
Schema-Driven Information Extraction from Heterogeneous Tables

Fan Bai♣ Junmo Kang♣ Gabriel Stanovsky♦ Dayne Freitag♠

Mark Dredze♥ Alan Ritter♣

♣ College of Computing, Georgia Institute of Technology
♦ School of Computer Science and Engineering, The Hebrew University of Jerusalem

♠ Artificial Intelligence Center, SRI International
♥ Department of Computer Science, Johns Hopkins University

{fan.bai, alan.ritter}@cc.gatech.edu, junmo.kang@gatech.edu,

gabriel.stanovsky@mail.huji.ac.il, daynefreitag@sri.com, mdredze@cs.jhu.edu

Abstract

In this paper, we explore the question of

whether large language models can support

cost-efficient information extraction from ta-

bles. We introduce schema-driven information

extraction, a new task that transforms tabular

data into structured records following a human-

authored schema. To assess various LLM’s ca-

pabilities on this task, we present a benchmark

comprised of tables from four diverse domains:

machine learning papers, chemistry literature,

material science journals, and webpages. We

use this collection of annotated tables to eval-

uate the ability of open-source and API-based

language models to extract information from ta-

bles covering diverse domains and data formats.

Our experiments demonstrate that surprisingly

competitive performance can be achieved with-

out requiring task-specific pipelines or labels,

achieving F1 scores ranging from 74.2 to 96.1,

while maintaining cost efficiency. Moreover,

through detailed ablation studies and analyses,

we investigate the factors contributing to model

success and validate the practicality of distill-

ing compact models to reduce API reliance.1

1 Introduction

Vast quantities of experimental data are locked

away in tables found in scientific literature. These

tables are primarily designed for visual presenta-

tion, and the underlying data is typically not avail-

able in any structured format, such as a relational or

graph database. Some table collections have simple

or uniform structures (Cafarella et al., 2008), mak-

ing them easy to convert to relational data, for ex-

ample, Wikipedia tables (Lebret et al., 2016; Iyyer

et al., 2017), however a lot of information is stored

in tables with complex and varied layouts, such as

tables of results in papers found on arXiv.org.

Prior work on extracting data from tables has

focused on developing custom pipelines for each

1Our code and data are available at https://github.
com/bflashcp3f/schema-to-json.

Figure 1: Overview of Schema-Driven Information Ex-

traction. The input includes two elements: the source

code of a table and a human-authored extraction schema,

outlining the target attributes and their data types. The

output consists of a sequence of JSON records that con-

form to the extraction schema.

new table format or domain, for example extracting

machine learning leaderboards from LATEX result

tables (Kardas et al., 2020). Importantly, the devel-

opment of these specialized pipelines necessitates

domain-specific labeled data, which not only in-

curs a significant cost in collection for every new

extraction task but also constrains their applicabil-

ity outside the originating domain.

In this paper, we show how LLMs can enable ac-

curate domain-independent extraction of data from

heterogeneous tables. We present a new formu-

lation of the table extraction problem, which we

refer to as Schema-Driven Information Extraction.

In Schema-Driven IE, the only human supervision

provided is a schema that describes the data model,

including the target attributes and their data types,

formulated in a JSON format.2 Given an extraction

schema, and a table as input, the model then out-

puts a sequence of JSON objects, each of which

describes a table cell. For example, as demon-

strated in Figure 1, a domain expert outlines the

attributes of interest related to result cells in a ma-

chine learning table, and the model extracts JSON

objects following this schema.

To evaluate the ability of LLMs to perform

Schema-Driven IE, we introduce a new benchmark

consisting of table extraction datasets in four di-

verse domains: machine learning papers, chemistry

literature, material science journals, and webpages

- each of which has a different data format (LATEX,

XML, CSV, and HTML, respectively). We curate

and annotate new datasets for the first two domains,

while adapting existing datasets for the latter two.

Using this newly developed benchmark, we an-

alyze the performance of open-source and propri-

etary LLMs. We find that state-of-the-art propri-

etary models are capable of accurately extracting

data from diverse domains and table formats with-

out supervision. For example, GPT-4 (OpenAI,

2023) and code-davinci (Chen et al., 2021), are

capable of accurate table extraction (ranging from

74.2 to 96.1 F1), given only a relevant data schema

as input to define the task. This performance is

comparable to fully supervised models, which op-

erate at an F1 range of about 64.1 to 96.1. We also

present a number of analyses on various factors that

are key to achieving good performance while min-

imizing inference costs, including retrieving text

from outside the table, in addition to an iterative

error recovery strategy. Moreover, we demonstrate

the utility of Schema-Driven IE by evaluating per-

formance on the downstream task of leaderboard

extraction from machine learning papers (Kardas

et al., 2020).

2 Schema-Driven Information Extraction

We now describe Schema-Driven IE, a new task

that extracts structured records from tables with

2JSON is chosen as the output format for two main rea-
sons: 1) its widespread use ensures a significant representation
in the LLM’s pre-training corpus, which is crucial for optimiz-
ing model performance; and 2) its simplicity in parsing and
processing, especially its support for one-line output, makes it
advantageous for outputs spanning multiple cells, offering a
clear benefit over indent-based formats like YAML.

minimal supervision. As shown in Figure 1, the

task input contains two elements: 1) a table with nu-

merous cells, optionally supplemented with contex-

tual text, e.g., retrieved paragraphs from the same

document; and 2) an extraction schema that out-

lines target attributes and their data types for vari-

ous record types (implemented as JSON templates).

Given the input, the model generates a sequence

of JSON objects, where each object corresponds to

a cell in the table and contains key-value pairs for

the pre-defined attributes of a specific record type.

Consider a table in an ML paper that displays var-

ious models’ results. Our proposed task enables the

extraction of result records from each cell in the ta-

ble. These records include relevant attributes such

as the evaluation metric, task, etc, which are struc-

tured in corresponding JSON objects and could

facilitate meta-analysis of experiments or support

research on reproducibility.

To demonstrate the feasibility of Schema-Driven

IE on tables, we introduce INSTRUCTE, a method

to extract structured records from a broad range

of semi-structured data, using only task-specific

instructions. INSTRUCTE uses a template-based

approach to information extraction (Chambers and

Jurafsky, 2011; Chen et al., 2023), where the extrac-

tion schema is represented as a series of JSON tem-

plates. The underlying LLM is instructed to select

the appropriate template and populate it with ex-

tracted values for each cell in an input table, follow-

ing a specified cell traversal order. As illustrated

in Figure 2 (left), the prompt used by INSTRUCTE

consists of four key components: an input table

(optionally) supplemented with contextual text, an

extraction schema, task-specific instructions, and

an initial record for starting the process.

Despite explicit instructions, we found that mod-

els often fail to generate JSON records for all the

cells in a single inference pass. Instead, models

often deviate from the instructed cell traversal or-

der, leading to partial extraction of the input table’s

cells. To mitigate this, we use an iterative error

recovery strategy. As shown on the right side of

Figure 2, we detect deviations from the instructed

left-right, top-down order by comparing predicted

cell values with those from a rule-based cell de-

tector. Then, we truncate the LLM’s output to the

point of deviation, and re-prompt the model with

the truncated sequence, adding the value of the

next target cell. This process is repeated until all

records are generated. Using identified cells as a

scaffold, this strategy helps the model adhere to

Figure 2: Left: Prompt formulation of our proposed method INSTRUCTE. Right: Illustration of our error-recovery

strategy, which ensures the model compliance of the instructed cell traversal order and reduces inference costs.

the instructed order, significantly improving per-

formance despite potential propagated errors in

cell identification. In Section 4.4, we show that

our approach is much more cost-efficient than cell-

by-cell prompting while achieving similar perfor-

mance. For more details on INSTRUCTE, including

prompt formulation and cell detectors, please refer

to Appendix A.

3 The SCHEMA-TO-JSON Benchmark

We now present the details of our benchmark,

SCHEMA-TO-JSON, which is designed to assess

the capabilities of LLMs to extract data from ta-

bles, adhering to a predefined schema. This bench-

mark contains tables from four domains: machine

learning papers, chemistry literature, materials sci-

ence journals, and webpages. Each domain fea-

tures a unique textual format, namely, LATEX, XML,

CSV, and HTML, requiring models to generalize

across domains and formats. For ML tables, we

add relevant paragraphs from the same documents

to provide additional context, testing the models’

capacity to jointly understand tabular and textual

data. We manually annotate datasets for the first

two domains and adapt pre-existing datasets into

our unified format for the latter two. Statistics of

the four datasets are summarized in Table 1.

arXiv Machine Learning Tables We create a

manually annotated dataset focused on tables from

arXiv ML papers, emphasizing numeric cells that

are classified into four categories: Results, Hyper-

parameters, Data Statistics, or Other. Extraction

attributes are pre-defined for the first three cate-

gories; for instance, result records incorporate tex-

tual attributes such as evaluation metric (e.g., F1)

and dataset (e.g., SQuAD), as shown in Figure 1.

