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Abstract—Open Radio Access Networks (Open RANs) offer
a flexible and interoperable wireless network infrastructure to
address growing demands for scalability and resource optimization.
Current traffic steering and resource allocation approaches use
either static policies or machine learning (ML) workflows, each
with significant drawbacks—static policies lack adaptability, while
ML-based methods can be computationally intensive and inefficient
under certain load conditions. To overcome these issues, we propose
a hybrid traffic steering mechanism within the Open RAN frame-
work, integrating an enhanced rule-based policy with a global-
local reinforcement learning (RL) algorithm. The enhanced rule-
based policy is triggered for efficient resource allocation under low
network load, encompassing a broader range of User Equipment
(UE) slices for finer-grained control. Under high-load variability,
the system transitions to the RL-based strategy that learns opti-
mal allocation policies in real-time, factoring in slice types and
base station capacities. Evaluation results in a city-scale scenario
demonstrate that the proposed adaptive approach significantly
improves user satisfaction, reduces unmanaged UEs, and balances
cell utilization across varying traffic conditions compared to existing
schemes. These findings underscore the potential of combining rule-
based policies with reinforcement learning workflows to advance
the efficiency and adaptability of Open RANs.

I. INTRODUCTION

As mobile networks become increasingly complex, the shift

towards Open Radio Access Networks (RAN) is transforming the

landscape of network flexibility and innovation. With its open

interfaces and modular architecture, Open RAN aims to deliver

enhanced interoperability and cost-efficiency [1]–[3]. However,

this flexibility brings challenges, particularly in the dynamic

management of network resources to ensure high-quality service,

as its open and modular nature requires continuous coordination

among multiple components from different vendors. This can

lead to complexities in ensuring real-time responsiveness, re-

source optimization, and consistent performance across diverse

network conditions.

One key capability brought by Open RAN’s openness and

intelligence is on-demand traffic steering, which supports flex-

ible slicing for diverse users and use cases, ensuring that

network resources are dynamically allocated where they are

most needed [4]. This adaptability is essential for maintaining

service quality amidst fluctuating traffic demands. However,

existing traffic steering methods [5], which are largely static

and rule-based, often fall short in the face of fluctuating net-

work demands and struggle to adapt to rapid changes in user

behavior and network load. Some other approaches [6] focus on

leveraging Open RAN’s RIC (RAN Intelligent Controller) with

built-in machine learning (ML) workflows to manage resource

allocation and traffic steering. However, these methods often

face challenges such as high computational demands, limited

generalizability across different network conditions, and delays

in model convergence, which can impact the effectiveness of

real-time network optimization.

Specifically, recent research in RAN traffic steering has

explored various approaches, from reinforcement learning to

specialized ML implementations. RL-based methods [7] im-

plemented Random Ensemble Mixture with Conservative Q-

learning, showing strong coverage but facing computational

demands during initial learning. Similarly, hierarchical methods

like h-DQN [8] used bi-level architecture for efficient exploration

through meta-controller coordination between RICs, though re-

liability remained limited under low-load conditions. The O-

RAN Alliance has explored UE-specific customization [4], op-

timizing cell association based on slice-level requirements, but

static policies implemented via A1 interface limited adaptability

to changing network conditions. Other research focused on

ML-based schemes for advanced 5G applications [9], utilizing

hierarchical processes combining heuristics and optimization.

Approaches like [10] demonstrated significant improvements,

surpassing benchmark systems by up to 45.5%, but typically

focused on specific traffic types, limiting generalizability across

diverse network scenarios. While each approach offers unique

advantages, they all face limitations in balancing computational

efficiency with adaptability across varying network conditions,

highlighting the need for more comprehensive solutions.

