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Abstract—Open Radio Access Networks (Open RANSs) offer
a flexible and interoperable wireless network infrastructure to
address growing demands for scalability and resource optimization.
Current traffic steering and resource allocation approaches use
either static policies or machine learning (ML) workflows, each
with significant drawbacks—static policies lack adaptability, while
ML-based methods can be computationally intensive and inefficient
under certain load conditions. To overcome these issues, we propose
a hybrid traffic steering mechanism within the Open RAN frame-
work, integrating an enhanced rule-based policy with a global-
local reinforcement learning (RL) algorithm. The enhanced rule-
based policy is triggered for efficient resource allocation under low
network load, encompassing a broader range of User Equipment
(UE) slices for finer-grained control. Under high-load variability,
the system transitions to the RL-based strategy that learns opti-
mal allocation policies in real-time, factoring in slice types and
base station capacities. Evaluation results in a city-scale scenario
demonstrate that the proposed adaptive approach significantly
improves user satisfaction, reduces unmanaged UEs, and balances
cell utilization across varying traffic conditions compared to existing
schemes. These findings underscore the potential of combining rule-
based policies with reinforcement learning workflows to advance
the efficiency and adaptability of Open RANs.

I. INTRODUCTION

As mobile networks become increasingly complex, the shift
towards Open Radio Access Networks (RAN) is transforming the
landscape of network flexibility and innovation. With its open
interfaces and modular architecture, Open RAN aims to deliver
enhanced interoperability and cost-efficiency [1]-[3]. However,
this flexibility brings challenges, particularly in the dynamic
management of network resources to ensure high-quality service,
as its open and modular nature requires continuous coordination
among multiple components from different vendors. This can
lead to complexities in ensuring real-time responsiveness, re-
source optimization, and consistent performance across diverse
network conditions.

One key capability brought by Open RAN’s openness and
intelligence is on-demand traffic steering, which supports flex-
ible slicing for diverse users and use cases, ensuring that
network resources are dynamically allocated where they are
most needed [4]. This adaptability is essential for maintaining
service quality amidst fluctuating traffic demands. However,
existing traffic steering methods [5], which are largely static
and rule-based, often fall short in the face of fluctuating net-
work demands and struggle to adapt to rapid changes in user
behavior and network load. Some other approaches [6] focus on
leveraging Open RAN’s RIC (RAN Intelligent Controller) with

built-in machine learning (ML) workflows to manage resource
allocation and traffic steering. However, these methods often
face challenges such as high computational demands, limited
generalizability across different network conditions, and delays
in model convergence, which can impact the effectiveness of
real-time network optimization.

Specifically, recent research in RAN traffic steering has
explored various approaches, from reinforcement learning to
specialized ML implementations. RL-based methods [7] im-
plemented Random Ensemble Mixture with Conservative Q-
learning, showing strong coverage but facing computational
demands during initial learning. Similarly, hierarchical methods
like h-DQN [8] used bi-level architecture for efficient exploration
through meta-controller coordination between RICs, though re-
liability remained limited under low-load conditions. The O-
RAN Alliance has explored UE-specific customization [4], op-
timizing cell association based on slice-level requirements, but
static policies implemented via Al interface limited adaptability
to changing network conditions. Other research focused on
ML-based schemes for advanced 5G applications [9], utilizing
hierarchical processes combining heuristics and optimization.
Approaches like [10] demonstrated significant improvements,
surpassing benchmark systems by up to 45.5%, but typically
focused on specific traffic types, limiting generalizability across
diverse network scenarios. While each approach offers unique
advantages, they all face limitations in balancing computational
efficiency with adaptability across varying network conditions,
highlighting the need for more comprehensive solutions.