To avoid data contamination with top models like

GPT-4 (0613),3 we collected papers published af-

ter the knowledge cutoff (between October and

November 2022) from three subfields: Machine

Learning, Computer Vision, and Natural Language

Processing. Five tables were randomly selected

from each paper, including appendices. We employ

computer scientists with ML backgrounds for an-

notation, and evaluate inter-annotator agreement

(IAA) score by calculating F1 (see Section 4.1 for

details) on double-annotated tables, treating one

set of annotations as gold labels and the other as

predictions. This method yields an F1 score of 96.6

when applying thresholded token-level F1 for at-

tribute matching. For additional information on

ML tables, including predefined attributes and the

annotation process, please refer to Appendix B.

PubMed Chemistry Tables We also annotate a

new dataset of PubMed tables describing the physi-

cal properties of chemical compounds. The auto-

3According to OpenAI website, GPT-4 (0613) was trained
on data until Sep. 2021.

ML Chemistry DISCOMAT SWDE

(ours) (ours) (2022) (2011)

Textual format LATEX XML CSV HTML

cell types 4 6 2 8

attr. types 11 4 4 32

papers (web.) 25 16 656 80

tables (pages) 122 26 1,031 1,600

anno. records 3,792 1,498 9,036 1,600

records / table 31.1 57.6 8.8 1

Table 1: Dataset statistics of four datasets in our

SCHEMA-TO-JSON benchmark.

mated extraction of physical properties from such

tables could provide substantial real-world benefits,

for example collecting much-needed data for train-

ing ML models that can support inverse molecular

design (Kim et al., 2018) and thus accelerating the

drug design process (Fields, 2019; Stokes et al.,

2020). Here, we focus on cells concerning five im-

portant physical properties identified by chemists:

IC50, EC50, GI50, CC50, and MIC.4 Three com-

mon attributes are manually extracted from tables

for all properties: unit, treatment (experimental

compound), and target (measured biological entity,

e.g., a gene expression). Similar to the ML tables,

domain experts annotate JSON records for relevant

cells, and Table-F1 calculated on double-annotated

tables is used as the IAA score. A Table-F1 score

of 91.0 underscores the reliability of the dataset.

DISCOMAT (Gupta et al., 2022) We experi-

ment with DISCOMAT, a dataset focusing on glass

composition tables from Elsevier material science

journals. The task is to extract tuples comprising

(material, constituent, percentage, unit) from given

tables. We adapt DISCOMAT to fit our Schema-

Driven IE framework by grounding the percentage

element to numeric cells in the table and consider-

ing the other elements as attributes. The model is

tasked to identify numeric cells representing con-

stituent percentages and predict the associated three

attributes. We refer readers to Gupta et al. (2022)

for more details of DISCOMAT.5

SWDE (Hao et al., 2011) Finally, we add

SWDE (Structured Web Data Extraction) as a

fourth dataset, aimed at extracting pre-defined at-

tributes from HTML webpages. This dataset com-

4
https://www.sciencedirect.com/topics/

pharmacology-toxicology-and-pharmaceutical-science/

ic50
5In the released corpus, tables are represented as matrices;

we, therefore, transform them into CSV tables (using the pipe
symbol "|" as the delimiter) prior to feeding them into LLMs.

prises roughly 124K pages gathered from eight

distinct verticals, such as Auto, Book, and Movie.

Each vertical includes ten unique websites and is

associated with a set of 3 to 5 target attributes.

For instance, the Movie vertical seeks to extract

attributes such as title, director, and genre.

4 Experiments

We evaluate the capability of various LLMs to per-

form Schema-Driven IE, in addition to full fine-

tuning using our benchmark. For ML and chem-

istry tables, we use a subset of 10 and 7 randomly

sampled papers separately for model development,

which facilitates the training of supervised base-

lines. For the two pre-existing datasets, we follow

the data splits used in the original experiments.

4.1 Evaluation

To evaluate predicted JSON records, we report

Table-F1, a reference-based metric gauging at-

tribute prediction performance within a table.

Table-F1 represents the harmonic mean of preci-

sion and recall, with precision being the ratio of

correctly predicted attributes to total predicted at-

tributes. At the attribute level, we report results

using exact match (EM), in addition to a threshold-

based token-level similarity. The threshold is tuned

on dev data to maximize alignment between our es-

timated model performance and performance mea-

sured using human judgments (see Appendix C for

more details). We macro-average Table-F1, given

the wide variance in table sizes.

For DISCOMAT and SWDE, we use similar met-

rics specified in their original papers to support

comparison with prior work. We report Tuple-F1

(Gupta et al., 2022) for DISCOMAT, where a pre-

dicted 4-element tuple is considered correct only

if it exactly matches the gold tuple. For SWDE,

we report Page-F1 (Hao et al., 2011), which mea-

sures the number of pages where the attributes are

accurately predicted.6

To further validate our conclusions, we also

present the results of full human evaluation of

model outputs in §4.5.

4.2 Baselines & Implementation Details

We evaluate the capability of multiple LLMs

to perform Schema-Driven IE, including API-

6Notably, SWDE primarily focuses on identifying textual
HTML nodes containing attribute values rather than exact text
spans, so we use token-level F1 to identify the most relevant
HTML node for each extracted attribute.

Figure 3: Capability of various LLMs to perform Schema-Driven IE, measured using the SCHEMA-TO-JSON

benchmark. We employ Table-F1 for our two newly annotated datasets and provide a measure of human performance.

For DISCOMAT (Gupta et al., 2022) and SWDE (Hao et al., 2011), we adhere to their original evaluation metrics,

i.e., Tuple-F1 and Page-F1 respectively, to support comparisons with established methods. In SWDE experiments, k

represents the number of trained websites from each vertical. Due to API cost constraints, *INSTRUCTE’s results

are computed on a 1,600 webpage sample, with bootstrap confidence intervals calculated to validate the reliability

of these performance estimates (margin of error for 95% confidence interval with 1000 samples is 0.00995.)

based GPT-4 and GPT-3.5 models and open-source

models, such as Llama3-8B-Instruct (AI@Meta,

2024), Llama2-Chat-13B (Touvron et al., 2023b),

CodeLlama-instruct-13B (Rozière et al., 2023),

StarCoder-15.5B (Li et al., 2023), LLaMA-7B

(Touvron et al., 2023a), and Alpaca-7B (Taori et al.,

2023). We also frame Schema-Driven IE as a

TableQA problem, applying multi-choice and ex-

tractive QA prompts for template selection and

cell attribute prediction, respectively. Furthermore,

we also evaluate T5-11B (Raffel et al., 2020) and

TaPas (Herzig et al., 2020), a table-specialized LM.

For implementation details of INSTRUCTE and

other methods, see Appendix D.7

For DISCOMAT and SWDE, we compare IN-

STRUCTE with established baselines, which either

design task-specific architectures, such as Free-

Dom (Lin et al., 2020) and LANTERN (Zhou et al.,

2022), or use LMs pretrained on tables or web

pages, like TaPas (Herzig et al., 2020), TaBERT

7We developed a rule-based method for chemistry tables
based on the training set, which only achieved a Table-F1

score of 51.3, significantly lower than our proposed InstrucTE.
Due to the substantial effort required to create specialized
rule-based systems for each domain and the performance gap,
we decided not to pursue this approach further.

(Yin et al., 2020), and MarkupLM (Li et al., 2022).

4.3 Main Results

Figure 3 presents the main results from the com-

parison between INSTRUCTE and other methods

on our SCHEMA-TO-JSON benchmark. We ob-

serve that INSTRUCTE, in conjunction with API-

based models, achieves strong performance across

domains and input formats, without any domain-

specific labels. With GPT-4, INSTRUCTE can out-

perform fine-tuned models on ML and chemistry

tables. However, a substantial disparity remains

compared to human performance, e.g., the Table-

F1 on double-annotated examples for ML tables

stands at 96.6 when applying thresholded token-

level F1 for attribute matching, which is 22.4 F1

points higher than GPT-4.