Motivated by these gaps, this paper proposes a hybrid ap-

proach that combines the robustness of rule-based policies with

the flexibility of machine learning workflows in Open RAN

systems. This algorithm-learning-system harmony aims to strike

a balance between computational efficiency and adaptability

across diverse network conditions and traffic types, which aligns

with current O-RAN development trends, emphasizing policy-

driven network management while leveraging ML within RICs

for advanced data processing. Specifically, we first design an

enhanced rule-based strategy by incorporating a broader range

of User Equipment (UE) slices and adding an additional layer

of base station (BS) known as anchored cells, which connect

to the internet core. This inclusion goes beyond typical pico

and macro cells, providing more granular policy-level control

over network resources within the non-RT RIC. Subsequently,

we develop a novel RL-based approach within the near-RT

RIC to accommodate specific traffic types and adjust decisions



dynamically. With a novel global-local reward function, the

network takes into account both system load balancing and user

satisfaction, where the global aspect of the reward ensures that

network resources are distributed to maintain overall balance

across heterogeneous BSs. Meanwhile, the local aspect focuses

on individual user satisfaction, ensuring that specific Quality of

Service (QoS) requirements are met, such as obtaining their pre-

ferred cell type or ensuring minimal latency. As a result, the rule-

based policy and the RL approach are finally integrated to form

a hybrid traffic steering mechanism, ensuring a more holistic

and responsive traffic steering strategy. Under low network load

conditions, the enhanced rule-based policy efficiently allocates

resources with minimal computational overhead. In medium

to high load scenarios, the system switches to our dual-focus

RL-based strategy that optimizes allocation policies on-the-fly

by considering UE types and current BS capacities. Extensive

simulation results demonstrate that our adaptive mechanism min-

imizes unmanaged UEs and maximizes the percentage of UEs

obtaining their preferred cell types, while effectively balancing

the load across the network.

II. ENHANCED RULE-BASED POLICY FOR TRAFFIC

STEERING

This section introduces an enhanced rule-based policy for

traffic steering in Open RAN environments, extending beyond

conventional approaches [1]. The proposed policy incorporates

slice-aware allocation strategies with anchored cells, providing

more granular control over network resources and serving as the

foundation for the subsequent hybrid approach.

Unlike existing rule-based policies that typically consider only

basic UE types and conventional BS infrastructure [5], [11], our

approach incorporates a diverse range of network slices and a

new layering of deployed BSs (macro, pico, and anchored cells).

The proposed policy maps each network slice to an ordered

preference list of BS types, tailored to optimize specific service

requirements.

Specifically, for voice services, macro cells are prioritized

for wide coverage (i.e. first preference), followed by pico and

anchored cells. Enhanced Mobile Broadband (eMBB) slice fa-

vors pico cells for higher throughput, while Ultra-Reliable Low-

Latency Communications (URLLC) slice prioritizes anchored

cells for minimal latency. Massive Machine Type Communi-

cations (mMTC) slice optimizes dense device deployment by

preferring pico cells, with a fallback to anchored and macro

cells as needed. This structured preference-based allocation

enables an effective alignment between UE service requirements

and network resources. Based on this network structure and

configuration, a proximity-aware allocation algorithm is devel-

oped for slice-aware traffic steering, taking into account both

slice preferences and the geographical distribution of BSs [10].

Unlike traditional methods, this approach integrates distance-

based sorting within each preference tier, optimizing resource

utilization while adhering to service quality requirements.

Algorithm 1 presents the proximity-aware allocation mech-

anism. For each UE in the network, the algorithm begins by

identifying its slice type and retrieving the ordered list of BS

preferences (Lines 2-3). It then iterates over each preferred BS

Algorithm 1 Rule-Based Allocation with Proximity Sorting

1: for each UE in UE_list do
2: slice← UE.slice type
3: preferences← policy[slice]
4: allocated← False
5: for each type in preferences do
6: stations← get stations(type)
7: sorted stations← sort by proximity(UE,

stations)
8: for each bs in sorted stations do
9: if bs has capacity then

10: allocate UE to bs
11: allocated← True
12: break inner loops
13: end if
14: end for
15: if allocated then
16: break
17: end if
18: end for
19: if not allocated then
20: mark UE as unmanaged
21: end if
22: end for

type, collecting all stations of that type and sorting them by

proximity to the UE (Lines 6-7). This proximity-based sorting

is crucial for minimizing potential handovers and reducing

network overhead. For each sorted BS, the algorithm checks if

there is sufficient capacity to accommodate the UE’s throughput

requirements (Lines 8-13). Upon matching a suitable BS, the

UE is immediately associated, and the algorithm exits both inner

loops to process the next UE (Lines 10-12). If no allocation is

possible after all preference tiers are exhausted, the UE is marked

as unmanaged (Lines 17-19).

