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1. Introduction

A Riemannian metric g on a smooth four manifold X is hyperkähler if its holonomy

group is contained in SU(2)⊂SO(4). The latter condition is equivalent to saying that we

can choose an orientation so that the bundle Λ+X of self-dual 2-forms is trivialized by

parallel sections. In particular, on a hyperkähler 4-manifold, there is a triple of closed

self-dual 2-forms ω≡{ω1, ω2, ω3} satisfying

ωα∧ωβ =2δαβ dvolg for all α, β ∈{1, 2, 3}.
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Such a triple is called a hyperkähler triple. Notice that conversely a hyperkähler triple

uniquely determines a hyperkähler Riemannian metric. It is an important fact that

hyperkähler 4-manifolds have vanishing Ricci curvature; indeed they form the simplest

non-trivial class of Ricci-flat metrics. In this paper we systematically study degenerations

of hyperkähler 4-manifolds, focusing on the case when the volume is collapsing. Below

we describe two main geometric applications.

The first application of our study is to the moduli compactification of hyperkähler

metrics on the K3 manifold. Here, the K3 manifold K is by definition the oriented

smooth 4-manifold underlying a complex K3 surface. We know the intersection form

on H2(K;Z) has signature (3, 19). Denote by M the set of equivalence classes of all

unit-diameter hyperkähler metrics on K modulo the natural action of Diff(K), endowed

with the Gromov–Hausdorff topology. This space has an explicit description in terms of

the period map. Recall that a hyperkähler metric g has a period, which is the element

in the Grassmannian of oriented maximal positive subspaces in H2(K;R) given by the

space H+(g) of self-dual harmonic forms. Taking into account of Diff(K) action we have

a well-defined period map (see [53])

P:M−!D≡Γ\O(3, 19)/(O(3)×O(19)), (1.1)

where Γ is the automorphism group of H2(K;Z) preserving the intersection form. By

the global Torelli theorem, P is injective and maps onto an open dense subset of D.

Moreover, P extends to a bijection P:M′
!D, where M′ is the partial compactification

of M obtained by adding the volume-non-collapsing Gromov–Hausdorff limits of smooth

hyperkähler triples ; the latter are known to be hyperkähler orbifolds, and their periods

are maximal positive subspaces in H2(K;R) which annihilate at least one homology class

with self-intersection −2 (see for example [68, Chapter 6]).

We are interested in understanding the full Gromov–Hausdorff compactification �M.

The elements in �M\M′ are volume collapsing Gromov–Hausdorff limits of hyperkähler

metrics whose periods diverge to infinity in D. We prove the following structural results

for these limit spaces, and hence confirm a folklore conjecture (see for example [68,

Proposition IV]).

Theorem 1.1. Any collapsed limit in �M\M′ is isometric to one of the following :

• (dimension 3) a flat orbifold T3/Z2;

• (dimension 2) a singular special Kähler metric on S2 with local integral mon-

odromy ;

• (dimension 1) a 1-dimensional unit interval.

In this paper will actually consider the more refined notion of measured Gromov–

Hausdorff convergence, which includes the extra structure of a renormalized limit measure
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on the limit spaces (cf. §2.2). From the proof we know that in the first two cases the

limit measure is proportional to the Hausdorff measure, while in the third case the limit

measure may be non-trivial and it encodes interesting topological information of the

collapsing family (cf. [46], [78], [50], see also §3.3). Notice that in the more general context

of collapsing 4-dimensional Ricci-flat metrics, Lott [58] has obtained some classification

results of limit spaces under certain technical assumptions on the limit spaces.

There have been extensive recent work on constructing special examples of collapsing

sequences in M, which can be viewed as partial converses to Theorem 1.1. See for

instance [41], [32], [22], [46], [68], [24], [23]. In particular, any flat orbifold T3/Z2 is in
�M\M′; further work is needed in order to classify all 2-dimensional limit spaces in�M\M′

explicitly. We also mention that Odaka–Oshima [68] proposed an interesting conjecture

relating the Gromov–Hausdorff compactification �M to certain Satake compactification

of D as a locally symmetric space, and [68] made some progress toward the conjecture.

The second application of our study is concerned with the asymptotic structure of

gravitational instantons. The latter are by definition complete non-compact hyperkähler

4-manifolds (X, g) with ˆ
X

|Rmg|2 dvolg <∞.

These spaces originated from physics, but they also involve very rich geometry and

analysis. There are a variety of constructions in the literature, such as hyperkähler

quotients, twistor theory, gauge theory, complex Monge–Ampère equation, etc. Gravita-

tional instantons are important in understanding the singularity formation of collapsing

of hyperkähler metrics, since they may arise as rescaled limits around points where cur-

vature blows up. The next theorem gives a classification of the asymptotic geometry of

gravitational instantons.

Theorem 1.2. A non-flat gravitational instanton (X, g) has a unique asymptotic

cone (Y, dY , p∗) which is a flat metric cone of dimension d∈{1, 2, 3, 4}. Moreover, the

following classification holds:

• (d=4) (X, g) is ALE;

• (d=3) (X, g) is ALF;

• (d=2) (X, g) is ALG or ALG∗;

• (d=1) (X, g) is ALH or ALH∗.

The precise definition of these spaces will be given in §6.4. The above classification

result has been long sought. The most recent result is due to Chen–Chen [20] building

upon ideas from earlier work of Minerbe [63], where one assumes the extra condition

|Rm|=O(r−2−ε) for some ε>0, and obtains a classification into only the four classes

above without the superscript ∗. This weaker result is proved by studying the behavior of
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“short geodesic loops” at infinity using ODE comparison, and the asymptotic fibration is

constructed using these short loops; the hyperkähler property mainly enters as a control

on the holonomy. Our proof is based on a completely different approach. First, we

make essential use of the Cheeger–Fukaya–Gromov theory on N -structures, which has

the advantage of incorporating multi-scale collapsing phenomenon at infinity. Secondly,

we manifest the role of the hyperkähler equation itself as an elliptic PDE. These ideas

could potentially apply to more general situation.

It is also worth pointing out that there have been numerous works on the construc-

tion and classification of gravitational instantons with given asymptotics at infinity, see

for example [21]–[24], [27], [33], [44], [46], [47], [54], [55], [64] and the references therein.

In particular, it is known that all the families of gravitational instantons listed in Theo-

rem 1.2 can be compactified in the complex-analytic sense. Together with these results,

Theorem 1.2 has the following corollary, which confirms the compactification conjecture

of S.-T. Yau [83] in our setting.

Corollary 1.3. Given any gravitational instanton (X, g), there is a choice of a

complex structure J such that (X, J) is bi-holomorphic to �X\D, where �X is an algebraic

surface and D is an anti-canonical divisor.

Now we outline some ideas involved in the proof of the above results. As men-

tioned before the central goal is to understand the collapsing geometry of hyperkähler

4-manifolds with bounded L2-energy. The result of Cheeger–Tian [19] provides an ε-

regularity theorem in our context, and as a consequence we know that the collapsing is

with bounded curvature away from finitely many singularities. However, due to the lack

of a suitable monotonicity formula, there has been no progress so far in understanding

the structure of these singularities. This issue is unique compared to other geometric

analytic problems. Our study depends on three key ingredients:

• Geometric structures over the regular region (§3): we analyze the structure on the

regular region of the limit space coming from the hyperkähler structure. The analysis

depends on the dimension d of the limit space; when d=1, this was already done previ-

ously in [50]. A byproduct of this analysis is a new and simple proof of the ε-regularity

theorem in our context (see §3.4).

• Singularity structure of the limit space (§4, 5): we study in detail the singularity

structure in the cases d=3 and d=2. In particular we show that there is always a

unique tangent cone which is a metric cone. Theorem 1.1 follows from Theorem 4.3 and

Theorem 5.2. Notice again that the case d=1 in Theorem 1.1 is easy (see [50]).

• Perturbation to invariant hyperkähler metrics (§3.5 and §6): The classical theory

of nilpotent Killing structures due to Cheeger–Fukaya–Gromov [17] asserts that, over
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the regular region, the collapsing sequence inherits an approximate nilpotent symme-

try along the collapsing directions. We combine this with the perturbation theory of

hyperkähler metrics to obtain nearby hyperkähler metrics with genuine nilpotent sym-

metry. This is performed at both the local and global level. The local result improves

our understanding of the collapsing fibers (§3.5), whereas the global result yields that a

gravitational instanton with non-maximal volume growth at infinity must be asymptotic

to a model end which admits a continuous symmetry (§6.3). These allow us to prove

Theorem 1.2 in §6.4. The techniques needed here are closely related to those used in the

gluing constructions in [32], [46].

Notation

• Given a metric space (M,d) and a closed subset E⊂M , we denote

Br(E)≡{q ∈M : d(q, E)<r},

Sr(E)≡{q ∈M : d(q, E)= r},

Ar1,r2(E)≡{q ∈M : r1<d(q, E)<r2}.

• We have various notations for Gromov–Hausdorff convergence:

GH−−−! : (pointed) Gromov–Hausdorff convergence,
eqGH−−−−! : equivariant Gromov–Hausdorff convergence,
mGH−−−−! : measured Gromov–Hausdorff convergence.

• For a group G, we denote by Z(G) the center of G.

• R+≡[0,∞)⊂R.
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2. Premilinaries

2.1. Pointed Gromov–Hausdorff distance

The concept of pointed Gromov–Hausdorff convergence has been extensively used in the

literature. For our purpose in this paper, it is convenient to exploit a metric space

structure, which is likely well known, and we briefly recall the relevant notions. We

refer the readers to [73], [48] for more details. Denote by Met the collection of isometry

classes of all pointed complete length spaces (M,d, p) such that every closed ball in M

is compact.

Definition 2.1. Let (M1, d1, p1), (M2, d2, p2)∈Met. The pointed Gromov–Hausdorff

distance bwtween them is defined to be

dGH((M1, d1, p1), (M2, d2, p2))≡min
{
ε0,

1
2

}
,

where ε0⩾0 is the infimum of all ε∈
[
0, 12

)
such that there is a metric d on M1⊔M2

extending di on Mi, with d(p1, p2)⩽ε, B1/ε(p1)⊂Bε(M2) and B1/ε(p2)⊂Bε(M1).

It is straightforward to verify that dGH defines a metric on Met. One can prove that

(Met, dGH) is a complete metric space. The convergence in this metric topology is the

pointed Gromov–Hausdorff convergence. For simplicity of notation, in this paper we will

omit the word pointed and simply refer to this as the Gromov–Hausdorff convergence.

In the applications, one can also use the notion of ε-Gromov–Hausdorff approximation

(see [73]), which gives essentially the same topology.

Let (Xn
j , gj , pj) be a sequence of n-dimensional Riemannian manifolds with

Ricgj ⩾Kgj

for some K∈R and for all j. Given a sequence of numbers Rj>0, with BRj (pj) compact,

from Gromov’s compactness theorem, by passing to a subsequence we may assume that

(BRj
(pj), gj , pj)

GH−−−! (X∞, d∞, p∞)

for a complete length space (X∞, d∞, p∞). If the sequence {Rj} is unbounded, then X∞

is non-compact. Fix such a limit space (X∞, d∞, p∞). We consider the rescaled spaces

(X∞, λd∞, p∞) and let λ!∞. Any Gromov–Hausdorff limit (Y, p∗) for a subsequence

{λi}!∞ is called a tangent cone at p∞. Recall that a tangent cone is known to be a

metric cone under a volume-non-collapsing situation; but this is not always true in the

volume-collapsing case. We will denote by Tp∞⊂Met the collection of isometry classes

of all tangent cones at p∞.
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We now fix the above convergent subsequence (BRj
(pj), gj , pj). Given any subse-

quence {λj}!∞, there is a further subsequence {λmj
} such that

(BRmj
(pmj

), λ2mj
gmj

, pmj
)

GH−−−! (Z, dZ , p̄).

We call the space (Z, dZ , p̄) a bubble limit at p∞ associated to the original convergent

sequence. Denote by Bp∞ the collection of isometry classes of all bubble limits at p∞.

Immediately, Tp∞⊂Bp∞ .

Geometrically speaking, tangent cones describe the first order information of the

singular behavior of the space X∞ itself at p∞, whereas bubble limits characterize more

refined behavior for the singularity formation. The terminology should remind the readers

the notion of a bubble tree structure in many geometric analytic problems. The following

is a simple fact whose proof we leave as an exercise for the readers.

Lemma 2.2. For any p∞∈X∞, both Tp∞ and Bp∞ are compact in Met. Moreover,

Tp∞ is connected.

Later we will also use an analogous result for asymptotic cones. Let (X, dX , p) be

a complete Gromov–Hausdorff limit of a sequence of Riemannian manifolds with non-

negative Ricci curvature. An asymptotic cone of X is, by definition, a complete metric

space (Y, d, p∗) arising as the Gromov–Hausdorff limit of (X,λ−1
j dX , p) for some sequence

λj!∞. Clearly, this does not depend on the choice of the base point p. Denote by T∞(X)

the collection of isometry classes of asymptotic cones X. Similar to above, we have the

following result.

Lemma 2.3. T∞(X) is connected and compact in Met. Moreover, it is invariant

under rescaling, i.e., if (Y, dY , p∗) is in T∞(X), so is (Y, λdY , p∗) for all λ>0.

We also mention that in this paper various other notions of convergence will also be

used, such as Cheeger–Gromov convergence, equivariant Gromov–Hausdorff convergence,

etc., and the mixture of them. For definitions of these notions we refer the readers to

standard references.

2.2. Renormalized limit measure

As above, we let (Xn
j , gj , pj) be a sequence of n-dimensional Riemannian manifolds with

Ricgj⩾Kgj , such that B2(pj) is compact. Suppose that

(Xn
j , gj , pj)

GH−−−! (X∞, d∞, p∞)

for some length space (X∞, d∞). We denote by

dνj ≡
dvolgj

Volgj (B1(pj))
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the renormalized measure density on Xn
j . Then, by the work of Cheeger–Colding (see

[15, Theorem 1.10]), we know that by passing to a further subsequence, there is a Radon

measure ν∞ on X∞, called the renormalized limit measure, such that for any converging

sequence of points qj!q∞ and for all R>0, we have νj(BR(qj))−!ν∞(BR(q∞)). The

metric measure space (X∞, d∞, ν∞, p∞) is called a Ricci limit space, and we have the

measured Gromov–Hausdorff convergence

(Xn
j , gj , νj , pj)

mGH−−−−! (X∞, d∞, ν∞, p∞). (2.1)

It is known that ν∞ satisfies the relative volume comparison, and the following volume

estimate

ν∞(Br(x))⩽C ·r for all x∈X∞ and all r∈ (0, 1]. (2.2)

See [15, Theorem 1.10 and Proposition 1.22], respectively.

Definition 2.4. Let (X∞, d∞, ν∞, p∞) be a (connected) Ricci limit space of

(Xn
j , gj , νj , pj).

(1) We define the regular set R to be the set of points q∈X∞ such that there exist

constants r0>0 and C0>0, and a sequence of points qj∈Xn
j converging to q with

sup
Br0

(qj)

|Rmgj |⩽C0 for all j.

(2) We define the smooth set G⊂R to be the set of points q such that X∞ is a

smooth Riemannian manifold in a neighborhood of q. We denote by g∞ the Riemannian

metric on G.
(3) We define the singular set S≡X∞\G.

Notice that these definitions depend on the convergent sequence Xn
j . Clearly, R

is open. By Colding–Naber [28], there exist a subset R#⊂X∞ and an integer d∈Z+

such that ν∞(X∞\R#)=0 and every point in R# has a unique tangent cone which is

isometric to Rd. We call the integer d the essential dimension of X∞, and we denote it

by dimess(X∞). It is obvious that G=R∩R#, so dimess(X∞)=dimG.
In this paper we are mainly interested in the collapsing situation so from now on

we assume d<n. It is worth noting that neither R#⊂R nor R⊂R# necessarily holds

in general. Nevertheless, in §3.1, we will show that R⊂R# in our setting of collapsing

4-dimensional hyperkähler metrics.
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Fukaya [35] showed that on G the measure ν∞ has an explicit expression, namely,

its density is

dν∞ =χ·dvolg∞

for a smooth function χ determined as follows. Given q∈G, we can find qj∈Xj con-

verging to q and δ>0 such that the universal cover (B̃δ(qj), g̃j , qj , Gj) converges in the

equivariant Cheeger–Gromov sense, to a smooth limit (B̃∞, g̃∞, q∞, G∞). Here, Gj is the

fundamental group of Bδ(qj), and the identity component of G∞ is a nilpotent Lie group.

Moreover, a neighborhood of q in X∞ is isometric to the quotient B∞≡B̃∞/G∞. In this

context, we can identify the fiber Fq′ over any q
′∈B∞ of the projection map B̃∞!B∞

locally with an open neighborhood in G∞. Then, up to constant multiplication, χ is

given by the ratio between the vertical Riemannian volume form on Fq′ (of the induced

Riemannian metric from g̃∞) and a fixed left-invariant volume form on G∞.

We often write χ=e−f . As observed by Lott (see [57, Theorem 2]), using O’Neill’s

formula, the Bakry–Émery–Ricci curvature lower bound is preserved on the limit, i.e.,

on G we have

Ricn−d
g∞ ≡Ricg∞ +∇2

g∞f−
1

n−d
df⊗df ⩾Kg∞.

Although not needed in this paper, we notice the fact that globally one can say that

(X∞, d∞, ν∞) has Ricci bounded below by K in the RCD sense, i.e., it is an RCD(K,n)

space. See [1], [39] for details.

2.3. Harmonic functions

In this subsection, we introduce some standard concepts and basic results about harmonic

functions. For our purpose, we only state them on Ricci limit spaces, and we list the

references in the general RCD setting. To begin with, let (Xn
j , gj , dνj , pj) be a sequence

of n-dimensional Riemannian manifolds with Ricgj⩾0 and

dνj ≡Volgj (B1(pj))
−1 dvolgj

such that

(Xn
j , gj , νj , pj)

mGH−−−−! (X∞, d∞, ν∞, p∞).

A key ingredient in the definition of harmonic functions on a metric measure space

is the following notion of minimal weak upper gradient, which plays the role of |∇u| in
the smooth case. To define this, let us first introduce the notation of the 2-modulus of
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a family of curves. Let Γ be a family of curves on X∞. Then we define the 2-modulus

Mod2(Γ) of Γ by

Mod2(Γ)≡ inf

{ˆ
X∞

ψ2dν∞ :ψ⩾ 0 is measurable and

ˆ
γ

ψ ds⩾ 1 for all γ ∈Γ

}
.

Now, we are ready to define the minimal weak upper gradient.

Definition 2.5. (Minimal weak upper gradient) Let u be a measurable function

on X∞. A non-negative measurable function g on X∞ is said to be a 2-weak upper

gradient of a function u if, for any z1, z2∈X∞ and every rectifiable curve γ: [0, ℓ]!X∞

parameterized by arc length with γ(0)=z1 and γ(ℓ)=z2, with the exception in a family

of curves Γ with Mod2(Γ)=0, one has

|u(z2)−u(z1)|⩽
ˆ ℓ

0

g(γ(s)) ds.

The minimal weak upper gradient |∇u| of a function u is the 2-weak upper gradient such

that, for all 2-weak upper gradient g, one has |∇u|⩽|g| a.e. on X∞.

Based on the notion of minimal weak upper gradient, the Cheeger energy of u is

defined by

Ch(u)≡
ˆ
X∞

|∇u|2dν∞,

and the W 1,2-Sobolev space is defined by

W 1,2(X∞)≡{u∈L2(X∞) : Ch(u)<∞}.

It is known that the Cheeger energy is quadratic on a Ricci limit space (see [1] and [39]).

This enables us to define the following Dirichlet form

E(u, v)=
ˆ
X∞

⟨∇u,∇v⟩ dν∞ ≡ 1

2
(Ch(u+v)−Ch(u−v)),

where u, v∈W 1,2(X∞). Note that ⟨∇u,∇v⟩ is a well-defined L1-function, but ∇u itself

is not defined in general. We also point out that E(u, v) coincides with the standard

Dirichlet form in the smooth case.

Definition 2.6. (Harmonic function) Let Ω⊂X∞ be an open set. A function u∈
W 1,2(Ω) is said to be harmonic if E(u, φ)≡0 for all Lipschitz functions φ with compact

support in Ω.

We will use the following weak Harnack inequality.
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Theorem 2.7. (Weak Harnack inequality) Let (X∞, d∞, ν∞, p∞) be a Ricci limit

space. For any p>0, there exists some constant C=Cp>0 depending only on p such

that, if u is a non-negative harmonic function on B2(p∞), then(ˆ
B2(p∞)

updν∞

)1/p
⩽C ·ess inf

B1(p∞)
u.

This theorem indeed holds in the very general context of metric measure spaces under

appropriate assumptions; see [10, Theorem 4.21, Corollary 4.24 and Theorem 9.7]. For

completeness, we briefly explain the crucial technical ingredients involved in the proof

of Theorem 2.7. First, the space is required to support the (1, p)-Poincaré inequality,

i.e., there exists some constant CPI>0 depending on p such that, for any function u∈
L1(Br(x)) with x∈X∞ and r>0, and for all upper gradients g of u, it holds that

ˆ
Br(x)

|u−ux,r|dν∞ ⩽CPI ·r·
(ˆ

Br(x)

gp dν∞

)1/p
,

where

ux,r ≡
 
Br(x)

u dν∞.

In the context of Ricci limit spaces, the above (1, p)-Poincaré inequality (for all p⩾1)

follows from Cheeger–Colding’s segment inequality; see [16, Theorem 2.15]. Secondly,

one needs to apply the technique of Moser’s iteration, which requires a uniform Sobolev

inequality. This follows from the Poincaré inequality and the volume comparison for the

renormalized limit measure; see of [10, Theorem 4.21].

Now we consider the setting of §2.2. On the smooth set G we have a Riemann-

ian metric g∞, and a measure density dν∞=e−f dvolg∞ . Suppose Bδ(p∞)⊂G, then a

function u on Bδ(p∞) is harmonic if and only if ∆ν∞u=0 on Bδ(p∞), where

∆ν∞u≡∆g∞u−⟨∇g∞f,∇g∞u⟩

is the Bakry–Émery Laplace operator. Locally, if we pull-back to B̃∞, then it is easy to

see that ∆ν∞u=∆g̃∞u. We have the following Cheng–Yau-type gradient estimate (see

[71, Theorem 2.1])

Theorem 2.8. (Gradient estimate) Suppose that (G, g∞, dν∞) satisfies Ricn−d
g∞ ⩾0.

Then, there exists a constant C0=C0(n)>0 such that any positive harmonic function u

defined on B2r(x)⊂G satisfies

sup
Br(x)

|∇ log u|⩽C0r
−1.
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2.4. Deformation of definite triples

Here we review [29], [32], [46]. Let X be an oriented smooth 4-manifold, possibly non-

compact or with boundary, and fix a volume form dvol0. Let ω≡{ω1, ω2, ω3} be a triple

of closed 2-forms on X. Write ωα∧ωβ=2Qαβ dvol0 for 1⩽α, β⩽3.

Definition 2.9. ω is called a definite triple if the matrix-valued function Q≡(Qαβ)

is positive definite everywhere on X.

A definite triple ω uniquely determines a Riemannian metric gω such that each ωα is

self-dual with respect to gω and the volume form is given by dvolgω=(det(Q))1/3 dvol0.

Denote by Ω+ the space of self-dual 2-forms (with respect to gω) on X. Below we

will often identify an element in Ω+⊗R3 (i.e., a triple of self-dual 2-forms) with a 3×3

matrix-valued function: η∈Ω+⊗R3 corresponds to (Aαβ) if ηα=
∑

β Aαβωβ .

Definition 2.10. A definite triple ω is called hyperkähler if the metric gω is hy-

perkähler, or equivalently, if the normalized determinant Qω≡(det(Q))−1/3Q is the iden-

tity matrix.

Fix a definite triple ω. Consider a deformation ω′=ω+θ for a triple θ of closed 2-

forms. Decompose θ=θ++θ−, where θ+ is self-dual and θ− is anti-self-dual with respect

to gω. Then, as above, we may identify θ+ with a matrix-valued function A=(Aαβ).

Define the matrix-valued function Sθ−≡(Sαβ) via

θ−
α∧θ

−
β =2Sαβ dvolgω , 1⩽α, β⩽ 3.

If ω′ is definite, then the hyperkähler condition on ω′ can be expressed as

tf(QωA
T +AQω+AQωA

T )= tf(−Qω−Sθ−), (2.3)

where we denote by tf(B)=B− 1
3 Tr(B) Id the trace-free part of a matrix B. Let S0(R3)

be the space of trace-free symmetric 3×3 matrices, and consider the non-linear map

G:S0(R3)−!S0(R3),

A 7−! tf(QωA
T +AQω+AQωA

T ).

Then, G is a local diffeomorphism near zero, and we denote by F:U!S0(R3) its local

inverse, where U is a small neighborhood of zero. A sufficient condition for (2.3) to

hold is

A=F(tf(−Qω−Sθ−)). (2.4)

Notice this is only a necessary condition, if we assume a priori that the matrix A above

is symmetric and trace-free.
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We now impose the ansatz

θα = dd∗
(∑

β

fαβωβ

)
,

where f≡(fαβ) is a 3×3 matrix-valued function, and the Hodge ∗-operator is defined

with respect to the metric gω. We can write this concisely as

θ= dd∗(f ·ω).

Define the non-linear operator

F : Ω+⊗R3 −!Ω+⊗R3,

f 7−!D(f)+N0(f),
(2.5)

where D(f)≡d+d∗(f ·ω) and N0(f)≡−F(tf(−Qω−Sd−d∗(f ·ω))). Strictly speaking, F (f)

is only well defined when |f |C2
ω
is small (so that tf(−Qω−Sd−d∗(f ·ω)(x)) is in U for all

x∈X). Clearly, (2.4) follows if F (f)=0.

If ω is hyperkähler, then ∇gωω≡0. In this case, we have D=−∆ω, where ∆ω is the

analyst’s Laplace operator. In general, we have

d+d∗(f ·ω)=−(∆ωf)·ω+∇ωf ⋆∇ωω, (2.6)

where ⋆ denotes a general tensor contraction. This follows from the following lemma.

Lemma 2.11. (See also [47]) Given a closed self-dual 2-form γ and a function f ,

we have

d+d∗(fγ)= (−∆ωf)γ+∇ωf ⋆∇ωγ.

Proof. Given a point p0. We choose a local oriented orthonormal frame {ei} with

dual co-frame {ei}, such that ∇ωei(p0)=0 and, in a neighborhood of p0, the bundle

Λ+(X) of self-dual 2-forms on X is spanned by e12+e34, e13+e42 and e14+e23, where

eij≡ei∧ej . Since γ is closed and self-dual, we have d+d∗(fγ)=d+∗(df∧γ). We write

γ=
∑

i<j γije
ij , with γ12=γ34, γ13=−γ24 and γ14=γ23. Then, the conclusion follows

from straightforward computation, using the fact that

∆ωf =−
4∑

i=1

eieif at p0.

We also notice that algebraically we have the pointwise estimate

|N0(f)−N0(g)|⩽C
(
|∇2

ωf |ω+|∇2
ωg|ω

)
·|∇2

ω(f−g)|ω, (2.7)

as long as f and g are in the domain of definition of F .

We now assume that F (f)=L (f)+N (f), where L is a linear operator. In our

applications L will be a slight modification of −∆ω. The following is an application of

the standard quantitative implicit function theorem on Banach spaces.
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Proposition 2.12. Suppose that we have two Banach spaces (A, ∥ · ∥) and (B, ∥ · ∥),
and numbers η>0 and L>0, such that the following statements hold :

(1) A⊂C2(Ω+⊗R3) and B⊂C0(Ω+⊗R3);

(2) for all f∈Bη(0)⊂A, the triple ω+dd∗(f ·ω) is definite, and

tf(Qω(x)+Sd−d∗(f ·ω)(x))∈U for all x∈X;

(3) L and N are both differentiable maps from Bη(0)⊂A to B;

(4) there exists a bounded linear map P:B!A with L �P=Id and ∥P∥⩽L;
(5) ∥N (f)−N (g)∥⩽(3L)−1∥f−g∥ for all f , g∈Bη(0)⊂A;

(6) ∥F (0)∥⩽η(3L)−1.

