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Abstract

In this paper, we explore the question of
whether large language models can support
cost-efficient information extraction from ta-
bles. We introduce schema-driven information
extraction, a new task that transforms tabular
data into structured records following a human-
authored schema. To assess various LLM’s ca-
pabilities on this task, we present a benchmark
comprised of tables from four diverse domains:
machine learning papers, chemistry literature,
material science journals, and webpages. We
use this collection of annotated tables to eval-
uate the ability of open-source and API-based
language models to extract information from ta-
bles covering diverse domains and data formats.
Our experiments demonstrate that surprisingly
competitive performance can be achieved with-
out requiring task-specific pipelines or labels,
achieving F; scores ranging from 74.2 to 96.1,
while maintaining cost efficiency. Moreover,
through detailed ablation studies and analyses,
we investigate the factors contributing to model
success and validate the practicality of distill-
ing compact models to reduce API reliance.!

1 Introduction

Vast quantities of experimental data are locked
away in tables found in scientific literature. These
tables are primarily designed for visual presenta-
tion, and the underlying data is typically not avail-
able in any structured format, such as a relational or
graph database. Some table collections have simple
or uniform structures (Cafarella et al., 2008), mak-
ing them easy to convert to relational data, for ex-
ample, Wikipedia tables (Lebret et al., 2016; Iyyer
et al., 2017), however a lot of information is stored
in tables with complex and varied layouts, such as
tables of results in papers found on arXiv.org.
Prior work on extracting data from tables has
focused on developing custom pipelines for each

LOur code and data are available at https://github.
com/bflashcp3f/schema-to-json.
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Figure 1: Overview of Schema-Driven Information Ex-
traction. The input includes two elements: the source
code of a table and a human-authored extraction schema,
outlining the target attributes and their data types. The
output consists of a sequence of JSON records that con-
form to the extraction schema.

new table format or domain, for example extracting
machine learning leaderboards from IATEX result
tables (Kardas et al., 2020). Importantly, the devel-
opment of these specialized pipelines necessitates
domain-specific labeled data, which not only in-
curs a significant cost in collection for every new
extraction task but also constrains their applicabil-
ity outside the originating domain.

In this paper, we show how LLMs can enable ac-
curate domain-independent extraction of data from
heterogeneous tables. We present a new formu-
lation of the table extraction problem, which we



refer to as Schema-Driven Information Extraction.
In Schema-Driven IE, the only human supervision
provided is a schema that describes the data model,
including the target attributes and their data types,
formulated in a JSON format.? Given an extraction
schema, and a table as input, the model then out-
puts a sequence of JSON objects, each of which
describes a table cell. For example, as demon-
strated in Figure 1, a domain expert outlines the
attributes of interest related to result cells in a ma-
chine learning table, and the model extracts JSON
objects following this schema.

To evaluate the ability of LLMs to perform
Schema-Driven IE, we introduce a new benchmark
consisting of table extraction datasets in four di-
verse domains: machine learning papers, chemistry
literature, material science journals, and webpages
- each of which has a different data format (IATEX,
XML, CSV, and HTML, respectively). We curate
and annotate new datasets for the first two domains,
while adapting existing datasets for the latter two.

Using this newly developed benchmark, we an-
alyze the performance of open-source and propri-
etary LLMs. We find that state-of-the-art propri-
etary models are capable of accurately extracting
data from diverse domains and table formats with-
out supervision. For example, GPT-4 (OpenAl,
2023) and code-davinci (Chen et al., 2021), are
capable of accurate table extraction (ranging from
74.2 t0 96.1 F)), given only a relevant data schema
as input to define the task. This performance is
comparable to fully supervised models, which op-
erate at an F range of about 64.1 to 96.1. We also
present a number of analyses on various factors that
are key to achieving good performance while min-
imizing inference costs, including retrieving text
from outside the table, in addition to an iterative
error recovery strategy. Moreover, we demonstrate
the utility of Schema-Driven IE by evaluating per-
formance on the downstream task of leaderboard
extraction from machine learning papers (Kardas
et al., 2020).

2 Schema-Driven Information Extraction

‘We now describe Schema-Driven IE, a new task
that extracts structured records from tables with

2JSON is chosen as the output format for two main rea-
sons: 1) its widespread use ensures a significant representation
in the LLM’s pre-training corpus, which is crucial for optimiz-
ing model performance; and 2) its simplicity in parsing and
processing, especially its support for one-line output, makes it
advantageous for outputs spanning multiple cells, offering a
clear benefit over indent-based formats like YAML.

minimal supervision. As shown in Figure 1, the
task input contains two elements: 1) a table with nu-
merous cells, optionally supplemented with contex-
tual text, e.g., retrieved paragraphs from the same
document; and 2) an extraction schema that out-
lines target attributes and their data types for vari-
ous record types (implemented as JSON templates).
Given the input, the model generates a sequence
of JSON objects, where each object corresponds to
a cell in the table and contains key-value pairs for
the pre-defined attributes of a specific record type.

Consider a table in an ML paper that displays var-
ious models’ results. Our proposed task enables the
extraction of result records from each cell in the ta-
ble. These records include relevant attributes such
as the evaluation metric, task, etc, which are struc-
tured in corresponding JSON objects and could
facilitate meta-analysis of experiments or support
research on reproducibility.

To demonstrate the feasibility of Schema-Driven
IE on tables, we introduce INSTRUCTE, a method
to extract structured records from a broad range
of semi-structured data, using only task-specific
instructions. INSTRUCTE uses a template-based
approach to information extraction (Chambers and
Jurafsky, 2011; Chen et al., 2023), where the extrac-
tion schema is represented as a series of JSON tem-
plates. The underlying LLM is instructed to select
the appropriate template and populate it with ex-
tracted values for each cell in an input table, follow-
ing a specified cell traversal order. As illustrated
in Figure 2 (left), the prompt used by INSTRUCTE
consists of four key components: an input table
(optionally) supplemented with contextual text, an
extraction schema, task-specific instructions, and
an initial record for starting the process.

Despite explicit instructions, we found that mod-
els often fail to generate JSON records for all the
cells in a single inference pass. Instead, models
often deviate from the instructed cell traversal or-
der, leading to partial extraction of the input table’s
cells. To mitigate this, we use an iterative error
recovery strategy. As shown on the right side of
Figure 2, we detect deviations from the instructed
left-right, top-down order by comparing predicted
cell values with those from a rule-based cell de-
tector. Then, we truncate the LLM’s output to the
point of deviation, and re-prompt the model with
the truncated sequence, adding the value of the
next target cell. This process is repeated until all
records are generated. Using identified cells as a
scaffold, this strategy helps the model adhere to
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Figure 2: Left: Prompt formulation of our proposed method INSTRUCTE. Right: Illustration of our error-recovery
strategy, which ensures the model compliance of the instructed cell traversal order and reduces inference costs.

the instructed order, significantly improving per-
formance despite potential propagated errors in
cell identification. In Section 4.4, we show that
our approach is much more cost-efficient than cell-
by-cell prompting while achieving similar perfor-
mance. For more details on INSTRUCTE, including
prompt formulation and cell detectors, please refer
to Appendix A.

3 The SCHEMA-TO-JSON Benchmark

We now present the details of our benchmark,
SCHEMA-TO-JSON, which is designed to assess
the capabilities of LLMs to extract data from ta-
bles, adhering to a predefined schema. This bench-
mark contains tables from four domains: machine
learning papers, chemistry literature, materials sci-
ence journals, and webpages. Each domain fea-
tures a unique textual format, namely, ISTEX, XML,
CSV, and HTML, requiring models to generalize
across domains and formats. For ML tables, we
add relevant paragraphs from the same documents
to provide additional context, testing the models’
capacity to jointly understand tabular and textual
data. We manually annotate datasets for the first
two domains and adapt pre-existing datasets into
our unified format for the latter two. Statistics of
the four datasets are summarized in Table 1.

arXiv Machine Learning Tables We create a
manually annotated dataset focused on tables from

arXiv ML papers, emphasizing numeric cells that
are classified into four categories: Results, Hyper-
parameters, Data Statistics, or Other. Extraction
attributes are pre-defined for the first three cate-
gories; for instance, result records incorporate tex-
tual attributes such as evaluation metric (e.g., Fy)
and dataset (e.g., SQuUAD), as shown in Figure 1.
To avoid data contamination with top models like
GPT-4 (0613),? we collected papers published af-
ter the knowledge cutoff (between October and
November 2022) from three subfields: Machine
Learning, Computer Vision, and Natural Language
Processing. Five tables were randomly selected
from each paper, including appendices. We employ
computer scientists with ML backgrounds for an-
notation, and evaluate inter-annotator agreement
(IAA) score by calculating F; (see Section 4.1 for
details) on double-annotated tables, treating one
set of annotations as gold labels and the other as
predictions. This method yields an F; score of 96.6
when applying thresholded token-level F; for at-
tribute matching. For additional information on
ML tables, including predefined attributes and the
annotation process, please refer to Appendix B.

