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Figure 1. The Digital Twin Catalog (DTC) dataset comprises 2,000 digital twins of physical-world objects (a), characterized by millimeter-
level geometric accuracy and photorealistic PBR materials (b). DTC includes evaluation data captured using both DSLR cameras and
egocentric Aria glasses, featuring captured images with precise foreground object masks and environment lighting for relighting evaluation.

Abstract

We introduce Digital Twin Catalog (DTC), a new large-scale
photorealistic 3D object digital twin dataset. A digital twin
of a 3D object is a highly detailed, virtually indistinguishable
representation of a physical object, accurately capturing its
shape, appearance, physical properties, and other attributes.
Recent advances in neural-based 3D reconstruction and in-
verse rendering have significantly improved the quality of
3D object reconstruction. Despite these advancements, there
remains a lack of a large-scale, digital twin quality real-
world dataset and benchmark that can quantitatively assess
and compare the performance of different reconstruction
methods, as well as improve reconstruction quality through

* Authors contributed equally and are listed in alphabetical order.

training or fine-tuning. Moreover, to democratize 3D digital
twin creation, it is essential to integrate creation techniques
with next-generation egocentric computing platforms, such
as AR glasses. Currently, there is no dataset available to
evaluate 3D object reconstruction using egocentric captured
images. To address these gaps, the DTC dataset features
2,000 scanned digital twin-quality 3D objects, along with
image sequences captured under different lighting condi-
tions using DSLR cameras and egocentric AR glasses. This
dataset establishes the first comprehensive real-world evalu-
ation benchmark for 3D digital twin creation tasks, offering
a robust foundation for comparing and improving existing
reconstruction methods. The DTC dataset is already re-
leased at https://www.projectaria.com/datasets/dtc/ and we
will also make the baseline evaluations open-source.
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Figure 2. Example DTC models with photorealistic PBR materials.

1. Introduction

A digital twin of a 3D object is a highly detailed, virtually
indistinguishable representation of a physical object, cap-
turing its shape, appearance, physical properties and other
attributes with precision. Such a digital twin enables visual-
ization, analysis, and interaction as if it were the real object,
supporting simulation, automation, and real-world problem-
solving across a wide range of applications in AR/VR [3, 28],
spatial/contextual Al [2], and robotics [23, 43]. As funda-
mental properties of an object, its shape and appearance
form the basis for recognizing and interpreting the 3D object,
enabling identification, manipulation, and realistic rendering.
Recovering these attributes has long been a foundational
topic in computer vision and graphics, inspiring extensive
research in 3D reconstruction and inverse rendering. Recent
breakthroughs in neural-based representation and reconstruc-
tion techniques, such as NeRF [52] and 3D Gaussian splat-
ting (3DGS) [37], have significantly elevated the quality of
novel view synthesis (NVS) to photorealistic levels. Many
subsequent works [35, 62] integrate neural reconstruction
with physically-based inverse rendering, enabling relightable
appearances. Furthermore, leveraging priors from large re-
construction models (LRMs) [30], high-quality shape and
appearance reconstruction can now be achieved with as few
as one to four views [41, 70, 84].

Despite the rapid advancements in 3D object reconstruc-
tion, one question remains: does the reconstruction quality
truly meet the standard of a digital twin, where virtual repre-
sentations are indistinguishable from reality? This digital
twin standard demands both highly accurate shape match-
ing and photorealistic appearance across different light-
ing, which present significant acquisition challenges for real-
world objects. Existing object-centric datasets for 3D recon-

struction or inverse rendering have focused on either dataset
size [18] or quality of specific aspects [16, 21, 34,46, 61, 74],
often sacrificing comprehensive fidelity and limiting their
application scope. This trade-off has led to a lack of datasets
that fully satisfy the digital twin criteria, hindering current
3D reconstruction methods from achieving digital twin fi-
delity. To bridge this gap, we developed the Digital Twin
Catalog (DTC) dataset, comprising 2,000 scanned 3D object
models (Fig. 1(a)), each with millimeter geometry accuracy
and photorealistic PBR materials (Fig. 1(b), Fig. 2).

In addition to 3D digital twin models, the DTC dataset
includes evaluation data designed to support 3D object re-
construction research. This evaluation data features multi-
view image sequences with precise foreground object masks
and environment lighting information for relighting eval-
uation. Traditionally, high-quality HDR images captured
with modern DSLR cameras have been the standard for
3D reconstruction research. Looking ahead, we encour-
age the integration of 3D reconstruction research with next-
generation human-centric computing platforms, such as ego-
centric AR glasses, aiming to democratize 3D reconstruction
techniques and empower everyone to effortlessly create 3D
digital twins. To this end, alongside DSLR-captured eval-
uation data (Fig. 1(c)), the DTC dataset also provides ego-
centric evaluation data captured using Project Aria glasses
(https://www.projectaria.com) (Fig. 1(d)).

The DTC dataset offers extensive opportunities for ad-
vancing research in object digital twin creation. We provide
a benchmark for state-of-the-art 3D object reconstruction
and inverse rendering methods These benchmarks evaluate
performance across novel view synthesis (NVS), shape re-
construction, and relightable appearance reconstruction. We
further provide the evaluation of novel view synthesis meth-


https://www.projectaria.com

Table 1. Comparison with existing object-centric inverse rendering datasets. *Objaverse [ 18] consists of both synthetic objects and real

scans, only part of which contain PBR materials.

Dataset #Objects Real Scene Type Multi-view Shape PBR Mat.  RelitImage Lighting  Egocentric Cap.
ShapeNet-Intrinsics [61] 31K X synthetic v v X v v X
NeRD Synthetic [11] 3 X synthetic v v v v v X
ABO [16] 8K X synthetic v v v v v X
MIT Intrinsics [25] 20 v studio v X X X X X
DTU-MVS [34] 80 v studio v v X X X X
Objaverse [ 18] 818K W)* studio v v )* X X X
DiLiGenT-MV [42] 5 v studio v v X X v X
ReNe [65] 20 v studio v X X X v X
Openlllumination [46] 64 v studio v X v v v X
GSO [21] 1030 v studio v v X X X X
Lombardi et al. [47] 6 v in-the-wild X v X v v X
NeRD Real [11] 4 v in-the-wild v X v v X X
NeROIC [38] 3 v in-the-wild v X v v X X
Oxholm et al. [56] 4 v in-the-wild v v X v v X
OmniObject3D [74] 6k v in-the-wild v v X X X X
Stanford Orb [39] 14 v in-the-wild v v v v v X
DTC (ours) 2k v in-the-wild v v v v v v

ods using the egocentric aligned DTC data. Additionally,
we explore the dataset’s potential in downstream robotics
applications by assessing its effectiveness in training robotic
policies for pushing and grasping tasks in simulation. These
benchmarks and applications provide valuable insights, high-
light existing challenges, and uncover promising directions
for future research in 3D digital twin creation.

2. Related Work

We provide a comparison of our DTC dataset to existing
object-centric datasets in Table 1. We provide the largest
3D dataset with PBR materials and real world multi-view
recordings with digital twin counterparts. We further provide
digital twin aligned egocentric recordings, the first of their
kind in the egocentric domain. We will discuss the related
datasets and methods they can empower as follows.