Then, we can find an f∈A that solves F (f)=0 and satisfies

∥f∥⩽ 2L∥F (0)∥.

In particular, ω̃=ω+dd∗(f ·ω) is a hyperkähler triple.

In practice, condition (2) will be achieved by making sure that |dd∗(f ·ω)|ω is small

for all f∈Bη(0), which in particular guarantees that ω̃ is equivalent to ω. The above

strategy was used for example by Foscolo [32] (see also [46]) to construct degeneration

families of hyperkähler metrics on the K3 manifold with precise geometric information.

The main technical issue, there, is to find a right inverse L with uniform estimates on

suitable weighted spaces. In the setting of a K3 manifold due to topological reasons

∆ω can not be surjective; this is circumvented by the extra freedom of adding a finite-

dimensional space of self-dual harmonic forms.

For our purpose in this paper, we will work on manifolds with boundary (and possibly

non-compact), so we do not encounter the topological obstruction to the surjectivity

of ∆ω. We also make the trivial observation that, assuming that we have a compact

group G acting on X preserving ω, if the assumptions (1)–(6) of Proposition 2.12 hold

for G-invariant objects, then we can find a nearby hyperkähler triple ω̃ which is also

G-invariant.

Another remark is that the ansatz used in [32], [46] is slightly different from what

is used above. Namely, in those situations, one would write θ=dη+ξ for a triple of d∗-

closed 1-forms η and a triple of self-dual harmonic forms ξ. The corresponding linearized

operator involves the Dirac operator d∗+d+ acting on 1-forms. In our formulation above,

we have further specified η=d∗(f ·ω). This provides some technical simplifications, since

it allows us to only deal with elliptic operator on functions. To our knowledge this trick

goes back to Biquard [7] (see also [47]).
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3. Geometric structures over the regular region

In this section, we consider a measured collapsed Gromov–Hausdorff limit

(Xd
∞, d∞, p∞, ν∞)

of a sequence of hyperkähler 4-manifolds (X4
j , gj , pj , νj) with

d≡dimess(X
d
∞)< 4.

We will always fix a choice of hyperkähler triple ωj on X
4
j . Our goal is to understand the

refined geometric structure on the regular region R⊂Xd
∞ inherited from the hyperkähler

structure on X4
j . Notice that, due to volume collapsing, one cannot make obvious sense

of convergence of the hyperkähler triples ωj . Instead, we will take the limit of ωj on local

universal covers, which descends to a local structure on R, then gluing them together

yields certain global structure on R. The precise structure we obtain on R depends on

its dimension d.

Now, we make the above description rigorous. Without loss of generality, we always

assume p∞∈R in this section. Then, there exists some δ>0 independent of j such that

the universal cover B̃j of Bj≡Bδ(pj) is volume-non-collapsing as j!∞. Let Gj be the

deck transformation group and ω̃j be the pullback of ωj to B̃j . The isometry action of

Gj preserves ω̃j . Passing to a subsequence, we have the equivariant Gromov–Hausdorff

convergence

(B̃j , g̃j , Gj , p̃j)

πj

��

eqGH
// (B̃∞, g̃∞, G∞, p̃∞)

π∞

��

(Bj , gj)
GH // (Bδ(p∞), g∞),

where G∞⩽Isom(B̃∞) is a closed subgroup such that Bδ(p∞)=B̃∞/G∞. We refer the

reader to [37, Definition 3.3] for the detailed definition of equivariant Gromov–Hausdorff

convergence. Also, the standard regularity theory for non-collapsing Einstein metrics

implies that the convergence of B̃j can be improved to the Ck-convergence for any k∈Z+.

Then, we obtain a smooth limit hyperkähler triple ω̃∞ on B̃∞ which is preserved by G∞.

In the following proposition, we make the observation that any point in the regular

set R is a manifold point.
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Proposition 3.1. In our setting, R∩S=∅. In particular, R⊂R#.

Proof. To prove the proposition, we claim that G∞ acts freely on B̃∞. To see this,

suppose otherwise that p̃∞ is a fixed point of some non-trivial element ϕ∈G∞ such that

there exists a sequence of ϕj∈Gj that converges to ϕj equivariantly.

Now, using the exponential map at p̃∞, we may identify the action of ϕ with the

linear action L=dϕ on Tp̃∞B̃∞. As G∞ preserves ω̃∞, we may identify Tp̃∞B̃∞ with the

quaternions H, so that dϕ acts by left multiplication by a unit quaternion. In particular,

1 is not an eigenvalue of L. Now for any sufficiently large j, we may write ϕj∈Gj as

ϕj =L+Ej ,

where ∥Ej∥C2 is small. By a simple application of the implicit function theorem, we see

that, for j large, ϕj must also have a nearby fixed point. This contradicts the fact that

the Gj action is free.

Remark 3.2. Here, we used crucially the property that SU(2)(∼=Sp(1)) acts freely on

the unit sphere S3. This proposition was also implicitly proved in [20] using a different

argument.

Using similar arguments, we also obtain the following result.

Proposition 3.3. The Lie group G∞ is connected.

Proof. Notice that the projection map B̃∞!B∞ has connected fibers, on which

G∞ acts transitively. Then, the conclusion follows from the fact that the G∞ action

is free.

We now divide the discussion into three cases, depending on the dimension d. The

case d=1 was studied in detail in [50]. So our main focus below is in the other two cases

d=2 and d=3.

3.1. Case d=3

3.1.1. Geometric structure on R

In this case G∞=R. Choosing a generator of G∞ gives a Killing field ∂t on B̃∞ which

preserves the hyperkähler triple ω̃∞. Shrinking B̃∞ if necessary, we may assume that

there is a triple of moment maps for ∂t with respect to ω̃∞ given by

π∞ =(x, y, z): B̃∞ −!R3.

These serve as local coordinates on R, and the Riemannian metric g∞ can be written as

g∞ =V (dx2+dy2+dz2),
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where V =|∂t|−2 satisfies ∆V −1g∞V =0. This is the well-known description of hyperkähler

metrics with an R symmetry, i.e., the Gibbons–Hawking ansatz ; see [?], [49] for details

of the construction. We can write the hyperkähler triple on B̃∞ as
ω̃∞,1 =V dx∧dy+dz∧θ,
ω̃∞,2 =V dy∧dz+dx∧θ,
ω̃∞,3 =V dz∧dx+dy∧θ,

where θ is the 1-form dual to ∂t. See [41, §2] or [46, §2] for more details. By the discussion

in §2.2, the renormalized limit measure ν∞ has the expression

dν∞ = c·e−f dvolg∞ , f = 1
2 log V, c∈R+. (3.1)

Moreover, the Bakry–Émery–Ricci tensor is non-negative:

Ric1g∞ ≡Ricg∞ +∇2
g∞f−df⊗df ⩾ 0.

An immediate consequence of (3.1) is that the function V is well defined, up to a global

multiplicative constant on each connected component of R. Fixing a choice of V deter-

mines the Killing field ∂t, and hence the exact frame {dx, dy, dz}, up to multiplication

by ±1. In particular, R is endowed with an affine structure with monodromy contained

in R3⋊Z2⊂Aff(R3). It is easy to see that V is a harmonic function on B̃∞. Therefore,

on R, we have ∆ν∞V =0.

Definition 3.4. A special affine structure on a 3-manifold Y 3 is an affine structure

with monodromy contained in R3⋊Z2.

In particular, a special affine structure determines a flat Riemannian metric g♭ on Y 3,

up to constant multiplication. In local special affine coordinates (x, y, z) we have that

g♭ =C(dx2+dy2+dz2).

Definition 3.5. A function u on a special affine 3-manifold is harmonic if

∆g♭u=0.

Definition 3.6. A special affine metric on a 3-manifold Y 3 consists of a special affine

structure together with a smooth Riemannian metric g such that g=V g♭, for a positive

harmonic function V on Y 3.

Here V is well defined, up to constant multiplication. A choice of V determines

the flat metric g♭=V −1g, which we call the flat background geometry ; it also yields a

measure ν with density dν=V −1/2 dvolg, so as a metric measure space we have Ric1g⩾0.

Our discussion above shows the following result.
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Proposition 3.7. In case d=3, R is endowed with a special affine metric structure.

Notice that, if we perform hyperkähler rotations, i.e., changing the choice of hy-

perkähler triples on each X4
j , then the resulting metric is unchanged but the affine

structure undergoes a rotation in SO(3).

3.1.2. Convergence of special affine metrics

Now, we discuss the convergence of special affine metrics. Suppose that we are given a

sequence of special affine metrics (Y 3
i , gi, pi) such that B2(pi) is compact. We can first

normalize the harmonic function Vi on Yi by requiring Vi(pi)=1. This fixes the measure

dνi=V
−1/2
i dvolgi . As Ric1gi⩾0, by Theorem 2.8, we have 0<C−1⩽Vi⩽C uniformly on

B3/2(pi). Hence, the diameter of B1(pi) with respect to the flat background metric g♭i is

also uniformly bounded above and below. Then, by passing to a subsequence, we have

(B1(pi), g
♭
i , pi)

GH−−−! (Z∞, d∞, p∞).

If dimess Z∞=3, then it is a flat 3-manifold. Since ∆g♭
i
Vi=0, the uniform L∞ bound

on Vi gives uniform interior bounds on all derivatives. In particular, passing to a further

subsequence, we may assume that the local frames {dxi, dyi, dzi} converge smoothly to a

limit, giving a special affine structure on Z∞, and the function Vi converges smoothly to

a limit harmonic function V∞. Globally it follows that in this case Y 3
∞ is also a smooth

3-manifold with a special affine metric, and the convergence of Y 3
i to Y 3

∞ is smooth.

If dimess Z∞<3, then the flat metrics g♭i collapse. Using the fact that the monodromy

is contained in R3⋊Z2, it is easy to see that, for i large, g♭i is locally isometric to a product

Tk×R3−k, k=1, 2, for some flat torus Tk and Euclidean space R3−k. Passing to local

universal covers, we may assume that Vi still converges smoothly. Notice that, through

each point in B1(pi)⊂Y 3
i , there is a unique flat totally geodesic Tk with respect to g♭i ,

which are all isometric as the point varies.

The upshot of the above discussion is that we have a good understanding of conver-

gence of special affine metrics. In particular, we always have a-priori interior curvature

bound and its covariant derivatives.

3.2. Case d=2

3.2.1. Geometric structure on R

In this case, we have G∞=R2. Fixing a basis of G∞ yields two Killing fields {∂t1 , ∂t2}
on B̃∞, which preserve the limit triple ω̃∞. Choose moment maps xαj for the vector
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field ∂tα with respect to the symplectic form ω̃j
∞. Since [∂t1 , ∂t2 ]=0, we have

d(L∂t1
x2j)=L∂t1

dx2j =0,

so ∂t1x2j is a constant. It then follows that there is a unit vector a=(a1, a2, a3)∈R3

such that ∂t1
∑

j ajx2j=0. Rotating the hyperkähler triple by an element in SO(3), we

may assume a=(1, 0, 0). Then, we have ω̃1
∞(∂t1 , ∂t2)≡0; in other words, the G∞ orbit is

Lagrangian with respect to ω̃1
∞. Notice the choice of a (hence of ω̃1

∞) is only unique up

to SO(2) rotation, but we will fix a choice in the following discussion. Then, we obtain

local moment maps π=(x1, x2): B̃∞!R2 for the G∞ action with respect to ω̃1
∞. We can

view (x1, x2) as local coordinates on R which depend on the choice of the basis of G∞,

so are well defined, up to R2⋊GL(2;R) action. We set

Wαβ ≡ g̃∞(∂tα , ∂tβ ), 1⩽α, β⩽ 2,

and let (Wαβ) be the inverse matrix of (Wαβ). Clearly these descend to B̃∞/G∞⊂R. As

in [78, §2.5], it is easy to see, using the hyperkähler equation, that on B̃∞/G∞ we have{
det(Wαβ)=C > 0,

∂xγ
Wαβ = ∂xβ

Wαγ , 1⩽α, β, γ⩽ 2.
(3.2)

Moreover, the metric g∞ is given by

g∞ =Wαβ dxα dxβ+W
αβθαθβ , (3.3)

where θα is the dual 1-form of the Killing field ∂tα .

The second equation in (3.2) implies that locally we can write (Wαβ) as the Hessian

(ϕαβ) of a convex function ϕ. We can rescale the coordinates {x1, x2} simultaneously

by a constant, so that C=1 in (3.2). In terms of the normalized local coordinates, we

obtain an affine structure on R with monodromy group contained in R2⋊SL(2;R), and
a Riemannian metric g∞=ϕαβ dxα dxβ , with det(ϕαβ)=1.

The discussion in §2 implies that in this case the renormalized limit measure

ν∞ = dx1∧dx2

is simply the volume measure of g∞. Also, we have Ricg∞⩾0. As R has real dimension 2,

the metric g∞ defines a complex structure J on R via the Hodge star operator:

J dx1 =−ϕ12dx1+ϕ11dx2 and J dx2 =−ϕ22dx1+ϕ12dx2.

The corresponding Kähler form is ω=dx1∧dx2. Let ∇ be the flat connection defined by

the affine structure. Then, we have ∇ω=0 and d∇J=0, where

d∇J(ξ, η)≡ (∇ξJ)(η)−(∇ηJ)(ξ).

We now recall the following definition.
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Definition 3.8. ([34]) A special Kähler manifold is a Kähler manifold (M,ω, I) to-

gether with a torsion-free flat symplectic connection ∇ satisfying d∇I=0.

Therefore, we have proved the following result.

Proposition 3.9. If d=2, then R is endowed with a special Kähler structure.

Remark 3.10. Notice that the construction depends on the symplectic form ω̃1
∞ that

we choose at the beginning.

By [34], once we fix the choice of local affine coordinates x1 and x2, there i+s a pair

of conjugate special holomorphic coordinates z and w, such that

Re(z)=x1 and Re(w)=−x2.

They are unique, up to transformations z 7!z+c and w 7!w+c′ for c, c′∈
√
−1R. With

respect to these special holomorphic coordinates, the monodromy is then contained in
√
−1R2⋊SL(2;R). Moreover, the Kähler form can be written as

ω=

√
−1

2
Im(τ) dz∧dz̄, (3.4)

where the local holomorphic function τ≡∂w/∂z satisfies Im(τ)>0. We can view τ as a

multi-valued holomorphic map from Z to the upper half-plane H.

If we go around a loop γ, then we obtain new local special holomorphic coordinates

(z̃, w̃), with affine transformation given by

(
z̃

w̃

)
=

(
a b

c d

)(
z

w

)
+

(
c1

c2

)
. (3.5)

In particular,

τ̃ =
dτ+c

bτ+a
.

For notational convenience, we call the following matrix the monodromy matrix along γ:

Aγ ≡
(
d c

b a

)
∈SL(2;R)

So we have a monodromy representation

ρ:π1(R)−!SL(2;R),

γ 7−!Aγ ,
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which is well defined up to conjugation, i.e., up to the choice of the base point and the

local special holomorphic coordinates around the base point.

Conversely, suppose that we are given a Riemann surface Z with a Kähler metric ω.

If we can find local conjugate holomorphic coordinates (z, w) with τ=∂w/∂z satisfying

Im(τ)>0, such that (3.4) holds and the monodromy for (z, w) along any loop is contained

in SL(2;R). Then, there is a unique special Kähler structure on Z associated to the

metric ω, so that Re(dz) and Re(dw) are parallel with respect to the associated torsion-

free connection ∇.

Definition 3.11. Let M be a special Kähler Riemann surface. We say that

• M has integral monodromy if the monodromy representation ρ:π1(M)!SL(2;R)
is conjugate to a representation in SL(2;Z);

• M has local integral monodromy if the monodromy matrix associated to each loop

γ in M is conjugate to an element in SL(2;Z).

In general, the two notions are not equivalent; see Remark 3.18. Now we give some

singularity models.

Example 3.12. A flat metric cone

ω=

√
−1

2
β2|ζ|2β−2dζ∧dζ̄, β ∈ (0, 1)

on C∗ induces a natural special Kähler structure, with local special holomorphic coordi-

nates given by z=ζβ and w=
√
−1z, so that τ=

√
−1. The monodromy matrix around

the generator of π1(C∗) is

Rβ =

(
cos(2πβ) − sin(2πβ)

sin(2πβ) cos(2πβ)

)
We denote by Cβ such a special Kähler cone. By [34], the cotangent bundle T ∗Cβ admits

a canonical flat hyperkähler metric.

Remark 3.13. [34] showed that, on a special Kähler manifold, there is a globally

defined holomorphic cubic differential, given in local special holomorphic coordinates by

Θ=
∂τ

∂z
dz⊗3.

Moreover, the scalar curvature satisfies S=4|Θ|2. In particular, Θ≡0 if and only if the

metric is flat. Using this, one can see that, if a special Kähler metric is flat, then the flat

symplectic connection ∇ agrees with the Levi-Civita connection. So, the special Kähler

structure is uniquely determined by the flat Kähler metric itself.
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Example 3.14. Consider the metric on the punctured unit disk (D∗, ζ) given by

ω=−
√
−1

4π
(log |ζ|) dζ∧dζ̄.

This has a global special holomorphic coordinate z=ζ, and local conjugate coordinate

w=−
√
−1

2π
z log z+

√
−1

2π
z.

The period map is

τ =−
√
−1

2π
log ζ.

The monodromy around the generator of π1(D∗) is given by

I1 =

(
1 1

0 1

)
.

The tangent cone is the flat space R2 with standard special Kähler structure.

Example 3.15. Consider the metric on (D∗, ζ) given by

ω=−
√
−1

32π
|ζ|−1 log |ζ|dζ∧dζ̄.

We can use z=
√

1
2ζ to be a local special holomorphic coordinate. The period map is

τ =−
√
−1

2π
log ζ.

The monodromy is given by

I∗1 =

(
−1 −1

0 −1

)
.

The tangent cone is the flat cone R2/Z2, with monodromy R 1
2
. Indeed, the metric here

is a Z2 quotient of the metric in the previous example.

We will need the following elementary results on the classification of conjugacy

classes in SL(2;R) and in SL(2;Z).

Lemma 3.16. Let A be an element in SL(2;R). Then, the following holds:

(1) if A is parabolic, i.e., |Tr(A)|=2, then A is SL(2;R) conjugate to Id, − Id, I1,

I−1
1 , I∗1 , or (I∗1 )

−1;

(2) if A is elliptic, i.e., |Tr(A)|<2, then A is SL(2;R) conjugate to Rβ for some

β∈(0, 1)\
{

1
2

}
;

(3) if A is hyperbolic, i.e., |Tr(A)|>2, then A is SL(2;R) conjugate to

Dr =

(
r 0

0 r−1

)
for some r /∈{0, 1,−1}.
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Lemma 3.17. Let A be an element in SL(2;Z). Then, the following holds:

• if A is elliptic, then A is SL(2;Z) conjugate to one of the following :

R̃1/4 ≡
(
0 −1

1 0

)
, R̃3/4 ≡

(
0 1

−1 0

)
, R̃1/6 ≡

(
1 −1

1 0

)
,

R̃1/3 ≡
(
0 −1

1 −1

)
, R̃2/3 ≡

(
−1 1

−1 0

)
, R̃5/6 ≡

(
0 1

−1 1

)
.

(3.6)

• if A is parabolic, then A is SL(2;Z) conjugate to one of the following :

In ≡
(
1 n

0 1

)
(n∈Z), I∗n ≡

(
−1 −n
0 −1

)
(n∈Z),

R̃1 ≡ Id, R̃1/2 ≡− Id .

Notice that each R̃β is SL(2;R) conjugate to Rβ , so it is a rotation of R2 that

preserves a lattice.

3.2.2. Convergence of special Kähler structures

Let (Mi, pi) be a sequence of 2-dimensional manifolds with special Kähler metrics (ωi, Ji),

where B2(pi) is compact. Since the curvature is non-negative, passing to a subsequence

we first obtain a Gromov–Haudorff limit (M∞, d∞, p∞). For our purpose, we may assume

that M∞ is not a single point.

Let Ũi be the universal cover of B2(pi), endowed with the induced special Kähler

structure. Then, it has trivial monodromy representation. Let p̃i be a lift of pi, and let

(zi, wi) be a choice of special holomorphic coordinates on Ũi. Then, we can write

ω̃i =

√
−1

2
Im(τi) dzi∧dz̄i

for some holomorphic function τi. Applying a linear transformation to (zi, wi) by an

element in SL(2;Z) we may assume that

Re(τi(p̃i))∈
[
−1

2
,
1

2

]
and Im(τi(p̃i))⩾

√
3

2
.

Then, replacing (zi, wi) by (λ−1
i zi, λiwi) for a suitable λi>0, we may further assume that

Im(τi(p̃i))∈
[√

3

2
, 1

]
.
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Notice that Im(τi) is a positive harmonic function on Ũi, so by Theorem 2.8 we have

|log Im(τi)|⩽C uniformly on B3/2(p̃i). Then, on this ball, the metric ω̃i is uniformly

equivalent to the flat metric ω̃♭
i=Im(τi)

−1ω̃i. Then, clearly, we have local smooth con-

vergence of ω̃♭
i by identifying each ball (B1(p̃i), zi) holomorphically with a domain in

(C, z). Then, passing to a subsequence, we may assume that Im(τi) converges smoothly,

and hence we obtain a smooth limit Kähler metric (B1(p̃∞), ω̃∞).

Since Im(τi) is harmonic and bounded, its derivative is uniformly bounded on B1(p̃i).

Using the Cauchy–Riemann equation and the assumption that Re(τi(p̃i))∈
[
− 1

2 ,
1
2

]
, one

can show that Re(τi) is also uniformly bounded on B1(p̃i), so, passing to a further

subsequence, we may assume that τi converges smoothly to a limit τ∞. At the same

time, since τi=∂wi/∂zi, we may ensure the holomorphic function wi also converges to a

limit w∞. Then, we can write

ω̃∞ =

√
−1

2
Im(τ∞) dz∞∧dz̄∞.

In particular, there is a special Kähler structure on the limit space B1(p̃∞).

A consequence of the above discussion is that, for a special Kähler metric, we have a-

priori interior curvature bound, as well as its covariant derivatives. It is worth mentioning

that, even though not needed in this paper, the above arguments hold for special Kähler

metrics in any dimension.

Now we divide into two cases.

Case 1. Vol(B2(pi))⩾κ uniformly for some κ>0. In this case, M∞ is a smooth

Riemann surface and the Mi’s converge smoothly to M∞ in the Cheeger–Gromov sense.

We may assume the Kähler metrics ωi converge smoothly to a limit ω∞ on M∞.

We claim that, by passing to a further subsequence, M∞ can be naturally endowed

with a special Kähler structure. To see this, first we may find a δ>0 such that Bδ(pi) is

diffeomorphic to a ball, for all i large. Then, in the above discussion, we can directly work

with the ball Bδ(pi), and find special conjugate holomorphic coordinates (zi, wi) which

converge to (z∞, w∞) on Bδ(p∞). Now, for any q∈M∞ which is the limit of qi∈Mi, we

can choose a path γ in M∞ connecting p and q. Using the smooth convergence of Mi

to M∞, we may view γ as a path γi in Mi (for i large) connecting pi and qi. Then,

we can analytically continue the special holomorphic coordinates (zi, wi) along γi to

obtain special coordinates in a neighborhood of qi. Applying the Harnack inequality for

Im(τi) along γi, we see that |log Im(τi)| is uniformly bounded along γ, which implies a

uniform bound of |∇ωi
zi| and |∇ωi

wi| along γ. Passing to a subsequence, we may assume

that (zi, wi) converges uniformly to (z∞, w∞) along γ. In particular, (z∞, w∞) serve as

local conjugate holomorphic coordinates in a neighborhood of q. Now, these coordinates
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depend on the homotopy class of γ. But the fact that Mi has monodromy contained

in SL(2;R) implies that the limit special holomorphic coordinates also have monodromy

contained in SL(2;R). So, we obtain a global special Kähler structure on M∞.

By the above construction, we also have the convergence of the conjugacy classes of

monodromy representations. More precisely, if we fix a choice of the monodromy rep-

resentation ρi:π1(Mi; pi)!SL(2;R) (for example, by fixing a choice of special conjugate

holomorphic coordinates in a neighborhood of pi), then there exists some Pi∈SL(2;R)
such that, for every σ∈π1(M∞; p∞),

lim
i!∞

PiAσ,iP
−1
i =Aσ,∞, (3.7)

where we denote by Aσ,i and Aσ,∞ the monodromy matrix of the special Kähler structure

on Mi and M∞ along the loop σ, respectively. An immediate consequence is that

TrAσ,∞ = lim
i!∞

TrAσ,i. (3.8)

Case 2. Vol(B2(pi))!0 as i!∞. Then, we know thatMi collapses with locally uni-

formly bounded curvature along circle fibrations. Let σi be a loop inMi corresponding to

the collapsing circle fiber. Since on the local universal cover we have smooth convergence

of the special Kähler metrics, it follows easily that we can find Pi∈SL(2;R) with

lim
i!∞

PiAσi,iP
−1
i =Id. (3.9)

In particular, Aσi,i must be conjugate to Id, I1 or I−1
1 , for i large.

Remark 3.18. If Mi has integral monodromy for all i, then in the above Case 1

the limit M∞ must have local integral monodromy. To see this, we make a choice

of local conjugate special holomorphic coordinates (zi, wi) near pi such that the in-

duced monodromy matrices along all the loops are integral. Then, we look at more

closely the above discussion. First, by a transformation in SL(2;Z), we may assume that

Re(τi(pi))∈
[
− 1

2 ,
1
2

]
. Now, if Im(τi(pi) is bounded, then we may take Pi=Id in the above,

and it follows that Aσ,∞∈SL(2;Z) for all loops σ based at p∞. In this case, M∞ indeed

has integral monodromy. If Im(τi(pi)) is unbounded, then we may take

Pi =

(
λ−1
i 0

0 λi

)
,

and we must have λi!0. Write

Aσ,i =

(
ai bi

ci di

)
∈SL(2;Z) and Aσ,∞ =

(
a b

c d

)
∈SL(2;R).
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Then, (3.7) implies that, for i large, ai≡a, di≡d and

lim
i!∞

λ2i ci = c and lim
i!∞

λ−2
i bi = b.

So, for i large, we must have bi=b=0 and ai=di=±1. Therefore, we know that Aσ,∞ is

parabolic, and hence is conjugate to a matrix in SL(2;Z).
On the other hand, without extra assumptions, one cannot expect M∞ to have

integral monodromy globally. For example, consider the punctured domain Ω=D\
{
0, 12

}
endowed with the special Kähler metrics

ωm,n =

(
−m log |z|−n log

∣∣∣∣z− 1

2

∣∣∣∣)√
−1

2
dz∧dz̄.

These obviously have integral monodromy. Now, we take a sequence mj , nj!∞ such

that the ratio mj/nj converging to an irrational number. Then the limit of m−1
j ωmj ,nj

has local integral monodromy but the global monodromy is not integral.

3.2.3. Singular special Kähler metric

We refer the reader to [12], [43] for discussion on local models of more general singularities

of special Kähler metrics. For the convenience of our later discussion, we introduce the

notion of a singular special Kähler metric adapted to our context.