Motivated by these gaps, this paper proposes a hybrid ap-
proach that combines the robustness of rule-based policies with
the flexibility of machine learning workflows in Open RAN
systems. This algorithm-learning-system harmony aims to strike
a balance between computational efficiency and adaptability
across diverse network conditions and traffic types, which aligns
with current O-RAN development trends, emphasizing policy-
driven network management while leveraging ML within RICs
for advanced data processing. Specifically, we first design an
enhanced rule-based strategy by incorporating a broader range
of User Equipment (UE) slices and adding an additional layer
of base station (BS) known as anchored cells, which connect
to the internet core. This inclusion goes beyond typical pico
and macro cells, providing more granular policy-level control
over network resources within the non-RT RIC. Subsequently,
we develop a novel RL-based approach within the near-RT
RIC to accommodate specific traffic types and adjust decisions



dynamically. With a novel global-local reward function, the
network takes into account both system load balancing and user
satisfaction, where the global aspect of the reward ensures that
network resources are distributed to maintain overall balance
across heterogeneous BSs. Meanwhile, the local aspect focuses
on individual user satisfaction, ensuring that specific Quality of
Service (QoS) requirements are met, such as obtaining their pre-
ferred cell type or ensuring minimal latency. As a result, the rule-
based policy and the RL approach are finally integrated to form
a hybrid traffic steering mechanism, ensuring a more holistic
and responsive traffic steering strategy. Under low network load
conditions, the enhanced rule-based policy efficiently allocates
resources with minimal computational overhead. In medium
to high load scenarios, the system switches to our dual-focus
RL-based strategy that optimizes allocation policies on-the-fly
by considering UE types and current BS capacities. Extensive
simulation results demonstrate that our adaptive mechanism min-
imizes unmanaged UEs and maximizes the percentage of UEs
obtaining their preferred cell types, while effectively balancing
the load across the network.

II. ENHANCED RULE-BASED POLICY FOR TRAFFIC
STEERING

This section introduces an enhanced rule-based policy for
traffic steering in Open RAN environments, extending beyond
conventional approaches [1]. The proposed policy incorporates
slice-aware allocation strategies with anchored cells, providing
more granular control over network resources and serving as the
foundation for the subsequent hybrid approach.

Unlike existing rule-based policies that typically consider only
basic UE types and conventional BS infrastructure [5], [11], our
approach incorporates a diverse range of network slices and a
new layering of deployed BSs (macro, pico, and anchored cells).
The proposed policy maps each network slice to an ordered
preference list of BS types, tailored to optimize specific service
requirements.

Specifically, for voice services, macro cells are prioritized
for wide coverage (i.e. first preference), followed by pico and
anchored cells. Enhanced Mobile Broadband (eMBB) slice fa-
vors pico cells for higher throughput, while Ultra-Reliable Low-
Latency Communications (URLLC) slice prioritizes anchored
cells for minimal latency. Massive Machine Type Communi-
cations (mMTC) slice optimizes dense device deployment by
preferring pico cells, with a fallback to anchored and macro
cells as needed. This structured preference-based allocation
enables an effective alignment between UE service requirements
and network resources. Based on this network structure and
configuration, a proximity-aware allocation algorithm is devel-
oped for slice-aware traffic steering, taking into account both
slice preferences and the geographical distribution of BSs [10].
Unlike traditional methods, this approach integrates distance-
based sorting within each preference tier, optimizing resource
utilization while adhering to service quality requirements.

Algorithm 1 presents the proximity-aware allocation mech-
anism. For each UE in the network, the algorithm begins by
identifying its slice type and retrieving the ordered list of BS
preferences (Lines 2-3). It then iterates over each preferred BS

Algorithm 1 Rule-Based Allocation with Proximity Sorting

1: for each UE in UE_list do

2: slice < U FE.slice_type

3: preferences < policy[slice]

4: allocated < False

5: for each type in preferences do

6 stations < get_stations(type)

7 sorted_stations < sort_by_prozimity(UE,

stations)
8: for each bs in sorted_stations do
9: if bs has capacity then
10: allocate UFE to bs
11: allocated < True
12: break inner loops
13: end if
14: end for
15: if allocated then
16: break
17: end if

18: end for
19: if not allocated then

20: mark UE as unmanaged
21: end if
22: end for

type, collecting all stations of that type and sorting them by
proximity to the UE (Lines 6-7). This proximity-based sorting
is crucial for minimizing potential handovers and reducing
network overhead. For each sorted BS, the algorithm checks if
there is sufficient capacity to accommodate the UE’s throughput
requirements (Lines 8-13). Upon matching a suitable BS, the
UE is immediately associated, and the algorithm exits both inner
loops to process the next UE (Lines 10-12). If no allocation is
possible after all preference tiers are exhausted, the UE is marked
as unmanaged (Lines 17-19).