3D Digital Twin Datasets Existing 3D digital twin datasets
with PBR materials often serve as ground truth for evalu-
ating inverse rendering results. Early efforts [6, 25] pro-
vide small-scale intrinsic image of real objects and do
not provide shape or PBR material information. Syn-
thetic datasets [11, 16, 45, 61, 71, 73] are widely used
for evaluation but do not represent the complexity in a
real world environment. For datasets that contain real ob-
jects, [18, 34,42, 47, 56, 65], the reconstruction quality can
vary, which leads to imprecise evaluations. Table 1 provides
a comparison to the previous work in this domain. Compared
to Objaverse[ 18, 19], which is a collection of existing 3D
models with only a small subset containing PBR materials
with varying quality, we offer a high quality collection of
3D object data that is also aligned with real world record-
ings. Compared to OmniObject3D [74], the DTC models

provide higher-quality shape and additional PBR materials
that are necessary for high quality inverse rendering. We
offer the largest quantity of 3D object models compared to
all counterparts in various tasks. For real-world evaluation,
Stanford-ORB [39] was the prior largest inverse rendering
benchmark with in-the-wild lighting. In contrast, we pro-
vide more object diversity and higher quality for each object
model. The Aria Digital Twin dataset [58] was the first
dataset to provide digital twin aligned environments for the
scenes and recorded using egocentric device. However, their
scene environments are limited and the contained object
ground truths inside do not have high quality geometries
with PBR materials.

Object Reconstruction & Inverse Rendering. Using
object-centric multi-view images as input, early object re-
construction methods focused on estimating individual ob-
ject properties, such as shape from shading [5, 9, 85],
material acquisition [44, 45, 56, 57, 75], and lighting es-
timation [68, 80]. Some approaches also aimed to re-
cover reflectance and illumination assuming known object
shapes [47, 48]. Inverse rendering, which seeks to invert the
rendering equation [36], estimates an image’s intrinsic com-
ponents—geometry, materials, and lighting. The advent of
differentiable renderers [14, 15, 49] enabled full-fledged in-
verse rendering methods to simultaneously recover all these
properties for object reconstruction [50].

Neural volumetric representations such as Neural Radi-
ance Fields (NeRFs) [52] and the like [7, 11-13, 59, 81, 87]
encode geometry and appearance as volumetric densities and
radiance with a Multi-Layer Perceptron (MLP) network, and
render images using the volume rendering equation [51]. 3D-
GS [37] introduces 3D Gaussian primitives and rasterization
and its following-up variants [31] demonstrates high quality



geometry prediction as well.

Other surface-based representations [29, 53, 62, 66, 72,
82, 83, 88] extract surfaces as the zero level set, for in-
stance, of a signed distance function (SDF) or an occupancy
field [55], allowing them to efficiently model the appear-
ance on the surface with an explicit material model, such
as bidirectional reflectance distribution functions (BRDFs).
This also enables modeling more complex global illumi-
nation effects, such as self-shadows. Most of these meth-
ods focus on per-scene optimization and require dense
multiple views as input. Recently, researchers have in-
corporated learning-based models, distilling priors from
large training datasets for fast inference on limited test
views [8, 10, 33,45, 61, 71, 73, 89].

In this work, we provide the DTC dataset with real-world
object recordings that can serve as the benchmark to evaluate
object-centric inverse rendering tasks. We evaluate represen-
tative baselines from existing work.

3. Digital Twin Catalog: A Large-Scale Photo-
realistic 3D Object Digital Twin Dataset

3.1. Dataset Composition

Our DTC dataset contains: (1) 2,000 scanned 3D object mod-
els, featuring millimeter geometric accuracy relative to their
physical counterparts, along with a full set of photorealistic
PBR material maps (Fig. 1), (2) 100 DSLR-captured evalu-
ation data of 50 objects under different lighting conditions,
and (3) 200 egocentric Aria-captured evaluation data of 100
objects with both active and casual observation modes.

3.2. Creation of 3D Object Models

Utilizing the state-of-the-art industrial 3D object scan-
ner [1], we selected 2,000 physical-world objects spanning
40 LVIS [27] categories, carefully chosen to ensure both
category diversity and compatibility with the scanner’s capa-
bilities. As illustrated in Fig. 3(a) (c), the scanner features
a fixed lighting-camera setup within an upper-hemisphere
dome, equipped with 8 structured lights for geometry scan-
ning, and 29 spotlights and 29 cameras for material acquisi-
tion. During the scanning process, the object is placed on a
central holder, and its pose can be adjusted with multi-round
scanning to achieve a complete 360-degree scan. For our
dataset, each object typically undergoes three pose changes,
with a total scanning time of approximately 20 minutes per
object.

After scanning, a proprietary post-processing pipeline
reconstructs both the geometry and the PBR material maps.
For 4K-resolution PBR material maps, the post-processing
requires approximately 4 hours per object. In terms of qual-
ity, the structured-light-based shape reconstruction (Fig. 3
(b)) in the post-processing achieves millimeter-level geomet-
ric accuracy. However, the material optimization process

N A N\
Figure 4. Rendered DTC models (left) v.s. Photo (Right).

performs best for diffuse objects and often struggles with
glossy or shiny surfaces. To address this limitation, we hired
technical artists to develop a workflow to refine materials for
glossy and shiny objects, ensuring that the material quality
meets the standards of a digital twin.
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Figure 5. Shape and material (albedo) quality comparison between
Stanford-ORB [39] (left) and our DTC (right).

3D Model Accuracy. To validate the material and geometry
accuracy of the 3D models, we compared a rendered image
of our scanned and processed model with a photograph of
the same object taken inside a light box. A virtual light box
was meticulously modeled to replicate the light intensity
and color temperature of the real light box. The scanned
object was then placed in the virtual light box to generate the
rendered image. The side-by-side comparison demonstrates
a remarkable match between the rendered and real images
(Fig. 4).

Comparison Against Stanford-ORB. We also scanned the
objects used in Stanford-ORB [39] to compare the shape and
appearance quality. As illustrated in Fig. 5, the Stanford-
ORB models exhibit shape artifacts and noisy, lower-quality
materials compared to our models.

3.3. DSLR Evaluation Data

Within DTC, we include a DSLR-captured evaluation dataset
of 50 objects from Sec. 3.2 captured under two different
lighting conditions, resulting in 100 distinct image sequences.
For every sequence, we provide (a) approximately 120 HDR
and LDR images from different viewing directions, (b) one
object pose and (c) per-image camera pose. The two lighting
conditions are represented using two environment maps.

Data Capture. To ensure the DSLR evaluation data quality,
we designed and built a DSLR camera rig to automate the
capture process (Fig. 6). The rig is designed to rotate the
cameras around the centralized object, assuming the envi-
ronment lighting remains unchanged during the capture. It
features a motorized rotary stage with a centrally mounted
stationary platform. Attached to the rotary stage is an ex-
trusion frame that forms the gantry arm, supported by a
set of castors to bear its weight and enable smooth rotation
around the central axis. The extrusion frame is equipped
with adjustable camera mounts, allowing DSLR cameras to
be positioned flexibly to optimize the capture setup. For our
capture process, we utilized three DSLR cameras to perform
a 360-degree rotation around the object, capturing images
at 9-degree intervals, resulting in 120 photos per object. To
ensure precise camera pose estimation, a ChArUco board

Figure 6. DSLR rig for capturing evaluation data.

was placed beneath the object during the capture. Example

images from this setup are shown in Fig. 6.
Environment Maps. Following a similar approach in

Stanford-ORB [39], we capture the two environment maps
using chrome ball images obtained with the capture rig de-
scribed earlier. With precise camera poses provided by a
ChArUco board placed beneath the chrome ball, we first
fit a synthetic 3D sphere to the chrome ball by optimizing
its 3D position using a geometry-friendly differentiable ren-
derer [40, 76]. Subsequently, using a differentiable Monte
Carlo-based renderer [32], we refine the environment map
to match the reflection on the chrome ball, employing the
single-view light estimation method proposed in [80]. The
coordinate system of the environment map is determined by
the ChArUco detection.