PubMed Chemistry Tables We also annotate a
new dataset of PubMed tables describing the physi-
cal properties of chemical compounds. The auto-

3 According to OpenAl website, GPT-4 (0613) was trained
on data until Sep. 2021.



ML Chemistry DISCOMAT SWDE

(ours) (ours) (2022)  (2011)

Textual format  KTEX XML CSV  HTML
# cell types 4 6 2 8
# attr. types 11 4 4 32
# papers (web.) 25 16 656 80
# tables (pages) 122 26 1,031 1,600
# anno. records 3,792 1,498 9,036 1,600
# records / table 31.1 57.6 8.8 1

Table 1: Dataset statistics of four datasets in our

SCHEMA-TO-JSON benchmark.

mated extraction of physical properties from such
tables could provide substantial real-world benefits,
for example collecting much-needed data for train-
ing ML models that can support inverse molecular
design (Kim et al., 2018) and thus accelerating the
drug design process (Fields, 2019; Stokes et al.,
2020). Here, we focus on cells concerning five im-
portant physical properties identified by chemists:
IC50, EC50, GI50, CC50, and MIC.4 Three com-
mon attributes are manually extracted from tables
for all properties: unit, treatment (experimental
compound), and target (measured biological entity,
e.g., a gene expression). Similar to the ML tables,
domain experts annotate JSON records for relevant
cells, and Table-F; calculated on double-annotated
tables is used as the IAA score. A Table-F; score
of 91.0 underscores the reliability of the dataset.

DISCOMAT (Gupta et al., 2022) We experi-
ment with DISCOMAT, a dataset focusing on glass
composition tables from Elsevier material science
journals. The task is to extract tuples comprising
(material, constituent, percentage, unit) from given
tables. We adapt DISCOMAT to fit our Schema-
Driven IE framework by grounding the percentage
element to numeric cells in the table and consider-
ing the other elements as attributes. The model is
tasked to identify numeric cells representing con-
stituent percentages and predict the associated three
attributes. We refer readers to Gupta et al. (2022)
for more details of DISCOMAT.?

SWDE (Hao et al.,, 2011) Finally, we add
SWDE (Structured Web Data Extraction) as a
fourth dataset, aimed at extracting pre-defined at-
tributes from HTML webpages. This dataset com-

4https ://www.sciencedirect.com/topics/

pharmacology-toxicology-and-pharmaceutical-science/

ic50

>In the released corpus, tables are represented as matrices;
we, therefore, transform them into CSV tables (using the pipe
symbol "|" as the delimiter) prior to feeding them into LLMs.

prises roughly 124K pages gathered from eight
distinct verticals, such as Auto, Book, and Movie.
Each vertical includes ten unique websites and is
associated with a set of 3 to 5 target attributes.
For instance, the Movie vertical seeks to extract
attributes such as title, director, and genre.

4 Experiments

We evaluate the capability of various LLLMs to per-
form Schema-Driven IE, in addition to full fine-
tuning using our benchmark. For ML and chem-
istry tables, we use a subset of 10 and 7 randomly
sampled papers separately for model development,
which facilitates the training of supervised base-
lines. For the two pre-existing datasets, we follow
the data splits used in the original experiments.

4.1 Evaluation

To evaluate predicted JSON records, we report
Table-F;, a reference-based metric gauging at-
tribute prediction performance within a table.
Table-F; represents the harmonic mean of preci-
sion and recall, with precision being the ratio of
correctly predicted attributes to total predicted at-
tributes. At the attribute level, we report results
using exact match (EM), in addition to a threshold-
based token-level similarity. The threshold is tuned
on dev data to maximize alignment between our es-
timated model performance and performance mea-
sured using human judgments (see Appendix C for
more details). We macro-average Table-F;, given
the wide variance in table sizes.

For DISCOMAT and SWDE, we use similar met-
rics specified in their original papers to support
comparison with prior work. We report Tuple-F;
(Gupta et al., 2022) for DISCOMAT, where a pre-
dicted 4-element tuple is considered correct only
if it exactly matches the gold tuple. For SWDE,
we report Page-F; (Hao et al., 2011), which mea-
sures the number of pages where the attributes are
accurately predicted.

To further validate our conclusions, we also
present the results of full human evaluation of
model outputs in §4.5.

4.2 Baselines & Implementation Details

We evaluate the capability of multiple LLMs
to perform Schema-Driven IE, including API-

Notably, SWDE primarily focuses on identifying textual
HTML nodes containing attribute values rather than exact text
spans, so we use token-level F; to identify the most relevant
HTML node for each extracted attribute.
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of these performance estimates (margin of error for 95% confidence interval with 1000 samples is 0.00995.)

based GPT-4 and GPT-3.5 models and open-source
models, such as Llama3-8B-Instruct (AI@Meta,
2024), Llama2-Chat-13B (Touvron et al., 2023b),
CodeLlama-instruct-13B (Roziere et al., 2023),
StarCoder-15.5B (Li et al., 2023), LLaMA-7B
(Touvron et al., 2023a), and Alpaca-7B (Taori et al.,
2023). We also frame Schema-Driven IE as a
TableQA problem, applying multi-choice and ex-
tractive QA prompts for template selection and
cell attribute prediction, respectively. Furthermore,
we also evaluate T5-11B (Raffel et al., 2020) and
TaPas (Herzig et al., 2020), a table-specialized LM.
For implementation details of INSTRUCTE and
other methods, see Appendix D.’

For DISCOMAT and SWDE, we compare IN-
STRUCTE with established baselines, which either
design task-specific architectures, such as Free-
Dom (Lin et al., 2020) and LANTERN (Zhou et al.,
2022), or use LMs pretrained on tables or web
pages, like TaPas (Herzig et al., 2020), TaBERT

"We developed a rule-based method for chemistry tables
based on the training set, which only achieved a Table-F;
score of 51.3, significantly lower than our proposed InstrucTE.
Due to the substantial effort required to create specialized
rule-based systems for each domain and the performance gap,
we decided not to pursue this approach further.

(Yin et al., 2020), and MarkupLLM (Li et al., 2022).

4.3 Main Results

Figure 3 presents the main results from the com-
parison between INSTRUCTE and other methods
on our SCHEMA-TO-JSON benchmark. We ob-
serve that INSTRUCTE, in conjunction with API-
based models, achieves strong performance across
domains and input formats, without any domain-
specific labels. With GPT-4, INSTRUCTE can out-
perform fine-tuned models on ML and chemistry
tables. However, a substantial disparity remains
compared to human performance, e.g., the Table-
F; on double-annotated examples for ML tables
stands at 96.6 when applying thresholded token-
level F; for attribute matching, which is 22.4 F,
points higher than GPT-4.

For DISCOMAT and SWDE, GPT-4 performs
on par or slightly trails behind the fully supervised
state-of-the-art methods, signifying the potential
of LLMs to act as flexible, powerful tools for ex-
tracting information from tables across diverse data
formats and domains.

Despite a noticeable gap compared to API-based
LLMs, open-source models show promising results
across several domains. For example, CodeLlama-
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Figure 4: Ablation studies on various components of our INSTRUCTE (w/ code-davinci-002) on the ML tables.
Interestingly, excluding the table caption improves performance. Our detailed analysis in Appendix E reveals that
low-quality captions (e.g., lack of specificity) may confuse the model, leading to inaccurate predictions.

instruct-13B achieves 60.0 Table-F; and 91.7 Page-
F; on ML tables and SWDE, respectively. Llama3-
8B achieves 74.5 Table-F; on chemistry tables.

4.4 Ablation Studies

We assess the impact of different components of
INSTRUCTE, including task formulation and error
recovery, using ML tables.

LLMs & Task Formulation In Table 2, we com-
pare different LLMs, leading to two principal ob-
servations. First, code models show strong perfor-
mance on Schema-Driven IE. This is evident from
several key comparisons, such as the performance
similarity between code-davinci-002 and GPT-
4, the superior performance of code-davinci-002
compared to other GPT-3.5 models, and the fact
that CodeLlama-instruct-13B significantly outper-
forms Llama2-chat-13B, approaching the perfor-
mance of gpt-3.5-turbo. This superiority of
code models might be attributed to their alignment
with Schema-Driven IE, which involves converting
table source code into JSON records. Second, non-
code open-source models with similar sizes (for
instance, those in the 6-7B range) tend to achieve
comparable fine-tuning performance, though they
might exhibit variations in prompting performance.