Such an enhanced rule-based policy introduces significant
advancements over traditional methods [9], [11] by incorpo-
rating several key features. First, it ensures slice-aware allo-
cation, prioritizing service requirements across network slices
for tailored resource distribution based on QoS needs. Second,
the integration of anchored cells in the loop adds an extra
resource tier optimized for latency-sensitive applications, while
proximity-based optimization within each preference tier reduces
unnecessary handovers and network overhead. Despite these
benefits, the policy, like all rule-based approaches, experiences
performance degradation under high load conditions. This limita-
tion highlights the need for adaptive, learnable strategies, which
will be explored in the subsequent section.

III. JOINT RULE-BASED AND REINFORCEMENT LEARNING
METHODOLOGY

Building upon the enhanced rule-based policy, this section
integrates a reinforcement learning (RL) workflow to develop a
robust traffic steering solution. This joint methodology harnesses
the strengths of both frameworks: the computational efficiency
and reliability of rule-based mechanisms, and the adaptive
learning capabilities of RL for managing complex, high-load
situations.



A. Reinforcement Learning-Based Approach

Our RL approach enables the RIC to determine UE association
strategies such that the network can jointly optimize the BS
capacity and user experiences. The main components of the
proposed RL and training process are detailed as follows.

State and Action Spaces The state space is designed to
capture both network conditions (BS load) and UE character-
istics (traffic demand and mobility). Each state s consists of
a (n + k)-dimensional vector, where n is the number of BSs.
The first n components represent normalized cell capacities (i.e.
Ceur /Cmaz) for each BS, providing the agent (RIC) with current
resource availability information. The remaining £ components
in the vector include the normalized traffic demands of the
current UE (Ty g/ Tinaz) and a one-hot encoded representation of
the UE’s slice type (e.g., Voice, eMBB, URLLC, and mMTC).
This state representation ensures the agent has complete view
of both network resources and UE requirements. The action
space a is discrete, consisting of n possible actions, with each
action representing the selection of a specific BS for the UE
association. This formulation enables the agent to make timely
allocation decisions while considering current network state and
UE dynamics.

Global-Local Reward Function The reward function for the
adaptive traffic steering combines local user-specific rewards
with global system-level rewards:

R(S; a) = Ralloc(sa a) + Rpref (Sa CL) + Rload(sa a) 5 (1)

Global System Reward

Local User Reward

where the allocation component R,;;,. imposes a penalty v when
a UE remains unmanaged, incentivizing the agent to maximize
successful resource allocations across the available BSs. The
preference satisfaction component R..; rewards successful
allocations based on the UE satisfactory level:

Rpref(s,a) =a;, 1€l,m], 2)

where m is the number of preference levels based on the rule-
based policy in Sec. II, and «; > ;41 for all ¢ € [1,m — 1],
ensuring higher rewards for better preference satisfaction. From
the global view, the load balancing component R;,,q considers
network-wide utilization as:

if Ly) > T, <0
Riguals,a) = {01 T moenlo) = 1 fi<0 g
(B> otherwise, [ >0,
where L; represents the normalized load of BS b, i.e.
Lb — Cfna(a;b_ CSUT . (4)

max

In Eq. (3), 7 represents the preferred maximum load threshold
(typically set at 0.95 in practice), beyond which the system
applies penalties to prevent BS overloading. This threshold helps
maintain operational stability and ensures sufficient capacity
buffer to handle unexpected traffic spikes.

This reward structure will guide the following Q function to
optimize network performance by minimizing allocation failures

through the penalty component -y, prioritizing preference satis-
faction via the hierarchical rewards «; in Eq. (2), and main-
taining balanced cell utilization through the load-based rewards
B1 and B3. Such a combination ensures that the agent learns
policies that simultaneously satisfy individual UE requirements
while maintaining optimal system-wide resource distribution,
effectively preventing both underutilization and overloading of
network resources.

