (see

for example [44]).

3.3. Case d=1

In this case, the group G is either the abelian group R? or the Heisenberg group .74

with Lie algebra hi, where

IO = rx,y,teER and b= rx,y,teER

S O =
(=
— <
o o O
oS O 8
o <« o+

This case has already been studied in detail in [50]. The analysis is simpler than the
discussion in the case d>1. We briefly summarize the results here, and the readers may
refer to [50] for proofs.
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If G =R3, then the local universal cover converges to the flat metric on R*=R x R3.
The limit metric is locally isometric to a 1-dimensional interval (a,b), endowed with the
standard metric g.,=dz? and the renormalized limit measure vo,=cVdz for a constant
¢>0, and V=1.

If G, =7, then the local universal cover converges to 5 x (a,b),, and the limit
hyperkahler metric is given by applying the Gibbons-Hawking ansatz to a linear function
V =2z+1 with [€R, such that V =|9;|~2 for some generator 9; of the center 3(h;). Here,
z is the moment map for the action of the center 3(7), and is well defined up to an
affine linear transformation of the type z+>Az+pu. The limit metric goo=Vdz? and the
renormalized limit measure v,,=cVdz for a constant ¢>0. The lemma below follows

from direct computation, and we omit the details.
LEMMA 3.20. The second fundamental form of the limit 54 -fibers satisfies

V3

| = V32
Moo| = -V,

and the Bakry-Emery Laplace operator is given by
A, =V1o2

Notice that, since d=1, the limit space X, globally must be a 1-dimensional mani-
fold, possibly with boundary. The singular set S consists of finitely many points in X .
The main result of [50] is that these local affine structures indeed patch together to
define a global affine coordinate z on X, such that g=V dz? and ve.=cV dz, for a
concave piecewise linear function V=V (z). Furthermore, in [50] some conjectures are
posed on the structure of V' in the case when X, is the collapsing limit of hyperkéahler
metrics on the K3 manifold. Odaka [67] and Oshima [70] have made connections with

the algebro-geometric study of type-II degenerations of K3 surfaces.

3.4. e-regularity theorem

The following was proved by Cheeger—Tian [19] for general Einstein metrics in dimen-
sion 4. In the hyperkéahler setting, we provide a simple alternative proof, as an application

of the study in this section.

THEOREM 3.21. (e-regularity theorem) There are universal constants e>0 and €>0

such that, if a hyperkihler 4-manifold (X*,g,p) with Bio(p) compact satisfies

/ |Rm,|? dvol, <,
Bio(p)

then supg, () [Rm,|< €.
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An immediate consequence is the following.

COROLLARY 3.22. Let (X;-l,gj,pj) be a sequence of hyperkdhler 4-manifolds con-
verging to a Gromov—Hausdorff limit (Xs,dso, Poo). If there exists a C>0 such that

/ |[Rm,, |2 dvoly, <C  for all j,
. : .

J
then the singular set S consists of at most finitely many points.

To prove the theorem, we denote A=|Rm,(p)|'/2, and denote by G, the set of all
g€ By(p) such that

[Rmy(q)] > A* and  [Rimg(q")| < 4[Rmy(q)|

for all ¢’ with
d(q',q) < ARmy(q)| /2 < 1.

The following point-selection lemma is well known.
LEMMA 3.23. We have G, #9.

Proof. If not, then we can find a sequence g;, j=0,1, ..., with gg=p, such that
d(gj41,45) <[Rmg(g;)| 7?4 and  [Rmy(gs41)] = 4[Rmg(g;)| > 4A.

So, we have
|[Rmg(g;)| > 49 A% and d(q;,p) <2

for all 5. Clearly, we get a contradiction if j—oc. O

LEMMA 3.24. There exists Ag>0 and k>0 such that, if |Rmgy(p)|> Ao, then for any
q€G, we have Vol(B,(q))>rr* with r=|Rm,(q)|~'/2.

Proof. Suppose otherwise, then there is a sequence (Xj,g;,p;) and ¢;€G,, with
A;=|Rmy, (p;)|—oc0 and VOI(BQ;1/2((]j))§j_1Q]~_2, where Q;=|Rm(q;)|'/2>A;. Then,
consider the rescaled sequence (Xj,Q?gj,qj). Passing to a subsequence we obtain a
Gromov—Hausdorff limit (X, ¢oo ). By assumption, we know that dim X, <4. Moreover,
for any fixed R>0, the collapsing is with curvature uniformly bounded by 4 on Br(¢)-
So, by Proposition 3.1, X, is a complete Riemannian manifold and the limit geometry
of the local universal cover around g; is not flat. On the other hand, below we will show
that the limit geometry of the local universal covers is everywhere flat, which yields a
contradiction. We divide into three cases.



354 S. SUN AND R. ZHANG

Case (1) dim X,,=3. By Proposition 3.7, we know that X, is a special affine metric
3-manifold. In particular we know Ric'(gx._)>0. Let V be the associated positive har-
monic function on X,. Since X is complete, by the gradient estimate (Theorem 2.8),
we know that V' must be a constant, which implies that X, is flat, and the limit geometry

of local universal covers is flat.

Case (2) dim X,,=2. By Proposition 3.9, we know that X, is a complete spe-
cial K&hler 2-manifold. Lu’s theorem [59] implies that X, is flat, and hence the limit

geometry of local universal covers is also flat.

Case (3) dim X,,=1. By the discussion in §3.3, we know that X, is an interval
equipped with an affine coordinate z such that g..=Vdz? and dv.,=Vdz for a positive
affine function V. Since X, is complete, the interval has to be the entire set R, but then
the positivity of V implies that it must be a constant. Hence, the limit geometry of local

universal covers is again flat. O

Proof of Theorem 3.21. If not, then we have a sequence (X7, g;,p;) with

J
/ |ngj|2<j_1?
By(pj)

but [Rmy, (p;)|—00. We choose ¢; €3, , and consider the rescaled sequence (X, Q?gj, ;)
where Q;=|Rmyg, (¢;)|. Passing to a subsequence, it converges with uniformly bounded

curvature to a limit (Xoo, goo, §oo)- Lemma 3.24 implies that
dimX,=4 and |Rmy_(¢x)=1.

By scaling invariance, it follows that, for any fixed R>0, one has

/ |Rmy, | dvoly, —0,
Br(4;,Q39;)

so the limit metric go, must be flat. This yields a contradiction. O

3.5. Perturbation to invariant hyperkihler metrics

Now we go back to the set-up at the beginning of this section. Suppose a sequence
of hyperkahler manifolds (X;-L, gj,V;,pj) converge in the measured Gromov-Hausdorff
topology to a limit metric measure space (Xoo,doo, Voo, Poo) With d=dimess(Xoo)<4.
The goal of this subsection is to show that, over the regular set R, one can deform g;
to a nearby hyperkdhler metric which exhibits local nilpotent symmetries of rank 4—d.
To prove this, we need to combine the foundational results of Cheeger—Fukaya—Gromov
with a quantitative implicit function theorem argument. The following is proved in [17],
and we give an explanation in Appendix A.
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THEOREM 3.25. (Regular fibration) Let QER be a connected compact domain with
smooth boundary. Then, we can find jo=750(Q)>0 and a sequence 7;—0 such that, for all
Jj=Jjo, there exists a compact connected domain Q; CX;-1 with smooth boundary, together
with a smooth fiber bundle map F;: Q;— Q, such that the following properties hold.

(1) F;: Q;—Q is a 7;-Gromov-Hausdorff approzimation.

(2) For any k€Z,, there exists Cy>0 such that, for all j>jo, we have

IVFE}| < Cy. (3.10)

(3) There exists a uniform constant Cy>0 such that, for all ¢€Q and j>=jo, we

have
|HFJfl(q)‘ < Co,

where IIFfl(q) denotes the second fundamental form of the fiber Fj*l(q) at geQ.
J
(4) Fj is an almost Riemannian submersion, in the sense that, for any vector v

orthogonal to the fiber of F;, we have
(1=75)[vlg; <|dF;(v)lgn < (1475)[0lg,- (3.11)

(5) There are flat connections with parallel torsion on Fj*l(q)7 which depend smoothly
on q€Q, such that each fiber of F; is affine diffeomorphic to an infranilmanifold T\ N,
where N is a simply-connected nilpotent Lie group and I' is a cocompact subgroup of
NpxAut(N), with N,~N acting on N by left translation. Also, the structure group of

the fibration is reduced to
(B(N)ND)\3(N)) x Aut(I') C AfE(C\N).

(6) We have that A=T'NNy, is normal in ', with #(A\I')<wq for some constant

wo independent of 1.

This is a special case of the nilpotent Killing structure (N -structure) defined in [17].
We say that a tensor field £ on Q; is N-invariant if, for any z€ Q, there exists a neigh-
borhood U of = ,with Fj_l(U)gUx (T'\N), such that the lift of £ to the universal cover
Ux N is Np-invariant. Below, we will construct an N-invariant hyperkdhler triple ap-

proximating the original hyperkahler triple w;. First we have

PROPOSITION 3.26. For any sufficiently large j, there exists an N -invariant definite
triple w; on Q; such that

(VE (Wl —w))lw, < Ciry,

where 7;—0 is given by Theorem 3.25.
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Proof. The construction is via the averaging argument as in [17, §4], with the Rie-
mannian metric replaced by the definite triple. Let h€ N1, be any element and let v and
w be any tangent vectors on the universal cover U x N of Fj_l(U). Let @; be the lift of
w; on U x N. Then, the function h—w;(Dh-v, Dh-w) is constant on each A-orbit in Np,.
Since the nilpotent group Ny, is unimodular, there is a canonical bi-invariant measure fi

on N, which descends to a unit-volume bi-invariant measure p on A\ Np,. Therefore,
&;(ﬂ,@)z/ @;j(Dh-v,Dh-w) dp
A\NL

is Np-invariant on Ux N. We denote by & the descending 2-form on U x (A\Np,), and
for any tangent vectors v and @ on U x (A\Ny), we define

1
[ (Do -
(0, w) = ZAND) > &(Dy-v, Dy-w),

yEA\T

where #(A\T')<wg for some constant w>0 independent of j. We claim the above
(A\T)-invariant form is Np-invariant. In fact, let ¥€I' be any lift of y€A\T to I'. Since
L< N xAut(N), for any h€ Ny, there is some element h€ Ny, such that §-h=h-5. Then,
it is easy to verify that

@! (Dh-v, Dh-w) =&} (v, ).

Now, LTJ]T- descends to an N-invariant definite triple w; on '\ N;. Notice that the
average of a closed form is still closed. The approximation estimate follows from [17,
Proposition 4.9]. O

It is clear that the Riemannian metric g i determined by the definite triple w; is
J

also N-invariant. Moreover, the estimates (3.10) and (3.11) continue to hold if we replace

T

wj by w;.

THEOREM 3.27. For all sufficiently large j, there is an N -invariant hyperkdhler
triple w;) on Q; of the form w?:w;—l—dd*(fj-w;), where f; is an N -invariant (3x3)-
matriz valued function on Q; satisfying that, for all k€N,

sup IVE fil=0. (3.12)
j J

In particular, w? has the same Gromov—Hausdorff collapsed limit as w;.

Remark 3.28. In [17] (Open Problem 1.10), Cheeger—Fukaya—Gromov asked the
question that when a sufficiently collapsed Riemannian metric satisfies extra proper-
ties such as being Einstein or Kéhler, whether one can perturb it to be an A/-invariant

Riemannian metric in the same category. The above theorem can be viewed as giving
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an affirmative answer to this question in the setting of local 4-dimensional hyperkahler
structures. We mention that Huang-Rong—Wang [51] made some related progress on this

question of Cheeger—Fukaya—Gromov using Ricci flow.

Before proving Theorem 3.27, we make some preparations. Denote by gg ; the
quotient metric on Q induced by the metric w;, and by H; the mean curvature vector of
the fibers of F;. Because of the N-invariance, we may view H; as a vector field on the
quotient Q. Recall that we have the density function x on Q for the renormalized limit

measure Voo, as given in §2.2.

LEMMA 3.29. On Q, the metrics gg,; converge smoothly to go. in the Cheeger—
Gromov topology, and the H; converge smoothly to V,__ log x.

Proof. Given a point g€ Q, we can find a coordinate neighborhood O with local
coordinates uq, ..., uq. Let @j denote the universal cover of Fj_l((’)) endowed with the
pull-back metric g . The deck transformation group of (5j is I'. Then, by Theorem 3.25,

J

we know ((’)j,gw;,f‘) equivariantly C*-converges to a limit (O, §oo, N) for any k€Z, .
By (3.11) and (3.10), we may assume 7;oF; converges smoothly to a Riemannian sub-
mersion F.: (5OO—>(9. In particular, uqcFj converges smoothly to uqcF. So, for any
«a and 3, we have
(V5 (taoFy), Vg g (ugoF)) = (Ve (e Foo), Voo (g Foo)).

It follows that the quotient metric gg ; converges smoothly to g in the coordinates {uq }.

For the second statement, we notice that the second fundamental form II; of fibers of
F; can be computed in terms of the derivatives of u,oFj;. In particular, IT; also converges
smoothly to a limit Il,, which is the second fundamental form of the fibers of F,. So,
the corresponding mean curvature vectors H; converge to Ho.. It is an easy calculation
that H. descends to the vector field V,_ log x on Q. O

Proof of Theorem 3.27. We will apply Proposition 2.12. As in §2.4, we may identify
an element £€Q7(Q,)®R? with a (3x3)-matrix-valued function f on Q;, and ¢ is N-
invariant if and only if f is A-invariant, and hence descends to a function on Q. We
define the Banach space 2 (resp. B) to be the completion of the space of A-invariant
elements in 27(Q;)®R? under the C_g’gofj (resp. C¢,, ) norm. Then, by Proposition 3.26,
for >0 small we know the map .%: B,,(0) CA—B as given by (2.5) is well defined, and
[|#(0)||<CT; for some constant C'>0.

For any N-invariant function f on Q;, we have

Aw}f:AgQ,jf+<Hj7 Vgg,jf>'
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As in §2.3, the Bakry—Emery Laplace operator on (Q, goos Vo) 1s given by
Ay f=Ag [+ (Vg logx, Vg, f),

where voo=xdvoly__. Let

L(F=A,_F and A (F)=F(F)-L(F).
Then, using the above convergence and the definition of %, it is easy to see that, for
f,9€B,(0)C, we have

[A(F) = (gl < (Cn+ej)l f—gll

for some €;—+0. On the other hand, by standard elliptic theory, there exists a bounded
linear operator 22: B—2 such that Lo P (v)=wv, and || Pv||<L||v| for some L>0 and
all ve'B. So, for ¢ large, we may apply Proposition 2.12 to get a solution f; satisfying
F(f;)=0 such that (3.12) holds for k=2. For k>2, (3.12) follows from standard elliptic
estimates. 0

Now, we draw a few consequences of Theorem 3.27.

COROLLARY 3.30. (Fibers are Nil) In the statement of Theorem 3.25, we may as-

sume that T' is contained in Ny, so that the collapsing fibers are nilmanifolds.
Proof. Locally on a coordinate chart OC Q, we can trivialize the fibration as
Ox(T\N).

On the universal cover 5j of F {1((9), the action of I' preserves the hyperkéhler triple

Fr (wf) It also acts by affine transformations on IN. On the other hand, N acts
transitively on the fibers of the local universal cover. Given any ¢€l', we can find
an element ¥ €Ny, such that 1o¢ fixes a section of F;. By Theorem 3.27, w;? is V-
7)
Proposition 3.1, we know that the fixed point set of 1o¢ is either isolated or open. As it
is not isolated, it follows that ®¥eo¢ must be the identity, and hence ¢&€ N,. O

invariant, and hence ¢ preserves the hyperkéhler triple F(w;). As in the proof of

When d=2, by the discussion in §3.2, the limit metric g, on R is special Kéhler.
COROLLARY 3.31. (Local integral monodromy) ¢, has local integral monodromy.

Proof. For each j, the metric w;? is N-invariant. Locally consider a trivialization
of the fibration O x (I'\ N), where N is the abelian group R? and T is a lattice. Choose
an integral basis (0y,,0;,) of T, then over the local universal cover as in §3.2 we may
find moment maps (1, z2) for the symplectic form w; 1, which serve as local coordinates
on Q. These are not canonical but are unique up to R?xSL(2;Z). This shows that the
quotient metric gg ; on Q is naturally a special Kahler metric with integral monodromy.
Then, the conclusion follows from Lemma 3.29 and the discussion in Remark 3.18. [
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4. Singularity structure I: Case d=3
4.1. Main results

We first state the main results of this section.

THEOREM 4.1. (Local version) Let (X;L,gj,pj) be a sequence of hyperkdhler mani-

folds such that Ba(p;) is compact and

(X2, 05 v7,95) 2 (X3, oo, Voo, Do)
with dimess(X3)=3. Assume that the singular set S consists of a single point ps,. Then,
the following statements hold.

(1) poo is a conical singularity. More precisely, there exists 6 >0 such that the cor-
responding flat background geometry (Bs(poo)\{Poo},g’) is isomorphic to a punctured
neighborhood of the origin in R® or R3/Zsy, and g.o=V g’ for a smooth positive harmonic
function of the form V=or=1+Vy, where 0€[0,00) and Vjy is orbifold smooth.

(2) If in addition

/ IRmy, | dvoly, < ko (4.1)
Ba(p;)

uniformly for some ko>0, then poo is an orbifold singularity, i.e., the function V in

statement (1) is orbifold smooth and o=0.

Remark 4.2. It is not hard to see that (4.1) is equivalent to a uniform bound on the
Euler characteristic. Notice that, without assuming (4.1), the constant o does not have
to vanish. As an example, consider the flat orbifold Y;=C?/Z. 1, where Z;1 CSU(2)
is the standard diagonal subgroup acting on C2. As k tends to infinity, Y} collapses to

1
<R3, %gRP») .

Now, let X be the minimal resolution of Y endowed with an ALE hyperk&hler metric
gr. such that the exceptional set has diameter comparable to k~'. Choose a point p; on
the exceptional set in Xy, then (Xg, gx, pr) also collapses to

1
(Rs, ﬂgRS’ 0) .