Definition 3.19. A singular special Kähler metric on a 2-dimensional Riemann sur-

face M is a smooth special Kähler metric ω on M \{p1, ..., pk} such that, near each pi,

there exists δ>0 and a holomorphic embedding Bδ(pi)\{pi} into a domain in (C∗, ζ)

which extends to a topological embedding of Bδ(pi) into C such that one of the following

holds:

• (Type I) z=ζ is a special holomorphic coordinate on Bδ(pi), the local period map

is given by

τ =−
√
−1

2π
log ζ+f(ζ)

for f holomorphic across zero, and

ω=

√
−1

4π
(− log |ζ|+Im(f)) dζ∧dζ̄.

In thic case, the monodromy matrix around the counterclockwise generator of the group

π1(Bδ(pi)\{pi}) is given by I1.

• (Type II) z=ζ1/2 is local special holomorphic coordinate, the local period map is

of the form

τ =−
√
−1

4π
log ζ+f
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for f holomorphic across zero, and

ω=

√
−1

32π
(− log |ζ|+Im(f))|ζ|−1 dζ∧dζ̄.

In this case, the monodromy matrix around the counterclockwise generator of the group

π1(Bδ(pi)\{pi}) is given by I∗1 .

• (Type III) ζ=(z−
√
−1w)1/β for local conjugate special holomorphic coordinates

(z, w) (for some β∈
{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6

}
), and we may locally write

ω= 1
8

√
−1(1−|ξ|2)β2|ζ|2β−2 dζ∧dζ̄,

where ξ is a multi-valued holomorphic function and is related to the local period map τ

by the formula

ξ=
τ−

√
−1

τ+
√
−1

.

Moreover,

– if β= 1
2 , then ξ is a holomorphic function of ζ;

– if β∈
{

1
4 ,

3
4

}
, then ξ=F (ζ)1/2 for a holomorphic function F with F (0)=0;

– if β∈
{

1
6 ,

5
6 ,

1
3 ,

2
3

}
, then ξ=F (ζ)1/3 for a holomorphic function F with F (0)=0.

In particular, a singular special Kähler metric is asymptotic to one of the model

singularities in Examples 3.12, and has local integral monodromy. It is also easy to check

that there is always a unique tangent cone at the singularity given by a flat cone of

angle in (0, 2π]. More general examples of singular special Kähler metrics satisfying the

above conditions are given by the base of an elliptic fibration with singular fibers (see

for example [44]).

3.3. Case d=1

In this case, the group G∞ is either the abelian group R3 or the Heisenberg group H1

with Lie algebra h1, where

H1 ≡


 1 x t

0 1 y

0 0 1

 :x, y, t∈R

 and h1 ≡


 0 x t

0 0 y

0 0 0

 :x, y, t∈R

 .

This case has already been studied in detail in [50]. The analysis is simpler than the

discussion in the case d>1. We briefly summarize the results here, and the readers may

refer to [50] for proofs.
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If G∞=R3, then the local universal cover converges to the flat metric on R4=R×R3.

The limit metric is locally isometric to a 1-dimensional interval (a, b)z endowed with the

standard metric g∞=dz2 and the renormalized limit measure ν∞=cV dz for a constant

c>0, and V ≡1.

If G∞=H1, then the local universal cover converges to H1×(a, b)z, and the limit

hyperkähler metric is given by applying the Gibbons–Hawking ansatz to a linear function

V =z+l with l∈R, such that V =|∂t|−2 for some generator ∂t of the center z(h1). Here,

z is the moment map for the action of the center Z(H1), and is well defined up to an

affine linear transformation of the type z 7!λz+µ. The limit metric g∞=V dz2 and the

renormalized limit measure ν∞=cV dz for a constant c>0. The lemma below follows

from direct computation, and we omit the details.

Lemma 3.20. The second fundamental form of the limit H1-fibers satisfies

|II∞|=
√
3

2
V −3/2,

and the Bakry–Émery Laplace operator is given by

∆ν∞ =V −1∂2z .

Notice that, since d=1, the limit space X∞ globally must be a 1-dimensional mani-

fold, possibly with boundary. The singular set S consists of finitely many points in X∞.

The main result of [50] is that these local affine structures indeed patch together to

define a global affine coordinate z on X∞, such that g=V dz2 and ν∞=cV dz, for a

concave piecewise linear function V =V (z). Furthermore, in [50] some conjectures are

posed on the structure of V in the case when X∞ is the collapsing limit of hyperkähler

metrics on the K3 manifold. Odaka [67] and Oshima [70] have made connections with

the algebro-geometric study of type-II degenerations of K3 surfaces.

3.4. ε-regularity theorem

The following was proved by Cheeger–Tian [19] for general Einstein metrics in dimen-

sion 4. In the hyperkähler setting, we provide a simple alternative proof, as an application

of the study in this section.

Theorem 3.21. (ε-regularity theorem) There are universal constants ε>0 and C>0

such that, if a hyperkähler 4-manifold (X4, g, p) with B10(p) compact satisfiesˆ
B10(p)

|Rmg|2 dvolg ⩽ ε,

then supB1(p) |Rmg|⩽C.
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An immediate consequence is the following.

Corollary 3.22. Let (X4
j , gj , pj) be a sequence of hyperkähler 4-manifolds con-

verging to a Gromov–Hausdorff limit (X∞, d∞, p∞). If there exists a C>0 such that

ˆ
X4

j

|Rmgj |2 dvolgj ⩽C for all j,

then the singular set S consists of at most finitely many points.

To prove the theorem, we denote A=|Rmg(p)|1/2, and denote by Gp the set of all

q∈B2(p) such that

|Rmg(q)|⩾A2 and |Rmg(q
′)|⩽ 4|Rmg(q)|

for all q′ with

d(q′, q)⩽A|Rmg(q)|−1/2 ⩽ 1.

The following point-selection lemma is well known.

Lemma 3.23. We have Gp ̸=∅.

Proof. If not, then we can find a sequence qj , j=0, 1, ... , with q0=p, such that

d(qj+1, qj)⩽ |Rmg(qj)|−1/2A and |Rmg(qj+1)|⩾ 4|Rmg(qj)|⩾ 4A.

So, we have

|Rmg(qj)|⩾ 4jA2 and d(qj , p)< 2

for all j. Clearly, we get a contradiction if j!∞.

Lemma 3.24. There exists A0>0 and κ>0 such that, if |Rmg(p)|⩾A0, then for any

q∈Gp we have Vol(Br(q))⩾κr4 with r=|Rmg(q)|−1/2.

Proof. Suppose otherwise, then there is a sequence (Xj , gj , pj) and qj∈Gpj
with

Aj≡|Rmgj (pj)|!∞ and Vol(B
Q

−1/2
j

(qj))⩽j−1Q−2
j , where Qj≡|Rm(qj)|1/2⩾Aj . Then,

consider the rescaled sequence (Xj , Q
2
jgj , qj). Passing to a subsequence we obtain a

Gromov–Hausdorff limit (X∞, q∞). By assumption, we know that dimX∞<4. Moreover,

for any fixed R>0, the collapsing is with curvature uniformly bounded by 4 on BR(q∞).

So, by Proposition 3.1, X∞ is a complete Riemannian manifold and the limit geometry

of the local universal cover around qj is not flat. On the other hand, below we will show

that the limit geometry of the local universal covers is everywhere flat, which yields a

contradiction. We divide into three cases.
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Case (1) dimX∞=3. By Proposition 3.7, we know thatX∞ is a special affine metric

3-manifold. In particular we know Ric1(gX∞)⩾0. Let V be the associated positive har-

monic function on X∞. Since X∞ is complete, by the gradient estimate (Theorem 2.8),

we know that V must be a constant, which implies thatX∞ is flat, and the limit geometry

of local universal covers is flat.

Case (2) dimX∞=2. By Proposition 3.9, we know that X∞ is a complete spe-

cial Kähler 2-manifold. Lu’s theorem [59] implies that X∞ is flat, and hence the limit

geometry of local universal covers is also flat.

Case (3) dimX∞=1. By the discussion in §3.3, we know that X∞ is an interval

equipped with an affine coordinate z such that g∞=V dz2 and dν∞=V dz for a positive

affine function V . Since X∞ is complete, the interval has to be the entire set R, but then
the positivity of V implies that it must be a constant. Hence, the limit geometry of local

universal covers is again flat.

Proof of Theorem 3.21. If not, then we have a sequence (X4
j , gj , pj) withˆ

B9(pj)

|Rmgj |2 ⩽ j−1,

but |Rmgj (pj)|!∞. We choose qj∈Gpj
, and consider the rescaled sequence (Xj , Q

2
jgj , qj),

where Qj≡|Rmgj (qj)|. Passing to a subsequence, it converges with uniformly bounded

curvature to a limit (X∞, g∞, q∞). Lemma 3.24 implies that

dimX∞ =4 and |Rmg∞(q∞)|=1.

By scaling invariance, it follows that, for any fixed R>0, one hasˆ
BR(qj ,Q2

jgj)

|Rmgj |2 dvolgj! 0,

so the limit metric g∞ must be flat. This yields a contradiction.

3.5. Perturbation to invariant hyperkähler metrics

Now we go back to the set-up at the beginning of this section. Suppose a sequence

of hyperkähler manifolds (X4
j , gj , νj , pj) converge in the measured Gromov–Hausdorff

topology to a limit metric measure space (X∞, d∞, ν∞, p∞) with d=dimess(X∞)<4.

The goal of this subsection is to show that, over the regular set R, one can deform gj

to a nearby hyperkähler metric which exhibits local nilpotent symmetries of rank 4−d.
To prove this, we need to combine the foundational results of Cheeger–Fukaya–Gromov

with a quantitative implicit function theorem argument. The following is proved in [17],

and we give an explanation in Appendix A.
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Theorem 3.25. (Regular fibration) Let Q⋐R be a connected compact domain with

smooth boundary. Then, we can find j0=j0(Q)>0 and a sequence τj!0 such that, for all

j⩾j0, there exists a compact connected domain Qj⊂X4
j with smooth boundary, together

with a smooth fiber bundle map Fj :Qj!Q, such that the following properties hold.

(1) Fj :Qj!Q is a τj-Gromov–Hausdorff approximation.

(2) For any k∈Z+, there exists Ck>0 such that, for all j⩾j0, we have

|∇kFj |⩽Ck. (3.10)

(3) There exists a uniform constant C0>0 such that, for all q∈Q and j⩾j0, we

have

|IIF−1
j (q)|⩽C0,

where IIF−1
j (q) denotes the second fundamental form of the fiber F−1

j (q) at q∈Q.

(4) Fj is an almost Riemannian submersion, in the sense that, for any vector v

orthogonal to the fiber of Fj , we have

(1−τj)|v|gj ⩽ |dFj(v)|g∞ ⩽ (1+τj)|v|gj . (3.11)

(5) There are flat connections with parallel torsion on F−1
j (q), which depend smoothly

on q∈Q, such that each fiber of Fj is affine diffeomorphic to an infranilmanifold Γ\N ,

where N is a simply-connected nilpotent Lie group and Γ is a cocompact subgroup of

NL⋊Aut(N), with NL≃N acting on N by left translation. Also, the structure group of

the fibration is reduced to

((Z(N)∩Γ)\Z(N))⋊Aut(Γ)⊂Aff(Γ\N).

(6) We have that Λ≡Γ∩NL is normal in Γ, with #(Λ\Γ)⩽w0 for some constant

w0 independent of i.

This is a special case of the nilpotent Killing structure (N -structure) defined in [17].

We say that a tensor field ξ on Qj is N -invariant if, for any x∈Q, there exists a neigh-

borhood U of x ,with F−1
j (U)∼=U×(Γ\N), such that the lift of ξ to the universal cover

U×N is NL-invariant. Below, we will construct an N -invariant hyperkähler triple ap-

proximating the original hyperkähler triple ωj . First we have

Proposition 3.26. For any sufficiently large j, there exists an N -invariant definite

triple ω†
j on Qj such that

|∇k
ω9j(ω

†
j−ωj)|ωj ⩽Ckτj ,

where τj!0 is given by Theorem 3.25.
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Proof. The construction is via the averaging argument as in [17, §4], with the Rie-

mannian metric replaced by the definite triple. Let h∈NL be any element and let ṽ and

w̃ be any tangent vectors on the universal cover U×N of F−1
j (U). Let ω̃j be the lift of

ωj on U×N . Then, the function h 7!ω̃j(Dh·ṽ, Dh·w̃) is constant on each Λ-orbit in NL.

Since the nilpotent group NL is unimodular, there is a canonical bi-invariant measure µ̃

on NL which descends to a unit-volume bi-invariant measure µ on Λ\NL. Therefore,

ω̃′
j(ṽ, w̃)≡

ˆ
Λ\NL

ω̃j(Dh·ṽ, Dh·w̃) dµ

is NL-invariant on U×N . We denote by 	ω′
j the descending 2-form on U×(Λ\NL), and

for any tangent vectors v̄ and 	w on U×(Λ\NL), we define

	ω†
j (v̄, 	w)≡

1

#(Λ\Γ)
·
∑

γ∈Λ\Γ

	ω′
j(Dγ ·v̄, Dγ ·	w),

where #(Λ\Γ)⩽w0 for some constant w0>0 independent of j. We claim the above

(Λ\Γ)-invariant form is NL-invariant. In fact, let �γ∈Γ be any lift of γ∈Λ\Γ to Γ. Since

Γ⩽NL⋊Aut(N), for any h∈NL there is some element h̄∈NL such that �γ ·h=h̄·�γ. Then,
it is easy to verify that

	ω†
j (Dh·v̄, Dh·	w)= 	ω

†
j (v̄, 	w).

Now, 	ω†
j descends to an N -invariant definite triple ω†

j on Γ\NL. Notice that the

average of a closed form is still closed. The approximation estimate follows from [17,

Proposition 4.9].

It is clear that the Riemannian metric gω†
j
determined by the definite triple ω†

j is

also N -invariant. Moreover, the estimates (3.10) and (3.11) continue to hold if we replace

ωj by ω†
j .

Theorem 3.27. For all sufficiently large j, there is an N -invariant hyperkähler

triple ω♢
j on Qj of the form ω♢

j =ω†
j+dd

∗(fj ·ω†
j ), where fj is an N -invariant (3×3)-

matrix valued function on Qj satisfying that, for all k∈N,

sup
Qj

|∇k
ω†

j

fj |! 0. (3.12)

In particular, ω♢
j has the same Gromov–Hausdorff collapsed limit as ωj.

Remark 3.28. In [17] (Open Problem 1.10), Cheeger–Fukaya–Gromov asked the

question that when a sufficiently collapsed Riemannian metric satisfies extra proper-

ties such as being Einstein or Kähler, whether one can perturb it to be an N -invariant

Riemannian metric in the same category. The above theorem can be viewed as giving
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an affirmative answer to this question in the setting of local 4-dimensional hyperkähler

structures. We mention that Huang–Rong–Wang [51] made some related progress on this

question of Cheeger–Fukaya–Gromov using Ricci flow.

Before proving Theorem 3.27, we make some preparations. Denote by gQ,j the

quotient metric on Q induced by the metric ω†
j , and by Hj the mean curvature vector of

the fibers of Fj . Because of the N -invariance, we may view Hj as a vector field on the

quotient Q. Recall that we have the density function χ on Q for the renormalized limit

measure ν∞, as given in §2.2.

Lemma 3.29. On Q, the metrics gQ,j converge smoothly to g∞ in the Cheeger–

Gromov topology, and the Hj converge smoothly to ∇g∞ logχ.

Proof. Given a point q∈Q, we can find a coordinate neighborhood O with local

coordinates u1, ..., ud. Let Ôj denote the universal cover of F−1
j (O) endowed with the

pull-back metric g̃ω†
j
. The deck transformation group of Õj is Γ. Then, by Theorem 3.25,

we know (Õj , g̃ω†
j
,Γ) equivariantly Ck-converges to a limit (Õ∞, g̃∞, N) for any k∈Z+.

By (3.11) and (3.10), we may assume πj �Fj converges smoothly to a Riemannian sub-

mersion F∞: Õ∞!O. In particular, uα�Fj converges smoothly to uα�F∞. So, for any

α and β, we have

lim
i!∞

⟨∇g̃
ω

†
j

(uα�Fj),∇g̃
ω

†
j

(uβ �Fj)⟩= ⟨∇g̃∞(uα�F∞),∇g̃∞(uβ �F∞)⟩.

It follows that the quotient metric gQ,j converges smoothly to g∞ in the coordinates {uα}.
For the second statement, we notice that the second fundamental form Πj of fibers of

Fj can be computed in terms of the derivatives of uα�Fj . In particular, Πj also converges

smoothly to a limit Π∞, which is the second fundamental form of the fibers of F∞. So,

the corresponding mean curvature vectors Hj converge to H∞. It is an easy calculation

that H∞ descends to the vector field ∇g∞ logχ on Q.

Proof of Theorem 3.27. We will apply Proposition 2.12. As in §2.4, we may identify

an element ξ∈Ω+(Qj)⊗R3 with a (3×3)-matrix-valued function f on Qj , and ξ is N -

invariant if and only if f is N -invariant, and hence descends to a function on Q. We

define the Banach space A (resp. B) to be the completion of the space of N -invariant

elements in Ω+(Qj)⊗R3 under the C2,α
gQ,j

(resp. Cα
gQ,j

) norm. Then, by Proposition 3.26,

for η>0 small we know the map F :Bη(0)⊂A!B as given by (2.5) is well defined, and

∥F (0)∥⩽Cτj for some constant C>0.

For any N -invariant function f on Qj , we have

∆ω†
j
f =∆gQ,j

f+⟨Hj ,∇gQ,j
f⟩.
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As in §2.3, the Bakry–Émery Laplace operator on (Q, g∞, ν∞) is given by

∆ν∞f ≡∆g∞f+⟨∇g∞ logχ,∇g∞f⟩,

where ν∞=χdvolg∞ . Let

L (f)≡∆ν∞f and N (f)≡F (f)−L (f).

Then, using the above convergence and the definition of F , it is easy to see that, for

f , g∈Bη(0)⊂A, we have

∥N (f)−N (g)∥⩽ (Cη+εj)∥f−g∥

for some εj!0. On the other hand, by standard elliptic theory, there exists a bounded

linear operator P:B!A such that L �P(v)=v, and ∥Pv∥⩽L∥v∥ for some L>0 and

all v∈B. So, for i large, we may apply Proposition 2.12 to get a solution fj satisfying

F (fj)=0 such that (3.12) holds for k=2. For k⩾2, (3.12) follows from standard elliptic

estimates.

Now, we draw a few consequences of Theorem 3.27.

Corollary 3.30. (Fibers are Nil) In the statement of Theorem 3.25, we may as-

sume that Γ is contained in NL, so that the collapsing fibers are nilmanifolds.

Proof. Locally on a coordinate chart O⊂Q, we can trivialize the fibration as

O×(Γ\N).

On the universal cover Õj of F−1
j (O), the action of Γ preserves the hyperkähler triple

F ∗
j (ω

♢
j ). It also acts by affine transformations on N . On the other hand, NL acts

transitively on the fibers of the local universal cover. Given any ϕ∈Γ, we can find

an element ψ∈NL such that ψ�ϕ fixes a section of Fj . By Theorem 3.27, ω♢
j is N -

invariant, and hence ψ�ϕ preserves the hyperkähler triple F ∗
j (ω

♢
j ). As in the proof of

Proposition 3.1, we know that the fixed point set of ψ�ϕ is either isolated or open. As it

is not isolated, it follows that ψ�ϕ must be the identity, and hence ϕ∈NL.

When d=2, by the discussion in §3.2, the limit metric g∞ on R is special Kähler.

Corollary 3.31. (Local integral monodromy) g∞ has local integral monodromy.

Proof. For each j, the metric ω♢
j is N -invariant. Locally consider a trivialization

of the fibration O×(Γ\N), where N is the abelian group R2 and Γ is a lattice. Choose

an integral basis (∂t1 , ∂t2) of Γ, then over the local universal cover as in §3.2 we may

find moment maps (x1, x2) for the symplectic form ωi,1, which serve as local coordinates

on Q. These are not canonical but are unique up to R2⋊SL(2;Z). This shows that the

quotient metric g♢Q,j on Q is naturally a special Kähler metric with integral monodromy.

Then, the conclusion follows from Lemma 3.29 and the discussion in Remark 3.18.
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4. Singularity structure I: Case d=3

4.1. Main results

We first state the main results of this section.

Theorem 4.1. (Local version) Let (X4
j , gj , pj) be a sequence of hyperkähler mani-

folds such that B2(pj) is compact and

(X4
j , gj , νj , pj)

mGH−−−−! (X3
∞, d∞, ν∞, p∞)

with dimess(X
3
∞)=3. Assume that the singular set S consists of a single point p∞. Then,

the following statements hold.

(1) p∞ is a conical singularity. More precisely, there exists δ>0 such that the cor-

responding flat background geometry (Bδ(p∞)\{p∞}, g♭∞) is isomorphic to a punctured

neighborhood of the origin in R3 or R3/Z2, and g∞=V g♭∞ for a smooth positive harmonic

function of the form V =σr−1+V0, where σ∈[0,∞) and V0 is orbifold smooth.

(2) If in addition ˆ
B2(pj)

|Rmgj |2 dvolgj ⩽κ0 (4.1)

uniformly for some κ0>0, then p∞ is an orbifold singularity, i.e., the function V in

statement (1) is orbifold smooth and σ=0.

Remark 4.2. It is not hard to see that (4.1) is equivalent to a uniform bound on the

Euler characteristic. Notice that, without assuming (4.1), the constant σ does not have

to vanish. As an example, consider the flat orbifold Yk=C2/Zk+1, where Zk+1⊂SU(2)

is the standard diagonal subgroup acting on C2. As k tends to infinity, Yk collapses to(
R3,

1

2r
gR3

)
.

Now, let Xk be the minimal resolution of Yk endowed with an ALE hyperkähler metric

gk such that the exceptional set has diameter comparable to k−1. Choose a point pk on

the exceptional set in Xk, then (Xk, gk, pk) also collapses to(
R3,

1

2r
gR3 , 0

)
.

Here, we have χ(Xk)=k+1!∞. In this example, we also see an infinite bubble tree

of ALE gravitational instantons. We will show that the above cannot occur under the

assumption (4.1); see Proposition 7.1.
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Theorem 4.3. (Compact version) Let gj be a sequence of hyperkähler metrics on

the K3 manifold K with diamgj (K)=1 such that

(K, gj , νj)
mGH−−−−! (X3

∞, d∞, ν∞).

Then, (X3
∞, d∞) is isometric to a flat orbifold T3/Z2 and ν∞ is a multiple of the Haus-

dorff measure on T3/Z2.

Theorem 4.4. (Complete version) Let (X4
j , gj , pj) be a sequence of hyperkähler

manifolds such that

(X4
j , gj , νj , pj)

mGH−−−−! (X3
∞, d∞, ν∞, p∞).

Assume that X3
∞ is complete non-compact and the singular set S is finite. Then, the

following holds.

(1) The corresponding flat background geometry of X3
∞ is a complete flat orbifold of

the form R3/Γ, where Γ is a subgroup of R3⋊Z2. More precisely, we have the following

classification (in terms of the asymptotic volume growth):

(a) Euclidean space R3, and its quotient R3/Z2;

(b) flat product R2×S1, and its quotient (R2×S1)/Z2;

(c) flat product R×T2, and its quotient (R×T2)/Z2.

(2) In case (a), the positive harmonic function V is of the form σr−1+c with σ⩾0

and c∈R; in cases (b) and (c), V must be a constant.

(3) Assume that

ˆ
X4

j

|Rmgj |2 dvolgj ⩽κ0 (4.2)

uniformly for some κ0>0. Then, V must be a constant.

4.2. Asymptotic analysis near the singularity

Now we focus on the local situation in the setting of Theorem 4.1. The discussion in §3.1
implies that there is a special affine metric g∞ on B2(p∞)\{p∞}. We fix a choice of the

harmonic function V , and denote by g♭∞≡V −1g∞ the flat background metric. The main

goal of this subsection is to obtain a lower bound of V near p∞ (Corollary 4.11), which

gives control of the flat background geometry near p∞ (Proposition 4.12).

We start with a simple lemma. The proof follows directly from the volume compar-

ison theorem for the renormalized limit measure ν∞.
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Lemma 4.5. For any r∈
(
0, 1

10

)
, consider the annulus Ar,2r(p∞) centered at the sin-

gular point p∞. Let {xα}Nα=1⊂Ar,2r(p∞) be a 1
4r-dense subset such that {Br/20(xα)}Nα=1

are disjoint. Then, the following statements hold :

(1) Ar,2r(p∞)⊂
⋃N

α=1Br/4(xα)⊂Ar/4,9r/4(p∞);

(2) there is a uniform constant N0>0 independent of r such N⩽N0.

Let C1(r), C2(r), ..., Cℓ(r) be the connected components of the union
⋃N

α=1Br/4(xα).

Obviously, ℓ⩽N⩽N0. The following is a direct application of Theorem 2.8.

Lemma 4.6. (Harnack inequality) There is a uniform constant c0>0 independent of

r and the choice of the covering, such that, for any x, y∈Ar,2r(p∞)∩Ck(r) with 1⩽k⩽ℓ,

c−1
0 ⩽

V (x)

V (y)
⩽ c0.

Proposition 4.7. There exists a constant ℓ0>0 such that

sup
Sr(p∞)

V ⩾ ℓ0 ·r3/2

for all r∈(0, 1].

Proof. Suppose not, then there are a sequence of numbers ri!0 such that

sup
Sri

(p∞)

V ⩽ r
3/2
i . (4.3)

Since ∆ν∞V =0 on Ari,1(p∞), applying Lemma 4.6 and Theorem 2.8, we have that

sup
Ari,2ri

(p∞)

(|V |+ri|∇g∞V |)⩽Cr
3/2
i .

For any Lipchitz function ϕ with Supp(ϕ)⊂Ari,1(p∞), using integration by parts,

ˆ
Ari,1

(p∞)

⟨∇g∞V,∇g∞ϕ⟩g∞dν∞ =0. (4.4)

We choose a cut-off function χi with Supp(χi)∈Ari,1(p∞), χi≡1 on A2ri,1/2(p∞), and

sup
Ari,2ri

(p∞)

|∇g∞χi|g∞ ⩽C ·r−1
i and sup

A1/2,1(p∞)

|∇g∞χi|g∞ ⩽C.

Applying ϕ≡χi ·V to (4.4), we obtain
ˆ
A2ri,1/2

(p∞)

|∇g∞V |2g∞ dν∞ ⩽
ˆ
Ari,2ri

(p∞)∪A1/2,1(p∞)

V ·|∇g∞V |g∞ ·|∇g∞χi|g∞ dν∞

⩽C.

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=



362 s. sun and r. zhang

Letting ri!0, we find that

ˆ
B1/2(p∞)\{p∞}

|∇g∞V |2g∞ dν∞<∞ (4.5)

Now, we claim that V is a harmonic function on B1/2(p∞), in the sense of Definition 2.6.

First, by [13, Theorem 5.1], given a Lipschitz function, the minimal upper gradient can

be characterized by the local slope. Also, applying [10, Lemma 1.42], Mod2({p∞})=0.

Thus, the function u:B1/2(p∞)!R∪{∞} defined by setting u(x)≡|∇g∞V | for x ̸=p∞
and u(p∞)=∞, is a minimal weak upper gradient of V on B1/2(p∞). So, (4.5) implies

V ∈W 1,2(B1/2(p∞)), and the Cheeger energy is given by

Ch(V )=

ˆ
B1/2(p∞)

|∇g∞V |2 dν∞.

Moreover, applying similar arguments as in the proof of (4.5), one can see that (4.4)

implies that

ˆ
B1/2(p∞)

⟨∇g∞V,∇g∞ϕ⟩dν∞ =0,

for any compactly supported Lipschitz function ϕ on B1/2(p∞). This proves the claim.

Now, by Theorem 2.7, we obtain

ess inf
B1/4(p∞)

V ⩾C ·
(ˆ

B1/2(p∞)

V 2dν∞

)1/2
⩾ c0> 0.

This contradicts (4.3).