Dueling DQN Architecture We introduce a Dueling Deep Q-
Network (DQN) architecture to overcome limitations observed
in standard DQN models. Traditional DQNs use a single stream
to estimate the Q-value, representing the expected future rewards
of an action taken in a given state. This unified approach can
contribute to overestimation bias and unstable training dynamics.
The Dueling DQN architecture mitigates these issues by separat-
ing the estimation of the state value from the action advantages.
This separation allows for more precise value function estima-
tion, improving stability and more efficient learning, especially
in our considered dynamic wireless environments. The Dueling
DQN architecture introduces two separate streams within the
neural network:

e Value Stream (V(s)): Estimates the value of being in a
particular state s.

o Advantage Stream (A(s,a)): Computes the advantage of
each action ¢ relative to others in state s.

As a result, the Q-value is then combined as:

Q(s,a) = V(s) + A(s, a). (5)

This separation allows the model to stabilize the learning
process by reducing variance in the estimations of V(s) and
A(s,a) while minimizing overestimation. By independently as-
sessing state values and action advantages, the Dueling DQN
enhances the agent’s ability to discern available cell capacity
from advantageous actions, ensuring more effective resource
allocation and optimized traffic distribution.

Training and Convergence The training process for the
global-local RL model starts by capturing both cell resources
and UE requirements, the discrete action space for selecting BS,
and the reward mechanism in Eq. (1) to incentivize balanced
network load and efficient resource usage. The agent is trained in
a dynamic wireless environment, allowing it to explore and learn
traffic steering strategies in a controlled setting. The training
leverages experience replay, which stores past experiences in a
replay buffer and samples mini-batches for training to break the
temporal correlation between consecutive samples and stabilize
training. The loss function used in training is the Mean Squared
Error (MSE) between the predicted and target Q-values:

L(0) = By | (r+ nmax @5 a'507) - Qs 0s0)) |

where r is the immediate reward, 7 is the discount factor, s’
is the next state, and Q' represents the target network’s action-
value function, 6 are the parameters of the primary network, and
0~ are the parameters of the target network, updated periodically
for stability.



To demonstrate the effectiveness of our training process,
the agent needs to be trained over multiple episodes, with
the training loss and average Q-values monitored to evaluate
learning progress. Fig. 1 shows the stabilization of our average
Q-values as training advances, indicating that the learned policy
is converging. The steady increase and eventual plateau in Q-
values suggest that the agent has effectively learned optimal
strategies, validating the choice of our Dueling DQN archi-
tecture and the designed reward function in driving policy
learning to enhance both user-level satisfaction and network-
level performance. However, compared to the rule-based policy,
we observe that it requires substantial computational resources
and introduces additional overhead for the model to converge to
an effective policy, making it less efficient in certain scenarios.
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Fig. 1: Average Q-values of the RL agent during training.

B. Hybrid Rule-based and RL Approach

As discussed in Sec. I and Sec. III.A, recognizing that neither
method alone can optimally address all network conditions,
a hybrid approach is proposed. This approach leverages the
strengths of both methods: utilizing the rule-based policy’s
efficiency and stability under low network load and the RL-
based policy’s adaptability under high-load scenarios. By dy-
namically switching between the two based on real-time network
conditions, the hybrid approach aims to optimize user-level and
network-wide performance across various scenarios.

The hybrid approach monitors several key network metrics,
such as current network load and BS utilization, to determine
which policy to apply at any given time. Then, a threshold-based
mechanism is employed to decide when to switch between the
rule-based and RL-Based policies. To avoid frequent switching
due to minor fluctuations in network load. The detailed decision-
making process is outlined in Algorithm 2.

Specifically, the algorithm begins by initializing the current
policy to our rule-based scheme from Sec. II and defining two
thresholds, high load threshold T'hj;g5, and low load threshold
Thiow, where Thyo, < Thpign to create a hysteresis band. It
then enters a continuous monitoring loop where the network load
is regularly assessed. If operating under the rule-based policy and
the current network load exceeds T'hp;iqn, the system switches
to the RL-model; conversely, if the RL-model is adopted and the
network load drops below T'h;,,, it switches back to the rule-
based policy. Upon selecting the policy, the algorithm applies
the corresponding scheme for traffic steering and waits for

Algorithm 2 Load-Aware Traffic Steering Algorithm

1: Initialize current_policy <— Rule-Based
2: Inmitialize Thpign, Thiow

3: while network is operational do

4: network_load < calculate_network_load()
5: if current_policy is Rule-Based then