Here, we have x(Xg)=k+1—00. In this example, we also see an infinite bubble tree
of ALE gravitational instantons. We will show that the above cannot occur under the
assumption (4.1); see Proposition 7.1.
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THEOREM 4.3. (Compact version) Let g; be a sequence of hyperkdhler metrics on
the K3 manifold K with diamg, (KC)=1 such that

(I, g5 1) —2S85 (X2, do, Voo)-

Then, (X2, dw) is isometric to a flat orbifold T3/Zs and vs, is a multiple of the Haus-

dorff measure on T2/ Zs.

THEOREM 4.4. (Complete version) Let (X;-l,gj,pj) be a sequence of hyperkdhler

manifolds such that

(X;'ngjv’/jvpj) m—GH> (Xgovdmvymva)-
Assume that X2 is complete non-compact and the singular set S is finite. Then, the
following holds.

(1) The corresponding flat background geometry of X2 is a complete flat orbifold of
the form R3/T, where T is a subgroup of R3xZy. More precisely, we have the following
classification (in terms of the asymptotic volume growth):

(a) Euclidean space R®, and its quotient R3/Zs;
(b) flat product R?x S, and its quotient (R*x S')/Zs;
(c) flat product RxT?, and its quotient (RxT?)/Zs.

(2) In case (a), the positive harmonic function V is of the form or~!+c with 0>0

and c€R; in cases (b) and (c), V must be a constant.

(3) Assume that

/ \ IRy, |2 dvoly, < ko (4.2)
x4

J

uniformly for some kg>0. Then, V must be a constant.

4.2. Asymptotic analysis near the singularity

Now we focus on the local situation in the setting of Theorem 4.1. The discussion in §3.1
implies that there is a special affine metric g, on Ba(poo)\{Poo}. We fix a choice of the
harmonic function V, and denote by g2, =V ~'g, the flat background metric. The main
goal of this subsection is to obtain a lower bound of V near ps, (Corollary 4.11), which
gives control of the flat background geometry near po, (Proposition 4.12).

We start with a simple lemma. The proof follows directly from the volume compar-

ison theorem for the renormalized limit measure vqo.
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1
» 10
gular point po. Let {x}0_1 CAr 2 (poo) be a tr-dense subset such that { B, ja0(za)}N_;

LEMMA 4.5. For any rée (0 ), consider the annulus Ay 2, (Poo) centered at the sin-

are disjoint. Then, the following statements hold:

(1) Ar2r(Poe) CUnz1 Brja(%a) CAr s or/a(poc);
(2) there is a uniform constant No>0 independent of r such N<Ny.

Let C1(r), C2(r), ...,C¢(r) be the connected components of the union Uiv=1 By /4(7q).
Obviously, /<N < Ny. The following is a direct application of Theorem 2.8.

LEMMA 4.6. (Harnack inequality) There is a uniform constant co>0 independent of
r and the choice of the covering, such that, for any x,y€ Ay 27 (Poo) NCi (1) with 1<k<Y,

(z)
(y)

PROPOSITION 4.7. There exists a constant £o>0 such that

<

cglg <.

<

sup V > ly-r3/?
Sr(pw)

for all 7€(0,1].

Proof. Suppose not, then there are a sequence of numbers r; —0 such that

sup V< rf/z. (4.3)
Sri (poo)

Since A,_V=0on A,, 1(p), applying Lemma 4.6 and Theorem 2.8, we have that

sup  (|V]+ri|Vy V) <O
Am,Qri (pOO)

For any Lipchitz function ¢ with Supp(¢) C A, 1(pc), using integration by parts,
/ <vgoo‘/7 Vgoc ¢>goodVOO :0' (4‘4)
Ari ,1 (poo)

We choose a cut-off function x; with Supp(x;) €Ay, 1(Psc), Xi=1 0n Aoy, 1/2(Poo), and

—1
sup Vg Xilge <C-r; and sup Vg Xilg <C.
Ar; 2r; (Pso) A1/2,1(p00)

Applying ¢=x;-V to (4.4), we obtain

/ |vgoov|52zoo duooé/ V"Vgoov|goo'|vgooXi‘goo dvso
A21-i,1/2(poe) ATi,ZTi (poo)UAl/z,l(poo)

<C
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Letting r;—0, we find that

/ Vo V2 dus < oo (4.5)
Bl/2(p00)\{poo}

Now, we claim that V' is a harmonic function on B /3(ps), in the sense of Definition 2.6.
First, by [13, Theorem 5.1], given a Lipschitz function, the minimal upper gradient can
be characterized by the local slope. Also, applying [10, Lemma 1.42], Mods({peo })=0.
Thus, the function u: By /2(pec) +RU{o0} defined by setting u(x)=|V, V| for 2#ps
and u(ps)=00, is a minimal weak upper gradient of V' on By /3(pso). So, (4.5) implies

Vew? (B1/2(Po)), and the Cheeger energy is given by
Ch(V) :/ Vg VI? dvee.
31/2(1)00)

Moreover, applying similar arguments as in the proof of (4.5), one can see that (4.4)

implies that
[ W=,
31/2 (Poo)

for any compactly supported Lipschitz function ¢ on By 3(psc). This proves the claim.
Now, by Theorem 2.7, we obtain

1/2
essinf V>C- (/ nguoo> >co>0.
Bi/a(poo) Bi/2(pso)

This contradicts (4.3). O

PROPOSITION 4.8. Any tangent cone Y at poo satisfies
dimess (Y) =3.

Proof. We rule out the possible occurence of lower-dimensional tangent cones. Sup-
pose that (Y,p) is a tangent cone at po, with dimess(Y)€{1,2}. Then, we can find a

sequence r; —0 such that the rescaled annulus r; 1~Aj converges to an annulus in Y,
where A;=A;; 2/, (). By Proposition 4.7, there is a point ¢;€.A; with V(qj)>lor§’/2.
Without loss of generality, we may assume that g; belongs to the connected component
C1(r;) in the covering constructed in Lemma 4.5. Set A7=Ci(r;)NA;. We may also as-
sume the rescaled space r;° ! -A; converges to a connected open set in Y. By Lemma 4.6,
we have ¢; ' <V/V(g;)<co uniformly on Aj. This implies the flat background metric

V(45)9% =V (¢;)V ' goo on A} is uniformly equivalent to go.. Hence, the corresponding
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rescaled sequence of flat manifolds (A}, T;QV(Qj )g%,) also collapses to a lower-dimensional
space. By the discussion in §3.1, we can find a totally geodesic torus T C(Ajl-, ggo) pass-
ing g;, whose diameter with respect to the metric rj_zV(qj)ggO is £;—0. So, the diameter

of T; with respect to the metric ¢’ is
eiriVig) "% 0.

Now, choose a point we€ A; 2(pos) and a smooth curve «; in Ay, /2,2 connecting w
and g;. We can slide the torus T, along +;, and obtain a totally geodesic torus ']T;
(with respect to ggo) passing through w. Notice in this process that we can keep the
family of flat tori along v; to be outside A, (in particular, we do not encounter the
singularity po.). Since the diameter of the tori is invariant along the sliding, we then
obtain a sequence of totally geodesic tori contained in A; 2(ps) with diameter going to

zero. This is clearly impossible. O

LEMMA 4.9. There exists a constant §o>0 such that, for every TE(O, %), any two
points in Ay o, (poo) can be connected by a smooth curve vC Asy.r,3r(Poo) with arc-length

|[v|<10r. In particular, Bi(poo)\{Pso} is path-connected.

Proof. We argue by contradiction. Suppose that there are sequences 6; —0, r; €(0, 1)
and sequences of points z;,y; €A, /2., (Pso) such that any smooth curve 7; connecting
x; and y; with |y;|<10r; satisfies 7;NB;; ., (Poo) #F. Choose minimizing geodesics o,

and oy, from p to x; and y;, respectively. Then, we take two points

Z; €04,;NS35;.r; (pso) and Y, € 0y;NS35,.r; (Poo)-

By assumption, the following conditions hold:

(a) any minimizing geodesic 7; connecting x; and y; must satisfy

,S/ij(Sj'T'j (poo) 7& ;

(b) any smooth curve 7, connecting z; and Y, with length |lj| <4r; must satisfy

lij‘sj'Tj (p) £0.

Now, we define the rescaled metric

di=067" 1 deo.

Letting j — o0 and passing to a subsequence, we obtain

(X2, d;, poo) —2 (Znos oo 2oo), (4.6)
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where (200, cioo, Z50) is a tangent cone at po, € X3, and L,y converge oz, y €55(2c0)
respectively. By the discussion in §3.1, the convergence is smooth away from Z..

Now, choose a sequence of minimizing geodesics 74; connecting x; and y;. Since

d;j(zj,poo) = %(Sj_l and cij(yj,poo) > %(5]»_1 (4.7)

as j—oo, it follows from the Arzela—Ascoli lemma that by passing to a further subse-
quence, 7; converges to a geodesic line :YOOCZOO' Applying Cheeger—Colding’s splitting
theorem, 200 is isometric to Rx W for a complete length space W. If W is compact,
then we can slow down the rescaling slightly and obtain a tangent cone R at p..,, which
contradicts Proposition 4.8. So W must be non-compact. Then, it follows easily that
the complement ZOO\BQ(,%OO) is path connected. In particular, we can find a smooth

Then, passing back to

curve o C Zao\ Ba(250) connecting z_ and Y- Set lo=|o|.

the sequence, for j large, we see that z; and y, can be connected by a smooth curve
0;CAss,r; (10+10)8;r; (Poo) Of length \gj|<(€0+10)-§j-rj. This contradicts item (b). O

As an immediate consequence, we obtain an improvement of Lemma 4.6 and Propo-

sition 4.7.

COROLLARY 4.10. There exists a constant Cy>0 such that, for any r€(0,1) and

z,y€ Ay /2,7 (Poo), we have
V(z)
V(y)

COROLLARY 4.11. There exists a constant £o>0 such that

—1
i<

< Ch.

inf V>0-r3/?
Sr(poo)

for all re(0,1].
The above corollary immediately implies the following.

PROPOSITION 4.12. The metric completion of the flat background

(B1(poo) \{Poc}, V™ goc)

at peo 1S given by adding a single point.

In particular, we can identify this metric completion topologically as Bi(peso) itself,
and we denote by d’_ the metric induced by the flat metric g’ . At this point, we

encounter a non-standard singularity removal question.
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Question 4.13. Let U be a connected smooth Riemannian manifold in dimension
m >3 with uniformly bounded sectional curvature. If the metric completion I/ is obtained
by adding one point p such that U is locally compact, is it true that p is a Riemannian

orbifold singularity?

In our setting, we are only interested in the special case when the Riemannian metric
is flat. Even in this case, the above innocent looking question seems to be subtle. There is
an analogous statement when m=2, but one needs to allow a general conical singularity.
Notice that the conclusion fails if the metric completion is not locally compact; for an
example in dimension 2, consider the universal cover of R?\{0} equipped with the flat
metric. In the next subsection we get around this technical point in our setting, using

the fact the conformal metric goo is a Ricci limit space.

4.3. Proof of Theorem 4.1

By Lemma 2.2, the isometry classes 7, _ of all tangent cones at p., is compact in

(Met,dcn). Let (Y,p*)eT,_. satisty

co

_ GH *
(Xomri ldooapoo) — (K dep )

for r;—0. By the discussion at the end of §3.1, we know that, away from p*, the
convergence is smooth and there is a special affine metric on Y'\{p*}. Notice that,
by Lemma 4.9, for all r>0, any two points in A,/ ,.(p*)CY can be connected by a
smooth curve yC As,.r 3-(p*) with arc-length |y|<20r. In particular, Y\{p*} is path-
connected and Y has only one end at infinity. By Proposition 4.10, the flat background
(Y\{p*}, 9} ) has a 1-point completion near p* and is homeomorphic to Y. We always

normalize the harmonic function {Zﬁ by a multiplicative constant so that

sup Vy=1.
S1(p*)

LEMMA 4.14. For every e>0, there exists a tangent cone (Y, p*) such that

V¥l (SR(p)

lim sup R3/2ie

R—+oc0

<2. (4.8)

Proof. We argue by contradiction. Suppose the conclusion fails for some ¢ >0. Then

for every tangent cone (Y, p*), we can find Ry >1 such that

sup V> 2'R§’,/2+E°. (4.9)
Sry (P*)
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CLAIM. Given a tangent cone (Y,p*), there exists T=7(Y)>0 such that, for any
W, q")eB-((Y,p"))NT,

we have

=)

PN 3
sup Vi > S-RYPT0.
Sry (q%) 2
Indeed, if not, then we can find a sequence of tangent cones (Wi, ¢;) converging to (Y,p*)

in the Gromov—Hausdorff topology, such that

~ 3
sup Viy, < f-R?;//QHO.

(a7) 2

Applying the Harnack inequality and using the convergence of special affine metrics dis-

cussed in §3.1, ‘71/’{, converges uniformly away from p* to V; This contradicts (4.9).

Since T, is compact in (Met, dgn), it can be covered by finite metric balls of the
form B;,((Yz,p;)), £=1,...,N. By the claim, it follows that, for any (Y,p*)€T,., we
have SUDs,, (p*) XA/;>(RYZ)3/2+5° for some 1</<N. Then using a simple contradiction
argument, one can show that, for all 0<r<1, there exists ¢p€{1,..., N} with Ro=Ry,,
such that supg (,_) V<R0_3/2_50 SUPB L (poo) V. By iteration, we obtain a sequence

r;—0 with supg_(, ) VgCr?/2+€°, which contradicts Corollary 4.11. O
Now, we fix E:i and let (Y, dy,p*) be a tangent cone given in Lemma 4.14.

PROPOSITION 4.15. The associated flat background geometry on (Y,dy,p*) is com-
plete at infinity.

Proof. For R large, we consider the annulus Ap2r(p*) in Y with respect to the
metric dy. By Lemma 4.14, we have ‘A/}i <8R"/*on Ar2r(p*). Notice the flat background
metric g%,:(f/;)*lgy. Given any smooth curve 7: [0, L|— Ag 2z (p*) connecting Sgr(p*)
and Sap(p*), which is parameterized by the arc-length with respect to the metric g3,
its length with respect to gy satisfies Ly, (7)<4LR"/®. Since L, (7)>R, we see that

L>1RY®. From this, it is easy to draw the conclusion. O
We will use the following classification result for flat ends of Riemannian manifolds.

THEOREM 4.16. (Eschenburg-Schroeder [31]) Let Z be a flat end in a complete
Riemannian manifold (X", g). Then, there exists a compact subset K such that Z\ K is
isometric to the interior of (QXxR¥)/T" and one of the following three cases hold:

(A) dim(Q)=1, Q=R, and T is a Bieberbach group on R"1;

(B) dim(2)=2: 2 is diffeomorphic to RxR, and T is a Bieberbach group on
R xR"2, which preserves the Riemannian product structure of xRF;

(C) dim(Q)>=3: Q is the complement of a ball in R"~%, and T is a finite extension
of a Bieberbach group on RF.
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ProprosITION 4.17. (Y, d';,) is isometric to the Euclidean space R or the flat cone
R3/Zy, and Vy=1.

Proof. Propositions 4.12 and 4.15 imply that (Y, d},) has one complete end at infinity.
Since an asymptotic cone of (Y,dy) is itself a tangent cone at ps,, by Proposition 4.8
the asymptotic cones of (Y, dy) must all be 3-dimensional, then by the discussion at the
end of §3.1 we know the asymptotic cones of (Y,d}) are also 3-dimensional. Applying
Theorem 4.16 to the end of (Y, d} ), we see that we are in Case (C) and T is finite (the
other cases have collapsed asymptotic cones). So, (Y, dg/) is isometric to either R3 or
R3/Zs outside a compact set. Then, using the developing map and the fact that the
metric singularity of (Y, d3,) consists of at most one point, we conclude that (Y, d3 ) must
be isometric to R? or R3/Z. 0O

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first prove item (1). Let (Y, p*) be a tangent cone at pso
whose flat background geometry (Y, g3,) is the flat cone R?® or R3/Z,. For simplicity of
notation , we will assume that (Y, ggf) is R3. The other case can be dealt with in the
same manner. We can find 7;—0 such that (X2, 7; 'dug, peo) converges to (Y,dy,p*).

As before, we also have the convergence of the corresponding flat background geometry

(X3 rildiovpoo) ﬂ) (R379R37 0)

[ eRi

This means that the annulus r; 1Am /2,2r, (Do) converges to the flat annulus A; /5 5(0)
in R®. In particular, we can find smooth hypersurfaces ;€ A, 2, (poo) Wwith constant
curvature 1 such that r; 1%, converges to the unit sphere in R®. Then, by a simple
argument using the developing map, one can see that a punctured neighborhood of p,
in (X3, d’.) can be isometrically embedded in R? as a punctured domain. So, the flat
background geometry is smooth near po,. Now, V can be viewed as a positive harmonic
function in a punctured domain in R3. The singular behavior of V' then follows from the
classical Bocher’s theorem. This finishes the proof of item (1) of Theorem 4.1.

The rest of this subsection is devoted to the proof of item (2). We already know
that the flat background geometry on the limit X3 is a flat orbifold near p.., and a
neighborhood of ps, can be identified with an open set in R3 or R3/Z,. Moreover, the
positive harmonic function V is of the form or~!' 4V}, where r is the radial function on R3,
o is a positive constant, and Vj extends smoothly as an orbifold harmonic function. It
suffices to show that c=0.

Suppose that o>0. Notice that item (1) implies that the tangent cone (Y, p*) at pso
is unique, and (Y, d} ) can be identified with R? or R3/Z,. After rescaling, we may assume
that V;:=-L. Notice that Y is a metric cone over a round 2-sphere with radius 1. We may

e
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identify the cross section of the cone with E:{r:%}CY. Let B be a small tubular
neighborhood of . Then, we can find a domain U; contained in X} that converges to
By with uniformly bounded curvature and all its covariant derivatives. Furthermore, by
Theorem 3.25, there is a smooth fibration map F;: U; — B, with fibers given by smooth
circles with uniformly bounded second fundamental form and all covariant derivatives.
Let Ei:Fi—1 (X). Then, ¥; collapses to ¥ along the circle bundle with uniformly bounded
curvature and covariant derivatives.