Such an enhanced rule-based policy introduces significant

advancements over traditional methods [9], [11] by incorpo-

rating several key features. First, it ensures slice-aware allo-

cation, prioritizing service requirements across network slices

for tailored resource distribution based on QoS needs. Second,

the integration of anchored cells in the loop adds an extra

resource tier optimized for latency-sensitive applications, while

proximity-based optimization within each preference tier reduces

unnecessary handovers and network overhead. Despite these

benefits, the policy, like all rule-based approaches, experiences

performance degradation under high load conditions. This limita-

tion highlights the need for adaptive, learnable strategies, which

will be explored in the subsequent section.

III. JOINT RULE-BASED AND REINFORCEMENT LEARNING

METHODOLOGY

Building upon the enhanced rule-based policy, this section

integrates a reinforcement learning (RL) workflow to develop a

robust traffic steering solution. This joint methodology harnesses

the strengths of both frameworks: the computational efficiency

and reliability of rule-based mechanisms, and the adaptive

learning capabilities of RL for managing complex, high-load

situations.
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A. Reinforcement Learning-Based Approach

Our RL approach enables the RIC to determine UE association

strategies such that the network can jointly optimize the BS

capacity and user experiences. The main components of the

proposed RL and training process are detailed as follows.

State and Action Spaces The state space is designed to

capture both network conditions (BS load) and UE character-

istics (traffic demand and mobility). Each state s consists of

a (n + k)-dimensional vector, where n is the number of BSs.

The first n components represent normalized cell capacities (i.e.

Ccur/Cmax) for each BS, providing the agent (RIC) with current

resource availability information. The remaining k components

in the vector include the normalized traffic demands of the

current UE (TUE/Tmax) and a one-hot encoded representation of

the UE’s slice type (e.g., Voice, eMBB, URLLC, and mMTC).

This state representation ensures the agent has complete view

of both network resources and UE requirements. The action

space a is discrete, consisting of n possible actions, with each

action representing the selection of a specific BS for the UE

association. This formulation enables the agent to make timely

allocation decisions while considering current network state and

UE dynamics.

Global-Local Reward Function The reward function for the

adaptive traffic steering combines local user-specific rewards

with global system-level rewards:

R(s, a) = Ralloc(s, a) +Rpref (s, a)
︸ ︷︷ ︸

Local User Reward

+ Rload(s, a)
︸ ︷︷ ︸

Global System Reward

, (1)

where the allocation component Ralloc imposes a penalty γ when

a UE remains unmanaged, incentivizing the agent to maximize

successful resource allocations across the available BSs. The

preference satisfaction component Rpref rewards successful

allocations based on the UE satisfactory level:

Rpref (s, a) = αi, i ∈ [1,m], (2)

where m is the number of preference levels based on the rule-

based policy in Sec. II, and αi > αi+1 for all i ∈ [1,m − 1],
ensuring higher rewards for better preference satisfaction. From

the global view, the load balancing component Rload considers

network-wide utilization as:

Rload(s, a) =

{

β1 if maxb∈B(Lb) > τ, β1 < 0

β2 otherwise, β2 > 0,
(3)

where Lb represents the normalized load of BS b, i.e.

Lb =
Cb

max − Cb
cur

Cb
max

. (4)

In Eq. (3), τ represents the preferred maximum load threshold

(typically set at 0.95 in practice), beyond which the system

applies penalties to prevent BS overloading. This threshold helps

maintain operational stability and ensures sufficient capacity

buffer to handle unexpected traffic spikes.

This reward structure will guide the following Q function to

optimize network performance by minimizing allocation failures

through the penalty component γ, prioritizing preference satis-

faction via the hierarchical rewards αi in Eq. (2), and main-

taining balanced cell utilization through the load-based rewards

β1 and β2. Such a combination ensures that the agent learns

policies that simultaneously satisfy individual UE requirements

while maintaining optimal system-wide resource distribution,

effectively preventing both underutilization and overloading of

network resources.

Dueling DQN Architecture We introduce a Dueling Deep Q-

Network (DQN) architecture to overcome limitations observed

in standard DQN models. Traditional DQNs use a single stream

to estimate the Q-value, representing the expected future rewards

of an action taken in a given state. This unified approach can

contribute to overestimation bias and unstable training dynamics.