For DISCOMAT and SWDE, GPT-4 performs

on par or slightly trails behind the fully supervised

state-of-the-art methods, signifying the potential

of LLMs to act as flexible, powerful tools for ex-

tracting information from tables across diverse data

formats and domains.

Despite a noticeable gap compared to API-based

LLMs, open-source models show promising results

across several domains. For example, CodeLlama-

64.3

48.3

Figure 4: Ablation studies on various components of our INSTRUCTE (w/ code-davinci-002) on the ML tables.

Interestingly, excluding the table caption improves performance. Our detailed analysis in Appendix E reveals that

low-quality captions (e.g., lack of specificity) may confuse the model, leading to inaccurate predictions.

instruct-13B achieves 60.0 Table-F1 and 91.7 Page-

F1 on ML tables and SWDE, respectively. Llama3-

8B achieves 74.5 Table-F1 on chemistry tables.

4.4 Ablation Studies

We assess the impact of different components of

INSTRUCTE, including task formulation and error

recovery, using ML tables.

LLMs & Task Formulation In Table 2, we com-

pare different LLMs, leading to two principal ob-

servations. First, code models show strong perfor-

mance on Schema-Driven IE. This is evident from

several key comparisons, such as the performance

similarity between code-davinci-002 and GPT-

4, the superior performance of code-davinci-002

compared to other GPT-3.5 models, and the fact

that CodeLlama-instruct-13B significantly outper-

forms Llama2-chat-13B, approaching the perfor-

mance of gpt-3.5-turbo. This superiority of

code models might be attributed to their alignment

with Schema-Driven IE, which involves converting

table source code into JSON records. Second, non-

code open-source models with similar sizes (for

instance, those in the 6-7B range) tend to achieve

comparable fine-tuning performance, though they

might exhibit variations in prompting performance.

Subsequently, we compare three task formula-

tions: SCHEMA-TO-JSON, TableQA, and Function

Calling, which is a feature provided by the OpenAI

API.8 In Function Calling, the schema is formatted

as function definitions with attributes serving as

8
https://platform.openai.com/docs/guides/

function-calling

Exp. Setup Formulation Model Token-F1 EM

Fine-tuning

(# Train=1169)

TableQA
TaPas (large) 27.7 21.6

T5 (11B) 61.2 46.2

SCHE2JSON

GPT-J (6B) 49.6 38.4

LLaMA (7B) 51.3 38.0

Alpaca (7B) 50.2 39.4

T5 (11B) 64.1 50.2

No Fine-tuning

TableQA Flan-T5 (11B) 36.9 27.7

Func. Calling gpt-3.5-turbo (0613) 22.4 18.4

SCHE2JSON

GPT-J (6B) 18.6 16.2

LLaMA (7B) 13.5 11.5

Alpaca (7B) 26.8 21.1

Llama2-chat (13B) 31.5 23.0

Llama3-instruct (8B) 41.0 32.4

StarCoder (15.5B) 41.2 32.3

CodeLlama-instruct (13B) 60.0 44.0

gpt-3.5-turbo (0613) 64.1 47.9

text-davinci-003 67.4 50.4

code-davinci-002 72.3 57.6

gpt-4 (0613) 74.2 58.1

Table 2: TEST set performance on ML tables with dif-

ferent LLMs and task formulations.

arguments. The LM is then tasked with selecting

the function and generating JSON objects for ex-

tracted arguments on a cell-by-cell basis. From the

T5-11B fine-tuning experiments, we observe that

SCHEMA-TO-JSON attains better performance than

TableQA, demonstrating the value of integrating

task-specific instructions and extraction schema in

the input. Function Calling with gpt-3.5-turbo

shows limited effectiveness, and error analysis sug-

gests that this shortfall primarily stems from the

model’s struggle in selecting the correct function.9

9This finding is supported by a marked performance in-
crease to 63.8 Table-F1 when the gold function is pre-specified.
As each function call yields only one JSON object, this method
requires cell-by-cell prompting, which is cost-intensive with
GPT-4. Due to API budget constraints, our experiments are
limited to gpt-3.5-turbo.

Prompt Components & Error Recovery Figure

4 shows INSTRUCTE’s performance subject to the

exclusion of varying prompt components. We use

code-davinci-002 for these experiments consid-

ering API budget limitations and its resemblance to

GPT-4 in terms of performance and context length.

We observe that removing supplementary text de-

grades performance. Table headers contribute posi-

tively as expected, while captions surprisingly do

not. Further analysis on table captions is provided

in Appendix E, which suggests that unclear cap-

tions can sometimes mislead the model, resulting

in inaccurate predictions. Notably, discarding the

extraction schema, specifically JSON templates,

causes a substantial performance decline, primarily

due to attribute name mismatches in the evaluation.

Lastly, we show that INSTRUCTE’s performance

drops significantly without error recovery. Com-

pared to cell-by-cell prompting, error recovery of-

fers similar performance at a fraction of the API

cost ($100 v.s. $670 on Azure).10

4.5 Performance Analysis

To further verify our main conclusions from au-

tomatic evaluation and gain deeper insights into

INSTRUCTE’s performance, we conduct a human

evaluation and discuss a set of key questions.

What errors are made by INSTRUCTE? To

understand where INSTRUCTE struggles, we con-

duct error analysis on GPT-4 predictions for ML

tables. We sample 10 tables from the test set and

10 records for each table, comparing each attribute

with the gold value. In total, we find 154 errors

out of 591 attributes. We group errors into one of

eight categories, listed in Table 3, with examples

presented in Appendix F. For instance, one type

of false positive error is when the gold attribute

value is present in the table caption, but the model

is distracted by a table header. Table 3 provides

a detailed breakdown and includes the top three

affected attributes within each error category. We

find that the most common error occurs when the

model fails to identify attributes present in the ta-

ble (31.2%), particularly for experimental settings

like 5-shot in Result records. Another major er-

ror is when attributes present in the accompanying

text lead to either null predictions (14.9%) or in-

correctly predicting a table header (19.5%). These

errors highlight the challenges of Schema-Driven

10The pricing for code-davinci-002 on Azure is $0.1 per
1,000 tokens as of June 23rd, 2023.

IE, where the model must understand nuances of

table layouts and also effectively integrate informa-

tion from surrounding text.

How does the data format impact INSTRUCTE’s

performance? The variation in model perfor-

mance across datasets from different domains with

unique formats raises questions about the influ-

ence of format differences. To address this, we

conducted experiments converting ML tables from

LATEX to HTML and chemistry tables from XML to

CSV, utilizing both commercial (tableconvert11)

and open-source (TeX4ht12) tools, and selecting

the one with the highest conversion accuracy. De-

spite tableconvert showing superior conversion

quality, residual code from the original formats

in the converted tables, e.g., LATEX commands in

HTML tables, presents a novel "code-switching"

challenge for INSTRUCTE. Performance evalua-

tion with GPT-4 reveals a minimal drop for ML

tables (from 74.2 to 74.1 in Table-F1) and a more

significant decrease for chemistry tables (from 83.4

to 78.1 in Table-F1). Both conversion noise and

the model’s format-specific processing capabilities

could contribute to these differences. The optimal

performance on original formats underlines the ne-

cessity of developing models adept at handling di-

verse data formats directly, rather than relying on

format conversion tools.

Human Evaluation Similar to our error analysis

on ML tables, we manually inspect attribute pre-

dictions for 100 cell records for chemistry tables

and DisCoMat, as well as 160 pages for SWDE,

and report the prediction precision. Half of the

sampled data are double-annotated, with the inter-

annotator agreement score calculated as the F1

score between the two annotations. The statistics

and results are provided in Table 9 in the appendix.

The results show that INSTRUCTE achieves high

precision across different datasets, ranging from

73.9 to 96.4, aligning with the performance under

automatic metrics. Additionally, the high inter-

annotator agreement scores (all above 90) indicate

that the human evaluation is reliable and consistent.