Given any point g€ B, by assumption, we can find ¢;€U; and §>0 such that the
universal cover B/(;Z/qi) converges smoothly to a hyperkéhler limit Eoo, and a neighborhood

of ¢ is given by the R quotient of Boo. As V:2—1T, the limit metric on Bs is of the form
L oo, 2 2
Z(dr +rogsz)+2r6°,

where 6 is dual to the Killing field generating the R action. Changing the coordinate by
’I“Z%SQ, one can see that this metric is flat. Moreover, the local universal covers of ¥;
converge to some subset of the level set {7":%} in Bo, which has constant curvature 1.
In particular, the sectional curvature of ; converges uniformly to 1. It follows from
Klingenberg’s estimate that the universal cover 3; of ¥; has a uniform lower bound
on the injectivity radius. This also implies that the universal cover U; of U; converges
smoothly to a flat manifold (700, and ¥; converges smoothly to the round sphere Yoo CUso.
Since the two boundary components of [700 are convex, applying Sacksteder’s theorem
[75], Use is isometric to a tubular neighborhood of the round sphere S? in R*. Setting
G;=m1(U;), we have the following diagram:

((77,7.&7,76717,) LGH} ((7007§OO7G00) (410)

(Uiagi) o ? (Uoovgoo)a

where Googlsom(ﬁoo) is a closed subgroup so that Uoozﬁoo/Goc.

For our purposes, we need to investigate more closely the above convergence. Notice
that we have fixed a choice of a hyperkahler triple w; on each X;. Then, we get a triple
w; of 2-forms on [71 and, passing to a further subsequence, we may assume that these
converge to a hyperkéhler triple W, on ('700. Since the limit metric on ﬁoo is flat, we may
assume that, via the embedding (NJOOC—> R*, & is given by the restriction of the standard
hyperkihler triple on R*. Notice that the G; action on 172 preserves w;, so G, preserves
the triple Woo. If follows that G is contained in SU(2)=Sp(1).
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Now, we can restrict our attention to the smooth convergence of il to ioo. Since G
is a closed subgroup in the compact Lie group Aut(f]oo, Weo )=SU(2), it follows that there
is a group isomorphism ¢;: G;~G; <Gy (see [60, Lemma 3.2], for instance). Moreover,
for any sufficiently large i, there exists a G;-equivariant diffeomorphism .%;: iiﬁiw such
that the following conditions hold:

(1) Fioy=pi(y)oF; for all veGy;

(2) &, is an €;-Gromov—Hausdorff approximation with ¢; —0;

(3) for any unit tangent vector v, one has

||[d.F:(v)|-1| < ¥(g;) and ElenOW(si) =0. (4.11)

A key technique in constructing the above G;-equivariant diffeomorphism .%; is to

use the center-of-mass technique. We refer the readers to [42] and in [73, Theorem 2.7.1]
for more details.

Now, we identify f]z with f)oo, and G; with G; using .%;. Consider the form @} on

y=§3 given by dz! Adx?+dx® Adx?* in the standard coordinates. One can write down a

standard contact 1-form
Neo = 5 ((2'da® —2®da’ ) + (2% dz* — 2 da®)),

with @ =dne, and 1. is SU(2)-invariant. So, for i large, one can also write W} =dn;
such that n; converges smoothly to 7,,. Then, we can average out 7; by the group G; to
make 7; invariant under G;, and by (4.11) we may assume that 7); still converge to 7
in CY Notice that dn;=&} also converges to @l in C°. In particular, for i large ;
is a G4-invariant contact 1-form. Moreover, there is an obvious isotopy of G;-invariant
contact 1-forms n=tn.+(1—t)n; for t€[0,1]. Applying Gray’s stability theorem (see
[38, Theorem 2.20] or [61, pp.135-136] for more details), we conclude that n; and 7.
define isomorphic contact structures on ioo/ G;. We can now apply a result in contact
geometry [69], which states that the minimal symplectic filling of the space 5 /Gi=S?/G;
has a unique diffeomorphism type. For simplicity, we will not distinguish the notations
G; and G;. Notice that, in our setting, the subset W; enclosed by ¥; inside M} provides a
minimal symplectic filling, but, on the other hand, the minimal resolution (62751 provides
another, so in particular X(Wz):X((E%Z) Now, in our setting, |G;|—+0o0, so for ¢ large
G, is either a finite cyclic subgroup Zg, ;1 <SU(2) or a binary dihedral group 2Dy, —9).
It then follows that

X(C?/Gi) =

_— { ki+1, when G; =7, 41, (4.12)
ki+1, when G;=2Ds,_2), .
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and hence X(Wi)zx(@gi)%oo.
We recall the Chern—Gauss—Bonnet theorem on an Einstein 4-manifold (M*, g) with

boundary:

8rix(M*) = / |Rm,|? dvol, +872 / TP,. (4.13)
M4 oOMH4

Denote by II and H the second fundamental form and the mean curvature of 9M?,
respectively. Then, the above transgression of the Pfaffian is given by
1 L3 2 3 2
TP, = ol A-H —Rmyp; - 1L;; —l—gH +§ Tr(II°)—H-|11|° | dvolgpu, (4.14)
where i, j and k are in the tangential direction of 9M*, and ) is the Einstein constant.
Applying this to W;, since the second fundamental form of ¥; is uniformly bounded and
the volume is collapsing, the boundary integral goes to zero. So, by (4.1), we obtain a

uniform bound on x(W;). This yields a contradiction. O

Remark 4.18. In the above proof, we make use of the symplectic structure more
than the Ricci-flat structure. It is possible to use signature formula on manifolds with
boundary to give a proof, but we are not aware of the formula of the eta invariant
on general collapsing manifolds (M j2k+1, g;j). For a fixed manifold M3 with collapsing

metrics, the convergence of eta invariants is studied in [72].

4.4. Proof of Theorem 4.3

By the Chern-Gauss—Bonnet theorem,
/ [Rmyg, |* dvoly, =1927°.
K

Then, it follows from Corollary 3.22 that the singular set S consists of a finite number of
points. The rest of the proof does not require the L? bound on curvature. We will only

use item (1) of Theorem 4.1.

PROPOSITION 4.19. (X3 ds,) is isometric to a flat orbifold locally modeled on

R3/Zs, and the limit measure vy, is proportional to the Hausdorff measure.

Proof. We consider the positive harmonic function V on X3 \S. Near each p, €S,
we have V=c,r; ! +hea, where 74 (2)=d’ (7, po) and c, €[0,00). Let S’ be the subset of
S consisting of those p,’s with ¢, >0. Then, V is orbifold smooth on X3 \S&’. On the
other hand, V— 00 near §’, so the minimum of V is achieved at some point in X, \S’.
By the strong maximum principle on the flat space, V is a constant. O
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Let us review some standard facts regarding flat orbifolds. Bieberbach’s theorem
(see [82, Theorem 3.2.1]) states that, if I'<Isom(R™) is a discrete and co-compact, then
the lattice A=T'NR"™ is normal in I" with bounded index [I':A]<w(n), and yields the

following exact sequence:
1—A—T—H—1, (4.15)

where H=I'/A<O(n). We now consider a closed flat orbifold X". Applying Thurston’s
developability theorem (see [80, Chapter 13] or [11, Chapter II1.G]), the universal covering
orbifold of X™ is isometric to R™, so that X =R"/T" for some discrete co-compact group
I'elsom(R™). Then, Biberbach’s theorem implies that X™=T"/H for some finite group
H<O(n), where T*=R"/A is a flat torus.

In our setting, we can write X3 =T3/H for some finite group H<O(3). Let g€ X2,
be an orbifold point. Then, the tangent cone at ¢ is isometric to R3/Zy, where the group

Zs is generated by the reflection

1:R3 —R3,

TH—— —X.

Moreover, ¢ induces an element in H with the fixed point ¢ and det(¢)=—1. In particular,
HgS0O(3). Let us set Hy=HNSO(3). Then,

H=HOU<[,~H0).

Next, we claim that any element v€Hj acts freely on T3. If not, suppose that ~
has some fixed point zo€T? and recall v€ Hy<SO(3). Then, v fixes the rotation axis
passing through . However, this contradicts the assumption that X3 has only isolated
singularities.

Now, since m1(K)={1}, by [77] we know that 71 (X2 )={1}. Then, we must have
Ho={1}. This implies that X3 =T3/Z,.

4.5. Proof of Theorem 4.4

Let (X2, doo, poo) be given as in Theorem 4.4. By Theorem 4.1 (1), the flat background
geometry has orbifold singularity near each point in §. Fix a normalization of the
harmonic function V', and let ggo be the associated flat background metric. Near a point
in S, we have V=0r—1+h for 0€[0,00) and h orbifold smooth. Let &’ be the subset of
S consisting of points where o >0.
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LEMMA 4.20. We have

limsup inf V <ooc.
r—oo  Sr(Poo

Proof. Otherwise, we can find an increasing sequence r;— oo such that

inf V —oo.
S'rj (pOO)

By the maximum principle for harmonic functions, we actually have V' — oo uniformly at
infinity. The minimum of V is then achieved at some point in S\S’. Then, by the strong
maximum principle for harmonic functions, we conclude that V' must be constant. This

yields a contradiction. O

PROPOSITION 4.21. The flat background geometry (X2, dboo) is a complete flat orb-
ifold.

Proof. If (X3, goo) has two ends, then X3 isometrically splits off an R. Then, it
follows that X3, is smooth and k=0. Then, V>0 is harmonic on the complete smooth

metric measure space (X3, goo, Voo ), Where
_-1/2
dvee =V dvoly__ .

By Theorem 2.8, V' is constant.

If (X2, goo) has only one end, then we first claim that R is not an asymptotic cone at
infinity. Otherwise, one can find r;— o0 such that A, 2, (Poo) consists of two connected
components. Similar to the proof of Proposition 4.8, we can find in each connected
component foliations by totally geodesic flat tori with respect to ggo. Then, we can slide
these tori between A, o, (Poo) and Ay, 27, (Poo), and we see that X3 have two ends
each diffeomorphic to T2 xR,. This yields a contradiction.

Now, the following lemma can be proved similarly to Lemma 4.9.

LEMMA 4.22. There exists §o>0 such that, for every sufficiently large r, any two
points in Ay 9. (poo) can be connected by a smooth curve v C Asy.r3r(Poo) with arc length
|v|<10r.

As in §4.2, using Lemmas 4.20 and 4.22, and the Harnack inequality for harmonic

functions, we obtain that

limsup sup V <oo,
T—00 S'r‘(poc)

which implies that g is complete at infinity. O
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By Thurston’s developability theorem, we have that (X2 ,¢% ) is isometric to R?/T
for some I'<Isom(R3). If T is a free action, then the special affine structure on (X3, g2.)
implies that X3 is isometric to R?, S1xR? or T?xR. If T is not free, then there is
some o €I" which acts as reflection at one point in R3. Let I'g be the subgroup of I' that
preserves the orientation of R3. Then, [[':Tg]=2, and 'y acts freely on R3. Otherwise,
[y has an element that fixes an axis in R and the singularity of X3 =R3/T" cannot be
isolated. It follows that

X3 =(R3/Ty)/Zs,

where R3 /T is isometric to R?, R2x St or RxT?.
Next, we classify V in the above cases. If (X3, ¢°_) is isometric to R?, then Bocher’s

theorem implies that V=0-r"14¢ for some constants ¢ >0 and ¢>0. If
(Xg’o,gzo) =R%x 51,

then we consider the S'-average V= [, V df, which is harmonic on R?\{0?}. Since the
composition V(e*)>0 is harmonic on C,, we have that V is constant. Therefore, the

harmonic function V>0 is smooth on R%x S, which implies that V is constant. If
(X3, 9%) =RxT?,

the same average argument implies V' is a positive constant. In the other cases, one can
analyze the lifting of V' on the Zs-cover and the same conclusion follows.

Finally, if (4.2) holds, then using item (2) of Theorem 4.1, V is a positive constant.

5. Singularity structure II: Case d=2
5.1. Main results

We first state the main results of this section.

THEOREM b5.1. (Local version) Let (X;L,gj,pj) be a sequence of hyperkdhler mani-

folds such that Ba(p;) is compact and

CH
(X;l7g]a V]7pj) m—> (Xgo7 dOOa Vooapoo)7
with dimess(X2)=2. If S={poo}, then the limit metric on X is a singular special
Kahler metric in the sense of Definition 3.19, and vy is a multiple of the 2-dimensional

2
Hausdorff measure on X2, .
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THEOREM 5.2. (Compact version) Let g; be a sequence of hyperkdihler metrics on
the K3 manifold K, with diam,; (K)=1, such that

mGH
(’Cv 9j, Vj) E— (Xzoa do<>7 Voo)v
with dimess(X2)=2. Then, X2 is homeomorphic to S%, endowed with a singular special

Kahler metric.

Remark 5.3. By definition, a singular special Kahler metric has local integral mon-
odromy around each singular point. With a uniform bound on the L? curvature, which is
automatic in the setting of Theorem 5.2, one would expect that the limit should indeed

have integral monodromy. See Conjecture 7.4.

Remark 5.4. We were informed by Shouhei Honda that using the theory of RCD
spaces, one can show that the above limit space (X2, dw) is indeed an Alexandrov space

of non-negative curvature.

THEOREM 5.5. (Complete version) Let (X;-l,gj,pj) be a sequence of hyperkdhler

manifolds such that

GH
(X;Lag]al/j7p]) m—> (Xgo7d007yoovpoo)'

Assume that (X2, dw) is complete non-compact and dimess(X2)=2. If S={pso}, then

X2 is isometric to either a flat metric cone Cg for 56{%,%,%, %, %, %, %,1}7 or to the

flat product Rx St, with the standard special Kihler structure.

5.2. Proof of the main results

The main part of this subsection is devoted to the proof of Theorem 5.1. At the end of
this section we will prove Theorems 5.2 and 5.5.

Now, assume that we are in the setup of Theorem 5.1. By §3.2, we know that
B1(Poo)\{Po} is a special Kdhler manifold. Recall that, if ¥ is a smooth surface with

boundary and with Gaussian curvature K >0, then, by the Gauss-Bonnet theorem,

27r(2—29(2)—n):27rx(2):/EK—i—/aZk} - k, (5.1)

where k denotes the boundary geodesic curvature, and n is the number of boundary
circles. Given a tangent cone (Y,D) at po, suppose that it is given by the limit of
(Xoo,ri_ldoo,poo) for some r;—0. If dimY =2, then, by the interior curvature bound
discussed in §3.2, we know that Y\ {p} is smooth and special Kéhler. If dimY'=1, then
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Y is either R or R,, and the collapsing is locally along a smooth circle fibration. We
first claim that Y cannot be R. Otherwise, we can choose a sequence r;—0 such that
the annulus ;' A, o, collapses to the union of intervals [~2, —1]U[1,2] with bounded
curvature. Then, we can choose a smooth fiber C; with uniformly bounded geodesic
curvature, which is given by the union of two circles. In particular, [, c, k—0. Let ¥
be the region bounded by C; and C;41, whose boundary consists of four disjoint circles.
Applying (5.1), we easily reach a contradiction.

So, we know that any tangent cone Y is either 2-dimensional, or it is isometric to R,
In both cases, we can choose a smooth circle C; in the annulus r; 1Am72m with

lim k=c.

1—00 C;
In particular, ¢c=0 when Y=R,. Again, applying (5.1) to the region ¥; bounded by C;
and C;11, we see that, for ¢ large, ¥; is diffeomorphic to a cylinder. In particular, we

have shown the following result.

LEMMA 5.6. For 6>0 small, we have that Bs(pso)\{Po} is diffeomorphic to a punc-

tured disc in R2.

Without loss of generality, we may assume that §=1, and set

B=DBi(p) and B*=DBi(poo)\{Poo}-

We now prove Theorem 5.1. Choose a loop o generating 71 (B*), oriented so that it
goes counterclockwise around p., (notice that B*, being a Riemann surface, is naturally
oriented). Denote by A the monodromy of the special Kahler structure along o. Denote

by w the Kéhler form on B*. We now divide into three cases.

Case 1. A is conjugate to Id, I; or 11—1. In this case, A has an invariant vector.
So, we can choose a local holomorphic coordinate z such that dz is a globally defined

holomorphic 1-form on B*. Then, we have

V=1

W= Im(7)dzAdz,

where Im(7) is positive harmonic function on B*.
LEMMA 5.7. For r>0 small, we have Im(17)>C73? on S, (pso).

Proof. The proof is similar to the arguments in §3.2. If the estimate does not hold,
then Im(7) is a global harmonic function on B in the sense of Definition 2.6. This leads
to a contradiction by the weak Harnack inequality (Theorem 2.7). O
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Notice that, from the proof of Lemma 5.6, for any r small we can find a loop o,
contained in the annulus A, 5 5, which is homotoptic to o and with length bounded by
Cr. Since |dz|=1/+/Im(7), by letting r—0 it follows that [, dz=0. So z is single-valued
on B*, and it extends continuously across p... Adding a constant, we may assume that
2(Pxo)=0. Now, z defines a covering map from B* onto a domain in C. Suppose that

the covering degree is k, then we can take (=z'/F

as a holomorphic coordinate on B*
and this embeds B* holomorphically onto a punctured domain 2*=Q\{0} in C.

We may now view Im(7) as a positive harmonic function on Q*, so, by Bocher’s
theorem, we know that

Im(7) = —clog [([+V(C),

where ¢>0 and V' extends smoothly across zero. Then, one can directly check that the
tangent cone at po, is given by the flat mcetric
A _
wo = TkQ\QQH d¢AdC on C.
This is a cone of angle 27k. Since B is a Ricci limit space, we must have k=1. If ¢=0,
then the metric is smooth across po,. If ¢>0, then, by rescaling the special holomorphic

coordinate z, we may assume that c=1. Then, the metric is a singular special Kahler

metric of type I.

Case 2. A is conjugate to —Id, I7 or (I)~!. In this case, A has an eigenvector
with eigenvalue —1. Then, we can choose a local special holomorphic coordinate z such
that dz transforms to —dz under A.