Proposition 4.8. Any tangent cone Y at p∞ satisfies

dimess(Y )= 3.

Proof. We rule out the possible occurence of lower-dimensional tangent cones. Sup-

pose that (Y, p̄) is a tangent cone at p∞ with dimess(Y )∈{1, 2}. Then, we can find a

sequence rj!0 such that the rescaled annulus r−1
j ·Aj converges to an annulus in Y ,

where Aj≡Arj ,2rj (p∞). By Proposition 4.7, there is a point qj∈Aj with V (qj)⩾l0r
3/2
j .

Without loss of generality, we may assume that qj belongs to the connected component

C1(rj) in the covering constructed in Lemma 4.5. Set A1
j≡C1(rj)∩Aj . We may also as-

sume the rescaled space r−1
j ·A1

j converges to a connected open set in Y . By Lemma 4.6,

we have c−1
0 ⩽V/V (qj)⩽c0 uniformly on A1

j . This implies the flat background metric

V (qj)g
♭
∞=V (qj)V

−1g∞ on A1
j is uniformly equivalent to g∞. Hence, the corresponding
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rescaled sequence of flat manifolds (A1
j , r

−2
j V (qj)g

♭
∞) also collapses to a lower-dimensional

space. By the discussion in §3.1, we can find a totally geodesic torus Tj⊂(A1
j , g

♭
∞) pass-

ing qj , whose diameter with respect to the metric r−2
j V (qj)g

♭
∞ is εj!0. So, the diameter

of Tj with respect to the metric g♭∞ is

εjrjV (qj)
−1/2

! 0.

Now, choose a point w∈A1,2(p∞) and a smooth curve γj in Arj/2,2 connecting w

and qj . We can slide the torus Tj along γj , and obtain a totally geodesic torus T′
j

(with respect to g♭∞) passing through w. Notice in this process that we can keep the

family of flat tori along γj to be outside Aj+1 (in particular, we do not encounter the

singularity p∞). Since the diameter of the tori is invariant along the sliding, we then

obtain a sequence of totally geodesic tori contained in A1,2(p∞) with diameter going to

zero. This is clearly impossible.

Lemma 4.9. There exists a constant δ0>0 such that, for every r∈
(
0, 13

)
, any two

points in Ar/2,r(p∞) can be connected by a smooth curve γ⊂Aδ0·r,3r(p∞) with arc-length

|γ|⩽10r. In particular, B1(p∞)\{p∞} is path-connected.

Proof. We argue by contradiction. Suppose that there are sequences δj!0, rj∈(0, 1)
and sequences of points xj , yj∈Arj/2,rj (p∞) such that any smooth curve γj connecting

xj and yj with |γj |⩽10rj satisfies γj∩Bδj ·rj (p∞) ̸=∅. Choose minimizing geodesics σxj

and σyj
from p∞ to xj and yj , respectively. Then, we take two points

xj ∈σxj∩S3δj ·rj (p∞) and y
j
∈σyj∩S3δj ·rj (p∞).

By assumption, the following conditions hold:

(a) any minimizing geodesic �γj connecting xj and yj must satisfy

�γj∩Bδj ·rj (p∞) ̸=∅;

(b) any smooth curve γ
j
connecting xj and y

j
with length |γ

j
|⩽4rj must satisfy

γ
j
∩Bδj ·rj (p) ̸=∅.

Now, we define the rescaled metric

d̂j ≡ δ−1
j ·r−1

j ·d∞.

Letting j!∞ and passing to a subsequence, we obtain

(X3
∞, d̂j , p∞)

GH−−−! (Ẑ∞, d̂∞, ẑ∞), (4.6)
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where (Ẑ∞, d̂∞, ẑ∞) is a tangent cone at p∞∈X3
∞, and xj , yj converge to x∞, y∞∈S3(ẑ∞)

respectively. By the discussion in §3.1, the convergence is smooth away from ẑ∞.

Now, choose a sequence of minimizing geodesics �γj connecting xj and yj . Since

d̂j(xj , p∞)⩾ 1
2δ

−1
j and d̂j(yj , p∞)⩾ 1

2δ
−1
j (4.7)

as j!∞, it follows from the Arzelà–Ascoli lemma that by passing to a further subse-

quence, �γj converges to a geodesic line �γ∞⊂Ẑ∞. Applying Cheeger–Colding’s splitting

theorem, Ẑ∞ is isometric to R×W for a complete length space W . If W is compact,

then we can slow down the rescaling slightly and obtain a tangent cone R at p∞, which

contradicts Proposition 4.8. So W must be non-compact. Then, it follows easily that

the complement Ẑ∞\B2(ẑ∞) is path connected. In particular, we can find a smooth

curve σ∞⊂Ẑ∞\B2(ẑ∞) connecting x∞ and y∞. Set ℓ0=|σ∞|. Then, passing back to

the sequence, for j large, we see that xj and y
j
can be connected by a smooth curve

σj⊂A2δj ·rj ,(l0+10)δj ·rj (p∞) of length |σj |⩽(ℓ0+10)·δj ·rj . This contradicts item (b).

As an immediate consequence, we obtain an improvement of Lemma 4.6 and Propo-

sition 4.7.

Corollary 4.10. There exists a constant C0>0 such that, for any r∈(0, 1) and

x, y∈Ar/2,r(p∞), we have

C−1
0 ⩽

V (x)

V (y)
⩽C0.

Corollary 4.11. There exists a constant ℓ0>0 such that

inf
Sr(p∞)

V ⩾ ℓ0 ·r3/2

for all r∈(0, 1].

The above corollary immediately implies the following.

Proposition 4.12. The metric completion of the flat background

(B1(p∞)\{p∞}, V −1g∞)

at p∞ is given by adding a single point.

In particular, we can identify this metric completion topologically as B1(p∞) itself,

and we denote by d♭∞ the metric induced by the flat metric g♭∞. At this point, we

encounter a non-standard singularity removal question.
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Question 4.13. Let U be a connected smooth Riemannian manifold in dimension

m⩾3 with uniformly bounded sectional curvature. If the metric completion U is obtained

by adding one point p such that U is locally compact, is it true that p is a Riemannian

orbifold singularity?

In our setting, we are only interested in the special case when the Riemannian metric

is flat. Even in this case, the above innocent looking question seems to be subtle. There is

an analogous statement when m=2, but one needs to allow a general conical singularity.

Notice that the conclusion fails if the metric completion is not locally compact; for an

example in dimension 2, consider the universal cover of R2\{0} equipped with the flat

metric. In the next subsection we get around this technical point in our setting, using

the fact the conformal metric g∞ is a Ricci limit space.

4.3. Proof of Theorem 4.1

By Lemma 2.2, the isometry classes Tp∞ of all tangent cones at p∞ is compact in

(Met, dGH). Let (Y, p
∗)∈Tp∞ satisfy

(X∞, r
−1
i d∞, p∞)

GH−−−! (Y, dY , p
∗)

for ri!0. By the discussion at the end of §3.1, we know that, away from p∗, the

convergence is smooth and there is a special affine metric on Y \{p∗}. Notice that,

by Lemma 4.9, for all r>0, any two points in Ar/2,r(p
∗)⊂Y can be connected by a

smooth curve γ⊂Aδ0·r,3r(p
∗) with arc-length |γ|⩽20r. In particular, Y \{p∗} is path-

connected and Y has only one end at infinity. By Proposition 4.10, the flat background

(Y \{p∗}, g♭Y ) has a 1-point completion near p∗ and is homeomorphic to Y . We always

normalize the harmonic function V̂ ∗
Y by a multiplicative constant so that

sup
S1(p∗)

V̂ ∗
Y =1.

Lemma 4.14. For every ε>0, there exists a tangent cone (Y, p∗) such that

lim sup
R!+∞

|V̂ ∗
Y |L∞(SR(p∗))

R3/2+ε
⩽ 2. (4.8)

Proof. We argue by contradiction. Suppose the conclusion fails for some ε0>0. Then

for every tangent cone (Y, p∗), we can find RY >1 such that

sup
SRY

(p∗)

V̂ ∗
Y > 2·R3/2+ε0

Y . (4.9)
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Claim. Given a tangent cone (Y, p∗), there exists τ=τ(Y )>0 such that, for any

(W, q∗)∈Bτ ((Y, p
∗))∩Tp∞ , we have

sup
SRY

(q∗)

V̂ ∗
W >

3

2
·R3/2+ε0

Y .

Indeed, if not, then we can find a sequence of tangent cones (Wi, q
∗
i ) converging to (Y, p∗)

in the Gromov–Hausdorff topology, such that

sup
SRY

(q∗i )

V̂ ∗
Wi

⩽
3

2
·R3/2+ε0

Y .

Applying the Harnack inequality and using the convergence of special affine metrics dis-

cussed in §3.1, V̂ ∗
Wi

converges uniformly away from p∗ to V̂ ∗
Y . This contradicts (4.9).

Since Tp∞ is compact in (Met, dGH), it can be covered by finite metric balls of the

form Bτℓ((Yℓ, p
∗
ℓ )), ℓ=1, ..., N . By the claim, it follows that, for any (Y, p∗)∈Tp∞ , we

have supSRYℓ
(p∗) V̂

∗
Y >(RYℓ

)3/2+ε0 for some 1⩽ℓ⩽N . Then using a simple contradiction

argument, one can show that, for all 0<r≪1, there exists ℓ0∈{1, ..., N} with R0≡RYℓ0

such that supBr(p∞) V <R
−3/2−ε0
0 supBR0·r(p∞) V . By iteration, we obtain a sequence

ri!0 with supSri
(p∞) V ⩽Cr3/2+ε0

i , which contradicts Corollary 4.11.

Now, we fix ε= 1
4 and let (Y, dY , p

∗) be a tangent cone given in Lemma 4.14.

Proposition 4.15. The associated flat background geometry on (Y, dY , p
∗) is com-

plete at infinity.

Proof. For R large, we consider the annulus AR,2R(p
∗) in Y with respect to the

metric dY . By Lemma 4.14, we have V̂ ∗
Y ⩽8R7/4 on AR,2R(p

∗). Notice the flat background

metric g♭Y =(V̂ ∗
Y )

−1gY . Given any smooth curve γ: [0, L]!AR,2R(p
∗) connecting SR(p

∗)

and S2R(p
∗), which is parameterized by the arc-length with respect to the metric g♭Y ,

its length with respect to gY satisfies LgY (γ)⩽4LR7/8. Since LgY (γ)⩾R, we see that

L⩾ 1
4R

1/8. From this, it is easy to draw the conclusion.

We will use the following classification result for flat ends of Riemannian manifolds.

Theorem 4.16. (Eschenburg–Schroeder [31]) Let Z be a flat end in a complete

Riemannian manifold (Xn, g). Then, there exists a compact subset K such that Z\K is

isometric to the interior of (Ω×Rk)/Γ and one of the following three cases hold :

(A) dim(Ω)=1, Ω=R+ and Γ is a Bieberbach group on Rn−1;

(B) dim(Ω)=2: Ω is diffeomorphic to R×R+ and Γ is a Bieberbach group on

R×Rn−2, which preserves the Riemannian product structure of Ω×Rk;

(C) dim(Ω)⩾3: Ω is the complement of a ball in Rn−k, and Γ is a finite extension

of a Bieberbach group on Rk.
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Proposition 4.17. (Y, d♭Y ) is isometric to the Euclidean space R3 or the flat cone

R3/Z2, and V̂
∗
Y =1.

Proof. Propositions 4.12 and 4.15 imply that (Y, d♭Y ) has one complete end at infinity.

Since an asymptotic cone of (Y, dY ) is itself a tangent cone at p∞, by Proposition 4.8

the asymptotic cones of (Y, dY ) must all be 3-dimensional, then by the discussion at the

end of §3.1 we know the asymptotic cones of (Y, d♭Y ) are also 3-dimensional. Applying

Theorem 4.16 to the end of (Y, d♭Y ), we see that we are in Case (C) and Γ is finite (the

other cases have collapsed asymptotic cones). So, (Y, d♭Y ) is isometric to either R3 or

R3/Z2 outside a compact set. Then, using the developing map and the fact that the

metric singularity of (Y, d♭Y ) consists of at most one point, we conclude that (Y, d♭Y ) must

be isometric to R3 or R3/Z2.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first prove item (1). Let (Y, p∗) be a tangent cone at p∞

whose flat background geometry (Y, g♭Y ) is the flat cone R3 or R3/Z2. For simplicity of

notation , we will assume that (Y, g♭Y ) is R3. The other case can be dealt with in the

same manner. We can find ri!0 such that (X3
∞, r

−1
i d∞, p∞) converges to (Y, dY , p

∗).

As before, we also have the convergence of the corresponding flat background geometry

(X3
∞, r

−1
i d♭∞, p∞)

GH−−−! (R3, gR3 , 0).

This means that the annulus r−1
i Ari/2,2ri(p∞) converges to the flat annulus A1/2,2(0)

in R3. In particular, we can find smooth hypersurfaces Σi∈Ari,2ri(p∞) with constant

curvature 1 such that r−1
i Σi converges to the unit sphere in R3. Then, by a simple

argument using the developing map, one can see that a punctured neighborhood of p∞

in (X3
∞, d

♭
∞) can be isometrically embedded in R3 as a punctured domain. So, the flat

background geometry is smooth near p∞. Now, V can be viewed as a positive harmonic

function in a punctured domain in R3. The singular behavior of V then follows from the

classical Bôcher’s theorem. This finishes the proof of item (1) of Theorem 4.1.

The rest of this subsection is devoted to the proof of item (2). We already know

that the flat background geometry on the limit X3
∞ is a flat orbifold near p∞, and a

neighborhood of p∞ can be identified with an open set in R3 or R3/Z2. Moreover, the

positive harmonic function V is of the form σr−1+V0, where r is the radial function on R3,

σ is a positive constant, and V0 extends smoothly as an orbifold harmonic function. It

suffices to show that σ=0.

Suppose that σ>0. Notice that item (1) implies that the tangent cone (Y, p∗) at p∞

is unique, and (Y, d♭Y ) can be identified with R3 or R3/Z2. After rescaling, we may assume

that V̂ ∗
Y = 1

2r . Notice that Y is a metric cone over a round 2-sphere with radius 1
2 . We may
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identify the cross section of the cone with Σ=
{
r= 1

2

}
⊂Y . Let B∞ be a small tubular

neighborhood of Σ. Then, we can find a domain Ui contained in X4
i that converges to

B∞ with uniformly bounded curvature and all its covariant derivatives. Furthermore, by

Theorem 3.25, there is a smooth fibration map Fi:Ui!B∞ with fibers given by smooth

circles with uniformly bounded second fundamental form and all covariant derivatives.

Let Σi=F
−1
i (Σ). Then, Σi collapses to Σ along the circle bundle with uniformly bounded

curvature and covariant derivatives.

Given any point q∈B∞, by assumption, we can find qi∈Ui and δ>0 such that the

universal cover B̃δ(qi) converges smoothly to a hyperkähler limit B̃∞, and a neighborhood

of q is given by the R quotient of B̃∞. As V = 1
2r , the limit metric on B̃∞ is of the form

1

2r
(dr2+r2gS2)+2rθ2,

where θ is dual to the Killing field generating the R action. Changing the coordinate by

r= 1
2s

2, one can see that this metric is flat. Moreover, the local universal covers of Σi

converge to some subset of the level set
{
r= 1

2

}
in B̃∞ which has constant curvature 1.

In particular, the sectional curvature of Σi converges uniformly to 1. It follows from

Klingenberg’s estimate that the universal cover Σ̃i of Σi has a uniform lower bound

on the injectivity radius. This also implies that the universal cover Ũi of Ui converges

smoothly to a flat manifold Ũ∞, and Σ̃i converges smoothly to the round sphere Σ̃∞⊂Ũ∞.

Since the two boundary components of Ũ∞ are convex, applying Sacksteder’s theorem

[75], Ũ∞ is isometric to a tubular neighborhood of the round sphere S3 in R4. Setting

Gi≡π1(Ui), we have the following diagram:

(Ũi, g̃i, Gi)

πi

��

eqGH
// (Ũ∞, g̃∞, G∞)

π∞

��

(Ui, gi)
GH // (U∞, g∞),

(4.10)

where G∞⩽Isom(Ũ∞) is a closed subgroup so that U∞=Ũ∞/G∞.

For our purposes, we need to investigate more closely the above convergence. Notice

that we have fixed a choice of a hyperkahler triple ωi on each Xi. Then, we get a triple

ω̃i of 2-forms on Ũi and, passing to a further subsequence, we may assume that these

converge to a hyperkähler triple ω̃∞ on Ũ∞. Since the limit metric on Ũ∞ is flat, we may

assume that, via the embedding Ũ∞
� � // R4, ω̃ is given by the restriction of the standard

hyperkähler triple on R4. Notice that the Gi action on Ũi preserves ω̃i, so G∞ preserves

the triple ω̃∞. If follows that G∞ is contained in SU(2)=Sp(1).
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Now, we can restrict our attention to the smooth convergence of Σ̃i to Σ̃∞. Since G∞

is a closed subgroup in the compact Lie group Aut(Σ̃∞, ω̃∞)=SU(2), it follows that there

is a group isomorphism φi:Gi≃Gi<G∞ (see [60, Lemma 3.2], for instance). Moreover,

for any sufficiently large i, there exists a Gi-equivariant diffeomorphism Fi: Σ̃i!Σ̃∞ such

that the following conditions hold:

(1) Fi�γ=φi(γ)�Fi for all γ∈Gi;

(2) Fi is an εi-Gromov–Hausdorff approximation with εi!0;

(3) for any unit tangent vector v, one has

∣∣|dFi(v)|−1
∣∣⩽Ψ(εi) and lim

εi!0
Ψ(εi)= 0. (4.11)

A key technique in constructing the above Gi-equivariant diffeomorphism Fi is to

use the center-of-mass technique. We refer the readers to [42] and in [73, Theorem 2.7.1]

for more details.

Now, we identify Σ̃i with Σ̃∞, and Gi with Gi using Fi. Consider the form ω̃1
∞ on

Σ̃=S3 given by dx1∧dx2+dx3∧dx4 in the standard coordinates. One can write down a

standard contact 1-form

η∞ = 1
2 ((x

1dx2−x2dx1)+(x3dx4−x4dx3)),

with ω̃1
∞=dη∞, and η∞ is SU(2)-invariant. So, for i large, one can also write ω̃1

i =dηi

such that ηi converges smoothly to η∞. Then, we can average out ηi by the group Gi to

make ηi invariant under Gi, and by (4.11) we may assume that ηi still converge to η∞

in C0. Notice that dηi=ω̃
1
i also converges to ω̃1

∞ in C0. In particular, for i large ηi

is a Gi-invariant contact 1-form. Moreover, there is an obvious isotopy of Gi-invariant

contact 1-forms ηt=tη∞+(1−t)ηi for t∈[0, 1]. Applying Gray’s stability theorem (see

[38, Theorem 2.20] or [61, pp. 135–136] for more details), we conclude that ηi and η∞

define isomorphic contact structures on Σ̃∞/
Gi. We can now apply a result in contact

geometry [69], which states that the minimal symplectic filling of the space Σ̃/
Gi=S3/
Gi

has a unique diffeomorphism type. For simplicity, we will not distinguish the notations

Gi and 
Gi. Notice that, in our setting, the subsetWi enclosed by Σi insideM
4
i provides a

minimal symplectic filling, but, on the other hand, the minimal resolution C̃2/Gi provides

another, so in particular χ(Wi)=χ(C̃2/Gi). Now, in our setting, |Gi|!+∞, so for i large

Gi is either a finite cyclic subgroup Zki+1⩽SU(2) or a binary dihedral group 2D2(ki−2).

It then follows that

χ(C̃2/Gi)=

{
ki+1, when Gi =Zki+1,

ki+1, when Gi =2D2(ki−2),
(4.12)
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and hence χ(Wi)=χ(C̃2/Gi)!∞.

We recall the Chern–Gauss–Bonnet theorem on an Einstein 4-manifold (M4, g) with

boundary:

8π2χ(M4)=

ˆ
M4

|Rmg|2 dvolg +8π2

ˆ
∂M4

TPχ. (4.13)

Denote by II and H the second fundamental form and the mean curvature of ∂M4,

respectively. Then, the above transgression of the Pfaffian is given by

TPχ =
1

4π2
·
(
λ·H−Rmikkj · IIij +

1

3
H3+

2

3
Tr(II3)−H ·| II |2

)
dvol∂M4 , (4.14)

where i, j and k are in the tangential direction of ∂M4, and λ is the Einstein constant.

Applying this to Wi, since the second fundamental form of Σi is uniformly bounded and

the volume is collapsing, the boundary integral goes to zero. So, by (4.1), we obtain a

uniform bound on χ(Wi). This yields a contradiction.

Remark 4.18. In the above proof, we make use of the symplectic structure more

than the Ricci-flat structure. It is possible to use signature formula on manifolds with

boundary to give a proof, but we are not aware of the formula of the eta invariant

on general collapsing manifolds (M2k+1
j , gj). For a fixed manifold M3 with collapsing

metrics, the convergence of eta invariants is studied in [72].

4.4. Proof of Theorem 4.3

By the Chern–Gauss–Bonnet theorem,

ˆ
K
|Rmgj |2 dvolgj =192π2.

Then, it follows from Corollary 3.22 that the singular set S consists of a finite number of

points. The rest of the proof does not require the L2 bound on curvature. We will only

use item (1) of Theorem 4.1.

Proposition 4.19. (X3
∞, d∞) is isometric to a flat orbifold locally modeled on

R3/Z2, and the limit measure ν∞ is proportional to the Hausdorff measure.

Proof. We consider the positive harmonic function V on X3
∞\S. Near each pα∈S,

we have V =cαr
−1
α +hα, where rα(x)≡d♭∞(x, pα) and cα∈[0,∞). Let S ′ be the subset of

S consisting of those pα’s with cα>0. Then, V is orbifold smooth on X3
∞\S ′. On the

other hand, V!∞ near S ′, so the minimum of V is achieved at some point in X∞\S ′.

By the strong maximum principle on the flat space, V is a constant.
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Let us review some standard facts regarding flat orbifolds. Bieberbach’s theorem

(see [82, Theorem 3.2.1]) states that, if Γ⩽Isom(Rn) is a discrete and co-compact, then

the lattice Λ≡Γ∩Rn is normal in Γ with bounded index [Γ:Λ]⩽w(n), and yields the

following exact sequence:

1−!Λ−!Γ−!H −! 1, (4.15)

where H=Γ/Λ⩽O(n). We now consider a closed flat orbifold Xn. Applying Thurston’s

developability theorem (see [80, Chapter 13] or [11, Chapter III.G]), the universal covering
orbifold of Xn is isometric to Rn, so that Xn=Rn/Γ for some discrete co-compact group

Γ∈Isom(Rn). Then, Biberbach’s theorem implies that Xn=Tn/H for some finite group

H⩽O(n), where Tn≡Rn/Λ is a flat torus.

In our setting, we can write X3
∞=T3/H for some finite group H⩽O(3). Let q∈X3

∞

be an orbifold point. Then, the tangent cone at q is isometric to R3/Z2, where the group

Z2 is generated by the reflection

ι:R3 −!R3,

x 7−!−x.

Moreover, ι induces an element in H with the fixed point q and det(ι)=−1. In particular,

H ̸⊂SO(3). Let us set H0≡H∩SO(3). Then,

H =H0∪(ι·H0).

Next, we claim that any element γ∈H0 acts freely on T3. If not, suppose that γ

has some fixed point x0∈T3 and recall γ∈H0⩽SO(3). Then, γ fixes the rotation axis

passing through x0. However, this contradicts the assumption that X3
∞ has only isolated

singularities.

Now, since π1(K)={1}, by [77] we know that π1(X
3
∞)={1}. Then, we must have

H0={1}. This implies that X3
∞=T3/Z2.

4.5. Proof of Theorem 4.4

Let (X3
∞, d∞, p∞) be given as in Theorem 4.4. By Theorem 4.1 (1), the flat background

geometry has orbifold singularity near each point in S. Fix a normalization of the

harmonic function V , and let g♭∞ be the associated flat background metric. Near a point

in S, we have V =σr−1+h for σ∈[0,∞) and h orbifold smooth. Let S ′ be the subset of

S consisting of points where σ>0.
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Lemma 4.20. We have

lim sup
r!∞

inf
Sr(p∞)

V <∞.

Proof. Otherwise, we can find an increasing sequence rj!∞ such that

inf
Srj

(p∞)
V !∞.

By the maximum principle for harmonic functions, we actually have V!∞ uniformly at

infinity. The minimum of V is then achieved at some point in S\S ′. Then, by the strong

maximum principle for harmonic functions, we conclude that V must be constant. This

yields a contradiction.

Proposition 4.21. The flat background geometry (X3
∞, d

♭
∞) is a complete flat orb-

ifold.

Proof. If (X3
∞, g∞) has two ends, then X3

∞ isometrically splits off an R. Then, it

follows that X3
∞ is smooth and κ=0. Then, V >0 is harmonic on the complete smooth

metric measure space (X3
∞, g∞, ν∞), where

dν∞ =V −1/2 dvolg∞ .

By Theorem 2.8, V is constant.

If (X3
∞, g∞) has only one end, then we first claim that R is not an asymptotic cone at

infinity. Otherwise, one can find ri!∞ such that Ari,2ri(p∞) consists of two connected

components. Similar to the proof of Proposition 4.8, we can find in each connected

component foliations by totally geodesic flat tori with respect to g♭∞. Then, we can slide

these tori between Ari,2ri(p∞) and Ari+1,2ri+1
(p∞), and we see that X3

∞ have two ends

each diffeomorphic to T2×R+. This yields a contradiction.

Now, the following lemma can be proved similarly to Lemma 4.9.

Lemma 4.22. There exists δ0>0 such that, for every sufficiently large r, any two

points in Ar/2,r(p∞) can be connected by a smooth curve γ⊂Aδ0·r,3r(p∞) with arc length

|γ|⩽10r.

As in §4.2, using Lemmas 4.20 and 4.22, and the Harnack inequality for harmonic

functions, we obtain that

lim sup
r!∞

sup
Sr(p∞)

V <∞,

which implies that g♭∞ is complete at infinity.
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By Thurston’s developability theorem, we have that (X3
∞, g

♭
∞) is isometric to R3/Γ

for some Γ⩽Isom(R3). If Γ is a free action, then the special affine structure on (X3
∞, g

♭
∞)

implies that X3
∞ is isometric to R3, S1×R2 or T2×R. If Γ is not free, then there is

some σ∈Γ which acts as reflection at one point in R3. Let Γ0 be the subgroup of Γ that

preserves the orientation of R3. Then, [Γ:Γ0]=2, and Γ0 acts freely on R3. Otherwise,

Γ0 has an element that fixes an axis in R3 and the singularity of X3
∞≡R3/Γ cannot be

isolated. It follows that

X3
∞ ≡ (R3/Γ0)/Z2,

where R3/Γ0 is isometric to R3, R2×S1 or R×T2.

Next, we classify V in the above cases. If (X3
∞, g

♭
∞) is isometric to R3, then Bôcher’s

theorem implies that V =σ ·r−1+ℓ for some constants σ⩾0 and ℓ⩾0. If

(X3
∞, g

♭
∞)≡R2×S1,

then we consider the S1-average 
V =
´
S1 V dθ, which is harmonic on R2\{02}. Since the

composition 
V (ez)>0 is harmonic on Cz, we have that 
V is constant. Therefore, the

harmonic function V >0 is smooth on R2×S1, which implies that V is constant. If

(X3
∞, g

♭
∞)≡R×T2,

the same average argument implies V is a positive constant. In the other cases, one can

analyze the lifting of V on the Z2-cover and the same conclusion follows.

Finally, if (4.2) holds, then using item (2) of Theorem 4.1, V is a positive constant.

5. Singularity structure II: Case d=2

5.1. Main results

We first state the main results of this section.