Subsequently, we compare three task formula-
tions: SCHEMA-TO-JSON, TableQA, and Function
Calling, which is a feature provided by the OpenAl
APL3 In Function Calling, the schema is formatted
as function definitions with attributes serving as

8https://platform.openai.com/docs/guides/
function-calling

Exp. Setup Formulation Model Token-F; EM
TaPas (large) 27.7 21.6

TableQA 15 (1 1p) 612 462

Fine-tuning GPT-J (6B) 496 384
(# Train=1169) senprson  LLAMA (7B) 513 380
Alpaca (7B) 50.2 394

T5 (11B) 64.1 50.2

TableQA Flan-T5 (11B) 36.9 27.7

Func. Calling gpt-3.5-turbo (0613) 224 18.4

GPT-J (6B) 18.6 16.2

LLaMA (7B) 13.5 11.5

Alpaca (7B) 26.8 21.1

No Fine-tuning Llama2-chat (13B) 315 23.0
Llama3-instruct (8B) 41.0 324

SCHEASON g1 rCoder (15.58) 412 323
CodeLlama-instruct (13B) 60.0 44.0

gpt-3.5-turbo (0613) 64.1 479

text-davinci-003 67.4 50.4

code-davinci-002 723 57.6

gpt-4 (0613) 74.2 58.1

Table 2: TEST set performance on ML tables with dif-
ferent LLMs and task formulations.

arguments. The LM is then tasked with selecting
the function and generating JSON objects for ex-
tracted arguments on a cell-by-cell basis. From the
T5-11B fine-tuning experiments, we observe that
SCHEMA-TO-JSON attains better performance than
TableQA, demonstrating the value of integrating
task-specific instructions and extraction schema in
the input. Function Calling with gpt-3.5-turbo
shows limited effectiveness, and error analysis sug-
gests that this shortfall primarily stems from the
model’s struggle in selecting the correct function.”

°This finding is supported by a marked performance in-
crease to 63.8 Table-F; when the gold function is pre-specified.
As each function call yields only one JSON object, this method
requires cell-by-cell prompting, which is cost-intensive with
GPT-4. Due to API budget constraints, our experiments are
limited to gpt-3.5-turbo.



Prompt Components & Error Recovery Figure
4 shows INSTRUCTE’s performance subject to the
exclusion of varying prompt components. We use
code-davinci-002 for these experiments consid-
ering API budget limitations and its resemblance to
GPT-4 in terms of performance and context length.
We observe that removing supplementary text de-
grades performance. Table headers contribute posi-
tively as expected, while captions surprisingly do
not. Further analysis on table captions is provided
in Appendix E, which suggests that unclear cap-
tions can sometimes mislead the model, resulting
in inaccurate predictions. Notably, discarding the
extraction schema, specifically JSON templates,
causes a substantial performance decline, primarily
due to attribute name mismatches in the evaluation.
Lastly, we show that INSTRUCTE’s performance
drops significantly without error recovery. Com-
pared to cell-by-cell prompting, error recovery of-
fers similar performance at a fraction of the API
cost ($100 v.s. $670 on Azure).'”

4.5 Performance Analysis

To further verify our main conclusions from au-
tomatic evaluation and gain deeper insights into
INSTRUCTE’s performance, we conduct a human
evaluation and discuss a set of key questions.

What errors are made by INSTRUCTE? To
understand where INSTRUCTE struggles, we con-
duct error analysis on GPT-4 predictions for ML
tables. We sample 10 tables from the test set and
10 records for each table, comparing each attribute
with the gold value. In total, we find 154 errors
out of 591 attributes. We group errors into one of
eight categories, listed in Table 3, with examples
presented in Appendix F. For instance, one type
of false positive error is when the gold attribute
value is present in the table caption, but the model
is distracted by a table header. Table 3 provides
a detailed breakdown and includes the top three
affected attributes within each error category. We
find that the most common error occurs when the
model fails to identify attributes present in the ta-
ble (31.2%), particularly for experimental settings
like 5-shot in Result records. Another major er-
ror is when attributes present in the accompanying
text lead to either null predictions (14.9%) or in-
correctly predicting a table header (19.5%). These
errors highlight the challenges of Schema-Driven

10T he pricing for code-davinci-002 on Azure is $0.1 per
1,000 tokens as of June 23rd, 2023.

IE, where the model must understand nuances of
table layouts and also effectively integrate informa-
tion from surrounding text.

How does the data format impact INSTRUCTE’s
performance? The variation in model perfor-
mance across datasets from different domains with
unique formats raises questions about the influ-
ence of format differences. To address this, we
conducted experiments converting ML tables from
XX to HTML and chemistry tables from XML to
CSV, utilizing both commercial (tableconvert!!)
and open-source (TeX4ht!?) tools, and selecting
the one with the highest conversion accuracy. De-
spite tableconvert showing superior conversion
quality, residual code from the original formats
in the converted tables, e.g., IZTEX commands in
HTML tables, presents a novel "code-switching"
challenge for INSTRUCTE. Performance evalua-
tion with GPT-4 reveals a minimal drop for ML
tables (from 74.2 to 74.1 in Table-F;) and a more
significant decrease for chemistry tables (from 83.4
to 78.1 in Table-F;). Both conversion noise and
the model’s format-specific processing capabilities
could contribute to these differences. The optimal
performance on original formats underlines the ne-
cessity of developing models adept at handling di-
verse data formats directly, rather than relying on
format conversion tools.

Human Evaluation Similar to our error analysis
on ML tables, we manually inspect attribute pre-
dictions for 100 cell records for chemistry tables
and DisCoMat, as well as 160 pages for SWDE,
and report the prediction precision. Half of the
sampled data are double-annotated, with the inter-
annotator agreement score calculated as the F1
score between the two annotations. The statistics
and results are provided in Table 9 in the appendix.
The results show that INSTRUCTE achieves high
precision across different datasets, ranging from
73.9 to 96.4, aligning with the performance under
automatic metrics. Additionally, the high inter-
annotator agreement scores (all above 90) indicate
that the human evaluation is reliable and consistent.

4.6 Knowledge Distillation

Considering the strong performance of API-based
models on Schema-Driven IE, we now show that it
is possible to use knowledge distillation (Le et al.,

llhttps ://tableconvert.com/api/
Phttps://tug.org/texdht/



Category % (#)  Fine-grained Error Types

Top 3 Affected Attributes

31.2 (48) gold answer in table, not predicted

False Negative 14.9 (23) gold answer in main text, not predicted

"Result:experimental_settings" (39.6%), "Result:training_data"
(39.6%), "Result:model_settings" (20.8%)
"Result:training_data"  (39.1%), "Hyper-parameter:model"
(26.1%), "Hyper-parameter:dataset” (26.1%),

6.5 (10)  gold answer predicted, wrong attribute "Result:experimental_settings" (100%)
19.5 (30) gold answer in main text, table header predicted "Result:training_data" (33.3%), "Result:task" (33.3%), "Re-
sult:model" (33.3%),
False Positive 11.7 (18) partial match, but misses important details "Result:test_data" (100%)
6.5 (10)  gold answer in table caption, table header predicted "Result:metric" (100%)
6.5(10) complete mismatch "Result:experimental_settings" (100%)
Propagated Errors ~ 3.2(5)  select wrong record template "Other:type" (100%)

Table 3: Error analysis of INSTRUCTE (w/ GPT-4) for ML tables, inspecting 591 attribute predictions from 100 cell
records sampled from 10 tables. For each fine-grained error type, we provide the error percentage, detailed error

sources, and the top three affected attributes.

Token-Level Fy EM
P R F; P R F;

Model (GPU hours)

Teacher code-davinci-002 74.1 71.8 723 594 569 57.6
LLaMA-7B (50h) 74.1 67.6 69.1 568 534 543
Student  Alpaca-7B (50h) 72,7 648 67.5 56.1 50.0 52.0
TS-11B (380h) 75.8 714 732 603 56.7 58.1

Table 4: Experimental results for knowledge distillation
on the ML tables. Student models are trained on 3,434
tables labeled by the teacher model. GPU hours refers
to the training time (X number of GPUs) of student
models for one epoch.