Similar reasoning as Case 1 shows that Im(7) is a well-defined positive harmonic
function on B*, 22 is a globally defined holomorphic function on B* and we may assume
that 2%(poo)=0. Then, as above, ( =2?/% is a holomorphic coordinate and defines a

holomorphic embedding of B* into a punctured domain in C. As before, we get
Im(7) = —clog [¢|+V(C)

for a harmonic function V' smooth at zero. As above, one can see that & must equal 1,
and the tangent cone at po, is C/Zy. If ¢=0, then the singularity is of orbifold type,
so the metric is a singular special Kéhler metric of type III with £ :%. If ¢#£0, then,
rescaling the coordinate z, we can make ¢=1. This shows that the metric is a singular
special Kahler metric of type II.

Case 3. A is elliptic or hyperbolic. Let (Y,p) be a tangent cone at peo. It follows
from (3.9) that Y must be 2-dimensional, so Y\ {p} is smooth and special Kéhler, and
by (3.8) we know that Y\ {p} has elliptic or hyperbolic monodromy. Again, the interior
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curvature bound implies that Y has quadratic curvature decay at infinity. Notice that
Y \{p} has non-negative curvature, so one can see that Y is asymptotic to a flat metric
cone (Cy, O) with angle 27y for some y€[0,1), in the C°° Cheeger-Gromov topology.

Notice that C itself is also a tangent cone at p.. Since C, is flat, by Remark 3.13
we know that the flat connection V coincides with the Levi-Civita connection, and hence
its monodromy around an oriented loop going counterclockwise around the singularity is
given by R,. Now, again by (3.8), we get Tr(A)=Tr(R,). Notice the orientation of the
rotation is a conjugation invariant in SL(2;R). In particular, we must have A=R,,, since
we have chosen ¢ to be oriented counter-clockwise around pu.

The same argument shows that the monodromy of Y\ {$} is also given by Rg. Then,
applying this again to the singular point p of Y, it follows that there is a tangent cone at
P which is isometric to Cg. This means that we can find a sequence of annuli A, . (p)
in Y, with 7; —+0 and s; —+o0, whose boundary circles after rescaling both converge to
the unit circle in Cg. Applying the Gauss-Bonnet theorem on such sequences of annuli,
it is easy to see that ¥ must be a flat metric cone, and hence is isometric to Cg.

The above discussion in particular shows that there is a unique tangent cone at po,
which is given by Cg for some $€(0,1), and the original monodromy matrix satisfies
A=Rg. By Corollary 3.31 and Lemma 3.17 we must have BE{%, %, i, %, %, %} In par-
ticular, A must be elliptic.

We now study the singular behavior of the limit metric near ps.. First, we can
find local special holomorphic coordinates (z,w) on B* such that, under the monodromy

along o, we have
A-(dz—v/—Tdw) = e*™V 1P (dz— /=1 dw).

This means that d(=d((z—+/—1w)/?) is a well-defined global holomorphic 1-form on B*.
Since Rg#Id, by adding some constants to (z,w), we may assume that the translation
part in (3.5) vanishes. This implies that (=(z—+/—1w)'/# is indeed a globally defined

function on B*. In general, 7 may not be single-valued on B*. But notice that

V-1 V=1 TIm(7r)
2 2 1—/-17)2

Im(7) dzAdz = B2(¢|*P2 d¢ndC.

Woo =

So,
Im(7)

=1
is single-valued on B*.

LEMMA 5.8. For all €>0, there exists a C(g)>0 such that, for all 7“6(0, %], on
Sy (Poo) we have

Im(7 R
H—\/%TQ > C(€)T .
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Proof. If we suppose that this fails, then we can find a sequence r;—0 such that

. Im(T)
1nf ——
Ar, 20, (Poo) [1—+/—17]2

I
sup m(7)

———2> (140
Ar; 2r; (Poo) |1—v _17—|2 ( )

(5.2)

for some §>0. Let (72 be the universal cover of r; I'Am,Qm (pso), endowed with the
rescaled metric. Then, as i— oo we know that [71 converges to the universal cover (700
of A;2(0)CCpg, which is flat. We can find A;>0 such that supy A;-Im(7)=1. Suppose
that this supremum is achieved at some ¢; cU;. Let D;=Re(X\;-7(¢;)). Then, by Harnack
inequality, it follows that Im(\;7) and Re(\;7—D;) are locally uniformly bounded. So,
passing to a subsequence, we obtain local convergence of A\;7—D; to a limit 7, on 1700.
The flatness of Us implies that 7 is a constant. This then contradicts (5.2). O

The lemma implies that
IVICIP )P <Cle)lre.

In particular, { extends continuously across p,,. Moreover, ( realizes B* as a finite cover
of some punctured domain D* in C. So, for some k>0, ¢(!/* defines a global holomorphic
coordinate on B* which embeds B* into C. Now, we identify the upper half-space with
the unit disk D via the map

(5.3)
Then, the monodromy transformations on £ is given by

E—s 6_47“/?16{.
So, —log |¢] is well defined on B*. By Bécher’s theorem, we have

—log [¢| = —clog [¢|+v

for ¢=0 and v a smooth harmonic function on B.

We claim that ¢ cannot be zero. Otherwise, |10g €] | <C on B*, which implies that 7
is uniformly bounded on B* and has definite distance away from \/—1. Then, by taking
limit as in the proof of the above lemma, we see that 7. is not fixed by Rg, so is not
invariant under the monodromy, which is a contradiction. So we know that ¢>0, and, as
P moves to P, we have [£]|—0.

We may write

V-1

oo = == (1=|€) 2172 dC A d.
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Since the tangent cone at po, is Cg, we see that k£ must be 1. Without loss of generality,
we may assume that ((poo)=0. We now divide into two cases:

e Be{L, 3}, Then, £ is holomorphic across zero, and {=F(¢)'/? for a holomorphic
function F' with F(0)=0.

o B€{%, 2,1 5}, Then, ¢ is holomorphic across zero, and {=F({)/? for a holo-
morphic function F with F(0)=0.

These imply weo is a singular special Kéhler metric of type III. This finishes the

proof of Theorem 5.1.

Proof of Theorem 5.2. By Theorem 5.1, do, is a singular special Kéahler metric on
a compact Riemann surface. Since 71 (K)={1}, by [77], X is simply connected which

implies that X, must be homeomorphic to S2. O

Proof of Theorem 5.5. By Theorem 5.1, we know that X, is endowed with a singu-
lar special Kéhler metric w. In particular, the curvature of X, \{poo} is positive. Then,
it is easy to see that each end of X, is asymptotic to a unique cone at infinity. If X
has two ends, then it splits isometrically as a flat product Rx S*. So, we assume that
X oo has only one end. Then, an easy application of the Gauss—Bonnet theorem implies
that X, is homeomorphic to R?. Let ¢ be a loop generating the fundamental group at

infinity, and denote by A the monodromy matrix along o.

Case (a). There is a 1-dimensional asymptotic cone Y. Using the Gauss—Bonnet
theorem as in the beginning of this subsection, one can see that Y must be R,. Then, by
(3.9), we know that A must be conjugate to I;, I;* or Id. In particular, on X0\ {pso},
there is a local special holomorphic coordinate z such that dz is globally defined, so is the
positive harmonic function Im(7). Just as in the proof of Theorem 5.1, Case 1 (p.375),
the function z is indeed a global coordinate on X,. Then, by similar arguments as in
the proof of Proposition 4.21, one can show that the flat metric

NERVAS
2

W = dzAdzZ=Tm(T)"'w
is complete at infinity. So, X, is biholomorphic to C. Now, an application of Bocher’s
theorem yields that Im(7) must be a constant. Hence, the metric w itself is a flat metric

on C. This yields a contradiction.

Case (b). All asymptotic cones are 2-dimensional. In particular, they are all flat
cones, and must be the unique Cg such that A is conjugate to Rg. This also implies that
the tangent cone at po, must also be Cg. Then, the Gauss-Bonnet theorem implies that
X itself is flat, &nd hence must be the cone Cg. O



380 S. SUN AND R. ZHANG

6. Classification of gravitational instantons
6.1. Uniqueness of asymptotic cones

Let (X%, g) be a gravitational instanton, and we fix a hyperkihler triple w. If it is flat,
then it is isometric to a flat product RF x T*~* with 1<k<3. By Cheeger-Gromoll’s
splitting theorem, X* is isometric to a flat product Rx T3, unless X* has only one end.
In the following, we will always assume that X* is non-flat and has only one end. We
will also assume that dimess(Y)<3 for any asymptotic cone (Y, dy,p.), since otherwise
(X%, g) is ALE, and this case has already been classified by Kronheimer [55].

Since

/ |Rm, |? dvol, < oo,
X4

Theorem 3.21 and Proposition 3.1 imply that any asymptotic cone (Y, dy, p.) is smooth
away from p,€Y. By Theorems 4.4 and 5.5, (Y,dy) is a flat space isometric to one
of the following: R3, R3/Zy, R?, R, R;, S'xR?, T?xR, S'xR, or a flat cone Cp for
ﬂe{l 121315

2137374747676/

LEMMA 6.1. Any asymptotic cone is a flat metric cone.

Proof. Tt suffices to rule out S'xR?, RxT? and S'xR. Notice that these spaces
have moduli given by the moduli of the flat metrics on S' and T2. We first show that
S%/Q xR2¢ T (X?), where S} denotes a circle of diameter R.

Suppose that one asymptotic cone Y is given by S% /Qsz. Then, we may find
r;— 00 such that ri_lB(p, ;) converges to the unit ball in 511/2 xR2. On the other hand,
we know that, for all r>0 sufficiently large, »~1B(p,r) is e(r)-GH close to the ball U,
of radius 1 around the vertex in an asymptotic cone Y,., where lim,_, £(r)=0. Notice
that Y, is not unique, and we simply make arbitrary choices for all r. Let gg€ (0, ﬁ)
be small so that any asymptotic cone Y, whose unit ball U, is 3e9-GH close to the unit
ball in Sk xR? for some R>2 must be itself of the form S}, xR? for some R'> é.

Now, fix 7 large so that e(r)<3eo for r>7. For any i with r;>7, let s€[r;, 7;41] be
the smallest number such that, for all r€[s,r;11], r~'B(p,r) is eo-GH close to Sk xR?
for some R> é. By assumption, we know that s< %7’1+1~ We claim that s=7r;. Otherwise,
if s>r;, then for all s'€[3s,s] we have 2s'€[s, r;11], so (25') 7' B(p,2s’) is £9-GH close
to some ball Sk xR? for some R>%. In particular, (s')"'B(p,s’) is 2e9-GH close to
SipxR% By assumption, it follows that the unit ball Uy in Yy is 3eo-GH close to the
unit ball in S2, xR?. By our choices of gy, we conclude that Yy is of the form S§, xR?
for R/ >2R—350>%. This contradicts the choice of s.
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So, for any sufficiently large r, we may write YT:S}(T) xR? for some f(r)e(%,2).
Now, we claim that
f@2r)<3f(r) forall r>0, (6.1)

so that the desired contradiction immediately arises. In fact, if (6.1) is true, then f(r)—0
as r—o00, which contradicts f (r)>§. To see the claim, we notice that, by assumption,
r~'B(p,r) is £(r)-GH close to the unit ball in S}, xR So, (2r)~'B(p,r) is 1e(r)-GH
close to the half-ball in S}, , xR?. On the other hand, (2r) ' B(p, 2r) is e(2r)-GH close
to the unit ball in Ya,. It follows that f(2r)<3 f(r), if r is large.

Hence, we have proved that S}, xR*¢ 7 (X*). By rescaling, SpxR*¢ 7o (X*) for
all R. Similar arguments also show that Sk xR¢ T, (X*) for all R.

Finally, we claim that the possible unit-area flat T? such that R x T2 €7, (X*) must
form a compact moduli. Indeed, if not, applying Lemma 2.3, one can choose a sequence
of flat tori (T, g**) with Areagnu (T?)=1 and diamja.: (T?)— oo such that, after appro-
priate scaling-up,

(T2, gt) S Rx s].
It follows that rescalings of R x T? converge to R? x S} €75, (X*) in the pointed Gromov—
Hausdorff sense, which is a contradiction. Then, similar arguments as above also show
that Rx T2¢ T, (X?) for any flat torus T2 O

PROPOSITION 6.2. Let (X*,g) be a gravitational instanton. Then, it has a unique
asymptotic cone which is a flat metric cone (C(W),d¢, ps), where W denotes the cross-

section and py is the cone verter.

Proof. By Lemma 2.3, Too(X*) is connected and compact. Denote by d the max-
imal dimension of the elements in 7 (X*). If d=3, then we choose some Y €75, (X?)
with dimegs(Y)=3. Then, any element in a small neighborhood U of Y in T, (X*) has
dimension 3, and hence, by Lemma 6.1, it must be R® or R3/Z,. So, the connectedness
of Too (X*) implies that 7o, (X*)={Y}. Similar arguments apply to the case d=2. [

In the rest of this section, we will denote by (Y, dy,p.) the unique asymptotic cone
of X4, and denote d=dim, (X*)=dimes(Y). Since X has only one end, W is connected
and Y#R. From §3, the renormalized limit measure on Y is vy =x-dvoly, , where x is
a constant if d>1, or d=1 and Goo=R?; y=c-2/2 if d=1 and G =74 (here z is the

affine coordinate).

6.2. Nilpotent fibration on the end

Denote r(z)=dy(p,z) and 7(y)=dy (p«,y) for x€X and yeY. Below, we use 7(z) to
denote a general function on the end of X* such that lim,. (7)o 7(2)=0. The following
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is essentially due to Cheeger—Fukaya—Gromov [17]. We give an outline of the arguments

in Appendix A.

THEOREM 6.3. There erxists a smooth fibration map F: X*\K—Y\K', where K
and K' are compact such that the following properties hold.

(1) There are flat connections ¥V, with parallel torsion on the fibers F~'(y) which
depend smoothly on yeY\Q, such that each fiber (F~'(y),V,) is affine diffeomorphic
to a nilmanifold T\N for TCNp, and the structure group of the fibration is reduced to

((3(N)ND)\3(N)) % Aut(I) C AT\ N).

(2) F is an asymptotic Riemannian submersion in the sense that, for a tangent
vector v at t€X\ K which is orthogonal to the fiber of F, we have

(1=7(2))[vlg < |dFe(v)lgy < (1+7(2))]v]g (6.2)
and, for all k>0, there exists Cx, >0 such that, for all ze X\ K,
|VEF(2)]g.9y < Crr(z)™". (6.3)
(3) The second fundamental form II of the fibers satisfies, for all k>0,

|VFI(z)| = 7(z)r(z) 1%, if d=2,3, or d=1 and Go =R3,

|VFII(x)] < %(HT(I))T(@%*, if d=1 and Goo = 4. (64)

In our setting, applying Corollary 3.30, all the fibers are nilmanifolds. As in §3.5,
we say a tensor ¢ on the end of X is N -invariant if its lift to the local universal covers

is invariant under the full nilpotent group action of Np,.

LEMMA 6.4. In the setting of the above theorem, there are constants do€(0,1) and
C>0 such that

C’-f‘(y)_‘SO < diamg(F_l(y)) < C’-f(y)‘s‘) for all ye Y\K’,

where diam, denotes the intrinsic diameter of the fiber.

Proof. This is a direct consequence of the estimates on the second fundamental
form (6.4). O

THEOREM 6.5. By making K and K' larger if necessary, there exists an N -invariant
definite triple w' defined on X\ K such that, for all k€N, we have

Ve (@ —w)lg, =O0(r(z) 1), (6.5)
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Proof. Following the same arguments as in the proof of Proposition 3.26, we obtain
an N-invariant definite triple wf on X\ K. The estimate (6.5) can be proved using
the diameter growth estimate for the collapsing fibers in Lemma 6.4, as well as [17,
Proposition 4.9]. O

Let g' be the quotient metric on Y\ K’ induced by w’. Then, (6.2), (6.3) and (6.5)
together imply that, for all k,

lim 7* sup Vi (9" —gy)lgy (y) =0. (6.6)

00 Sr (P*)

An N-invariant function f on X\ K can be viewed as a function on Y\ K’ and we may

write
At f=0gt f+(H,V gt f), (6.7)

where H denotes the mean curvature vector field of the fibers of F', viewed as a vector
field on Y\ K’. By Theorem 6.3 (4) and the arguments in the proof of Lemma 3.29, we
have

lim 7% sup |V’;Y (H=Vylogyx)|=0 forall keN. (6.8)
k—o0 Sr(ps)

6.3. Perturbation to invariant hyperkahler metrics

For R>1, we set
Qr=Y\Bgr(p.) and Xr=F"'(Qp).

As in §2.4, we identify an element in QF, (Xg)®R? with a (3 3)-matrix-valued function

f on Xg, and an N-invariant element is identified with such a function on Qp.

THEOREM 6.6. Given any eo€(0,1—0), there exist a number Ry>0 and an N-
invariant hyperkdhler triple w® on Xg, of the form w®=w!+dd*(f -w’) such that

Ve F@)|=0(r(z)* =)

for all keN.

In particular, we also have that, for all £>0,
Ve (@’ —w)lg, <Cpor(a) e

So, the original hyperkihler triple w is asymptotic to the N-invariant triple w?.
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The rest of this subsection is devoted to the proof of the above theorem. The idea is
similar to the proof of Theorem 3.27. The difference is that, due to the non-compactness
of X'r, we need to work in certain weighted spaces.

Given §€R and k€N, we define the following weighted (semi-)norms of an N-

invariant function f on X (or equivalently a function on Qg):

k
[fllexion) = Z Sgg{r_“m'||VZLYf||CO(Ar,2T(p*))}7

m=0"7%

[f]c(’;’a(gR) = SUP{TﬂHkHX [f]

k,a },
r>R Cgi (Ar,2r(ps))

1 llen o = 1fllcs@m + et (0n:

where

[Flera(ar e
- { [VE Fly)=VE, fy2)]
=sup
dgy (Y1, Y2)"

Y1, Y2 € Ar2r(ps) and dg, (y1,y2) <Injrad,, (yl)}.

As usual, the difference in the last formula is computed in terms of the parallel transport
along the minimizing geodesic. These (semi-)norms obviously extend to N-invariant
matrix-valued functions.