Pose Registration for Camera and Object. We first ob-
tain the initial camera poses using the ChArUco board. In
most cases, for images captured from the top and middle
views, the pose estimates are typically accurate. However,
for bottom-view images, inaccuracies arise due to pattern
distortion at grazing angles. To mitigate this issue, we re-
fine the camera poses by fitting the rendering of a virtual
ChArUco board to the real captured photo using a differen-
tiable renderer [32, 40, 76]. Once the camera poses have
been accurately refined, we optimize the object pose by
minimizing the mask loss between the rendered mask and
the reference one generated by [62]. By providing separate
poses for camera and object anchored by ChArUco, the cam-
eras and object are automatically aligned with the optimized
environment maps.

3.4. Egocentric Evaluation Data

We include an evaluation dataset of real world recordings
captured by an egocentric device paired with 100 objects
from the DTC dataset. We capture the egocentric recordings
using the open-sourced Project Aria device [22] and acquire
the additional 3D ground truth using its machine percep-
tion tool, which includes online device calibration, device
trajectory and semi-dense point clouds for each recording.
Each recording contains a single 3D object and precisely
aligned object poses in the Aria trajectory coordinate frame.
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Figure 7. The workflow to align egocentric video and 3D objects. We acquire the object’s semi-dense point cloud from the egocentric
recording and the neural reconstructed mesh using Neural-PBIR [62]. Finally, we align the 3D object with the rendered mask from the
neural reconstructed mesh using physics-based differentiable rendering (PBDR).

Both the object and the trajectory are in metric scale. We
can derive additional ground truth for each video from the
aligned 3D object properties.

Data Capture. To feature real world recordings observed
from human perspectives that can be representative of 3D
object reconstruction for AR/MR devices or robots, we pro-
vide two types of recording trajectories for selected objects,
termed active and passive respectively, collected by human
wearers. The active recording features a complete 360 view
of the objects, which is similar to existing object 3D novel
view synthesis dataset. The passive recording features ca-
sual looks from human wearer, which only contain partial
views of the object from certain viewing angles along the
trajectory. In dataset creation, we collected the active and
passive recordings in the same environment and generate
their 3D information in the shared 3D space. This helps
reduces potential failures when aligning the object to pas-
sive 3D recordings, which are shorter and contains less 3D
information. To reduce the effect of noises and motion blur,
which are common in egocentric videos in indoor low light
environments, we light the capture environment to 3K+ lux
illumination and used a fixed low-exposure and gain profile
to collect each recording with the appropriate brightness.

Alignment between Egocentric Video and Object. We
provide an illustration of the object alignment to the egocen-
tric video in Fig. 7. Given the images, camera poses and
semi-dense point cloud acquired from Project Aria tools, we
employ a neural-based mesh reconstruction method [62] to

create reference meshes for generating high-quality refer-
ence masks and used that to align with the corresponding
3D object mesh. This alignment step serves as an initial-
ization for a more precise pose refinement, which leverages
differentiable rendering. For certain objects with symmetric
geometry, we observe this process can introduce ambigui-
ties in point cloud registration and subsequent failures. To
address such cases, we provide a GUI to manually align
and correct the object alignment. Finally, akin to the DSLR
camera pose registration phase, we optimize a mask loss
over object poses to achieve fine-tuned pose registration.

4. Benchmarking and Applications

We first use our DLSR and egocentric dataset as a benchmark
for existing state-of-the-art methods. For inverse rendering,
we design metrics to evaluate the shape and material quality
of the recovered 3D object digital twin from three perspec-
tives. For egocentric recording, we evaluate the novel-view
synthesis as the initial evaluation. We include additional
tasks, e.g. sparse view reconstruction in the supplementary
materials for both DSLR and egocentric recordings. Finally
we can demonstrate our high quality 3D digital twin models
can be beneficial to robotics domain using an application in
robotics manipulation.

4.1. Application to Inverse Rendering for DSLR

The DSLR dataset in DTC provides accurate ground truth, in-
cluding poses, lighting and 3D models, for inverse rendering



Table 2. Benchmark comparison of existing methods on inverse rendering for DSLR. Depth SI-MSE and Shape Chamfer distance x 103,

Geometry Novel Scene Relighting Novel View Synthesis

Depthl  Normal|  Shape]  PSNR-HT PSNR-LT  SSIMt LPIPS| PSNR-HT PSNR-LT  SSIMT  LPIPS|
Neural-PIL [12] 5.71 0.25 25.02 N/A 28.42 35.76 0.882 0.096
PhySG [82] 0.31 0.16 11.31 27.28 32.86 0.959 0.049 28.54 34.46 0.964 0.045
NVDiffRec [53] 0.02 0.07 1.64 26.99 33.27 0.951 0.037 28.95 34.92 0.967 0.029
NeRD [11] 4.55 0.45 108.20 26.10 32.60 0.948 0.061 26.80 33.40 0.882 0.102
InvRender [72] 0.22 0.03 0.75 29.52 35.98 0.961 0.037 31.64 37.82 0.970 0.033
NVDiffRecMC [29] 0.02 0.06 1.34 27.78 34.55 0.952 0.042 31.27 38.17 0.972 0.032

Table 3. Benchmark on the egocentric aligned recordings.

PSNR+ LPIPS| SSIM+ Depth] Normal

3D-GS [37] 28.81 0.020 0.9888  0.1768 0.3301
2D-GS [31] 28.75 0.020 0.9886  0.1755 0.2112

tasks and serves as an evaluation suite to benchmark the per-
formance of inverse rendering methods. We select six prior
methods for this task and evaluate their performance using
the ground truth provided by our dataset. In the following
sections, we describe the data splitting strategy, evaluation
metrics, and baselines.

Data Splitting. For benchmarking purposes, we select 15
objects from the DSLR dataset captured under two distinct
lighting environments, resulting in a total of 30 image se-
quences. The selected objects encompass a diverse range of
geometric and material properties to ensure a comprehensive
evaluation. For each scene, 8 views are selected for testing,
while the remaining views are reserved for training.

Evaluation Metrics. The metrics measure the accuracy of
three aspects of baseline performance: geometry estimation ,
relighting, and novel view synthesis. For geometry estima-
tion, we evaluate the accuracy of predicted depth and normal
maps under held-out test views, as well as 3D meshes ex-
tracted from baseline methods, compared with the ground
truth from our dataset. Relighting metrics evaluate the ma-
terial decomposition quality of baselines by measuring the
accuracy of predicted images under held-out lighting condi-
tions. For view synthesis, we compare the predicted images
from viewpoints unseen during training to ground truth cap-
tures. We refer to Kuang et al. [39] for metric details.

Baselines. We include the following baselines: NVD-
iffRec [53] and NVDiffRecMC [29], with a hybrid shape
representation DMTet [60]; InvRender [88] and PhySG [82],
which adopt signed distance functions (SDFs) to represent
object geometry [77] and utilize implicit neural fields for
material decomposition; Neural-PIL [12] and NeRD [11],
which use NeRFs [52] as scene representations.

4.2. Application to Egocentric Reconstruction
Our digital twin models, aligned with real world video using
the method described in Sec. 3.4, can help obtain accurate

ground truth for object-centric images that were previously
difficult to acquire. We provide the first evaluation of object-
centric novel view synthesis recorded from an egocentric
device. We use the projected object shape given the 3D pose
of the object and cameras in scene coordinates to acquire the
image masks, depth and normal for each object. We selected
15 recordings from the egocentric recording sessions as the
evaluation and used the active recordings to benchmark novel
view reconstruction. For each recording, we hold out every
8th image view as a testing view.

Evaluations. = We build our baselines based on the
gsplats [79] implementation of the 3D Gaussian Splatting
(GS) [37] and 2D GS [31], and handle the effect of lens
shading from the Project Aria lens [26]. We calculate PSNR,
depth and normal based on the observed objects with masks
and provide SSIM and LPIPS score on images by masking
out the non-object areas as black. Table 3 shows the bench-
mark results of the baselines. We use the same depth and
normal metric in DSLR evaluation. We provide additional
qualitative evaluations and analyses on egocentric data to-
wards sparser view settings in the supplementary materials.