6: if network_load > Thpign then

7: current_policy < RL-Based

8: end if

9: else if current_policy is RL-Based then
10: if network_load < Thjo, then

11: current_policy <— Rule-Based
12: end if

13: end if

14: apply_current_policy()

15: wait for monitoring interval

16: end while
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Fig. 2: Implementation of the proposed hybrid traffic steering solution in Open
RAN Architecture. The Non-RT RIC houses the RL training pipeline and a
policy manager, while the Near-RT RIC contains the rule-based xApp (Algorithm
1), RL-based xAPP (Sec. III.A), and a hybrid controller (Algorithm 2). The
three-tiered control loop structure ensures optimal response times across different
network conditions.

a predefined monitoring interval before re-evaluating, thereby
reducing unnecessary computational overhead. Such a load-
aware mechanism can dynamically adjust to changing network
conditions, balancing adaptability, efficiency, and stability across
varying scenarios.

C. Implementation in O-RAN Architecture

The proposed hybrid solution integrates seamlessly within the
O-RAN architecture, primarily operating through the Near-RT
RIC and Non-RT RIC components, as illustrated in Figure 2.
First, the rule-based component operates as a specialized xApp
within the Near-RT RIC, leveraging direct access to RAN
metrics through the E2 interface for real-time monitoring of cell
loads and UE distributions. This placement enables immediate
execution of traffic steering decisions, ensuring low-latency
response during normal load conditions. On the other hand,
our RL-based component implements a distributed architecture



across both RIC layers, with offline model training executed
in the Non-RT RIC to leverage its inherent ML workflow
capabilities, while policy execution is deployed as another xApp
in the Near-RT RIC. This design enables efficient state collection
and action implementation through the E2 interface, maintaining
the system’s ability to adapt to changing network conditions
while adhering to O-RAN’s control loop specifications.

Specifically, the implementation leverages O-RAN’s key in-
terfaces effectively, with the E2 interface serving as the primary
channel for collecting the network metrics (e.g., user mobility,
traffic demands, cell load) and enabling the hybrid controller to
make informed decisions about which policy to apply based on
current conditions. The O1 interface handles performance man-
agement and policy switching, while the Al interface enables
seamless policy updates (either rule-based or RL-based) from
Non-RT RIC to Near-RT RIC. This comprehensive interface
utilization ensures robust communication between different ar-
chitectural components while maintaining the flexibility required
for our adaptive traffic steering.

IV. EVALUATION RESULTS

This section presents the evaluation of the our traffic steering
approaches using defined key performance indicators (KPIs), in-
cluding the percentage of unmanaged UEs [12], user satisfaction
rate [13], and cell utilization. The performance is analyzed under
varying network load scenarios to assess the effectiveness of the
proposed approach. Computational analysis is also included to
demonstrate the feasibility of the proposed mechanism in a real-
world operating RAN scenario.

A. Experimental Setup

Simulations with varying numbers of UEs were conducted,
each with specific data demands, to create different load sce-
narios: Small Load System (SLS) with 50 UEs, Medium Load
System 1 (MLS-1) with 250 UEs, Medium Load System 2
(MLS-2) with 350 UEs, and Large Load System (LLS) with
1,000 UEs. The BS capacities and UE preferences are configured
to reflect realistic network conditions.

According to Algorithm 2, the thresholds for the hybrid
approach are determined based on the observed performance
crossover points between rule-based and rL-Bbsed approaches.
At 50 UEs (20% of cell capacity) and 250 UEs (100% cell
capacity), the rule-Based Approach performed optimally with
minimal unmanaged UEs and high preference satisfaction. At
350 UEs (over 140% cell capacity), a performance crossover
is observed where the RL-based approach starts to outperform
the rule-based approach due to the high dynamics and traffic
uncertainty, showing improved UE management and preference
satisfaction. Based on these initial observations, the thresholds
are set at 140% (T'hiow) and 160% (T'hpign) of cell capacity,
with the hysteresis band preventing oscillation between policies
during load fluctuations.

B. Performance Results and Analysis

Table I provides a comprehensive comparison of the three
approaches across various load scenarios. The highlighted cells
indicate the policy adopted by the hybrid approach in each

scenario, with rule-based values emphasized for SLS and MLS-
1, and RL-based values emphasized for MLS-2 and LLS. The
dotted line represents the transition point between the two
policies, marking where the hybrid approach switches from rule-
based to RL-based control to optimize performance.