Now, we fix k>6 and a€(0,1). The following provides a suitable right inverse of the
Laplace operator for us. Notice that we do not impose the boundary conditions, since

we are only interested in the asymptotic behavior at infinity.

PROPOSITION 6.7. There exists a finite set T C(0,1) depending only on' Y such that,
for all 6€(0,1)\T" and all R>1, one can find a bounded linear map

Sr: C* 5 (Qr) — C*E25(OR)
with the properties that
Ay, oSp=1d and ||SR|| <C
for C depending only on Y, 0, k, a (but not on R).
Proof. If d=1, then, in terms of the affine coordinates on R, (see §3.3), we have
A,, =Cz719?. In this case, we reduce to a simple ODE problem whose proof we omit.

We now consider the case d>2. Then, vy is proportional to the volume measure,

and A, is the metric Laplace operator on the flat cone Y=C(W), where

B { spherical space form S? or RP?, if d=3,

Si.p with e {},4,2,1,%,8,2,1}, ifd=2
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First, for any 6€(0, 1), one can construct a linear extension operator
k, k,
Er:CZ5 (Qr) — C5' (Qry2),

with | Er||<C independent of R>1. For this purpose, one can construct Fy by the local
construction in [76] or [79], then use rescaling to define Eg.

Denote by (r, ©) the polar coordinates on Y. Let ¥(W)={\;}32, be the spectrum
(allowing multiplicities) of —Ay with 0=Ag<A1<A2<.... Let {¢;}32 be an orthonor-
mal set of eigenfunctions satisfying —Aw p;=X\;-¢; and [|¢;||L2(w)=1. Given a function
fGC’f’g‘(QR), we set fEER(f). Then, there is an L?-expansion of f given by

f(r.©) =§fj<r)%(e).
For j>0, we have -
H0I=| [ @)
—|5* [ (awr e eleie) (©9)

—k,.—6
SCONSfllerp@umAi

Let u(r, ©) be a formal solution
u(r,©) = u;(r)e;(©)
=0

of Ay, u=f. Then, u;(r) satisfies

d—1 , A

uj(r)+ uj(r)—ﬁ-uj(r) = f;(r). (6.10)

For every j€N, the corresponding homogeneous ODE
d—1 A
uf (r)+ : J

" u;(r)—ﬁ'uj(r):() (6.11)
has the following fundamental solutions:
(1) when =0 and d=2, Gy(r)=logr and Dy(r)=1;
(2) when j=0 and d=3, Go(r)=1 and Dy(r)=r"1;

(3) when j€Z,, there are a growing solution Qj(T)Er“J‘+ and a decaying solution

r

D;(r) =7k ; here, uj— and p1; are the positive and negative roots of the following algebraic
equation:
P2+ (d—2)u—X; =0. (6.12)
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We now set I'={]p;[:j>0}N(0,1) and d=minT. Let jo be the largest j such that
Wy >—1+4¢. For j=0, we can directly integrate and define

ug(r) = /RT st—d </Rs t4 1 fo(2) dt) ds.

luo(r)] < 0(5)7"2_6||f||c§;(QR)~

It is easy to see that

For 1<5< o, we set

w0)= 29 [0 a2 [ 600

For 5> j0, we set

uy(r) = gJ /p (5)/;(s) ds+ :/gj (5)f5(s

Here, the wronskian is given by

W;(r) =W(G;(r), D (r)) = (uf —py )ri+ T~ = /(d—2)2+4X; -r! ¢
It follows from (6.9) that each u; is well defined, with
Jui (NI < COAT 127 fll oo

for §€(0,1)\T. The Weyl law implies that \; <Cj*?. By standard elliptic estimates,
loilco<CA; for j>1. Since k>d+1, the formal solution u converges in C° and, for all
r> %R, we have

[u(r, ©)I < C(O)r*° | fll gria-

It is easy to check that Agyu:f holds pointwise on Q3p/4. Using the standard interior

elliptic estimates on the rescaled annulus rilA,«’QT (p«), we obtain the bound

HUHC”C‘F? S (QR) < (&”f“cfvéﬂ(gR)-

Now, we simply set Sg(f)=u. Clearly, Sg is a linear operator, and the above
discussion gives the uniform bound on ||Sg||. O
We now fix §; € (g9, 1 — o) \I'. We define the Banach space 2 to be the completion of
the space of (3x3)-matrix-valued functions f on Qg under the C’kﬁg(QR) norm, and

define B to be the completion of the same space under the C* (Q R) NOTTN.
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By Theorem 6.5, for R large, we know that the map .#: B;(0) C2— is well defined,
with
|7 (0) |l < CR™'Ho0t01,

Welet Z(f)=A,, f and A (f)=Z(f)—Z(f). Then, Proposition 6.7 provides a linear
operator Z:B—2U with £+ P=Id and || Zv|g<C||v||ss for all v€B, where C>0 is a
constant independent of R>1.

For any fe®A, we have At f=A 1 f+(H,V i f). Using the fact that

AQTf:Agy.f"i_(gt_gY)*sz"i'nggT*ngf

and (6.8), we have
[Aut f=Auy flls <e(R)| flla

for some €(R)—0 as R—oo. Applying (2.7) and the definition of the weighted spaces,

we obtain
A (F)=A ()]s <(CR™* +e(R))|| f—glla for all £, g€ By(0)CA.

So, we can apply Proposition 2.12 to obtain Ry>0 such that, for R=Ry, there is some
f e that satisfies the estimate || f|lo <CRy o0+,

Finally, applying standard elliptic estimates to the equation Z(f)+.4(f)=0 on
the rescaled annulus r‘lAT,gr(p) as r—00, we obtain higher-derivative estimates. This

finishes the proof of Theorem 6.6.

6.4. Proof of Theorem 1.2

Let w® be the AM-invariant hyperkéhler triple constructed in Theorem 6.6, and let ¢© be
the quotient metric on Q induced by w®. We set X=X, and Q=Qr,. We will define
several families of model ends of gravitational instantons, which we will label by “ALX”
for some letter X€{E,F,G,H,G*,H*}. We adopt the terminology that when we say a
gravitational instanton (X?,g) is ALX it means that we can smoothly identify the end
of X* with a model end in the family AL¥ such that

‘vlg(g_gmodelﬂg = O(rikia)

for some >0 and allfor k€N, where gyode1 denotes the model hyperkahler metric. By
Theorem 6.6, (X*,g) is ALX if and only if (X, g,0) is ALX. To prove Theorem 1.2, we
will classify the ends of the N-invariant metric w®. Recall that we only need to consider
the case when X* has only one end and is non-flat. Moreover, we assume that X is not
ALE, namely dim,,(X*)<3. Theorem 1.2 will follow from Theorems 6.9, 6.13 and 6.17.
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6.4.1. Case dim(X4)=3

Definition 6.8. (ALF models) ALF model ends are defined as follows.
(1) An ALF-A;, (for k€Z) model end is the hyperkéhler metric constructed by
applying the Gibbons-Hawking ansatz on R3\ K to the positive harmonic function

k41

Vv ;
2r te

where ¢>0.

(2) An ALF-Dj, model (for k€Z) end is a Zo-quotient of an ALF-Ayy_5 end, where
the Zg-action covers the standard involution on R3.

(3) An ALF model end is an ALF-A; or ALF-Dj; model end for some k€Z.

THEOREM 6.9. Any gravitational instanton (X*,g) with dim.(X*)=3 is ALF.

Remark 6.10. ALF-A; gravitational instantons are classified by Minerbe [64]; they
are all given by multi-Taub-NUT spaces. ALF-Dj, gravitational instantons are classified
by Chen—Chen [21]; they are all given by the twistor space construction due to Cherkis—
Hitchin—Ivanov—Kapustin-Lindstrom—Rocek [5], [56], [52], [26], [25]. Notice that

kE=0by(X*) >0.

Conversely, any k€N can be achieved.

Proof. We first assume that Y=R3. It is a standard fact that such w? is given by
the Gibbons-Hawking ansatz. Indeed, this is a special case of the discussion in §3.1.
This means that the metric (Q,¢®) is a special affine metric 3-manifold. Denote by
V~=1(x) the length squared of the fibers of F~!(z) for x€Q. Then, by Lemma 6.4, we
know that, for all >0, there is C'>0 such that Cr=7<V<Cr?. As in the proof of
Proposition 4.15, this implies that the corresponding flat background geometry (Q, g°) is
complete at infinity, and hence must be isometric to Y\ K for some compact K. Notice

that V is harmonic with respect to ¢°. We consider the expansion
V=Sl a0 ),
Jj=0

where ; is an L? orthonormal basis of Laplace eigenfunctions on the cross section of Y,
with —Ag2¢;=\;p;, A; 20, and where H;E are the solutions to the equation p?+pu—\;=0.
Notice that A\g=0 and \; >2 for j>0. So, we have pj =0, po=—1, ,u}’}l and u;1<—2
for 7>0. The growth condition on V implies that a}’:O for all 7>0. So, we obtain

! -2
V—C+§+O(7‘ )



COLLAPSING GEOMETRY OF HYPERKAHLER 4-MANIFOLDS AND APPLICATIONS 389

Here, 1 is the degree of the S bundle F: X — Q. So, we have proved that w®, and hence
(X,g) is ALF-Ay for k=l—1. By the positive mass theorem of Minerbe [62], we know
that £>0.

In the case Y =R3/Zy, by taking the Zs-cover outside a compact set, we may reduce
to the previous case. Then, (X*,g) is an ALF-D;, gravitational instanton. By Biquard-
Minerbe [9], we have k£>0. O

6.4.2. Case dim,(X?4)=2

Definition 6.11. (ALG models) ALG model ends are defined as follows.

(1) Let 56{%, %, %7 i %7 %, %, 1}. Let Cg be the flat cone defined in Example 3.12
with the canonical hyperkahler metric on T*Cpg. Taking a lattice sub-bundle in T Cg
which is invariant under the monodromy Eg (cf. (3.6)), the induced torus bundle gives
rise to a (flat) ALG model end.

(2) An ALG model end is an ALGg model end for some § in the above list.

Definition 6.12. (ALG* models) ALG* model ends are defined as follows.

(1) An ALG*-I; (for k€Z,) model end is obtained by applying the Gibbons—
Hawking ansatz on S' xR?\ K to the harmonic function V =Fk-logr, where r is the radial
distance function on R2.

(2) An ALG*-I} (for k€Z,) model end is a Zy quotient of an ALG*-I, model end,
where Zy action covers the standard involution on R? and the rotation by 7 on S!.

(3) An ALG* model end is an ALG*-Ij; or ALG*-I}} model end for some k€Z, .

THEOREM 6.13. Any gravitational instanton (X*,g) with dim.,(X?*)=2 is either
ALG or ALG*.

Remark 6.14. Combining the weighted analysis developed in [23] and a direct gen-
eralization of Minerbe’s positive mass theorem [62], one can conclude that ALG; and
ALG*-I}, gravitational instantons do not exist. We thank Gao Chen for pointing out this.
It is also proved in [23] that any ALG*-I}, gravitational instanton satisfies 1<k<4. On
the other hand, there exist ALGg gravitational instantons for all Se { %, %, %, %, %, é, % ,
and there exist ALG*-I} gravitational instantons for all k€{1,2, 3,4}, which follows from
the work of Hein [44]. They live on the complement of a singular fiber of finite or I}
monodromy on a rational elliptic surface. In [23] a partial converse to Hein’s theorem

was proved.

Proof. Since dimy,(X*)=2, w® has local T? symmetry but may have global mon-
odromy. We divide into several subcases. Let o be a loop generating m (Q) which goes
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around the vertex p, €Y once counterclockwise, and let A, €SL(2;Z) be the correspond-
ing monodromy of the T2 fiber. Notice that the quotient metric ¢ on Q is a special
Kéhler metric, with monodromy conjugate to A,.

First, assume that A, =Ry for some {3, £,2,42 12 1} In this case, we know
that the asymptotic cone Y is given by Cg. Then, by the discussion at the end of §3.5,
we can find global holomorphic coordinates (= (z—+/—1w)"/# such that (z,w) is a pair
of local special holomorphic coordinates. Again, 7 is not single-valued in general but ¢*
(k=2 or k=3 depending on ) is single-valued. Since the asymptotic cone of (Q, g®) is

Cg, similar to the proof of Theorem 5.5, one can show that the flat metric
V=182 dCAdC

is complete at infinity. It then follows that, as (— 00, we have ¥ —0, so £¥=v(¢™!) for

a holomorphic function 1. In particular, 7=+v/—=1+O(|¢|~'/*). Tt then follows that the

special Kéhler metric g¢ is polynomially asymptotic to the standard flat cone metric in

the ¢ coordinate. Now, the A-invariant metric g, is determined by ¢° via (3.3). It

follows that g,0 is ALG, so is (X, g).

Next consider the case A=I; for some k>1. Then, we have an invariant vector
of A,. This implies that there is a globally S'-action on X. In particular, w® is given
by the Gibbons—Hawking ansatz on some special affine metric 3-manifold. Similar to
the case dim.,(X*)=3, the growth estimate on V gives a complete flat background
geometry at infinity whose asymptotic cone has dimension 2. Then, the flat background
geometry is itself isometric to (S xR?)\ K for some compact K. So, we can use spectral

decomposition to conclude that
V=Ek-logr+c+0O(r—*).
We may assume that c=0 by changing the coordinates on R2. In this case, we have that

(X4, g) is ALG*-Ij. , Finally, when A=I; for some k>1, we pass to a double cover and
reduce to the previous case. In this case, (X, g) is ALG*-I} . O

6.4.3. Case dims(X*)=1

Definition 6.15. (ALH models) An ALH model is the hyperkdhler metric on the
product T3 x [0, c0) for some flat T3.

Definition 6.16. (ALH* models) ALH* model ends are defined as follows

(1) An ALH; (for some beZ,) model end is the hyperkéhler metric obtained by
applying the Gibbons-Hawking ansatz on the product T? x [0, c0) to the harmonic func-
tion V =bz for some b€Z,, where T? is a flat 2-torus with area 2, and z is the standard
coordinate on [0, 00).
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(2) An ALH* model end is an ALH} model end for some beZ,. Notice an ALH*

model end is precisely a Calabi model end discussed in [46].

THEOREM 6.17. Any gravitational instanton (X*,g) with dim(X*)=1 is either
ALH or ALH*.

Proof. In this case, w® has either a T? or 4 symmetry. Then, it is itself an ALH
or ALH* model end. Consequently, in the first case (X4, g) is ALH, and in the second
case it is ALH*. O

Remark 6.18. ALH gravitational instantons were constructed by Tian—Yau [81] and
Hein [44] on the complement of a smooth fiber in a rational elliptic surface. Chen—Chen
[22] proved a Torelli theorem for ALH gravitational instantons; it is also shown that
ALH gravitational instantons actually have an improved exponential decay rate. ALH}
(for 1<b<9) gravitational instantons have two constructions: Tian—Yau metrics [81] live
on the complement of a smooth anti-canonical divisor in a weak del Pezzo surface, and
Hein metrics [44] live on the complement of an Ip-fiber in a rational elliptic surface.
Conversely, by Remark 6.21 below, we know that an ALH; gravitationl instanton must
satisfy 1<b<9.

In the next subsection we will prove an exponential decay for ALH* gravitational

instantons.

6.5. Exponential decay in the ALH™* case

Let (X?,g) be an ALH; gravitational instanton. As before, we fix a choice of hyperkéhler
triple w. By Theorem 6.17, there exist >0 and some compact set K such that X4\ K
is smoothly identified with an ALH} model end (C, w¢), with

Ve (w—we)|we =0 ")
for all k€N, where r is the distance function with respect to we. The goal of this
subsection is to prove the following.

THEOREM 6.19. Let (X* w) be an ALH} gravitational instanton. Then, there exist
50>0 and a diffeomorphism F from the end of C to X* such that, for all k€N,

IVE (Frw—we)|we < Cpe 27" (6.13)

Remark 6.20. The main interest in this theorem lies in the fact the asymptotic
geometry of the Calabi model space is non-standard, which has several geometric mean-
ingful scales. The latter is already seen in the analysis in [46]. We expect that the idea
here can be applied to more general problems.
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Remark 6.21. This theorem connects well with [46] and [47]. On the one hand,
by construction the ALH} gravitational instantons of Tian—Yau and Hein all have the
exponential decay properties as stated in Theorem 6.19. Such a decay rate is a typical
rate of a decaying harmonic function on the model end C. On the other hand, under the
improved decay assumption (6.13), [47] proved a partial converse to the Tian—Yau and
Hein constructions in the complex-analytic sense. In particular, any ALH; gravitational
instanton can be compactified to a rational elliptic surface or a weak del Pezzo surface.
It also implies that an ALH} gravitational instanton must satisfy 1<b<9.

Now, we summarize the geometry of C. Recall that (C,w¢) is given by applying the
Gibbons-Hawking ansatz to V=>bz on T?x [29,00) for some flat T? with area 27 and
20>10. Then,

Cc—1y2/3 <z< Cr?/3.

Notice that C admits a natural nilpotent group action which gives rise to the A/-structure,

i.e., there is a nilpotent orbit A'(x) at every point & €C. Moreover,
diamg, ., (N (z)) ~ r(x)l/3, Injrad,, (x) ~ r(x)”Y? and Vol (B,)~1r*/3;

see [46, §2] for more details. Before proving Theorem 6.19, let us introduce a simple but

useful lemma.

LEMMA 6.22. There is a triple of 1-forms o such that w=w¢+do and, for all keEN
and >0,
VK O lwe = O(r! 37k ey, (6.14)

Proof. Since the intrinsic diameter of the A/-orbits with respect to w has the order
ri,/ 3 for the w-distance function T'w, the N-orbits in the rescaled annulus s_lAS,gs(p) has

—2/3

diameter decay ~s . We now repeat the construction of the N-invariant hyperkihler

metric on the end of X*. First, taking the average of w along the A-orbits, we obtain a
closed definite triple w’ which is cohomologous to w. Notice that, for any vector field ¢

generating a family of diffeomorphisms ¢;(t€]0, 1]), we have that

1 d 1
gb}‘wfw:/o dtgb’t"wdtd(/o gbf(@w)dt).