4.6 Knowledge Distillation

Considering the strong performance of API-based

models on Schema-Driven IE, we now show that it

is possible to use knowledge distillation (Le et al.,

11
https://tableconvert.com/api/

12
https://tug.org/tex4ht/

Category % (#) Fine-grained Error Types Top 3 Affected Attributes

31.2 (48) gold answer in table, not predicted "Result:experimental_settings" (39.6%), "Result:training_data"

(39.6%), "Result:model_settings" (20.8%)

False Negative 14.9 (23) gold answer in main text, not predicted "Result:training_data" (39.1%), "Hyper-parameter:model"

(26.1%), "Hyper-parameter:dataset" (26.1%),

6.5 (10) gold answer predicted, wrong attribute "Result:experimental_settings" (100%)

19.5 (30) gold answer in main text, table header predicted "Result:training_data" (33.3%), "Result:task" (33.3%), "Re-

sult:model" (33.3%),

False Positive 11.7 (18) partial match, but misses important details "Result:test_data" (100%)

6.5 (10) gold answer in table caption, table header predicted "Result:metric" (100%)

6.5 (10) complete mismatch "Result:experimental_settings" (100%)

Propagated Errors 3.2 (5) select wrong record template "Other:type" (100%)

Table 3: Error analysis of INSTRUCTE (w/ GPT-4) for ML tables, inspecting 591 attribute predictions from 100 cell

records sampled from 10 tables. For each fine-grained error type, we provide the error percentage, detailed error

sources, and the top three affected attributes.

Model (GPU hours)
Token-Level F1 EM

P R F1 P R F1

Teacher code-davinci-002 74.1 71.8 72.3 59.4 56.9 57.6

Student

LLaMA-7B (50h) 74.1 67.6 69.1 56.8 53.4 54.3

Alpaca-7B (50h) 72.7 64.8 67.5 56.1 50.0 52.0

T5-11B (380h) 75.8 71.4 73.2 60.3 56.7 58.1

Table 4: Experimental results for knowledge distillation

on the ML tables. Student models are trained on 3,434

tables labeled by the teacher model. GPU hours refers

to the training time (× number of GPUs) of student

models for one epoch.

2022; Kang et al., 2023) to build a cost-efficient

compact model, using ML tables as a demonstra-

tion. Specifically, this process first generates syn-

thetic data by performing inference on unlabeled

tables using code-davinci-002, followed by fine-

tuning a smaller model (e.g., 7B parameters) us-

ing the synthetic data. We compile a collection

of 979 arXiv ML papers, submitted between 2008

and 2019, yielding 3,434 tables (containing a to-

tal of 100K cells). In Table 4, we can see that

LLaMA-7B and Alpaca-7B demonstrate similar

performance as seen in the fine-tuning results (Ta-

ble 2). While fine-tuning LLaMA with LoRA

(Hu et al., 2022) presents noticeable computational

efficiency, full-parameter fine-tuning of T5-11B

matches the teacher model’s performance.13

4.7 Leaderboards and Image Extraction

To further validate INSTRUCTE’s practicality, we

integrate it with multi-modal models, like GPT4-V,

for extracting data from table images. In an ini-

tial study with ML tables, it yields a Table-F1 of

70.2, approaching the 74.2 Table-F1 achieved with

the original text inputs. Additionally, we explore

13The improvement over the teacher model is not signifi-
cant (p-value is 42.3%, Berg-Kirkpatrick et al., 2012).

INSTRUCTE’s application to the task of Leader-

board Extraction, where it shows competitive per-

formance against leading supervised systems. Due

to space constraints, details on these explorations

are provided in Appendix G.

5 Related Work

Table Understanding in NLP Research Re-

cently there have been many research efforts in-

volving tables, particularly, table-to-text generation

(Parikh et al., 2020; Wang et al., 2022; Hu et al.,

2023). For example, ToTTo (Parikh et al., 2020)

introduced the task of open-domain table-to-text

generation. In contrast, our work transforms tables

into structured JSON records, where a data schema

is the only supervision provided.

Pre-training on Semi-structured Data TaPas

(Herzig et al., 2020) and TaBERT (Yin et al., 2020)

pre-train on linearized tables with a specialized

cell index embedding. TABBIE (Iida et al., 2021)

employs dual transformers for separate row and col-

umn encoding. Similarly, TabLLM (Hegselmann

et al., 2023) uses general-purpose LLMs to process

tables, but we focus on schema-driven IE rather

than table classification or question answering.

IE from Semi-structured Data Information ex-

traction from semi-structured data has gained

increasing interest (Carlson and Schafer, 2008;

Dong et al., 2020; Gupta et al., 2022; Lou et al.,

2023). OpenCeres (Lockard et al., 2019) and Ze-

roShotCeres (Lockard et al., 2020) highlight open-

domain extraction from web data, while AxCell

(Kardas et al., 2020) and TDMS-IE (Hou et al.,

2019) focus on leaderboard extraction from ML ta-

bles. DisCoMat (Gupta et al., 2022) showcases ma-

terial composition extraction from scientific tables.

Unlike most existing methods requiring supervised

datasets for fine-tuning, our approach stands out

by using LLMs to accurately extract data across

various domains using an extraction schema.

6 Conclusion

This paper explores the capabilities of LLMs for

extracting structured data from heterogeneous ta-

bles. We introduce a new task, Schema-Driven

Information Extraction, which converts tables into

structured records guided by a human-authored

data schema. To facilitate this task, we present a

benchmark, comprised of tables from four diverse

domains, and evaluate various LLMs through our

proposed method INSTRUCTE. The experiments

reveal that while API-based models excel across

domains and formats, open-source models display

significant potential in specific areas. Moreover,

we conduct detailed ablation studies and analyses

to investigate the factors for model success, and

validate the feasibility of building compact models

through distillation to reduce dependency on APIs.

Limitations

While INSTRUCTE showcases strong performance

as an instruction-based prompting approach, it en-

counters specific challenges. Firstly, similar to

other prompting methods, its performance could be

sensitive to the phrasing of the prompt. Despite of-

fering guidelines for crafting prompts in Appendix

A, such as emphasizing clear attribute names, devel-

oping robust extraction schemas for new domains

often relies on iterative experimentation. Future

work could explore automatic prompt optimization

(Zhou et al., 2023; Wang et al., 2023) to reduce the

need for human trial-and-error. Additionally, the

model’s varying performance across different do-

mains and formats is difficult to interpret, possibly

due to biases in the pretraining corpus, a factor we

cannot fully analyze due to the opaque nature of

the pre-training process. InstrucTE also faces diffi-

culties with dataset-specific nuances, as it operates

on general task descriptions without detailed exam-

ples, making it challenging to navigate boundary

cases effectively.

Beyond the model’s inherent limitations, the

availability of specific API-based backbones like

GPT-4 and code-davinci-002 may change, im-

pacting reliance on these resources. To reduce

this dependency, we include results from open-

source models and investigate knowledge distil-

lation as a viable alternative, showing promising

results. Our benchmark aims to facilitate future re-

search focused on enhancing smaller, openly acces-

sible models, recognizing the importance of such

developments for practical application and broader

accessibility.

Ethical Considerations

Our use of OpenAI’s API-based models to distill

open-source table extractors complies with Ope-

nAI’s terms of service, as we do not “use the output

from the Services to develop models that compete

with OpenAI”. Regarding licenses of four datasets

in our SCHEMA-TO-JSON benchmark, the arXiv

ML tables align with the licenses of their original

papers. The PubMed Chemistry tables, sourced

from the PMC Open Access Subset, conform to

Creative Commons or equivalent licenses. For the

other two datasets, we adapt pre-existing datasets

released by the NLP research community, abiding

by their respective original licenses.

Acknowledgments

We would like to thank Azure’s Accelerate Foun-

dation Models Research Program and OpenAI’s

Researcher Access Program for graciously provid-

ing access to API-based models, such as GPT-4.

This research is supported in part by the NSF (IIS-

2052498), ODNI and IARPA via the HIATUS pro-

gram (2022-22072200004), and the Defense Ad-

vanced Research Projects Agency (DARPA) under

Contract No. HR001119C0108. The views, opin-

ions, and/or findings expressed are those of the

author(s) and should not be interpreted as repre-

senting the official views or policies of the Depart-

ment of Defense or the U.S. Government. This

work is approved for Public Release, Distribution

Unlimited.

References

AI@Meta. 2024. Llama 3 model card.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Michael J Cafarella, Alon Halevy, Daisy Zhe Wang,
Eugene Wu, and Yang Zhang. 2008. Webtables: ex-

ploring the power of tables on the web. Proceedings
of the VLDB Endowment, 1(1):538–549.

Andrew Carlson and Charles Schafer. 2008. Bootstrap-
ping information extraction from semi-structured
web pages. In ECML/PKDD, page 16.