The Dueling DQN architecture mitigates these issues by separat-

ing the estimation of the state value from the action advantages.

This separation allows for more precise value function estima-

tion, improving stability and more efficient learning, especially

in our considered dynamic wireless environments. The Dueling

DQN architecture introduces two separate streams within the

neural network:

• Value Stream (V (s)): Estimates the value of being in a

particular state s.

• Advantage Stream (A(s, a)): Computes the advantage of

each action a relative to others in state s.

As a result, the Q-value is then combined as:

Q(s, a) = V (s) +A(s, a). (5)

This separation allows the model to stabilize the learning

process by reducing variance in the estimations of V (s) and

A(s, a) while minimizing overestimation. By independently as-

sessing state values and action advantages, the Dueling DQN

enhances the agent’s ability to discern available cell capacity

from advantageous actions, ensuring more effective resource

allocation and optimized traffic distribution.

Training and Convergence The training process for the

global-local RL model starts by capturing both cell resources

and UE requirements, the discrete action space for selecting BS,

and the reward mechanism in Eq. (1) to incentivize balanced

network load and efficient resource usage. The agent is trained in

a dynamic wireless environment, allowing it to explore and learn

traffic steering strategies in a controlled setting. The training

leverages experience replay, which stores past experiences in a

replay buffer and samples mini-batches for training to break the

temporal correlation between consecutive samples and stabilize

training. The loss function used in training is the Mean Squared

Error (MSE) between the predicted and target Q-values:

L(θ) = E(s,a,r,s′)

[(

r + ηmax
a′

Q′(s′, a′; θ−)−Q(s, a; θ)
)2

]

where r is the immediate reward, η is the discount factor, s′

is the next state, and Q′ represents the target network’s action-

value function, θ are the parameters of the primary network, and

θ− are the parameters of the target network, updated periodically

for stability.
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To demonstrate the effectiveness of our training process,

the agent needs to be trained over multiple episodes, with

the training loss and average Q-values monitored to evaluate

learning progress. Fig. 1 shows the stabilization of our average

Q-values as training advances, indicating that the learned policy

is converging. The steady increase and eventual plateau in Q-

values suggest that the agent has effectively learned optimal

strategies, validating the choice of our Dueling DQN archi-

tecture and the designed reward function in driving policy

learning to enhance both user-level satisfaction and network-

level performance. However, compared to the rule-based policy,

we observe that it requires substantial computational resources

and introduces additional overhead for the model to converge to

an effective policy, making it less efficient in certain scenarios.

Fig. 1: Average Q-values of the RL agent during training.

B. Hybrid Rule-based and RL Approach

As discussed in Sec. II and Sec. III.A, recognizing that neither

method alone can optimally address all network conditions,

a hybrid approach is proposed. This approach leverages the

strengths of both methods: utilizing the rule-based policy’s

efficiency and stability under low network load and the RL-

based policy’s adaptability under high-load scenarios. By dy-

namically switching between the two based on real-time network

conditions, the hybrid approach aims to optimize user-level and

network-wide performance across various scenarios.

The hybrid approach monitors several key network metrics,

such as current network load and BS utilization, to determine

which policy to apply at any given time. Then, a threshold-based

mechanism is employed to decide when to switch between the

rule-based and RL-Based policies. To avoid frequent switching

due to minor fluctuations in network load. The detailed decision-

making process is outlined in Algorithm 2.

Specifically, the algorithm begins by initializing the current

policy to our rule-based scheme from Sec. II and defining two

thresholds, high load threshold Thhigh and low load threshold

Thlow, where Thlow < Thhigh to create a hysteresis band. It

then enters a continuous monitoring loop where the network load

is regularly assessed. If operating under the rule-based policy and

the current network load exceeds Thhigh, the system switches

to the RL-model; conversely, if the RL-model is adopted and the

network load drops below Thlow, it switches back to the rule-

based policy. Upon selecting the policy, the algorithm applies

the corresponding scheme for traffic steering and waits for

Algorithm 2 Load-Aware Traffic Steering Algorithm

1: Initialize current policy ← Rule-Based

2: Initialize Thhigh, Thlow

3: while network is operational do

4: network load← calculate network load()