Using this, we can write wf =w+de; for some o satisfying
VEailw =O0((r) /2 ++9)

for all k€N and e>0. Applying the construction in §6.3 to w' (with do=1), we obtain a
new N -invariant hyperkihler triple w®. By Theorem 6.6, w®=w’+dos with

|vfﬂo’2|w1‘ = O((rw7)1/3fk+5)
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for all k€N and €>0. Now, in fact, w® coincides with w¢, as both are A-invariant

hyperkahler triples which are asymptotic to each other at infinity. O

Passing to a finite cover of C, we may assume that b=1. We now take a closer look
at the deformations of hyperkéhler triples in §2.4. A triple of we-self-dual 2-forms 6%
can be identified with a (3x 3)-matrix-valued function Ag+. The 4-dimensional space of
3% 3 matrices M =(M;;) satisfying M7 +M=M\1d for some A€R is isomorphic to R* via
M (% Tr(M), Mas, M3y, Mys). Define the linear operator

R:QL®R? — O (C)®R,
0" — 5(Ag+ —(Ag+)")+5 Tr(Ag+)-1d.

It follows that R(0")=0 if and only if Ag+ is symmetric and trace-free. This can serve
as a gauge fixing condition, due to the fact that if the triple we+dn is hyperkahler then,
by the discussion before (2.4), R(d*n)=0 implies d*n=F(tf(—Qu. —Saq-»)). The latter
is elliptic in 17 when coupled with d*n=0 (this can always be achieved). In the proof of
Theorem 6.19, we first fix the gauge such that R(d*w)=0, and then improve the decaying

order using the convexity properties of the linearized elliptic PDEs.
Step 1 (Gauge fizing).

On (C,wc¢), we choose the complex structures Ji, Jo and Js so that

Jide=dy, Jidz=z716,
Jody=dz, Jodr=2z"16,
Jzdz=dx, Jydy=z""0,

where 6 is the connection 1-form in the Gibbons-Hawking construction. It follows that

wq is Kéhler with respect to J,, where

w1 =zdxAdy+dzN0,
wo =z dyANdz+dz N0,
w3 =zdzAdz+dyNb.

Without loss of generality, we may assume that we=(w1,ws,ws). Given a vector field &,
we have the induced infinitesimal deformation L¢we=d(£_w¢). For our purpose, we only

consider vector fields generated by a 4-tuple of functions f=(fo, f1, fo, f3) via

3
gi:va‘i'Z Javfa'

a=1
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Then, by straightforward computation, we obtain

Le,wa ANwa = %ng (dvoly) =2Afodvoly, a=1,2,3,
£§;w1 Awg = —Eg;wg Awy =2Af3 dvolg,
£§;w2 Awsg = —£§;w3 Awg =2A f1 dvolg,
£§;w3 Awy = —£§;w1 Aws =2A fo dvolg,

and, if f,=cqz, «=0,1,2,3, then

Epawr = —cpz Y0 —c1 dz—codx—cs dy,

§fwe =cody+crdr—cy dz—cs2710, (6.15)
£faws =—codrtcy dy+coz™ 0—c3dz.

Define the linear operator
L: C*(C)®@R* — C*°(C)®R*,
f=(fo, fr, fa, f3) — R((Le,we) ™).

By the above calculation, we have L(f)=A., f. Denote by Q,, the region {z>w}. We
adopt the definition of weighted Holder spaces for tensors on Q,, given in §6.3. All the
norms appearing in this subsection are taken with respect to we.

PROPOSITION 6.23. Given any 0€(—00,0)\{—2}, £>20, ac(0,1), for all w>z
there exists a bounded linear map

AZLCF(Qu) — O3 (Qu)

such that, for any UEC'(I;_Q’Q(QU,), u:A;clv solves Ay, u=v and satisfies the uniform

estimate
[ull et g,y SCFs @ d)[[ollgr—20g,,)-

Remark 6.24. Here, the solution u is not unique. For example, the function z is

always harmonic. The latter fact will be useful later.

Proof. The weighted C°-estimate for u follows from Proposition B.3 (with T=%5)
and the relation C~17r2/3<2<Cr?/3. The higher-order estimate can be proved by stan-
dard weighted Schauder estimates. O

Now, we fix ¢>0 sufficiently small, k¥>20 and a€(0,1).

PROPOSITION 6.25. (Gauge fixing 1) For w1, there is a C*~Y*-diffeomorphism
F from Q. onto the end of C such that

* _ ! o) = !
Fro=wct+do’, R(d'0')=0 and [lo'llgr g, <00
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Proof. We will apply the implicit function theorem to find the desired diffeomor-
phism. We write w=wc¢+do, where o has the growth in (6.14). Then, we have

|Vie R(d" 0)]we = O(r=2/714%)

for all >0 and 6>0. We will make further improvements of decay rate of R(d" o).
Let f=—A_l(R(d"e)), and denote by F;(t>0) the family of diffeomorphisms gen-
erated by the vector field {;. Let w=F]w. Then, we have

w—we =do+ (Ffwe—we)+d(Ffo—o).

Notice that J
Lt we=1E (Le;we) = d(F (§fwe) = d(Egwwe +B),
where |V£_,C,8|w6:0(r_1/3_l+5) for any /€N, §>0. Similarly, we have
|Vise L, 0 lwe = O(r7H/37149).
Therefore, w —we=do’, where o’'=01+0%, R(d*o7)=0,

Vo0 lwe =037 1H0) and |V, ohlw. =O(r~1/371H9),

In particular,
Vi R(d7 0w = O(r—/37140),

Next, we take h=—A_!(R(d"0’)), and denote by G; the family of diffeomorphisms

generated by &;,. Let @' =Giw, and write @ —we=do”. Similarly,
VL0 |we = O 37140 [V R(dT0")|we = O(r—271F7). (6.16)

Then, we have u=Ag! (R(d*6"))=0(r?), and &, (x)<Cr(z)~'*° which is much smaller

than the injectivity estimate at @, which yields the asymptotics
Injrad(z) ~r~1/3(x) as r(z) — .

To apply the implicit function theorem on Banach spaces, we will use another way
to generate diffeormorphisms from a vector field. Given a vector field ¢ whose C! norm

at each point is much smaller than the injectivity radius of (C,w¢), we define

D¢ (x) = exp, (§(2)).
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For some fixed v>0, we consider the map

F:CE(Q,) @R — CF 57 (Q,) ®RY,

il——) R((Cbzlw)+ —we).
First, # is a differentiable map. Indeed, this follows from the fact that exp, (V) is a
smooth map on the tangent bundle. Set Z=A,,, and A" =% —Z. Then, @EALé is a

right inverse to .Z with ||#?||<L for L>0 independent of w. For >0 sufficiently small
and independent of w, we have, for f,g€B,(0),

”JV(i)_JV(Q)Hcﬁ;i»:(Qw) < (3L)71”i_ﬂ‘|cljﬂ(gw)-

Moreover, letting 6=3~, by (6.16) we have

17 (0)

—3y/4
Hcﬁgif(gw)gcow /4,

Applying Proposition 2.12, for w>>1, there exists an f& Clj’a(Qw) with
R((sziwﬁfwc) =0
and
1l g, < 2CoLuw™*"/%.

As &y <20 Lw=37/4r=1%7  we see that for w>>1, F=®;, is a diffeomorphism from Q,,
into C. Then, F*w satisfies the desired properties. O

In the above proposition, replacing w by F*w and noticing that Q.. =Id, one sees
that (2.4) holds, i.e.,
dto=F(tf(—S4-o))- (6.17)

By Proposition 6.23, we can solve d*du=—d*o and replace o by o+du, so that
d*o =0, (6.18)
and we still have the weighted estimate

”UHC’T/_;F’?(QQU) < 00. (6.19)

Now, (6.17) and (6.18) form an elliptic system, with linearization at =0 given by the
Dirac operator d*@®d* on (C,wc). Notice at this point that the pointwise norm |o| may
still grow at infinity.
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Step 2 (|o| is decaying at infinity).
On C, we can write
o =poz t0+p, dr+ps dy+psdz,

where p;, j=0, 1,2, 3, are globally defined R3-valued functions on C. Notice the pointwise

ol=(Sime)

The following result shows that |o| is decaying at a polynomial rate at infinity.

norm

PROPOSITION 6.26. For all >0, we have ||| r-1.q

I 5(Qu) SO

Proof. Weset h(r)=||a|| x-1,

1/315(141",27")7

where A, 9,=Q,2/5\ Q(2,)2/5. Then, we define

H(r)= 6.20
)= (6:20)
It suffices to prove that
lim sup H (r) <2713 (6.21)
™00

Then, the conclusion follows from an easy iteration. To prove (6.21), we use a contradic-

tion argument. Suppose that there exists a §>0 such that

limsup H(r) >2"/346>271/3,

T—00

Then, we can find a sequence r;— 0o such that H(rj)>2’1/3—|—5. We now claim that

lirrgg)lf H(r)=oc0.
This would imply that |o| is growing faster than any polynomial rate at infinity, and
then we reach a contradiction with (6.19).

To prove the claim, we again use a contradiction argument. Suppose that we can find
sj—oo such that H(1s;)>271/3+4, but H(s;)<C for some C>0. Then, we consider the
sequence of rescaled spaces (Asj /2,45, sj_l Jw). Passing to a subsequence, they converge
to the interval (%, 4) in the asymptotic cone R, of C. The universal cover converges to a
hyperkéhler limit A, which admits a fibration m: A — (%,4) with fibers the Heisenberg
algebra 7. Denote by & the lifted triple of 1-forms on the universal cover of Ay, /5 45, -
Let o;=h(s;)"'o. Passing to a subsequence, we have weak C*~1< convergence of &;
to a limit oo on As. Using the fact that o satisfies the elliptic system (6.17)—(6.18)
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and interior Schauder estimates, we may assume that o; converges strongly in Chk—la
to 0o on - 1(1,2), which is invariant under 7. Moreover, it satisfies the linear system

dT oo =d*0 s =0. A straightforward computation shows that then we must have
T oo = €02 Ooo+C1 dToo+Co dYoo+C3 dzoo,
where (Zoo, Yoo, Zoos too) are the standard coordinates on Ao, (as given in §3.3),
Ooo = dt oo +ToodYoo
and c; are constant vectors. It follows that
|5'00| = C‘Zoorlm-
This contradicts our assumption. O

Step 3 (Decay faster than any polynomial rate).

On C, the N-invariant kernel space of the Dirac operator d*@®d* acting on 1-forms
is spanned by dz, dy, dz and z~'#. These forms decay exactly at the rate r—1/3. So, in
order to improve the decay rate of o, we need to gauge out these elements. The first three
forms are d-closed, so are easy to deal with; the form 2716 is not d-closed, and we have
to invoke yet another implicit function theorem to eliminate it. For this reason, we also
make use of the variation of we induced by &, (cf. (6.15)), which, by Remark 6.24, does
not destroy the previous gauge fixing condition R((w—w¢)¥)=0. We denote by S(w)
the hypersurface {z=w}CC, endowed with the induced Riemannian metric from w¢. By
calculation, we have Vol(S(w))=Cw'/2.

PROPOSITION 6.27. (Gauge fixing II) For w>>1, we can find a diffeomorphism Fy,
from Q., onto the end of C such that w,=F,w=wc+do,, with

HUWHCEI}Q(;(QUJ) <oo, forall §>0,

R(d*o,)=0 (= d'oy,=3(tf(Sio,)))
d*o, =0,

/ pj(ow)=0, j=0,1,2,3.
S(22/3w)

Proof. Fix 6>0 small, and define the Banach spaces

(6.22)

D=(CH5,5(Qu)RN®(CE5, 5(Qu)BR?),
I=(CF1 755 5(Qu) @R & (CF 1755 5 (Qu) OR?) B R?,
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where we fix a standard norm on R?. Then, we define a map .7: ®—J by sending (f, u)
to

* * * 1 *
(R((¢5f(w)—wc)+),d (Bgi—l—fbéio-—i—d'u,),7105/%35/2 /5(22/3 )po(ﬂgf—&-(bgfo'—i—du)).

In the above definition, po(c) is the z~1f-component of a triple of 1-forms «, and given

a vector field £, we set ®¢(x)=exp,({(x)) and

1
d

=/ o= .

= [ oG )

Immediately, dB¢=®;wc—wc. One can directly verify that Z is a differentiable map
and, by Proposition 6.26, ||.Z(0)||<Cw~%/273/2, Moreover, the differential d.Z at zero
is given by d%g =L+ .4 , where

" 1
Z(g,v)= <Auc97d (€gwe+dv), w3232 /5(22/%) po(ngchrdv)),

1
_ WA
g 0)= (R(Le (@), Ce,) s [ i)
Notice that ||.#|| is small when w>1. By (6.15), if g=zc, then

PO(ngwc) =¢=(—co, —c3,¢2).

We define a right inverse &2: J—® of £ by & (h, z, q)=(g,v), which is given as follows.
Given (h,x,q), we first let go=Ag}(h) and let v=A_!(x—d*(¢4,2wc)). Then, we let
g=go+zc for a constant vector ¢ with ¢;=0 and, for a#1, c, is uniquely determined by

& 1 5/2435/2 /
S . _ d .
© Vol(S(22/3w)) (w q S22 Po(§g, 1w +dv)

By (6.15), d*(&.cuwe)=0. So, it follows that £~ =Id.

It is straightforward to check that || £?]|<C for C>0 independent of w. Moreover,
one can directly estimate the non-linear term A" =% —_%. Then, as in the proof of
Proposition 6.25, we can find a zero (f,u) of .# for w large, using the implicit function
theorem (Theorem 2.12).

Now, we set Fy=®¢,. Then, for w>1, F, is a diffeomorphism from Q,, into the
end of C. We write Fjw=wc-+do’, with o’'=8;+®,0+du. Then, R(d"¢')=0 and
d*o’=0. By Proposition 6.26, we have H‘7w||cf;/1éié(gw)<oo for all 6>0. Also, the last
condition in (6.22) is satisfied for j=0. Now, by adding to o’ the triple of 1-forms
e1 dx+es dy+es dz for appropriate constant vectors (e, es, e3), we can make sure that
o’ also satisfies the last condition in (6.22) for j>0. Notice that dz, dy and dz are

~1/3

d-closed and d*-closed, and their norm decays at the rate r , 80 the new o still has

the required decaying properties. O
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We denote by H,,(r) the function H(r) given in (6.20) associated to o,.

PROPOSITION 6.28. There exists Wy>0 such that, for all w>=Wy, we have

lim sup H,,(r) =0.

T—00

Proof. We first claim
lim H,(w*?)=0.

w— 00
If not, then, as in the proof of Proposition 6.26, we can take a rescaled limit and obtain
a non-trivial limit 6. Now the extra normalization condition (6.22) implies that the
limit must be identically zero. This yields contradiction.
Now, suppose that
lim sup H,,(r) > 0.

T—>00

Then, by (6.21), we can find w; — oo and r; >w§-’/2 such that H,,(r;)€(0,1-271/3). But
then we take rescaled limit and again get a limit o.,. Still, we obtain a contradiction

with the fact that |6o| must be decaying at order 252 O

Now, we let w=Wy and o=0ow,. Proposition 6.28 easily implies that, for all m>0,
||0'||CE;1,Q(QWO) < 00. (6.23)

This means that o decays faster than any polynomial rate.

Step 4 (Ezponential decay).

First, we prove an improvement of Proposition 6.27.

LEMMA 6.29. (Gauge fixing ITIT) There exists W1 =Wy such that, for all w>Wi, we
can find a diffeomorphism F,, defined on the fized Qw, such that

wy =Frw=wc+do,,

with
lowllerregy,) <C,
R(d'o,)=0 (= d'ow=5F(tf(S4-4,))),

d*o, =0,

/ pj(ow) =0, J=0,1,2,3.
S(w+1)

(6.24)

Furthermore, F, is of the form ®¢ for (=&, , with

Hfincﬁga(QWl) <C. (625)
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Proof. The proof is the same as Proposition 6.27. The difference here is that we can
now fix the domain Qyy,. This follows from the fact that the rapid decay of o guaranteed
by (6.23) implies that |po(o)| is sufficiently small on S(W7) for wy>>1. This also implies

that the above constant C' is independent of w. O

Now, we exploit a different scale of the asymptotic geometry of C. We set
A217Z2 = Qzl\QZ2

and
A®  =T?x(z1,2) CT? xR,

21,22

where T2 is the flat 2-torus involved in the definition of C. Then, for any fixed C'>0,
as z— 00, the rescaled annulus Zﬁl/?Azfc,erC (with respect to the metric we) collapses

with uniformly bounded curvature to the domain Aioc,c in the product cylinder T? x R.
We define

nw(2) =271 / |°'w‘52;c dvole .
Az,z+1

The following arguments are well known in the study of asymptotically conical geometries
(see, for example, [18], [45]), and they can easily be adapted to our setting. Let A; be
the first eigenvalue of —Ar2.

LEMMA 6.30. (Convexity lemma) For all 6€(—A;,A;)\{0}, there exists a
Wo=Wa(|d]) > W1
such that, for all w=Wy, if
log (1w (Wa+1)) = log(n., (W2)) +39,

then
log(ny(z+1)) 2log(ny(2))+06  for all z>=Ws.

Proof. If this fails, then we can find a sequence w;>W; and z;— o0 such that
log ny, (2j+1) =1ogny, (z5)+46,

but
log 1, (2;42) <log n; (25 +1)+0.

. 7 —1/2
Passing to a subsequence, we may assume that A; =z /

AG% in T2 xR. We want to take the limit of o, . First, set

Az,-7zj +3 collapses to the domain

—-1/2

; nwj(zj—kl)*l/Qawj.
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Then, the average of |o;| over /ij is uniformly bounded. Moreover, o; satisfies the elliptic
system on A;:
{ Aoy =y, (2j+1)2 212 F(t(Su-o,)),
d*o; =0.
Since HUWHCEL}*‘*(QWI)<C for all w>Wj, by interior elliptic estimates for d*@d* over
local universal covers one can see that
<C(7)

loj Hckf‘z(z;WAzj+T,z].+34)

uniformly for any 7>0 small. In particular, passing to a subsequence, we may obtain
C*=3 convergence of 0; to 0 over local universal covers. Globally, we obtain a pair
(g,A) on Ag%s, where q is a vector-valued function and A is a vector-valued 1-form. This
is similar to the discussion of convergence of hyperkéhler structures under codimension-1
collapsing in §3.1: q is given by the o (0;), and A is given by the horizontal component
of 6. The pair (g, ) satisfies

dg++dA=0 and d*A=0.