Nathanael Chambers and Dan Jurafsky. 2011. Template-
based information extraction without the templates.
In Proceedings of the 49th annual meeting of the
association for computational linguistics: human
language technologies, pages 976–986.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yunmo Chen, William Gantt, Tongfei Chen,
Aaron Steven White, and Benjamin Van Durme. 2023.
A unified view of evaluation metrics for structured
prediction. arXiv preprint arXiv:2310.13793.

Xin Luna Dong, Hannaneh Hajishirzi, Colin Lockard,
and Prashant Shiralkar. 2020. Multi-modal informa-
tion extraction from text, semi-structured, and tabular
data on the web. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: Tutorial Abstracts, pages 23–26, Online.
Association for Computational Linguistics.

Gregg B. Fields. 2019. The rebirth of matrix metal-
loproteinase inhibitors: Moving beyond the dogma.
Cells, 8(9):984.

Tanishq Gupta, Mohd Zaki, N. M. Anoop Krishnan, and
Mausam. 2022. Discomat: Distantly supervised com-
position extraction from tables in materials science
articles.

Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. 2011.
From one tree to a forest: A unified solution for struc-
tured web data extraction. In Proceedings of the 34th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’11, page 775–784, New York, NY, USA. Association
for Computing Machinery.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang,
Monica Agrawal, Xiaoyi Jiang, and David Sontag.
2023. Tabllm: Few-shot classification of tabular
data with large language models. In Proceedings of
The 26th International Conference on Artificial In-
telligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pages 5549–5581.
PMLR.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Yufang Hou, Charles Jochim, Martin Gleize, Francesca
Bonin, and Debasis Ganguly. 2019. Identification
of tasks, datasets, evaluation metrics, and numeric
scores for scientific leaderboards construction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5203–
5213, Florence, Italy. Association for Computational
Linguistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Hanxu Hu, Yunqing Liu, Zhongyi Yu, and Laura Perez-
beltrachini. 2023. Improving user controlled table-to-
text generation robustness. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2023,
pages 2272–2279, Dubrovnik, Croatia. Association
for Computational Linguistics.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1821–
1831.

Junmo Kang, Wei Xu, and Alan Ritter. 2023. Distill
or annotate? cost-efficient fine-tuning of compact
models. Proceedings of ACL.

Marcin Kardas, Piotr Czapla, Pontus Stenetorp, Sebas-
tian Ruder, Sebastian Riedel, Ross Taylor, and Robert
Stojnic. 2020. AxCell: Automatic extraction of re-
sults from machine learning papers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8580–
8594, Online. Association for Computational Lin-
guistics.

Kyungdoc Kim, Seokho Kang, Jiho Yoo, Youngchun
Kwon, Youngmin Nam, Dongseon Lee, Inkoo Kim,
Youn-Suk Choi, Yongsik Jung, Sangmo Kim, et al.
2018. Deep-learning-based inverse design model
for intelligent discovery of organic molecules. npj
Computational Materials.

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas
Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
Wang, Siddharth Karamcheti, Alexander M. Rush,
Douwe Kiela, Matthieu Cord, and Victor Sanh. 2023.
Obelics: An open web-scale filtered dataset of inter-
leaved image-text documents.

Nghia T. Le, Fan Bai, and Alan Ritter. 2022. Few-
shot anaphora resolution in scientific protocols via
mixtures of in-context experts. In Findings of the

Association for Computational Linguistics: EMNLP
2022, pages 2693–2706, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. arXiv preprint
arXiv:1603.07771.

Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022.
MarkupLM: Pre-training of text and markup lan-
guage for visually rich document understanding. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6078–6087, Dublin, Ireland. As-
sociation for Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep
Tata. 2020. Freedom: A transferable neural architec-
ture for structured information extraction on web doc-
uments. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 1092–1102,
New York, NY, USA. Association for Computing
Machinery.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong.
2019. Openceres: When open information extraction
meets the semi-structured web. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 3047–3056.

Colin Lockard, Prashant Shiralkar, Xin Luna Dong, and
Hannaneh Hajishirzi. 2020. ZeroShotCeres: Zero-
shot relation extraction from semi-structured web-
pages. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8105–8117, Online. Association for Computational
Linguistics.

Yuze Lou, Bailey Kuehl, Erin Bransom, Sergey Feld-
man, Aakanksha Naik, and Doug Downey. 2023.
S2abel: A dataset for entity linking from scientific
tables.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Di-
panjan Das. 2020. Totto: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the

limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wen-
gong Jin, Andres Cubillos-Ruiz, Nina M. Donghia,
Craig R. MacNair, Shawn French, Lindsey A. Car-
frae, Zohar Bloom-Ackermann, Victoria M. Tran,
Anush Chiappino-Pepe, Ahmed H. Badran, Ian W.
Andrews, Emma J. Chory, George M. Church, Eric D.
Brown, Tommi S. Jaakkola, Regina Barzilay, and
James J. Collins. 2020. A deep learning approach to
antibiotic discovery. Cell, 180(4):688–702.e13.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://

github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas

Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Fei Wang, Zhewei Xu, Pedro Szekely, and Muhao Chen.
2022. Robust (controlled) table-to-text generation
with structure-aware equivariance learning. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5037–5048, Seattle, United States. Association for
Computational Linguistics.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. 2023. Promptagent:
Strategic planning with language models enables
expert-level prompt optimization. arXiv preprint
arXiv:2310.16427.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds,
and Sandeep Tata. 2022. Learning transferable node
representations for attribute extraction from web doc-
uments. In Proceedings of the Fifteenth ACM Inter-
national Conference on Web Search and Data Mining,
WSDM ’22, page 1479–1487, New York, NY, USA.
Association for Computing Machinery.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

A INSTRUCTE

Prompt Formulation Our proposed prompt con-

sists of four components: 1) “Input Table (w/ supp.

text)” includes the table source code paired with

supplementary text from the document; 2) “Ex-

traction Schema” defines the JSON formats for

extracted records, encompassing the record type, at-

tribute names, and associated data types; 3) “Task-

specific Instructions” outline the task execution pro-

cess, addressing both the extraction process from

individual cells and the traversal strategy across

cells, such as “left-right, top-down”; 4) “Initial

Record” is used to jump-start the prompting pro-

cess, including the partial record of the first cell.

For “Input Table (w/ supp. text)”, we employ the

BM25 algorithm to retrieve the most relevant para-

graphs for each table. For “Extraction Schema”, we

propose two guidelines for schema design: 1) At-

tribute names should be specific, which decreases

the probability of the model generating incorrect

attributes, or hallucinations. For instance, when

extracting relevant attributes about a movie from

a movie webpage, it’s advisable to use specific

terms such as “movie name” or “director name”,

rather than the generic “name”; 2) Attributes should

be strategically ordered, placing simpler attributes

ahead of more complex ones as errors in preced-

ing attributes can adversely affect the prediction of

subsequent ones due to the autoaggressive nature

of LMs. The exact INSTRUCTE prompts used in

our experiments are shown in Table 6 and Table 7.

Cell Detector We develop a rule-based method

to identify numeric cells for both the ML and chem-

istry tables. Specifically, for the ML tables, we use

the row separator “\\” and the column separator “&”

to divide the table into cells. We then loop over

each cell, checking for numeric values after strip-

ping away any stylized text. In cases, where a cell

contains multiple numeric values, such as “0± 0”,

we consistently choose the first numeric value. For

the chemistry tables, the parsing process is more

straightforward, owing to the structured XML for-

mat of the table. Here, we iterate over each cell,

verifying if it contains a numeric value once styl-

ized text has been removed. The performance of

our rule-based cell detector on two datasets is pre-

sented in Table 5. In the case of DISCOMAT, we

use the cell detector provided by the original paper

Gupta et al. (2022).

Dataset Split P R F1

ML Tables
Dev 100.0 97.0 98.0
Test 99.9 99.6 99.7

Chem. Tables
Dev 100.0 100.0 100.0
Test 100.0 98.3 99.2

Table 5: Results of (numeric) cell detection on ML and

chemistry tables.

B arXiv Machine Learning Tables

Extraction Attributes We design a set of extrac-

tion attributes for each of the three primary types

of numeric cells in ML tables: “Result”, “Hyper-

parameter”, and “Data Statistics”. These attributes

are outlined in detail below.