2022; Kang et al., 2023) to build a cost-efficient
compact model, using ML tables as a demonstra-
tion. Specifically, this process first generates syn-
thetic data by performing inference on unlabeled
tables using code-davinci-002, followed by fine-
tuning a smaller model (e.g., 7B parameters) us-
ing the synthetic data. We compile a collection
of 979 arXiv ML papers, submitted between 2008
and 2019, yielding 3,434 tables (containing a to-
tal of 100K cells). In Table 4, we can see that
LLaMA-7B and Alpaca-7B demonstrate similar
performance as seen in the fine-tuning results (Ta-
ble 2). While fine-tuning LLaMA with LoRA
(Hu et al., 2022) presents noticeable computational
efficiency, full-parameter fine-tuning of T5-11B
matches the teacher model’s performance.'?

4.7 Leaderboards and Image Extraction

To further validate INSTRUCTE’s practicality, we
integrate it with multi-modal models, like GPT4-V,
for extracting data from table images. In an ini-
tial study with ML tables, it yields a Table-F; of
70.2, approaching the 74.2 Table-F; achieved with
the original text inputs. Additionally, we explore

The improvement over the teacher model is not signifi-
cant (p-value is 42.3%, Berg-Kirkpatrick et al., 2012).

INSTRUCTE's application to the task of Leader-
board Extraction, where it shows competitive per-
formance against leading supervised systems. Due
to space constraints, details on these explorations
are provided in Appendix G.

5 Related Work

Table Understanding in NLP Research Re-
cently there have been many research efforts in-
volving tables, particularly, table-to-text generation
(Parikh et al., 2020; Wang et al., 2022; Hu et al.,
2023). For example, ToTTo (Parikh et al., 2020)
introduced the task of open-domain table-to-text
generation. In contrast, our work transforms tables
into structured JSON records, where a data schema
is the only supervision provided.

Pre-training on Semi-structured Data TaPas
(Herzig et al., 2020) and TaBERT (Yin et al., 2020)
pre-train on linearized tables with a specialized
cell index embedding. TABBIE (lida et al., 2021)
employs dual transformers for separate row and col-
umn encoding. Similarly, TabLLM (Hegselmann
et al., 2023) uses general-purpose LLMs to process
tables, but we focus on schema-driven IE rather
than table classification or question answering.

IE from Semi-structured Data Information ex-
traction from semi-structured data has gained
increasing interest (Carlson and Schafer, 2008;
Dong et al., 2020; Gupta et al., 2022; Lou et al.,
2023). OpenCeres (Lockard et al., 2019) and Ze-
roShotCeres (Lockard et al., 2020) highlight open-
domain extraction from web data, while AxCell
(Kardas et al., 2020) and TDMS-IE (Hou et al.,
2019) focus on leaderboard extraction from ML ta-
bles. DisCoMat (Gupta et al., 2022) showcases ma-
terial composition extraction from scientific tables.



Unlike most existing methods requiring supervised
datasets for fine-tuning, our approach stands out
by using LLMs to accurately extract data across
various domains using an extraction schema.

6 Conclusion

This paper explores the capabilities of LLMs for
extracting structured data from heterogeneous ta-
bles. We introduce a new task, Schema-Driven
Information Extraction, which converts tables into
structured records guided by a human-authored
data schema. To facilitate this task, we present a
benchmark, comprised of tables from four diverse
domains, and evaluate various LL.Ms through our
proposed method INSTRUCTE. The experiments
reveal that while API-based models excel across
domains and formats, open-source models display
significant potential in specific areas. Moreover,
we conduct detailed ablation studies and analyses
to investigate the factors for model success, and
validate the feasibility of building compact models
through distillation to reduce dependency on APIs.

Limitations

While INSTRUCTE showcases strong performance
as an instruction-based prompting approach, it en-
counters specific challenges. Firstly, similar to
other prompting methods, its performance could be
sensitive to the phrasing of the prompt. Despite of-
fering guidelines for crafting prompts in Appendix
A, such as emphasizing clear attribute names, devel-
oping robust extraction schemas for new domains
often relies on iterative experimentation. Future
work could explore automatic prompt optimization
(Zhou et al., 2023; Wang et al., 2023) to reduce the
need for human trial-and-error. Additionally, the
model’s varying performance across different do-
mains and formats is difficult to interpret, possibly
due to biases in the pretraining corpus, a factor we
cannot fully analyze due to the opaque nature of
the pre-training process. InstrucTE also faces diffi-
culties with dataset-specific nuances, as it operates
on general task descriptions without detailed exam-
ples, making it challenging to navigate boundary
cases effectively.

Beyond the model’s inherent limitations, the
availability of specific API-based backbones like
GPT-4 and code-davinci-@02 may change, im-
pacting reliance on these resources. To reduce
this dependency, we include results from open-
source models and investigate knowledge distil-

lation as a viable alternative, showing promising
results. Our benchmark aims to facilitate future re-
search focused on enhancing smaller, openly acces-
sible models, recognizing the importance of such
developments for practical application and broader
accessibility.

Ethical Considerations

Our use of OpenAI’s API-based models to distill
open-source table extractors complies with Ope-
nAl’s terms of service, as we do not “use the output
from the Services to develop models that compete
with OpenAl”. Regarding licenses of four datasets
in our SCHEMA-TO-JSON benchmark, the arXiv
ML tables align with the licenses of their original
papers. The PubMed Chemistry tables, sourced
from the PMC Open Access Subset, conform to
Creative Commons or equivalent licenses. For the
other two datasets, we adapt pre-existing datasets
released by the NLP research community, abiding
by their respective original licenses.
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A INSTRUCTE

Prompt Formulation Our proposed prompt con-
sists of four components: 1) “Input Table (w/ supp.
text)” includes the table source code paired with
supplementary text from the document; 2) “Ex-
traction Schema” defines the JSON formats for
extracted records, encompassing the record type, at-
tribute names, and associated data types; 3) “Task-
specific Instructions” outline the task execution pro-
cess, addressing both the extraction process from
individual cells and the traversal strategy across
cells, such as “left-right, top-down”; 4) “Initial
Record” is used to jump-start the prompting pro-
cess, including the partial record of the first cell.

For “Input Table (w/ supp. text)”, we employ the
BM25 algorithm to retrieve the most relevant para-
graphs for each table. For “Extraction Schema”, we
propose two guidelines for schema design: 1) At-
tribute names should be specific, which decreases
the probability of the model generating incorrect
attributes, or hallucinations. For instance, when
extracting relevant attributes about a movie from
a movie webpage, it’s advisable to use specific
terms such as “movie name” or “director name”,
rather than the generic “name”; 2) Attributes should
be strategically ordered, placing simpler attributes
ahead of more complex ones as errors in preced-
ing attributes can adversely affect the prediction of
subsequent ones due to the autoaggressive nature
of LMs. The exact INSTRUCTE prompts used in
our experiments are shown in Table 6 and Table 7.

Cell Detector We develop a rule-based method
to identify numeric cells for both the ML and chem-
istry tables. Specifically, for the ML tables, we use
the row separator “\\” and the column separator “&”
to divide the table into cells. We then loop over
each cell, checking for numeric values after strip-
ping away any stylized text. In cases, where a cell
contains multiple numeric values, such as “0 + 07,
we consistently choose the first numeric value. For
the chemistry tables, the parsing process is more
straightforward, owing to the structured XML for-
mat of the table. Here, we iterate over each cell,
verifying if it contains a numeric value once styl-
ized text has been removed. The performance of
our rule-based cell detector on two datasets is pre-
sented in Table 5. In the case of DISCOMAT, we
use the cell detector provided by the original paper
Gupta et al. (2022).

Dataset Split P R F1

Dev  100.0 97.0 98.0
Test 999 99.6 99.7

Dev  100.0 100.0 100.0
Test 100.0 98.3 99.2

ML Tables

Chem. Tables

Table 5: Results of (numeric) cell detection on ML and
chemistry tables.

B arXiv Machine Learning Tables

Extraction Attributes We design a set of extrac-
tion attributes for each of the three primary types
of numeric cells in ML tables: ‘“Result”, “Hyper-
parameter”, and “Data Statistics”. These attributes
are outlined in detail below.

e “Result” includes seven attributes: training
data, test data, task, metric, model, model
settings and experimental settings. The
first five attributes are fixed, with answers be-
ing text spans in the paper. The last two at-
tributes, model settings and experimental
settings, are free-form attributes, with an-
swers being JSON objects. For example, the
experimental settings attribute may be
{ “number of training examples”: “0”} for a
zero-shot setting. This scheme is more detailed
than previous approaches (Hou et al., 2019; Kar-
das et al., 2020) and can accommodate a broader
range of ML paradigms and provide more gran-
ular information.