4.3. Application to Robotic Manipulation

High-quality object models have been leveraged in prior
work to train real-world robotic agents in scenes represented
explicitly [54] or implicitly [64]. These object models have
also been shown to facilitate object-centric pose and lighting
parameter estimation, enabling model-based planning [63].
In this section, we empirically evaluate the effectiveness
of using DTC dataset objects in training robotic policies.
Specifically, we consider learning robotic pushing and grasp-
ing skills in simulation.

First, we sample a subset of 24 cup category objects
from the DTC dataset and 24 cup objects from Objaverse-
XL [19] '. Since not all Objaverse-XL objects come with
textures, we randomize the colors of those objects uniformly
in RGB space. To compute collision meshes for physical
simulation, we perform convex decomposition on each ob-
ject with CoACD [69]. We import these objects along with

I'The version of Objaverse-XL used in this work excludes all 3D models
sourced from Sketchfab. Further, no Polycam assets were obtained from
the Polycam source site



Task DTC (ours)

Pushing @ 2cm  36.3% + 1.5%
Pushing @ 3cm  43.7% + 1.2%
Pushing @ 5cm  47.0% + 2.6%
Grasping 42.7% + 4.7%

Objaverse-XL [19]

25.3% %+ 6.0%
29.7% + 6.0%
40.3% + 5.5%
38.6% £+ 11.0%

Table 4. Success rate of policies trained on data collected using
objects from our DTC dataset and sampled from Objaverse-XL
when evaluated on an unseen test object. Errors indicate sample
standard deviation over three policy training seeds.

a UR5e robot equipped with a Robotiq 2F-85 (pushing) or
Robotiq 2F-140 (grasping) gripper into the PyBullet simula-
tor [17] and collect data for each robotic task as described
below. After training policies on data from each object set,
we evaluate policy performance on a relatively high-quality
unseen test object from the StanfordORB dataset [39].

Pushing. For the pushing task, we collect 5000 trajectories
of pseudo-random robotic interaction data for each object
set. For each trajectory, a single object from the considered
object set and its initial position are randomly selected. Then
we train a goal-conditioned neural network policy 7(alo, 04)
where o is an image observation of the current scene and oy is
a goal image indicating the desired final object and robot po-
sition, 0, 0, € R?56x256%3 ‘and the action a € R? represents
a change in the robot’s end-effector position in the x and y
axes. The z axis end-effector height is held fixed. We sample
goals for training via hindsight relabeling [4, 20, 24]. We
then perform evaluation on 100 randomly sampled test goals
manipulating an unseen test cup from StanfordORB [39].

Grasping. For grasping, we collect 5000 successful grasp
examples for each object set by first placing a single object
into the scene, randomizing the object identity and initial
position. We then randomly sample candidate grasp poses
in a radius around the object’s position and simulating their
outcomes, rejecting unsuccessful grasps. We train a grasping
policy 7(alo) where o € R2°6%256%3 jg an image observa-
tion of the scene and a € R* represents the z, y, z position
and 6 yaw rotation of the robot end-effector at which to
attempt the grasp. Again we use 100 test cup object poses.

Results. We report the results in Table 4 and Fig. 8. We
find that across both pushing and grasping tasks, policies
trained on DTC dataset objects outperform those trained on
Objaverse-XL objects when evaluated on the unseen test ob-
ject. For pushing, we report performance by defining binary
success thresholds based on the final Euclidean distance of
the object position to the goal position. Training on DTC
objects appears to be especially helpful at enabling policies
to make finer adjustments, improving pushing success rates
at stricter thresholds. Additional experimental details can be
found in the supplementary.

Robotic Object Pushing
Cumulative Success Rate vs Error Threshold by Training Object Set

—— DTC objects (ours)
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Figure 8. Success rates on robotic pushing task when training with
our DTC objects and sampled Objaverse-XL objects. Particularly at
lower error thresholds, policies trained on DTC objects outperform
those trained using Objaverse-XL objects. Shaded bars represent
sample standard deviations over policy training random seeds.

5. Conclusion

We presented a new large scale photorealistic 3D digital
twin dataset with the real world recordings that contain its
real world counterpart. We provide extensive evaluations of
baselines on our DTC dataset serving as new benchmark for
inverse rendering and novel view synthesis task. We also
demonstrated that high quality digital twin models can be
beneficial to applications in robotics domain. We believe our
efforts can empower the research community to build and
leverage digital twin models for future applications.

Limitations. Achieving high quality digital twin models cur-
rently requires deliberate hardware setup and human efforts
in refinement. Solving this challenge without sacrificing
quality can significantly further enhance the volume of dig-
ital twin models. Our hardware is also limited to objects
within a certain size and can not yet recover objects that are
deformable, highly specular, or transparent.

Future work. The existing digital twin model creation in
DTC dataset involves lengthy post-processing and may re-
quire subjective human refinement, hindering the automa-
tion of model generation. However, recent advancements
in physics-based differentiable rendering hold promise for
enabling faster and more accurate creation of digital twins,
especially for material reconstruction. Furthermore, build-
ing large-scale digital twins for applications will necessitate
efforts to enhance the diversity in object appearance (e.g.,
transparent objects) and to capture additional attributes, such
as physical properties and functionalities.

For robotics applications, while deploying manipulation
policies learned in simulation to the real world remains gen-
erally challenging, we hope that the high-quality digital twin
data provided by DTC can serve as a stepping stone towards
effective sim-to-real transfer.
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Digital Twin Catalog: A Large-Scale Photorealistic 3D Object Digital Twin Dataset

Supplementary Material

We provide the following content in the supplementary
materials:
* We provide a comprehensive dataset statistics of DTC
dataset in Sec. A, including the full category of DTC ob-
jects, the list of objects used in DLSR and egocentric
recording respectively. We also provided visualizations
for examples of DTC objects, DSLR and egocentric data.
We include complementary details of benchmark in Sec. B.
First, as indicated by the main paper, we include a sparse
view setting of benchmark. We further provide the base-
line comparisons and analysis for DSLR benchmark and
egocentric benchmark. We use the same baselines and
dataset split as described in the main paper.
We provide details of the simulation and experiments for
our robotics experiments in Sec. C.

A. DTC Dataset Statistics & Details

In this section, we present the category list of DTC 3D ob-
jects (Sec. A.1) and showcase additional examples of DTC
digital-twin-quality 3D objects (Fig. 9). We also provide the
list of selected objects used for creating the DSLR evalua-
tion dataset (Sec. A.2) and the egocentric evaluation dataset
(Sec. A.3). Furthermore, we include additional examples
of real-world captures and recordings to better illustrate
the DSLR (Sec. A.4) and Egocentric (Sec. A.5) evaluation
datasets.

A.1. Categories of DTC Scanned Objects

In DTC dataset, we selected and scanned 2,000 physical-
world objects across 40 carefully curated categories from the
taxonomy of LVIS [27]. These categories were chosen to en-
sure a diverse representation of common daily objects while
remaining compatible with the scanner’s capabilities. Table 5
provides an overview of these categories, including the num-
ber of models, average vertex count, minimum/maximum
vertex numbers for each category and corresponding cate-
gory label in LVIS taxonomy.

For each scanned model, we generated high-quality 4K-
resolution PBR material maps—including albedo, roughness,
metallic, and normal maps—to achieve a photorealistic ap-
pearance. Fig. 9 showcases additional examples of DTC
scanned digital-twin-quality 3D models, each accompanied
by a full set of PBR material maps (Fig. 10, 11, 12, 13, 14).