• “Result” includes seven attributes: training

data, test data, task, metric, model, model

settings and experimental settings. The

first five attributes are fixed, with answers be-

ing text spans in the paper. The last two at-

tributes, model settings and experimental

settings, are free-form attributes, with an-

swers being JSON objects. For example, the

experimental settings attribute may be

{“number of training examples”: “0”} for a

zero-shot setting. This scheme is more detailed

than previous approaches (Hou et al., 2019; Kar-

das et al., 2020) and can accommodate a broader

range of ML paradigms and provide more gran-

ular information.

• “Hyper-parameter” includes optimization pa-

rameters like learning rate and batch size,

as well as numeric descriptions of model ar-

chitectures such as layer count. The three

fixed attributes for this category are: model,

parameter/architecture, and dataset.

• “Data Stat.” covers four attributes: dataset,

dataset attribute, sub-set/group, and

dataset features. The sub-set/group spec-

ifies a dataset subset (e.g., “train” or “test”),

while dataset features, a free-form attribute,

captures various dataset characteristics like the

language or domain.

Annotation Process We sample 10 papers from

each of three pertinent arXiv fields: Machine Learn-

ing, Computer Vision, and Natural Language Pro-

cessing. After removing papers without LATEX

source code or any tables, a total of 25 papers

Dataset Full Prompt

ML Tables

1 [Retrieve paragraphs]
2

3 [Input table]
4

5 Here are JSON templates for four types of numeric cells: "Other", "Data
Stat.", "Hyper -parameter/Architecture", and "Result ":

6 {"value ": "xx", "type": "Other"}
7 {"value ": "xx", "type": "Data Stat.", "dataset ": "xx", "attribute name":

"xx", "sub -set/group name": "xx", "dataset features ": {"xx": "yy"}}
8 {"value ": "xx", "type": "Hyper -parameter/Architecture", "model ": "xx", "
parameter/architecture name": "xx", "dataset ": "xx"}

9 {"value ": "xx", "type": "Result", "task": "xx", "metric ": "xx", "
training data/set": "xx", "test data/set": "xx", "model/method ": "xx", "
model/method settings ": {"xx": "yy"}, "experimental settings ": {"xx": "
yy"}}

10

11 Please describe all numeric cells in the above latex table following the
JSON templates (proceeding by row in a left -right , top -down direction).
For each cell , output one JSON description per line. For any

unanswerable attributes in the templates , set their value to the
placeholder "xx" if it is of string type and {"xx": "yy"} if it is of
dictionary type. Numeric cells , which describe performance/error
analysis , should be labeled as "Other".

12

13 Cell Description:
14 {"value ": "[Query cell]", "type":

Chem. Tables

1 [Input table]
2

3 Here are JSON templates for six types of numeric cells: "Other", "IC50",
"EC50", "CC50", "MIC", and "GI50":

4 {"value ": "xx", "type": "Other"}
5 {"value ": "xx", "type": "IC50", "unit": "xx", "treatment compound ": "xx
", "target compound ": "xx"}

6 {"value ": "xx", "type": "EC50", "unit": "xx", "treatment compound ": "xx
", "target compound ": "xx"}

7 {"value ": "xx", "type": "CC50", "unit": "xx", "treatment compound ": "xx
", "target compound ": "xx"}

8 {"value ": "xx", "type": "MIC", "unit": "xx", "treatment compound ": "xx",
"target compound ": "xx"}

9 {"value ": "xx", "type": "GI50", "unit": "xx", "treatment compound ": "xx
", "target compound ": "xx"}

10

11 Please describe all numeric cells in the above XML table following the
JSON templates (proceeding by row in a left -right , top -down direction).
For each cell , output one JSON description per line. For any
unanswerable attributes in the templates , set their value to the
placeholder "xx".

12

13 Cell Description:
14 {"value ": "[Query cell]", "type":

Table 6: INSTRUCTE prompts used for ML and chemistry tables.

are covered in our dataset. To optimize the an-

notation budget and the dataset diversity, we cap

the number of annotated tables to five per paper.

Recognizing the domain-specific expertise needed,

we employ expert annotators with backgrounds in

ML research, who are provided with tables in both

LATEX and PDF formats and encouraged to thor-

oughly read the paper before annotation. The anno-

tation process comprises two steps: 1) identifying

the numeric cells and their record types, and 2) fill-

ing in the slots of pre-determined attributes, form-

ing a JSON record with keys as attribute names and

values as extracted content, in a text editor. Conse-

quently, the dataset contains 122 tables, with 3,792

cells and 21K attributes annotated.

C Evaluation Metrics

Comparing an LLM-predicted JSON object with

a gold JSON object is a non-trivial task, as those

generative LLMs may produce text spans that do

not exactly exist in the input table. Consequently,

we devote substantial effort to examining various

metrics to determine the one best suited for our

task using ML tables. Here, we consider three

Dataset Full Prompt

DISCOMAT

1 [Input table]
2

3 Here are JSON templates for two types of numeric cells: "Other" and "
Glass_Compound_Amount ":

4 {"value ": "xx", "type": "Other"}
5 {"value ": "xx", "type": "Glass_Compound_Amount", "constituent compound
name": "xx", "unit": "xx", "glass material/sample name/id/code": "xx"}

6

7 Please describe all numeric cells in the above table following the JSON
templates (proceeding by row in a left -right , top -down direction). For
each cell , output one JSON description per line. For any unanswerable
attributes in the templates , set their value to the placeholder "xx".

8

9 Cell Description:
10 {"value ": "[Query cell]", "type":

SWDE-auto

1 [Input webpage]
2

3 Here is the JSON template for automobile attribute extraction:
4 {" webpage title ": "xx", "automobile model (year)": "xx", "price": "xx",
"engine type": "xx", "fuel economy ": "xx"}

5

6 Please extract the automobile ’s attributes from the HTML code above
following the JSON template. For any unanswerable attributes in the
template , set their value to the placeholder "<NULL >".

7 {" webpage title ": "[webpage title]", "automobile model (year)":

Table 7: INSTRUCTE prompts used for DISCOMAT and SWDE. For SWDE, we use the “Auto” vertical as an

illustrative example, and the prompts for other verticals differ only in attribute names (refer to Table 8 for the

attributes of each vertical).

Vertical # Sites # Pages Attributes

Auto 10 17,923 model, price, engine, fuel-economy

Book 10 20,000
title, author, ISBN-13,

publisher, publish-date

Camera 10 5,258 model, price, manufacturer

Job 10 20,000 title, company, location, date

Movie 10 20,000 title, director, genre, rating

NBA Player 10 4,405 name, team, height, weight

Restaurant 10 20,000 name, address, phone, cuisine

University 10 16,705 name, phone, website, type

Table 8: SWDE statistics.

Dataset # Records # Attr. Precision IAA

ML Tables 100 591 73.9 95.7
Chem. Tables 100 380 95.3 100
DISCOMAT 100 201 92.5 99.4
SWDE 160 640 96.4 98.2

Table 9: Statistics and results of attribute-level human

evaluation on four datasets. The inter-annotator agree-

ment score (IAA) is calculated as the F1 score between

the two annotations

metrics: the standard token-level F1 to capture the

level of lexical overlap between the predicted and

gold attributes, and two semantic similarity met-

rics, SBERT (Reimers and Gurevych, 2019) and

BERTScore (Zhang et al., 2020), to identify seman-

tically similar expressions (e.g., # params vs. the

Figure 5: Results of comparing various metrics, includ-

ing token-level F1, SBERT, and BERTScore, to human

judgment over different thresholds on ML tables. Num-

bers are computed over 677 sampled attributes that are

paired with respective gold references.

number of parameters).

Meta Evaluation To assess how accurate each

metric is compared to human evaluation, we manu-

ally annotated predicted-gold attribute pairs as to

whether or not each pair matches. We consider

a given pair to “match” if they are semantically

equivalent, meaning they can be used interchange-

ably. For attributes that encapsulated multiple sub-

Figure 6: An error analysis of edge cases in which the predictions made by INSTRUCTE with captions default

to “Other” (resulting in an 0 F1). Our hypothesis that this issue may stem from the caption’s lack of specificity

is tested by manually expanding the caption (displayed on the right). This amendment significantly improves the

performance on these edge cases, increasing the F1 score to 92.3.

Figure 7: An example of Table-F1 calculation, where two predicted records are compared against the two gold

records.

attributes, we consider a pair to match if at least

half of the sub-attributes are matched (i.e., F1 score

≥ 0.5), with the decision for each sub-attribute be-

ing based on the same as in the text-span attributes.