* “Hyper-parameter” includes optimization pa-
rameters like learning rate and batch size,
as well as numeric descriptions of model ar-
chitectures such as layer count. The three
fixed attributes for this category are: model,
parameter/architecture, and dataset.

“Data Stat.” covers four attributes: dataset,
dataset attribute, sub-set/group, and
dataset features. The sub-set/group spec-
ifies a dataset subset (e.g., “train” or “test”),
while dataset features, a free-form attribute,
captures various dataset characteristics like the
language or domain.

Annotation Process We sample 10 papers from
each of three pertinent arXiv fields: Machine Learn-
ing, Computer Vision, and Natural Language Pro-
cessing. After removing papers without IATEX
source code or any tables, a total of 25 papers



Dataset Full Prompt

| [Retrieve paragraphs]
3 [Input table]
4

5Here are JSON templates for four types of numeric cells:

"Other", "Data

Stat.", "Hyper-parameter/Architecture", and "Result":

6{"value": "xx", "type": "Other"}

7{"value": "xx", "type": "Data Stat.", "dataset": "xx", "attribute name":

"xx", "sub-set/group name": "xx", "dataset features": {"xx": "yy"}}

s{"value": "xx", "type": "Hyper-parameter/Architecture", "model": "xx", "
parameter/architecture name": "xx", "dataset": "xx"}

o{"value": "xx", "type": "Result", "task": "xx", "metric": "xx", "
training data/set": "xx", "test data/set": "xx", "model/method": "xx", "

ML Tables model/method settings": {"xx": "yy"}, "experimental settings": {"xx": "

yy"}}

10

11Please describe all numeric cells in the above latex table following the

JSON templates (proceeding by row in a left-right,
output one JSON description per 1line.
unanswerable attributes in the templates,
if it is of string type and {"xx":

For each cell,

placeholder "xx
dictionary type. Numeric cells,
analysis, should be labeled as

12
13Cell Description:
14{"value": "[Query celll",

top-down direction).
For any

set their value to the

"yy"} if it is of
which describe performance/error
"Other".

"type":

1 [Input tablel

2

3Here are JSON templates for six types of numeric cells: "Other", "IC50",
"EC50", "CC50", "MIC", and "GI50":

1{"value": "xx", "type": "Other"}

5{"value": "xx", "type": "IC50", "unit": "xx", "treatment compound": "xx
", "target compound": "xx"}

s{"value": "xx", "type": "EC50", "unit": "xx", "treatment compound": "xx
", "target compound": "xx"}

7{"value": "xx", "type": "CC50", "unit": "xx", "treatment compound": "xx
", "target compound": "xx"}

s{"value": "xx", "type": "MIC", "unit": "xx", "treatment compound": "xx",

Chem. Tables "target compound": "xx"}

o{"value": "xx", "type": "GIb5O0", "unit": "xx", "treatment compound": "xx

", "target compound": "xx"}

10

11Please describe all numeric cells

JSON templates (proceeding by row in a left-right,
output one JSON description per line.
in the templates,

For each cell,
unanswerable attributes
placeholder "xx".

12

13Cell Description:

14{"value": "[Query celll",

in the above XML table following the
top-down direction).
For any

set their value to the

"type ".

Table 6: INSTRUCTE prompts used for ML and chemistry tables.

are covered in our dataset. To optimize the an-
notation budget and the dataset diversity, we cap
the number of annotated tables to five per paper.
Recognizing the domain-specific expertise needed,
we employ expert annotators with backgrounds in
ML research, who are provided with tables in both
I4IEX and PDF formats and encouraged to thor-
oughly read the paper before annotation. The anno-
tation process comprises two steps: 1) identifying
the numeric cells and their record types, and 2) fill-
ing in the slots of pre-determined attributes, form-
ing a JSON record with keys as attribute names and

values as extracted content, in a text editor. Conse-
quently, the dataset contains 122 tables, with 3,792
cells and 21K attributes annotated.

C Evaluation Metrics

Comparing an LLM-predicted JSON object with
a gold JSON object is a non-trivial task, as those
generative LLMs may produce text spans that do
not exactly exist in the input table. Consequently,
we devote substantial effort to examining various
metrics to determine the one best suited for our
task using ML tables. Here, we consider three



Dataset Full Prompt

I [Input tablel

2

3Here are JSON templates for two types of numeric cells:

Glass_Compound_Amount":

"Other" and "

t{"value": "xx" "type": "Other"}
5{"value": "xx", "type": "Glass_Compound_Amount", "constituent compound
name": "xx", "unit": "xx", "glass material/sample name/id/code": "xx"}
6
DisCOMAT 7Please describe all numeric cells in the above table following the JSON
templates (proceeding by row in a left-right, top-down direction). For
each cell, output one JSON description per line. For any unanswerable
attributes in the templates, set their value to the placeholder "xx".
9Cell Description:
t0{"value": "[Query celll", "type":
1 [Input webpagel
2
3Here is the JSON template for automobile attribute extraction:
1{"webpage title": "xx", "automobile model (year)": "xx", "price": "xx",
"engine type": "xx", "fuel economy": "xx"}
SWDE-auto ~ °

6Please extract the automobile’s attributes from the HTML code above
following the JSON template. For any unanswerable attributes in the

template,
7{"webpage title":

set their value to the placeholder "<NULL>".
"[webpage titlel",

"automobile model (year)":

Table 7: INSTRUCTE prompts used for DISCOMAT and SWDE. For SWDE, we use the “Auto” vertical as an
illustrative example, and the prompts for other verticals differ only in attribute names (refer to Table 8 for the

attributes of each vertical).

Vertical #Sites  # Pages Attributes

Auto 10 17,923 model, price, engine, fuel-economy
title, author, ISBN-13,
Book 10 20,000 publisher, publish-date
Camera 10 5,258 model, price, manufacturer
Job 10 20,000 title, company, location, date
Movie 10 20,000 title, director, genre, rating
NBA Player 10 4,405 name, team, height, weight
Restaurant 10 20,000 name, address, phone, cuisine
University 10 16,705 name, phone, website, type

Table 8: SWDE statistics.

Dataset # Records # Attr. Precision TAA
ML Tables 100 591 73.9 95.7
Chem. Tables 100 380 95.3 100
DisCOMAT 100 201 92.5 99.4
SWDE 160 640 96.4 98.2

Table 9: Statistics and results of attribute-level human
evaluation on four datasets. The inter-annotator agree-
ment score (IAA) is calculated as the F1 score between
the two annotations

metrics: the standard token-level F; to capture the
level of lexical overlap between the predicted and
gold attributes, and two semantic similarity met-
rics, SBERT (Reimers and Gurevych, 2019) and
BERTScore (Zhang et al., 2020), to identify seman-
tically similar expressions (e.g., # params vs. the

Token Overlap —a—SBERT BERTScore

0.98

0.96

0.94
N

L 0.92
0.9
0.88

0.86

0O 01 02 03 04 05 06 07 08 09 1

Threshold

Figure 5: Results of comparing various metrics, includ-
ing token-level F;, SBERT, and BERTScore, to human
judgment over different thresholds on ML tables. Num-
bers are computed over 677 sampled attributes that are
paired with respective gold references.

number of parameters).

Meta Evaluation To assess how accurate each
metric is compared to human evaluation, we manu-
ally annotated predicted-gold attribute pairs as to
whether or not each pair matches. We consider
a given pair to “match” if they are semantically
equivalent, meaning they can be used interchange-
ably. For attributes that encapsulated multiple sub-



In this section, we presentfour methods, which we call strategies,
that aim to improve zero-shot hate speech detection ...

\begin{table}[ht]

\begin{tabulaf{lr} \hline

strategy & F20 & overall \\ \hdashline
FCS & +100 & +4.6 \\

FCS$_{p_1)$ & +0.0 & +0.0\\
FCSS$_{p_1FBT}$ & +6.9 & +0.3\\

iénd{tabu\ar}
\caption{Evaluationof FCS variants. ...}
\end{table} )

L )
)

- J

Output w/ caption

}

{

"value": *+100",

"type": "Other” "type": "Result”,
"task": "hate speech detection”,
"model/method": "FCS"
{
"value": "+0.0", }
"type": "Other"

EdgecasesF1:0.0

Manually specifed caption

\caption{Evaluation of FCS variants on hate speech detection. ...}

Output w/ caption +

{

"value": "+100",

"value": "+0.0",
"type": "Result",
"task": "hate speech detection”,

Total F1:72.3

~

Output w/o caption L
{

“value": "+100",

“type": "Result",

"task": "hate speech detection”,
“model/method": "FCS"

"value": "+0.0",
"type": "Result",
"task": "hate speech detection"”,
"model/method": "FCS$_{p_11$"

1 Edgecases Fi: 89.3

" model/method": "FCS$_{p_1}$"

}  Edgecases F1: 92.3
Total F1: 76.4 |

Total F1: 75.5)

Figure 6: An error analysis of edge cases in which the predictions made by INSTRUCTE with captions default
to “Other” (resulting in an O F;). Our hypothesis that this issue may stem from the caption’s lack of specificity
is tested by manually expanding the caption (displayed on the right). This amendment significantly improves the
performance on these edge cases, increasing the F; score to 92.3.