5: if current policy is Rule-Based then

6: if network load > Thhigh then

7: current policy ← RL-Based

8: end if

9: else if current policy is RL-Based then

10: if network load < Thlow then

11: current policy ← Rule-Based

12: end if

13: end if

14: apply current policy()

15: wait for monitoring interval

16: end while

Fig. 2: Implementation of the proposed hybrid traffic steering solution in Open
RAN Architecture. The Non-RT RIC houses the RL training pipeline and a
policy manager, while the Near-RT RIC contains the rule-based xApp (Algorithm
1), RL-based xAPP (Sec. III.A), and a hybrid controller (Algorithm 2). The
three-tiered control loop structure ensures optimal response times across different
network conditions.

a predefined monitoring interval before re-evaluating, thereby

reducing unnecessary computational overhead. Such a load-

aware mechanism can dynamically adjust to changing network

conditions, balancing adaptability, efficiency, and stability across

varying scenarios.

C. Implementation in O-RAN Architecture

The proposed hybrid solution integrates seamlessly within the

O-RAN architecture, primarily operating through the Near-RT

RIC and Non-RT RIC components, as illustrated in Figure 2.

First, the rule-based component operates as a specialized xApp

within the Near-RT RIC, leveraging direct access to RAN

metrics through the E2 interface for real-time monitoring of cell

loads and UE distributions. This placement enables immediate

execution of traffic steering decisions, ensuring low-latency

response during normal load conditions. On the other hand,

our RL-based component implements a distributed architecture
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across both RIC layers, with offline model training executed

in the Non-RT RIC to leverage its inherent ML workflow

capabilities, while policy execution is deployed as another xApp

in the Near-RT RIC. This design enables efficient state collection

and action implementation through the E2 interface, maintaining

the system’s ability to adapt to changing network conditions

while adhering to O-RAN’s control loop specifications.

Specifically, the implementation leverages O-RAN’s key in-

terfaces effectively, with the E2 interface serving as the primary

channel for collecting the network metrics (e.g., user mobility,

traffic demands, cell load) and enabling the hybrid controller to

make informed decisions about which policy to apply based on

current conditions. The O1 interface handles performance man-

agement and policy switching, while the A1 interface enables

seamless policy updates (either rule-based or RL-based) from

Non-RT RIC to Near-RT RIC. This comprehensive interface

utilization ensures robust communication between different ar-

chitectural components while maintaining the flexibility required

for our adaptive traffic steering.

IV. EVALUATION RESULTS

This section presents the evaluation of the our traffic steering

approaches using defined key performance indicators (KPIs), in-

cluding the percentage of unmanaged UEs [12], user satisfaction

rate [13], and cell utilization. The performance is analyzed under

varying network load scenarios to assess the effectiveness of the

proposed approach. Computational analysis is also included to

demonstrate the feasibility of the proposed mechanism in a real-

world operating RAN scenario.

A. Experimental Setup

Simulations with varying numbers of UEs were conducted,

each with specific data demands, to create different load sce-

narios: Small Load System (SLS) with 50 UEs, Medium Load

System 1 (MLS-1) with 250 UEs, Medium Load System 2

(MLS-2) with 350 UEs, and Large Load System (LLS) with

1,000 UEs. The BS capacities and UE preferences are configured

to reflect realistic network conditions.

According to Algorithm 2, the thresholds for the hybrid

approach are determined based on the observed performance

crossover points between rule-based and rL-Bbsed approaches.

At 50 UEs (20% of cell capacity) and 250 UEs (100% cell

capacity), the rule-Based Approach performed optimally with

minimal unmanaged UEs and high preference satisfaction. At

350 UEs (over 140% cell capacity), a performance crossover

is observed where the RL-based approach starts to outperform

the rule-based approach due to the high dynamics and traffic

uncertainty, showing improved UE management and preference

satisfaction. Based on these initial observations, the thresholds

are set at 140% (Thlow) and 160% (Thhigh) of cell capacity,

with the hysteresis band preventing oscillation between policies

during load fluctuations.

B. Performance Results and Analysis

Table I provides a comprehensive comparison of the three

approaches across various load scenarios. The highlighted cells

indicate the policy adopted by the hybrid approach in each

scenario, with rule-based values emphasized for SLS and MLS-

1, and RL-based values emphasized for MLS-2 and LLS. The

dotted line represents the transition point between the two

policies, marking where the hybrid approach switches from rule-

based to RL-based control to optimize performance.