For the set of pairs to annotate and use as a test

set, we sample a total of 100 cell pairs (i.e., 677

attribute pairs) according to the following process:

1) we first uniformly sample a table from the devel-

opment set (containing 10 papers); and 2) we then

sample a random cell from the table, ensuring there

were no duplicate cells. For each pair of predicted-

gold attributes, each metric’s decision (1 or 0) is

token-level F1 SBERT BERTScore

Meta Eval. F1 97.0 95.6 96.7

Threshold 0.25 0.55 0.85

Table 10: Results of comparing various metrics, includ-

ing token-level F1, SBERT, and BERTScore, to human

judgment on ML tables. Numbers are computed over

677 sampled attributes that are paired with gold refer-

ences. The highest achieved F1 scores are displayed

alongside the thresholds. A complete illustration of re-

sults, sorted by thresholds, can be found in Figure 5 in

Appendix.

made using a specific threshold. For example, if

the token-level F1’s score for paired attributes is 0.4

and the threshold is 0.5, then the decision would be

0, indicating no match. The decisions over the test

set containing 677 attribute pairs are then compared

to human evaluation. In this binary classification

problem, F1 is used to evaluate the performance of

the metrics.

In Table 10, we present the performances of each

metric with the optimal threshold for each. Surpris-

ingly, we find that the token-level F1 (with a thresh-

old of 0.25) decision aligns nearly perfectly with

human judgment, and performs the best among

all metrics for our task. This might suggest that

discerning subtle differences is more crucial than

identifying different phrases with the same mean-

ing for this task. Based on these empirical findings,

we opt for the token-level F1 for automatic evalu-

ation at the attribute level. This choice is highly

desirable not only because of its high accuracy but

also due to its simplicity.

D Implementation Details

Considering the lengthy source code for tables,

we employ different strategies to encode the in-

put table and perform Schema-Driven IE, based

on the context length of the chosen LLM. For

LLMs with a larger context length, such as GPT-

4, code-davinci-002, and CodeLlama, we input

the full table and conduct the proposed error re-

covery process. For LLMs with a more limited

context length, such as LLaMA and T5-11B, we

query each target cell individually. The input table

is condensed by rows, retaining the first two rows,

typically containing headers, and the row with the

query cell, with the token <select> pinpointing

the position of the query cell. We use greedy decod-

ing to maximize the reproducibility of our results.

For the TableQA setting, we divide the prob-

T5 (11B) TaPas

learning rate 1e-4 5e-5

batch size 8 32

epoches 5 10

Table 11: Hyper-parameters used for fine-tuning T5 and

TaPas.

lem into two steps: selecting the record type and

predicting the relevant attributes. For T5 and Flan-

T5, the first step is modeled as a multi-choice QA

problem, where the model chooses the type of the

query cell from a list of provided options. The

second step is modeled as an extractive QA task,

asking the model to pinpoint the answer spans for

the attributes associated with the selected type. For

TaPas, the initial step is treated as a classification

problem, whereas the latter one is handled as a cell

selection problem. The hyper-parameters used for

fine-tuning T5 and TaPas are presented in Table 11.

E Error Analysis of Caption

In Section 4.4, we observe an unexpected finding

that table captions do not enhance performance, but

rather seem to detract from it, which is counterin-

tuitive. To delve deeper into this observation, we

conduct an error analysis. This involves comparing

the performances of our INSTRUCTE system with

and without captions at the table level. This anal-

ysis uncovers a few outliers (3 out of 68) where

including a caption leads to a 0 F1 score, whereas

the score is near perfect when the caption is ex-

cluded. For instance, as depicted in Figure 6, the

predictions all fall into the “Other” category when a

caption is included, leading to a 0 F1 score in these

outlier instances. Conversely, removing the caption

results in an F1 score of 89.3. This high score is

due to the fact that retrieved paragraphs provide

ample contextual information (e.g., “hate speech

detection”) without the presence of a caption.

We hypothesize that the model’s inclination to

predict “Other” in the presence of a caption may

be a consequence of the captions’ lack of speci-

ficity with respect to the attributes relevant to the

table cells (for example, “hate speech detection”).

This lack of explicit, relevant details could create

confusion in associating the caption with the re-

trieved paragraphs, thereby misleading the model.

To test our hypothesis, we manually adjust the cap-

tions to include more specific attributes, such as

“hate speech detection” and “T5-Base.” As a result,

we observe an improvement in the model’s perfor-

mance with the revised caption, with the total F1

score even exceeding that achieved without a cap-

tion. This outcome partially supports our hypoth-

esis and suggests that carefully crafted captions

could indeed be beneficial, aligning with our ini-

tial expectations. However, this investigation also

points to the fact that the model currently lacks

robustness in handling these outlier scenarios.

F INSTRUCTE Errors

This section presents examples of INSTRUCTE’s

errors (w/ GPT-4) on ML tables, illustrating each

of the eight fine-grained error types.

F.1 False Negative: gold answer in table, not

predicted

Input (Table 5 of arXiv paper 2210.00044v1)

Predicted Records

1 {"value": "83.48" , ..., "model/

method settings ": {"xx": "yy"},

...}

2 {"value": "62.81" , ..., "model/

method settings ": {"xx": "yy"},

...}

3 ...

4 {"value": "94.32" , ..., "model/

method settings ": {"xx": "yy"},

...}

5 ...

Gold Records

1 {"value": "83.48" , ..., "model/

method settings ": {"w/o

Pretraining ": "true"}, ...}

2 {"value": "62.81" , ..., "model/

method settings ":{"w/o

Pretraining ": "true"}, ...}

3 ...

4 {"value": "94.32" , ..., "model/

method settings ": {"w

Pretraining ": "true"}, ...}

5 ...

F.2 False Negative: gold answer in main text,

not predicted

Input (Table 4 of arXiv paper 2210.00193v1)

Predicted Records

1 {"value": "51.2" , ..., "training

data/set": "xx", ...}

2 {"value": "50.9" , ..., "training

data/set": "xx", ...}

3 ...

4 {"value": "66.7" , ..., "training

data/set": "xx", ...}

5 ...

Gold Records

1 {"value": "51.2" , ..., "training

data/set": "a mixture of

monolingual and parallel data

from 112 languages mined from

the web", ...}

2 {"value": "50.9" , ..., "training

data/set": "a mixture of

monolingual and parallel data

from 112 languages mined from

the web", ...}

3 ...

4 {"value": "66.7" , ..., "training

data/set": "a mixture of

monolingual and parallel data

from 112 languages mined from

the web", ...}

5 ...

F.3 False Negative: gold answer predicted,

wrong attribute

Input (Table 5 of arXiv paper 2210.00044v1)

Predicted Records

1 {"value": "83.48" , ..., "model": "

EWC", "experimental settings ":

{"xx": "yy"}, ...}

2 {"value": "62.81" , ..., "model": "

EWC", "experimental settings ":

{"xx": "yy"}, ...}

3 ...

4 {"value": "94.32" , ..., "model": "

EWC", "experimental settings ":

{"xx": "yy"}, ...}

5 ...

Gold Records

1 {"value": "83.48" , ..., "

experimental settings ": {" Method

": "EWC"}, ...}

2 {"value": "62.81" , ..., "

experimental settings ": {" Method

": "EWC"}, ...}

3 ...

4 {"value": "94.32" , ..., "

experimental settings ": {" Method

": "EWC"}, ...}

5 ...

F.4 False Positive: gold answer in main text,

table header predicted

Input (Table 5 of arXiv paper 2210.00044v1)

Predicted Records

1 {"value": "83.48" , ..., "training

data/set": "What room", ...}

2 {"value": "62.81" , ..., "training

data/set": "What sport", ...}

3 ...

4 {"value": "94.32" , ..., "training

data/set": "What room", ...}

5 ...

Gold Records

1 {"value": "83.48" , ..., "training

data/set": "VQA -v2", ...}

2 {"value": "62.81" , ..., "training

data/set": "VQA -v2", ...}

3 ...

4 {"value": "94.32" , ..., "training

data/set": "VQA -v2", ...}

5 ...

F.5 False Positive: partial match, but misses

important details

Input (Table 4 of arXiv paper 2210.00193v1)

Predicted Records

1 {"value": "51.2" , ..., "test data/

set": "FRMT test", ...}

2 {"value": "50.9" , ..., "test data/

set": "FRMT test", ...}

3 ...

4 {"value": "66.7" , ..., "test data/

set": "FRMT test", ...}

5 ...