JSON Records

K(”value": "95.7", "type": "Result", "task": "Named Entity
Recognition", "model": "Elmo","metric": "F1", "training
data": "CoNLL 2003", "test data": "CoNLL 2003"}
{"value": "96.4", "type": "Result", "task": "Named Entity
Recognition”, "model": "BERT base","metric": "F1",
\"training data": "CoNLL 2003", "test data": "CoNLL

Eval
J

[{”value": "95.7", "type": "Result", "task":
Recognition”, "model": "Elmo","metric": "Accuracy"”,
"training data": "CoNLL", "test data": "CoNLL"}

{"value": "96.4", "type": "Result", "task": "Entity
Recognition”, "model": "BERT base","metric": "Accuracy",

! "Entity

J

\ "training data": "CoNLL 03", "test data": "CoNLL 03"}
N\

J

.

/Gold: Result, Predicted: Result
Token-Level F1: 1.0, Exact Match (EM): 1
Gold: Named Entity Recognition, Predicted: Entity Recognition
Token-Level F1: 0.90, Exact Match (EM): O
Gold: Elmo, Predicted: Elmo
Token-Level F1: 1.0, Exact Match (EM): 1
Gold: F1, Predicted: Accuracy
Token-Level F1: 0.0, Exact Match (EM): 0
Gold: CoNLL 2003, Predicted: CoNLL 03
Token-Level F1: 0.5, Exact Match (EM): O

~N
\

J

/ Token-F1 (w/ threshold 0.25):

True Positive Attributes: 10, True Negative Attributes: 0,
False Positive Attributes: 2, False Negative Attributes: 2,
Table-F1: 0.83

Exact Match (EM):
True Positive Attributes: 4, True Negative Attributes: O,
False Positive Attributes: 8, False Negative Attributes: 8
Table-F1: 0.33

\

J

\K

%

Figure 7: An example of Table-F, calculation, where two predicted records are compared against the two gold

records.

attributes, we consider a pair to match if at least

half of the sub-attributes are matched (i.e.,

Fy score

> 0.5), with the decision for each sub-attribute be-
ing based on the same as in the text-span attributes.

For the set of pairs to annotate and use

as a test

set, we sample a total of 100 cell pairs (i.e., 677

attribute pairs) according to the following process:
1) we first uniformly sample a table from the devel-
opment set (containing 10 papers); and 2) we then
sample a random cell from the table, ensuring there
were no duplicate cells. For each pair of predicted-

gold attributes, each metric’s decision (1 or

0) is



token-level F; SBERT BERTScore

Meta Eval. F; 97.0 95.6 96.7
Threshold 0.25 0.55 0.85

Table 10: Results of comparing various metrics, includ-
ing token-level F;, SBERT, and BERTScore, to human
judgment on ML tables. Numbers are computed over
677 sampled attributes that are paired with gold refer-
ences. The highest achieved F; scores are displayed
alongside the thresholds. A complete illustration of re-
sults, sorted by thresholds, can be found in Figure 5 in
Appendix.

made using a specific threshold. For example, if
the token-level F;’s score for paired attributes is 0.4
and the threshold is 0.5, then the decision would be
0, indicating no match. The decisions over the test
set containing 677 attribute pairs are then compared
to human evaluation. In this binary classification
problem, F; is used to evaluate the performance of
the metrics.

In Table 10, we present the performances of each
metric with the optimal threshold for each. Surpris-
ingly, we find that the token-level F; (with a thresh-
old of 0.25) decision aligns nearly perfectly with
human judgment, and performs the best among
all metrics for our task. This might suggest that
discerning subtle differences is more crucial than
identifying different phrases with the same mean-
ing for this task. Based on these empirical findings,
we opt for the token-level F; for automatic evalu-
ation at the attribute level. This choice is highly
desirable not only because of its high accuracy but
also due to its simplicity.

D Implementation Details

Considering the lengthy source code for tables,
we employ different strategies to encode the in-
put table and perform Schema-Driven IE, based
on the context length of the chosen LLM. For
LLMs with a larger context length, such as GPT-
4, code-davinci-002, and CodeLlama, we input
the full table and conduct the proposed error re-
covery process. For LLMs with a more limited
context length, such as LLaMA and T5-11B, we
query each target cell individually. The input table
is condensed by rows, retaining the first two rows,
typically containing headers, and the row with the
query cell, with the token <select> pinpointing
the position of the query cell. We use greedy decod-
ing to maximize the reproducibility of our results.

For the TableQA setting, we divide the prob-

T5 (11B) TaPas
learning rate le-4 Se-5
batch size 8 32
# epoches 5 10

Table 11: Hyper-parameters used for fine-tuning T5 and
TaPas.

lem into two steps: selecting the record type and
predicting the relevant attributes. For TS5 and Flan-
T3, the first step is modeled as a multi-choice QA
problem, where the model chooses the type of the
query cell from a list of provided options. The
second step is modeled as an extractive QA task,
asking the model to pinpoint the answer spans for
the attributes associated with the selected type. For
TaPas, the initial step is treated as a classification
problem, whereas the latter one is handled as a cell
selection problem. The hyper-parameters used for
fine-tuning TS and TaPas are presented in Table 11.

E Error Analysis of Caption

In Section 4.4, we observe an unexpected finding
that table captions do not enhance performance, but
rather seem to detract from it, which is counterin-
tuitive. To delve deeper into this observation, we
conduct an error analysis. This involves comparing
the performances of our INSTRUCTE system with
and without captions at the table level. This anal-
ysis uncovers a few outliers (3 out of 68) where
including a caption leads to a O F; score, whereas
the score is near perfect when the caption is ex-
cluded. For instance, as depicted in Figure 6, the
predictions all fall into the “Other” category when a
caption is included, leading to a O F; score in these
outlier instances. Conversely, removing the caption
results in an F; score of 89.3. This high score is
due to the fact that retrieved paragraphs provide
ample contextual information (e.g., “hate speech
detection”) without the presence of a caption.

We hypothesize that the model’s inclination to
predict “Other” in the presence of a caption may
be a consequence of the captions’ lack of speci-
ficity with respect to the attributes relevant to the
table cells (for example, “hate speech detection”).
This lack of explicit, relevant details could create
confusion in associating the caption with the re-
trieved paragraphs, thereby misleading the model.
To test our hypothesis, we manually adjust the cap-
tions to include more specific attributes, such as
“hate speech detection” and “T5-Base.” As a result,
we observe an improvement in the model’s perfor-



mance with the revised caption, with the total F;  F.2 False Negative: gold answer in main text,
score even exceeding that achieved without a cap- not predicted

tion. This outcome partially supports our hypoth- Input (Table 4 of arXiv paper 2210.00193v1)
esis and suggests that carefully crafted captions

could indeed be beneficial, aligning with our ini- | o o i dnant et al. (2022), which we abbre-

tial expectations. However, this investigation also viate as “M4” (standing for massively multilin-
points to the fact that the model currently lacks gual, massive machine translation). Our models

robustness in handling these outlier scenarios. are trained on a mixture of monolingual and paral-
lel data from 112 languages mined from the web,
and we follow Arivazhagan et al. (2019) by up-
sampling low-resource language pairs via temper-
ature sampling.