Table I: Performance comparison of traffic steering approaches.

Metric Load Scenario Rule-Based RL-Based Hybrid

Unmanaged UEs (%)

SLS (50 UEs) 0% 0% 0%

MLS-1 (250 UEs) 0% 0.8% 0%

MLS-2 (350 UEs) 9.1% 8.6% 8.6%

LLS (1000 UEs) 65% 40.2% 40.2%

First Preference

Satisfaction (%)

SLS 100% 98% 100%

MLS-1 92.8% 94.4% 92.8%

MLS-2 77.1% 88% 88%

LLS 27% 58.6% 58.6%

Average Cell

Utilization (%)

SLS 19.6% 19.3% 19.6%

MLS-1 92.4% 87.9% 92.4%

MLS-2 99.8% 92.7% 92.7%

LLS 100% 96.1% 96.1%

Fig. 3: Comparison of unmanaged UEs across different scenarios.

Specifically, Fig. 3 illustrates the percentage of unmanaged

UEs across different load scenarios. The results indicate that

while both approaches perform similarly under low-load condi-

tions, the RL-based approach demonstrates significantly better

UE management under high-load conditions. This is particularly

evident in the LLS scenario, where the RL-based approach

reduces unmanaged UEs by 24.8% compared to the rule-based

method. It is important to note that the LLS case serves to

evaluate the worst-case scenario with an extremely high load

relative to the available cell capacity.

Next, Fig. 4 demonstrates the UE first preference satisfaction

rates (as defined in Sec. II) across different load scenarios.

As expected, the rule-based approach performs better in SLS

scenarios, but the RL-based approach maintains substantially

higher satisfaction rates as the network load increases, more

than doubling the satisfaction rate in the LLS scenario (58.6%

compared to 27% for the rule-based approach). In addition

to user performance, Fig. 5 evaluates cell utilization patterns

from a network-wide perspective. The results show that the RL-

based approach achieves a more balanced resource distribution

across BSs, particularly in high-load (LLS) scenarios, where

5



Fig. 4: Comparison of user’s first preference satisfaction rate across approaches.

it maintains utilization levels below 97%, preventing complete

saturation while effectively distributing the load. The balanced

cell utilization also confirms the effectiveness of our reward

function design in promoting efficient resource distribution

while maintaining high user satisfaction rates. By harnessing

the strength of both schemes as shown in Table I, our hybrid

approach can strategically switch between the two methods,

providing adaptive user and system performance tailored to

varying network conditions.

Fig. 5: Average cell utilization across different load scenarios.

C. Computational Analysis

The computational testing demonstrates the feasibility of our

hybrid approach within O-RAN’s operational time windows. The

training phase is planned to be executed in an r-App in the non-

RT RIC (>1s timescale) as shown in Fig. 2, completed in 160.74

seconds experimentally. On the other hand, the inference that

will happen in the traffic steering x-App averaged approximately

180ms per traffic steering task, well within the operational

window of x-Apps in the near-RT RIC (10ms-1s timescale).

This timing profile ensures our hybrid policy can make real-

time decisions for each UE requesting network access without

violating the timing constraints of RIC workflows.

V. CONCLUSION

This paper presents a novel approach for traffic steering in

Open RAN that effectively combines the reliability of rule-based

policies with the adaptability of RL. The enhanced rule-based

component goes beyond conventional methods by incorporating

diverse UE slices and introducing anchored cells, enabling more

precise resource allocation. Meanwhile, the RL component,

implemented using a Dueling DQN architecture, demonstrates

superior performance in high-load scenarios. The separation of

training in non-RT RIC and inference in near-RT RIC demon-

strates that our hybrid approach is both architecturally sound and

computationally feasible within operational timing constraints.

The proposed hybrid mechanism successfully leverages the

complementary strengths of both approaches, ensuring optimal

resource utilization across varying network conditions. This is

evidenced by balanced cell utilization patterns and consistent

performance metrics across all load scenarios. Future work will

focus on implementing and validating this approach in practical

network environments using a testbed like AERPAW at North

Carolina State University, which will provide deeper insights

into real-world performance and scalability characteristics.
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