In particular, both ¢ and A are harmonic. Set

noo(z) = / (laP+AP).

Az?z+1

Then, by construction and the strong interior convergence, we have
log(neo(1)) =0, log(nw(0))<—3d and log(n.(2)) <.

Given a vector-valued harmonic function u on Ag%, it is easy to see via eigenfunction

expansion that
lull 22 agey) -l 22 agey) = lullZeage,)s
and the equality holds if and only if w is homogeneous, i.e.,
u=ce e,

for some eigenfunction ¢y on T2. Applying this to the above limit (q, ), it follows that
(g, A) must be homogeneous and § must be an eigenvalue on T2. This contradicts our

hypothesis on §. O
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LEMMA 6.31. There exist 6€(0, A1) and Ws>Wy+W,(8) such that, for all w>W,

and z>2Ws3, we must have
10g N (24+2) —log ny (z4-1)| = 6.

Proof. Suppose that the conclusion fails. Then, we get a contradicting sequence
w; =W, and z; =00 with

|log 1, (2j+2) —log g, (z;+1)| <5~

Notice that, by Lemma 6.30, we know, for 7>>1, that

108 Ny, (25 +1) —log nu, (27) <j -

Then, we can as in the above proof pass to a subsequence and obtain a limit pair (g, )

on T? xR. This time we use the last condition in (6.24) to conclude that

/ q:/ A=0.
{z=1} {z=1}

Now it is easy to see, using eigenfunction expansion again, that there exists a 6 >0

such that, for a vector-valued harmonic function u on Ag% with | (s=1; u=0, either

é —d
Hu||L2(Ai>?2)>e||u||Lz(A(T1) or “u||L2(AT?2)§6 HUHLZ(AS?H'

This leads to a contradiction. O

LEMMA 6.32. For all w>W3, we have

log 1y (w+1) —log ny, (w) < —4.

Proof. If not, then, by Lemma 6.31, we must have log n,(w+1)—log n, (w) >4 for
some w>Ws3. Now, Lemma 6.30 implies that logn,(z+1)—logn,(z)=4 for all z>w.

This implies that o, has exponential growth, which yields a contradiction. O

Now, given any w>W3, by Lemma 6.30 again we have
logny (z4+1)—log ny, (2) < -5

for all ze€[W3+1,w]. In particular, we must have

Ny (2) < C’nw(Wg)ef‘gz.
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Using the elliptic system satisfied by o, one can see that, passing to a subsequence

W;—00, Oy, converges in Crr. to a smooth limit o with

||Vfic T oolwe < Cre™ %%

for all k>0 and 6€(0,4).
Finally, by (6.25), we may also assume that F,,, converges in C{Z;Q’O‘ to a limit Fi,

which is again a diffomeomorphism from Qyy, onto the end of C, such that
Fiw=wc+doo.

Notice that both w and o, are smooth, so F., is indeed smooth. This completes the
proof of Theorem 6.19.

7. Discussions and questions

7.1. Towards a bubble tree structure

Let (X;l, 9j,pj) be a sequence of hyperkéahler manifolds such that Bs(p;) is compact and

(X;L,gj,pj)ﬂ(Xoo,doo,poo). Set d=dimegs(Xoo). If d=4, then X, is a hyperkihler
orbifold, and it is well known that there is a finite bubble tree structure associated to

the convergence (cf. [6]). Now, we assume that d<4 and

/ |Rmy, | dvoly, < ko,
Ba(p;)

uniformly for some k¢>0. It is more involved to describe the bubble tree structure in
this case. Here, we make some initial steps.

By Theorems 4.1 and 5.1, we know that there is a unique tangent cone at p.., which
is a flat metric cone, and we denote it by (Y, dy,p*). Clearly YeB,_ . Given j>1 and
A>0 we denote by X » the rescaled space (X;»L7 )\2gj,pj), and by v; » the volume of the
unit ball around p; in X; . By the Bishop—Gromov volume comparison, we know that,
for a fixed 7, v;,» is an increasing function of A. So, if we rescale sufficiently large, we will
get complete hyperkéhaler orbifolds as bubble limits. The following result shows that
there is an essentially unique scale that leads to a complete hyperkéhler orbifold which

is collapsing at infinity.

PROPOSITION 7.1. (Maximal scale non-collapsing bubble) Let j;—o00 be any se-
quence. Then, passing to a subsequence, we may find A\;—oo such that the rescaled

spaces X, , converge to a complete hyperkéahler orbifold (Z,dz,pz) such that
Vol(Br(pz)) = o(R")

as R—oo.
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Proof. If this does not hold then, by the Bishop—Gromov volume comparison, one
may find a sequence of ALE hyperkéhler orbifolds Z; € B, such that the structure group
[, at infinity satisfies |T'y|—o00. By a diagonal sequence argument, for each k we may find

sequences j; —00 and A; . — 00, and a domain U; j, C X such that OU; j, converges

ik Nk
smoothly to the space form S3/Ty. It follows from [6] that U, x is diffeomorphic to an
ALE gravitational instanton, with structure group I'y at infinity, which implies that
X(U; x)=cy, for i large. Notice that cy—o00 as |I'y|—o00. On the other hand, by the
Chern—-Gauss-Bonnet theorem, we have a uniform bound on x(U; x) in terms of ko. This

is a contradiction. O

Notice that Theorem 1.2 also holds for complete hyperkahler orbifolds with finite
energy, since the proof only uses the end structure at infinity. So, the bubble limits
constructed in the above proposition must be of type ALX, and is not ALE. This gives
a rigorous explanation of the heuristic fact that non-ALE gravitational instantons are
responsible for collapsing of hyperkihler manifolds.

Next, we show that the dimension of bubble limits can only increase when we zoom

into a smaller scale. This is again true from the intuition.

PROPOSITION 7.2. (Dimension monotonicity) In the setting above, we have
dimess(Z) >d  forall Ze B, .

Proof. From the definition of B, _, we can find A\g>0, jo>0 and £; =0 such that, for
all j>7jo and A> Ao, there is an element Z; y €B,,__ satisfying dau(X; x, Z;x)<€;. Notice
that a priori Zj  is not unique, and we simply make an arbitrary choice for each j and A.
It is clear that we can take Z; », =Y for j>>1.

The conclusion in the case d=1 is trivial. We will first prove the case d=3. Notice
that every element Z in B, with dimess Z=3 belongs to the list given in Theorem 4.4,
among which there are exactly two elements Z;=R? and Z,=R3> /Zs that are metric
cones. Fix ¢>0 small such that any Z in Bos(Y)NB,_ satisfies dimess(Z)>3, and

Bos(Y)NB, N{Z1,Z>} ={Y}.
For j large, we let A; be the smallest A such that dgn (Xj,A, Y)>4. Tt is clear that

liminf A\; = oo.
J—0o0
We claim there is some 7>0 such that v; x, >7 for all j large. Given this, it follows
that v; =7 for all A>);, and then the conclusion easily follows. To prove the claim,
suppose it is not true. Then, there is a sequence j;—oo such that deu(Xj, », ,Y)=0
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but v, 5, —0. Passing to a further subsequence, we may assume that Xj, », converges
to a limit Z with dimess(Zoo)=3, and dgu(Y, Z)=4d. So, Z,, is one of the spaces
listed in Theorem 4.4 and Zo.¢{Z1, Z>}. Similar to the proof of Lemma 6.1, one can
show that this is impossible. For example, suppose that Z., =Sk xR? for some R>0.
;, must also be Sk xR? for R;—R. Tt follows that
Zj, z;, /2 must be S, xR? for some R;—1R. Then, dGH(Zji))\ji/g,Y)>%5 for i large.
This contradicts our choice of Aj, -

Then, for ¢ large, we know that Z;, \

Now, we consider the case d=2. We may assume that, for j large,
/ Ry, |2 dvol,, € [ie, (1+1)¢)
Bz (p;)

for some integer (>0, where ¢ is the constant given in Theorem 3.21. We will prove
the conclusion by induction on [. First, consider the case [=1. Then, we can proceed
similarly to the case d=3. The energy bound implies that any Z€B,__ has at most one
singularity. Hence, by Theorem 5.5, any Z€B,,_ with dimess(Z)=2 is either isometric to
Cj for ﬁEAE{%, %, %, i, %, %, %, 1}7 or S'xR. As above, we fix >0 small so that any
Z in Bos(Y)NB,_, satifies dimegs(Z)>2 and

Bos(Y)NB, N{Cp:fecA}={Y}.

Furthermore, we may assume that S=1 if there is some Sk xR in Bas(Y)NB,_ . For j
large, let A; be the smallest A such that dgu (X, ,Y)>d. Passing to a subsequence, we

may assume that X; A; converges to a limit Z,,, with
dimess(Zoo) >2 and dgn (Y; Zoo) =9J.

We claim that any such limit Z,, must satisfy dimess(Zoo)>3. If not, then there is a
limit Zo, with dimess(Zoo)=2. By the choice of 4, it follows that Zw:S}?xR for some
R>0 and Y=R2. Then, a similar reasoning as in the case d=3 yields a contradiction.
Given the claim, then our conclusion follows from the result in the case d=3.

Suppose now that the conclusion holds for [<ly, and consider the case [=[p+1. If
we run the same arguments as above, then in the end we can conclude that any limit Z,
either satisfies dimess(Zoo) 23, or dimess(Zoo) =2 and Z, has at least two singularities.
If the latter occurs, suppose that Z, is given as the limit of some subsequence X, Aj

then there exists 7>0 such that, for ¢ large, we have
/ [Rmy, [ dvoly, <loe.
Brx; (Ps;)

It follows from the induction assumption that any Gromov-Hausdorfl limit of Xj; s,
for s;>1 has dimension at least 2. Using this, one can finish the proof of the case
I=ly+1. ]
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COROLLARY 7.3. The following statements hold.

o Any Z€B, , with dimes(Z)=3, is isometric to R® or R3/Zy. If d=3, then
any ZeBy, is isometric to either the tangent cone Y, or an ALE or ALF hyperkdhler
orbifold.

o Any ZeB,
for some BEA.

=)

with dimess(Z)=2 and with a unique singularity, is isometric to Cg

oo ?

The first item says that the construction of Foscolo [32] essentially gives the complete
picture in the case d=3 (modulo further development of orbifold singularities in the ALE
bubbles). With more work, one expects to obtain a full bubble tree structure. The latter
may also be used to prove the following. Notice that, by Remark 3.18, the statement is

false without the uniform energy bound.

Congecture 7.4. (Integral monodromy) If d=2, then the singular special K&hler met-

ric has integral monodromy.

For hyperkahler metrics on the K3 manifold, it may even be possible to explicitly
classify all the possible bubble trees.

7.2. Asymptotics of the period map

Let X< be the Gromov-Hausdorff limit of a sequence of hyperkihler metrics g; on the
K3 manifold K with d=dimes(Xd)<4. As before, we make a choice of a hyperkiihler
triple w; for g;. We can use Theorems 3.27 and 1.1 to obtain some information on
the behavior of P(g;) as j—o0o. For example, suppose d=3. Then, X,,=T>/Z;. We
choose Q to be of the form U/Zy, where UCT3=R3/Z? is the complement of a small
neighborhood of the finitely many points which map to the singular set S in X, (notice
that S contains the eight orbifold points, but it may also contain some other points).
Take three disjoint geodesic circles Cy(a=1,2,3) in U which lift to lines in R? parallel
to the three coordinate axes. Denote by [, the length of C,. For j large, we have a
circle bundle Fj: Q;—Q. Denote by Ejo=F; '(C) the 2-cycles in Q;. They span a
3-dimensional isotropic subspace of Hs(K;Z). Since the hyperkihler tripe w;? given by
Theorem 3.27 is N-invariant, passing to the Zs-cover, the metric g? is given by the
Gibbons-Hawking ansatz on U. That is, we may write gf:e?(Vj . gU—H/j_lﬁf-)7 where V;
is a positive harmonic function on U with ijef, df;=xdV; and €;—0. It follows that

_ o 2
/ wjﬁf/ ijgféaﬁ.sjl@,
Eja E;

7,
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where ¢; Vj_l/ ? is the length of the S orbit with respect to g?. We also know the volume

2 2
/ wj,(!Naj'
X

J

A simple consequence is that this case cannot occur for collapsing polarized K3
surfaces. For if not, then without loss of generality we may suppose, for some A; >0, that

o;=[\j-wj1] is a class in H?(X;Z) with [ a?:a independent of j. It follows that

2 _y-2
/wjﬁl—a)\j .
b's

So, we must have ij)\;2 and A\;—o0. Then,

J

Since the integral is always an integer, this is impossible.

. e
O[j—)\j/ Wj.1 >\j .
E

3,1 3,1

Similarly, one can treat the cases d=2 and d=1, and in each case there is some
isotropic subspace of Hy(K;Z) on which we know the asymptotics of the period of the
hyperkéahler triple. These isotropic subspaces also appear naturally in the Satake com-

pactifications of the locally symmetric space
\0O(3,19)/(0(3)x0O(19)).

One expects this to be relevant to the conjecture in [68] mentioned in the introduction.

We leave it for future work.

7.3. Topological properties and the L?-curvature energy

There are easy consequences of Theorem 1.2 which yield topological restrictions on the
underlying manifolds of a gravitational instanton. Notice that any non-compact paracom-
pact smooth manifold admits a complete Riemannian metric with quadratic curvature

decay.

COROLLARY 7.5. The Euler characteristic of a non-flat gravitational instanton is

positive and finite.

Proof. This follows by applying the Chern-Gauss—Bonnet theorem (4.13) to B,.(p),
and let r tend to infinity. Using the asymptotics at infinity, it is easy to see that the

boundary term goes to zero, and hence

1
X(X):@/); |ng|2 dVOlg>0. ]
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COROLLARY 7.6. A non-flat gravitational instanton has a vanishing first Betti

number.

Proof. By Theorem 1.2, we know that there exists k€ {1, %, 2, 3} such that

Vol(B(p,r)) ~Cr"® asr— oo.

If k<2, then the conclusion follows from a result of Anderson [3], together with the precise
asymptotic description given in Theorem 1.2. If k=3, then X is ALF. We consider the
rescaled spaces (X*, R~2g,p), which collapse to the asymptotic cone of X* as R—oo.
If b1(X)>0, then by [66] we know that the collapsing must have uniformly bounded

curvature on compact sets. The latter implies that X is flat. O

As an immediate application, we consider the smooth quadric
Q={(z,y):a*+y* =1}

in C2. Since 7 (C?\Q)=Z and x(C?*\Q)=1, it follows that C?\(Q does not support
any gravitational instanton. The interest of this example lies in the fact that it admits
a nowhere-vanishing holomorphic 2-form 2, but we have shown that the Calabi—Yau
equation w?=COAQ does not have a solution which is complete at infinity and has finite
energy. Notice that C? admits a Ricci-flat Kiihler metric wg with cone angle 273 along
Q for any 8€(0,1], by a generalized Gibbons—Hawking ansatz [30]. It is an interesting
question to understand the behavior of wg as 3—0. Notice that C?\Q is the same as
CP?\ D, where D is a singular elliptic curve given by the union of a line and a conic.
In the case where D is smooth, it is a consequence of the result of Biquard—Guenancia
in [8] that, when $—0, under suitable rescalings the conical Kdhler—Einstein metrics on
CP?\ D converge to the complete Calabi—Yau metric constructed by Tian—Yau in [81].
In our case, one would expect a very different picture; it is interesting to explore the
connection with certain algebro-geometric “stability” notion.

It is natural to study when a complete Ricci-flat metric on an open 4-manifold has

finite L? energy. In this regard, we make the following conjetural topological criterion.

Congecture 7.7. (Energy finiteness conjecture) Let (X, g) be a complete Ricci-flat
4-manifold, then

/X |ang|2 dvol, < co

if and only if X has finite topological type.

Even for exotic R, we do not yet know the answer. The known infinite-energy ex-
amples of gravitational instantons constructed by Anderson-Kronheimber-LeBrun have
infinite Euler characteristic; see [4].
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7.4. Generalizations

The ideas and techniques developed in this paper can be likely adapted to more general
settings. The first natural extension is to the case of Kdhler—Einstein metrics on com-
plex surfaces with non-positive Ricci curvature. In particular, the following question is

sensible.

Problem 7.8. Classify complete Kéhler-Einstein metrics with finite energy in com-

plex dimension 2.

More generally, one can study the structure of collapsed Einstein metrics and more
general canonical metrics in four dimensions, and higher-dimensional metrics of special

holonomy, under suitable curvature assumptions. One interesting question arises.

Question 7.9. Do Propositions 7.1 and 7.2 hold for general Einstein metrics in all

dimensions?

Over the region where the collapsing is with bounded curvature, it is possible to
extend the results of this paper to show that the collapsing metric can be assumed to
have genuine nilpotent symmetry. Thus, it leads to the question of understanding the
geometry of dimension reduction of canonical metrics under symmetry. Notice that there
has already been an extensive literature on the latter topic, mainly towards constructing
examples. It seems important to systematically investigate the compactness properties

of the dimension reduced equations.

Appendix A. Construction of regular fibrations

Our goal here is to outline the proof of Theorems 3.25 and 6.3. The original construction
is due to Cheeger—Fukaya—Gromov in [17]. In our special case, the approach presented
here is based on the harmonic splitting map of Cheeger—Colding [14], which makes it more
convenient to obtain higher-regularity estimates. This observation has been used in [66]
to construct bundle maps with higher regularity. In the volume-non-collapsing case, the
existence of a harmonic splitting map can be also proved using the W!P-convergence
theory of harmonic functions with respect to renormalized measure; see [2, Corollary 4.5]

for more details.