Theorem 5.1. (Local version) Let (X4
j , gj , pj) be a sequence of hyperkähler mani-

folds such that B2(pj) is compact and

(X4
j , gj , νj , pj)

mGH−−−−! (X2
∞, d∞, ν∞, p∞),

with dimess(X
2
∞)=2. If S={p∞}, then the limit metric on X∞ is a singular special

Kähler metric in the sense of Definition 3.19, and ν∞ is a multiple of the 2-dimensional

Hausdorff measure on X2
∞.
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Theorem 5.2. (Compact version) Let gj be a sequence of hyperkähler metrics on

the K3 manifold K, with diamgj (K)=1, such that

(K, gj , νj)
mGH−−−−! (X2

∞, d∞, ν∞),

with dimess(X
2
∞)=2. Then, X2

∞ is homeomorphic to S2, endowed with a singular special

Kähler metric.

Remark 5.3. By definition, a singular special Kähler metric has local integral mon-

odromy around each singular point. With a uniform bound on the L2 curvature, which is

automatic in the setting of Theorem 5.2, one would expect that the limit should indeed

have integral monodromy. See Conjecture 7.4.

Remark 5.4. We were informed by Shouhei Honda that using the theory of RCD

spaces, one can show that the above limit space (X2
∞, d∞) is indeed an Alexandrov space

of non-negative curvature.

Theorem 5.5. (Complete version) Let (X4
j , gj , pj) be a sequence of hyperkähler

manifolds such that

(X4
j , gj , νj , pj)

mGH−−−−! (X2
∞, d∞, ν∞, p∞).

Assume that (X2
∞, d∞) is complete non-compact and dimess(X

2
∞)=2. If S={p∞}, then

X2
∞ is isometric to either a flat metric cone Cβ for β∈

{
1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , 1

}
, or to the

flat product R×S1, with the standard special Kähler structure.

5.2. Proof of the main results

The main part of this subsection is devoted to the proof of Theorem 5.1. At the end of

this section we will prove Theorems 5.2 and 5.5.

Now, assume that we are in the setup of Theorem 5.1. By §3.2, we know that

B1(p∞)\{p∞} is a special Kähler manifold. Recall that, if Σ is a smooth surface with

boundary and with Gaussian curvature K⩾0, then, by the Gauss-Bonnet theorem,

2π(2−2g(Σ)−n)= 2πχ(Σ)=

ˆ
Σ

K+

ˆ
∂Σ

k⩾
ˆ
∂Σ

k, (5.1)

where k denotes the boundary geodesic curvature, and n is the number of boundary

circles. Given a tangent cone (Y, p̄) at p∞, suppose that it is given by the limit of

(X∞, r
−1
i d∞, p∞) for some ri!0. If dimY =2, then, by the interior curvature bound

discussed in §3.2, we know that Y \{p̄} is smooth and special Kähler. If dimY =1, then
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Y is either R or R+, and the collapsing is locally along a smooth circle fibration. We

first claim that Y cannot be R. Otherwise, we can choose a sequence ri!0 such that

the annulus r−1
i Ari,2ri collapses to the union of intervals [−2,−1]∪[1, 2] with bounded

curvature. Then, we can choose a smooth fiber Ci with uniformly bounded geodesic

curvature, which is given by the union of two circles. In particular,
´
Ci
k!0. Let Σi

be the region bounded by Ci and Ci+1, whose boundary consists of four disjoint circles.

Applying (5.1), we easily reach a contradiction.

So, we know that any tangent cone Y is either 2-dimensional, or it is isometric to R+.

In both cases, we can choose a smooth circle Ci in the annulus r−1
i Ari,2ri with

lim
i!∞

ˆ
Ci

k= c.

In particular, c=0 when Y =R+. Again, applying (5.1) to the region Σi bounded by Ci

and Ci+1, we see that, for i large, Σi is diffeomorphic to a cylinder. In particular, we

have shown the following result.

Lemma 5.6. For δ>0 small, we have that Bδ(p∞)\{p∞} is diffeomorphic to a punc-

tured disc in R2.

Without loss of generality, we may assume that δ=1, and set

B=B1(p∞) and B∗ =B1(p∞)\{p∞}.

We now prove Theorem 5.1. Choose a loop σ generating π1(B
∗), oriented so that it

goes counterclockwise around p∞ (notice that B∗, being a Riemann surface, is naturally

oriented). Denote by A the monodromy of the special Kähler structure along σ. Denote

by ω the Kähler form on B∗. We now divide into three cases.

Case 1. A is conjugate to Id, I1 or I−1
1 . In this case, A has an invariant vector.

So, we can choose a local holomorphic coordinate z such that dz is a globally defined

holomorphic 1-form on B∗. Then, we have

ω=

√
−1

2
Im(τ) dz∧dz̄,

where Im(τ) is positive harmonic function on B∗.

Lemma 5.7. For r>0 small, we have Im(τ)⩾Cr3/2 on Sr(p∞).

Proof. The proof is similar to the arguments in §3.2. If the estimate does not hold,

then Im(τ) is a global harmonic function on B in the sense of Definition 2.6. This leads

to a contradiction by the weak Harnack inequality (Theorem 2.7).
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Notice that, from the proof of Lemma 5.6, for any r small we can find a loop σr

contained in the annulus Ar/2,2r which is homotoptic to σ and with length bounded by

Cr. Since |dz|=1/
√

Im(τ), by letting r!0 it follows that
´
σ
dz=0. So z is single-valued

on B∗, and it extends continuously across p∞. Adding a constant, we may assume that

z(p∞)=0. Now, z defines a covering map from B∗ onto a domain in C. Suppose that

the covering degree is k, then we can take ζ=z1/k as a holomorphic coordinate on B∗

and this embeds B∗ holomorphically onto a punctured domain Ω∗=Ω\{0} in C.
We may now view Im(τ) as a positive harmonic function on Ω∗, so, by Bôcher’s

theorem, we know that

Im(τ)=−c log |ζ|+V (ζ),

where c⩾0 and V extends smoothly across zero. Then, one can directly check that the

tangent cone at p∞ is given by the flat mcetric

ω0 =

√
−1

2
k2|ζ|2k−2 dζ∧dζ̄ on C.

This is a cone of angle 2πk. Since B is a Ricci limit space, we must have k=1. If c=0,

then the metric is smooth across p∞. If c>0, then, by rescaling the special holomorphic

coordinate z, we may assume that c=1. Then, the metric is a singular special Kähler

metric of type I.

Case 2. A is conjugate to − Id, I∗1 or (I∗1 )
−1. In this case, A has an eigenvector

with eigenvalue −1. Then, we can choose a local special holomorphic coordinate z such

that dz transforms to −dz under A.

Similar reasoning as Case 1 shows that Im(τ) is a well-defined positive harmonic

function on B∗, z2 is a globally defined holomorphic function on B∗ and we may assume

that z2(p∞)=0. Then, as above, ζ=z2/k is a holomorphic coordinate and defines a

holomorphic embedding of B∗ into a punctured domain in C. As before, we get

Im(τ)=−c log |ζ|+V (ζ)

for a harmonic function V smooth at zero. As above, one can see that k must equal 1,

and the tangent cone at p∞ is C/Z2. If c=0, then the singularity is of orbifold type,

so the metric is a singular special Kähler metric of type III with β= 1
2 . If c ̸=0, then,

rescaling the coordinate z, we can make c=1. This shows that the metric is a singular

special Kähler metric of type II.

Case 3. A is elliptic or hyperbolic. Let (Y, p̄) be a tangent cone at p∞. It follows

from (3.9) that Y must be 2-dimensional, so Y \{p̄} is smooth and special Kähler, and

by (3.8) we know that Y \{p̄} has elliptic or hyperbolic monodromy. Again, the interior
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curvature bound implies that Y has quadratic curvature decay at infinity. Notice that

Y \{p̄} has non-negative curvature, so one can see that Y is asymptotic to a flat metric

cone (Cγ , O) with angle 2πγ for some γ∈[0, 1), in the C∞ Cheeger–Gromov topology.

Notice that Cγ itself is also a tangent cone at p∞. Since Cγ is flat, by Remark 3.13

we know that the flat connection ∇ coincides with the Levi-Civita connection, and hence

its monodromy around an oriented loop going counterclockwise around the singularity is

given by Rγ . Now, again by (3.8), we get Tr(A)=Tr(Rγ). Notice the orientation of the

rotation is a conjugation invariant in SL(2;R). In particular, we must have A=Rγ , since

we have chosen σ to be oriented counter-clockwise around p∞.

The same argument shows that the monodromy of Y \{p̄} is also given by Rβ . Then,

applying this again to the singular point p̄ of Y , it follows that there is a tangent cone at

p̄ which is isometric to Cβ . This means that we can find a sequence of annuli Arj ,sj (p̄)

in Y , with rj!0 and sj!∞, whose boundary circles after rescaling both converge to

the unit circle in Cβ . Applying the Gauss-Bonnet theorem on such sequences of annuli,

it is easy to see that Y must be a flat metric cone, and hence is isometric to Cβ .

The above discussion in particular shows that there is a unique tangent cone at p∞,

which is given by Cβ for some β∈(0, 1), and the original monodromy matrix satisfies

A=Rβ . By Corollary 3.31 and Lemma 3.17 we must have β∈
{

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6

}
. In par-

ticular, A must be elliptic.

We now study the singular behavior of the limit metric near p∞. First, we can

find local special holomorphic coordinates (z, w) on B∗ such that, under the monodromy

along σ, we have

A·(dz−
√
−1dw)= e2π

√
−1β(dz−

√
−1 dw).

This means that dζ≡d((z−
√
−1w)1/β) is a well-defined global holomorphic 1-form on B∗.

Since Rβ ̸=Id, by adding some constants to (z, w), we may assume that the translation

part in (3.5) vanishes. This implies that ζ≡(z−
√
−1w)1/β is indeed a globally defined

function on B∗. In general, τ may not be single-valued on B∗. But notice that

ω∞ =

√
−1

2
Im(τ) dz∧dz̄=

√
−1

2

Im(τ)

|1−
√
−1τ |2

β2|ζ|2β−2 dζ∧dζ̄.

So,
Im(τ)

|1−
√
−1τ |2

is single-valued on B∗.

Lemma 5.8. For all ε>0, there exists a C(ε)>0 such that, for all r∈
(
0, 12

]
, on

Sr(p∞) we have
Im(τ)

|1−
√
−1τ |2

⩾C(ε)rε.

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=



378 s. sun and r. zhang

Proof. If we suppose that this fails, then we can find a sequence ri!0 such that

sup
Ari,2ri

(p∞)

Im(τ)

|1−
√
−1τ |2

⩾ (1+δ) inf
Ari,2ri

(p∞)

Im(τ)

|1−
√
−1τ |2

(5.2)

for some δ>0. Let Ũi be the universal cover of r−1
i ·Ari,2ri(p∞), endowed with the

rescaled metric. Then, as i!∞ we know that Ũi converges to the universal cover Ũ∞

of A1,2(0)⊂Cβ , which is flat. We can find λi>0 such that supŨi
λi ·Im(τ̃)=1. Suppose

that this supremum is achieved at some qi∈


Ũ i. Let Di=Re(λi ·τ̃(qi)). Then, by Harnack

inequality, it follows that Im(λiτ̃) and Re(λiτ̃−Di) are locally uniformly bounded. So,

passing to a subsequence, we obtain local convergence of λiτ̃−Di to a limit τ̃∞ on Ũ∞.

The flatness of Ũ∞ implies that τ̃∞ is a constant. This then contradicts (5.2).

The lemma implies that

∣∣∇|ζ|β
∣∣2 ⩽C(ε)−1r−ε.

In particular, ζ extends continuously across p∞. Moreover, ζ realizes B∗ as a finite cover

of some punctured domain D∗ in C. So, for some k>0, ζ1/k defines a global holomorphic

coordinate on B∗ which embeds B∗ into C. Now, we identify the upper half-space with

the unit disk D via the map

τ 7−! ξ=
τ−

√
−1

τ+
√
−1

. (5.3)

Then, the monodromy transformations on ξ is given by

ξ 7−! e−4π
√
−1βξ.

So, − log |ξ| is well defined on B∗. By Bôcher’s theorem, we have

− log |ξ|=−c log |ζ|+v

for c⩾0 and v a smooth harmonic function on B.

We claim that c cannot be zero. Otherwise,
∣∣log |ξ|∣∣⩽C on B∗, which implies that τ

is uniformly bounded on B∗ and has definite distance away from
√
−1. Then, by taking

limit as in the proof of the above lemma, we see that τ̃∞ is not fixed by Rβ , so is not

invariant under the monodromy, which is a contradiction. So we know that c>0, and, as

p moves to p∞, we have |ξ|!0.

We may write

ω∞ =

√
−1

8
(1−|ξ|2)β2|ζ|2β−2 dζ∧ dζ̄.

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=



collapsing geometry of hyperkähler 4-manifolds and applications 379

Since the tangent cone at p∞ is Cβ , we see that k must be 1. Without loss of generality,

we may assume that ζ(p∞)=0. We now divide into two cases:

• β∈
{

1
4 ,

3
4

}
. Then, ξ2 is holomorphic across zero, and ξ=F (ζ)1/2 for a holomorphic

function F with F (0)=0.

• β∈
{

1
3 ,

2
3 ,

1
6 ,

5
6

}
. Then, ξ3 is holomorphic across zero, and ξ=F (ζ)1/3 for a holo-

morphic function F with F (0)=0.

These imply ω∞ is a singular special Kähler metric of type III. This finishes the

proof of Theorem 5.1.

Proof of Theorem 5.2. By Theorem 5.1, d∞ is a singular special Kähler metric on

a compact Riemann surface. Since π1(K)={1}, by [77], X∞ is simply connected which

implies that X∞ must be homeomorphic to S2.

Proof of Theorem 5.5. By Theorem 5.1, we know that X∞ is endowed with a singu-

lar special Kähler metric ω. In particular, the curvature of X∞\{p∞} is positive. Then,

it is easy to see that each end of X∞ is asymptotic to a unique cone at infinity. If X∞

has two ends, then it splits isometrically as a flat product R×S1. So, we assume that

X∞ has only one end. Then, an easy application of the Gauss–Bonnet theorem implies

that X∞ is homeomorphic to R2. Let σ be a loop generating the fundamental group at

infinity, and denote by A the monodromy matrix along σ.

Case (a). There is a 1-dimensional asymptotic cone Y . Using the Gauss–Bonnet

theorem as in the beginning of this subsection, one can see that Y must be R+. Then, by

(3.9), we know that A must be conjugate to I1, I
−1
1 or Id. In particular, on X∞\{p∞},

there is a local special holomorphic coordinate z such that dz is globally defined, so is the

positive harmonic function Im(τ). Just as in the proof of Theorem 5.1, Case 1 (p. 375),

the function z is indeed a global coordinate on X∞. Then, by similar arguments as in

the proof of Proposition 4.21, one can show that the flat metric

ω♭ ≡
√
−1

2
dz∧dz̄=Im(τ)−1ω

is complete at infinity. So, X∞ is biholomorphic to C. Now, an application of Bôcher’s

theorem yields that Im(τ) must be a constant. Hence, the metric ω itself is a flat metric

on C. This yields a contradiction.

Case (b). All asymptotic cones are 2-dimensional. In particular, they are all flat

cones, and must be the unique Cβ such that A is conjugate to Rβ . This also implies that

the tangent cone at p∞ must also be Cβ . Then, the Gauss–Bonnet theorem implies that

X∞ itself is flat, ând hence must be the cone Cβ .
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6. Classification of gravitational instantons

6.1. Uniqueness of asymptotic cones

Let (X4, g) be a gravitational instanton, and we fix a hyperkähler triple ω. If it is flat,

then it is isometric to a flat product Rk×T4−k with 1⩽k⩽3. By Cheeger–Gromoll’s

splitting theorem, X4 is isometric to a flat product R×T3, unless X4 has only one end.

In the following, we will always assume that X4 is non-flat and has only one end. We

will also assume that dimess(Y )⩽3 for any asymptotic cone (Y, dY , p∗), since otherwise

(X4, g) is ALE, and this case has already been classified by Kronheimer [55].

Since ˆ
X4

|Rmg|2 dvolg <∞,

Theorem 3.21 and Proposition 3.1 imply that any asymptotic cone (Y, dY , p∗) is smooth

away from p∗∈Y . By Theorems 4.4 and 5.5, (Y, dY ) is a flat space isometric to one

of the following: R3, R3/Z2, R2, R, R+, S1×R2, T2×R, S1×R, or a flat cone Cβ for

β∈
{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6

}
.

Lemma 6.1. Any asymptotic cone is a flat metric cone.

Proof. It suffices to rule out S1×R2, R×T2 and S1×R. Notice that these spaces

have moduli given by the moduli of the flat metrics on S1 and T2. We first show that

S1
1/2×R2 /∈T∞(X4), where S1

R denotes a circle of diameter R.

Suppose that one asymptotic cone Y is given by S1
1/2×R2. Then, we may find

ri!∞ such that r−1
i B(p, ri) converges to the unit ball in S1

1/2×R2. On the other hand,

we know that, for all r>0 sufficiently large, r−1B(p, r) is ε(r)-GH close to the ball Ur

of radius 1 around the vertex in an asymptotic cone Yr, where limr!∞ ε(r)=0. Notice

that Yr is not unique, and we simply make arbitrary choices for all r. Let ε0∈
(
0, 1

100

)
be small so that any asymptotic cone Yr whose unit ball Ur is 3ε0-GH close to the unit

ball in S1
R×R2 for some R> 1

4 must be itself of the form S1
R′×R2 for some R′⩾ 1

8 .

Now, fix r̃ large so that ε(r)< 1
2ε0 for r⩾r̃. For any i with ri⩾r̃, let s∈[ri, ri+1] be

the smallest number such that, for all r∈[s, ri+1], r
−1B(p, r) is ε0-GH close to S1

R×R2

for some R⩾ 1
8 . By assumption, we know that s⩽ 1

2ri+1. We claim that s=ri. Otherwise,

if s>ri, then for all s′∈
[
1
2s, s

]
we have 2s′∈[s, ri+1], so (2s′)−1B(p, 2s′) is ε0-GH close

to some ball S1
R×R2 for some R> 1

8 . In particular, (s′)−1B(p, s′) is 2ε0-GH close to

S1
2R×R2. By assumption, it follows that the unit ball Us′ in Ys′ is 3ε0-GH close to the

unit ball in S1
2R×R2. By our choices of ε0, we conclude that Ys′ is of the form S1

R′×R2

for R′⩾2R−3ε0>
1
8 . This contradicts the choice of s.
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So, for any sufficiently large r, we may write Yr=S
1
f(r)×R2 for some f(r)∈

(
1
8 ,

5
8

)
.

Now, we claim that

f(2r)< 3
4f(r) for all r > 0, (6.1)

so that the desired contradiction immediately arises. In fact, if (6.1) is true, then f(r)!0

as r!∞, which contradicts f(r)> 1
8 . To see the claim, we notice that, by assumption,

r−1B(p, r) is ε(r)-GH close to the unit ball in S1
f(r)×R2. So, (2r)−1B(p, r) is 1

2ε(r)-GH

close to the half-ball in S1
f(r)/2×R2. On the other hand, (2r)−1B(p, 2r) is ε(2r)-GH close

to the unit ball in Y2r. It follows that f(2r)<
3
4f(r), if r is large.

Hence, we have proved that S1
1/2×R2 /∈T∞(X4). By rescaling, S1

R×R2 /∈T∞(X4) for

all R. Similar arguments also show that S1
R×R /∈T∞(X4) for all R.

Finally, we claim that the possible unit-area flat T2 such that R×T2∈T∞(X4) must

form a compact moduli. Indeed, if not, applying Lemma 2.3, one can choose a sequence

of flat tori (T2, gflatj ) with Areagflat
j

(T2)=1 and diamgflat
j

(T2)!∞ such that, after appro-

priate scaling-up,

(T2, g̃flatj )
GH−−−!R×S1

1 .

It follows that rescalings of R×T2 converge to R2×S1
1∈T∞(X4) in the pointed Gromov–

Hausdorff sense, which is a contradiction. Then, similar arguments as above also show

that R×T2 ̸∈T∞(X4) for any flat torus T2.

Proposition 6.2. Let (X4, g) be a gravitational instanton. Then, it has a unique

asymptotic cone which is a flat metric cone (C(W ), dC , p∗), where W denotes the cross-

section and p∗ is the cone vertex.

Proof. By Lemma 2.3, T∞(X4) is connected and compact. Denote by d the max-

imal dimension of the elements in T∞(X4). If d=3, then we choose some Y ∈T∞(X4)

with dimess(Y )=3. Then, any element in a small neighborhood U of Y in T∞(X4) has

dimension 3, and hence, by Lemma 6.1, it must be R3 or R3/Z2. So, the connectedness

of T∞(X4) implies that T∞(X4)={Y }. Similar arguments apply to the case d=2.

In the rest of this section, we will denote by (Y, dY , p∗) the unique asymptotic cone

of X4, and denote d=dim∞(X4)≡dimess(Y ). Since X has only one end, W is connected

and Y ̸=R. From §3, the renormalized limit measure on Y is νY =χ·dvolgY , where χ is

a constant if d>1, or d=1 and G∞=R3; χ=c·z1/2 if d=1 and G∞=H1 (here z is the

affine coordinate).

6.2. Nilpotent fibration on the end

Denote r(x)≡dg(p, x) and r̂(y)≡dY (p∗, y) for x∈X and y∈Y . Below, we use τ(x) to

denote a general function on the end of X4 such that limr(x)!∞ τ(x)=0. The following
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is essentially due to Cheeger–Fukaya–Gromov [17]. We give an outline of the arguments

in Appendix A.

Theorem 6.3. There exists a smooth fibration map F :X4\K!Y \K ′, where K

and K ′ are compact such that the following properties hold.

(1) There are flat connections ∇y with parallel torsion on the fibers F−1(y) which

depend smoothly on y∈Y \Ω, such that each fiber (F−1(y),∇y) is affine diffeomorphic

to a nilmanifold Γ\N for Γ⊂NL, and the structure group of the fibration is reduced to

((Z(N)∩Γ)\Z(N))⋊Aut(Γ)⊂Aff(Γ\N).

(2) F is an asymptotic Riemannian submersion in the sense that, for a tangent

vector v at x∈X\K which is orthogonal to the fiber of F , we have

(1−τ(x))|v|g ⩽ |dFx(v)|gY ⩽ (1+τ(x))|v|g (6.2)

and, for all k>0, there exists Ck>0 such that, for all x∈X\K,

|∇kF (x)|g,gY ⩽Ckr(x)
−k. (6.3)

(3) The second fundamental form Π of the fibers satisfies, for all k⩾0,
|∇kΠ(x)|= τ(x)r(x)−1−k, if d=2, 3, or d=1 and G∞ =R3,

|∇kΠ(x)|⩽ 1√
3
(1+τ(x))r(x)−1−k, if d=1 and G∞ =H1.

(6.4)

In our setting, applying Corollary 3.30, all the fibers are nilmanifolds. As in §3.5,
we say a tensor ξ on the end of X is N -invariant if its lift to the local universal covers

is invariant under the full nilpotent group action of NL.

Lemma 6.4. In the setting of the above theorem, there are constants δ0∈(0, 1) and

C>0 such that

C ·r̂(y)−δ0 ⩽diamg(F
−1(y))⩽C ·r̂(y)δ0 for all y ∈Y \K ′,

where diamg denotes the intrinsic diameter of the fiber.

Proof. This is a direct consequence of the estimates on the second fundamental

form (6.4).

Theorem 6.5. By making K and K ′ larger if necessary, there exists an N -invariant

definite triple ω† defined on X\K such that, for all k∈N, we have

|∇k
ω(ω

†−ω)|gω =O(r(x)−k−1+δ0). (6.5)
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Proof. Following the same arguments as in the proof of Proposition 3.26, we obtain

an N -invariant definite triple ω† on X\K. The estimate (6.5) can be proved using

the diameter growth estimate for the collapsing fibers in Lemma 6.4, as well as [17,

Proposition 4.9].

Let g† be the quotient metric on Y \K ′ induced by ω†. Then, (6.2), (6.3) and (6.5)

together imply that, for all k,

lim
r!∞

rk sup
Sr(p∗)

|∇k
gY (g

†−gY )|gY (y)= 0. (6.6)

An N -invariant function f on X\K can be viewed as a function on Y \K ′, and we may

write

∆ω†f =∆g†f+⟨H,∇g†f⟩, (6.7)

where H denotes the mean curvature vector field of the fibers of F , viewed as a vector

field on Y \K ′. By Theorem 6.3 (4) and the arguments in the proof of Lemma 3.29, we

have

lim
k!∞

rk sup
Sr(p∗)

|∇k
gY (H−∇Y logχ)|=0 for all k∈N. (6.8)

6.3. Perturbation to invariant hyperkähler metrics

For R≫1, we set

QR ≡Y \BR(p∗) and XR ≡F−1(QR).

As in §2.4, we identify an element in Ω+

ω′(XR)⊗R3 with a (3×3)-matrix-valued function

f on XR, and an N -invariant element is identified with such a function on QR.

Theorem 6.6. Given any ε0∈(0, 1−δ0), there exist a number R0>0 and an N -

invariant hyperkähler triple ω♢ on XR0 of the form ω♢=ω†+dd∗(f ·ω†) such that

|∇k
ω†f(x)|=O(r(x)2−ε0−k)

for all k∈N.

In particular, we also have that, for all k⩾0,

|∇k
ω(ω

♢−ω)|gω ⩽Ck ·r(x)−k−ε0 .

So, the original hyperkähler triple ω is asymptotic to the N -invariant triple ω♢.
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The rest of this subsection is devoted to the proof of the above theorem. The idea is

similar to the proof of Theorem 3.27. The difference is that, due to the non-compactness

of XR, we need to work in certain weighted spaces.

Given δ∈R and k∈N, we define the following weighted (semi-)norms of an N -

invariant function f on XR (or equivalently a function on QR):

∥f∥Ck
δ (QR) ≡

k∑
m=0

sup
r⩾R

{r−δ+m ·∥∇m
gY f∥C0(Ar,2r(p∗))},

[f ]Ck,α
δ (QR) ≡ sup

r⩾R
{r−δ+k+α ·[f ]Ck,α

gY
(Ar,2r(p∗))

},

∥f∥Ck,α
δ (QR) ≡∥f∥Ck

δ (QR)+[f ]Ck,α
δ (QR),

where

[f ]Ck,α(Ar,2r(p∗))

≡ sup

{ |∇k
gY f(y1)−∇k

gY f(y2)|
dgY (y1, y2)

α
: y1, y2 ∈Ar,2r(p∗) and dgY (y1, y2)< InjradgY (y1)

}
.

As usual, the difference in the last formula is computed in terms of the parallel transport

along the minimizing geodesic. These (semi-)norms obviously extend to N -invariant

matrix-valued functions.

Now, we fix k⩾6 and α∈(0, 1). The following provides a suitable right inverse of the

Laplace operator for us. Notice that we do not impose the boundary conditions, since

we are only interested in the asymptotic behavior at infinity.

Proposition 6.7. There exists a finite set Γ⊂(0, 1) depending only on Y such that,

for all δ∈(0, 1)\Γ and all R⩾1, one can find a bounded linear map

SR:C
k,α
−δ (QR)−!Ck+2,α

−δ+2 (QR)

with the properties that

∆νY
�SR =Id and ∥SR∥⩽C

for C depending only on Y , δ, k, α (but not on R).

Proof. If d=1, then, in terms of the affine coordinates on R+ (see §3.3), we have

∆νY
=Cz−1∂2z . In this case, we reduce to a simple ODE problem whose proof we omit.