Table I: Performance comparison of traffic steering approaches.

Metric Load Scenario Rule-Based | RL-Based | Hybrid
SLS (50 UEs) 0% 0% 0%
MLS-1 (2 E .
Unmanaged UEs (%) MLS-1 250 UBs) | .. 0% . 08% 0%
MLS-2 (350 UEs) 9.1% 8.6% 8.6%
LLS (1000 UEs) 65% 40.2% 40.2%
SLS 100% 98% 100%
First Preference MLS-1 92.8% 94.4% 92.8%
Satisfaction (%) MLS-2 77.1% 88% 88%
LLS 27% 58.6% 58.6%
SLS 19.6% 19.3% 19.6%
Average Cell | MLS-1 | 924% 87.9% 92.4%
Utilization (%) MLS-2 99.8% 92.7% 92.7%
LLS 100% 96.1% 96.1%
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Fig. 3: Comparison of unmanaged UEs across different scenarios.

Specifically, Fig. 3 illustrates the percentage of unmanaged
UEs across different load scenarios. The results indicate that
while both approaches perform similarly under low-load condi-
tions, the RL-based approach demonstrates significantly better
UE management under high-load conditions. This is particularly
evident in the LLS scenario, where the RL-based approach
reduces unmanaged UEs by 24.8% compared to the rule-based
method. It is important to note that the LLS case serves to
evaluate the worst-case scenario with an extremely high load
relative to the available cell capacity.

Next, Fig. 4 demonstrates the UE first preference satisfaction
rates (as defined in Sec. II) across different load scenarios.
As expected, the rule-based approach performs better in SLS
scenarios, but the RL-based approach maintains substantially
higher satisfaction rates as the network load increases, more
than doubling the satisfaction rate in the LLS scenario (58.6%
compared to 27% for the rule-based approach). In addition
to user performance, Fig. 5 evaluates cell utilization patterns
from a network-wide perspective. The results show that the RL-
based approach achieves a more balanced resource distribution
across BSs, particularly in high-load (LLS) scenarios, where
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Fig. 4: Comparison of user’s first preference satisfaction rate across approaches.

it maintains utilization levels below 97%, preventing complete
saturation while effectively distributing the load. The balanced
cell utilization also confirms the effectiveness of our reward
function design in promoting efficient resource distribution
while maintaining high user satisfaction rates. By harnessing
the strength of both schemes as shown in Table I, our hybrid
approach can strategically switch between the two methods,
providing adaptive user and system performance tailored to
varying network conditions.
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Fig. 5: Average cell utilization across different load scenarios.

C. Computational Analysis

The computational testing demonstrates the feasibility of our
hybrid approach within O-RAN’s operational time windows. The
training phase is planned to be executed in an r-App in the non-
RT RIC (>1s timescale) as shown in Fig. 2, completed in 160.74
seconds experimentally. On the other hand, the inference that
will happen in the traffic steering x-App averaged approximately
180ms per traffic steering task, well within the operational
window of x-Apps in the near-RT RIC (10ms-1s timescale).
This timing profile ensures our hybrid policy can make real-
time decisions for each UE requesting network access without
violating the timing constraints of RIC workflows.

V. CONCLUSION

This paper presents a novel approach for traffic steering in
Open RAN that effectively combines the reliability of rule-based

policies with the adaptability of RL. The enhanced rule-based
component goes beyond conventional methods by incorporating
diverse UE slices and introducing anchored cells, enabling more
precise resource allocation. Meanwhile, the RL component,
implemented using a Dueling DQN architecture, demonstrates
superior performance in high-load scenarios. The separation of
training in non-RT RIC and inference in near-RT RIC demon-
strates that our hybrid approach is both architecturally sound and
computationally feasible within operational timing constraints.
The proposed hybrid mechanism successfully leverages the
complementary strengths of both approaches, ensuring optimal
resource utilization across varying network conditions. This is
evidenced by balanced cell utilization patterns and consistent
performance metrics across all load scenarios. Future work will
focus on implementing and validating this approach in practical
network environments using a testbed like AERPAW at North
Carolina State University, which will provide deeper insights
into real-world performance and scalability characteristics.
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