A.2. List of Models for DSLR Evaluation Data

The full list of object models selected for DSLR evaluation
data is as follows, and each model is captured under 2 dif-

Category # Models avg # vert / std min / max LVIS Category
airplane 15 129,153 /15,535 80,719/ 144,587 airplane
axe 3 133,588 /1,922 132,096 /136,301 ax
basketball 55 132,260/3,013 128,652 / 140,985 basketball
birdhouse 102 147,577/ 11,057 98,405 / 182,594 birdhouse
bowl 106 127,456 /1,019 125,883 /130,964 bowl
building blocks 129 96,592 / 46,377 28,181/301,475 toy
calculator 38 131,244/ 3,638 126,379 /139,970 calculator
candle 31 108,221 / 58,406 15,897 /309,601 candle
candle holder 1 132,285/0 132,285/ 132,285 candle_holder
cast iron 31 165,954 /127,424 128,074 /711,536 pan

cup 58 137,154 / 43,605 126,346 /417,343 cup
cutting board 16 133,796/ 11,244 127,543 /173,141 chopping_board
dino 103 82,403 /29,477 13,796 /151,148 animal
dish 51 129,732/4,130 127,014 /147,451 dish
dumbbell 39 156,915/ 165,650 | 126,593 /1,177,907 dumbbell
fake food can 79 117,829 /22,772 78,646 /270,271 can
fakefruit 96 124,037/9,724 100,833 /151,870 fruit
figurine 77 57,152 /47,753 15,482 /140,812 figurine
football 48 132,323/2,953 126,719/ 138,459 football
gargoyle 50 137,921/5,019 130,206 / 151,325 gargoyle
gravestone 24 85,245/ 55,760 10,750/ 150,966 gravestone
hammer 33 133,413/36,272 46,808 / 320,845 hammer
hardcover_book 17 174,884 /102,168 | 130,267 / 500,735 hardback_book
key 2 60,456 /41,100 19,357 /101,556 key
keyboard 25 146,684 /12,414 129,360 /174,488 | computer_keyboard
knife 10 126,359/8,118 102,569 / 133,250 knife
mallard (fake duck) 48 99,728 / 45,926 9,000/ 131,058 mallard
marker 54 93,394 /39,460 34,796 / 306,272 marker
miscellaneous 44 149,799 /168,694 | 27,772/ 1,208,696 NA
mouse 52 144,184 /46,099 121,879 /304,533 mouse
pistol 2 133,587 /91 133,496/ 133,678 pistol
pottery 46 143,284 /162,783 | 12,354/1,206,223 pottery
remote 2 42,993 /17,068 25,925 /60,061 remote_control
shampoo 45 143,639 /75,261 126,285/ 604,491 shampoo
shaver 20 142,231/57,736 38,246 /306,105 shaver
shoes 121 139,363 /4,171 130,604 / 148,465 shoe
speaker 40 201,013/152,410 | 127,154 /852,714 speaker
spoon 34 107,649 / 56,459 29,712/302,920 spoon
teapot 99 145,149 /100,792 85,289 /926,273 teapot
vase 101 142,927 /142,946 | 61,488/1,568,710 vase
volleyball 52 133,921 /4,056 129,653 /144,770 volleyball

Table 5. Categories of DTC Scanned Objects. We include the
number of models per object (#Models), the average number of
vertices per object categories (avg # vert) and its standard deviation
(std), the minimum and maximum number of vertices within the
object category (min/max), and the label name in LVIS category
taxonomy.

ferent environment lighting conditions. For the 15 object
recordings that are used in our benchmark evaluations, we
highlight them in bold.

* Airplane B097C7SHJH_WhiteBlue

* Airplane_BOB2DC5QBP _BlueGray

* BirdHouse

e BirdHouse_ BOB8F27TFK_BrownRoofYellowWalls

* BirdHouseRedRoofYellowWindows

* BirdHouseWoodenRoofGreenWall

* Bowl BOBQR77WRW_LightGrey_1_TU

* Box_ADTIR DecorativeBoxHexLarge_Green
* Car_38330969_Toy

* CaramicBowlBluewithBrown

* CeramicBowlBigWhite

* Cup-BO8TWHJ33Q_Tan

* Cup_-BOB3JKZW76_Brown



Figure 9. Examples of DTC 3D models. The PBR Materials of each object are presented in the following figures from Fig. 10 to Fig. 14.

* Cup_-BOCQXPNDS8L_Stripes

* Dutch_Oven_BOB916N11D Black

* Figurine BOSFYFNYP4 LionKing

* Figurine BO983CQ2HH Angel

* Figurine BOCR3Y5T3K_Gnome

* Gargoyle BOOSKDPAFW_BatWings

* Gargoyle BO08SQMBDXY HandsOnKnees
* Gargoyle BOC2PNF2Cl Meditating

Gravestone BO8TBJQ5XP_LightGrayKitty
Hammer BOOOFK3VZ6_Wood

Home_ ADTIR-A6116F6_DraganBoxSmall_Wood
Home ADTIR_L0O410V8_Rinnig_PlateHolder
Keyboard BO7P6K5GMY_Black

Keyboard BOCL8S2DW9_Pink
Kitchen_Spoon_BOO8H2JLP8_LargeWooden
Mallard B082D168CK MintGreen



Figure 10. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 1), From left to right: albedo map, roughness map,

metallic map, normal map, and PBR rendering.

* Mallard BO9LV16HD5 LightBrown2

* Mallard BOBPY18VHR White

* Mallard BOC6MQWM21 BlackWhite

* Mouse BOCHNVBBLF _Honeycomb_1

e Pan BOCFQWYJZ8_BlackWoodHandle

e Pan BOCHW1KK8Z Black

e Planter BOC4G81ZPF Cat

* Pottery B097S319TR Woman

* Pottery BOCJJ59SLH BlueHairFairy

Shoe B000ZP6MIY Navy7L_TU
Spoon_BO8M3XNKYR_Slotted

TeaPot B074ZQYRP7 BrownDragonShaped
TeaPot BO7GL8MH3X_PinkFlamingo

TeaPot _BO7QP5MFQ1 _BlackCastIron
TeaPot_B084G3K8TD_YellowBlackSunflowers
TeaPot BO8S8HSDHBM4 BlackGoldLeaves
TeaPot BOOESU7PFG WhiteRoseFlowers
TeaPot BO1KFCZB2Y WhiteWoodHandle



Figure 11. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 2). From left to right: albedo map, roughness map,

metallic map, normal map, and PBR rendering.

* Vase B0O9ZGXSVIT_White_TU
e Vase_ BOBV44B4R4_BlueBirdsYellowBirds
* Vase_Corrected

A.3. List of Models for Egocentric Evaluation Data

The full list of models selected that contains pairs of egocen-
tric data is as follows, and each model is captured with both
active and passive trajectories. For the 15 object recordings
that are used in our benchmark evaluations, we highlight

them in bold.