We now consider the case d⩾2. Then, νY is proportional to the volume measure,

and ∆νY
is the metric Laplace operator on the flat cone Y =C(W ), where

W ≡
{

spherical space form S2 or RP2, if d=3,

S1
2πβ with β ∈

{
1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , 1

}
, if d=2.
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First, for any δ∈(0, 1), one can construct a linear extension operator

ER:C
k,α
−δ (QR)−!Ck,α

−δ (QR/2),

with ∥ER∥⩽C independent of R⩾1. For this purpose, one can construct E1 by the local

construction in [76] or [79], then use rescaling to define ER.

Denote by (r,Θ) the polar coordinates on Y . Let Σ(W )≡{λj}∞j=0 be the spectrum

(allowing multiplicities) of −∆W with 0=λ0<λ1⩽λ2⩽... . Let {φj}∞j=0 be an orthonor-

mal set of eigenfunctions satisfying −∆Wφj=λj ·φj and ∥φj∥L2(W )=1. Given a function

f∈Ck,α
−δ (QR), we set f̃≡ER(f). Then, there is an L2-expansion of f given by

f̃(r,Θ)=

∞∑
j=0

fj(r)φj(Θ).

For j>0, we have

|fj(r)| ≡
∣∣∣∣ˆ

W

f̃(r,Θ)φj(Θ)

∣∣∣∣
=

∣∣∣∣λ−k
j

ˆ
W

((−∆W )kf̃ )(r,Θ)φj(Θ)

∣∣∣∣
⩽C(δ)∥f∥Ck,α

−δ (QR)λ
−k
j r−δ.

(6.9)

Let u(r,Θ) be a formal solution

u(r,Θ)=

∞∑
j=0

uj(r)φj(Θ)

of ∆gY u=f̃ . Then, uj(r) satisfies

u′′j (r)+
d−1

r
·u′j(r)−

λj
r2

·uj(r)= fj(r). (6.10)

For every j∈N, the corresponding homogeneous ODE

u′′j (r)+
d−1

r
·u′j(r)−

λj
r2

·uj(r)= 0 (6.11)

has the following fundamental solutions:

(1) when j=0 and d=2, G0(r)≡log r and D0(r)≡1;

(2) when j=0 and d=3, G0(r)≡1 and D0(r)≡r−1;

(3) when j∈Z+, there are a growing solution Gj(r)≡rµ
+
j and a decaying solution

Dj(r)≡rµ
−
j ; here, µ+

j and µ−
j are the positive and negative roots of the following algebraic

equation:

µ2+(d−2)µ−λj =0. (6.12)
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We now set Γ={|µ−
j |:j>0}∩(0, 1) and δ=minΓ. Let j0 be the largest j such that

µ−
j >−1+δ. For j=0, we can directly integrate and define

u0(r)≡
ˆ r

R

s1−d

(ˆ s

R

td−1f0(t) dt

)
ds.

It is easy to see that

|u0(r)|⩽C(δ)r2−δ∥f∥Ck,α
−δ (QR).

For 1⩽j⩽j0, we set

uj(r)=
Gj(r)

Wj(r)

ˆ R

r

Dj(s)fj(s) ds+
Dj(r)

Wj(r)

ˆ r

R

Gj(s)fj(s) ds,

For j>j0, we set

uj(r)=
Gj(r)

Wj(r)

ˆ ∞

r

Dj(s)fj(s) ds+
Dj(r)

Wj(r)

ˆ r

R

Gj(s)fj(s) ds.

Here, the wronskian is given by

Wj(r)≡W(Gj(r),Dj(r))= (µ+

j −µ
−
j )r

µ++µj−1 =
√
(d−2)2+4λj ·r1−d.

It follows from (6.9) that each uj is well defined, with

|uj(r)|⩽C(δ)λ−k
j r2−δ∥f∥Ck,α

−δ

for δ∈(0, 1)\Γ. The Weyl law implies that λj⩽Cj2/d. By standard elliptic estimates,

|φj |C0⩽Cλj for j⩾1. Since k⩾d+1, the formal solution u converges in C0 and, for all

r⩾ 3
4R, we have

|u(r,Θ)|⩽C(δ)r2−δ∥f∥Ck,α
−δ
.

It is easy to check that ∆gY u=f̃ holds pointwise on Q3R/4. Using the standard interior

elliptic estimates on the rescaled annulus r−1Ar,2r(p∗), we obtain the bound

∥u∥Ck+2,α
−δ+2 (QR) ⩽C(δ)∥f∥Ck,α

−δ (QR).

Now, we simply set SR(f)=u. Clearly, SR is a linear operator, and the above

discussion gives the uniform bound on ∥SR∥.

We now fix δ1∈(ε0, 1−δ0)\Γ. We define the Banach space A to be the completion of

the space of (3×3)-matrix-valued functions f on QR under the Ck+2,α
−δ1+2(QR) norm, and

define B to be the completion of the same space under the Ck,α
−δ1

(QR) norm.
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By Theorem 6.5, for R large, we know that the map F :B1(0)⊂A!B is well defined,

with

∥F (0)∥B ⩽CR−1+δ0+δ1 .

We let L (f)≡∆νY
f and N (f)≡F (f)−L (f). Then, Proposition 6.7 provides a linear

operator P:B!A with L �P=Id and ∥Pv∥A⩽C∥v∥B for all v∈B, where C>0 is a

constant independent of R⩾1.

For any f∈A, we have ∆ω†f=∆g†f+⟨H,∇g†f⟩. Using the fact that

∆g†f =∆gY f+(g†−gY )∗∇2f+∇gY g
†∗∇gY f

and (6.8), we have

∥∆ω†f−∆νY
f∥B ⩽ ε(R)∥f∥A

for some ε(R)!0 as R!∞. Applying (2.7) and the definition of the weighted spaces,

we obtain

∥N (f)−N (g)∥B ⩽ (CR−δ1+ε(R))∥f−g∥A for all f , g ∈B1(0)⊂A.

So, we can apply Proposition 2.12 to obtain R0>0 such that, for R=R0, there is some

f∈A that satisfies the estimate ∥f∥A⩽CR−1+δ0+δ1
0 .

Finally, applying standard elliptic estimates to the equation L (f)+N (f)=0 on

the rescaled annulus r−1Ar,2r(p) as r!∞, we obtain higher-derivative estimates. This

finishes the proof of Theorem 6.6.

6.4. Proof of Theorem 1.2

Let ω♢ be the N -invariant hyperkähler triple constructed in Theorem 6.6, and let g♢ be

the quotient metric on Q induced by ω♢. We set X≡XR0
and Q≡QR0

. We will define

several families of model ends of gravitational instantons, which we will label by “ALX”

for some letter X∈{E,F,G,H,G∗,H∗}. We adopt the terminology that when we say a

gravitational instanton (X4, g) is ALX it means that we can smoothly identify the end

of X4 with a model end in the family ALX such that

|∇k
g(g−gmodel)|g =O(r−k−ε)

for some ε>0 and allfor k∈N, where gmodel denotes the model hyperkähler metric. By

Theorem 6.6, (X4, g) is ALX if and only if (X , gω♢) is ALX. To prove Theorem 1.2, we

will classify the ends of the N -invariant metric ω♢. Recall that we only need to consider

the case when X4 has only one end and is non-flat. Moreover, we assume that X4 is not

ALE, namely dim∞(X4)⩽3. Theorem 1.2 will follow from Theorems 6.9, 6.13 and 6.17.
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6.4.1. Case dim∞(X4)=3

Definition 6.8. (ALF models) ALF model ends are defined as follows.

(1) An ALF-Ak (for k∈Z) model end is the hyperkähler metric constructed by

applying the Gibbons–Hawking ansatz on R3\K to the positive harmonic function

V =
k+1

2r
+c,

where c>0.

(2) An ALF-Dk model (for k∈Z) end is a Z2-quotient of an ALF-A2k−5 end, where

the Z2-action covers the standard involution on R3.

(3) An ALF model end is an ALF-Ak or ALF-Dk model end for some k∈Z.

Theorem 6.9. Any gravitational instanton (X4, g) with dim∞(X4)=3 is ALF.

Remark 6.10. ALF-Ak gravitational instantons are classified by Minerbe [64]; they

are all given by multi-Taub-NUT spaces. ALF-Dk gravitational instantons are classified

by Chen–Chen [21]; they are all given by the twistor space construction due to Cherkis–

Hitchin–Ivanov–Kapustin–Lindström–Roček [5], [56], [52], [26], [25]. Notice that

k= b2(X
4)⩾ 0.

Conversely, any k∈N can be achieved.

Proof. We first assume that Y =R3. It is a standard fact that such ω♢ is given by

the Gibbons–Hawking ansatz. Indeed, this is a special case of the discussion in §3.1.
This means that the metric (Q, g♢) is a special affine metric 3-manifold. Denote by

V −1(x) the length squared of the fibers of F−1(x) for x∈Q. Then, by Lemma 6.4, we

know that, for all σ>0, there is C>0 such that Cr−σ⩽V ⩽Crσ. As in the proof of

Proposition 4.15, this implies that the corresponding flat background geometry (Q, g♭) is
complete at infinity, and hence must be isometric to Y \K for some compact K. Notice

that V is harmonic with respect to g♭. We consider the expansion

V =
∑
j⩾0

(a+

j r
µ+
j +a−

j r
µ−
j )φj ,

where φj is an L2 orthonormal basis of Laplace eigenfunctions on the cross section of Y ,

with−∆S2φj=λjφj , λj⩾0, and where µ±
j are the solutions to the equation µ2+µ−λj=0.

Notice that λ0=0 and λj⩾2 for j>0. So, we have µ+

0 =0, µ−
0 =−1, µ+

j ⩾1 and µ−1
j ⩽−2

for j>0. The growth condition on V implies that a+

j =0 for all j>0. So, we obtain

V = c+
l

2r
+O(r−2).
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Here, l is the degree of the S1 bundle F :X!Q. So, we have proved that ω♢, and hence

(X, g) is ALF-Ak for k=l−1. By the positive mass theorem of Minerbe [62], we know

that k⩾0.

In the case Y ≡R3/Z2, by taking the Z2-cover outside a compact set, we may reduce

to the previous case. Then, (X4, g) is an ALF-Dk gravitational instanton. By Biquard–

Minerbe [9], we have k⩾0.

6.4.2. Case dim∞(X4)=2

Definition 6.11. (ALG models) ALG model ends are defined as follows.

(1) Let β∈{1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , 1}. Let Cβ be the flat cone defined in Example 3.12

with the canonical hyperkähler metric on T ∗Cβ . Taking a lattice sub-bundle in T ∗Cβ

which is invariant under the monodromy R̃β (cf. (3.6)), the induced torus bundle gives

rise to a (flat) ALGβ model end.

(2) An ALG model end is an ALGβ model end for some β in the above list.

Definition 6.12. (ALG∗ models) ALG∗ model ends are defined as follows.

(1) An ALG∗-Ik (for k∈Z+) model end is obtained by applying the Gibbons–

Hawking ansatz on S1×R2\K to the harmonic function V =k ·log r, where r is the radial
distance function on R2.

(2) An ALG∗-I∗k (for k∈Z+) model end is a Z2 quotient of an ALG∗-I2k model end,

where Z2 action covers the standard involution on R2 and the rotation by π on S1.

(3) An ALG∗ model end is an ALG∗-Ik or ALG∗-I∗k model end for some k∈Z+.

Theorem 6.13. Any gravitational instanton (X4, g) with dim∞(X4)=2 is either

ALG or ALG∗.

Remark 6.14. Combining the weighted analysis developed in [23] and a direct gen-

eralization of Minerbe’s positive mass theorem [62], one can conclude that ALG1 and

ALG∗-Ik gravitational instantons do not exist. We thank Gao Chen for pointing out this.

It is also proved in [23] that any ALG∗-Ik gravitational instanton satisfies 1⩽k⩽4. On

the other hand, there exist ALGβ gravitational instantons for all β∈
{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6

}
,

and there exist ALG∗-I∗k gravitational instantons for all k∈{1, 2, 3, 4}, which follows from

the work of Hein [44]. They live on the complement of a singular fiber of finite or I∗k
monodromy on a rational elliptic surface. In [23] a partial converse to Hein’s theorem

was proved.

Proof. Since dim∞(X4)=2, ω♢ has local T2 symmetry but may have global mon-

odromy. We divide into several subcases. Let σ be a loop generating π1(Q) which goes
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around the vertex p∗∈Y once counterclockwise, and let Aσ∈SL(2;Z) be the correspond-
ing monodromy of the T2 fiber. Notice that the quotient metric g♢ on Q is a special

Kähler metric, with monodromy conjugate to Aσ.

First, assume that Aσ=R̃β for some β∈
{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , 1

}
. In this case, we know

that the asymptotic cone Y is given by Cβ . Then, by the discussion at the end of §3.5,
we can find global holomorphic coordinates ζ=(z−

√
−1w)1/β such that (z, w) is a pair

of local special holomorphic coordinates. Again, τ is not single-valued in general but ξk

(k=2 or k=3 depending on β) is single-valued. Since the asymptotic cone of (Q, g♢) is
Cβ , similar to the proof of Theorem 5.5, one can show that the flat metric

√
−1β2|ζ|2β−2 dζ∧dζ̄

is complete at infinity. It then follows that, as ζ!∞, we have ξk!0, so ξk=ψ(ζ−1) for

a holomorphic function ψ. In particular, τ=
√
−1+O(|ζ|−1/k). It then follows that the

special Kähler metric g♢ is polynomially asymptotic to the standard flat cone metric in

the ζ coordinate. Now, the N -invariant metric gω♢ is determined by g♢ via (3.3). It

follows that gω♢ is ALG, so is (X, g).

Next consider the case A=Ik for some k⩾1. Then, we have an invariant vector

of Aσ. This implies that there is a globally S1-action on X . In particular, ω♢ is given

by the Gibbons–Hawking ansatz on some special affine metric 3-manifold. Similar to

the case dim∞(X4)=3, the growth estimate on V gives a complete flat background

geometry at infinity whose asymptotic cone has dimension 2. Then, the flat background

geometry is itself isometric to (S1×R2)\K for some compact K. So, we can use spectral

decomposition to conclude that

V = k ·log r+c+O(r−ε).

We may assume that c=0 by changing the coordinates on R2. In this case, we have that

(X4, g) is ALG∗-Ik. , Finally, when A=I∗k for some k⩾1, we pass to a double cover and

reduce to the previous case. In this case, (X, g) is ALG∗-I∗k .

6.4.3. Case dim∞(X4)=1

Definition 6.15. (ALH models) An ALH model is the hyperkähler metric on the

product T3×[0,∞) for some flat T3.

Definition 6.16. (ALH∗ models) ALH∗ model ends are defined as follows

(1) An ALH∗
b (for some b∈Z+) model end is the hyperkähler metric obtained by

applying the Gibbons–Hawking ansatz on the product T2×[0,∞) to the harmonic func-

tion V =bz for some b∈Z+, where T2 is a flat 2-torus with area 2π, and z is the standard

coordinate on [0,∞).

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=

Fhj3s8cNYHYWdzxoQApU4xC4GiApvFplmfhI/gE1zLM=



collapsing geometry of hyperkähler 4-manifolds and applications 391

(2) An ALH∗ model end is an ALH∗
b model end for some b∈Z+. Notice an ALH∗

model end is precisely a Calabi model end discussed in [46].

Theorem 6.17. Any gravitational instanton (X4, g) with dim∞(X4)=1 is either

ALH or ALH∗.

Proof. In this case, ω♢ has either a T3 or H1 symmetry. Then, it is itself an ALH

or ALH∗ model end. Consequently, in the first case (X4, g) is ALH, and in the second

case it is ALH∗.

Remark 6.18. ALH gravitational instantons were constructed by Tian–Yau [81] and

Hein [44] on the complement of a smooth fiber in a rational elliptic surface. Chen–Chen

[22] proved a Torelli theorem for ALH gravitational instantons; it is also shown that

ALH gravitational instantons actually have an improved exponential decay rate. ALH∗
b

(for 1⩽b⩽9) gravitational instantons have two constructions: Tian–Yau metrics [81] live

on the complement of a smooth anti-canonical divisor in a weak del Pezzo surface, and

Hein metrics [44] live on the complement of an Ib-fiber in a rational elliptic surface.

Conversely, by Remark 6.21 below, we know that an ALH∗
b gravitationl instanton must

satisfy 1⩽b⩽9.

In the next subsection we will prove an exponential decay for ALH∗ gravitational

instantons.

6.5. Exponential decay in the ALH∗ case

Let (X4, g) be an ALH∗
b gravitational instanton. As before, we fix a choice of hyperkähler

triple ω. By Theorem 6.17, there exist ε>0 and some compact set K such that X4\K
is smoothly identified with an ALH∗

b model end (C,ωC), with

|∇k
ωC

(ω−ωC)|ωC =O(r−k−ε)

for all k∈N, where r is the distance function with respect to ωC . The goal of this

subsection is to prove the following.

Theorem 6.19. Let (X4,ω) be an ALH∗
b gravitational instanton. Then, there exist

δ0>0 and a diffeomorphism F from the end of C to X4 such that, for all k∈N,

|∇k
ωC

(F ∗ω−ωC)|ωC ⩽Ck ·e−δ0r
2/3

. (6.13)

Remark 6.20. The main interest in this theorem lies in the fact the asymptotic

geometry of the Calabi model space is non-standard, which has several geometric mean-

ingful scales. The latter is already seen in the analysis in [46]. We expect that the idea

here can be applied to more general problems.
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Remark 6.21. This theorem connects well with [46] and [47]. On the one hand,

by construction the ALH∗
b gravitational instantons of Tian–Yau and Hein all have the

exponential decay properties as stated in Theorem 6.19. Such a decay rate is a typical

rate of a decaying harmonic function on the model end C. On the other hand, under the

improved decay assumption (6.13), [47] proved a partial converse to the Tian–Yau and

Hein constructions in the complex-analytic sense. In particular, any ALH∗
b gravitational

instanton can be compactified to a rational elliptic surface or a weak del Pezzo surface.

It also implies that an ALH∗
b gravitational instanton must satisfy 1⩽b⩽9.

Now, we summarize the geometry of C. Recall that (C, ωC) is given by applying the

Gibbons–Hawking ansatz to V =bz on T2×[z0,∞) for some flat T2 with area 2π and

z0⩾10. Then,

C−1r2/3 ⩽ z⩽Cr2/3.

Notice that C admits a natural nilpotent group action which gives rise to the N -structure,

i.e., there is a nilpotent orbit N (x) at every point x∈C. Moreover,

diamgN(x)
(N (x))∼ r(x)1/3, InjradgC (x)∼ r(x)−1/3 and VolgC (Br)∼ r4/3;

see [46, §2] for more details. Before proving Theorem 6.19, let us introduce a simple but

useful lemma.

Lemma 6.22. There is a triple of 1-forms σ such that ω=ωC+dσ and, for all k∈N
and ε>0,

|∇k
ωC

σ|ωC =O(r1/3−k+ε). (6.14)

Proof. Since the intrinsic diameter of the N -orbits with respect to ω has the order

r
1/3
ω for the ω-distance function rω, the N -orbits in the rescaled annulus s−1As,2s(p) has

diameter decay ∼s−2/3. We now repeat the construction of the N -invariant hyperkähler

metric on the end of X4. First, taking the average of ω along the N -orbits, we obtain a

closed definite triple ω† which is cohomologous to ω. Notice that, for any vector field ζ

generating a family of diffeomorphisms ϕt(t∈[0, 1]), we have that

ϕ∗1ω−ω=

ˆ 1

0

d

dt
ϕ∗tωdt= d

(ˆ 1

0

ϕ∗t (ζ⌟ω) dt

)
.

Using this, we can write ω†=ω+dσ1 for some σ1 satisfying

|∇k
ωσ1|ω =O((rω)

1/3−k+ε)

for all k∈N and ε>0. Applying the construction in §6.3 to ω† (with δ0=
1
3 ), we obtain a

new N -invariant hyperkähler triple ω♢. By Theorem 6.6, ω♢=ω†+dσ2 with

|∇k
ω†σ2|ω† =O((rω†)1/3−k+ε)
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for all k∈N and ε>0. Now, in fact, ω♢ coincides with ωC , as both are N -invariant

hyperkähler triples which are asymptotic to each other at infinity.

Passing to a finite cover of C, we may assume that b=1. We now take a closer look

at the deformations of hyperkähler triples in §2.4. A triple of ωC-self-dual 2-forms θ+

can be identified with a (3×3)-matrix-valued function Aθ+ . The 4-dimensional space of

3×3 matrices M=(Mij) satisfying M
T +M=λ Id for some λ∈R is isomorphic to R4 via

M 7!
(
1
3 Tr(M),M23,M31,M12

)
. Define the linear operator

R: Ω+

ω⊗R3 −!C∞(C)⊗R4,

θ+ 7−! 1
2 (Aθ+−(Aθ+)T )+ 1

3 Tr(Aθ+)·Id .

It follows that R(θ+)=0 if and only if Aθ+ is symmetric and trace-free. This can serve

as a gauge fixing condition, due to the fact that if the triple ωC+dη is hyperkähler then,

by the discussion before (2.4), R(d+η)=0 implies d+η=F(tf(−QωC−Sd−η)). The latter

is elliptic in η when coupled with d∗η=0 (this can always be achieved). In the proof of

Theorem 6.19, we first fix the gauge such that R(d+ω)=0, and then improve the decaying

order using the convexity properties of the linearized elliptic PDEs.

Step 1 (Gauge fixing).

On (C,ωC), we choose the complex structures J1, J2 and J3 so that
J1 dx= dy, J1 dz= z−1θ,

J2 dy= dz, J2 dx= z−1θ,

J3 dz= dx, J3 dy= z−1θ,

where θ is the connection 1-form in the Gibbons–Hawking construction. It follows that

ωα is Kähler with respect to Jα, where
ω1 = z dx∧dy+dz∧θ,
ω2 = z dy∧dz+dx∧θ,
ω3 = z dz∧dz+dy∧θ.

Without loss of generality, we may assume that ωC≡(ω1, ω2, ω3). Given a vector field ξ,

we have the induced infinitesimal deformation LξωC=d(ξ⌟ωC). For our purpose, we only

consider vector fields generated by a 4-tuple of functions f≡(f0, f1, f2, f3) via

ξf =∇f0+
3∑

α=1

Jα∇fα.
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Then, by straightforward computation, we obtain
Lξfωα∧ωα = 1

2Lξf (dvolg)= 2∆f0 dvolg, α=1, 2, 3,

Lξfω1∧ω2 =−Lξfω2∧ω1 =2∆f3 dvolg,

Lξfω2∧ω3 =−Lξfω3∧ω2 =2∆f1 dvolg,

Lξfω3∧ω1 =−Lξfω1∧ω3 =2∆f2 dvolg,

and, if fα=cαz, α=0, 1, 2, 3, then
ξf⌟ω1 =−c0z−1θ−c1 dz−c2 dx−c3 dy,
ξf⌟ω2 = c0 dy+c1 dx−c2 dz−c3z−1θ,

ξf⌟ω3 =−c0 dx+c1 dy+c2z−1θ−c3 dz.
(6.15)

Define the linear operator

L:C∞(C)⊗R4 −!C∞(C)⊗R4,

f ≡ (f0, f1, f2, f3) 7−!R((LξfωC)
+).

By the above calculation, we have L(f)=∆ωCf . Denote by Qw the region {z⩾w}. We

adopt the definition of weighted Hölder spaces for tensors on Qw given in §6.3. All the

norms appearing in this subsection are taken with respect to ωC .

Proposition 6.23. Given any δ∈(−∞, 0)\{−2}, k⩾20, α∈(0, 1), for all w⩾z0
there exists a bounded linear map

∆−1
ωC

:Ck−2,α
δ (Qw)−!Ck,α

δ+2(Qw)

such that, for any v∈Ck−2,α
δ (Qw), u=∆−1

ωC
v solves ∆ωCu=v and satisfies the uniform

estimate

∥u∥Ck,α
δ+2(Qw) ⩽C(k, α, δ)∥v∥Ck−2,α

δ (Qw).

Remark 6.24. Here, the solution u is not unique. For example, the function z is

always harmonic. The latter fact will be useful later.

Proof. The weighted C0-estimate for u follows from Proposition B.3 (with τ= 3
2δ)

and the relation C−1r2/3⩽z⩽Cr2/3. The higher-order estimate can be proved by stan-

dard weighted Schauder estimates.

Now, we fix ε>0 sufficiently small, k⩾20 and α∈(0, 1).

Proposition 6.25. (Gauge fixing I) For w≫1, there is a Ck−1,α-diffeomorphism

F from Qw onto the end of C such that

F ∗ω=ωC+dσ
′, R(d+σ′)= 0 and ∥σ′∥Ck−1,α

1/3+ε (Qw)<∞.
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Proof. We will apply the implicit function theorem to find the desired diffeomor-

phism. We write ω=ωC+dσ, where σ has the growth in (6.14). Then, we have

|∇l
ωC
R(d+σ)|ωC =O(r−2/3−l+δ)

for all l⩾0 and δ>0. We will make further improvements of decay rate of R(d+σ).

Let f≡−∆−1
ωC

(R(d+σ)), and denote by Ft(t⩾0) the family of diffeomorphisms gen-

erated by the vector field ξf . Let ω̃≡F ∗
1ω. Then, we have

ω̃−ωC = dσ+(F ∗
1ωC−ωC)+d(F

∗
1σ−σ).

Notice that
d

dt
F ∗
t ωC =F ∗

t (LξfωC)= d(F ∗
t (ξf⌟ωC)= d(ξf⌟ωC+β),

where |∇l
ωC

β|ωC=O(r−1/3−l+δ) for any l∈N, δ>0. Similarly, we have

|∇l
ωC

Lξfσ|ωC =O(r−1/3−l+δ).

Therefore, ω̃−ωC=dσ
′, where σ′=σ′

1+σ′
2, R(d

+σ′
1)=0,

|∇l
ωC

σ′|ωC =O(r1/3−l+δ) and |∇l
ωC

σ′
2|ωC =O(r−1/3−l+δ).

In particular,

|∇l
ωC
R(d+σ′)|ωC =O(r−4/3−l+δ).

Next, we take h≡−∆−1
ωC

(R(d+σ′)), and denote by Gt the family of diffeomorphisms

generated by ξh. Let ω̃
′≡G∗

1ω̃, and write ω̃′−ωC=dσ
′′. Similarly,

|∇l
ωC

σ′′|ωC =O(r1/3−l+δ), |∇l
ωC
R(d+σ′′)|ωC =O(r−2−l+δ). (6.16)

Then, we have u≡∆−1
ωC

(R(d+σ′′))=O(rδ), and ξu(x)⩽Cr(x)−1+δ which is much smaller

than the injectivity estimate at x, which yields the asymptotics

Injrad(x)∼ r−1/3(x) as r(x)!∞.

To apply the implicit function theorem on Banach spaces, we will use another way

to generate diffeormorphisms from a vector field. Given a vector field ξ whose C1 norm

at each point is much smaller than the injectivity radius of (C,ωC), we define

Φξ(x)≡ expx(ξ(x)).
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For some fixed γ>0, we consider the map

F :Ck,α
γ (Qw)⊗R4 −!Ck−2,α

−2+γ (Qw)⊗R4,

f 7−!R((Φ∗
ξf
ω)+−ωC).

First, F is a differentiable map. Indeed, this follows from the fact that expx(V ) is a

smooth map on the tangent bundle. Set L ≡∆ωC and N ≡F−L . Then, P≡∆−1
ωC

is a

right inverse to L with ∥P∥⩽L for L>0 independent of w. For η>0 sufficiently small

and independent of w, we have, for f, g∈Bη(0),

∥N (f)−N (g)∥Ck−2,α
−2+γ (Qw) ⩽ (3L)−1∥f−g∥Ck,α

γ (Qw).

Moreover, letting δ≡ 1
2γ, by (6.16) we have

∥F (0)∥Ck−2,α
−2+γ (Qw) ⩽C0w

−3γ/4.