THEOREM A.l. (Harmonic splitting map [14]) Given any £>0 and n>2, there ex-
ists some 6=4(n,e)>0 such that the following holds. If (M™,g,p) is a Riemannian
manifold satisfying Ricy>—(n—1)8 and dgu(Bs-1(p), Bs-1(0%)) <8, Bs-1(0%)CRY, then

there exists a harmonic map

® =W, ..., u?): By(p) — R?
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such that the following properties hold:
(1) ®: Ba(p)— B2(0%) CR? is an e-Gromov-Hausdorff approrimation;
(2) |Vul®|(z)<1+e holds for any x€By(p) and 1<a<d;
(3) the following estimate holds:

d d
Z ][ (V'™ Vul®) —6,5] dvol, + Z ][ 1V2u(®) 2 dvol, <.
a,f=1" B2(p) a—1" Bz2(p)

We will also need a good cut-off function with uniform derivative estimates. Here
we briefly review the standard heat flow regularization, and we refer to [65, Lemma 3.1]

for results on general RCD spaces.

LEMMA A.2. Let (X", g) be a Riemannian manifold with Ric,>0. Assume that,
for any meN, there exists a constant Ay, >0 such that [V™ Rmg |<A,, uniformly on X.

Then, for any peX and re(0,1] with Ba.(p) compact, there exists a cut-off function
: X™—[0, 1] which satisfies the following properties:

(1) ¥=1 on B.(p) and =0 on X\ Ba.(p);

(2) for any meZ., there exists a constant C=C(m,n)>0 such that

PV < O

Proof. Without loss of generality, suppose that r=1. The proof below can be made
purely local, but to simplify notations we assume X is complete. For any qg€ X, we first

take a cut-off function p defined by

1, if y € BY(q),
p(y)=1q 2—dy,(y,q), ifyeA],(q),
0, if y € X\ Bj (q).

For ¢>0, consider the heat flow ¢,=H(p) of the 1-Lipschitz cut-off function p. It is

standard that on X we have the pointwise estimate

Qt(

|V9¢t|2+g Ag¢t)2 <1

Then, for all ye X, we have
t
00 =pw) < | 1A (0)]ds < VI
0

Now fix 7=1g5. Then, ¥-(y)€[2,1] for y€Bi(q) and ¥ (y)€ [0, 3] for y€ X\ Ba(q).
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Next, we choose a smooth cut-off function h: [0, 1]— [0, 1] which satisfies

and set Yy=ho1),. Since 1, solves the heat equation, the higher-order derivative estimate

of v follows from the standard parabolic estimate. O

Proof of Theorem 3.25. We adopt the notation in the setting of Theorem 3.25. By
a simple rescaling, we may assume that Injrad, (¢) =10 for any g€ Q. To begin with,
we fixe >0 sufficiently small, and define the rescaled Riemannian metric h. =% g
on R. Throughout the proof, we will denote by 7(¢) a general function of ¢ satisfying

lim._,o 7(¢)=0. Now, for any g€ Q, there is a harmonic coordinate system
Wq = (’LU17 ceey wd): Bgs (q) — B5(Od)

such that

(i) Ap,wa=0 for any 1<a<d,

(ii) |he,aﬁ_5aB‘CO(B4(q))+‘aw7he,aB|C°(B4(Q))gT(f)v
where h. o3=he(Vh Wa, Vi wg). Moreover, we have

den(BL*:(q), B-1(07) < 7(e),

where 0% cR?.

In the following, we will also work with the rescaled metrics h;=c~!.g; on X}
Unless otherwise specified, the metric balls below will be measured in terms of h; and h.,
respectively.

We will prove the theorem in three steps. In the first step, using the harmonic
splitting map, we will construct local fiber bundle maps over every ball in @ which looks
like a ball in R?. The second step is to glue the local fiber bundle maps by the well-
behaved partition of unity. In the last step, we will show the desired estimates and

identify the topology of the collapsing fibers.
Step 1 (Construction of local fiber bundles).

Let {Qg}évﬂ be a subset of Q such that QCUéV:1 B1(qe)CR and, for all 1<, 'S N
with ¢#£0', we have dj,, (gg,ge,)>%. For every 1</<N, let ¢; o€ X} be such that

GH
(BE*1 (qi7é)7 hl) B (B6*1 (Qe% hs)
Then, for any sufficiently large 7, we have

dGH(B5*1 (Qi,f)’ B€*1 (Od)) < 27—(6)'
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Then, there exists a harmonic map
* 1
zé_( Ei)v' ) Eé)) B3(q f)__”Rd

which satisfies the following integral estimates:

d
Z][ (Tl Vo) - aﬁ|+z 72
B3(qi,¢)

o,B=1 Bs(qi.e)

5 <1(e).

Since (By(¢;,¢), h;) is collapsing with uniformly bounded geometry, the above integral

estimate can be strengthened to the following pointwise estimate on Ba(g; ¢):
k k
D 19:(Vuy Vul) =dasl+ 7 V20 P < ().
a,B=1 a=1

This implies that, for every 1</< N, the composition
D= (Wz)_loq)zzi Bs(qie) — Bs (ge)

is a fiber bundle map, where the diffeomorphism w,: Ba(gq Z)—)Bg(()d) is given by the
harmonic coordinate system at g,. Moreover, ®;, is a 7(¢)-Gromov-Hausdorff approxi-

mation, for all ¢ large.
Step 2 (Gluing local bundle maps).

Let us take domains with smooth boundary QiCUévzl Bs(gi,e) such that

(Qi, i) 25 (Q, he).

We will glue the above local harmonic maps to obtain a fiber bundle map F;: Q; — Q.
For every 1</< N, let 1y be the good cut-off function in Lemma A.2 such that

1, ifyeBl(qZ}Z)v

Ye(y) = { 0, if yeXf‘\Bz(Qi,é)a

and, for all meZ,, |V™y|<C,, holds everywhere on M. Then, we take the partition
of unity subordinate to the cover {B2(gi¢)}2, of Q; given by

¢e_¢e<i¢z>1~

=1
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It follows from volume comparison that the multiplicity in the above cover is bounded

by some absolute constant Qo >0. We set

N N
B; = U Bs(qie) and B = U BQ(QZ)'
=1 =1

For any 1</< N, we define

d
DE(£7 y) = Z ‘wa(£>_wa(g)|27

which is determined by the harmonic coordinate system (wy, ..., wg) on Ba(ge). It follows
from the estimates on the harmonic coordinates that [0.—dj,_|<7(¢) holds on Ba(g,).

Then, let us define the energy function &: B; x Bo, — (0, 00) by

N
Z G0(qi) 0 (Pie(qi)s goo)-

{=1

DN |

By convexity, for any ¢; € B;, the function €(g;, - ): B — [0, 00) has a unique minimum 3(g; ).
It is straightforward to verify that, for any ¢;€Ba(¢;.¢),

dn.(3(qi), Pie(qi) <7(e),
and

i (Vi (wa3), Vi, (wgo3)) —hi(Vi,ul), Vi, ul)) < (e).

7

Then, we define the map

F;: Bz — Bom
@i — 3(¢i)-
Combining the above estimates on the harmonic splitting maps, harmonic coordinates, as
well as the good cut-off functions, we conclude that F; is non-degenerate, and hence it is a
fiber bundle map. For fixed £ >0, the mapping F;: B; — B, converges to a diffeomorphism

Foo:Boo— By as i—o00. It is straightforward to check that FO’OloFi is a ¢;-Gromov—

Hausdorff approximation with lim; .., 6;=0.
Step 3 (Proof of the higher-order regularity estimates).

In this step, we will rescale everything back to the original metrics g; and g,
respectively. Notice that the uniform estimates for the higher derivatives of the good
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cut-off functions (constructed in Lemma A.2) hold in our case, and the higher-order
estimates for the splitting maps ®; ¢ and the harmonic coordinates on Q hold as well.
Then, we obtain the pointwise estimate on the second fundamental form in item (2) and
the higher-order estimate V¥ F; in item (3). We skip the details.

We will prove item (4) by contradiction. Assume that there exist a sequence 7; —0,
a constant 7p>0, and a sequence of bundle maps F;: Q;—Q which are 7;-Gromov-
Hausdorff approximations such that, for all sufficiently large i,

|’U —1’>T0 (Al)

gi

holds for a sequence of vectors v; €T}, Q; orthogonal to the fiber of F;. We assume |v|4, =1.
We take the universal cover of B,,(z;) for some sufficiently small constant r¢>0, which

gives the following equivariant C*-convergence for any k€Z, :

k

~ ~ C 5 ~ ~
(BTO ('ri)agiy Fi,l‘i) —_— (30079003 FOO7xoc)

where

TG (Bro (JJ,‘), 5?1) — (Bro (JJ,‘), Jfl)

is the Riemannian universal cover with m;(Z;)=x;, T';=m1 (B, (2;)) and T's, is a closed
subgroup in Isomg__ (Eoo) The above diagram of equivariant convergence implies that
Moot EOO—>BT0 (JCoo):Eoo/Foo is a Riemannian submersion. Let F,=F;om; and let @; be
the lift of v; to #;. Then, the C* convergence implies that ﬁi converges to T, and v;
converges to a limiting vector Uoe With |d7oe(veo)|g.. =1. This contradicts (A.1), which
completes the proof of item (4).

Based on the Gromov—Hausdorff estimate in item (1) and the second fundamental
form estimate in item (3), we can conclude that all the fibers of F; are almost flat

manifolds in the sense that
diam(Fi_l(q))2~|secF51(q)| <0; forall ge Q,

where 0;—0 as i—oo. If € is chosen sufficiently small, then items (5) and (6) follow
from Gromov and Ruh’s theorems on the almost flat manifolds and Fukaya’s fibration
theorem; see [40], [74], [36], [17]. O
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Proof of Theorem 6.3. By Theorem 3.25, there exists a fiber bundle map
Fy: A, a2 (D) — Agxzﬂz (r*)
for any sufficiently large integer j>jo such that
Fy: A?f@(?) — A14(p")

is a d;-Gromov-Hausdorff approximation, with lim;_,., 6;=0. Here, Aéﬂ (p) is the scale
down of AJ; ;.. (p) by the factor 277,
Now, we glue the above fiber bundle maps over the annuli, and thus obtain a global
fiber bundle map
F: X*\ B, (p) — Y\ B, (p*).

The procedure is well known, once we have the higher-derivative estimates on the local
bundle maps. We outline the arguments. Denote by X the cross-section of the flat cone Y.
Now, let us consider the two adjacent annuli A‘gj’zj+2 (p) and Ang,Qi+3 (p). Then, there
exists some isometry p; €Isom(X) such that |Fj4q1—p,oF;|<d; holds on the intersection
Agj+1 9j+2(p), where lim; o 0;=0. Moreover, the higher-order regularity estimates in
Theorem 3.25 implies that the above approximation can be improved to the C* sense.
Then there exists a self-diffeomorphism o;: Agi+1 9j+2(p)— Agj+1 95+2(p), which is close
to the identity map, such that F;y1=p;joF;e0;. One can choose o;: Fj_l(q)—>Fjjrl1 (q) as
the normal projection from the fiber. It is indeed a diffeomorphism, since the normal
injectivity radius of each fiber has a uniform lower bound. We refer the readers to [17,

Proposition A2.2] for more details. Using the good cut-off function

1, ifye A2_j+5/472_i+7/4 (p),
X;(y) = . 4
0, if ye X*\Agjt1 25+2(p),

given in Lemma A.2, we can construct a modified fibration
Il d *
Fy: Agj,zns (p) — Ay 9is(p )

which satisfies the properties in Theorem 3.25. Inductively, we finally obtain a global
fiber bundle map
F: X"\ Bg,(p) — Y\ Bg, (p*),

which satisfies items (1) and (2).

The estimate on the second fundamental form in item (3) depends on the special
limiting geometry in the hyperkéhler setting for the sequence A‘ff ,. There are three cases
to analyze.

e d=3. The limiting universal cover is flat, and the limit of the fibers are given by
totally geodesic lines R. Since we have convergence of the second fundamental form (see
Lemma 3.29), we get the conclusion.
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e d=2. The limiting geometry is again flat and the proof is similar to above.

e d=1. The limiting geometry is either the flat or nilpotent geometry. In the first
case, the proof is the same as above; in the second case, we make use of Lemma 3.20, and
one can compute explicitly the relation between the distance function and the coordinate

function z. O

Appendix B. Poisson’s equation on the Calabi model space

Let (C,wc) be a Calabi model space. We identify C differentiably with the product space
[2,00) x M3, where we use the moment coordinate z and M3 is a nilmanifold. We first
recall the separation of variables arguments in [46]; see [46, §4] for more details. Denote
NE={2} x93, and let A={A,}72 be the spectrum of —Aj, on the fixed slice N2 . Then,
we have Ap=(229) "1 \x +2zo-j,%, with A; >k and jp€Z>o. Given a continuous function

u on C, we can write the L? expansion
[oe]
u(z,y) =Y uk(2)-orly), yeNs,
k=0

where —Ap,pr=Arpr. The equation A,,,u=v is equivalent to the fact that, for all k,

d*up,(2)

dz? — (22 + A un(z) =v(2)-2, 2>1, (B.1)

where vy (z) is the corresponding coefficient in the expansion of v. The corresponding
homogeneous equation has two explicit fundamental solutions Fj(z) and Uy (z):
(1) if jk:)\k:Oa then

Fr(z)=2z and Uy(z)=1;
(2) if =0, Ax>0, then
Fe(z2)=eV % and Up(z)=e V7
(3) if ji>0, then

Fi(2) ze_j’“‘zz/QH_h_l(—\/fk-z) and Uk (2) ze_jk‘zz/QH_h_l(Jj;-z),

where h satisfies \y=(2h+1)j, and

H_p 1(y) E/ et =2tush gy
0
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When 55 >0, we set y=+/Ji -z and define
Fi(t)= —t*4+2ty+hlogt and Ug(t) = —t>—2ty+hlogt.

Let t; and sy be the unique positive critical points of Fy(t) and Ug(t), respectively:
y PPy y Py
=24/t and s=—Z44/ 4L
k 2+ 5 + 1 and s 2+ 5 + 1

ﬁk(z) = —%—i—Fk(tk(z)) and ﬁk(z) = —%—FU;@(sk(z)).

and define

The following two results are taken from in [46, Lemmas 4.6 and 4.7].

LEMMA B.1. The following uniform estimates hold:
Fiu(2) S0+ Fi(z)  and Up(z) < (147 )Uk(2).

LEMMA B.2. The following statements hold:
(1) ﬁk(z) is increasing for z=1 and Uy(z) is decreasing for z>1.

(2) There exists a uniform constant Cy>0 independent of k such that
0< Wk(z)fl'(eﬁk(zHﬁk(z)) < Co,
where
Wi (2) = Fi(2)Uk (2) = Fie(2)Uy,(2)
is the Wronskian of Fj and Uy,.

We set Q,,={xeC:z(x)>w}, and fix any 7€ (—00,0)\{—3}. The following result is
used in the proof of Proposition 6.23.

PROPOSITION B.3. There exists a constant C>0 such that, if vEC®(Q,,) for some
w>2 satisfies
5
Z(z(m))3z/2-|V§cv(w)|gc <b-(z(x))"  for all x € Q,,

£=0

then Ag,u=v has a solution ucC®(Q,,) satisfying

lu(z)| < C-b-(2(x))**™  for all x € Q. (B.2)
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The proof depends on the estimates of solutions to the non-homogeneous equa-

tion (B.1). We write the expansion of v as

v(z,y) = vk(2)-or(y).
k=0

In the case jr=0 and A\;=0, we set

In the case jr=0 and A\p#0, we set

_ 1 —VA v pyes — VAt
up(z) = e kz-/ eVl (t) -t dt+eV Iz eV (t)-tdt ). (B.4)
( ) 2y Ak ( w ( ) z

In the case jy€7Z, , we set

Wk(Z)/w Fi(t)-vi(t)-t dt+

u(2) = Fr(2) / T U () () dt. (B.5)

Wi(2) /.
LEMMA B.4. There exists a constant C'>0 independent of k such that, for all w>2,
any solution given by (B.3)—(B.5) satisfies
sup fuy (2)| =27 < O sup g (2) ="
zZZ2w zZZ2w
Proof. For (B.3), this is immediate. Below, we only treat the solution given by (B.5).
The case for (B.4) can be dealt with in a similar fashion. Set By=sup,,, |vk(2)]z7".

We first estimate the second term in (B.5). Applying Lemma B.1, we have

/ uk(t)-vk(t)-tdtgc-%k-/ eUr(utz)+(1+m) log(ut2) gy
z 0

We set Uy, (u)=Up(u+2)+(1+7)log(u+z). By a simple computation, if z>1, then we
have ﬁé(O):—jk-z+(1+7)z_1<0 and ﬁé’(u)<0 for all u>0. Therefore,

Uk (1) < UR(0)+UL(0)-u  for all u>0.

So, it follows that
/ Uy (t)-vi(t)-tdt < C-‘Bk'eﬁ’“(o) / Uk gy < C-‘Bk~eﬁk(z) 2T
z 0

Therefore, combining the above estimate and Lemma B.2 (2), we get

Fi(2) /OO M0k 2 9
. U)o (t) tdt <C By ————— 2217 OBy, - 2277,
Wiz ). U)ot CTWG) ¢
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For the first term of (B.5), we apply the uniform estimate in Lemma B.1, the monotonic-

ity of Fj,(z) in Lemma B.2, as well as Lemma B.2 (2), to obtain

lde) [ )
. t)-v(t)-tdt < C-By-2*17
Wiz ), TrO- k) ke
Adding up the above two terms, we obtain the conclusion. O

Proof of Proposition B.3. First, consider the case A >0. By the same computations
as in the proof of [46, Lemma 4.9], there is some constant C'>0, independent of k€Z.,
such that

)l
C-(Ag+1)7%-Voly, (9720)1/2'H(—Tho)QUHCO(mgO)

C-(Ak+1) 72 Vol (M3 )2 (22| V40| comz) +2%2(| V30| 0o (ma) +2]| V20 | co ()
C-(Ap+1)"22(z)".

| (2

<
<

It is easy to see that the same estimate also holds when Ay =0.
Now, consider the formal solution

= un(2)-¢x(y)
k=0

where ug(z) is given by (B.3)—(B.5). By Lemma B.4 and Weyl’s law, we see that u(x) is

convergent and satisfies

)| <2+ (3 i ) @) < C-(ela)

k=2

where C'>0 is independent of z€ Q,,, and w>2. O
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