¢ Airplane BO97C7SHJH_WhiteBlue

e Airplane BO9WN2RN15 Black_1

* BasketPlasticRectangular

* BirdHouseToy

* BirdHouse BOB8F27TFK BrownRoofYellowWalls

e BirdHouse_ BO0O4HJESBAS WhiteWallsTwoPorches_2
e BirdHouseRedRoofYellowWindows

e BirdHouseWoodenRoofGreenWall



Figure 12. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 3). From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

* BirdHouse BO8GYBKJ8N_RedBarn * Bowl BO7ZNJ5RQV_Orange_TU
* Birdhouse BO9FJYJYDQ BoatHouse * CandleDishSmall

e BirdHouseMetalRoofYellowWall_1_TU * CrateBarrelBowlRed

* BirdHouse A79823645_BearWithLogStump * CeramicBowlBigWhite

¢ BirdHouseWoodenRoofRedWall * CelebrateBowlPink

* BlackCeramicDishLarge * Car_38330969_Toy

* BlackCeramicMug * CaramicBowlBluewithBrown
* Block_ BOO7GE75HY_RedBlue e Candle_BOB2JQWNNQ White

¢ Bowl_BOBQR77WRW_LightGrey_1_TU ¢ Candle BOB764F39X_Turquoise



Figure 13. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 4). From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

* Candle_ BOOMP8NDML _White * Dumbbell BOCN56CQPS_PurpleCoolGray

* Calculator BOC7GP2D5C_Purple e Dutch Oven_ B0B916N11D Black

¢ Cup BO8TWHJ33Q Tan e FakeFruit_B076H96CS1_Banana

* Cup-BOB3JKZW76_Brown * FakeFruit B09992T572_WatermelonSlice
* Cup-BOCQOXPND8L_Stripes e FakeFruit BO815W7RKC_StarFruit

¢ Cup-BO8TWHJI33Q_Gray * Figurine BOSFYFNYP4_LionKing

¢ Cup-BO9QCYR1SL_Pitcher_1 ¢ Figurine B0983CQ2HH Angel

e Cup_-BO1LYONYPB_SkyBlue * Figurine BOCR3Y5T3K_Gnome

e Dumbbell BOOPY62Y90_Black e Flask



Figure 14. PBR Materials of the example DTC objects ((the list of objects in Fig.9 Row 5)), From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

* Gargoyle BO7GHVQ3C4_BatCat

* Gargoyle BO08SQMBDXY HandsOnKnees

* Gargoyle BOC3RQ5254 Bronze

* Gargoyle BOBYTQT173_Dragon

* Gargoyle BOC2PNF2Cl Meditating

* Gargoyle BOONO8IU24_Dog

* Gravestone BO8TBJQS5XP LightGrayKitty
* Gravestone BO7WDGH3NR_GrayAngel

* Hammer_ BOOOFK3VZ6_Wood

Hammer BOBN6FXDQ7_BlueHandle
Hammer BO1IN63ONKY DrillingSledge
Kitchen_Cup_-BO9G2WNN61_ DarkBlue
Kitchen_Spoon_BO08H2JLP8_LargeWooden
Kitchen_Spoon_ D146567C_Green_1
LargeLightGreyDish
Mallard_-B082D168CK_MintGreen
Mallard BO9LV16HD5 LightBrown2
Mallard BOBPY18VHR White



* Mallard BOC6MQWM21 BlackWhite

e Mallard BOORTSJU7K_Red

* Mouse_BOCHNVBBLF _Honeycomb_1

* Pan BOCFQWYJZ8 BlackWoodHandle

e Pan_ BOCHW1KK8Z_ Black

e Planter_ BOC4G81ZPF_Cat

e PlasticBowlGreen_1_TU

* Pottery B097S319TR Woman

* Pottery BOCJJ59SLH BlueHairFairy

* Pottery BO7TGC6TGL _White

* Pottery BO75SX9GVK_White

e Pottery BOCF8FW987 _Man

* Shoe BO00ZP6MIY Navy7L_TU

* Shoe B094ZCQK75_Red6HL_TU

* Spoon BO8SM3XNKYR Slotted

* TeaPot_B074ZQYRP7_BrownDragonShaped
* TeaPot BO7GL8MH3X PinkFlamingo

* TeaPot BO7QP5MFQl BlackCastIron

e TeaPot _B084G3K8TD_YellowBlackSunflowers_TU
e TeaPot BO8HSDHBM4 BlackGoldLeaves
¢ TeaPot BOOESU7PFG_WhiteRoseFlowers
e TeaPot BO1lKFCZB2Y WhiteWoodHandle
* TeaPot BO7RT7BYXL WhiteSnowOwl_TU
* Vase BO9ZGXSVTT White TU

* Vase_ BOBV44B4R4_ BlueBirdsYellowBirds
* Vase_Corrected

* Vase_ BOBNX2CWW8_YellowTall

* Vase_B0085800XI_Green_1

* Vase_ BO9FYBCM1R BeeSunflowers

* Vase BOBY8PYLLC_PinkPineapple

* Vase_ BOBNX2CWW8_YellowShort

e WhiteContainerBox

e WhiteClip-1

* WoodBlocks BOOFIX22YQ BlueArch

* WoodBlocks BO98PHYN3P_SmallOctagon
* WoodenBoxSmall

* WoodenFork

A.4. An Example of DSLR Data

As described in Sec. 3.3, we used three DSLR cameras
mounted on a rig to capture 360-degree inward-facing pho-
tos of each object. As shown in Fig. 15, these DSLR cameras
were positioned at different elevation angles and captured
images circularly around the object with a 9-degree interval
between shots. Each camera captured 40 photos, resulting in
a total of 120 photos per object. For each photo, we provide
the corresponding camera pose and an accurate foreground
object mask (2nd row overlaid on the original image in
Fig. 15) to facilitate straightforward and reliable evaluation.
Additionally, to support the evaluation of relightable recon-
struction, we utilized a mirror ball to capture and reconstruct
an HDR environment map (bottom row in Fig.15).

Figure 15. Example DSLR evaluation data: captured images with
3 DSLR cameras from different elevation angles (first row), the
object mask overlaid on each image (second row) and the recovered
HDR envmap (last row).

A.5. An Example of Egocentric Data

Fig. 16 provides an example visualization of the egocentric
recording observed from its RGB camera and the rendered
ground truth using the 3D aligned digital twin model using
the method described in Sec. 3.4. The raw RGB input from
Project Aria is a wide angle fisheye camera, which limits
the amount of existing off-the-shelf baselines using pin-hole
camera models. To resolve this limitation, we rectify all the
raw images using a linear camera model, and render the cor-
responding ground truth of the linear camera model as well.
All the evaluations on egocentric recordings are performed
using the linear rectified images as input and output. We
use the focal length 1200 and 2400x2400 resolution which
retains the original pixel resolution and field of view from
the raw image input.

It is worth noting the image input from Project Aria is
gravity aligned. Both the raw image and rectified image will
appear as 90 degree counter-clock wise rotated according to
the gravity direction without explicitly updating the camera
calibration information. For the reconstruction and evalua-
tion, we do not rotate the image or update the calibration.
We only rotate the rendered images 90 degree clockwise for
the benefit of visualization purpose (e.g. Fig. 22)

We provided two different type of recordings to bench-
mark reconstruction from egocentric views. Fig. 17 shows a



Figure 16. An example of visualization for the egocentric recordings. From left to right, we present the original egocentric view from the
fisheye RGB camera input, the rectified image view, object mask, rendered depth, and rendered normal. The egocentric recording are gravity
aligned respect to the global trajectory coordinate. We use the rectified image for all evaluations.

Figure 17. An snapshot visualization of the active (above) and
passive (below) of egocentric recordings in the 3d space. The left
of image shows the trajectory (visualized in Violet color) of the
camera movement in each scenario. The yellow points are the scene
point cloud.

snapshot of the egocentric recording. We demonstrate each
type of camera trajectory overlaid in the 3D space using the
scene point cloud. The active trajectory represents a com-
mon object-centric 360 view of the objects while the passive
trajectory represents a more casual walk around the object
from different distances.

B. Complementary Benchmarks

In this section, we provide complementary results on the
different applications of benchmarking in Sec. 4. First, we
include the qualitative comparisons of baselines in the in-
verse rendering application using the DTC dataset. We use
the same baselines described in Sec. 4.1. Second, as indi-
cated in the main paper, we include a new baseline evaluation

for sparse-view reconstruction in Sec. B.2 for DSLR data
and Sec. B.3 for egocentric data. Third, we present the
qualitative comparisons of egocentric active reconstruction
baselines described in Sec. 4.2.