Applying Proposition 2.12, for w≫1, there exists an f∈Ck,α
γ (Qw) with

R((Φ∗
ξf
ω)+−ωC)= 0

and

∥f∥Ck,α
γ (Qw)< 2C0Lw

−3γ/4.

As |ξf |⩽2C0Lw
−3γ/4r−1+γ , we see that for w≫1, F≡Φξf is a diffeomorphism from Qw

into C. Then, F ∗ω satisfies the desired properties.

In the above proposition, replacing ω by F ∗ω and noticing that QωC=Id, one sees

that (2.4) holds, i.e.,

d+σ=F(tf(−Sd−σ)). (6.17)

By Proposition 6.23, we can solve d∗du=−d∗σ and replace σ by σ+du, so that

d∗σ=0, (6.18)

and we still have the weighted estimate

∥σ∥Ck−1,α
1/3+ε (Qw)<∞. (6.19)

Now, (6.17) and (6.18) form an elliptic system, with linearization at σ=0 given by the

Dirac operator d+⊕d∗ on (C,ωC). Notice at this point that the pointwise norm |σ| may

still grow at infinity.
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Step 2 (|σ| is decaying at infinity).

On C, we can write

σ=p0z
−1θ+p1 dx+p2 dy+p3 dz,

where pj , j=0, 1, 2, 3, are globally defined R3-valued functions on C. Notice the pointwise

norm

|σ|=
(∑

j

|pj |2
)1/2

.

The following result shows that |σ| is decaying at a polynomial rate at infinity.

Proposition 6.26. For all δ>0, we have ∥σ∥Ck−1,α
−1/3+δ(Qw)<∞.

Proof. We set h(r)≡∥σ∥Ck−1,α
−1/3+δ(Ar,2r)

, whereAr,2r=Qr2/3 \Q(2r)2/3 . Then, we define

H(r)≡ h(2r)

h(r)
. (6.20)

It suffices to prove that

lim sup
r!∞

H(r)⩽ 2−1/3. (6.21)

Then, the conclusion follows from an easy iteration. To prove (6.21), we use a contradic-

tion argument. Suppose that there exists a δ>0 such that

lim sup
r!∞

H(r)> 2−1/3+δ > 2−1/3.

Then, we can find a sequence rj!∞ such that H(rj)>2−1/3+δ. We now claim that

lim inf
r!∞

H(r)=∞.

This would imply that |σ| is growing faster than any polynomial rate at infinity, and

then we reach a contradiction with (6.19).

To prove the claim, we again use a contradiction argument. Suppose that we can find

sj!∞ such thatH
(
1
2sj

)
>2−1/3+δ, butH(sj)⩽C for some C>0. Then, we consider the

sequence of rescaled spaces (Asj/2,4sj , s
−1
j gω). Passing to a subsequence, they converge

to the interval
(
1
2 , 4

)
in the asymptotic cone R+ of C. The universal cover converges to a

hyperkähler limit A∞ which admits a fibration π:A∞!
(
1
2 , 4

)
with fibers the Heisenberg

algebra H1. Denote by σ̃ the lifted triple of 1-forms on the universal cover of Asj/2,4sj .

Let σ̃j=h(sj)
−1σ̃. Passing to a subsequence, we have weak Ck−1,α convergence of σ̃j

to a limit σ̃∞ on A∞. Using the fact that σ satisfies the elliptic system (6.17)–(6.18)
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and interior Schauder estimates, we may assume that σ̃j converges strongly in Ck−1,α

to σ̃∞ on π−1(1, 2), which is invariant under H1. Moreover, it satisfies the linear system

d+σ̃∞=d∗σ̃∞=0. A straightforward computation shows that then we must have

σ̃∞ = c0z
−1
∞ θ∞+c1 dx∞+c2 dy∞+c3 dz∞,

where (x∞, y∞, z∞, t∞) are the standard coordinates on A∞ (as given in §3.3),

θ∞ = dt∞+x∞dy∞

and cj are constant vectors. It follows that

|σ̃∞|=C|z∞|−1/2.

This contradicts our assumption.

Step 3 (Decay faster than any polynomial rate).

On C, the N -invariant kernel space of the Dirac operator d+⊕d∗ acting on 1-forms

is spanned by dx, dy, dz and z−1θ. These forms decay exactly at the rate r−1/3. So, in

order to improve the decay rate of σ, we need to gauge out these elements. The first three

forms are d-closed, so are easy to deal with; the form z−1θ is not d-closed, and we have

to invoke yet another implicit function theorem to eliminate it. For this reason, we also

make use of the variation of ωC induced by ξz (cf. (6.15)), which, by Remark 6.24, does

not destroy the previous gauge fixing condition R((ω−ωC)
+)=0. We denote by S(w)

the hypersurface {z=w}⊂C, endowed with the induced Riemannian metric from ωC . By

calculation, we have Vol(S(w))=Cw1/2.

Proposition 6.27. (Gauge fixing II) For w≫1, we can find a diffeomorphism Fw

from Qw onto the end of C such that ωw≡F ∗
wω=ωC+dσw, with

∥σw∥Ck−1,α
−1/3+δ(Qw)<∞, for all δ > 0,

R(d+σw)= 0 ( =⇒ d+σw =F(tf(Sd−σw
))),

d∗σw =0,ˆ
S(22/3w)

pj(σw)= 0, j=0, 1, 2, 3.

(6.22)

Proof. Fix δ>0 small, and define the Banach spaces

D≡ (Ck,α
5/3+δ(Qw)⊗R4)⊕(Ck,α

5/3+δ(Qw)⊗R3),

J≡ (Ck−2,α
−1/3+δ(Qw)⊗R4)⊕(Ck−2,α

−1/3+δ(Qw)⊗R3)⊕R3,
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where we fix a standard norm on R3. Then, we define a map F :D!J by sending (f,u)

to(
R((Φ∗

ξf
(ω)−ωC)

+), d∗(βξf +Φ∗
ξf
σ+du),

1

w5/2+3δ/2

ˆ
S(22/3w)

p0(βξf +Φ∗
ξf
σ+du)

)
.

In the above definition, p0(α) is the z−1θ-component of a triple of 1-forms α, and given

a vector field ξ, we set Φξ(x)≡expx(ξ(x)) and

βξ ≡
ˆ 1

0

Φ∗
tξ

(
d

dt
Φtξ⌟ωC

)
dt.

Immediately, dβξ=Φ∗
ξωC−ωC . One can directly verify that F is a differentiable map

and, by Proposition 6.26, ∥F (0)∥⩽Cw−δ/2−3/2. Moreover, the differential dF at zero

is given by dF0=L +M , where

L (g,v)=

(
∆ωCg, d

∗(ξg⌟ωC+dv),
1

w5/2+3δ/2

ˆ
S(22/3w)

p0(ξg⌟ωC+dv)

)
,

M (g,v)=

(
R((Lξg (dσ))

+), d∗(Lξgσ),
1

w5/2+3δ/2

ˆ
S(22/3w)

p0(Lξgσ)

)
.

Notice that ∥M ∥ is small when w≫1. By (6.15), if g=zc, then

p0(ξg⌟ωC)= ĉ≡ (−c0,−c3, c2).

We define a right inverse P: J−!D of L by P(h,x, q)≡(g,v), which is given as follows.

Given (h,x, q), we first let g0=∆−1
ωC

(h) and let v=∆−1
ωC

(x−d∗(ξg0
⌟ωC)). Then, we let

g=g0+zc for a constant vector c with c1=0 and, for α ̸=1, cα is uniquely determined by

ĉ=
1

Vol(S(22/3w))
·
(
w5/2+3δ/2 ·q−

ˆ
S(22/3w)

p0(ξg
0
⌟ωC+dv)

)
.

By (6.15), d∗(ξzc⌟ωC)=0. So, it follows that L �P=Id.

It is straightforward to check that ∥P∥⩽C for C>0 independent of w. Moreover,

one can directly estimate the non-linear term N ≡F−L . Then, as in the proof of

Proposition 6.25, we can find a zero (f,u) of F for w large, using the implicit function

theorem (Theorem 2.12).

Now, we set Fw≡Φξf . Then, for w≫1, Fw is a diffeomorphism from Qw into the

end of C. We write F ∗
wω=ωC+dσ

′, with σ′=βf+Φ∗
ξf
σ+du. Then, R(d+σ′)=0 and

d∗σ′=0. By Proposition 6.26, we have ∥σw∥Ck−1,α
−1/3+δ(Qw)<∞ for all δ>0. Also, the last

condition in (6.22) is satisfied for j=0. Now, by adding to σ′ the triple of 1-forms

e1 dx+e2 dy+e3 dz for appropriate constant vectors (e1, e2, e3), we can make sure that

σ′ also satisfies the last condition in (6.22) for j>0. Notice that dx, dy and dz are

d-closed and d∗-closed, and their norm decays at the rate r−1/3, so the new σ still has

the required decaying properties.
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We denote by Hw(r) the function H(r) given in (6.20) associated to σw.

Proposition 6.28. There exists W0>0 such that, for all w⩾W0, we have

lim sup
r!∞

Hw(r)= 0.

Proof. We first claim

lim
w!∞

Hw(w
3/2)= 0.

If not, then, as in the proof of Proposition 6.26, we can take a rescaled limit and obtain

a non-trivial limit σ̃∞. Now the extra normalization condition (6.22) implies that the

limit must be identically zero. This yields contradiction.

Now, suppose that

lim sup
r!∞

Hw(r)> 0.

Then, by (6.21), we can find wj!∞ and rj⩾w
3/2
j such that Hwj

(rj)∈
(
0, 12 ·2

−1/3
)
. But

then we take rescaled limit and again get a limit σ̃∞. Still, we obtain a contradiction

with the fact that |σ̃∞| must be decaying at order z
−1/2
∞ .

Now, we let w=W0 and σ≡σW0 . Proposition 6.28 easily implies that, for all m⩾0,

∥σ∥Ck−1,α
−m (QW0

)<∞. (6.23)

This means that σ decays faster than any polynomial rate.

Step 4 (Exponential decay).

First, we prove an improvement of Proposition 6.27.

Lemma 6.29. (Gauge fixing III) There exists W1⩾W0 such that, for all w>W1, we

can find a diffeomorphism Fw defined on the fixed QW1
such that

ωw ≡F ∗
wω=ωC+dσw,

with 

∥σw∥Ck−1,α
−10 (QW1

) ⩽C,

R(d+σw)= 0 ( =⇒ d+σw =F(tf(Sd−σw
))),

d∗σw =0,ˆ
S(w+1)

pj(σw)= 0, j=0, 1, 2, 3.

(6.24)

Furthermore, Fw is of the form Φξ for ξ=ξfw , with

∥fw∥Ck,α
−9 (QW1

) ⩽C. (6.25)
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Proof. The proof is the same as Proposition 6.27. The difference here is that we can

now fix the domain QW1
. This follows from the fact that the rapid decay of σ guaranteed

by (6.23) implies that |p0(σ)| is sufficiently small on S(W1) for w1≫1. This also implies

that the above constant C is independent of w.

Now, we exploit a different scale of the asymptotic geometry of C. We set

Az1,z2 ≡Qz1\Qz2

and

A∞
z1,z2 ≡T2×(z1, z2)⊂T2×R,

where T2 is the flat 2-torus involved in the definition of C. Then, for any fixed C>0,

as z!∞, the rescaled annulus z−1/2Az−C,z+C (with respect to the metric ωC) collapses

with uniformly bounded curvature to the domain A∞
−C,C in the product cylinder T2×R.

We define

nw(z)≡ z−1

ˆ
Az,z+1

|σw|2gC dvolC .

The following arguments are well known in the study of asymptotically conical geometries

(see, for example, [18], [45]), and they can easily be adapted to our setting. Let λ1 be

the first eigenvalue of −∆T2 .

Lemma 6.30. (Convexity lemma) For all δ∈(−λ1, λ1)\{0}, there exists a

W2 =W2(|δ|)>W1

such that, for all w⩾W1, if

log(nw(W2+1))⩾ log(nw(W2))+δ,

then

log(nw(z+1))⩾ log(nw(z))+δ for all z⩾W2.

Proof. If this fails, then we can find a sequence wj⩾W1 and zj!∞ such that

log nwj
(zj+1)⩾ log nwj

(zj)+δ,

but

log nwj (zj+2)< log nwj (zj+1)+δ.

Passing to a subsequence, we may assume that Ãj≡z−1/2
j Azj ,zj+3 collapses to the domain

A∞
0,3 in T2×R. We want to take the limit of σwj

. First, set

σj ≡ z
−1/2
j nwj

(zj+1)−1/2σwj
.
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Then, the average of |σj | over Ãj is uniformly bounded. Moreover, σj satisfies the elliptic

system on Ãj : {
d+σj =nwj

(zj+1)1/2 ·z1/2j ·F(tf(Sd−σj
)),

d∗σj =0.

Since ∥σw∥Ck−1,α
−10 (QW1

)<C for all w⩾W1, by interior elliptic estimates for d+⊕d∗ over

local universal covers one can see that

∥σj∥Ck−2(z
−1/2
j Azj+τ,zj+3−τ )

⩽C(τ)

uniformly for any τ>0 small. In particular, passing to a subsequence, we may obtain

Ck−3 convergence of σj to σ∞ over local universal covers. Globally, we obtain a pair

(q,λ) on A∞
0,3, where q is a vector-valued function and λ is a vector-valued 1-form. This

is similar to the discussion of convergence of hyperkähler structures under codimension-1

collapsing in §3.1: q is given by the σ∞(∂t), and λ is given by the horizontal component

of σ∞. The pair (q,λ) satisfies

dq+∗dλ=0 and d∗λ=0.

In particular, both q and λ are harmonic. Set

n∞(z)≡
ˆ
A∞

z,z+1

(|q|2+|λ|2).

Then, by construction and the strong interior convergence, we have

log(n∞(1))= 0, log(n∞(0))⩽−δ and log(n∞(2))⩽ δ.

Given a vector-valued harmonic function u on A∞
0,3, it is easy to see via eigenfunction

expansion that

∥u∥L2(A∞
0,1)

·∥u∥L2(A∞
2,3)

⩾ ∥u∥2L2(A∞
1,2)

,

and the equality holds if and only if u is homogeneous, i.e.,

u= ceλzϕλ

for some eigenfunction ϕλ on T2. Applying this to the above limit (q,λ), it follows that

(q,λ) must be homogeneous and δ must be an eigenvalue on T2. This contradicts our

hypothesis on δ.
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Lemma 6.31. There exist δ̂∈(0, λ1) and W3>W1+W2(δ̂) such that, for all w⩾W1

and z⩾W3, we must have

|log nw(z+2)−log nw(z+1)|⩾ δ̂.

Proof. Suppose that the conclusion fails. Then, we get a contradicting sequence

wj⩾W1 and zj!∞ with

|log nwj
(zj+2)−log nwj

(zj+1)|<j−1.

Notice that, by Lemma 6.30, we know, for j≫1, that

log nwj (zj+1)−log nwj (zj)⩽ j−1.

Then, we can as in the above proof pass to a subsequence and obtain a limit pair (q,λ)

on T2×R. This time we use the last condition in (6.24) to conclude that

ˆ
{z=1}

q=

ˆ
{z=1}

λ=0.

Now it is easy to see, using eigenfunction expansion again, that there exists a δ>0

such that, for a vector-valued harmonic function u on A∞
0,3 with

´
{z=1} u=0, either

∥u∥L2(A∞
1,2)

⩾ eδ∥u∥L2(A∞
0,1)

or ∥u∥L2(A∞
1,2)

⩽ e−δ∥u∥L2(A∞
0,1)

.

This leads to a contradiction.

Lemma 6.32. For all w>W3, we have

log nw(w+1)−log nw(w)⩽−δ̂.

Proof. If not, then, by Lemma 6.31, we must have log nw(w+1)−log nw(w)⩾δ̂ for

some w>W3. Now, Lemma 6.30 implies that log nw(z+1)−log nw(z)⩾δ̂ for all z⩾w.

This implies that σw has exponential growth, which yields a contradiction.

Now, given any w>W3, by Lemma 6.30 again we have

log nw(z+1)−log nw(z)⩽−δ̂

for all z∈[W3+1, w]. In particular, we must have

nw(z)⩽Cnw(W3)e
−δ̂z.
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Using the elliptic system satisfied by σw, one can see that, passing to a subsequence

wj!∞, σwj
converges in C∞

loc to a smooth limit σ∞ with

∥∇k
ωC

σ∞∥ωC ⩽Cke
−δ0z

for all k⩾0 and δ∈(0, δ̂).
Finally, by (6.25), we may also assume that Fwj converges in Ck−2,α

loc to a limit F∞,

which is again a diffomeomorphism from QW1 onto the end of C, such that

F ∗
∞ω=ωC+dσ∞.

Notice that both ω and σ∞ are smooth, so F∞ is indeed smooth. This completes the

proof of Theorem 6.19.

7. Discussions and questions

7.1. Towards a bubble tree structure

Let (X4
j , gj , pj) be a sequence of hyperkähler manifolds such that B2(pj) is compact and

(X4
j , gj , pj)

GH−−−!(X∞, d∞, p∞). Set d≡dimess(X∞). If d=4, then X∞ is a hyperkähler

orbifold, and it is well known that there is a finite bubble tree structure associated to

the convergence (cf. [6]). Now, we assume that d<4 andˆ
B2(pj)

|Rmgj |2 dvolgj ⩽κ0,

uniformly for some κ0>0. It is more involved to describe the bubble tree structure in

this case. Here, we make some initial steps.

By Theorems 4.1 and 5.1, we know that there is a unique tangent cone at p∞, which

is a flat metric cone, and we denote it by (Y, dY , p
∗). Clearly Y ∈Bp∞ . Given j⩾1 and

λ>0 we denote by Xj,λ the rescaled space (X4
j , λ

2gj , pj), and by vj,λ the volume of the

unit ball around pj in Xj,λ. By the Bishop–Gromov volume comparison, we know that,

for a fixed j, vj,λ is an increasing function of λ. So, if we rescale sufficiently large, we will

get complete hyperkähaler orbifolds as bubble limits. The following result shows that

there is an essentially unique scale that leads to a complete hyperkähler orbifold which

is collapsing at infinity.

Proposition 7.1. (Maximal scale non-collapsing bubble) Let ji!∞ be any se-

quence. Then, passing to a subsequence, we may find λi!∞ such that the rescaled

spaces Xji,λi
converge to a complete hyperkähler orbifold (Z, dZ , pZ) such that

Vol(BR(pZ))= o(R4)

as R!∞.
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Proof. If this does not hold then, by the Bishop–Gromov volume comparison, one

may find a sequence of ALE hyperkähler orbifolds Zk∈Bp∞ such that the structure group

Γk at infinity satisfies |Γk|!∞. By a diagonal sequence argument, for each k we may find

sequences ji,k!∞ and λi,k!∞, and a domain Ui,k⊂Xji,k,λi,k
, such that ∂Ui,k converges

smoothly to the space form S3/Γk. It follows from [6] that Ui,k is diffeomorphic to an

ALE gravitational instanton, with structure group Γk at infinity, which implies that

χ(Ui,k)=ck for i large. Notice that ck!∞ as |Γk|!∞. On the other hand, by the

Chern–Gauss–Bonnet theorem, we have a uniform bound on χ(Ui,k) in terms of κ0. This

is a contradiction.

Notice that Theorem 1.2 also holds for complete hyperkähler orbifolds with finite

energy, since the proof only uses the end structure at infinity. So, the bubble limits

constructed in the above proposition must be of type ALX, and is not ALE. This gives

a rigorous explanation of the heuristic fact that non-ALE gravitational instantons are

responsible for collapsing of hyperkähler manifolds.

Next, we show that the dimension of bubble limits can only increase when we zoom

into a smaller scale. This is again true from the intuition.

Proposition 7.2. (Dimension monotonicity) In the setting above, we have

dimess(Z)⩾ d for all Z ∈Bp∞ .

Proof. From the definition of Bp∞ , we can find λ0>0, j0>0 and εj!0 such that, for

all j⩾j0 and λ⩾λ0, there is an element Zj,λ∈Bp∞ satisfying dGH(Xj,λ, Zj,λ)⩽εj . Notice

that a priori Zj,λ is not unique, and we simply make an arbitrary choice for each j and λ.

It is clear that we can take Zj,λ0
=Y for j≫1.

The conclusion in the case d=1 is trivial. We will first prove the case d=3. Notice

that every element Z in Bp∞ with dimess Z=3 belongs to the list given in Theorem 4.4,

among which there are exactly two elements Z1=R3 and Z2=R3/Z2 that are metric

cones. Fix δ>0 small such that any Z in B2δ(Y )∩Bp∞ satisfies dimess(Z)⩾3, and

B2δ(Y )∩Bp∞∩{Z1, Z2}= {Y }.

For j large, we let λj be the smallest λ such that dGH(Xj,λ, Y )⩾δ. It is clear that

lim inf
j!∞

λj =∞.

We claim there is some τ>0 such that vj,λj
⩾τ for all j large. Given this, it follows

that vj,λ⩾τ for all λ⩾λj , and then the conclusion easily follows. To prove the claim,

suppose it is not true. Then, there is a sequence ji!∞ such that dGH(Xji,λji
, Y )=δ
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but vji,λji
!0. Passing to a further subsequence, we may assume that Xji,λji

converges

to a limit Z∞ with dimess(Z∞)=3, and dGH(Y, Z∞)=δ. So, Z∞ is one of the spaces

listed in Theorem 4.4 and Z∞ /∈{Z1, Z2}. Similar to the proof of Lemma 6.1, one can

show that this is impossible. For example, suppose that Z∞=S1
R×R2 for some R>0.

Then, for i large, we know that Zji,λji
must also be S1

Ri
×R2 for Ri!R. It follows that

Zji,λji
/2 must be S1

R′
i
×R2 for some R′

i!
1
2R. Then, dGH(Zji,λji

/2, Y )> 3
2δ for i large.

This contradicts our choice of λji .

Now, we consider the case d=2. We may assume that, for j large,ˆ
B2(pj)

|Rmgj |2 dvolgj ∈ [lε, (l+1)ε)

for some integer l>0, where ε is the constant given in Theorem 3.21. We will prove

the conclusion by induction on l. First, consider the case l=1. Then, we can proceed

similarly to the case d=3. The energy bound implies that any Z∈Bp∞ has at most one

singularity. Hence, by Theorem 5.5, any Z∈Bp∞ with dimess(Z)=2 is either isometric to

Cβ for β∈A≡
{

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6 , 1

}
, or S1×R. As above, we fix δ>0 small so that any

Z in B2δ(Y )∩Bp∞ satifies dimess(Z)⩾2 and

B2δ(Y )∩Bp∞∩{Cβ :β ∈A}= {Y }.

Furthermore, we may assume that β=1 if there is some S1
R×R in B2δ(Y )∩Bp∞ . For j

large, let λj be the smallest λ such that dGH(Xj,λ, Y )⩾δ. Passing to a subsequence, we

may assume that Xj,λj converges to a limit Z∞, with

dimess(Z∞)⩾ 2 and dGH(Y, Z∞)= δ.

We claim that any such limit Z∞ must satisfy dimess(Z∞)⩾3. If not, then there is a

limit Z∞ with dimess(Z∞)=2. By the choice of δ, it follows that Z∞=S1
R×R for some

R>0 and Y =R2. Then, a similar reasoning as in the case d=3 yields a contradiction.

Given the claim, then our conclusion follows from the result in the case d=3.

Suppose now that the conclusion holds for l⩽l0, and consider the case l=l0+1. If

we run the same arguments as above, then in the end we can conclude that any limit Z∞

either satisfies dimess(Z∞)⩾3, or dimess(Z∞)=2 and Z∞ has at least two singularities.

If the latter occurs, suppose that Z∞ is given as the limit of some subsequence Xji,λji
,

then there exists τ>0 such that, for i large, we haveˆ
Bτλji

(pji
)

|Rmgji
|2 dvolgji < l0ε.

It follows from the induction assumption that any Gromov–Hausdorff limit of Xji,siλji

for si⩾1 has dimension at least 2. Using this, one can finish the proof of the case

l=l0+1.
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Corollary 7.3. The following statements hold.

• Any Z∈Bp∞ , with dimess(Z)=3, is isometric to R3 or R3/Z2. If d=3, then

any Z∈Bp∞ is isometric to either the tangent cone Y , or an ALE or ALF hyperkähler

orbifold.

• Any Z∈Bp∞ , with dimess(Z)=2 and with a unique singularity, is isometric to Cβ

for some β∈A.

The first item says that the construction of Foscolo [32] essentially gives the complete

picture in the case d=3 (modulo further development of orbifold singularities in the ALE

bubbles). With more work, one expects to obtain a full bubble tree structure. The latter

may also be used to prove the following. Notice that, by Remark 3.18, the statement is

false without the uniform energy bound.

Conjecture 7.4. (Integral monodromy) If d=2, then the singular special Kähler met-

ric has integral monodromy.

For hyperkähler metrics on the K3 manifold, it may even be possible to explicitly

classify all the possible bubble trees.

7.2. Asymptotics of the period map

Let Xd
∞ be the Gromov–Hausdorff limit of a sequence of hyperkähler metrics gj on the

K3 manifold K with d≡dimess(X
d
∞)<4. As before, we make a choice of a hyperkähler

triple ωj for gj . We can use Theorems 3.27 and 1.1 to obtain some information on

the behavior of P(gj) as j!∞. For example, suppose d=3. Then, X∞=T3/Z2. We

choose Q to be of the form U/Z2, where U⊂T3=R3/Z3 is the complement of a small

neighborhood of the finitely many points which map to the singular set S in X∞ (notice

that S contains the eight orbifold points, but it may also contain some other points).

Take three disjoint geodesic circles Cα(α=1, 2, 3) in U which lift to lines in R3 parallel

to the three coordinate axes. Denote by lα the length of Cα. For j large, we have a

circle bundle Fj :Qj!Q. Denote by Ej,α=F
−1
j (Cα) the 2-cycles in Qj . They span a

3-dimensional isotropic subspace of H2(K;Z). Since the hyperkähler tripe ω♢
j given by

Theorem 3.27 is N -invariant, passing to the Z2-cover, the metric g♢j is given by the

Gibbons–Hawking ansatz on U . That is, we may write g♢j =ε
2
j (Vj ·gU+V −1

j θ2j ), where Vj

is a positive harmonic function on U with Vj∼ε−2
j , dθj=∗dVj and εj!0. It follows that

ˆ
Ej,α

ωj,β =

ˆ
Ej,α

ω♢
j,β = δαβ ·ε2j lβ ,
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where εjV
−1/2
j is the length of the S1 orbit with respect to g♢j . We also know the volume

ˆ
Xj

ω2
j,α ∼ ε2j .

A simple consequence is that this case cannot occur for collapsing polarized K3

surfaces. For if not, then without loss of generality we may suppose, for some λj>0, that

αj=[λj ·ωj,1] is a class in H2(X;Z) with
´
X
α2
j=σ independent of j. It follows that

ˆ
X

ω2
j,1 =σλ−2

j .

So, we must have εj∼λ−2
j and λj!∞. Then,

ˆ
Ej,1

αj =λj

ˆ
Ej,1

ωj,1 ∼λ−3
j .

Since the integral is always an integer, this is impossible.

Similarly, one can treat the cases d=2 and d=1, and in each case there is some

isotropic subspace of H2(K;Z) on which we know the asymptotics of the period of the

hyperkähler triple. These isotropic subspaces also appear naturally in the Satake com-

pactifications of the locally symmetric space

Γ\O(3, 19)/(O(3)×O(19)).

One expects this to be relevant to the conjecture in [68] mentioned in the introduction.

We leave it for future work.

7.3. Topological properties and the L2-curvature energy

There are easy consequences of Theorem 1.2 which yield topological restrictions on the

underlying manifolds of a gravitational instanton. Notice that any non-compact paracom-

pact smooth manifold admits a complete Riemannian metric with quadratic curvature

decay.