We evaluate a number of models based on the

F INSTRUCTE Errors

This section presents examples of INSTRUCTE’s
errors (w/ GPT-4) on ML tables, illustrating each

. ) Model pt zh
of the eight fine-grained error types. po e 0id
. . UR 504 506
F.1 False Negative: gold answer in table, not M4-UR 512 509
* M4-Prompts 66.7 50.0
p redicted M4-Prompts FT ~ 66.7 51.0
. Pal.M 8B 85.0 69.0
Input (Table 5 of arXiv paper 2210.00044v1) PalM 628 904 705
PalLM 540B 93.2 836
wio Pretraining Online 50.0 50.0
Method What animal What room  What sport )
Finetuning 33.00 + 1338 54.38 £3242 2514 + 3211 Table 4: Lexical accuracy on FRMT test. PalM
EWC 48.18 +15.67 8348 +761 62.81 +1367 outperforms other approaches, while region-agnostic
ER 73.11 070  89.04 =280 87.20 + 1.84 models like Online are guaranteed 50%.
w/ Pretraining
Method  What animal What room  What sport Predicted Records
Finetuning  75.07 £3.54  83.26 £ 1247 69.92 £ 14.14 - - - - - —
EWC 81.75+142 9432+088 90.82 = 1.36 1| {"value”: "51.2", ..., "training
ER 80.73 £037  94.10£139 9092 +0.71 data/set”: "xx", ...}
2| {"value”: "50.9", ..., "training
Table 5: Accuracy and standard deviation of the best data/set”: "xx", ...}
performing models on different sub-questions in Tax- 3 .
onomy Domains. 4| {"value"”: "66.7", ..., "training
data/set”: "xx", ...}
Predicted Records ‘
Id Recor
1| {"value”: "83.48", ..., "model/ Gold Records
method settings”: {"xx": "yy"}, | {"value”: "51.2", ..., "training
Sl data/set”: "a mixture of
2| {"value”: "62.81", ..., "model/ monolingual and parallel data
method settings”: {"xx": "yy"}, from 112 languages mined from
-3 the web”, ...}
3 2 {"value”: "50.9", ..., "training
4 {"value”: "94.32", ..., "model/ data/set”: "a mixture of
method settings”: {"xx": "yy"}, monolingual and parallel data
-} from 112 languages mined from
5 the web”, ...}
4 {"value”: "66.7", ..., "training
Gold Records data/set”: "a mixture of
" . " - monolingual and parallel data
1| {"value™: 83'4,8 P model/ from 112 languages mined from
method settings”: {"w/o the web” }
Pretraining”: "true"}, ...} . o
2| {"value”: "62.81", ..., "model/ ’
method settings”":{"w/o
Pretraining”: "true”"}, ...}
4 {"value”: "94.32", ..., "model/
method settings™: {"w F.3 False Negative: gold answer predicted,
Pretraining”: "true"}, ...} .
B o wrong attribute

Input (Table 5 of arXiv paper 2210.00044v1)



w/o Pretraining

Method What animal What room  What sport
Finetuning 33.09 £1338 54.38 +3242 25.14 3211
EWC 48.18 £ 1567 B3.48+761 62.81 + 1367
ER 73.11 070  89.04 +2.80 87.20 +1.84
w/ Pretraining

Method What animal What room  What sport
Finetuning  75.07 £3.54  83.26 £ 1247 69.92 £ 14.14
EWC 8175+ 142 9432+088 90.82 + 136
ER 80.73 037 94.10+£139 9092 +0.7

Table 5: Accuracy and standard deviation of the best
performing models on different sub-questions in Tax-

onomy Domains.

We investigate three continual learning settings
based on the VQA-v2 dataset (Goyal et al., 2017), a
collection of visual question annotations in English.
Tasks in the Diverse Domains setting are created by
grouping 10 objects from COCO annotations (Lin

et al., 2014) as follows:

w/o Pretraining

Method What animal What room  What sport
Finetuning 33.09 £1338 54.38 +3242 25.14 £32.11
EWC 48.18 + 1567 8348 761 62.81 + 1367
ER 73.11+070 89.04 =280 87.20 + 184
w/ Pretraining
Method What animal What room  What sport
Finetuning  75.07 £354  83.26 £ 1247 69.92 + 14.14
EwWC 8175142 9432088 90.82+136
ER 80.73 £0.37 94.10£139 9092 +071

Table 5: Accuracy and standard deviation of the best

Predicted Records

1| {"value”: "83.48", ..., "model": "
EWC", "experimental settings"”:
“XX": llyyll}’ '..}

2| {"value”: "62.81", ., "model”: "
EWC", "experimental settings”:
Tx"s Ty} .3

4l {"value”: "94.32", ..., "model": "
EWC", "experimental settings”:
Txx"s Ty} 3

Gold Records

1| {"value”: "83.48", ..., "
experimental settings”: {"Method
" "EWC"}, ...}

ol {"value”: "62.81", ..., "
experimental settings"”: {"Method
"OMEWC"Y, ...}

4 {"value”: "94.32", ..., "
experimental settings"”: {"Method
"OMEWC"Y, ...}

5

F.4 False Positive: gold answer in main text,

table header predicted

Input (Table 5 of arXiv paper 2210.00044v1)

performing models on different sub-questions in Tax-
onomy Domains.

Predicted Records

1| {"value": "83.48", ..., "training
data/set”: "What room”, ...}

2 {"value”: "62.81", ..., "training
data/set”: "What sport”, ...}

4 {"value”: "94.32", ..., "training
data/set”: "What room”, ...}

Gold Records

1| {"value": "83.48", ..., "training
data/set”: "VQA-v2", ...}

2| {"value”: "62.81", ..., "training
data/set”: "VQA-v2", ...}

4 {"value": "94.32", ..., "training
data/set”: "VQA-v2", ...}

F.5 False Positive: partial match, but misses
important details

Input (Table 4 of arXiv paper 2210.00193v1)



{"value": "97.2", ..., "metric": "AP
oY

. "86.7", ..., "metric”: "AP

oY

4
-~
<
©
—
c -
o

4 {"value”: "82.3", ..., "metric”: "AP

Model pt zh A
Gold 98.6 944 5

UR 504  50.6

M4-UR 512 509

Md-Prompts 667 300 F.7 False Positive: complete mismatch
M4-Prompts FT ~ 66.7 51.0

PaLM 88 350690 Input (Table 3 of arXiv paper 2210.00740v1)

PalLM 62B 904 70.8
Online 500 500 Table 3: The improvement of AP on MPII validation set when our proposed method is applied to
N " various baselines.
Ve T Bacton Tepurszs [ Mewr e S5 WA T Kae Ak
: Trigral Pos Regression[Z1] | ECCV 2078 756 % 756 | §79 I
Table 4: Lexical accuracy on FRMT test. PalM IDPLL0] CVPR 2020 256 x 256 | 904 974 960 910 8§65 891 866 833
DarkPose[39] CVPR 2020 256 x 256 | 90.6 972 959 912 867 897 867 840
. 1 1 1 “TokenPose[15] ICCV 2021 90.1 971 959 910 858 895 861 827
outperforms other approaches, while region-agnostic st vl : S7 sam my 1Y Be s B
. . ‘TokenPose[15] ICCV 2021 90.2 971 959 904 860 893 871 825
models like Online are guaranteed 50%. Removing Bias(Z] 10CV 2021 9 il
Removing Bias2 1V 2021 %06 i
Simple Baseine 1] FCCV 2018 6 TR W0 B0 W2 B3 EI
+ 0y ReaNet 152 %3107 970 9.1 906 861 82 867 831
TIRNe([26] CVPR 0TS HRRECWE % ST 59 0T BT BT B9 82
+Ours HRNe W32 209105 973 962 913 868 901 874 a1
TIRNE(ZE] CYPR 0T FRNECWAS %3 969 960 09 T2 s T TS
+ Ours HRNet-W48 90.9(104) 971 963 912 870 902 875 842

Predicted Records

{"value": "51.2", ..., "test data/
set”: "FRMT test”,

Predicted Records

21 valu:”f ”EQME { t”, test data/ 1| {"value": "97.2", ..., "experimental
) set: est”, ...} settings”: {"Venue”: "CVPR
4| {"value”: "66.7", ..., "test data/ " 202% }Z "'% " .
£ "ERMT test” ) 2| {"value”: "86.7", ..., "experimental
) se : es y e e settingsn: {”Venue”: "CVPR
7 2020"}, ...}
3

Gold Records 4l {"value”: "82.3", ..., "experimental
) {"Value”: 1151.2"y ., "test data/ zgg:ltflngs : { Venue": ICCV

set”: "FRMT pt”, ...} ] Yoooend
2| {"value”: "50.9", ..., "test data/ 7

set”: "FRMT zh", ...}
Gold Records

{"value": "66.7", ..., "test data/
set”: "FRMT pt", ...} {"value": "97.2", ..., "experimental

5 . settings”: {"xx": "yy"}, ...}
{"value": "86.7", ..., "experimental
settings”: {"xx": "yy"}, ...}