Explanations on Evaluation Metrics. In Sec. 4.1, we eval-
uate the quality of geometry reconstruction by comparing
the rendered depth maps, normal maps, and predicted 3D
meshes to the ground truth. For depth maps, we use the Scale-
Invariant Mean Squared Error (SI-MSE) as the evaluation
metric. Normal maps are evaluated using Cosine Distance,
and for the 3D meshes, we compute the Bi-directional
Chamfer Distance between sampled surface points. For
novel view synthesis and novel scene relighting, we utilize
widely adopted metrics: Peak Signal-to-Noise Ratio for both
HDR (PSNR-H) and LDR (PSNR-L), Structural Similarity
Index Measure (SSIM) [67], and Learned Perceptual Image
Patch Similarity (LPIPS) [86]. We follow PhySG [82] and
adapt all these metrics to be scale-invariant, addressing the
ambiguity in material and lighting decomposition. We use
the same metrics for novel-view synthesis in the egocen-
tric novel-view synthesis applications as well. The same
evaluation metrics are used in StanfordORB [39].

B.1. Inverse Rendering Baseline Comparisons

We provide qualitative comparisons as a supplement to the
inverse rendering baseline comparisons in Sec. 4.1. Our
DTC dataset contains objects with varying geometric com-
plexity, ranging from simpler ones, e.g., cups (Fig. 18 Right),
to complex ones, e.g., toy birdhouses (Fig. 18 Left). The
surface material ranges from diffuse ones, e.g., toy houses,
to highly reflective ones, e.g., cups. For the two examples in
Fig. 18, we observed that methods using surface-based repre-
sentations, i.e., PhySG and InvRender, and hybrid represen-
tations, i.e., NVDiffRec and NVDiffRecMC, tend to produce
smoother geometry compared to methods using NeRF [52]-
based representations, i.e., Neural-PIL and NeRD.



Normal

Relight

Ground Truth

Neural-PIL

PhySG

NVDiffRec

NeRD

InvRender

L IS X0 X XC X ¥

NVDiffRecMC

Albedo ‘ Normal Depth Relight

—
(\.
-

1 C

(7

«Q
(

{(

-
..
3

{

«

g eaeaeaacaeae
L N N X N N |
i
8
I €

C

Figure 18. Qualitative Comparisons of Baseline Methods. We show qualitative comparisons of baseline methods, used in Table 2, on two
different DTC models BirdHouseToy (Left) and Cup_.BO8TWHJI33Q_Tan (Right).

Table 6. Quantitative evaluation of trained LRM-VoISDF baseline
for view synthesis on GSO dataset with different number of images.
It achieves the state-of-the-art performance compared to prior work.

LRM-VoISDF PSNR (1) SSIM (1) LPIPS ({)
MeshLRM [70] 28.13 0.923 0.093
4 images 28.72 0.940 0.070
8 images 30.19 0.947 0.061

Table 7. Quantitative results on novel view synthesis for sparse-
view reconstruction using DTC DSLR data.

PSNR-H (1) PSNR-L (1) SSIM (1) LPIPS ()
20.53 21.16 0.993 0.006

LRM-VolSDF

B.2. Sparse-view Reconstruction Application for
DSLR data

We provide a sparse-view reconstruction baseline on our
DSLR data using learning based reconstruction method. To
build the baseline, we train an LRM model similar [70]
that achieves state-of-the-art mesh reconstruction results as
demonstrated on public synthetic dataset on GSO[21] dataset

Ground-truth

Prediction Prediction Ground-truth

Figure 19. LRM view synthesis results from DSLR data.

in Table 6.

LRM baseline Our LRM baseline has the same transformer
architecture and tri-plane representation as [70]. It consists
of 24 self-attention blocks with feature dimension 1024 and
16 heads of attention. The tri-plane token number is 32 x 32.
Each token is decoded to a 8 x 8 feature patch through a



Figure 20. Example input data of egocentric sparse-view recon-
struction. We used the masked pixels from the rectified egocentric
passive data as input. Some objects can appear very small due to the
challenges in free-view movement in egocentric passive trajectory.

Table 8. Quantitative results on novel view synthesis for sparse-
view reconstruction using egocentric passive data.
PSNR-H (1) PSNR-L (1) SSIM (1) LPIPS (})
LRM-VoISDF 20.03 21.72 0.971 0.065

linear layer, which leads us to final tri-plane resolution of
256 x 256. During training, our LRM directly outputs SDF
value instead of density and we use the volume ray tracing
method proposed in [78] to render images for supervision.
Compared to the NeRF representation used in [70], our LRM
baseline is robust to train and can achieve accurate geometry
reconstruction. We evaluate our LRM-VolSDF baseline on
synthetic GSO dataset. Results are summarized in Table
6. With 8 input views, our baseline achieves reconstruction
accuracy comparable to the state-of-the-arts.

Experiments and evaluation We randomly sample 16 im-
ages from the 120 training views as inputs to our LRM-
VoISDF network. The testing view is the same as the dense-
view inverse rendering experiments. The quantitative num-
bers for view synthesis are summarized in Table 7. We ob-
serve that all three metrics are much worse compared to the
results from synthetic GSO dataset, indicating the existence
of a domain gap between synthetic and real data. Fig. 19
visualize some of our reconstruction results. We observe that
for relative simple shape, our model generalizes well and
achieves highly detailed reconstruction that closely match
the ground-truths. However, it struggles at reconstructing
more complicated object, such as the Birdhouse. Further
investigation is required to understand the gap on real world
dataset.

B.3. Sparse-view Reconstruction Application for
Egocentric data

We use the egocentric passive recordings in this evaluation,
which is a challenging sparse-view reconstruction setting
where we only have casual observation of an object captured
by an egocentric RGB camera. Compared to the sparse-
view reconstruction for DSLR data where the object always

Ground-truth

Prediction

Prediction Ground-truth

Figure 21. LRM view synthesis results from egocentric data.

appear in the image center and occupies a large portion of the
image, the egocentric recording has natural human moving
trajectory and object can appear small in many views.

Fig. 20 shows several examples of the masked objects that
we use as input to this evaluation. We can see the camera
poses are much more diverse and object only occupies a very
small portion of the image. This setting will defy any classi-
cal optimization-based 3D reconstruction method. We build
a baseline using the same LRM-VoISDF model as mentioned
in Sec. B.2. We tested the model on the challenging data
without any fine-tuning.

Experiments and Evaluation. For each sequence, we ran-
domly sample 24 views from the middle 1/3 of the whole
sequence as this is when our Aria glasses are relatively close
to the object. We use 16 of the 24 views as inputs and 8 views
as ground-truth for testing. Similar to the DSLR experiment,
we use centralized cropping to place the object in the cen-
ter of the image and modify the plucker rays representation
accordingly. Qualitative and quantitative results are sum-
marzed in Fig. 21 and Tab. 8 respectively. We observe that
despite that the camera poses distribution of input views is
very different from our training data, the LRM-VolSDF gen-
eralizes to the new type of input data. Our PSNR numbers
for the masked region are much lower than those of synthetic
data but still achieve reasonable performance. We calculate
the LPIPS and SSIM based on the full image which results
in higher numbers. This evaluation expose the domain gap in
learning based reconstruction map for egocentric data input.
‘We hope our current experimental results can be a promising
starting point.

B.4. Dense-view Reconstruction for Egocentric data

As a complement to Sec. 4.2, we provided qualitative com-
parisons of novel view synthesis in Fig. 22. We rendered
the depth from both baselines in a normalized depth range.
For 3D-GS, we acquire the normal from its point cloud ray
casted from each pixels. For 2D-GS, we directly use the
predicted normal from the rasterizer.