Corollary 7.5. The Euler characteristic of a non-flat gravitational instanton is

positive and finite.

Proof. This follows by applying the Chern–Gauss–Bonnet theorem (4.13) to Br(p),

and let r tend to infinity. Using the asymptotics at infinity, it is easy to see that the

boundary term goes to zero, and hence

χ(X)=
1

8π2

ˆ
X

|Rmg|2 dvolg > 0.
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Corollary 7.6. A non-flat gravitational instanton has a vanishing first Betti

number.

Proof. By Theorem 1.2, we know that there exists κ∈
{
1, 43 , 2, 3

}
such that

Vol(B(p, r))∼Crκ as r!∞.

If κ⩽2, then the conclusion follows from a result of Anderson [3], together with the precise

asymptotic description given in Theorem 1.2. If κ=3, then X is ALF. We consider the

rescaled spaces (X4, R−2g, p), which collapse to the asymptotic cone of X4 as R!∞.

If b1(X)>0, then by [66] we know that the collapsing must have uniformly bounded

curvature on compact sets. The latter implies that X is flat.

As an immediate application, we consider the smooth quadric

Q= {(x, y) :x2+y2 =1}

in C2. Since π1(C2\Q)=Z and χ(C2\Q)=1, it follows that C2\Q does not support

any gravitational instanton. The interest of this example lies in the fact that it admits

a nowhere-vanishing holomorphic 2-form Ω, but we have shown that the Calabi–Yau

equation ω2=CΩ∧Ω̄ does not have a solution which is complete at infinity and has finite

energy. Notice that C2 admits a Ricci-flat Kähler metric ωβ with cone angle 2πβ along

Q for any β∈(0, 1], by a generalized Gibbons–Hawking ansatz [30]. It is an interesting

question to understand the behavior of ωβ as β!0. Notice that C2\Q is the same as

CP2\D, where D is a singular elliptic curve given by the union of a line and a conic.

In the case where D is smooth, it is a consequence of the result of Biquard–Guenancia

in [8] that, when β!0, under suitable rescalings the conical Kähler–Einstein metrics on

CP2\D converge to the complete Calabi–Yau metric constructed by Tian–Yau in [81].

In our case, one would expect a very different picture; it is interesting to explore the

connection with certain algebro-geometric “stability” notion.

It is natural to study when a complete Ricci-flat metric on an open 4-manifold has

finite L2 energy. In this regard, we make the following conjetural topological criterion.

Conjecture 7.7. (Energy finiteness conjecture) Let (X, g) be a complete Ricci-flat

4-manifold, then ˆ
X

|Rmg|2 dvolg <∞

if and only if X has finite topological type.

Even for exotic R4, we do not yet know the answer. The known infinite-energy ex-

amples of gravitational instantons constructed by Anderson–Kronheimber–LeBrun have

infinite Euler characteristic; see [4].
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7.4. Generalizations

The ideas and techniques developed in this paper can be likely adapted to more general

settings. The first natural extension is to the case of Kähler–Einstein metrics on com-

plex surfaces with non-positive Ricci curvature. In particular, the following question is

sensible.

Problem 7.8. Classify complete Kähler–Einstein metrics with finite energy in com-

plex dimension 2.

More generally, one can study the structure of collapsed Einstein metrics and more

general canonical metrics in four dimensions, and higher-dimensional metrics of special

holonomy, under suitable curvature assumptions. One interesting question arises.

Question 7.9. Do Propositions 7.1 and 7.2 hold for general Einstein metrics in all

dimensions?

Over the region where the collapsing is with bounded curvature, it is possible to

extend the results of this paper to show that the collapsing metric can be assumed to

have genuine nilpotent symmetry. Thus, it leads to the question of understanding the

geometry of dimension reduction of canonical metrics under symmetry. Notice that there

has already been an extensive literature on the latter topic, mainly towards constructing

examples. It seems important to systematically investigate the compactness properties

of the dimension reduced equations.

Appendix A. Construction of regular fibrations

Our goal here is to outline the proof of Theorems 3.25 and 6.3. The original construction

is due to Cheeger–Fukaya–Gromov in [17]. In our special case, the approach presented

here is based on the harmonic splitting map of Cheeger–Colding [14], which makes it more

convenient to obtain higher-regularity estimates. This observation has been used in [66]

to construct bundle maps with higher regularity. In the volume-non-collapsing case, the

existence of a harmonic splitting map can be also proved using the W 1,p-convergence

theory of harmonic functions with respect to renormalized measure; see [2, Corollary 4.5]

for more details.

Theorem A.1. (Harmonic splitting map [14]) Given any ε>0 and n⩾2, there ex-

ists some δ=δ(n, ε)>0 such that the following holds. If (Mn, g, p) is a Riemannian

manifold satisfying Ricg⩾−(n−1)δ and dGH(Bδ−1(p), Bδ−1(0d))<δ, Bδ−1(0d)⊂Rd, then

there exists a harmonic map

Φ=(u(1), ..., u(d)):B2(p)−!Rd
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such that the following properties hold :

(1) Φ:B2(p)!B2(0
d)⊂Rd is an ε-Gromov–Hausdorff approximation;

(2) |∇u(α)|(x)⩽1+ε holds for any x∈B2(p) and 1⩽α⩽d;

(3) the following estimate holds:

d∑
α,β=1

 
B2(p)

|⟨∇u(α),∇u(β)⟩−δαβ | dvolg +
d∑

α=1

 
B2(p)

|∇2u(α)|2 dvolg <ε.

We will also need a good cut-off function with uniform derivative estimates. Here

we briefly review the standard heat flow regularization, and we refer to [65, Lemma 3.1]

for results on general RCD spaces.

Lemma A.2. Let (Xn, g) be a Riemannian manifold with Ricg⩾0. Assume that,

for any m∈N, there exists a constant Λm>0 such that |∇m Rmg |⩽Λm uniformly on X.

Then, for any p∈X and r∈(0, 1] with B2r(p) compact, there exists a cut-off function

ψ:Xn
![0, 1] which satisfies the following properties:

(1) ψ≡1 on Br(p) and ψ≡0 on X\B2r(p);

(2) for any m∈Z+, there exists a constant C=C(m,n)>0 such that

rm|∇mψ|⩽C.

Proof. Without loss of generality, suppose that r=1. The proof below can be made

purely local, but to simplify notations we assume X is complete. For any q∈X, we first

take a cut-off function ρ defined by

ρ(y)=


1, if y ∈Bg

1 (q),

2−dgj (y, q), if y ∈Ag
1,2(q),

0, if y ∈X\Bg
2 (q).

For t>0, consider the heat flow ψt≡Ht(ρ) of the 1-Lipschitz cut-off function ρ. It is

standard that on X we have the pointwise estimate

|∇gψt|2+
2t

n
(∆gψt)

2 ⩽ 1.

Then, for all y∈X, we have

|ψt(y)−ρ(y)|⩽
ˆ t

0

|∆gψs(y)| ds⩽
√
2nt.

Now fix τ= 1
18n2 . Then, ψτ (y)∈

[
2
3 , 1

]
for y∈B1(q) and ψτ (y)∈

[
0, 13

]
for y∈X\B2(q).
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Next, we choose a smooth cut-off function h: [0, 1]![0, 1] which satisfies

h(s)=

{
1, if 2

3 ⩽ s⩽ 1,

0, if 0⩽ s⩽ 1
3 ,

and set ψ=h�ψτ . Since ψt solves the heat equation, the higher-order derivative estimate

of ψ follows from the standard parabolic estimate.

Proof of Theorem 3.25. We adopt the notation in the setting of Theorem 3.25. By

a simple rescaling, we may assume that Injradg∞(q)⩾10 for any q∈Q. To begin with,

we fixe ε>0 sufficiently small, and define the rescaled Riemannian metric hε≡ε−4 ·g∞
on R. Throughout the proof, we will denote by τ(ε) a general function of ε satisfying

limε!0 τ(ε)=0. Now, for any q∈Q, there is a harmonic coordinate system

ϖq ≡ (w1, ..., wd):B
hε
5 (q)−!B5(0

d)

such that

(i) ∆hεwα=0 for any 1⩽α⩽d,

(ii) |hε,αβ−δαβ |C0(B4(q))+|∂wγhε,αβ |C0(B4(q))⩽τ(ε),

where hε,αβ≡hε(∇hε
wα,∇hε

wβ). Moreover, we have

dGH(B
hε

ε−1(q), Bε−1(0d))<τ(ε),

where 0d∈Rd.

In the following, we will also work with the rescaled metrics hi≡ε−1 ·gi on X4
i .

Unless otherwise specified, the metric balls below will be measured in terms of hi and hε,

respectively.

We will prove the theorem in three steps. In the first step, using the harmonic

splitting map, we will construct local fiber bundle maps over every ball in Q which looks

like a ball in Rd. The second step is to glue the local fiber bundle maps by the well-

behaved partition of unity. In the last step, we will show the desired estimates and

identify the topology of the collapsing fibers.

Step 1 (Construction of local fiber bundles).

Let {q
ℓ
}Nℓ=1 be a subset of Q such that Q⊂

⋃N
ℓ=1B1(qℓ)⊂R and, for all 1⩽ℓ, ℓ′⩽N

with ℓ ̸=ℓ′, we have dhε
(q

ℓ
, q

ℓ′
)> 1

2 . For every 1⩽ℓ⩽N , let qi,ℓ∈X4
i be such that

(Bε−1(qi,ℓ), hi)
GH−−−! (Bε−1(q

ℓ
), hε).

Then, for any sufficiently large i, we have

dGH(Bε−1(qi,ℓ), Bε−1(0d))< 2τ(ε).
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Then, there exists a harmonic map

Φ∗
i,ℓ =(u

(1)
i,ℓ , ..., u

(k)
i,ℓ ):B3(qi,ℓ)−!Rd

which satisfies the following integral estimates:

d∑
α,β=1

 
B3(qi,ℓ)

|hi(∇hiu
(α)
i,ℓ ,∇hiu

(β)
i,ℓ )−δαβ |+

d∑
α=1

 
B3(qi,ℓ)

|∇2u
(α)
i,ℓ |

2
hi

⩽ τ(ε).

Since (B4(qi,ℓ), hi) is collapsing with uniformly bounded geometry, the above integral

estimate can be strengthened to the following pointwise estimate on B2(qi,ℓ):

k∑
α,β=1

|gi(∇u(α)i,ℓ ,∇u
(β)
i,ℓ )−δαβ |+

k∑
α=1

|∇2u
(α)
i,ℓ |

2 ⩽ τ(ε).

This implies that, for every 1⩽ℓ⩽N , the composition

Φi,ℓ ≡ (ϖℓ)
−1
�Φ∗

i,ℓ:B2(qi,ℓ)−!B2(qℓ)

is a fiber bundle map, where the diffeomorphism ϖℓ:B2(qℓ)!B2(0
d) is given by the

harmonic coordinate system at q
ℓ
. Moreover, Φi,l is a τ(ε)-Gromov–Hausdorff approxi-

mation, for all i large.

Step 2 (Gluing local bundle maps).

Let us take domains with smooth boundary Qi⊂
⋃N

ℓ=1B2(qi,ℓ) such that

(Qi, hi)
GH−−−! (Q, hε).

We will glue the above local harmonic maps to obtain a fiber bundle map Fi:Qi!Q.

For every 1⩽ℓ⩽N , let ψℓ be the good cut-off function in Lemma A.2 such that

ψℓ(y)=

{
1, if y ∈B1(qi,ℓ),

0, if y ∈X4
i \B2(qi,ℓ),

and, for all m∈Z+, |∇mψℓ|⩽Cm holds everywhere on M4
i . Then, we take the partition

of unity subordinate to the cover {B2(qi,ℓ)}Nℓ=1 of Qi given by

ϕℓ ≡ψℓ

( N∑
ℓ=1

ψℓ

)−1

.
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It follows from volume comparison that the multiplicity in the above cover is bounded

by some absolute constant Q0>0. We set

Bi ≡
N⋃
ℓ=1

B2(qi,ℓ) and B∞ ≡
N⋃
ℓ=1

B2(qℓ).

For any 1⩽ℓ⩽N , we define

dε(x, y)≡
d∑

α=1

|wα(x)−wα(y)|2,

which is determined by the harmonic coordinate system (w1, ..., wd) on B2(qℓ). It follows

from the estimates on the harmonic coordinates that |dε−d2hε
|⩽τ(ε) holds on B2(qℓ).

Then, let us define the energy function E:Bi×B∞!(0,∞) by

E(qi, q∞)≡ 1

2

N∑
ℓ=1

ϕℓ(qi)·dε(Φi,ℓ(qi), q∞).

By convexity, for any qi∈Bi, the function E(qi, ·):B∞![0,∞) has a unique minimum z(qi).

It is straightforward to verify that, for any qi∈B2(qi,ℓ),

dhε
(z(qi),Φi,ℓ(qi))<τ(ε),

and

|hi(∇hi(wα�z),∇hi(wβ �z))−hi(∇hiu
(α)
i,ℓ ,∇hiu

(β)
i,ℓ )|⩽ τ(ε).

Then, we define the map

Fi:Bi −!B∞,

qi 7−! z(qi).

Combining the above estimates on the harmonic splitting maps, harmonic coordinates, as

well as the good cut-off functions, we conclude that Fi is non-degenerate, and hence it is a

fiber bundle map. For fixed ε>0, the mapping Fi:Bi!B∞ converges to a diffeomorphism

F∞:B∞!B∞ as i!∞. It is straightforward to check that F−1
∞ �Fi is a δi-Gromov–

Hausdorff approximation with limi!∞ δi=0.

Step 3 (Proof of the higher-order regularity estimates).

In this step, we will rescale everything back to the original metrics gi and g∞,

respectively. Notice that the uniform estimates for the higher derivatives of the good
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cut-off functions (constructed in Lemma A.2) hold in our case, and the higher-order

estimates for the splitting maps Φi,ℓ and the harmonic coordinates on Q hold as well.

Then, we obtain the pointwise estimate on the second fundamental form in item (2) and

the higher-order estimate ∇kFi in item (3). We skip the details.

We will prove item (4) by contradiction. Assume that there exist a sequence ηi!0,

a constant τ0>0, and a sequence of bundle maps Fi:Qi!Q which are ηi-Gromov–

Hausdorff approximations such that, for all sufficiently large i,∣∣∣∣ |dFi(v)|g∞
|v|gi

−1

∣∣∣∣⩾ τ0 (A.1)

holds for a sequence of vectors vi∈Txi
Qi orthogonal to the fiber of Fi. We assume |v|gi=1.

We take the universal cover of Br0(xi) for some sufficiently small constant r0>0, which

gives the following equivariant Ck-convergence for any k∈Z+:

(B̃r0(xi), g̃i,Γi, x̃i)

πi

��

Ck
// (B̃∞, g̃∞,Γ∞, x̃∞)

π∞

��

(Br0(xi), gi)
GH // (Br0(x∞), g∞),

where

πi: (B̃r0(xi), x̃i)−! (Br0(xi), xi)

is the Riemannian universal cover with πi(x̃i)=xi, Γi≡π1(Br0(xi)) and Γ∞ is a closed

subgroup in Isomg̃∞(B̃∞). The above diagram of equivariant convergence implies that

π∞: B̃∞!Br0(x∞)=B̃∞/Γ∞ is a Riemannian submersion. Let F̃i≡Fi�πi and let ṽi be

the lift of vi to x̃i. Then, the Ck convergence implies that F̃i converges to π∞, and ṽi

converges to a limiting vector ṽ∞ with |dπ∞(v∞)|g∞=1. This contradicts (A.1), which

completes the proof of item (4).

Based on the Gromov–Hausdorff estimate in item (1) and the second fundamental

form estimate in item (3), we can conclude that all the fibers of Fi are almost flat

manifolds in the sense that

diam(F−1
i (q))2 ·|secF−1

i (q)|<δi for all q ∈Q,

where δi!0 as i!∞. If ε is chosen sufficiently small, then items (5) and (6) follow

from Gromov and Ruh’s theorems on the almost flat manifolds and Fukaya’s fibration

theorem; see [40], [74], [36], [17].
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Proof of Theorem 6.3. By Theorem 3.25, there exists a fiber bundle map

Fj :A
g
2j ,2j+2(p)−!AdY

2j ,2j+2(p
∗)

for any sufficiently large integer j⩾j0 such that

Fj :A
gj
1,4(p)−!A1,4(p

∗)

is a δj-Gromov–Hausdorff approximation, with limj!∞ δj=0. Here, A
gj
1,4(p) is the scale

down of Ag
2j ,2j+2(p) by the factor 2−j .

Now, we glue the above fiber bundle maps over the annuli, and thus obtain a global

fiber bundle map

F :X4\BR0(p)−!Y d\BR0(p
∗).

The procedure is well known, once we have the higher-derivative estimates on the local

bundle maps. We outline the arguments. Denote by Σ the cross-section of the flat cone Y .

Now, let us consider the two adjacent annuli Ag
2j ,2j+2(p) and A

g
2j+1,2j+3(p). Then, there

exists some isometry ρj∈Isom(Σ) such that |Fj+1−ρj �Fj |<δj holds on the intersection

A2j+1,2j+2(p), where limj!∞ δj=0. Moreover, the higher-order regularity estimates in

Theorem 3.25 implies that the above approximation can be improved to the Ck sense.

Then there exists a self-diffeomorphism σj :A2j+1,2j+2(p)!A2j+1,2j+2(p), which is close

to the identity map, such that Fj+1=ρj �Fj �σj . One can choose σj :F
−1
j (q)!F−1

j+1(q) as

the normal projection from the fiber. It is indeed a diffeomorphism, since the normal

injectivity radius of each fiber has a uniform lower bound. We refer the readers to [17,

Proposition A2.2] for more details. Using the good cut-off function

χj(y)=

{
1, if y ∈A2j+5/4,2j+7/4(p),

0, if y ∈X4\A2j+1,2j+2(p),

given in Lemma A.2, we can construct a modified fibration

F̂j :A
g
2j ,2j+3(p)−!AdY

2j ,2j+3(p
∗),

which satisfies the properties in Theorem 3.25. Inductively, we finally obtain a global

fiber bundle map

F :X4\BR0
(p)−!Y d\BR0

(p∗),

which satisfies items (1) and (2).

The estimate on the second fundamental form in item (3) depends on the special

limiting geometry in the hyperkähler setting for the sequence A
gj
1,4. There are three cases

to analyze.

• d=3. The limiting universal cover is flat, and the limit of the fibers are given by

totally geodesic lines R. Since we have convergence of the second fundamental form (see

Lemma 3.29), we get the conclusion.
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• d=2. The limiting geometry is again flat and the proof is similar to above.

• d=1. The limiting geometry is either the flat or nilpotent geometry. In the first

case, the proof is the same as above; in the second case, we make use of Lemma 3.20, and

one can compute explicitly the relation between the distance function and the coordinate

function z.

Appendix B. Poisson’s equation on the Calabi model space

Let (C,ωC) be a Calabi model space. We identify C differentiably with the product space

[2,∞)×N3, where we use the moment coordinate z and N3 is a nilmanifold. We first

recall the separation of variables arguments in [46]; see [46, §4] for more details. Denote

N3
z≡{z}×N3, and let Λ≡{Λk}∞k=0 be the spectrum of −∆h0 on the fixed sliceN3

z0 . Then,

we have Λk=(2z0)
−1 ·λk+2z0 ·j2k, with λk⩾jk and jk∈Z⩾0. Given a continuous function

u on C, we can write the L2 expansion

u(z,y)=

∞∑
k=0

uk(z)·φk(y), y ∈N3
z0 ,

where −∆h0
φk=Λkφk. The equation ∆ωCu=v is equivalent to the fact that, for all k,

d2uk(z)

dz2
−(j2kz

2+λk)uk(z)= vk(z)·z, z⩾ 1, (B.1)

where vk(z) is the corresponding coefficient in the expansion of v. The corresponding

homogeneous equation has two explicit fundamental solutions Fk(z) and Uk(z):

(1) if jk=λk=0, then

Fk(z)= z and Uk(z)= 1;

(2) if jk=0, λk>0, then

Fk(z)= e
√
λk·z and Uk(z)= e−

√
λk·z;

(3) if jk>0, then

Fk(z)= e−jk·z2/2H−h−1(−
√
jk ·z) and Uk(z)= e−jk·z2/2H−h−1(

√
jk ·z),

where h satisfies λk=(2h+1)jk, and

H−h−1(y)≡
ˆ ∞

0

e−t2−2tyth dt.
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When jk>0, we set y≡
√
jk ·z and define

Fk(t)≡−t2+2ty+h log t and Uk(t)≡−t2−2ty+h log t.

Let tk and sk be the unique positive critical points of Fk(t) and Uk(t), respectively:

tk =
y

2
+

√
h2

2
+
y2

4
and sk =−y

2
+

√
h2

2
+
y2

4
,

and define

F̂k(z)≡−jkz
2

2
+Fk(tk(z)) and Ûk(z)≡−jkz

2

2
+Uk(sk(z)).

The following two results are taken from in [46, Lemmas 4.6 and 4.7].

Lemma B.1. The following uniform estimates hold :

Fk(z)⩽ (1+
√
π )F̂k(z) and Uk(z)⩽ (1+

√
π )Ûk(z).

Lemma B.2. The following statements hold :

(1) F̂k(z) is increasing for z⩾1 and Ûk(z) is decreasing for z⩾1.

(2) There exists a uniform constant C0>0 independent of k such that

0<Wk(z)
−1 ·(eF̂k(z)+Ûk(z))⩽C0,

where

Wk(z)≡F ′
k(z)Uk(z)−Fk(z)U ′

k(z)

is the Wronskian of Fk and Uk.

We set Qw≡{x∈C :z(x)⩾w}, and fix any τ∈(−∞, 0)\{−3}. The following result is

used in the proof of Proposition 6.23.

Proposition B.3. There exists a constant C>0 such that, if v∈C5(Qw) for some

w>2 satisfies

5∑
ℓ=0

(z(x))3ℓ/2 ·|∇ℓ
gCv(x)|gC ⩽ b·(z(x))τ for all x∈Qw,

then ∆ωCu=v has a solution u∈C6(Qw) satisfying

|u(x)|⩽C ·b·(z(x))3+τ for all x∈Qw. (B.2)
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The proof depends on the estimates of solutions to the non-homogeneous equa-

tion (B.1). We write the expansion of v as

v(z,y)=

∞∑
k=0

vk(z)·φk(y).

In the case jk=0 and λk=0, we set

uk(z)≡
ˆ z

w

(ˆ t

w

vk(s) ds

)
dt. (B.3)

In the case jk=0 and λk ̸=0, we set

uk(z)≡
1

2
√
λk

(
e−

√
λkz ·

ˆ z

w

e
√
λkt ·vk(t)·t dt+e

√
λkz ·

ˆ ∞

z

e−
√
λkt ·vk(t)·t dt

)
. (B.4)

In the case jk∈Z+, we set

uk(z)≡
Uk(z)

Wk(z)

ˆ z

w

Fk(t)·vk(t)·t dt+
Fk(z)

Wk(z)

ˆ ∞

z

Uk(t)·vk(t)·t dt. (B.5)

Lemma B.4. There exists a constant C>0 independent of k such that, for all w>2,

any solution given by (B.3)–(B.5) satisfies

sup
z⩾w

|uk(z)|z−2−τ ⩽C sup
z⩾w

|vk(z)|z−τ .

Proof. For (B.3), this is immediate. Below, we only treat the solution given by (B.5).

The case for (B.4) can be dealt with in a similar fashion. Set Bk=supz⩾w |vk(z)|z−τ .

We first estimate the second term in (B.5). Applying Lemma B.1, we have

ˆ ∞

z

Uk(t)·vk(t)·t dt⩽C ·Bk ·
ˆ ∞

0

eÛk(u+z)+(1+τ) log(u+z) du.

We set Ũk(u)≡Ûk(u+z)+(1+τ) log(u+z). By a simple computation, if z>1, then we

have Ũ ′
k(0)=−jk ·z+(1+τ)z−1<0 and Ũ ′′

k (u)<0 for all u>0. Therefore,

Ũk(u)⩽ Ũk(0)+Ũ
′
k(0)·u for all u⩾ 0.

So, it follows that
ˆ ∞

z

Uk(t)·vk(t)·t dt⩽C ·Bk ·eŨk(0) ·
ˆ ∞

0

eŨ
′
k(0)·u dt⩽C ·Bk ·eÛk(z) ·z2+τ .

Therefore, combining the above estimate and Lemma B.2 (2), we get

Fk(z)

Wk(z)
·
ˆ ∞

z

Uk(t)·vk(t)·t dt⩽C ·Bk ·
eF̂k(z)+Ûk(z)

Wk(z)
·z2+τ ⩽C ·Bk ·z2+τ .
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For the first term of (B.5), we apply the uniform estimate in Lemma B.1, the monotonic-

ity of F̂k(z) in Lemma B.2, as well as Lemma B.2 (2), to obtain

Uk(z)

Wk(z)
·
ˆ z

w

Fk(t)·vk(t)·t dt⩽C ·Bk ·z2+τ .

Adding up the above two terms, we obtain the conclusion.

Proof of Proposition B.3. First, consider the case Λk>0. By the same computations

as in the proof of [46, Lemma 4.9], there is some constant C>0, independent of k∈Z+,

such that

|vk(z)|

⩽C ·(Λk+1)−2 ·Volh0
(N3

z0)
1/2 ·∥(−τh0

)2v∥C0(N3
z0

)

⩽C ·(Λk+1)−2 ·Volh0
(N3

z0)
1/2 ·(z2∥∇4v∥C0(N3

z)
+z3/2∥∇3v∥C0(N3

z)
+z∥∇2v∥C0(N3

z)
)

⩽C ·(Λk+1)−2 ·z(x)τ .

It is easy to see that the same estimate also holds when Λk=0.

Now, consider the formal solution

u(x)=

∞∑
k=0

uk(z)·φk(y),

where uk(z) is given by (B.3)–(B.5). By Lemma B.4 and Weyl’s law, we see that u(x) is

convergent and satisfies

|u(x)|⩽C ·z(x)3+τ+C ·
( ∞∑

k=2

1

k4/3

)
·(z(x))3+τ ⩽C ·(z(x))3+τ ,

where C>0 is independent of x∈Qw, and w>2.
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[39] Gigli, N., Mondino, A. & Savaré, G., Convergence of pointed non-compact metric

measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond.
Math. Soc., 111 (2015), 1071–1129.

[40] Gromov, M., Almost flat manifolds. J. Differential Geom., 13 (1978), 231–241.
[41] Gross, M. & Wilson, P., Large complex structure limits of K3 surfaces. J. Differential

Geom., 55 (2000), 475–546.
[42] Grove, K. & Karcher, H., How to conjugate C1-close group actions. Math. Z., 132

(1973), 11–20.
[43] Haydys, A. & Xu, B., Special Kähler structures, cubic differentials and hyperbolic met-

rics. Selecta Math., 26 (2020), Paper No. 37, 21 pp.
[44] Hein, H.-J., Gravitational instantons from rational elliptic surfaces. J. Amer. Math. Soc.,

25 (2012), 355–393.
[45] Hein, H.-J. & Sun, S., Calabi–Yau manifolds with isolated conical singularities. Publ.

Math. Inst. Hautes Études Sci., 126 (2017), 73–130.
[46] Hein, H.-J., Sun, S., Viaclovsky, J. & Zhang, R., Nilpotent structures and collapsing

Ricci-flat metrics on the K3 surface. J. Amer. Math. Soc., 35 (2022), 123–209.
[47] — Asymptotically Calabi metrics and weak Fano manifolds. Preprint, 2021.

arXiv:2111.09287[math.DG].
[48] Herron, D., Gromov–Hausdorff distance for pointed metric spaces. J. Anal., 24 (2016),

1–38.
[49] Hitchin, N. J., Karlhede, A., Lindström, U. & Roček, M., Hyper-Kähler metrics
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