IS

)

F.6 False Positive: gold answer in table 3
caption, table header predicted

Input (Table 3 of arXiv paper 2210.00740v1)

{"value"”: "82.3", ..., "experimental
settings”: {"xx": "yy"}, ...}

I

o

Table 3: The improvement of AP on MPII validation set when our proposed method is applied to

various baselines.
L F.8 Propagated Errors: select a wrong record

Tntegral Pose Regression[27] | ECCY 2018 | ResNet-101 — —
UDPLLO) 974 960 910 865 891 866 833

DarkPose[39] 972 959 912 867 897 867 840
Papoity 71 b mi oM w7 template
‘TokenPose[L5] 972 958 907 859 892 862 823
‘TokenPose[15] 97.1 959 904 860 893 §7.1 825

Removing Bias(]
_Removing Bias(7]

s T BT Input (Table 7 of arXiv paper 2210.00627v1)

Simple Baseline[11] ECCV 2018 | ResNet- 152
+Ours ResNet-152 90.3(107) 970 961 906 861 892 867 831
TIRNet 28] CVPR 2019 | HRNet 971 959 007 861 94 869 832
+Ours HRNet-W32 90.9(105) 973 962 912 868 90.1 8§74 841
TIRNet[26] CVPR 2019 | FRNet-Was %03 %9 960 909 82 896 &1 813
+Ours HRNet- W48 90.9(104) 971 963 912 870 902 875 842

Tayer description Gutput dimensions
Tayer index input volume DxHx W x (64+1)
Predicted Records 2 (kemel size 3, out channel 32, stride 1, dilation 1) x 2 D x Hx W x 32
3 (kernel size 3, out channel 32, stride 2, dilation 1) |  D/2 x H/2 x W/2 x 32

45 (kemnel size 3, out channel 32, stride 1, dilation 1) x 2 | D/2 x H/2 x W/2 x 32

6 (kernel size 3, out channel 32, stride 2, dilation 1) D/4 x H/4 x W/4 x 32
n ", ”n " n 3 ", n 79 (kernel size 3, out channel 32, stride 1, dilation 2) x 3 D/4 x H/4 x W/4 x 32
1 { v a 1 u e . 9 7 . 2 ’ AR m e t r 1 C . 10 (kernel size 3, out channel 64, stride 2, dilation 1) D/8 x H/8 x W/8 x 64
n 11-13 (kernel size 3, out channel 64, stride 1, dilation 2) x 3 D/8 x H/8 x W/8 x 64
H e a y . 14 (kernel size 3, out channel 64, stride 2, dilation 1) D/16 x H/16 x W/16 x 64
15-17 (kernel size 3, out channel 64, stride 1, dilation 2) x 3 | D/16 x H/16 x W/16 x 64
" w. oo " " s nL o
2| {"value”: "86.7", ..., "metric”:
Wri n } Table 7: Architecture of the geometry branch’s sparse 3D CNN. Each convolution layer s followed by 1D batch normalization
’ . and ReLU.
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1| {"value"”: "3", "type"”: "Hyper-
parameter”, ...}

2| {"value”: "6", "type": "Hyper-
parameter”, ...}

4l {"value”: "14", "type": "Hyper-
parameter”, ...}

Gold Records

| {"value”": "3", "type": "Other"}

2| {"value”: "6", "type": "Other"}

4l {"value”: "14", "type": "Other"}

G Extracting Leaderboards from Table
Images

G.1 Extraction from Table Images

One practical challenge with INSTRUCTE is the
need for tables in a textual format, while many
tables are available only as PDFs or images. To
address this, we integrate INSTRUCTE with multi-
modal models to extract structured data from ta-
ble images. Specifically, we experiment with two
strategies: 1) direct extraction from table images,
and 2) a pipeline that first employs multi-modal
models to transform table images into text, and
then run INSTRUCTE on the textual tables.

In a preliminary study with ML tables, we use
GPT-4V as the backbone for INSTRUCTE. We find
that the pipeline method yields a Table-F; score
of 70.2 from image inputs, approaching the 74.2
Table-F; achieved with the original text inputs. It
outperforms direct extraction using GPT-4V, which
attains only a Table-F; score of 46.4, as the pipeline
can capitalize on INSTRUCTE’s error recovery ca-
pabilities, resulting in more thorough and accurate
extractions.

Additionally, we test IDEFICS-80b-instruct
(Laurencon et al., 2023), a leading open-source
multi-modal model, which unfortunately could not
perform the table-text conversion or direct extrac-
tion.!# This suggests a clear avenue for future re-
search to enhance multi-modal models’ ability to
accurately process image-based tables.

G.2 Leaderboard Extraction from ML Papers

Task Definition & SOTA Methods The task of
leaderboard extraction (Hou et al., 2019; Kardas
et al., 2020) entails extracting leaderboard tuples
(task, dataset, metric, score) from tables in

'4The IDEFICS-80b-instruct model either produces un-

related content or simply output "I am sorry, but I cannot
generate LaTeX code from the table."

ML papers. Unlike our proposed Schema-Driven
IE, which requires open-domain span identifica-
tion, leaderboard extraction presumes prior knowl-
edge of all leaderboards, represented as pre-defined
(task, dataset, metric) tuples, and centers on
linking numeric cells to these leaderboards.

The state-of-the-art leaderboard extraction
method, AXCELL (Kardas et al., 2020), is a com-
prehensive pipeline system comprising four com-
ponents: Table Type Classification, Table Segmen-
tation, Cell Linking, and Filtering. For each com-
ponent, except the last one, AXCELL employs a
supervised model. It starts with table type classi-
fication to identify result-related tables, which are
then passed to the table segmenter responsible for
annotating the header cells of the table. Following
this step, a retrieval model links numeric cells in
the table to pre-defined leaderboards using human-
engineered features. Lastly, AXCELL filters and
selects the best record based on the leaderboard
taxonomy criteria, such as retaining higher values
for "Accuracy" and lower ones for "error rate".

Application of INSTRUCTE To extract leader-
boards from an ML paper, we consider all tables
that contain numeric cells, instead of selecting ta-
bles via a trained classifier as in AXCELL. For
each table, we run INSTRUCTE using a customized
leaderboard extraction JSON template. This tem-
plate resembles the ML-table template with two
additional fixed attributes: eval split and eval
class in the “Result” cell template. We add the
eval split attribute because the evaluated split
is essential information for this task; for instance,
“dev F;” and “test F;” are treated as different met-
rics in the leaderboard taxonomy. The eval class
attribute is used to exclude sub-set or sub-class re-
sults that are typically present in analysis tables.
After generating all predicted cell descriptions, we
filter them based on three criteria: 1) the type
attribute must be “Result”; 2) the eval class at-
tribute must be “all” or “Null” as observed on the
development set; and 3) the cell must be bolded in
the table, as this usually indicates its superior per-
formance and possible relevance to the leaderboard.
For papers without any bolded cells, we experiment
with two strategies: 1) include all the remaining
cells in the table that meet the first two criteria; 2)
use cells selected by AXCELL, as its engineered
features for cell selection may be useful. This hy-
brid system is referred to as INSTRUCTE+. We
then use the predicted task, dataset, and metric
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Figure 8: Generate IfTEX code for image tables using GPT-4V.

Method Micro-Average Macro-Average
P R Fl P R Fl
AXCELL 254 184 213 215 21.5 20.0

INSTRUCTE ~ 20.1 20.8 20.5 203 23.1 19.6
INSTRUCTE+ 239 21.2 224 212 237 205

Table 12: Leaderboard extraction results on the PWC
LEADERBOARDS dataset.

attributes in each JSON record to match with the
pre-defined leaderboards using token-level Fy, and
we select the leaderboard with the highest aver-
age score over three attributes. Finally, follow-
ing AXCELL, we choose the best record based on
the leaderboard taxonomy criteria, e.g., retaining
higher values for "Accuracy" and lower ones for
"error rate".

Results We compare INSTRUCTE with AXCELL
on PWC LEADERBOARDS (Kardas et al., 2020),
the largest dataset for leaderboard extraction. For
INSTRUCTE, we use code-davinci-002 given its
excellent performance on SCHEMA-TO-JSON. Ta-
ble 12 presents the results of both methods. We
can see that INSTRUCTE achieves competitive per-
formance compared to the supervised AXCELL,
highlighting the efficacy of our proposed approach.
When we enhance INSTRUCTE with AXCELL’s
cell selection capabilities to create INSTRUCTE+,
it outperforms AXCELL, demonstrating the promis-
ing potential of combining these two approaches.
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