Results analysis: Both 3D-GS[37] and 2D-GS [31] can
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Figure 22. Qualitative comparisons of baselines reconstructions on egocentric recordings. We compare 3D-GS[37] and 2D-GS[31] to the
ground truth using the modalities of rendered images, depth and normal. Both baselines can provide near photoreal view synthesis on the
held-out validation view compared to ground truth. However, the comparison in their geometry (depth and normal) indicate the existing
methods still fall short to recover the details in digital twin reconstruction. For the benefit for visualization, we rotate all the images 90
degree clockwise.

provide near photo-real view synthesis of the objects with of shape reconstruction, 2D-GS performs better in particular
high quality view-dependent effect. 3D-GS perform slightly to recover surface normals. Compared to the ground truth
better in PSNR metric consistent across all objects. In terms rendering, the estimated depth from 3D-GS is significantly



noiser which also leads to visible artifacts in its normal map,
while the 2D-GS tends to predict smoother depth and normal
and can ignore certain details. For objects with simple shape
(e.g., Teapot BOOESU7PFG_WhiteRoseFlowers),
both methods perform well. = However, for objects
with complex shapes, both methods fail to recover
the complex geometric details in the object shape (e.g.,

BirdHouse_ BOB8F27TFK_BrownRoofYellowWalls).

The challenge in shape reconstruction indicates the direction
for future research work in this area.

C. Experimental Details For Robotic Experi-
ments

C.1. Experimental Objects

The specific objects that we use from the DTC and Objaverse-
XL datasets > are as follows:

DTC dataset:

¢ Cup_-BO1LYONYPB_SkyBlue

¢ Cup-BOBR43SPKJ_Blue

e Cup_-BOCJBZTT7N5_Black

e Cup-BOCMPB8FNY_MountainBluebell
¢ Cup-BOCYL5PSR3_Gray

* Cup_-BOBPTSRWF8_Green

¢ Cup_-BOCMD4LX4D_DarkBlue

e Cup-BO8TWHJ33Q_-Tan

e Cup_-BOCNJP2KZF _GreenOrange
* Cup-BO94NQH2YM BlackGold

* Cup_BOBXB21T7Q_Blue

e Cup_BOCPX832ZP Floral

* Cup-White

e Cup-BO9L8DS2ZB_DarkBrown

¢ Cup-BOC3X3WY2Q_SageGreen

¢ Cup-BOCQTF6GF1_RedWhite

* Cup-BO9QCYR1SL Pitcher_ 1

* Cup_-BOC81BCSXQ WhiteRainbow
e Cup-BOCQXPND8L_Stripes

e Cup_-BO9YDPVRM7_RedTeaCup

¢ Cup_-BOCDWXPDK1_Zebra

* Cup-BOCR45H24G_Blue

* Cup_-BOB3JKZW76_Brown

* Cup-BOCHJYNG6F1_Black

For Objaverse-XL, we collect a subset of 24 objects by
filtering objects by the STL file format and by the word cup
appearing in the provided metadata tags, and then manually
filtering the results by inspecting the object files to only
include objects that can be considered “cups” by a human
judge.

2The version of Objaverse-XL used in this work excludes all 3D models
sourced from Sketchfab. Further, no Polycam assets were obtained from
the Polycam source site

C.2. Simulation and Data Collection

When importing objects into the PyBullet simulator, we ob-
tain separate collision meshes by performing convex decom-
position of each object with CoACD [69] with a concavity
threshold of 0.01, and rescale each object to have a maxi-
mum bounding box side length of 0.137 m (to match that of
the test object). Since not all Objaverse-XL objects come
with textures, we randomly color Objaverse-XL objects uni-
formly in RGB space.

For data collection, we uniformly randomly select one
object from the considered object set to be placed into the
scene. We uniformly randomly place the object within a
0.4 x 0.4 m box centered at the scene origin at a z height
of 0.10m, and allow it to fall to the floor workspace. If
the object rolls away (further than a 0.8 x 0.8 m bound),
we re-sample the initial position and re-attempt the object
placement.

Pushing: For pushing, we generate pseudo-random
trajectories by executing a scripted policy in two stages:
First, the robot samples a starting position from the push
by randomly sampling an angle 6 and radius r. It then
takes steps to move its end-effector to the x-y location
(o + rsin(B), yob; + 7 cos(d)), where (zopj, Yob; ) is the
initial object position. After reaching within 2cm of this lo-
cation, the robot begins to push the object, by moving from
its current end-effector position toward the object location.
All steps are normalized to have a magnitude of 0.03m, and
the action at each step is affected by uniform random noise
drawn from U (—0.05,0.05) in each axis. The trajectory
ends after 35 steps.

Grasping: For grasping, we generate successful grasps
by sampling grasping candidates and filtering only the suc-
cessful ones. After adding an object to the scene, we uni-
formly randomly sample a grasping position (z, y, z) where
T = Top; + U(—0.05,0.05), y = yop; + U(—0.05,0.05),
z=0.24+U(—0.1,0.1) where (Zob;, Yob;) is the initial ob-
ject position. The robot then performs four steps: (1) It
moves in the air to the target grasp position z, y coordinates,
(2) it moves vertically downwards to a height of z, (3) it
closes the gripper, and (4) it lifts to a height of 0.5m. The
grasp is considered successful if the object is at least 0.1m
above the floor after step (4).

C.3. Policy Training

We train convolutional neural network policies to regress
actions representing xy position changes and the (z,y, z, 6)
grasp position for pushing and grasping respectively. For
pushing, we train goal-image-conditioned policies, relabel-
ing goals using a hindsight sampling mechanism. We sample
goals uniformly randomly from future timesteps in the tra-
jectory of a sampled initial state, and use the first action after
the initial state as the label.

We use similar architectures for pushing and grasping.



The architecture consists of an encoder and an MLP head
for action prediction. Below we describe the architecture for
goal-conditioned pushing, with differences for the grasping
policy noted. The input image size for both initial and goal
images is 256 x 256 x 3.

For pushing, we normalize action labels by multiplying
each dimension by 100, and for grasping, we normalize the
last dimension (grasp angle) by dividing by 10 such that it
has similar magnitudes to the other action label dimensions.

Encoder:

e Conv2d (3, 32, 3, stride=2, padding=1)

e ReLU

* Conv2d (32, 64, 3, stride=2, padding=1)

* ReLU

e Convz2d (64, 64, 3, stride=2, padding=1)

e ReLU

* Flatten

* Linear ((image_size/8) 2 %64, 512)

* ReLU

Note that for the pushing policy, the observation and goal
image share encoder weights.

Action Prediction Head:

* Linear (512 x 2,256) (the input feature dimension is
512 for grasping, which has a single image input as op-
posed to 1024 and two image inputs for pushing, which
have their features concatenated together).

* RelLU

e Linear (256, 256)

* ReLU

* Linear (256, 2) (for grasping, the final output size is
4)

We train policies using a mean-squared-error loss using
the Adam optimizer with a learning rate of 3e — 4 and a
batch size of 32, holding out 5% of the data for validation.
We train for 200 epochs and take the checkpoint with lowest
validation loss for evaluation. Training uses a single NVIDIA
Titan RTX GPU.

C.4. Evaluation

For evaluation, we generate test sets of 100 initial conditions
for each task using the “cup_scene003” object from the
StanfordORB dataset. For pushing, we generate trajectories
in the same way as during data collection and use the initial
state and final state as the initial condition and target goal for
the policy. We roll out the policy for 35 steps and compute
the final position error of the object in the z, y dimensions.
For grasping, we generate initial object positions in the same
way as in data collection and the policy performs a single
grasp attempt, which is determined successful if the object
ends at least 0.1m above the working surface.

In Figure 8, we present detailed results for the pushing
experiments, plotting the success rates for each policy with
respect to varying success thresholds based on final object

position error.
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