Gold Records

1 {"value": "51.2" , ..., "test data/

set": "FRMT pt", ...}

2 {"value": "50.9" , ..., "test data/

set": "FRMT zh", ...}

3 ...

4 {"value": "66.7" , ..., "test data/

set": "FRMT pt", ...}

5 ...

F.6 False Positive: gold answer in table

caption, table header predicted

Input (Table 3 of arXiv paper 2210.00740v1)

Predicted Records

1 {"value": "97.2" , ..., "metric ": "

Hea", ...}

2 {"value": "86.7" , ..., "metric ": "

Wri", ...}

3 ...

4 {"value": "82.3" , ..., "metric: "Ank

", ...}

5 ...

Gold Records

1 {"value": "97.2" , ..., "metric ": "AP

", ...}

2 {"value": "86.7" , ..., "metric ": "AP

", ...}

3 ...

4 {"value": "82.3" , ..., "metric ": "AP

", ...}

5 ...

F.7 False Positive: complete mismatch

Input (Table 3 of arXiv paper 2210.00740v1)

Predicted Records

1 {"value": "97.2" , ..., "experimental

settings ": {"Venue": "CVPR

2020"} , ...}

2 {"value": "86.7" , ..., "experimental

settings ": {"Venue": "CVPR

2020"} , ...}

3 ...

4 {"value": "82.3" , ..., "experimental

settings ": {"Venue": "ICCV

2021"} , ...}

5 ...

Gold Records

1 {"value": "97.2" , ..., "experimental

settings ": {"xx": "yy"}, ...}

2 {"value": "86.7" , ..., "experimental

settings ": {"xx": "yy"}, ...}

3 ...

4 {"value": "82.3" , ..., "experimental

settings ": {"xx": "yy"}, ...}

5 ...

F.8 Propagated Errors: select a wrong record

template

Input (Table 7 of arXiv paper 2210.00627v1)

Predicted Records

1 {"value": "3", "type": "Hyper -

parameter", ...}

2 {"value": "6", "type": "Hyper -

parameter", ...}

3 ...

4 {"value": "14", "type": "Hyper -

parameter", ...}

Gold Records

1 {"value": "3", "type": "Other"}

2 {"value": "6", "type": "Other"}

3 ...

4 {"value": "14", "type": "Other"}

G Extracting Leaderboards from Table

Images

G.1 Extraction from Table Images

One practical challenge with INSTRUCTE is the

need for tables in a textual format, while many

tables are available only as PDFs or images. To

address this, we integrate INSTRUCTE with multi-

modal models to extract structured data from ta-

ble images. Specifically, we experiment with two

strategies: 1) direct extraction from table images,

and 2) a pipeline that first employs multi-modal

models to transform table images into text, and

then run INSTRUCTE on the textual tables.

In a preliminary study with ML tables, we use

GPT-4V as the backbone for INSTRUCTE. We find

that the pipeline method yields a Table-F1 score

of 70.2 from image inputs, approaching the 74.2

Table-F1 achieved with the original text inputs. It

outperforms direct extraction using GPT-4V, which

attains only a Table-F1 score of 46.4, as the pipeline

can capitalize on INSTRUCTE’s error recovery ca-

pabilities, resulting in more thorough and accurate

extractions.

Additionally, we test IDEFICS-80b-instruct

(Laurençon et al., 2023), a leading open-source

multi-modal model, which unfortunately could not

perform the table-text conversion or direct extrac-

tion.14 This suggests a clear avenue for future re-

search to enhance multi-modal models’ ability to

accurately process image-based tables.

G.2 Leaderboard Extraction from ML Papers

Task Definition & SOTA Methods The task of

leaderboard extraction (Hou et al., 2019; Kardas

et al., 2020) entails extracting leaderboard tuples

(task, dataset, metric, score) from tables in

14The IDEFICS-80b-instruct model either produces un-
related content or simply output "I am sorry, but I cannot
generate LaTeX code from the table."

ML papers. Unlike our proposed Schema-Driven

IE, which requires open-domain span identifica-

tion, leaderboard extraction presumes prior knowl-

edge of all leaderboards, represented as pre-defined

(task, dataset, metric) tuples, and centers on

linking numeric cells to these leaderboards.

The state-of-the-art leaderboard extraction

method, AXCELL (Kardas et al., 2020), is a com-

prehensive pipeline system comprising four com-

ponents: Table Type Classification, Table Segmen-

tation, Cell Linking, and Filtering. For each com-

ponent, except the last one, AXCELL employs a

supervised model. It starts with table type classi-

fication to identify result-related tables, which are

then passed to the table segmenter responsible for

annotating the header cells of the table. Following

this step, a retrieval model links numeric cells in

the table to pre-defined leaderboards using human-

engineered features. Lastly, AXCELL filters and

selects the best record based on the leaderboard

taxonomy criteria, such as retaining higher values

for "Accuracy" and lower ones for "error rate".

Application of INSTRUCTE To extract leader-

boards from an ML paper, we consider all tables

that contain numeric cells, instead of selecting ta-

bles via a trained classifier as in AXCELL. For

each table, we run INSTRUCTE using a customized

leaderboard extraction JSON template. This tem-

plate resembles the ML-table template with two

additional fixed attributes: eval split and eval

class in the “Result” cell template. We add the

eval split attribute because the evaluated split

is essential information for this task; for instance,

“dev F1” and “test F1” are treated as different met-

rics in the leaderboard taxonomy. The eval class

attribute is used to exclude sub-set or sub-class re-

sults that are typically present in analysis tables.

After generating all predicted cell descriptions, we

filter them based on three criteria: 1) the type

attribute must be “Result”; 2) the eval class at-

tribute must be “all” or “Null” as observed on the

development set; and 3) the cell must be bolded in

the table, as this usually indicates its superior per-

formance and possible relevance to the leaderboard.

For papers without any bolded cells, we experiment

with two strategies: 1) include all the remaining

cells in the table that meet the first two criteria; 2)

use cells selected by AXCELL, as its engineered

features for cell selection may be useful. This hy-

brid system is referred to as INSTRUCTE+. We

then use the predicted task, dataset, and metric

Figure 8: Generate LATEX code for image tables using GPT-4V.

Method
Micro-Average Macro-Average

P R F1 P R F1

AXCELL 25.4 18.4 21.3 21.5 21.5 20.0

INSTRUCTE 20.1 20.8 20.5 20.3 23.1 19.6

INSTRUCTE+ 23.9 21.2 22.4 21.2 23.7 20.5

Table 12: Leaderboard extraction results on the PWC

LEADERBOARDS dataset.

attributes in each JSON record to match with the

pre-defined leaderboards using token-level F1, and

we select the leaderboard with the highest aver-

age score over three attributes. Finally, follow-

ing AXCELL, we choose the best record based on

the leaderboard taxonomy criteria, e.g., retaining

higher values for "Accuracy" and lower ones for

"error rate".

Results We compare INSTRUCTE with AXCELL

on PWC LEADERBOARDS (Kardas et al., 2020),

the largest dataset for leaderboard extraction. For

INSTRUCTE, we use code-davinci-002 given its

excellent performance on SCHEMA-TO-JSON. Ta-

ble 12 presents the results of both methods. We

can see that INSTRUCTE achieves competitive per-

formance compared to the supervised AXCELL,

highlighting the efficacy of our proposed approach.

When we enhance INSTRUCTE with AXCELL’s

cell selection capabilities to create INSTRUCTE+,

it outperforms AXCELL, demonstrating the promis-

ing potential of combining these two approaches.

	Introduction
	Schema-Driven Information Extraction
	The Schema-to-Json Benchmark
	Experiments
	Evaluation
	Baselines & Implementation Details
	Main Results
	Ablation Studies
	Performance Analysis
	Knowledge Distillation
	Leaderboards and Image Extraction

	Related Work
	Conclusion
	InstrucTE
	arXiv Machine Learning Tables
	Evaluation Metrics
	Implementation Details
	Error Analysis of Caption
	InstrucTE Errors
	False Negative: gold answer in table, not predicted
	False Negative: gold answer in main text, not predicted
	False Negative: gold answer predicted, wrong attribute
	False Positive: gold answer in main text, table header predicted
	False Positive: partial match, but misses important details
	False Positive: gold answer in table caption, table header predicted
	False Positive: complete mismatch
	Propagated Errors: select a wrong record template

	Extracting Leaderboards from Table Images
	Extraction from Table Images
	Leaderboard Extraction from ML Papers

